Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
 
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
 
 
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67/*
  68 * Following exit from Conventional Reset, devices must be ready within 1 sec
  69 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  70 * Reset (PCIe r6.0 sec 5.8).
  71 */
  72#define PCI_RESET_WAIT 1000 /* msec */
  73
  74/*
  75 * Devices may extend the 1 sec period through Request Retry Status
  76 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  77 * limit, but 60 sec ought to be enough for any device to become
  78 * responsive.
  79 */
  80#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  81
  82static void pci_dev_d3_sleep(struct pci_dev *dev)
  83{
  84	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  85	unsigned int upper;
  86
  87	if (delay_ms) {
  88		/* Use a 20% upper bound, 1ms minimum */
  89		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  90		usleep_range(delay_ms * USEC_PER_MSEC,
  91			     (delay_ms + upper) * USEC_PER_MSEC);
  92	}
  93}
  94
  95bool pci_reset_supported(struct pci_dev *dev)
  96{
  97	return dev->reset_methods[0] != 0;
  98}
  99
 100#ifdef CONFIG_PCI_DOMAINS
 101int pci_domains_supported = 1;
 102#endif
 103
 104#define DEFAULT_CARDBUS_IO_SIZE		(256)
 105#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 106/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 107unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 108unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 109
 110#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 111#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 112#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 113/* hpiosize=nn can override this */
 114unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 115/*
 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 118 * pci=hpmemsize=nnM overrides both
 119 */
 120unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 121unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 122
 123#define DEFAULT_HOTPLUG_BUS_SIZE	1
 124unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 125
 126
 127/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 128#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 130#elif defined CONFIG_PCIE_BUS_SAFE
 131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 132#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 134#elif defined CONFIG_PCIE_BUS_PEER2PEER
 135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 136#else
 137enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 138#endif
 139
 140/*
 141 * The default CLS is used if arch didn't set CLS explicitly and not
 142 * all pci devices agree on the same value.  Arch can override either
 143 * the dfl or actual value as it sees fit.  Don't forget this is
 144 * measured in 32-bit words, not bytes.
 145 */
 146u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 147u8 pci_cache_line_size;
 148
 149/*
 150 * If we set up a device for bus mastering, we need to check the latency
 151 * timer as certain BIOSes forget to set it properly.
 152 */
 153unsigned int pcibios_max_latency = 255;
 154
 155/* If set, the PCIe ARI capability will not be used. */
 156static bool pcie_ari_disabled;
 157
 158/* If set, the PCIe ATS capability will not be used. */
 159static bool pcie_ats_disabled;
 160
 161/* If set, the PCI config space of each device is printed during boot. */
 162bool pci_early_dump;
 163
 164bool pci_ats_disabled(void)
 165{
 166	return pcie_ats_disabled;
 167}
 168EXPORT_SYMBOL_GPL(pci_ats_disabled);
 169
 170/* Disable bridge_d3 for all PCIe ports */
 171static bool pci_bridge_d3_disable;
 172/* Force bridge_d3 for all PCIe ports */
 173static bool pci_bridge_d3_force;
 174
 175static int __init pcie_port_pm_setup(char *str)
 176{
 177	if (!strcmp(str, "off"))
 178		pci_bridge_d3_disable = true;
 179	else if (!strcmp(str, "force"))
 180		pci_bridge_d3_force = true;
 181	return 1;
 182}
 183__setup("pcie_port_pm=", pcie_port_pm_setup);
 184
 
 
 
 185/**
 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 187 * @bus: pointer to PCI bus structure to search
 188 *
 189 * Given a PCI bus, returns the highest PCI bus number present in the set
 190 * including the given PCI bus and its list of child PCI buses.
 191 */
 192unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 193{
 194	struct pci_bus *tmp;
 195	unsigned char max, n;
 196
 197	max = bus->busn_res.end;
 198	list_for_each_entry(tmp, &bus->children, node) {
 199		n = pci_bus_max_busnr(tmp);
 200		if (n > max)
 201			max = n;
 202	}
 203	return max;
 204}
 205EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 206
 207/**
 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 209 * @pdev: the PCI device
 210 *
 211 * Returns error bits set in PCI_STATUS and clears them.
 212 */
 213int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 214{
 215	u16 status;
 216	int ret;
 217
 218	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 219	if (ret != PCIBIOS_SUCCESSFUL)
 220		return -EIO;
 221
 222	status &= PCI_STATUS_ERROR_BITS;
 223	if (status)
 224		pci_write_config_word(pdev, PCI_STATUS, status);
 225
 226	return status;
 227}
 228EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 229
 230#ifdef CONFIG_HAS_IOMEM
 231static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 232					    bool write_combine)
 233{
 234	struct resource *res = &pdev->resource[bar];
 235	resource_size_t start = res->start;
 236	resource_size_t size = resource_size(res);
 237
 238	/*
 239	 * Make sure the BAR is actually a memory resource, not an IO resource
 240	 */
 241	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 242		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 243		return NULL;
 244	}
 245
 246	if (write_combine)
 247		return ioremap_wc(start, size);
 248
 249	return ioremap(start, size);
 250}
 251
 252void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 253{
 254	return __pci_ioremap_resource(pdev, bar, false);
 255}
 256EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 257
 258void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 259{
 260	return __pci_ioremap_resource(pdev, bar, true);
 
 
 
 
 
 
 
 
 261}
 262EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 263#endif
 264
 265/**
 266 * pci_dev_str_match_path - test if a path string matches a device
 267 * @dev: the PCI device to test
 268 * @path: string to match the device against
 269 * @endptr: pointer to the string after the match
 270 *
 271 * Test if a string (typically from a kernel parameter) formatted as a
 272 * path of device/function addresses matches a PCI device. The string must
 273 * be of the form:
 274 *
 275 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 276 *
 277 * A path for a device can be obtained using 'lspci -t'.  Using a path
 278 * is more robust against bus renumbering than using only a single bus,
 279 * device and function address.
 280 *
 281 * Returns 1 if the string matches the device, 0 if it does not and
 282 * a negative error code if it fails to parse the string.
 283 */
 284static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 285				  const char **endptr)
 286{
 287	int ret;
 288	unsigned int seg, bus, slot, func;
 289	char *wpath, *p;
 290	char end;
 291
 292	*endptr = strchrnul(path, ';');
 293
 294	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 295	if (!wpath)
 296		return -ENOMEM;
 297
 298	while (1) {
 299		p = strrchr(wpath, '/');
 300		if (!p)
 301			break;
 302		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 303		if (ret != 2) {
 304			ret = -EINVAL;
 305			goto free_and_exit;
 306		}
 307
 308		if (dev->devfn != PCI_DEVFN(slot, func)) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		/*
 314		 * Note: we don't need to get a reference to the upstream
 315		 * bridge because we hold a reference to the top level
 316		 * device which should hold a reference to the bridge,
 317		 * and so on.
 318		 */
 319		dev = pci_upstream_bridge(dev);
 320		if (!dev) {
 321			ret = 0;
 322			goto free_and_exit;
 323		}
 324
 325		*p = 0;
 326	}
 327
 328	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 329		     &func, &end);
 330	if (ret != 4) {
 331		seg = 0;
 332		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 333		if (ret != 3) {
 334			ret = -EINVAL;
 335			goto free_and_exit;
 336		}
 337	}
 338
 339	ret = (seg == pci_domain_nr(dev->bus) &&
 340	       bus == dev->bus->number &&
 341	       dev->devfn == PCI_DEVFN(slot, func));
 342
 343free_and_exit:
 344	kfree(wpath);
 345	return ret;
 346}
 347
 348/**
 349 * pci_dev_str_match - test if a string matches a device
 350 * @dev: the PCI device to test
 351 * @p: string to match the device against
 352 * @endptr: pointer to the string after the match
 353 *
 354 * Test if a string (typically from a kernel parameter) matches a specified
 355 * PCI device. The string may be of one of the following formats:
 356 *
 357 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 358 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 359 *
 360 * The first format specifies a PCI bus/device/function address which
 361 * may change if new hardware is inserted, if motherboard firmware changes,
 362 * or due to changes caused in kernel parameters. If the domain is
 363 * left unspecified, it is taken to be 0.  In order to be robust against
 364 * bus renumbering issues, a path of PCI device/function numbers may be used
 365 * to address the specific device.  The path for a device can be determined
 366 * through the use of 'lspci -t'.
 367 *
 368 * The second format matches devices using IDs in the configuration
 369 * space which may match multiple devices in the system. A value of 0
 370 * for any field will match all devices. (Note: this differs from
 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 372 * legacy reasons and convenience so users don't have to specify
 373 * FFFFFFFFs on the command line.)
 374 *
 375 * Returns 1 if the string matches the device, 0 if it does not and
 376 * a negative error code if the string cannot be parsed.
 377 */
 378static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 379			     const char **endptr)
 380{
 381	int ret;
 382	int count;
 383	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 384
 385	if (strncmp(p, "pci:", 4) == 0) {
 386		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 387		p += 4;
 388		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 389			     &subsystem_vendor, &subsystem_device, &count);
 390		if (ret != 4) {
 391			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 392			if (ret != 2)
 393				return -EINVAL;
 394
 395			subsystem_vendor = 0;
 396			subsystem_device = 0;
 397		}
 398
 399		p += count;
 400
 401		if ((!vendor || vendor == dev->vendor) &&
 402		    (!device || device == dev->device) &&
 403		    (!subsystem_vendor ||
 404			    subsystem_vendor == dev->subsystem_vendor) &&
 405		    (!subsystem_device ||
 406			    subsystem_device == dev->subsystem_device))
 407			goto found;
 408	} else {
 409		/*
 410		 * PCI Bus, Device, Function IDs are specified
 411		 * (optionally, may include a path of devfns following it)
 412		 */
 413		ret = pci_dev_str_match_path(dev, p, &p);
 414		if (ret < 0)
 415			return ret;
 416		else if (ret)
 417			goto found;
 418	}
 419
 420	*endptr = p;
 421	return 0;
 422
 423found:
 424	*endptr = p;
 425	return 1;
 426}
 427
 428static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 429				  u8 pos, int cap, int *ttl)
 430{
 431	u8 id;
 432	u16 ent;
 433
 434	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 435
 436	while ((*ttl)--) {
 437		if (pos < 0x40)
 438			break;
 439		pos &= ~3;
 440		pci_bus_read_config_word(bus, devfn, pos, &ent);
 441
 442		id = ent & 0xff;
 443		if (id == 0xff)
 444			break;
 445		if (id == cap)
 446			return pos;
 447		pos = (ent >> 8);
 448	}
 449	return 0;
 450}
 451
 452static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 453			      u8 pos, int cap)
 454{
 455	int ttl = PCI_FIND_CAP_TTL;
 456
 457	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 458}
 459
 460u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 461{
 462	return __pci_find_next_cap(dev->bus, dev->devfn,
 463				   pos + PCI_CAP_LIST_NEXT, cap);
 464}
 465EXPORT_SYMBOL_GPL(pci_find_next_capability);
 466
 467static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 468				    unsigned int devfn, u8 hdr_type)
 469{
 470	u16 status;
 471
 472	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 473	if (!(status & PCI_STATUS_CAP_LIST))
 474		return 0;
 475
 476	switch (hdr_type) {
 477	case PCI_HEADER_TYPE_NORMAL:
 478	case PCI_HEADER_TYPE_BRIDGE:
 479		return PCI_CAPABILITY_LIST;
 480	case PCI_HEADER_TYPE_CARDBUS:
 481		return PCI_CB_CAPABILITY_LIST;
 482	}
 483
 484	return 0;
 485}
 486
 487/**
 488 * pci_find_capability - query for devices' capabilities
 489 * @dev: PCI device to query
 490 * @cap: capability code
 491 *
 492 * Tell if a device supports a given PCI capability.
 493 * Returns the address of the requested capability structure within the
 494 * device's PCI configuration space or 0 in case the device does not
 495 * support it.  Possible values for @cap include:
 496 *
 497 *  %PCI_CAP_ID_PM           Power Management
 498 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 499 *  %PCI_CAP_ID_VPD          Vital Product Data
 500 *  %PCI_CAP_ID_SLOTID       Slot Identification
 501 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 502 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 503 *  %PCI_CAP_ID_PCIX         PCI-X
 504 *  %PCI_CAP_ID_EXP          PCI Express
 505 */
 506u8 pci_find_capability(struct pci_dev *dev, int cap)
 507{
 508	u8 pos;
 509
 510	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 511	if (pos)
 512		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 513
 514	return pos;
 515}
 516EXPORT_SYMBOL(pci_find_capability);
 517
 518/**
 519 * pci_bus_find_capability - query for devices' capabilities
 520 * @bus: the PCI bus to query
 521 * @devfn: PCI device to query
 522 * @cap: capability code
 523 *
 524 * Like pci_find_capability() but works for PCI devices that do not have a
 525 * pci_dev structure set up yet.
 526 *
 527 * Returns the address of the requested capability structure within the
 528 * device's PCI configuration space or 0 in case the device does not
 529 * support it.
 530 */
 531u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 532{
 533	u8 hdr_type, pos;
 
 534
 535	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 536
 537	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 538	if (pos)
 539		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 540
 541	return pos;
 542}
 543EXPORT_SYMBOL(pci_bus_find_capability);
 544
 545/**
 546 * pci_find_next_ext_capability - Find an extended capability
 547 * @dev: PCI device to query
 548 * @start: address at which to start looking (0 to start at beginning of list)
 549 * @cap: capability code
 550 *
 551 * Returns the address of the next matching extended capability structure
 552 * within the device's PCI configuration space or 0 if the device does
 553 * not support it.  Some capabilities can occur several times, e.g., the
 554 * vendor-specific capability, and this provides a way to find them all.
 555 */
 556u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 557{
 558	u32 header;
 559	int ttl;
 560	u16 pos = PCI_CFG_SPACE_SIZE;
 561
 562	/* minimum 8 bytes per capability */
 563	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 564
 565	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 566		return 0;
 567
 568	if (start)
 569		pos = start;
 570
 571	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 572		return 0;
 573
 574	/*
 575	 * If we have no capabilities, this is indicated by cap ID,
 576	 * cap version and next pointer all being 0.
 577	 */
 578	if (header == 0)
 579		return 0;
 580
 581	while (ttl-- > 0) {
 582		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 583			return pos;
 584
 585		pos = PCI_EXT_CAP_NEXT(header);
 586		if (pos < PCI_CFG_SPACE_SIZE)
 587			break;
 588
 589		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 590			break;
 591	}
 592
 593	return 0;
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 596
 597/**
 598 * pci_find_ext_capability - Find an extended capability
 599 * @dev: PCI device to query
 600 * @cap: capability code
 601 *
 602 * Returns the address of the requested extended capability structure
 603 * within the device's PCI configuration space or 0 if the device does
 604 * not support it.  Possible values for @cap include:
 605 *
 606 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 607 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 608 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 609 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 610 */
 611u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 612{
 613	return pci_find_next_ext_capability(dev, 0, cap);
 614}
 615EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 616
 617/**
 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 619 * @dev: PCI device to query
 620 *
 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 622 * Number.
 623 *
 624 * Returns the DSN, or zero if the capability does not exist.
 625 */
 626u64 pci_get_dsn(struct pci_dev *dev)
 627{
 628	u32 dword;
 629	u64 dsn;
 630	int pos;
 631
 632	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 633	if (!pos)
 634		return 0;
 635
 636	/*
 637	 * The Device Serial Number is two dwords offset 4 bytes from the
 638	 * capability position. The specification says that the first dword is
 639	 * the lower half, and the second dword is the upper half.
 640	 */
 641	pos += 4;
 642	pci_read_config_dword(dev, pos, &dword);
 643	dsn = (u64)dword;
 644	pci_read_config_dword(dev, pos + 4, &dword);
 645	dsn |= ((u64)dword) << 32;
 646
 647	return dsn;
 648}
 649EXPORT_SYMBOL_GPL(pci_get_dsn);
 650
 651static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 652{
 653	int rc, ttl = PCI_FIND_CAP_TTL;
 654	u8 cap, mask;
 655
 656	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 657		mask = HT_3BIT_CAP_MASK;
 658	else
 659		mask = HT_5BIT_CAP_MASK;
 660
 661	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 662				      PCI_CAP_ID_HT, &ttl);
 663	while (pos) {
 664		rc = pci_read_config_byte(dev, pos + 3, &cap);
 665		if (rc != PCIBIOS_SUCCESSFUL)
 666			return 0;
 667
 668		if ((cap & mask) == ht_cap)
 669			return pos;
 670
 671		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 672					      pos + PCI_CAP_LIST_NEXT,
 673					      PCI_CAP_ID_HT, &ttl);
 674	}
 675
 676	return 0;
 677}
 678
 679/**
 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 681 * @dev: PCI device to query
 682 * @pos: Position from which to continue searching
 683 * @ht_cap: HyperTransport capability code
 684 *
 685 * To be used in conjunction with pci_find_ht_capability() to search for
 686 * all capabilities matching @ht_cap. @pos should always be a value returned
 687 * from pci_find_ht_capability().
 688 *
 689 * NB. To be 100% safe against broken PCI devices, the caller should take
 690 * steps to avoid an infinite loop.
 691 */
 692u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 693{
 694	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 695}
 696EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 697
 698/**
 699 * pci_find_ht_capability - query a device's HyperTransport capabilities
 700 * @dev: PCI device to query
 701 * @ht_cap: HyperTransport capability code
 702 *
 703 * Tell if a device supports a given HyperTransport capability.
 704 * Returns an address within the device's PCI configuration space
 705 * or 0 in case the device does not support the request capability.
 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 707 * which has a HyperTransport capability matching @ht_cap.
 708 */
 709u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 710{
 711	u8 pos;
 712
 713	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 714	if (pos)
 715		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 716
 717	return pos;
 718}
 719EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 720
 721/**
 722 * pci_find_vsec_capability - Find a vendor-specific extended capability
 723 * @dev: PCI device to query
 724 * @vendor: Vendor ID for which capability is defined
 725 * @cap: Vendor-specific capability ID
 726 *
 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 728 * VSEC ID @cap. If found, return the capability offset in
 729 * config space; otherwise return 0.
 730 */
 731u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 732{
 733	u16 vsec = 0;
 734	u32 header;
 735	int ret;
 736
 737	if (vendor != dev->vendor)
 738		return 0;
 739
 740	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 741						     PCI_EXT_CAP_ID_VNDR))) {
 742		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 743		if (ret != PCIBIOS_SUCCESSFUL)
 744			continue;
 745
 746		if (PCI_VNDR_HEADER_ID(header) == cap)
 747			return vsec;
 748	}
 749
 750	return 0;
 751}
 752EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 753
 754/**
 755 * pci_find_dvsec_capability - Find DVSEC for vendor
 756 * @dev: PCI device to query
 757 * @vendor: Vendor ID to match for the DVSEC
 758 * @dvsec: Designated Vendor-specific capability ID
 759 *
 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 761 * offset in config space; otherwise return 0.
 762 */
 763u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 764{
 765	int pos;
 766
 767	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 768	if (!pos)
 769		return 0;
 770
 771	while (pos) {
 772		u16 v, id;
 773
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 775		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 776		if (vendor == v && dvsec == id)
 777			return pos;
 778
 779		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 780	}
 781
 782	return 0;
 783}
 784EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 785
 786/**
 787 * pci_find_parent_resource - return resource region of parent bus of given
 788 *			      region
 789 * @dev: PCI device structure contains resources to be searched
 790 * @res: child resource record for which parent is sought
 791 *
 792 * For given resource region of given device, return the resource region of
 793 * parent bus the given region is contained in.
 794 */
 795struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 796					  struct resource *res)
 797{
 798	const struct pci_bus *bus = dev->bus;
 799	struct resource *r;
 
 800
 801	pci_bus_for_each_resource(bus, r) {
 802		if (!r)
 803			continue;
 804		if (resource_contains(r, res)) {
 805
 806			/*
 807			 * If the window is prefetchable but the BAR is
 808			 * not, the allocator made a mistake.
 809			 */
 810			if (r->flags & IORESOURCE_PREFETCH &&
 811			    !(res->flags & IORESOURCE_PREFETCH))
 812				return NULL;
 813
 814			/*
 815			 * If we're below a transparent bridge, there may
 816			 * be both a positively-decoded aperture and a
 817			 * subtractively-decoded region that contain the BAR.
 818			 * We want the positively-decoded one, so this depends
 819			 * on pci_bus_for_each_resource() giving us those
 820			 * first.
 821			 */
 822			return r;
 823		}
 824	}
 825	return NULL;
 826}
 827EXPORT_SYMBOL(pci_find_parent_resource);
 828
 829/**
 830 * pci_find_resource - Return matching PCI device resource
 831 * @dev: PCI device to query
 832 * @res: Resource to look for
 833 *
 834 * Goes over standard PCI resources (BARs) and checks if the given resource
 835 * is partially or fully contained in any of them. In that case the
 836 * matching resource is returned, %NULL otherwise.
 837 */
 838struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 839{
 840	int i;
 841
 842	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 843		struct resource *r = &dev->resource[i];
 844
 845		if (r->start && resource_contains(r, res))
 846			return r;
 847	}
 848
 849	return NULL;
 850}
 851EXPORT_SYMBOL(pci_find_resource);
 852
 853/**
 854 * pci_resource_name - Return the name of the PCI resource
 855 * @dev: PCI device to query
 856 * @i: index of the resource
 857 *
 858 * Return the standard PCI resource (BAR) name according to their index.
 
 859 */
 860const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 861{
 862	static const char * const bar_name[] = {
 863		"BAR 0",
 864		"BAR 1",
 865		"BAR 2",
 866		"BAR 3",
 867		"BAR 4",
 868		"BAR 5",
 869		"ROM",
 870#ifdef CONFIG_PCI_IOV
 871		"VF BAR 0",
 872		"VF BAR 1",
 873		"VF BAR 2",
 874		"VF BAR 3",
 875		"VF BAR 4",
 876		"VF BAR 5",
 877#endif
 878		"bridge window",	/* "io" included in %pR */
 879		"bridge window",	/* "mem" included in %pR */
 880		"bridge window",	/* "mem pref" included in %pR */
 881	};
 882	static const char * const cardbus_name[] = {
 883		"BAR 1",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888		"unknown",
 889#ifdef CONFIG_PCI_IOV
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895		"unknown",
 896#endif
 897		"CardBus bridge window 0",	/* I/O */
 898		"CardBus bridge window 1",	/* I/O */
 899		"CardBus bridge window 0",	/* mem */
 900		"CardBus bridge window 1",	/* mem */
 901	};
 902
 903	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 904	    i < ARRAY_SIZE(cardbus_name))
 905		return cardbus_name[i];
 906
 907	if (i < ARRAY_SIZE(bar_name))
 908		return bar_name[i];
 
 
 
 909
 910	return "unknown";
 
 
 
 911}
 
 912
 913/**
 914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 915 * @dev: the PCI device to operate on
 916 * @pos: config space offset of status word
 917 * @mask: mask of bit(s) to care about in status word
 918 *
 919 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 920 */
 921int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 922{
 923	int i;
 924
 925	/* Wait for Transaction Pending bit clean */
 926	for (i = 0; i < 4; i++) {
 927		u16 status;
 928		if (i)
 929			msleep((1 << (i - 1)) * 100);
 930
 931		pci_read_config_word(dev, pos, &status);
 932		if (!(status & mask))
 933			return 1;
 934	}
 935
 936	return 0;
 937}
 938
 939static int pci_acs_enable;
 940
 941/**
 942 * pci_request_acs - ask for ACS to be enabled if supported
 943 */
 944void pci_request_acs(void)
 945{
 946	pci_acs_enable = 1;
 947}
 948
 949static const char *disable_acs_redir_param;
 950
 951/**
 952 * pci_disable_acs_redir - disable ACS redirect capabilities
 953 * @dev: the PCI device
 954 *
 955 * For only devices specified in the disable_acs_redir parameter.
 956 */
 957static void pci_disable_acs_redir(struct pci_dev *dev)
 958{
 959	int ret = 0;
 960	const char *p;
 961	int pos;
 962	u16 ctrl;
 963
 964	if (!disable_acs_redir_param)
 965		return;
 966
 967	p = disable_acs_redir_param;
 968	while (*p) {
 969		ret = pci_dev_str_match(dev, p, &p);
 970		if (ret < 0) {
 971			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 972				     disable_acs_redir_param);
 973
 974			break;
 975		} else if (ret == 1) {
 976			/* Found a match */
 977			break;
 978		}
 979
 980		if (*p != ';' && *p != ',') {
 981			/* End of param or invalid format */
 982			break;
 983		}
 984		p++;
 985	}
 986
 987	if (ret != 1)
 988		return;
 989
 990	if (!pci_dev_specific_disable_acs_redir(dev))
 991		return;
 992
 993	pos = dev->acs_cap;
 994	if (!pos) {
 995		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 996		return;
 997	}
 998
 999	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1000
1001	/* P2P Request & Completion Redirect */
1002	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1003
1004	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1005
1006	pci_info(dev, "disabled ACS redirect\n");
1007}
1008
1009/**
1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1011 * @dev: the PCI device
1012 */
1013static void pci_std_enable_acs(struct pci_dev *dev)
1014{
1015	int pos;
1016	u16 cap;
1017	u16 ctrl;
1018
1019	pos = dev->acs_cap;
1020	if (!pos)
1021		return;
1022
1023	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1024	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1025
1026	/* Source Validation */
1027	ctrl |= (cap & PCI_ACS_SV);
1028
1029	/* P2P Request Redirect */
1030	ctrl |= (cap & PCI_ACS_RR);
1031
1032	/* P2P Completion Redirect */
1033	ctrl |= (cap & PCI_ACS_CR);
1034
1035	/* Upstream Forwarding */
1036	ctrl |= (cap & PCI_ACS_UF);
1037
1038	/* Enable Translation Blocking for external devices and noats */
1039	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040		ctrl |= (cap & PCI_ACS_TB);
1041
1042	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1043}
1044
1045/**
1046 * pci_enable_acs - enable ACS if hardware support it
1047 * @dev: the PCI device
1048 */
1049static void pci_enable_acs(struct pci_dev *dev)
1050{
1051	if (!pci_acs_enable)
1052		goto disable_acs_redir;
1053
1054	if (!pci_dev_specific_enable_acs(dev))
1055		goto disable_acs_redir;
1056
1057	pci_std_enable_acs(dev);
1058
1059disable_acs_redir:
1060	/*
1061	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1062	 * enabled by the kernel because it may have been enabled by
1063	 * platform firmware.  So if we are told to disable it, we should
1064	 * always disable it after setting the kernel's default
1065	 * preferences.
1066	 */
1067	pci_disable_acs_redir(dev);
1068}
1069
1070/**
1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072 * @dev: PCI device to have its BARs restored
1073 *
1074 * Restore the BAR values for a given device, so as to make it
1075 * accessible by its driver.
1076 */
1077static void pci_restore_bars(struct pci_dev *dev)
1078{
1079	int i;
1080
1081	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082		pci_update_resource(dev, i);
1083}
1084
1085static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 
 
1086{
1087	if (pci_use_mid_pm())
1088		return true;
 
 
 
 
1089
1090	return acpi_pci_power_manageable(dev);
 
 
1091}
1092
1093static inline int platform_pci_set_power_state(struct pci_dev *dev,
1094					       pci_power_t t)
1095{
1096	if (pci_use_mid_pm())
1097		return mid_pci_set_power_state(dev, t);
1098
1099	return acpi_pci_set_power_state(dev, t);
1100}
1101
1102static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1103{
1104	if (pci_use_mid_pm())
1105		return mid_pci_get_power_state(dev);
1106
1107	return acpi_pci_get_power_state(dev);
1108}
1109
1110static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1111{
1112	if (!pci_use_mid_pm())
1113		acpi_pci_refresh_power_state(dev);
1114}
1115
1116static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1117{
1118	if (pci_use_mid_pm())
1119		return PCI_POWER_ERROR;
1120
1121	return acpi_pci_choose_state(dev);
1122}
1123
1124static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125{
1126	if (pci_use_mid_pm())
1127		return PCI_POWER_ERROR;
1128
1129	return acpi_pci_wakeup(dev, enable);
1130}
1131
1132static inline bool platform_pci_need_resume(struct pci_dev *dev)
1133{
1134	if (pci_use_mid_pm())
1135		return false;
1136
1137	return acpi_pci_need_resume(dev);
1138}
1139
1140static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1141{
1142	if (pci_use_mid_pm())
1143		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144
1145	return acpi_pci_bridge_d3(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146}
1147
1148/**
1149 * pci_update_current_state - Read power state of given device and cache it
1150 * @dev: PCI device to handle.
1151 * @state: State to cache in case the device doesn't have the PM capability
1152 *
1153 * The power state is read from the PMCSR register, which however is
1154 * inaccessible in D3cold.  The platform firmware is therefore queried first
1155 * to detect accessibility of the register.  In case the platform firmware
1156 * reports an incorrect state or the device isn't power manageable by the
1157 * platform at all, we try to detect D3cold by testing accessibility of the
1158 * vendor ID in config space.
1159 */
1160void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161{
1162	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
 
1163		dev->current_state = PCI_D3cold;
1164	} else if (dev->pm_cap) {
1165		u16 pmcsr;
1166
1167		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1169			dev->current_state = PCI_D3cold;
1170			return;
1171		}
1172		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173	} else {
1174		dev->current_state = state;
1175	}
1176}
1177
1178/**
1179 * pci_refresh_power_state - Refresh the given device's power state data
1180 * @dev: Target PCI device.
1181 *
1182 * Ask the platform to refresh the devices power state information and invoke
1183 * pci_update_current_state() to update its current PCI power state.
1184 */
1185void pci_refresh_power_state(struct pci_dev *dev)
1186{
1187	platform_pci_refresh_power_state(dev);
 
 
1188	pci_update_current_state(dev, dev->current_state);
1189}
1190
1191/**
1192 * pci_platform_power_transition - Use platform to change device power state
1193 * @dev: PCI device to handle.
1194 * @state: State to put the device into.
1195 */
1196int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197{
1198	int error;
1199
1200	error = platform_pci_set_power_state(dev, state);
1201	if (!error)
1202		pci_update_current_state(dev, state);
1203	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
 
 
 
 
1204		dev->current_state = PCI_D0;
1205
1206	return error;
1207}
1208EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209
1210static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
 
 
 
 
 
1211{
 
1212	pm_request_resume(&pci_dev->dev);
1213	return 0;
1214}
1215
1216/**
1217 * pci_resume_bus - Walk given bus and runtime resume devices on it
1218 * @bus: Top bus of the subtree to walk.
1219 */
1220void pci_resume_bus(struct pci_bus *bus)
1221{
1222	if (bus)
1223		pci_walk_bus(bus, pci_resume_one, NULL);
1224}
1225
1226static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1227{
1228	int delay = 1;
1229	bool retrain = false;
1230	struct pci_dev *bridge;
1231
1232	if (pci_is_pcie(dev)) {
1233		bridge = pci_upstream_bridge(dev);
1234		if (bridge)
1235			retrain = true;
1236	}
1237
1238	/*
1239	 * After reset, the device should not silently discard config
1240	 * requests, but it may still indicate that it needs more time by
1241	 * responding to them with CRS completions.  The Root Port will
1242	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1243	 * the read (except when CRS SV is enabled and the read was for the
1244	 * Vendor ID; in that case it synthesizes 0x0001 data).
1245	 *
1246	 * Wait for the device to return a non-CRS completion.  Read the
1247	 * Command register instead of Vendor ID so we don't have to
1248	 * contend with the CRS SV value.
1249	 */
1250	for (;;) {
1251		u32 id;
1252
1253		pci_read_config_dword(dev, PCI_COMMAND, &id);
1254		if (!PCI_POSSIBLE_ERROR(id))
1255			break;
1256
1257		if (delay > timeout) {
1258			pci_warn(dev, "not ready %dms after %s; giving up\n",
1259				 delay - 1, reset_type);
1260			return -ENOTTY;
1261		}
1262
1263		if (delay > PCI_RESET_WAIT) {
1264			if (retrain) {
1265				retrain = false;
1266				if (pcie_failed_link_retrain(bridge)) {
1267					delay = 1;
1268					continue;
1269				}
1270			}
1271			pci_info(dev, "not ready %dms after %s; waiting\n",
1272				 delay - 1, reset_type);
1273		}
1274
1275		msleep(delay);
1276		delay *= 2;
1277	}
1278
1279	if (delay > PCI_RESET_WAIT)
1280		pci_info(dev, "ready %dms after %s\n", delay - 1,
1281			 reset_type);
1282	else
1283		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1284			reset_type);
1285
1286	return 0;
1287}
1288
1289/**
1290 * pci_power_up - Put the given device into D0
1291 * @dev: PCI device to power up
1292 *
1293 * On success, return 0 or 1, depending on whether or not it is necessary to
1294 * restore the device's BARs subsequently (1 is returned in that case).
1295 *
1296 * On failure, return a negative error code.  Always return failure if @dev
1297 * lacks a Power Management Capability, even if the platform was able to
1298 * put the device in D0 via non-PCI means.
1299 */
1300int pci_power_up(struct pci_dev *dev)
1301{
1302	bool need_restore;
1303	pci_power_t state;
1304	u16 pmcsr;
1305
1306	platform_pci_set_power_state(dev, PCI_D0);
1307
1308	if (!dev->pm_cap) {
1309		state = platform_pci_get_power_state(dev);
1310		if (state == PCI_UNKNOWN)
1311			dev->current_state = PCI_D0;
1312		else
1313			dev->current_state = state;
1314
1315		return -EIO;
1316	}
1317
1318	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1319	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1320		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1321			pci_power_name(dev->current_state));
1322		dev->current_state = PCI_D3cold;
1323		return -EIO;
1324	}
1325
1326	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1327
1328	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1329			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1330
1331	if (state == PCI_D0)
1332		goto end;
1333
1334	/*
1335	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1336	 * PME_En, and sets PowerState to 0.
1337	 */
1338	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339
1340	/* Mandatory transition delays; see PCI PM 1.2. */
1341	if (state == PCI_D3hot)
1342		pci_dev_d3_sleep(dev);
1343	else if (state == PCI_D2)
1344		udelay(PCI_PM_D2_DELAY);
1345
1346end:
1347	dev->current_state = PCI_D0;
1348	if (need_restore)
1349		return 1;
1350
1351	return 0;
1352}
1353
1354/**
1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1356 * @dev: PCI device to power up
1357 * @locked: whether pci_bus_sem is held
1358 *
1359 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1360 * to confirm the state change, restore its BARs if they might be lost and
1361 * reconfigure ASPM in accordance with the new power state.
1362 *
1363 * If pci_restore_state() is going to be called right after a power state change
1364 * to D0, it is more efficient to use pci_power_up() directly instead of this
1365 * function.
1366 */
1367static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1368{
1369	u16 pmcsr;
1370	int ret;
1371
1372	ret = pci_power_up(dev);
1373	if (ret < 0) {
1374		if (dev->current_state == PCI_D0)
1375			return 0;
1376
1377		return ret;
1378	}
1379
1380	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1382	if (dev->current_state != PCI_D0) {
1383		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1384				     pci_power_name(dev->current_state));
1385	} else if (ret > 0) {
1386		/*
1387		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1388		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1389		 * from D3hot to D0 _may_ perform an internal reset, thereby
1390		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1391		 * For example, at least some versions of the 3c905B and the
1392		 * 3c556B exhibit this behaviour.
1393		 *
1394		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1395		 * devices in a D3hot state at boot.  Consequently, we need to
1396		 * restore at least the BARs so that the device will be
1397		 * accessible to its driver.
1398		 */
1399		pci_restore_bars(dev);
 
 
 
 
 
 
 
 
 
 
1400	}
1401
1402	if (dev->bus->self)
1403		pcie_aspm_pm_state_change(dev->bus->self, locked);
1404
1405	return 0;
1406}
1407
1408/**
1409 * __pci_dev_set_current_state - Set current state of a PCI device
1410 * @dev: Device to handle
1411 * @data: pointer to state to be set
1412 */
1413static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1414{
1415	pci_power_t state = *(pci_power_t *)data;
1416
1417	dev->current_state = state;
1418	return 0;
1419}
1420
1421/**
1422 * pci_bus_set_current_state - Walk given bus and set current state of devices
1423 * @bus: Top bus of the subtree to walk.
1424 * @state: state to be set
1425 */
1426void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1427{
1428	if (bus)
1429		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1430}
1431
1432static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
 
 
 
 
 
 
 
1433{
1434	if (!bus)
1435		return;
1436
1437	if (locked)
1438		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1439	else
1440		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 
 
 
1441}
 
1442
1443/**
1444 * pci_set_low_power_state - Put a PCI device into a low-power state.
1445 * @dev: PCI device to handle.
1446 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1447 * @locked: whether pci_bus_sem is held
1448 *
1449 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
 
1450 *
1451 * RETURN VALUE:
1452 * -EINVAL if the requested state is invalid.
1453 * -EIO if device does not support PCI PM or its PM capabilities register has a
1454 * wrong version, or device doesn't support the requested state.
 
1455 * 0 if device already is in the requested state.
 
1456 * 0 if device's power state has been successfully changed.
1457 */
1458static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1459{
1460	u16 pmcsr;
1461
1462	if (!dev->pm_cap)
1463		return -EIO;
1464
1465	/*
1466	 * Validate transition: We can enter D0 from any state, but if
1467	 * we're already in a low-power state, we can only go deeper.  E.g.,
1468	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1469	 * we'd have to go from D3 to D0, then to D1.
1470	 */
1471	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1472		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1473			pci_power_name(dev->current_state),
1474			pci_power_name(state));
1475		return -EINVAL;
1476	}
1477
1478	/* Check if this device supports the desired state */
1479	if ((state == PCI_D1 && !dev->d1_support)
1480	   || (state == PCI_D2 && !dev->d2_support))
1481		return -EIO;
1482
1483	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1484	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1485		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1486			pci_power_name(dev->current_state),
1487			pci_power_name(state));
1488		dev->current_state = PCI_D3cold;
1489		return -EIO;
1490	}
1491
1492	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1493	pmcsr |= state;
1494
1495	/* Enter specified state */
1496	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1497
1498	/* Mandatory power management transition delays; see PCI PM 1.2. */
1499	if (state == PCI_D3hot)
1500		pci_dev_d3_sleep(dev);
1501	else if (state == PCI_D2)
1502		udelay(PCI_PM_D2_DELAY);
1503
1504	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1505	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1506	if (dev->current_state != state)
1507		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1508				     pci_power_name(dev->current_state),
1509				     pci_power_name(state));
1510
1511	if (dev->bus->self)
1512		pcie_aspm_pm_state_change(dev->bus->self, locked);
1513
1514	return 0;
1515}
1516
1517static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518{
1519	int error;
1520
1521	/* Bound the state we're entering */
1522	if (state > PCI_D3cold)
1523		state = PCI_D3cold;
1524	else if (state < PCI_D0)
1525		state = PCI_D0;
1526	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1527
1528		/*
1529		 * If the device or the parent bridge do not support PCI
1530		 * PM, ignore the request if we're doing anything other
1531		 * than putting it into D0 (which would only happen on
1532		 * boot).
1533		 */
1534		return 0;
1535
1536	/* Check if we're already there */
1537	if (dev->current_state == state)
1538		return 0;
1539
1540	if (state == PCI_D0)
1541		return pci_set_full_power_state(dev, locked);
1542
1543	/*
1544	 * This device is quirked not to be put into D3, so don't put it in
1545	 * D3
1546	 */
1547	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1548		return 0;
1549
1550	if (state == PCI_D3cold) {
1551		/*
1552		 * To put the device in D3cold, put it into D3hot in the native
1553		 * way, then put it into D3cold using platform ops.
1554		 */
1555		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1556
1557		if (pci_platform_power_transition(dev, PCI_D3cold))
1558			return error;
1559
1560		/* Powering off a bridge may power off the whole hierarchy */
1561		if (dev->current_state == PCI_D3cold)
1562			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1563	} else {
1564		error = pci_set_low_power_state(dev, state, locked);
1565
1566		if (pci_platform_power_transition(dev, state))
1567			return error;
1568	}
1569
1570	return 0;
1571}
 
1572
1573/**
1574 * pci_set_power_state - Set the power state of a PCI device
1575 * @dev: PCI device to handle.
1576 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1577 *
1578 * Transition a device to a new power state, using the platform firmware and/or
1579 * the device's PCI PM registers.
1580 *
1581 * RETURN VALUE:
1582 * -EINVAL if the requested state is invalid.
1583 * -EIO if device does not support PCI PM or its PM capabilities register has a
1584 * wrong version, or device doesn't support the requested state.
1585 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1586 * 0 if device already is in the requested state.
1587 * 0 if the transition is to D3 but D3 is not supported.
1588 * 0 if device's power state has been successfully changed.
1589 */
1590int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1591{
1592	return __pci_set_power_state(dev, state, false);
 
 
1593}
1594EXPORT_SYMBOL(pci_set_power_state);
1595
1596int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
 
 
 
 
 
 
 
 
 
1597{
1598	lockdep_assert_held(&pci_bus_sem);
1599
1600	return __pci_set_power_state(dev, state, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601}
1602EXPORT_SYMBOL(pci_set_power_state_locked);
1603
1604#define PCI_EXP_SAVE_REGS	7
1605
1606static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1607						       u16 cap, bool extended)
1608{
1609	struct pci_cap_saved_state *tmp;
1610
1611	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1612		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1613			return tmp;
1614	}
1615	return NULL;
1616}
1617
1618struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1619{
1620	return _pci_find_saved_cap(dev, cap, false);
1621}
1622
1623struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1624{
1625	return _pci_find_saved_cap(dev, cap, true);
1626}
1627
1628static int pci_save_pcie_state(struct pci_dev *dev)
1629{
1630	int i = 0;
1631	struct pci_cap_saved_state *save_state;
1632	u16 *cap;
1633
1634	if (!pci_is_pcie(dev))
1635		return 0;
1636
1637	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1638	if (!save_state) {
1639		pci_err(dev, "buffer not found in %s\n", __func__);
1640		return -ENOMEM;
1641	}
1642
1643	cap = (u16 *)&save_state->cap.data[0];
1644	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1645	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1646	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1647	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1648	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1649	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1650	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1651
1652	return 0;
1653}
1654
1655void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1656{
1657#ifdef CONFIG_PCIEASPM
1658	struct pci_dev *bridge;
1659	u32 ctl;
1660
1661	bridge = pci_upstream_bridge(dev);
1662	if (bridge && bridge->ltr_path) {
1663		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1664		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1665			pci_dbg(bridge, "re-enabling LTR\n");
1666			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1667						 PCI_EXP_DEVCTL2_LTR_EN);
1668		}
1669	}
1670#endif
1671}
1672
1673static void pci_restore_pcie_state(struct pci_dev *dev)
1674{
1675	int i = 0;
1676	struct pci_cap_saved_state *save_state;
1677	u16 *cap;
1678
1679	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680	if (!save_state)
1681		return;
1682
1683	/*
1684	 * Downstream ports reset the LTR enable bit when link goes down.
1685	 * Check and re-configure the bit here before restoring device.
1686	 * PCIe r5.0, sec 7.5.3.16.
1687	 */
1688	pci_bridge_reconfigure_ltr(dev);
1689
1690	cap = (u16 *)&save_state->cap.data[0];
1691	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698}
1699
1700static int pci_save_pcix_state(struct pci_dev *dev)
1701{
1702	int pos;
1703	struct pci_cap_saved_state *save_state;
1704
1705	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706	if (!pos)
1707		return 0;
1708
1709	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710	if (!save_state) {
1711		pci_err(dev, "buffer not found in %s\n", __func__);
1712		return -ENOMEM;
1713	}
1714
1715	pci_read_config_word(dev, pos + PCI_X_CMD,
1716			     (u16 *)save_state->cap.data);
1717
1718	return 0;
1719}
1720
1721static void pci_restore_pcix_state(struct pci_dev *dev)
1722{
1723	int i = 0, pos;
1724	struct pci_cap_saved_state *save_state;
1725	u16 *cap;
1726
1727	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729	if (!save_state || !pos)
1730		return;
1731	cap = (u16 *)&save_state->cap.data[0];
1732
1733	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734}
1735
1736static void pci_save_ltr_state(struct pci_dev *dev)
1737{
1738	int ltr;
1739	struct pci_cap_saved_state *save_state;
1740	u32 *cap;
1741
1742	if (!pci_is_pcie(dev))
1743		return;
1744
1745	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1746	if (!ltr)
1747		return;
1748
1749	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1750	if (!save_state) {
1751		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1752		return;
1753	}
1754
1755	/* Some broken devices only support dword access to LTR */
1756	cap = &save_state->cap.data[0];
1757	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1758}
1759
1760static void pci_restore_ltr_state(struct pci_dev *dev)
1761{
1762	struct pci_cap_saved_state *save_state;
1763	int ltr;
1764	u32 *cap;
1765
1766	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1767	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1768	if (!save_state || !ltr)
1769		return;
1770
1771	/* Some broken devices only support dword access to LTR */
1772	cap = &save_state->cap.data[0];
1773	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1774}
1775
1776/**
1777 * pci_save_state - save the PCI configuration space of a device before
1778 *		    suspending
1779 * @dev: PCI device that we're dealing with
1780 */
1781int pci_save_state(struct pci_dev *dev)
1782{
1783	int i;
1784	/* XXX: 100% dword access ok here? */
1785	for (i = 0; i < 16; i++) {
1786		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1787		pci_dbg(dev, "save config %#04x: %#010x\n",
1788			i * 4, dev->saved_config_space[i]);
1789	}
1790	dev->state_saved = true;
1791
1792	i = pci_save_pcie_state(dev);
1793	if (i != 0)
1794		return i;
1795
1796	i = pci_save_pcix_state(dev);
1797	if (i != 0)
1798		return i;
1799
1800	pci_save_ltr_state(dev);
1801	pci_save_dpc_state(dev);
1802	pci_save_aer_state(dev);
1803	pci_save_ptm_state(dev);
1804	return pci_save_vc_state(dev);
1805}
1806EXPORT_SYMBOL(pci_save_state);
1807
1808static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1809				     u32 saved_val, int retry, bool force)
1810{
1811	u32 val;
1812
1813	pci_read_config_dword(pdev, offset, &val);
1814	if (!force && val == saved_val)
1815		return;
1816
1817	for (;;) {
1818		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1819			offset, val, saved_val);
1820		pci_write_config_dword(pdev, offset, saved_val);
1821		if (retry-- <= 0)
1822			return;
1823
1824		pci_read_config_dword(pdev, offset, &val);
1825		if (val == saved_val)
1826			return;
1827
1828		mdelay(1);
1829	}
1830}
1831
1832static void pci_restore_config_space_range(struct pci_dev *pdev,
1833					   int start, int end, int retry,
1834					   bool force)
1835{
1836	int index;
1837
1838	for (index = end; index >= start; index--)
1839		pci_restore_config_dword(pdev, 4 * index,
1840					 pdev->saved_config_space[index],
1841					 retry, force);
1842}
1843
1844static void pci_restore_config_space(struct pci_dev *pdev)
1845{
1846	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1847		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1848		/* Restore BARs before the command register. */
1849		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1850		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1851	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1852		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1853
1854		/*
1855		 * Force rewriting of prefetch registers to avoid S3 resume
1856		 * issues on Intel PCI bridges that occur when these
1857		 * registers are not explicitly written.
1858		 */
1859		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1860		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1861	} else {
1862		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1863	}
1864}
1865
1866static void pci_restore_rebar_state(struct pci_dev *pdev)
1867{
1868	unsigned int pos, nbars, i;
1869	u32 ctrl;
1870
1871	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1872	if (!pos)
1873		return;
1874
1875	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1876	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
1877
1878	for (i = 0; i < nbars; i++, pos += 8) {
1879		struct resource *res;
1880		int bar_idx, size;
1881
1882		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1883		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1884		res = pdev->resource + bar_idx;
1885		size = pci_rebar_bytes_to_size(resource_size(res));
1886		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1887		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1888		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1889	}
1890}
1891
1892/**
1893 * pci_restore_state - Restore the saved state of a PCI device
1894 * @dev: PCI device that we're dealing with
1895 */
1896void pci_restore_state(struct pci_dev *dev)
1897{
1898	if (!dev->state_saved)
1899		return;
1900
1901	/*
1902	 * Restore max latencies (in the LTR capability) before enabling
1903	 * LTR itself (in the PCIe capability).
1904	 */
1905	pci_restore_ltr_state(dev);
1906
1907	pci_restore_pcie_state(dev);
1908	pci_restore_pasid_state(dev);
1909	pci_restore_pri_state(dev);
1910	pci_restore_ats_state(dev);
1911	pci_restore_vc_state(dev);
1912	pci_restore_rebar_state(dev);
1913	pci_restore_dpc_state(dev);
1914	pci_restore_ptm_state(dev);
1915
1916	pci_aer_clear_status(dev);
1917	pci_restore_aer_state(dev);
1918
1919	pci_restore_config_space(dev);
1920
1921	pci_restore_pcix_state(dev);
1922	pci_restore_msi_state(dev);
1923
1924	/* Restore ACS and IOV configuration state */
1925	pci_enable_acs(dev);
1926	pci_restore_iov_state(dev);
1927
1928	dev->state_saved = false;
1929}
1930EXPORT_SYMBOL(pci_restore_state);
1931
1932struct pci_saved_state {
1933	u32 config_space[16];
1934	struct pci_cap_saved_data cap[];
1935};
1936
1937/**
1938 * pci_store_saved_state - Allocate and return an opaque struct containing
1939 *			   the device saved state.
1940 * @dev: PCI device that we're dealing with
1941 *
1942 * Return NULL if no state or error.
1943 */
1944struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1945{
1946	struct pci_saved_state *state;
1947	struct pci_cap_saved_state *tmp;
1948	struct pci_cap_saved_data *cap;
1949	size_t size;
1950
1951	if (!dev->state_saved)
1952		return NULL;
1953
1954	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1955
1956	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1957		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1958
1959	state = kzalloc(size, GFP_KERNEL);
1960	if (!state)
1961		return NULL;
1962
1963	memcpy(state->config_space, dev->saved_config_space,
1964	       sizeof(state->config_space));
1965
1966	cap = state->cap;
1967	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1968		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1969		memcpy(cap, &tmp->cap, len);
1970		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1971	}
1972	/* Empty cap_save terminates list */
1973
1974	return state;
1975}
1976EXPORT_SYMBOL_GPL(pci_store_saved_state);
1977
1978/**
1979 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1980 * @dev: PCI device that we're dealing with
1981 * @state: Saved state returned from pci_store_saved_state()
1982 */
1983int pci_load_saved_state(struct pci_dev *dev,
1984			 struct pci_saved_state *state)
1985{
1986	struct pci_cap_saved_data *cap;
1987
1988	dev->state_saved = false;
1989
1990	if (!state)
1991		return 0;
1992
1993	memcpy(dev->saved_config_space, state->config_space,
1994	       sizeof(state->config_space));
1995
1996	cap = state->cap;
1997	while (cap->size) {
1998		struct pci_cap_saved_state *tmp;
1999
2000		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2001		if (!tmp || tmp->cap.size != cap->size)
2002			return -EINVAL;
2003
2004		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2005		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2006		       sizeof(struct pci_cap_saved_data) + cap->size);
2007	}
2008
2009	dev->state_saved = true;
2010	return 0;
2011}
2012EXPORT_SYMBOL_GPL(pci_load_saved_state);
2013
2014/**
2015 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2016 *				   and free the memory allocated for it.
2017 * @dev: PCI device that we're dealing with
2018 * @state: Pointer to saved state returned from pci_store_saved_state()
2019 */
2020int pci_load_and_free_saved_state(struct pci_dev *dev,
2021				  struct pci_saved_state **state)
2022{
2023	int ret = pci_load_saved_state(dev, *state);
2024	kfree(*state);
2025	*state = NULL;
2026	return ret;
2027}
2028EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2029
2030int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2031{
2032	return pci_enable_resources(dev, bars);
2033}
2034
2035static int do_pci_enable_device(struct pci_dev *dev, int bars)
2036{
2037	int err;
2038	struct pci_dev *bridge;
2039	u16 cmd;
2040	u8 pin;
2041
2042	err = pci_set_power_state(dev, PCI_D0);
2043	if (err < 0 && err != -EIO)
2044		return err;
2045
2046	bridge = pci_upstream_bridge(dev);
2047	if (bridge)
2048		pcie_aspm_powersave_config_link(bridge);
2049
2050	err = pcibios_enable_device(dev, bars);
2051	if (err < 0)
2052		return err;
2053	pci_fixup_device(pci_fixup_enable, dev);
2054
2055	if (dev->msi_enabled || dev->msix_enabled)
2056		return 0;
2057
2058	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2059	if (pin) {
2060		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2061		if (cmd & PCI_COMMAND_INTX_DISABLE)
2062			pci_write_config_word(dev, PCI_COMMAND,
2063					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2064	}
2065
2066	return 0;
2067}
2068
2069/**
2070 * pci_reenable_device - Resume abandoned device
2071 * @dev: PCI device to be resumed
2072 *
2073 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2074 * to be called by normal code, write proper resume handler and use it instead.
2075 */
2076int pci_reenable_device(struct pci_dev *dev)
2077{
2078	if (pci_is_enabled(dev))
2079		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2080	return 0;
2081}
2082EXPORT_SYMBOL(pci_reenable_device);
2083
2084static void pci_enable_bridge(struct pci_dev *dev)
2085{
2086	struct pci_dev *bridge;
2087	int retval;
2088
2089	bridge = pci_upstream_bridge(dev);
2090	if (bridge)
2091		pci_enable_bridge(bridge);
2092
2093	if (pci_is_enabled(dev)) {
2094		if (!dev->is_busmaster)
2095			pci_set_master(dev);
2096		return;
2097	}
2098
2099	retval = pci_enable_device(dev);
2100	if (retval)
2101		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2102			retval);
2103	pci_set_master(dev);
2104}
2105
2106static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2107{
2108	struct pci_dev *bridge;
2109	int err;
2110	int i, bars = 0;
2111
2112	/*
2113	 * Power state could be unknown at this point, either due to a fresh
2114	 * boot or a device removal call.  So get the current power state
2115	 * so that things like MSI message writing will behave as expected
2116	 * (e.g. if the device really is in D0 at enable time).
2117	 */
2118	pci_update_current_state(dev, dev->current_state);
 
 
 
 
2119
2120	if (atomic_inc_return(&dev->enable_cnt) > 1)
2121		return 0;		/* already enabled */
2122
2123	bridge = pci_upstream_bridge(dev);
2124	if (bridge)
2125		pci_enable_bridge(bridge);
2126
2127	/* only skip sriov related */
2128	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2129		if (dev->resource[i].flags & flags)
2130			bars |= (1 << i);
2131	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2132		if (dev->resource[i].flags & flags)
2133			bars |= (1 << i);
2134
2135	err = do_pci_enable_device(dev, bars);
2136	if (err < 0)
2137		atomic_dec(&dev->enable_cnt);
2138	return err;
2139}
2140
2141/**
2142 * pci_enable_device_io - Initialize a device for use with IO space
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O resources. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 */
2149int pci_enable_device_io(struct pci_dev *dev)
2150{
2151	return pci_enable_device_flags(dev, IORESOURCE_IO);
2152}
2153EXPORT_SYMBOL(pci_enable_device_io);
2154
2155/**
2156 * pci_enable_device_mem - Initialize a device for use with Memory space
2157 * @dev: PCI device to be initialized
2158 *
2159 * Initialize device before it's used by a driver. Ask low-level code
2160 * to enable Memory resources. Wake up the device if it was suspended.
2161 * Beware, this function can fail.
2162 */
2163int pci_enable_device_mem(struct pci_dev *dev)
2164{
2165	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2166}
2167EXPORT_SYMBOL(pci_enable_device_mem);
2168
2169/**
2170 * pci_enable_device - Initialize device before it's used by a driver.
2171 * @dev: PCI device to be initialized
2172 *
2173 * Initialize device before it's used by a driver. Ask low-level code
2174 * to enable I/O and memory. Wake up the device if it was suspended.
2175 * Beware, this function can fail.
2176 *
2177 * Note we don't actually enable the device many times if we call
2178 * this function repeatedly (we just increment the count).
2179 */
2180int pci_enable_device(struct pci_dev *dev)
2181{
2182	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2183}
2184EXPORT_SYMBOL(pci_enable_device);
2185
2186/*
2187 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2188 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2189 * there's no need to track it separately.  pci_devres is initialized
2190 * when a device is enabled using managed PCI device enable interface.
2191 */
2192struct pci_devres {
2193	unsigned int enabled:1;
2194	unsigned int pinned:1;
2195	unsigned int orig_intx:1;
2196	unsigned int restore_intx:1;
2197	unsigned int mwi:1;
2198	u32 region_mask;
2199};
2200
2201static void pcim_release(struct device *gendev, void *res)
2202{
2203	struct pci_dev *dev = to_pci_dev(gendev);
2204	struct pci_devres *this = res;
2205	int i;
2206
 
 
 
 
 
2207	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2208		if (this->region_mask & (1 << i))
2209			pci_release_region(dev, i);
2210
2211	if (this->mwi)
2212		pci_clear_mwi(dev);
2213
2214	if (this->restore_intx)
2215		pci_intx(dev, this->orig_intx);
2216
2217	if (this->enabled && !this->pinned)
2218		pci_disable_device(dev);
2219}
2220
2221static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2222{
2223	struct pci_devres *dr, *new_dr;
2224
2225	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2226	if (dr)
2227		return dr;
2228
2229	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2230	if (!new_dr)
2231		return NULL;
2232	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2233}
2234
2235static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2236{
2237	if (pci_is_managed(pdev))
2238		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2239	return NULL;
2240}
2241
2242/**
2243 * pcim_enable_device - Managed pci_enable_device()
2244 * @pdev: PCI device to be initialized
2245 *
2246 * Managed pci_enable_device().
2247 */
2248int pcim_enable_device(struct pci_dev *pdev)
2249{
2250	struct pci_devres *dr;
2251	int rc;
2252
2253	dr = get_pci_dr(pdev);
2254	if (unlikely(!dr))
2255		return -ENOMEM;
2256	if (dr->enabled)
2257		return 0;
2258
2259	rc = pci_enable_device(pdev);
2260	if (!rc) {
2261		pdev->is_managed = 1;
2262		dr->enabled = 1;
2263	}
2264	return rc;
2265}
2266EXPORT_SYMBOL(pcim_enable_device);
2267
2268/**
2269 * pcim_pin_device - Pin managed PCI device
2270 * @pdev: PCI device to pin
2271 *
2272 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2273 * driver detach.  @pdev must have been enabled with
2274 * pcim_enable_device().
2275 */
2276void pcim_pin_device(struct pci_dev *pdev)
2277{
2278	struct pci_devres *dr;
2279
2280	dr = find_pci_dr(pdev);
2281	WARN_ON(!dr || !dr->enabled);
2282	if (dr)
2283		dr->pinned = 1;
2284}
2285EXPORT_SYMBOL(pcim_pin_device);
2286
2287/*
2288 * pcibios_device_add - provide arch specific hooks when adding device dev
2289 * @dev: the PCI device being added
2290 *
2291 * Permits the platform to provide architecture specific functionality when
2292 * devices are added. This is the default implementation. Architecture
2293 * implementations can override this.
2294 */
2295int __weak pcibios_device_add(struct pci_dev *dev)
2296{
2297	return 0;
2298}
2299
2300/**
2301 * pcibios_release_device - provide arch specific hooks when releasing
2302 *			    device dev
2303 * @dev: the PCI device being released
2304 *
2305 * Permits the platform to provide architecture specific functionality when
2306 * devices are released. This is the default implementation. Architecture
2307 * implementations can override this.
2308 */
2309void __weak pcibios_release_device(struct pci_dev *dev) {}
2310
2311/**
2312 * pcibios_disable_device - disable arch specific PCI resources for device dev
2313 * @dev: the PCI device to disable
2314 *
2315 * Disables architecture specific PCI resources for the device. This
2316 * is the default implementation. Architecture implementations can
2317 * override this.
2318 */
2319void __weak pcibios_disable_device(struct pci_dev *dev) {}
2320
2321/**
2322 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2323 * @irq: ISA IRQ to penalize
2324 * @active: IRQ active or not
2325 *
2326 * Permits the platform to provide architecture-specific functionality when
2327 * penalizing ISA IRQs. This is the default implementation. Architecture
2328 * implementations can override this.
2329 */
2330void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2331
2332static void do_pci_disable_device(struct pci_dev *dev)
2333{
2334	u16 pci_command;
2335
2336	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2337	if (pci_command & PCI_COMMAND_MASTER) {
2338		pci_command &= ~PCI_COMMAND_MASTER;
2339		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2340	}
2341
2342	pcibios_disable_device(dev);
2343}
2344
2345/**
2346 * pci_disable_enabled_device - Disable device without updating enable_cnt
2347 * @dev: PCI device to disable
2348 *
2349 * NOTE: This function is a backend of PCI power management routines and is
2350 * not supposed to be called drivers.
2351 */
2352void pci_disable_enabled_device(struct pci_dev *dev)
2353{
2354	if (pci_is_enabled(dev))
2355		do_pci_disable_device(dev);
2356}
2357
2358/**
2359 * pci_disable_device - Disable PCI device after use
2360 * @dev: PCI device to be disabled
2361 *
2362 * Signal to the system that the PCI device is not in use by the system
2363 * anymore.  This only involves disabling PCI bus-mastering, if active.
2364 *
2365 * Note we don't actually disable the device until all callers of
2366 * pci_enable_device() have called pci_disable_device().
2367 */
2368void pci_disable_device(struct pci_dev *dev)
2369{
2370	struct pci_devres *dr;
2371
2372	dr = find_pci_dr(dev);
2373	if (dr)
2374		dr->enabled = 0;
2375
2376	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2377		      "disabling already-disabled device");
2378
2379	if (atomic_dec_return(&dev->enable_cnt) != 0)
2380		return;
2381
2382	do_pci_disable_device(dev);
2383
2384	dev->is_busmaster = 0;
2385}
2386EXPORT_SYMBOL(pci_disable_device);
2387
2388/**
2389 * pcibios_set_pcie_reset_state - set reset state for device dev
2390 * @dev: the PCIe device reset
2391 * @state: Reset state to enter into
2392 *
2393 * Set the PCIe reset state for the device. This is the default
2394 * implementation. Architecture implementations can override this.
2395 */
2396int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2397					enum pcie_reset_state state)
2398{
2399	return -EINVAL;
2400}
2401
2402/**
2403 * pci_set_pcie_reset_state - set reset state for device dev
2404 * @dev: the PCIe device reset
2405 * @state: Reset state to enter into
2406 *
2407 * Sets the PCI reset state for the device.
2408 */
2409int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2410{
2411	return pcibios_set_pcie_reset_state(dev, state);
2412}
2413EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2414
2415#ifdef CONFIG_PCIEAER
2416void pcie_clear_device_status(struct pci_dev *dev)
2417{
2418	u16 sta;
2419
2420	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2421	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2422}
2423#endif
2424
2425/**
2426 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2427 * @dev: PCIe root port or event collector.
2428 */
2429void pcie_clear_root_pme_status(struct pci_dev *dev)
2430{
2431	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2432}
2433
2434/**
2435 * pci_check_pme_status - Check if given device has generated PME.
2436 * @dev: Device to check.
2437 *
2438 * Check the PME status of the device and if set, clear it and clear PME enable
2439 * (if set).  Return 'true' if PME status and PME enable were both set or
2440 * 'false' otherwise.
2441 */
2442bool pci_check_pme_status(struct pci_dev *dev)
2443{
2444	int pmcsr_pos;
2445	u16 pmcsr;
2446	bool ret = false;
2447
2448	if (!dev->pm_cap)
2449		return false;
2450
2451	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2452	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2453	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2454		return false;
2455
2456	/* Clear PME status. */
2457	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2458	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2459		/* Disable PME to avoid interrupt flood. */
2460		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2461		ret = true;
2462	}
2463
2464	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2465
2466	return ret;
2467}
2468
2469/**
2470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2471 * @dev: Device to handle.
2472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2473 *
2474 * Check if @dev has generated PME and queue a resume request for it in that
2475 * case.
2476 */
2477static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2478{
2479	if (pme_poll_reset && dev->pme_poll)
2480		dev->pme_poll = false;
2481
2482	if (pci_check_pme_status(dev)) {
2483		pci_wakeup_event(dev);
2484		pm_request_resume(&dev->dev);
2485	}
2486	return 0;
2487}
2488
2489/**
2490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2491 * @bus: Top bus of the subtree to walk.
2492 */
2493void pci_pme_wakeup_bus(struct pci_bus *bus)
2494{
2495	if (bus)
2496		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2497}
2498
2499
2500/**
2501 * pci_pme_capable - check the capability of PCI device to generate PME#
2502 * @dev: PCI device to handle.
2503 * @state: PCI state from which device will issue PME#.
2504 */
2505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2506{
2507	if (!dev->pm_cap)
2508		return false;
2509
2510	return !!(dev->pme_support & (1 << state));
2511}
2512EXPORT_SYMBOL(pci_pme_capable);
2513
2514static void pci_pme_list_scan(struct work_struct *work)
2515{
2516	struct pci_pme_device *pme_dev, *n;
2517
2518	mutex_lock(&pci_pme_list_mutex);
2519	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2520		struct pci_dev *pdev = pme_dev->dev;
2521
2522		if (pdev->pme_poll) {
2523			struct pci_dev *bridge = pdev->bus->self;
2524			struct device *dev = &pdev->dev;
2525			struct device *bdev = bridge ? &bridge->dev : NULL;
2526			int bref = 0;
2527
 
2528			/*
2529			 * If we have a bridge, it should be in an active/D0
2530			 * state or the configuration space of subordinate
2531			 * devices may not be accessible or stable over the
2532			 * course of the call.
2533			 */
2534			if (bdev) {
2535				bref = pm_runtime_get_if_active(bdev, true);
2536				if (!bref)
2537					continue;
2538
2539				if (bridge->current_state != PCI_D0)
2540					goto put_bridge;
2541			}
2542
2543			/*
2544			 * The device itself should be suspended but config
2545			 * space must be accessible, therefore it cannot be in
2546			 * D3cold.
2547			 */
2548			if (pm_runtime_suspended(dev) &&
2549			    pdev->current_state != PCI_D3cold)
2550				pci_pme_wakeup(pdev, NULL);
2551
2552put_bridge:
2553			if (bref > 0)
2554				pm_runtime_put(bdev);
2555		} else {
2556			list_del(&pme_dev->list);
2557			kfree(pme_dev);
2558		}
2559	}
2560	if (!list_empty(&pci_pme_list))
2561		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2562				   msecs_to_jiffies(PME_TIMEOUT));
2563	mutex_unlock(&pci_pme_list_mutex);
2564}
2565
2566static void __pci_pme_active(struct pci_dev *dev, bool enable)
2567{
2568	u16 pmcsr;
2569
2570	if (!dev->pme_support)
2571		return;
2572
2573	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2574	/* Clear PME_Status by writing 1 to it and enable PME# */
2575	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2576	if (!enable)
2577		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2578
2579	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2580}
2581
2582/**
2583 * pci_pme_restore - Restore PME configuration after config space restore.
2584 * @dev: PCI device to update.
2585 */
2586void pci_pme_restore(struct pci_dev *dev)
2587{
2588	u16 pmcsr;
2589
2590	if (!dev->pme_support)
2591		return;
2592
2593	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2594	if (dev->wakeup_prepared) {
2595		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2596		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2597	} else {
2598		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2599		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2600	}
2601	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2602}
2603
2604/**
2605 * pci_pme_active - enable or disable PCI device's PME# function
2606 * @dev: PCI device to handle.
2607 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2608 *
2609 * The caller must verify that the device is capable of generating PME# before
2610 * calling this function with @enable equal to 'true'.
2611 */
2612void pci_pme_active(struct pci_dev *dev, bool enable)
2613{
2614	__pci_pme_active(dev, enable);
2615
2616	/*
2617	 * PCI (as opposed to PCIe) PME requires that the device have
2618	 * its PME# line hooked up correctly. Not all hardware vendors
2619	 * do this, so the PME never gets delivered and the device
2620	 * remains asleep. The easiest way around this is to
2621	 * periodically walk the list of suspended devices and check
2622	 * whether any have their PME flag set. The assumption is that
2623	 * we'll wake up often enough anyway that this won't be a huge
2624	 * hit, and the power savings from the devices will still be a
2625	 * win.
2626	 *
2627	 * Although PCIe uses in-band PME message instead of PME# line
2628	 * to report PME, PME does not work for some PCIe devices in
2629	 * reality.  For example, there are devices that set their PME
2630	 * status bits, but don't really bother to send a PME message;
2631	 * there are PCI Express Root Ports that don't bother to
2632	 * trigger interrupts when they receive PME messages from the
2633	 * devices below.  So PME poll is used for PCIe devices too.
2634	 */
2635
2636	if (dev->pme_poll) {
2637		struct pci_pme_device *pme_dev;
2638		if (enable) {
2639			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2640					  GFP_KERNEL);
2641			if (!pme_dev) {
2642				pci_warn(dev, "can't enable PME#\n");
2643				return;
2644			}
2645			pme_dev->dev = dev;
2646			mutex_lock(&pci_pme_list_mutex);
2647			list_add(&pme_dev->list, &pci_pme_list);
2648			if (list_is_singular(&pci_pme_list))
2649				queue_delayed_work(system_freezable_wq,
2650						   &pci_pme_work,
2651						   msecs_to_jiffies(PME_TIMEOUT));
2652			mutex_unlock(&pci_pme_list_mutex);
2653		} else {
2654			mutex_lock(&pci_pme_list_mutex);
2655			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2656				if (pme_dev->dev == dev) {
2657					list_del(&pme_dev->list);
2658					kfree(pme_dev);
2659					break;
2660				}
2661			}
2662			mutex_unlock(&pci_pme_list_mutex);
2663		}
2664	}
2665
2666	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2667}
2668EXPORT_SYMBOL(pci_pme_active);
2669
2670/**
2671 * __pci_enable_wake - enable PCI device as wakeup event source
2672 * @dev: PCI device affected
2673 * @state: PCI state from which device will issue wakeup events
2674 * @enable: True to enable event generation; false to disable
2675 *
2676 * This enables the device as a wakeup event source, or disables it.
2677 * When such events involves platform-specific hooks, those hooks are
2678 * called automatically by this routine.
2679 *
2680 * Devices with legacy power management (no standard PCI PM capabilities)
2681 * always require such platform hooks.
2682 *
2683 * RETURN VALUE:
2684 * 0 is returned on success
2685 * -EINVAL is returned if device is not supposed to wake up the system
2686 * Error code depending on the platform is returned if both the platform and
2687 * the native mechanism fail to enable the generation of wake-up events
2688 */
2689static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2690{
2691	int ret = 0;
2692
2693	/*
2694	 * Bridges that are not power-manageable directly only signal
2695	 * wakeup on behalf of subordinate devices which is set up
2696	 * elsewhere, so skip them. However, bridges that are
2697	 * power-manageable may signal wakeup for themselves (for example,
2698	 * on a hotplug event) and they need to be covered here.
2699	 */
2700	if (!pci_power_manageable(dev))
2701		return 0;
2702
2703	/* Don't do the same thing twice in a row for one device. */
2704	if (!!enable == !!dev->wakeup_prepared)
2705		return 0;
2706
2707	/*
2708	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2709	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2710	 * enable.  To disable wake-up we call the platform first, for symmetry.
2711	 */
2712
2713	if (enable) {
2714		int error;
2715
2716		/*
2717		 * Enable PME signaling if the device can signal PME from
2718		 * D3cold regardless of whether or not it can signal PME from
2719		 * the current target state, because that will allow it to
2720		 * signal PME when the hierarchy above it goes into D3cold and
2721		 * the device itself ends up in D3cold as a result of that.
2722		 */
2723		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2724			pci_pme_active(dev, true);
2725		else
2726			ret = 1;
2727		error = platform_pci_set_wakeup(dev, true);
2728		if (ret)
2729			ret = error;
2730		if (!ret)
2731			dev->wakeup_prepared = true;
2732	} else {
2733		platform_pci_set_wakeup(dev, false);
2734		pci_pme_active(dev, false);
2735		dev->wakeup_prepared = false;
2736	}
2737
2738	return ret;
2739}
2740
2741/**
2742 * pci_enable_wake - change wakeup settings for a PCI device
2743 * @pci_dev: Target device
2744 * @state: PCI state from which device will issue wakeup events
2745 * @enable: Whether or not to enable event generation
2746 *
2747 * If @enable is set, check device_may_wakeup() for the device before calling
2748 * __pci_enable_wake() for it.
2749 */
2750int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2751{
2752	if (enable && !device_may_wakeup(&pci_dev->dev))
2753		return -EINVAL;
2754
2755	return __pci_enable_wake(pci_dev, state, enable);
2756}
2757EXPORT_SYMBOL(pci_enable_wake);
2758
2759/**
2760 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2761 * @dev: PCI device to prepare
2762 * @enable: True to enable wake-up event generation; false to disable
2763 *
2764 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2765 * and this function allows them to set that up cleanly - pci_enable_wake()
2766 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2767 * ordering constraints.
2768 *
2769 * This function only returns error code if the device is not allowed to wake
2770 * up the system from sleep or it is not capable of generating PME# from both
2771 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2772 */
2773int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2774{
2775	return pci_pme_capable(dev, PCI_D3cold) ?
2776			pci_enable_wake(dev, PCI_D3cold, enable) :
2777			pci_enable_wake(dev, PCI_D3hot, enable);
2778}
2779EXPORT_SYMBOL(pci_wake_from_d3);
2780
2781/**
2782 * pci_target_state - find an appropriate low power state for a given PCI dev
2783 * @dev: PCI device
2784 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2785 *
2786 * Use underlying platform code to find a supported low power state for @dev.
2787 * If the platform can't manage @dev, return the deepest state from which it
2788 * can generate wake events, based on any available PME info.
2789 */
2790static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2791{
 
 
2792	if (platform_pci_power_manageable(dev)) {
2793		/*
2794		 * Call the platform to find the target state for the device.
2795		 */
2796		pci_power_t state = platform_pci_choose_state(dev);
2797
2798		switch (state) {
2799		case PCI_POWER_ERROR:
2800		case PCI_UNKNOWN:
2801			return PCI_D3hot;
2802
2803		case PCI_D1:
2804		case PCI_D2:
2805			if (pci_no_d1d2(dev))
2806				return PCI_D3hot;
 
 
 
2807		}
2808
2809		return state;
2810	}
2811
 
 
 
2812	/*
2813	 * If the device is in D3cold even though it's not power-manageable by
2814	 * the platform, it may have been powered down by non-standard means.
2815	 * Best to let it slumber.
2816	 */
2817	if (dev->current_state == PCI_D3cold)
2818		return PCI_D3cold;
2819	else if (!dev->pm_cap)
2820		return PCI_D0;
2821
2822	if (wakeup && dev->pme_support) {
2823		pci_power_t state = PCI_D3hot;
2824
 
2825		/*
2826		 * Find the deepest state from which the device can generate
2827		 * PME#.
2828		 */
2829		while (state && !(dev->pme_support & (1 << state)))
2830			state--;
2831
2832		if (state)
2833			return state;
2834		else if (dev->pme_support & 1)
2835			return PCI_D0;
2836	}
2837
2838	return PCI_D3hot;
2839}
2840
2841/**
2842 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2843 *			  into a sleep state
2844 * @dev: Device to handle.
2845 *
2846 * Choose the power state appropriate for the device depending on whether
2847 * it can wake up the system and/or is power manageable by the platform
2848 * (PCI_D3hot is the default) and put the device into that state.
2849 */
2850int pci_prepare_to_sleep(struct pci_dev *dev)
2851{
2852	bool wakeup = device_may_wakeup(&dev->dev);
2853	pci_power_t target_state = pci_target_state(dev, wakeup);
2854	int error;
2855
2856	if (target_state == PCI_POWER_ERROR)
2857		return -EIO;
2858
2859	pci_enable_wake(dev, target_state, wakeup);
2860
2861	error = pci_set_power_state(dev, target_state);
2862
2863	if (error)
2864		pci_enable_wake(dev, target_state, false);
2865
2866	return error;
2867}
2868EXPORT_SYMBOL(pci_prepare_to_sleep);
2869
2870/**
2871 * pci_back_from_sleep - turn PCI device on during system-wide transition
2872 *			 into working state
2873 * @dev: Device to handle.
2874 *
2875 * Disable device's system wake-up capability and put it into D0.
2876 */
2877int pci_back_from_sleep(struct pci_dev *dev)
2878{
2879	int ret = pci_set_power_state(dev, PCI_D0);
2880
2881	if (ret)
2882		return ret;
2883
2884	pci_enable_wake(dev, PCI_D0, false);
2885	return 0;
2886}
2887EXPORT_SYMBOL(pci_back_from_sleep);
2888
2889/**
2890 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2891 * @dev: PCI device being suspended.
2892 *
2893 * Prepare @dev to generate wake-up events at run time and put it into a low
2894 * power state.
2895 */
2896int pci_finish_runtime_suspend(struct pci_dev *dev)
2897{
2898	pci_power_t target_state;
2899	int error;
2900
2901	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2902	if (target_state == PCI_POWER_ERROR)
2903		return -EIO;
2904
 
 
2905	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2906
2907	error = pci_set_power_state(dev, target_state);
2908
2909	if (error)
2910		pci_enable_wake(dev, target_state, false);
 
 
2911
2912	return error;
2913}
2914
2915/**
2916 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2917 * @dev: Device to check.
2918 *
2919 * Return true if the device itself is capable of generating wake-up events
2920 * (through the platform or using the native PCIe PME) or if the device supports
2921 * PME and one of its upstream bridges can generate wake-up events.
2922 */
2923bool pci_dev_run_wake(struct pci_dev *dev)
2924{
2925	struct pci_bus *bus = dev->bus;
2926
2927	if (!dev->pme_support)
2928		return false;
2929
2930	/* PME-capable in principle, but not from the target power state */
2931	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2932		return false;
2933
2934	if (device_can_wakeup(&dev->dev))
2935		return true;
2936
2937	while (bus->parent) {
2938		struct pci_dev *bridge = bus->self;
2939
2940		if (device_can_wakeup(&bridge->dev))
2941			return true;
2942
2943		bus = bus->parent;
2944	}
2945
2946	/* We have reached the root bus. */
2947	if (bus->bridge)
2948		return device_can_wakeup(bus->bridge);
2949
2950	return false;
2951}
2952EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2953
2954/**
2955 * pci_dev_need_resume - Check if it is necessary to resume the device.
2956 * @pci_dev: Device to check.
2957 *
2958 * Return 'true' if the device is not runtime-suspended or it has to be
2959 * reconfigured due to wakeup settings difference between system and runtime
2960 * suspend, or the current power state of it is not suitable for the upcoming
2961 * (system-wide) transition.
2962 */
2963bool pci_dev_need_resume(struct pci_dev *pci_dev)
2964{
2965	struct device *dev = &pci_dev->dev;
2966	pci_power_t target_state;
2967
2968	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2969		return true;
2970
2971	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2972
2973	/*
2974	 * If the earlier platform check has not triggered, D3cold is just power
2975	 * removal on top of D3hot, so no need to resume the device in that
2976	 * case.
2977	 */
2978	return target_state != pci_dev->current_state &&
2979		target_state != PCI_D3cold &&
2980		pci_dev->current_state != PCI_D3hot;
2981}
2982
2983/**
2984 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2985 * @pci_dev: Device to check.
2986 *
2987 * If the device is suspended and it is not configured for system wakeup,
2988 * disable PME for it to prevent it from waking up the system unnecessarily.
2989 *
2990 * Note that if the device's power state is D3cold and the platform check in
2991 * pci_dev_need_resume() has not triggered, the device's configuration need not
2992 * be changed.
2993 */
2994void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2995{
2996	struct device *dev = &pci_dev->dev;
2997
2998	spin_lock_irq(&dev->power.lock);
2999
3000	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
3001	    pci_dev->current_state < PCI_D3cold)
3002		__pci_pme_active(pci_dev, false);
3003
3004	spin_unlock_irq(&dev->power.lock);
3005}
3006
3007/**
3008 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
3009 * @pci_dev: Device to handle.
3010 *
3011 * If the device is runtime suspended and wakeup-capable, enable PME for it as
3012 * it might have been disabled during the prepare phase of system suspend if
3013 * the device was not configured for system wakeup.
3014 */
3015void pci_dev_complete_resume(struct pci_dev *pci_dev)
3016{
3017	struct device *dev = &pci_dev->dev;
3018
3019	if (!pci_dev_run_wake(pci_dev))
3020		return;
3021
3022	spin_lock_irq(&dev->power.lock);
3023
3024	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
3025		__pci_pme_active(pci_dev, true);
3026
3027	spin_unlock_irq(&dev->power.lock);
3028}
3029
3030/**
3031 * pci_choose_state - Choose the power state of a PCI device.
3032 * @dev: Target PCI device.
3033 * @state: Target state for the whole system.
3034 *
3035 * Returns PCI power state suitable for @dev and @state.
3036 */
3037pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
3038{
3039	if (state.event == PM_EVENT_ON)
3040		return PCI_D0;
3041
3042	return pci_target_state(dev, false);
3043}
3044EXPORT_SYMBOL(pci_choose_state);
3045
3046void pci_config_pm_runtime_get(struct pci_dev *pdev)
3047{
3048	struct device *dev = &pdev->dev;
3049	struct device *parent = dev->parent;
3050
3051	if (parent)
3052		pm_runtime_get_sync(parent);
3053	pm_runtime_get_noresume(dev);
3054	/*
3055	 * pdev->current_state is set to PCI_D3cold during suspending,
3056	 * so wait until suspending completes
3057	 */
3058	pm_runtime_barrier(dev);
3059	/*
3060	 * Only need to resume devices in D3cold, because config
3061	 * registers are still accessible for devices suspended but
3062	 * not in D3cold.
3063	 */
3064	if (pdev->current_state == PCI_D3cold)
3065		pm_runtime_resume(dev);
3066}
3067
3068void pci_config_pm_runtime_put(struct pci_dev *pdev)
3069{
3070	struct device *dev = &pdev->dev;
3071	struct device *parent = dev->parent;
3072
3073	pm_runtime_put(dev);
3074	if (parent)
3075		pm_runtime_put_sync(parent);
3076}
3077
3078static const struct dmi_system_id bridge_d3_blacklist[] = {
3079#ifdef CONFIG_X86
3080	{
3081		/*
3082		 * Gigabyte X299 root port is not marked as hotplug capable
3083		 * which allows Linux to power manage it.  However, this
3084		 * confuses the BIOS SMI handler so don't power manage root
3085		 * ports on that system.
3086		 */
3087		.ident = "X299 DESIGNARE EX-CF",
3088		.matches = {
3089			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3090			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3091		},
3092	},
3093	{
3094		/*
3095		 * Downstream device is not accessible after putting a root port
3096		 * into D3cold and back into D0 on Elo Continental Z2 board
3097		 */
3098		.ident = "Elo Continental Z2",
3099		.matches = {
3100			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3101			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3102			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3103		},
3104	},
3105#endif
3106	{ }
3107};
3108
3109/**
3110 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3111 * @bridge: Bridge to check
3112 *
3113 * This function checks if it is possible to move the bridge to D3.
3114 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3115 */
3116bool pci_bridge_d3_possible(struct pci_dev *bridge)
3117{
3118	if (!pci_is_pcie(bridge))
3119		return false;
3120
3121	switch (pci_pcie_type(bridge)) {
3122	case PCI_EXP_TYPE_ROOT_PORT:
3123	case PCI_EXP_TYPE_UPSTREAM:
3124	case PCI_EXP_TYPE_DOWNSTREAM:
3125		if (pci_bridge_d3_disable)
3126			return false;
3127
3128		/*
3129		 * Hotplug ports handled by firmware in System Management Mode
3130		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3131		 */
3132		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3133			return false;
3134
3135		if (pci_bridge_d3_force)
3136			return true;
3137
3138		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3139		if (bridge->is_thunderbolt)
3140			return true;
3141
3142		/* Platform might know better if the bridge supports D3 */
3143		if (platform_pci_bridge_d3(bridge))
3144			return true;
3145
3146		/*
3147		 * Hotplug ports handled natively by the OS were not validated
3148		 * by vendors for runtime D3 at least until 2018 because there
3149		 * was no OS support.
3150		 */
3151		if (bridge->is_hotplug_bridge)
3152			return false;
3153
3154		if (dmi_check_system(bridge_d3_blacklist))
3155			return false;
3156
3157		/*
3158		 * It should be safe to put PCIe ports from 2015 or newer
3159		 * to D3.
3160		 */
3161		if (dmi_get_bios_year() >= 2015)
3162			return true;
3163		break;
3164	}
3165
3166	return false;
3167}
3168
3169static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3170{
3171	bool *d3cold_ok = data;
3172
3173	if (/* The device needs to be allowed to go D3cold ... */
3174	    dev->no_d3cold || !dev->d3cold_allowed ||
3175
3176	    /* ... and if it is wakeup capable to do so from D3cold. */
3177	    (device_may_wakeup(&dev->dev) &&
3178	     !pci_pme_capable(dev, PCI_D3cold)) ||
3179
3180	    /* If it is a bridge it must be allowed to go to D3. */
3181	    !pci_power_manageable(dev))
3182
3183		*d3cold_ok = false;
3184
3185	return !*d3cold_ok;
3186}
3187
3188/*
3189 * pci_bridge_d3_update - Update bridge D3 capabilities
3190 * @dev: PCI device which is changed
3191 *
3192 * Update upstream bridge PM capabilities accordingly depending on if the
3193 * device PM configuration was changed or the device is being removed.  The
3194 * change is also propagated upstream.
3195 */
3196void pci_bridge_d3_update(struct pci_dev *dev)
3197{
3198	bool remove = !device_is_registered(&dev->dev);
3199	struct pci_dev *bridge;
3200	bool d3cold_ok = true;
3201
3202	bridge = pci_upstream_bridge(dev);
3203	if (!bridge || !pci_bridge_d3_possible(bridge))
3204		return;
3205
3206	/*
3207	 * If D3 is currently allowed for the bridge, removing one of its
3208	 * children won't change that.
3209	 */
3210	if (remove && bridge->bridge_d3)
3211		return;
3212
3213	/*
3214	 * If D3 is currently allowed for the bridge and a child is added or
3215	 * changed, disallowance of D3 can only be caused by that child, so
3216	 * we only need to check that single device, not any of its siblings.
3217	 *
3218	 * If D3 is currently not allowed for the bridge, checking the device
3219	 * first may allow us to skip checking its siblings.
3220	 */
3221	if (!remove)
3222		pci_dev_check_d3cold(dev, &d3cold_ok);
3223
3224	/*
3225	 * If D3 is currently not allowed for the bridge, this may be caused
3226	 * either by the device being changed/removed or any of its siblings,
3227	 * so we need to go through all children to find out if one of them
3228	 * continues to block D3.
3229	 */
3230	if (d3cold_ok && !bridge->bridge_d3)
3231		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3232			     &d3cold_ok);
3233
3234	if (bridge->bridge_d3 != d3cold_ok) {
3235		bridge->bridge_d3 = d3cold_ok;
3236		/* Propagate change to upstream bridges */
3237		pci_bridge_d3_update(bridge);
3238	}
3239}
3240
3241/**
3242 * pci_d3cold_enable - Enable D3cold for device
3243 * @dev: PCI device to handle
3244 *
3245 * This function can be used in drivers to enable D3cold from the device
3246 * they handle.  It also updates upstream PCI bridge PM capabilities
3247 * accordingly.
3248 */
3249void pci_d3cold_enable(struct pci_dev *dev)
3250{
3251	if (dev->no_d3cold) {
3252		dev->no_d3cold = false;
3253		pci_bridge_d3_update(dev);
3254	}
3255}
3256EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3257
3258/**
3259 * pci_d3cold_disable - Disable D3cold for device
3260 * @dev: PCI device to handle
3261 *
3262 * This function can be used in drivers to disable D3cold from the device
3263 * they handle.  It also updates upstream PCI bridge PM capabilities
3264 * accordingly.
3265 */
3266void pci_d3cold_disable(struct pci_dev *dev)
3267{
3268	if (!dev->no_d3cold) {
3269		dev->no_d3cold = true;
3270		pci_bridge_d3_update(dev);
3271	}
3272}
3273EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3274
3275/**
3276 * pci_pm_init - Initialize PM functions of given PCI device
3277 * @dev: PCI device to handle.
3278 */
3279void pci_pm_init(struct pci_dev *dev)
3280{
3281	int pm;
3282	u16 status;
3283	u16 pmc;
3284
3285	pm_runtime_forbid(&dev->dev);
3286	pm_runtime_set_active(&dev->dev);
3287	pm_runtime_enable(&dev->dev);
3288	device_enable_async_suspend(&dev->dev);
3289	dev->wakeup_prepared = false;
3290
3291	dev->pm_cap = 0;
3292	dev->pme_support = 0;
3293
3294	/* find PCI PM capability in list */
3295	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3296	if (!pm)
3297		return;
3298	/* Check device's ability to generate PME# */
3299	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3300
3301	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3302		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3303			pmc & PCI_PM_CAP_VER_MASK);
3304		return;
3305	}
3306
3307	dev->pm_cap = pm;
3308	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3309	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3310	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3311	dev->d3cold_allowed = true;
3312
3313	dev->d1_support = false;
3314	dev->d2_support = false;
3315	if (!pci_no_d1d2(dev)) {
3316		if (pmc & PCI_PM_CAP_D1)
3317			dev->d1_support = true;
3318		if (pmc & PCI_PM_CAP_D2)
3319			dev->d2_support = true;
3320
3321		if (dev->d1_support || dev->d2_support)
3322			pci_info(dev, "supports%s%s\n",
3323				   dev->d1_support ? " D1" : "",
3324				   dev->d2_support ? " D2" : "");
3325	}
3326
3327	pmc &= PCI_PM_CAP_PME_MASK;
3328	if (pmc) {
3329		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3330			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3331			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3332			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3333			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3334			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3335		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3336		dev->pme_poll = true;
3337		/*
3338		 * Make device's PM flags reflect the wake-up capability, but
3339		 * let the user space enable it to wake up the system as needed.
3340		 */
3341		device_set_wakeup_capable(&dev->dev, true);
3342		/* Disable the PME# generation functionality */
3343		pci_pme_active(dev, false);
3344	}
3345
3346	pci_read_config_word(dev, PCI_STATUS, &status);
3347	if (status & PCI_STATUS_IMM_READY)
3348		dev->imm_ready = 1;
3349}
3350
3351static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3352{
3353	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3354
3355	switch (prop) {
3356	case PCI_EA_P_MEM:
3357	case PCI_EA_P_VF_MEM:
3358		flags |= IORESOURCE_MEM;
3359		break;
3360	case PCI_EA_P_MEM_PREFETCH:
3361	case PCI_EA_P_VF_MEM_PREFETCH:
3362		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3363		break;
3364	case PCI_EA_P_IO:
3365		flags |= IORESOURCE_IO;
3366		break;
3367	default:
3368		return 0;
3369	}
3370
3371	return flags;
3372}
3373
3374static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3375					    u8 prop)
3376{
3377	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3378		return &dev->resource[bei];
3379#ifdef CONFIG_PCI_IOV
3380	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3381		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3382		return &dev->resource[PCI_IOV_RESOURCES +
3383				      bei - PCI_EA_BEI_VF_BAR0];
3384#endif
3385	else if (bei == PCI_EA_BEI_ROM)
3386		return &dev->resource[PCI_ROM_RESOURCE];
3387	else
3388		return NULL;
3389}
3390
3391/* Read an Enhanced Allocation (EA) entry */
3392static int pci_ea_read(struct pci_dev *dev, int offset)
3393{
3394	struct resource *res;
3395	const char *res_name;
3396	int ent_size, ent_offset = offset;
3397	resource_size_t start, end;
3398	unsigned long flags;
3399	u32 dw0, bei, base, max_offset;
3400	u8 prop;
3401	bool support_64 = (sizeof(resource_size_t) >= 8);
3402
3403	pci_read_config_dword(dev, ent_offset, &dw0);
3404	ent_offset += 4;
3405
3406	/* Entry size field indicates DWORDs after 1st */
3407	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3408
3409	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3410		goto out;
3411
3412	bei = FIELD_GET(PCI_EA_BEI, dw0);
3413	prop = FIELD_GET(PCI_EA_PP, dw0);
3414
3415	/*
3416	 * If the Property is in the reserved range, try the Secondary
3417	 * Property instead.
3418	 */
3419	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3420		prop = FIELD_GET(PCI_EA_SP, dw0);
3421	if (prop > PCI_EA_P_BRIDGE_IO)
3422		goto out;
3423
3424	res = pci_ea_get_resource(dev, bei, prop);
3425	res_name = pci_resource_name(dev, bei);
3426	if (!res) {
3427		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3428		goto out;
3429	}
3430
3431	flags = pci_ea_flags(dev, prop);
3432	if (!flags) {
3433		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3434		goto out;
3435	}
3436
3437	/* Read Base */
3438	pci_read_config_dword(dev, ent_offset, &base);
3439	start = (base & PCI_EA_FIELD_MASK);
3440	ent_offset += 4;
3441
3442	/* Read MaxOffset */
3443	pci_read_config_dword(dev, ent_offset, &max_offset);
3444	ent_offset += 4;
3445
3446	/* Read Base MSBs (if 64-bit entry) */
3447	if (base & PCI_EA_IS_64) {
3448		u32 base_upper;
3449
3450		pci_read_config_dword(dev, ent_offset, &base_upper);
3451		ent_offset += 4;
3452
3453		flags |= IORESOURCE_MEM_64;
3454
3455		/* entry starts above 32-bit boundary, can't use */
3456		if (!support_64 && base_upper)
3457			goto out;
3458
3459		if (support_64)
3460			start |= ((u64)base_upper << 32);
3461	}
3462
3463	end = start + (max_offset | 0x03);
3464
3465	/* Read MaxOffset MSBs (if 64-bit entry) */
3466	if (max_offset & PCI_EA_IS_64) {
3467		u32 max_offset_upper;
3468
3469		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3470		ent_offset += 4;
3471
3472		flags |= IORESOURCE_MEM_64;
3473
3474		/* entry too big, can't use */
3475		if (!support_64 && max_offset_upper)
3476			goto out;
3477
3478		if (support_64)
3479			end += ((u64)max_offset_upper << 32);
3480	}
3481
3482	if (end < start) {
3483		pci_err(dev, "EA Entry crosses address boundary\n");
3484		goto out;
3485	}
3486
3487	if (ent_size != ent_offset - offset) {
3488		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3489			ent_size, ent_offset - offset);
3490		goto out;
3491	}
3492
3493	res->name = pci_name(dev);
3494	res->start = start;
3495	res->end = end;
3496	res->flags = flags;
3497
3498	if (bei <= PCI_EA_BEI_BAR5)
3499		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3500			 res_name, res, prop);
3501	else if (bei == PCI_EA_BEI_ROM)
3502		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3503			 res_name, res, prop);
3504	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3505		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3506			 res_name, res, prop);
3507	else
3508		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3509			   bei, res, prop);
3510
3511out:
3512	return offset + ent_size;
3513}
3514
3515/* Enhanced Allocation Initialization */
3516void pci_ea_init(struct pci_dev *dev)
3517{
3518	int ea;
3519	u8 num_ent;
3520	int offset;
3521	int i;
3522
3523	/* find PCI EA capability in list */
3524	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3525	if (!ea)
3526		return;
3527
3528	/* determine the number of entries */
3529	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3530					&num_ent);
3531	num_ent &= PCI_EA_NUM_ENT_MASK;
3532
3533	offset = ea + PCI_EA_FIRST_ENT;
3534
3535	/* Skip DWORD 2 for type 1 functions */
3536	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3537		offset += 4;
3538
3539	/* parse each EA entry */
3540	for (i = 0; i < num_ent; ++i)
3541		offset = pci_ea_read(dev, offset);
3542}
3543
3544static void pci_add_saved_cap(struct pci_dev *pci_dev,
3545	struct pci_cap_saved_state *new_cap)
3546{
3547	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3548}
3549
3550/**
3551 * _pci_add_cap_save_buffer - allocate buffer for saving given
3552 *			      capability registers
3553 * @dev: the PCI device
3554 * @cap: the capability to allocate the buffer for
3555 * @extended: Standard or Extended capability ID
3556 * @size: requested size of the buffer
3557 */
3558static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3559				    bool extended, unsigned int size)
3560{
3561	int pos;
3562	struct pci_cap_saved_state *save_state;
3563
3564	if (extended)
3565		pos = pci_find_ext_capability(dev, cap);
3566	else
3567		pos = pci_find_capability(dev, cap);
3568
3569	if (!pos)
3570		return 0;
3571
3572	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3573	if (!save_state)
3574		return -ENOMEM;
3575
3576	save_state->cap.cap_nr = cap;
3577	save_state->cap.cap_extended = extended;
3578	save_state->cap.size = size;
3579	pci_add_saved_cap(dev, save_state);
3580
3581	return 0;
3582}
3583
3584int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3585{
3586	return _pci_add_cap_save_buffer(dev, cap, false, size);
3587}
3588
3589int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3590{
3591	return _pci_add_cap_save_buffer(dev, cap, true, size);
3592}
3593
3594/**
3595 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3596 * @dev: the PCI device
3597 */
3598void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3599{
3600	int error;
3601
3602	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3603					PCI_EXP_SAVE_REGS * sizeof(u16));
3604	if (error)
3605		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3606
3607	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3608	if (error)
3609		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3610
3611	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3612					    2 * sizeof(u16));
3613	if (error)
3614		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3615
3616	pci_allocate_vc_save_buffers(dev);
3617}
3618
3619void pci_free_cap_save_buffers(struct pci_dev *dev)
3620{
3621	struct pci_cap_saved_state *tmp;
3622	struct hlist_node *n;
3623
3624	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3625		kfree(tmp);
3626}
3627
3628/**
3629 * pci_configure_ari - enable or disable ARI forwarding
3630 * @dev: the PCI device
3631 *
3632 * If @dev and its upstream bridge both support ARI, enable ARI in the
3633 * bridge.  Otherwise, disable ARI in the bridge.
3634 */
3635void pci_configure_ari(struct pci_dev *dev)
3636{
3637	u32 cap;
3638	struct pci_dev *bridge;
3639
3640	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3641		return;
3642
3643	bridge = dev->bus->self;
3644	if (!bridge)
3645		return;
3646
3647	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3648	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3649		return;
3650
3651	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3652		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3653					 PCI_EXP_DEVCTL2_ARI);
3654		bridge->ari_enabled = 1;
3655	} else {
3656		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3657					   PCI_EXP_DEVCTL2_ARI);
3658		bridge->ari_enabled = 0;
3659	}
3660}
3661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3662static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3663{
3664	int pos;
3665	u16 cap, ctrl;
3666
3667	pos = pdev->acs_cap;
3668	if (!pos)
3669		return false;
3670
3671	/*
3672	 * Except for egress control, capabilities are either required
3673	 * or only required if controllable.  Features missing from the
3674	 * capability field can therefore be assumed as hard-wired enabled.
3675	 */
3676	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3677	acs_flags &= (cap | PCI_ACS_EC);
3678
3679	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3680	return (ctrl & acs_flags) == acs_flags;
3681}
3682
3683/**
3684 * pci_acs_enabled - test ACS against required flags for a given device
3685 * @pdev: device to test
3686 * @acs_flags: required PCI ACS flags
3687 *
3688 * Return true if the device supports the provided flags.  Automatically
3689 * filters out flags that are not implemented on multifunction devices.
3690 *
3691 * Note that this interface checks the effective ACS capabilities of the
3692 * device rather than the actual capabilities.  For instance, most single
3693 * function endpoints are not required to support ACS because they have no
3694 * opportunity for peer-to-peer access.  We therefore return 'true'
3695 * regardless of whether the device exposes an ACS capability.  This makes
3696 * it much easier for callers of this function to ignore the actual type
3697 * or topology of the device when testing ACS support.
3698 */
3699bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3700{
3701	int ret;
3702
3703	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3704	if (ret >= 0)
3705		return ret > 0;
3706
3707	/*
3708	 * Conventional PCI and PCI-X devices never support ACS, either
3709	 * effectively or actually.  The shared bus topology implies that
3710	 * any device on the bus can receive or snoop DMA.
3711	 */
3712	if (!pci_is_pcie(pdev))
3713		return false;
3714
3715	switch (pci_pcie_type(pdev)) {
3716	/*
3717	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3718	 * but since their primary interface is PCI/X, we conservatively
3719	 * handle them as we would a non-PCIe device.
3720	 */
3721	case PCI_EXP_TYPE_PCIE_BRIDGE:
3722	/*
3723	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3724	 * applicable... must never implement an ACS Extended Capability...".
3725	 * This seems arbitrary, but we take a conservative interpretation
3726	 * of this statement.
3727	 */
3728	case PCI_EXP_TYPE_PCI_BRIDGE:
3729	case PCI_EXP_TYPE_RC_EC:
3730		return false;
3731	/*
3732	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3733	 * implement ACS in order to indicate their peer-to-peer capabilities,
3734	 * regardless of whether they are single- or multi-function devices.
3735	 */
3736	case PCI_EXP_TYPE_DOWNSTREAM:
3737	case PCI_EXP_TYPE_ROOT_PORT:
3738		return pci_acs_flags_enabled(pdev, acs_flags);
3739	/*
3740	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3741	 * implemented by the remaining PCIe types to indicate peer-to-peer
3742	 * capabilities, but only when they are part of a multifunction
3743	 * device.  The footnote for section 6.12 indicates the specific
3744	 * PCIe types included here.
3745	 */
3746	case PCI_EXP_TYPE_ENDPOINT:
3747	case PCI_EXP_TYPE_UPSTREAM:
3748	case PCI_EXP_TYPE_LEG_END:
3749	case PCI_EXP_TYPE_RC_END:
3750		if (!pdev->multifunction)
3751			break;
3752
3753		return pci_acs_flags_enabled(pdev, acs_flags);
3754	}
3755
3756	/*
3757	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3758	 * to single function devices with the exception of downstream ports.
3759	 */
3760	return true;
3761}
3762
3763/**
3764 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3765 * @start: starting downstream device
3766 * @end: ending upstream device or NULL to search to the root bus
3767 * @acs_flags: required flags
3768 *
3769 * Walk up a device tree from start to end testing PCI ACS support.  If
3770 * any step along the way does not support the required flags, return false.
3771 */
3772bool pci_acs_path_enabled(struct pci_dev *start,
3773			  struct pci_dev *end, u16 acs_flags)
3774{
3775	struct pci_dev *pdev, *parent = start;
3776
3777	do {
3778		pdev = parent;
3779
3780		if (!pci_acs_enabled(pdev, acs_flags))
3781			return false;
3782
3783		if (pci_is_root_bus(pdev->bus))
3784			return (end == NULL);
3785
3786		parent = pdev->bus->self;
3787	} while (pdev != end);
3788
3789	return true;
3790}
3791
3792/**
3793 * pci_acs_init - Initialize ACS if hardware supports it
3794 * @dev: the PCI device
3795 */
3796void pci_acs_init(struct pci_dev *dev)
3797{
3798	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3799
3800	/*
3801	 * Attempt to enable ACS regardless of capability because some Root
3802	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3803	 * the standard ACS capability but still support ACS via those
3804	 * quirks.
3805	 */
3806	pci_enable_acs(dev);
3807}
3808
3809/**
3810 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3811 * @pdev: PCI device
3812 * @bar: BAR to find
3813 *
3814 * Helper to find the position of the ctrl register for a BAR.
3815 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3816 * Returns -ENOENT if no ctrl register for the BAR could be found.
3817 */
3818static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3819{
3820	unsigned int pos, nbars, i;
3821	u32 ctrl;
3822
3823	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3824	if (!pos)
3825		return -ENOTSUPP;
3826
3827	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3828	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
3829
3830	for (i = 0; i < nbars; i++, pos += 8) {
3831		int bar_idx;
3832
3833		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3834		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3835		if (bar_idx == bar)
3836			return pos;
3837	}
3838
3839	return -ENOENT;
3840}
3841
3842/**
3843 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3844 * @pdev: PCI device
3845 * @bar: BAR to query
3846 *
3847 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3848 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3849 */
3850u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3851{
3852	int pos;
3853	u32 cap;
3854
3855	pos = pci_rebar_find_pos(pdev, bar);
3856	if (pos < 0)
3857		return 0;
3858
3859	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3860	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3861
3862	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3863	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3864	    bar == 0 && cap == 0x700)
3865		return 0x3f00;
3866
3867	return cap;
3868}
3869EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3870
3871/**
3872 * pci_rebar_get_current_size - get the current size of a BAR
3873 * @pdev: PCI device
3874 * @bar: BAR to set size to
3875 *
3876 * Read the size of a BAR from the resizable BAR config.
3877 * Returns size if found or negative error code.
3878 */
3879int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3880{
3881	int pos;
3882	u32 ctrl;
3883
3884	pos = pci_rebar_find_pos(pdev, bar);
3885	if (pos < 0)
3886		return pos;
3887
3888	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3889	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3890}
3891
3892/**
3893 * pci_rebar_set_size - set a new size for a BAR
3894 * @pdev: PCI device
3895 * @bar: BAR to set size to
3896 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3897 *
3898 * Set the new size of a BAR as defined in the spec.
3899 * Returns zero if resizing was successful, error code otherwise.
3900 */
3901int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3902{
3903	int pos;
3904	u32 ctrl;
3905
3906	pos = pci_rebar_find_pos(pdev, bar);
3907	if (pos < 0)
3908		return pos;
3909
3910	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3911	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3912	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3913	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3914	return 0;
3915}
3916
3917/**
3918 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3919 * @dev: the PCI device
3920 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3921 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3922 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3923 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3924 *
3925 * Return 0 if all upstream bridges support AtomicOp routing, egress
3926 * blocking is disabled on all upstream ports, and the root port supports
3927 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3928 * AtomicOp completion), or negative otherwise.
3929 */
3930int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3931{
3932	struct pci_bus *bus = dev->bus;
3933	struct pci_dev *bridge;
3934	u32 cap, ctl2;
3935
3936	/*
3937	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3938	 * in Device Control 2 is reserved in VFs and the PF value applies
3939	 * to all associated VFs.
3940	 */
3941	if (dev->is_virtfn)
3942		return -EINVAL;
3943
3944	if (!pci_is_pcie(dev))
3945		return -EINVAL;
3946
3947	/*
3948	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3949	 * AtomicOp requesters.  For now, we only support endpoints as
3950	 * requesters and root ports as completers.  No endpoints as
3951	 * completers, and no peer-to-peer.
3952	 */
3953
3954	switch (pci_pcie_type(dev)) {
3955	case PCI_EXP_TYPE_ENDPOINT:
3956	case PCI_EXP_TYPE_LEG_END:
3957	case PCI_EXP_TYPE_RC_END:
3958		break;
3959	default:
3960		return -EINVAL;
3961	}
3962
3963	while (bus->parent) {
3964		bridge = bus->self;
3965
3966		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3967
3968		switch (pci_pcie_type(bridge)) {
3969		/* Ensure switch ports support AtomicOp routing */
3970		case PCI_EXP_TYPE_UPSTREAM:
3971		case PCI_EXP_TYPE_DOWNSTREAM:
3972			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3973				return -EINVAL;
3974			break;
3975
3976		/* Ensure root port supports all the sizes we care about */
3977		case PCI_EXP_TYPE_ROOT_PORT:
3978			if ((cap & cap_mask) != cap_mask)
3979				return -EINVAL;
3980			break;
3981		}
3982
3983		/* Ensure upstream ports don't block AtomicOps on egress */
3984		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3985			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3986						   &ctl2);
3987			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3988				return -EINVAL;
3989		}
3990
3991		bus = bus->parent;
3992	}
3993
3994	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3995				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3996	return 0;
3997}
3998EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3999
4000/**
4001 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
4002 * @dev: the PCI device
4003 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
4004 *
4005 * Perform INTx swizzling for a device behind one level of bridge.  This is
4006 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
4007 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
4008 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
4009 * the PCI Express Base Specification, Revision 2.1)
4010 */
4011u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
4012{
4013	int slot;
4014
4015	if (pci_ari_enabled(dev->bus))
4016		slot = 0;
4017	else
4018		slot = PCI_SLOT(dev->devfn);
4019
4020	return (((pin - 1) + slot) % 4) + 1;
4021}
4022
4023int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
4024{
4025	u8 pin;
4026
4027	pin = dev->pin;
4028	if (!pin)
4029		return -1;
4030
4031	while (!pci_is_root_bus(dev->bus)) {
4032		pin = pci_swizzle_interrupt_pin(dev, pin);
4033		dev = dev->bus->self;
4034	}
4035	*bridge = dev;
4036	return pin;
4037}
4038
4039/**
4040 * pci_common_swizzle - swizzle INTx all the way to root bridge
4041 * @dev: the PCI device
4042 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
4043 *
4044 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
4045 * bridges all the way up to a PCI root bus.
4046 */
4047u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4048{
4049	u8 pin = *pinp;
4050
4051	while (!pci_is_root_bus(dev->bus)) {
4052		pin = pci_swizzle_interrupt_pin(dev, pin);
4053		dev = dev->bus->self;
4054	}
4055	*pinp = pin;
4056	return PCI_SLOT(dev->devfn);
4057}
4058EXPORT_SYMBOL_GPL(pci_common_swizzle);
4059
4060/**
4061 * pci_release_region - Release a PCI bar
4062 * @pdev: PCI device whose resources were previously reserved by
4063 *	  pci_request_region()
4064 * @bar: BAR to release
4065 *
4066 * Releases the PCI I/O and memory resources previously reserved by a
4067 * successful call to pci_request_region().  Call this function only
4068 * after all use of the PCI regions has ceased.
4069 */
4070void pci_release_region(struct pci_dev *pdev, int bar)
4071{
4072	struct pci_devres *dr;
4073
4074	if (pci_resource_len(pdev, bar) == 0)
4075		return;
4076	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4077		release_region(pci_resource_start(pdev, bar),
4078				pci_resource_len(pdev, bar));
4079	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4080		release_mem_region(pci_resource_start(pdev, bar),
4081				pci_resource_len(pdev, bar));
4082
4083	dr = find_pci_dr(pdev);
4084	if (dr)
4085		dr->region_mask &= ~(1 << bar);
4086}
4087EXPORT_SYMBOL(pci_release_region);
4088
4089/**
4090 * __pci_request_region - Reserved PCI I/O and memory resource
4091 * @pdev: PCI device whose resources are to be reserved
4092 * @bar: BAR to be reserved
4093 * @res_name: Name to be associated with resource.
4094 * @exclusive: whether the region access is exclusive or not
4095 *
4096 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4097 * being reserved by owner @res_name.  Do not access any
4098 * address inside the PCI regions unless this call returns
4099 * successfully.
4100 *
4101 * If @exclusive is set, then the region is marked so that userspace
4102 * is explicitly not allowed to map the resource via /dev/mem or
4103 * sysfs MMIO access.
4104 *
4105 * Returns 0 on success, or %EBUSY on error.  A warning
4106 * message is also printed on failure.
4107 */
4108static int __pci_request_region(struct pci_dev *pdev, int bar,
4109				const char *res_name, int exclusive)
4110{
4111	struct pci_devres *dr;
4112
4113	if (pci_resource_len(pdev, bar) == 0)
4114		return 0;
4115
4116	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4117		if (!request_region(pci_resource_start(pdev, bar),
4118			    pci_resource_len(pdev, bar), res_name))
4119			goto err_out;
4120	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4121		if (!__request_mem_region(pci_resource_start(pdev, bar),
4122					pci_resource_len(pdev, bar), res_name,
4123					exclusive))
4124			goto err_out;
4125	}
4126
4127	dr = find_pci_dr(pdev);
4128	if (dr)
4129		dr->region_mask |= 1 << bar;
4130
4131	return 0;
4132
4133err_out:
4134	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4135		 &pdev->resource[bar]);
4136	return -EBUSY;
4137}
4138
4139/**
4140 * pci_request_region - Reserve PCI I/O and memory resource
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @bar: BAR to be reserved
4143 * @res_name: Name to be associated with resource
4144 *
4145 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4146 * being reserved by owner @res_name.  Do not access any
4147 * address inside the PCI regions unless this call returns
4148 * successfully.
4149 *
4150 * Returns 0 on success, or %EBUSY on error.  A warning
4151 * message is also printed on failure.
4152 */
4153int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4154{
4155	return __pci_request_region(pdev, bar, res_name, 0);
4156}
4157EXPORT_SYMBOL(pci_request_region);
4158
4159/**
4160 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4161 * @pdev: PCI device whose resources were previously reserved
4162 * @bars: Bitmask of BARs to be released
4163 *
4164 * Release selected PCI I/O and memory resources previously reserved.
4165 * Call this function only after all use of the PCI regions has ceased.
4166 */
4167void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4168{
4169	int i;
4170
4171	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4172		if (bars & (1 << i))
4173			pci_release_region(pdev, i);
4174}
4175EXPORT_SYMBOL(pci_release_selected_regions);
4176
4177static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4178					  const char *res_name, int excl)
4179{
4180	int i;
4181
4182	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4183		if (bars & (1 << i))
4184			if (__pci_request_region(pdev, i, res_name, excl))
4185				goto err_out;
4186	return 0;
4187
4188err_out:
4189	while (--i >= 0)
4190		if (bars & (1 << i))
4191			pci_release_region(pdev, i);
4192
4193	return -EBUSY;
4194}
4195
4196
4197/**
4198 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4199 * @pdev: PCI device whose resources are to be reserved
4200 * @bars: Bitmask of BARs to be requested
4201 * @res_name: Name to be associated with resource
4202 */
4203int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4204				 const char *res_name)
4205{
4206	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4207}
4208EXPORT_SYMBOL(pci_request_selected_regions);
4209
4210int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4211					   const char *res_name)
4212{
4213	return __pci_request_selected_regions(pdev, bars, res_name,
4214			IORESOURCE_EXCLUSIVE);
4215}
4216EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4217
4218/**
4219 * pci_release_regions - Release reserved PCI I/O and memory resources
4220 * @pdev: PCI device whose resources were previously reserved by
4221 *	  pci_request_regions()
4222 *
4223 * Releases all PCI I/O and memory resources previously reserved by a
4224 * successful call to pci_request_regions().  Call this function only
4225 * after all use of the PCI regions has ceased.
4226 */
4227
4228void pci_release_regions(struct pci_dev *pdev)
4229{
4230	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4231}
4232EXPORT_SYMBOL(pci_release_regions);
4233
4234/**
4235 * pci_request_regions - Reserve PCI I/O and memory resources
4236 * @pdev: PCI device whose resources are to be reserved
4237 * @res_name: Name to be associated with resource.
4238 *
4239 * Mark all PCI regions associated with PCI device @pdev as
4240 * being reserved by owner @res_name.  Do not access any
4241 * address inside the PCI regions unless this call returns
4242 * successfully.
4243 *
4244 * Returns 0 on success, or %EBUSY on error.  A warning
4245 * message is also printed on failure.
4246 */
4247int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4248{
4249	return pci_request_selected_regions(pdev,
4250			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4251}
4252EXPORT_SYMBOL(pci_request_regions);
4253
4254/**
4255 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4256 * @pdev: PCI device whose resources are to be reserved
4257 * @res_name: Name to be associated with resource.
4258 *
4259 * Mark all PCI regions associated with PCI device @pdev as being reserved
4260 * by owner @res_name.  Do not access any address inside the PCI regions
4261 * unless this call returns successfully.
4262 *
4263 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4264 * and the sysfs MMIO access will not be allowed.
4265 *
4266 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4267 * printed on failure.
4268 */
4269int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4270{
4271	return pci_request_selected_regions_exclusive(pdev,
4272				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4273}
4274EXPORT_SYMBOL(pci_request_regions_exclusive);
4275
4276/*
4277 * Record the PCI IO range (expressed as CPU physical address + size).
4278 * Return a negative value if an error has occurred, zero otherwise
4279 */
4280int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4281			resource_size_t	size)
4282{
4283	int ret = 0;
4284#ifdef PCI_IOBASE
4285	struct logic_pio_hwaddr *range;
4286
4287	if (!size || addr + size < addr)
4288		return -EINVAL;
4289
4290	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4291	if (!range)
4292		return -ENOMEM;
4293
4294	range->fwnode = fwnode;
4295	range->size = size;
4296	range->hw_start = addr;
4297	range->flags = LOGIC_PIO_CPU_MMIO;
4298
4299	ret = logic_pio_register_range(range);
4300	if (ret)
4301		kfree(range);
4302
4303	/* Ignore duplicates due to deferred probing */
4304	if (ret == -EEXIST)
4305		ret = 0;
4306#endif
4307
4308	return ret;
4309}
4310
4311phys_addr_t pci_pio_to_address(unsigned long pio)
4312{
 
 
4313#ifdef PCI_IOBASE
4314	if (pio < MMIO_UPPER_LIMIT)
4315		return logic_pio_to_hwaddr(pio);
 
 
4316#endif
4317
4318	return (phys_addr_t) OF_BAD_ADDR;
4319}
4320EXPORT_SYMBOL_GPL(pci_pio_to_address);
4321
4322unsigned long __weak pci_address_to_pio(phys_addr_t address)
4323{
4324#ifdef PCI_IOBASE
4325	return logic_pio_trans_cpuaddr(address);
4326#else
4327	if (address > IO_SPACE_LIMIT)
4328		return (unsigned long)-1;
4329
4330	return (unsigned long) address;
4331#endif
4332}
4333
4334/**
4335 * pci_remap_iospace - Remap the memory mapped I/O space
4336 * @res: Resource describing the I/O space
4337 * @phys_addr: physical address of range to be mapped
4338 *
4339 * Remap the memory mapped I/O space described by the @res and the CPU
4340 * physical address @phys_addr into virtual address space.  Only
4341 * architectures that have memory mapped IO functions defined (and the
4342 * PCI_IOBASE value defined) should call this function.
4343 */
4344#ifndef pci_remap_iospace
4345int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4346{
4347#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4348	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4349
4350	if (!(res->flags & IORESOURCE_IO))
4351		return -EINVAL;
4352
4353	if (res->end > IO_SPACE_LIMIT)
4354		return -EINVAL;
4355
4356	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4357				  pgprot_device(PAGE_KERNEL));
4358#else
4359	/*
4360	 * This architecture does not have memory mapped I/O space,
4361	 * so this function should never be called
4362	 */
4363	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4364	return -ENODEV;
4365#endif
4366}
4367EXPORT_SYMBOL(pci_remap_iospace);
4368#endif
4369
4370/**
4371 * pci_unmap_iospace - Unmap the memory mapped I/O space
4372 * @res: resource to be unmapped
4373 *
4374 * Unmap the CPU virtual address @res from virtual address space.  Only
4375 * architectures that have memory mapped IO functions defined (and the
4376 * PCI_IOBASE value defined) should call this function.
4377 */
4378void pci_unmap_iospace(struct resource *res)
4379{
4380#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4381	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4382
4383	vunmap_range(vaddr, vaddr + resource_size(res));
4384#endif
4385}
4386EXPORT_SYMBOL(pci_unmap_iospace);
4387
4388static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4389{
4390	struct resource **res = ptr;
4391
4392	pci_unmap_iospace(*res);
4393}
4394
4395/**
4396 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4397 * @dev: Generic device to remap IO address for
4398 * @res: Resource describing the I/O space
4399 * @phys_addr: physical address of range to be mapped
4400 *
4401 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4402 * detach.
4403 */
4404int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4405			   phys_addr_t phys_addr)
4406{
4407	const struct resource **ptr;
4408	int error;
4409
4410	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4411	if (!ptr)
4412		return -ENOMEM;
4413
4414	error = pci_remap_iospace(res, phys_addr);
4415	if (error) {
4416		devres_free(ptr);
4417	} else	{
4418		*ptr = res;
4419		devres_add(dev, ptr);
4420	}
4421
4422	return error;
4423}
4424EXPORT_SYMBOL(devm_pci_remap_iospace);
4425
4426/**
4427 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4428 * @dev: Generic device to remap IO address for
4429 * @offset: Resource address to map
4430 * @size: Size of map
4431 *
4432 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4433 * detach.
4434 */
4435void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4436				      resource_size_t offset,
4437				      resource_size_t size)
4438{
4439	void __iomem **ptr, *addr;
4440
4441	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4442	if (!ptr)
4443		return NULL;
4444
4445	addr = pci_remap_cfgspace(offset, size);
4446	if (addr) {
4447		*ptr = addr;
4448		devres_add(dev, ptr);
4449	} else
4450		devres_free(ptr);
4451
4452	return addr;
4453}
4454EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4455
4456/**
4457 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4458 * @dev: generic device to handle the resource for
4459 * @res: configuration space resource to be handled
4460 *
4461 * Checks that a resource is a valid memory region, requests the memory
4462 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4463 * proper PCI configuration space memory attributes are guaranteed.
4464 *
4465 * All operations are managed and will be undone on driver detach.
4466 *
4467 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4468 * on failure. Usage example::
4469 *
4470 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4471 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4472 *	if (IS_ERR(base))
4473 *		return PTR_ERR(base);
4474 */
4475void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4476					  struct resource *res)
4477{
4478	resource_size_t size;
4479	const char *name;
4480	void __iomem *dest_ptr;
4481
4482	BUG_ON(!dev);
4483
4484	if (!res || resource_type(res) != IORESOURCE_MEM) {
4485		dev_err(dev, "invalid resource\n");
4486		return IOMEM_ERR_PTR(-EINVAL);
4487	}
4488
4489	size = resource_size(res);
4490
4491	if (res->name)
4492		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4493				      res->name);
4494	else
4495		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4496	if (!name)
4497		return IOMEM_ERR_PTR(-ENOMEM);
4498
4499	if (!devm_request_mem_region(dev, res->start, size, name)) {
4500		dev_err(dev, "can't request region for resource %pR\n", res);
4501		return IOMEM_ERR_PTR(-EBUSY);
4502	}
4503
4504	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4505	if (!dest_ptr) {
4506		dev_err(dev, "ioremap failed for resource %pR\n", res);
4507		devm_release_mem_region(dev, res->start, size);
4508		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4509	}
4510
4511	return dest_ptr;
4512}
4513EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4514
4515static void __pci_set_master(struct pci_dev *dev, bool enable)
4516{
4517	u16 old_cmd, cmd;
4518
4519	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4520	if (enable)
4521		cmd = old_cmd | PCI_COMMAND_MASTER;
4522	else
4523		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4524	if (cmd != old_cmd) {
4525		pci_dbg(dev, "%s bus mastering\n",
4526			enable ? "enabling" : "disabling");
4527		pci_write_config_word(dev, PCI_COMMAND, cmd);
4528	}
4529	dev->is_busmaster = enable;
4530}
4531
4532/**
4533 * pcibios_setup - process "pci=" kernel boot arguments
4534 * @str: string used to pass in "pci=" kernel boot arguments
4535 *
4536 * Process kernel boot arguments.  This is the default implementation.
4537 * Architecture specific implementations can override this as necessary.
4538 */
4539char * __weak __init pcibios_setup(char *str)
4540{
4541	return str;
4542}
4543
4544/**
4545 * pcibios_set_master - enable PCI bus-mastering for device dev
4546 * @dev: the PCI device to enable
4547 *
4548 * Enables PCI bus-mastering for the device.  This is the default
4549 * implementation.  Architecture specific implementations can override
4550 * this if necessary.
4551 */
4552void __weak pcibios_set_master(struct pci_dev *dev)
4553{
4554	u8 lat;
4555
4556	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4557	if (pci_is_pcie(dev))
4558		return;
4559
4560	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4561	if (lat < 16)
4562		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4563	else if (lat > pcibios_max_latency)
4564		lat = pcibios_max_latency;
4565	else
4566		return;
4567
4568	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4569}
4570
4571/**
4572 * pci_set_master - enables bus-mastering for device dev
4573 * @dev: the PCI device to enable
4574 *
4575 * Enables bus-mastering on the device and calls pcibios_set_master()
4576 * to do the needed arch specific settings.
4577 */
4578void pci_set_master(struct pci_dev *dev)
4579{
4580	__pci_set_master(dev, true);
4581	pcibios_set_master(dev);
4582}
4583EXPORT_SYMBOL(pci_set_master);
4584
4585/**
4586 * pci_clear_master - disables bus-mastering for device dev
4587 * @dev: the PCI device to disable
4588 */
4589void pci_clear_master(struct pci_dev *dev)
4590{
4591	__pci_set_master(dev, false);
4592}
4593EXPORT_SYMBOL(pci_clear_master);
4594
4595/**
4596 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4597 * @dev: the PCI device for which MWI is to be enabled
4598 *
4599 * Helper function for pci_set_mwi.
4600 * Originally copied from drivers/net/acenic.c.
4601 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4602 *
4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604 */
4605int pci_set_cacheline_size(struct pci_dev *dev)
4606{
4607	u8 cacheline_size;
4608
4609	if (!pci_cache_line_size)
4610		return -EINVAL;
4611
4612	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4613	   equal to or multiple of the right value. */
4614	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4615	if (cacheline_size >= pci_cache_line_size &&
4616	    (cacheline_size % pci_cache_line_size) == 0)
4617		return 0;
4618
4619	/* Write the correct value. */
4620	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4621	/* Read it back. */
4622	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4623	if (cacheline_size == pci_cache_line_size)
4624		return 0;
4625
4626	pci_dbg(dev, "cache line size of %d is not supported\n",
4627		   pci_cache_line_size << 2);
4628
4629	return -EINVAL;
4630}
4631EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4632
4633/**
4634 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4635 * @dev: the PCI device for which MWI is enabled
4636 *
4637 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4638 *
4639 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4640 */
4641int pci_set_mwi(struct pci_dev *dev)
4642{
4643#ifdef PCI_DISABLE_MWI
4644	return 0;
4645#else
4646	int rc;
4647	u16 cmd;
4648
4649	rc = pci_set_cacheline_size(dev);
4650	if (rc)
4651		return rc;
4652
4653	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4654	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4655		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4656		cmd |= PCI_COMMAND_INVALIDATE;
4657		pci_write_config_word(dev, PCI_COMMAND, cmd);
4658	}
4659	return 0;
4660#endif
4661}
4662EXPORT_SYMBOL(pci_set_mwi);
4663
4664/**
4665 * pcim_set_mwi - a device-managed pci_set_mwi()
4666 * @dev: the PCI device for which MWI is enabled
4667 *
4668 * Managed pci_set_mwi().
4669 *
4670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4671 */
4672int pcim_set_mwi(struct pci_dev *dev)
4673{
4674	struct pci_devres *dr;
4675
4676	dr = find_pci_dr(dev);
4677	if (!dr)
4678		return -ENOMEM;
4679
4680	dr->mwi = 1;
4681	return pci_set_mwi(dev);
4682}
4683EXPORT_SYMBOL(pcim_set_mwi);
4684
4685/**
4686 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4687 * @dev: the PCI device for which MWI is enabled
4688 *
4689 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4690 * Callers are not required to check the return value.
4691 *
4692 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4693 */
4694int pci_try_set_mwi(struct pci_dev *dev)
4695{
4696#ifdef PCI_DISABLE_MWI
4697	return 0;
4698#else
4699	return pci_set_mwi(dev);
4700#endif
4701}
4702EXPORT_SYMBOL(pci_try_set_mwi);
4703
4704/**
4705 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4706 * @dev: the PCI device to disable
4707 *
4708 * Disables PCI Memory-Write-Invalidate transaction on the device
4709 */
4710void pci_clear_mwi(struct pci_dev *dev)
4711{
4712#ifndef PCI_DISABLE_MWI
4713	u16 cmd;
4714
4715	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4716	if (cmd & PCI_COMMAND_INVALIDATE) {
4717		cmd &= ~PCI_COMMAND_INVALIDATE;
4718		pci_write_config_word(dev, PCI_COMMAND, cmd);
4719	}
4720#endif
4721}
4722EXPORT_SYMBOL(pci_clear_mwi);
4723
4724/**
4725 * pci_disable_parity - disable parity checking for device
4726 * @dev: the PCI device to operate on
4727 *
4728 * Disable parity checking for device @dev
4729 */
4730void pci_disable_parity(struct pci_dev *dev)
4731{
4732	u16 cmd;
4733
4734	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4735	if (cmd & PCI_COMMAND_PARITY) {
4736		cmd &= ~PCI_COMMAND_PARITY;
4737		pci_write_config_word(dev, PCI_COMMAND, cmd);
4738	}
4739}
4740
4741/**
4742 * pci_intx - enables/disables PCI INTx for device dev
4743 * @pdev: the PCI device to operate on
4744 * @enable: boolean: whether to enable or disable PCI INTx
4745 *
4746 * Enables/disables PCI INTx for device @pdev
4747 */
4748void pci_intx(struct pci_dev *pdev, int enable)
4749{
4750	u16 pci_command, new;
4751
4752	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4753
4754	if (enable)
4755		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4756	else
4757		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4758
4759	if (new != pci_command) {
4760		struct pci_devres *dr;
4761
4762		pci_write_config_word(pdev, PCI_COMMAND, new);
4763
4764		dr = find_pci_dr(pdev);
4765		if (dr && !dr->restore_intx) {
4766			dr->restore_intx = 1;
4767			dr->orig_intx = !enable;
4768		}
4769	}
4770}
4771EXPORT_SYMBOL_GPL(pci_intx);
4772
4773static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4774{
4775	struct pci_bus *bus = dev->bus;
4776	bool mask_updated = true;
4777	u32 cmd_status_dword;
4778	u16 origcmd, newcmd;
4779	unsigned long flags;
4780	bool irq_pending;
4781
4782	/*
4783	 * We do a single dword read to retrieve both command and status.
4784	 * Document assumptions that make this possible.
4785	 */
4786	BUILD_BUG_ON(PCI_COMMAND % 4);
4787	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4788
4789	raw_spin_lock_irqsave(&pci_lock, flags);
4790
4791	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4792
4793	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4794
4795	/*
4796	 * Check interrupt status register to see whether our device
4797	 * triggered the interrupt (when masking) or the next IRQ is
4798	 * already pending (when unmasking).
4799	 */
4800	if (mask != irq_pending) {
4801		mask_updated = false;
4802		goto done;
4803	}
4804
4805	origcmd = cmd_status_dword;
4806	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4807	if (mask)
4808		newcmd |= PCI_COMMAND_INTX_DISABLE;
4809	if (newcmd != origcmd)
4810		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4811
4812done:
4813	raw_spin_unlock_irqrestore(&pci_lock, flags);
4814
4815	return mask_updated;
4816}
4817
4818/**
4819 * pci_check_and_mask_intx - mask INTx on pending interrupt
4820 * @dev: the PCI device to operate on
4821 *
4822 * Check if the device dev has its INTx line asserted, mask it and return
4823 * true in that case. False is returned if no interrupt was pending.
4824 */
4825bool pci_check_and_mask_intx(struct pci_dev *dev)
4826{
4827	return pci_check_and_set_intx_mask(dev, true);
4828}
4829EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4830
4831/**
4832 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4833 * @dev: the PCI device to operate on
4834 *
4835 * Check if the device dev has its INTx line asserted, unmask it if not and
4836 * return true. False is returned and the mask remains active if there was
4837 * still an interrupt pending.
4838 */
4839bool pci_check_and_unmask_intx(struct pci_dev *dev)
4840{
4841	return pci_check_and_set_intx_mask(dev, false);
4842}
4843EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4844
4845/**
4846 * pci_wait_for_pending_transaction - wait for pending transaction
4847 * @dev: the PCI device to operate on
4848 *
4849 * Return 0 if transaction is pending 1 otherwise.
4850 */
4851int pci_wait_for_pending_transaction(struct pci_dev *dev)
4852{
4853	if (!pci_is_pcie(dev))
4854		return 1;
4855
4856	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4857				    PCI_EXP_DEVSTA_TRPND);
4858}
4859EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4861/**
4862 * pcie_flr - initiate a PCIe function level reset
4863 * @dev: device to reset
4864 *
4865 * Initiate a function level reset unconditionally on @dev without
4866 * checking any flags and DEVCAP
 
4867 */
4868int pcie_flr(struct pci_dev *dev)
4869{
4870	if (!pci_wait_for_pending_transaction(dev))
4871		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4872
4873	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4874
4875	if (dev->imm_ready)
4876		return 0;
4877
4878	/*
4879	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4880	 * 100ms, but may silently discard requests while the FLR is in
4881	 * progress.  Wait 100ms before trying to access the device.
4882	 */
4883	msleep(100);
4884
4885	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4886}
4887EXPORT_SYMBOL_GPL(pcie_flr);
4888
4889/**
4890 * pcie_reset_flr - initiate a PCIe function level reset
4891 * @dev: device to reset
4892 * @probe: if true, return 0 if device can be reset this way
4893 *
4894 * Initiate a function level reset on @dev.
4895 */
4896int pcie_reset_flr(struct pci_dev *dev, bool probe)
4897{
4898	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4899		return -ENOTTY;
4900
4901	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4902		return -ENOTTY;
4903
4904	if (probe)
4905		return 0;
4906
4907	return pcie_flr(dev);
4908}
4909EXPORT_SYMBOL_GPL(pcie_reset_flr);
4910
4911static int pci_af_flr(struct pci_dev *dev, bool probe)
4912{
4913	int pos;
4914	u8 cap;
4915
4916	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4917	if (!pos)
4918		return -ENOTTY;
4919
4920	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4921		return -ENOTTY;
4922
4923	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4924	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4925		return -ENOTTY;
4926
4927	if (probe)
4928		return 0;
4929
4930	/*
4931	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4932	 * is used, so we use the control offset rather than status and shift
4933	 * the test bit to match.
4934	 */
4935	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4936				 PCI_AF_STATUS_TP << 8))
4937		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4938
4939	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4940
4941	if (dev->imm_ready)
4942		return 0;
4943
4944	/*
4945	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4946	 * updated 27 July 2006; a device must complete an FLR within
4947	 * 100ms, but may silently discard requests while the FLR is in
4948	 * progress.  Wait 100ms before trying to access the device.
4949	 */
4950	msleep(100);
4951
4952	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4953}
4954
4955/**
4956 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4957 * @dev: Device to reset.
4958 * @probe: if true, return 0 if the device can be reset this way.
4959 *
4960 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4961 * unset, it will be reinitialized internally when going from PCI_D3hot to
4962 * PCI_D0.  If that's the case and the device is not in a low-power state
4963 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4964 *
4965 * NOTE: This causes the caller to sleep for twice the device power transition
4966 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4967 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4968 * Moreover, only devices in D0 can be reset by this function.
4969 */
4970static int pci_pm_reset(struct pci_dev *dev, bool probe)
4971{
4972	u16 csr;
4973
4974	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4975		return -ENOTTY;
4976
4977	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4978	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4979		return -ENOTTY;
4980
4981	if (probe)
4982		return 0;
4983
4984	if (dev->current_state != PCI_D0)
4985		return -EINVAL;
4986
4987	csr &= ~PCI_PM_CTRL_STATE_MASK;
4988	csr |= PCI_D3hot;
4989	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4990	pci_dev_d3_sleep(dev);
4991
4992	csr &= ~PCI_PM_CTRL_STATE_MASK;
4993	csr |= PCI_D0;
4994	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4995	pci_dev_d3_sleep(dev);
4996
4997	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4998}
4999
5000/**
5001 * pcie_wait_for_link_status - Wait for link status change
5002 * @pdev: Device whose link to wait for.
5003 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
5004 * @active: Waiting for active or inactive?
5005 *
5006 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
5007 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5008 */
5009static int pcie_wait_for_link_status(struct pci_dev *pdev,
5010				     bool use_lt, bool active)
5011{
5012	u16 lnksta_mask, lnksta_match;
5013	unsigned long end_jiffies;
5014	u16 lnksta;
5015
5016	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
5017	lnksta_match = active ? lnksta_mask : 0;
5018
5019	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
5020	do {
5021		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5022		if ((lnksta & lnksta_mask) == lnksta_match)
5023			return 0;
5024		msleep(1);
5025	} while (time_before(jiffies, end_jiffies));
5026
5027	return -ETIMEDOUT;
5028}
5029
5030/**
5031 * pcie_retrain_link - Request a link retrain and wait for it to complete
5032 * @pdev: Device whose link to retrain.
5033 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
5034 *
5035 * Retrain completion status is retrieved from the Link Status Register
5036 * according to @use_lt.  It is not verified whether the use of the DLLLA
5037 * bit is valid.
5038 *
5039 * Return 0 if successful, or -ETIMEDOUT if training has not completed
5040 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5041 */
5042int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5043{
5044	int rc;
5045
5046	/*
5047	 * Ensure the updated LNKCTL parameters are used during link
5048	 * training by checking that there is no ongoing link training to
5049	 * avoid LTSSM race as recommended in Implementation Note at the
5050	 * end of PCIe r6.0.1 sec 7.5.3.7.
5051	 */
5052	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5053	if (rc)
5054		return rc;
5055
5056	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5057	if (pdev->clear_retrain_link) {
5058		/*
5059		 * Due to an erratum in some devices the Retrain Link bit
5060		 * needs to be cleared again manually to allow the link
5061		 * training to succeed.
5062		 */
5063		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5064	}
5065
5066	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5067}
5068
5069/**
5070 * pcie_wait_for_link_delay - Wait until link is active or inactive
5071 * @pdev: Bridge device
5072 * @active: waiting for active or inactive?
5073 * @delay: Delay to wait after link has become active (in ms)
5074 *
5075 * Use this to wait till link becomes active or inactive.
5076 */
5077static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5078				     int delay)
5079{
5080	int rc;
 
 
5081
5082	/*
5083	 * Some controllers might not implement link active reporting. In this
5084	 * case, we wait for 1000 ms + any delay requested by the caller.
5085	 */
5086	if (!pdev->link_active_reporting) {
5087		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5088		return true;
5089	}
5090
5091	/*
5092	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5093	 * after which we should expect an link active if the reset was
5094	 * successful. If so, software must wait a minimum 100ms before sending
5095	 * configuration requests to devices downstream this port.
5096	 *
5097	 * If the link fails to activate, either the device was physically
5098	 * removed or the link is permanently failed.
5099	 */
5100	if (active)
5101		msleep(20);
5102	rc = pcie_wait_for_link_status(pdev, false, active);
5103	if (active) {
5104		if (rc)
5105			rc = pcie_failed_link_retrain(pdev);
5106		if (rc)
5107			return false;
5108
5109		msleep(delay);
5110		return true;
5111	}
5112
5113	if (rc)
5114		return false;
5115
5116	return true;
5117}
5118
5119/**
5120 * pcie_wait_for_link - Wait until link is active or inactive
5121 * @pdev: Bridge device
5122 * @active: waiting for active or inactive?
5123 *
5124 * Use this to wait till link becomes active or inactive.
5125 */
5126bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5127{
5128	return pcie_wait_for_link_delay(pdev, active, 100);
5129}
5130
5131/*
5132 * Find maximum D3cold delay required by all the devices on the bus.  The
5133 * spec says 100 ms, but firmware can lower it and we allow drivers to
5134 * increase it as well.
5135 *
5136 * Called with @pci_bus_sem locked for reading.
5137 */
5138static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5139{
5140	const struct pci_dev *pdev;
5141	int min_delay = 100;
5142	int max_delay = 0;
5143
5144	list_for_each_entry(pdev, &bus->devices, bus_list) {
5145		if (pdev->d3cold_delay < min_delay)
5146			min_delay = pdev->d3cold_delay;
5147		if (pdev->d3cold_delay > max_delay)
5148			max_delay = pdev->d3cold_delay;
5149	}
5150
5151	return max(min_delay, max_delay);
5152}
5153
5154/**
5155 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5156 * @dev: PCI bridge
5157 * @reset_type: reset type in human-readable form
5158 *
5159 * Handle necessary delays before access to the devices on the secondary
5160 * side of the bridge are permitted after D3cold to D0 transition
5161 * or Conventional Reset.
5162 *
5163 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5164 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5165 * 4.3.2.
5166 *
5167 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5168 * failed to become accessible.
5169 */
5170int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5171{
5172	struct pci_dev *child;
5173	int delay;
5174
5175	if (pci_dev_is_disconnected(dev))
5176		return 0;
5177
5178	if (!pci_is_bridge(dev))
5179		return 0;
5180
5181	down_read(&pci_bus_sem);
5182
5183	/*
5184	 * We only deal with devices that are present currently on the bus.
5185	 * For any hot-added devices the access delay is handled in pciehp
5186	 * board_added(). In case of ACPI hotplug the firmware is expected
5187	 * to configure the devices before OS is notified.
5188	 */
5189	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5190		up_read(&pci_bus_sem);
5191		return 0;
5192	}
5193
5194	/* Take d3cold_delay requirements into account */
5195	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5196	if (!delay) {
5197		up_read(&pci_bus_sem);
5198		return 0;
5199	}
5200
5201	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5202				 bus_list);
5203	up_read(&pci_bus_sem);
5204
5205	/*
5206	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5207	 * accessing the device after reset (that is 1000 ms + 100 ms).
5208	 */
5209	if (!pci_is_pcie(dev)) {
5210		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5211		msleep(1000 + delay);
5212		return 0;
5213	}
5214
5215	/*
5216	 * For PCIe downstream and root ports that do not support speeds
5217	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5218	 * speeds (gen3) we need to wait first for the data link layer to
5219	 * become active.
5220	 *
5221	 * However, 100 ms is the minimum and the PCIe spec says the
5222	 * software must allow at least 1s before it can determine that the
5223	 * device that did not respond is a broken device. Also device can
5224	 * take longer than that to respond if it indicates so through Request
5225	 * Retry Status completions.
5226	 *
5227	 * Therefore we wait for 100 ms and check for the device presence
5228	 * until the timeout expires.
5229	 */
5230	if (!pcie_downstream_port(dev))
5231		return 0;
5232
5233	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5234		u16 status;
5235
5236		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5237		msleep(delay);
5238
5239		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5240			return 0;
5241
5242		/*
5243		 * If the port supports active link reporting we now check
5244		 * whether the link is active and if not bail out early with
5245		 * the assumption that the device is not present anymore.
5246		 */
5247		if (!dev->link_active_reporting)
5248			return -ENOTTY;
5249
5250		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5251		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5252			return -ENOTTY;
5253
5254		return pci_dev_wait(child, reset_type,
5255				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5256	}
5257
5258	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5259		delay);
5260	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5261		/* Did not train, no need to wait any further */
5262		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5263		return -ENOTTY;
5264	}
5265
5266	return pci_dev_wait(child, reset_type,
5267			    PCIE_RESET_READY_POLL_MS - delay);
 
 
 
5268}
5269
5270void pci_reset_secondary_bus(struct pci_dev *dev)
5271{
5272	u16 ctrl;
5273
5274	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5275	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5276	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5277
5278	/*
5279	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5280	 * this to 2ms to ensure that we meet the minimum requirement.
5281	 */
5282	msleep(2);
5283
5284	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5285	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
 
 
 
 
 
 
 
 
 
5286}
5287
5288void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5289{
5290	pci_reset_secondary_bus(dev);
5291}
5292
5293/**
5294 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5295 * @dev: Bridge device
5296 *
5297 * Use the bridge control register to assert reset on the secondary bus.
5298 * Devices on the secondary bus are left in power-on state.
5299 */
5300int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5301{
5302	pcibios_reset_secondary_bus(dev);
5303
5304	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5305}
5306EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5307
5308static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5309{
5310	struct pci_dev *pdev;
5311
5312	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5313	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5314		return -ENOTTY;
5315
5316	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5317		if (pdev != dev)
5318			return -ENOTTY;
5319
5320	if (probe)
5321		return 0;
5322
5323	return pci_bridge_secondary_bus_reset(dev->bus->self);
5324}
5325
5326static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5327{
5328	int rc = -ENOTTY;
5329
5330	if (!hotplug || !try_module_get(hotplug->owner))
5331		return rc;
5332
5333	if (hotplug->ops->reset_slot)
5334		rc = hotplug->ops->reset_slot(hotplug, probe);
5335
5336	module_put(hotplug->owner);
5337
5338	return rc;
5339}
5340
5341static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5342{
5343	if (dev->multifunction || dev->subordinate || !dev->slot ||
 
 
5344	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5345		return -ENOTTY;
5346
5347	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5348}
5349
5350static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5351{
5352	int rc;
5353
5354	rc = pci_dev_reset_slot_function(dev, probe);
5355	if (rc != -ENOTTY)
5356		return rc;
5357	return pci_parent_bus_reset(dev, probe);
5358}
5359
5360void pci_dev_lock(struct pci_dev *dev)
5361{
 
5362	/* block PM suspend, driver probe, etc. */
5363	device_lock(&dev->dev);
5364	pci_cfg_access_lock(dev);
5365}
5366EXPORT_SYMBOL_GPL(pci_dev_lock);
5367
5368/* Return 1 on successful lock, 0 on contention */
5369int pci_dev_trylock(struct pci_dev *dev)
5370{
5371	if (device_trylock(&dev->dev)) {
5372		if (pci_cfg_access_trylock(dev))
5373			return 1;
5374		device_unlock(&dev->dev);
5375	}
5376
5377	return 0;
5378}
5379EXPORT_SYMBOL_GPL(pci_dev_trylock);
5380
5381void pci_dev_unlock(struct pci_dev *dev)
5382{
5383	pci_cfg_access_unlock(dev);
5384	device_unlock(&dev->dev);
 
5385}
5386EXPORT_SYMBOL_GPL(pci_dev_unlock);
5387
5388static void pci_dev_save_and_disable(struct pci_dev *dev)
5389{
5390	const struct pci_error_handlers *err_handler =
5391			dev->driver ? dev->driver->err_handler : NULL;
5392
5393	/*
5394	 * dev->driver->err_handler->reset_prepare() is protected against
5395	 * races with ->remove() by the device lock, which must be held by
5396	 * the caller.
5397	 */
5398	if (err_handler && err_handler->reset_prepare)
5399		err_handler->reset_prepare(dev);
5400
5401	/*
5402	 * Wake-up device prior to save.  PM registers default to D0 after
5403	 * reset and a simple register restore doesn't reliably return
5404	 * to a non-D0 state anyway.
5405	 */
5406	pci_set_power_state(dev, PCI_D0);
5407
5408	pci_save_state(dev);
5409	/*
5410	 * Disable the device by clearing the Command register, except for
5411	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5412	 * BARs, but also prevents the device from being Bus Master, preventing
5413	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5414	 * compliant devices, INTx-disable prevents legacy interrupts.
5415	 */
5416	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5417}
5418
5419static void pci_dev_restore(struct pci_dev *dev)
5420{
5421	const struct pci_error_handlers *err_handler =
5422			dev->driver ? dev->driver->err_handler : NULL;
5423
5424	pci_restore_state(dev);
5425
5426	/*
5427	 * dev->driver->err_handler->reset_done() is protected against
5428	 * races with ->remove() by the device lock, which must be held by
5429	 * the caller.
5430	 */
5431	if (err_handler && err_handler->reset_done)
5432		err_handler->reset_done(dev);
5433}
5434
5435/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5436static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5437	{ },
5438	{ pci_dev_specific_reset, .name = "device_specific" },
5439	{ pci_dev_acpi_reset, .name = "acpi" },
5440	{ pcie_reset_flr, .name = "flr" },
5441	{ pci_af_flr, .name = "af_flr" },
5442	{ pci_pm_reset, .name = "pm" },
5443	{ pci_reset_bus_function, .name = "bus" },
5444};
5445
5446static ssize_t reset_method_show(struct device *dev,
5447				 struct device_attribute *attr, char *buf)
5448{
5449	struct pci_dev *pdev = to_pci_dev(dev);
5450	ssize_t len = 0;
5451	int i, m;
5452
5453	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5454		m = pdev->reset_methods[i];
5455		if (!m)
5456			break;
5457
5458		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5459				     pci_reset_fn_methods[m].name);
5460	}
5461
5462	if (len)
5463		len += sysfs_emit_at(buf, len, "\n");
5464
5465	return len;
5466}
5467
5468static int reset_method_lookup(const char *name)
5469{
5470	int m;
5471
5472	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5473		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5474			return m;
5475	}
5476
5477	return 0;	/* not found */
5478}
5479
5480static ssize_t reset_method_store(struct device *dev,
5481				  struct device_attribute *attr,
5482				  const char *buf, size_t count)
5483{
5484	struct pci_dev *pdev = to_pci_dev(dev);
5485	char *options, *name;
5486	int m, n;
5487	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5488
5489	if (sysfs_streq(buf, "")) {
5490		pdev->reset_methods[0] = 0;
5491		pci_warn(pdev, "All device reset methods disabled by user");
5492		return count;
5493	}
5494
5495	if (sysfs_streq(buf, "default")) {
5496		pci_init_reset_methods(pdev);
5497		return count;
5498	}
5499
5500	options = kstrndup(buf, count, GFP_KERNEL);
5501	if (!options)
5502		return -ENOMEM;
5503
5504	n = 0;
5505	while ((name = strsep(&options, " ")) != NULL) {
5506		if (sysfs_streq(name, ""))
5507			continue;
5508
5509		name = strim(name);
5510
5511		m = reset_method_lookup(name);
5512		if (!m) {
5513			pci_err(pdev, "Invalid reset method '%s'", name);
5514			goto error;
5515		}
5516
5517		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5518			pci_err(pdev, "Unsupported reset method '%s'", name);
5519			goto error;
5520		}
5521
5522		if (n == PCI_NUM_RESET_METHODS - 1) {
5523			pci_err(pdev, "Too many reset methods\n");
5524			goto error;
5525		}
5526
5527		reset_methods[n++] = m;
5528	}
5529
5530	reset_methods[n] = 0;
5531
5532	/* Warn if dev-specific supported but not highest priority */
5533	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5534	    reset_methods[0] != 1)
5535		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5536	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5537	kfree(options);
5538	return count;
5539
5540error:
5541	/* Leave previous methods unchanged */
5542	kfree(options);
5543	return -EINVAL;
5544}
5545static DEVICE_ATTR_RW(reset_method);
5546
5547static struct attribute *pci_dev_reset_method_attrs[] = {
5548	&dev_attr_reset_method.attr,
5549	NULL,
5550};
5551
5552static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5553						    struct attribute *a, int n)
5554{
5555	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5556
5557	if (!pci_reset_supported(pdev))
5558		return 0;
5559
5560	return a->mode;
5561}
5562
5563const struct attribute_group pci_dev_reset_method_attr_group = {
5564	.attrs = pci_dev_reset_method_attrs,
5565	.is_visible = pci_dev_reset_method_attr_is_visible,
5566};
5567
5568/**
5569 * __pci_reset_function_locked - reset a PCI device function while holding
5570 * the @dev mutex lock.
5571 * @dev: PCI device to reset
5572 *
5573 * Some devices allow an individual function to be reset without affecting
5574 * other functions in the same device.  The PCI device must be responsive
5575 * to PCI config space in order to use this function.
5576 *
5577 * The device function is presumed to be unused and the caller is holding
5578 * the device mutex lock when this function is called.
5579 *
5580 * Resetting the device will make the contents of PCI configuration space
5581 * random, so any caller of this must be prepared to reinitialise the
5582 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5583 * etc.
5584 *
5585 * Returns 0 if the device function was successfully reset or negative if the
5586 * device doesn't support resetting a single function.
5587 */
5588int __pci_reset_function_locked(struct pci_dev *dev)
5589{
5590	int i, m, rc;
5591
5592	might_sleep();
5593
5594	/*
5595	 * A reset method returns -ENOTTY if it doesn't support this device and
5596	 * we should try the next method.
5597	 *
5598	 * If it returns 0 (success), we're finished.  If it returns any other
5599	 * error, we're also finished: this indicates that further reset
5600	 * mechanisms might be broken on the device.
5601	 */
5602	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5603		m = dev->reset_methods[i];
5604		if (!m)
5605			return -ENOTTY;
5606
5607		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5608		if (!rc)
5609			return 0;
5610		if (rc != -ENOTTY)
5611			return rc;
5612	}
5613
5614	return -ENOTTY;
 
 
 
 
 
 
 
 
5615}
5616EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5617
5618/**
5619 * pci_init_reset_methods - check whether device can be safely reset
5620 * and store supported reset mechanisms.
5621 * @dev: PCI device to check for reset mechanisms
5622 *
5623 * Some devices allow an individual function to be reset without affecting
5624 * other functions in the same device.  The PCI device must be in D0-D3hot
5625 * state.
5626 *
5627 * Stores reset mechanisms supported by device in reset_methods byte array
5628 * which is a member of struct pci_dev.
5629 */
5630void pci_init_reset_methods(struct pci_dev *dev)
5631{
5632	int m, i, rc;
5633
5634	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5635
5636	might_sleep();
5637
5638	i = 0;
5639	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5640		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5641		if (!rc)
5642			dev->reset_methods[i++] = m;
5643		else if (rc != -ENOTTY)
5644			break;
5645	}
 
 
 
 
 
 
5646
5647	dev->reset_methods[i] = 0;
5648}
5649
5650/**
5651 * pci_reset_function - quiesce and reset a PCI device function
5652 * @dev: PCI device to reset
5653 *
5654 * Some devices allow an individual function to be reset without affecting
5655 * other functions in the same device.  The PCI device must be responsive
5656 * to PCI config space in order to use this function.
5657 *
5658 * This function does not just reset the PCI portion of a device, but
5659 * clears all the state associated with the device.  This function differs
5660 * from __pci_reset_function_locked() in that it saves and restores device state
5661 * over the reset and takes the PCI device lock.
5662 *
5663 * Returns 0 if the device function was successfully reset or negative if the
5664 * device doesn't support resetting a single function.
5665 */
5666int pci_reset_function(struct pci_dev *dev)
5667{
5668	int rc;
5669
5670	if (!pci_reset_supported(dev))
5671		return -ENOTTY;
5672
5673	pci_dev_lock(dev);
5674	pci_dev_save_and_disable(dev);
5675
5676	rc = __pci_reset_function_locked(dev);
5677
5678	pci_dev_restore(dev);
5679	pci_dev_unlock(dev);
5680
5681	return rc;
5682}
5683EXPORT_SYMBOL_GPL(pci_reset_function);
5684
5685/**
5686 * pci_reset_function_locked - quiesce and reset a PCI device function
5687 * @dev: PCI device to reset
5688 *
5689 * Some devices allow an individual function to be reset without affecting
5690 * other functions in the same device.  The PCI device must be responsive
5691 * to PCI config space in order to use this function.
5692 *
5693 * This function does not just reset the PCI portion of a device, but
5694 * clears all the state associated with the device.  This function differs
5695 * from __pci_reset_function_locked() in that it saves and restores device state
5696 * over the reset.  It also differs from pci_reset_function() in that it
5697 * requires the PCI device lock to be held.
5698 *
5699 * Returns 0 if the device function was successfully reset or negative if the
5700 * device doesn't support resetting a single function.
5701 */
5702int pci_reset_function_locked(struct pci_dev *dev)
5703{
5704	int rc;
5705
5706	if (!pci_reset_supported(dev))
5707		return -ENOTTY;
5708
5709	pci_dev_save_and_disable(dev);
5710
5711	rc = __pci_reset_function_locked(dev);
5712
5713	pci_dev_restore(dev);
5714
5715	return rc;
5716}
5717EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5718
5719/**
5720 * pci_try_reset_function - quiesce and reset a PCI device function
5721 * @dev: PCI device to reset
5722 *
5723 * Same as above, except return -EAGAIN if unable to lock device.
5724 */
5725int pci_try_reset_function(struct pci_dev *dev)
5726{
5727	int rc;
5728
5729	if (!pci_reset_supported(dev))
5730		return -ENOTTY;
5731
5732	if (!pci_dev_trylock(dev))
5733		return -EAGAIN;
5734
5735	pci_dev_save_and_disable(dev);
5736	rc = __pci_reset_function_locked(dev);
5737	pci_dev_restore(dev);
5738	pci_dev_unlock(dev);
5739
5740	return rc;
5741}
5742EXPORT_SYMBOL_GPL(pci_try_reset_function);
5743
5744/* Do any devices on or below this bus prevent a bus reset? */
5745static bool pci_bus_resettable(struct pci_bus *bus)
5746{
5747	struct pci_dev *dev;
5748
5749
5750	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5751		return false;
5752
5753	list_for_each_entry(dev, &bus->devices, bus_list) {
5754		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5755		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5756			return false;
5757	}
5758
5759	return true;
5760}
5761
5762/* Lock devices from the top of the tree down */
5763static void pci_bus_lock(struct pci_bus *bus)
5764{
5765	struct pci_dev *dev;
5766
5767	list_for_each_entry(dev, &bus->devices, bus_list) {
5768		pci_dev_lock(dev);
5769		if (dev->subordinate)
5770			pci_bus_lock(dev->subordinate);
5771	}
5772}
5773
5774/* Unlock devices from the bottom of the tree up */
5775static void pci_bus_unlock(struct pci_bus *bus)
5776{
5777	struct pci_dev *dev;
5778
5779	list_for_each_entry(dev, &bus->devices, bus_list) {
5780		if (dev->subordinate)
5781			pci_bus_unlock(dev->subordinate);
5782		pci_dev_unlock(dev);
5783	}
5784}
5785
5786/* Return 1 on successful lock, 0 on contention */
5787static int pci_bus_trylock(struct pci_bus *bus)
5788{
5789	struct pci_dev *dev;
5790
5791	list_for_each_entry(dev, &bus->devices, bus_list) {
5792		if (!pci_dev_trylock(dev))
5793			goto unlock;
5794		if (dev->subordinate) {
5795			if (!pci_bus_trylock(dev->subordinate)) {
5796				pci_dev_unlock(dev);
5797				goto unlock;
5798			}
5799		}
5800	}
5801	return 1;
5802
5803unlock:
5804	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5805		if (dev->subordinate)
5806			pci_bus_unlock(dev->subordinate);
5807		pci_dev_unlock(dev);
5808	}
5809	return 0;
5810}
5811
5812/* Do any devices on or below this slot prevent a bus reset? */
5813static bool pci_slot_resettable(struct pci_slot *slot)
5814{
5815	struct pci_dev *dev;
5816
5817	if (slot->bus->self &&
5818	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5819		return false;
5820
5821	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5822		if (!dev->slot || dev->slot != slot)
5823			continue;
5824		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5825		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5826			return false;
5827	}
5828
5829	return true;
5830}
5831
5832/* Lock devices from the top of the tree down */
5833static void pci_slot_lock(struct pci_slot *slot)
5834{
5835	struct pci_dev *dev;
5836
5837	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838		if (!dev->slot || dev->slot != slot)
5839			continue;
5840		pci_dev_lock(dev);
5841		if (dev->subordinate)
5842			pci_bus_lock(dev->subordinate);
5843	}
5844}
5845
5846/* Unlock devices from the bottom of the tree up */
5847static void pci_slot_unlock(struct pci_slot *slot)
5848{
5849	struct pci_dev *dev;
5850
5851	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5852		if (!dev->slot || dev->slot != slot)
5853			continue;
5854		if (dev->subordinate)
5855			pci_bus_unlock(dev->subordinate);
5856		pci_dev_unlock(dev);
5857	}
5858}
5859
5860/* Return 1 on successful lock, 0 on contention */
5861static int pci_slot_trylock(struct pci_slot *slot)
5862{
5863	struct pci_dev *dev;
5864
5865	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5866		if (!dev->slot || dev->slot != slot)
5867			continue;
5868		if (!pci_dev_trylock(dev))
5869			goto unlock;
5870		if (dev->subordinate) {
5871			if (!pci_bus_trylock(dev->subordinate)) {
5872				pci_dev_unlock(dev);
5873				goto unlock;
5874			}
5875		}
5876	}
5877	return 1;
5878
5879unlock:
5880	list_for_each_entry_continue_reverse(dev,
5881					     &slot->bus->devices, bus_list) {
5882		if (!dev->slot || dev->slot != slot)
5883			continue;
5884		if (dev->subordinate)
5885			pci_bus_unlock(dev->subordinate);
5886		pci_dev_unlock(dev);
5887	}
5888	return 0;
5889}
5890
5891/*
5892 * Save and disable devices from the top of the tree down while holding
5893 * the @dev mutex lock for the entire tree.
5894 */
5895static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5896{
5897	struct pci_dev *dev;
5898
5899	list_for_each_entry(dev, &bus->devices, bus_list) {
5900		pci_dev_save_and_disable(dev);
5901		if (dev->subordinate)
5902			pci_bus_save_and_disable_locked(dev->subordinate);
5903	}
5904}
5905
5906/*
5907 * Restore devices from top of the tree down while holding @dev mutex lock
5908 * for the entire tree.  Parent bridges need to be restored before we can
5909 * get to subordinate devices.
5910 */
5911static void pci_bus_restore_locked(struct pci_bus *bus)
5912{
5913	struct pci_dev *dev;
5914
5915	list_for_each_entry(dev, &bus->devices, bus_list) {
5916		pci_dev_restore(dev);
5917		if (dev->subordinate)
5918			pci_bus_restore_locked(dev->subordinate);
5919	}
5920}
5921
5922/*
5923 * Save and disable devices from the top of the tree down while holding
5924 * the @dev mutex lock for the entire tree.
5925 */
5926static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5927{
5928	struct pci_dev *dev;
5929
5930	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5931		if (!dev->slot || dev->slot != slot)
5932			continue;
5933		pci_dev_save_and_disable(dev);
5934		if (dev->subordinate)
5935			pci_bus_save_and_disable_locked(dev->subordinate);
5936	}
5937}
5938
5939/*
5940 * Restore devices from top of the tree down while holding @dev mutex lock
5941 * for the entire tree.  Parent bridges need to be restored before we can
5942 * get to subordinate devices.
5943 */
5944static void pci_slot_restore_locked(struct pci_slot *slot)
5945{
5946	struct pci_dev *dev;
5947
5948	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5949		if (!dev->slot || dev->slot != slot)
5950			continue;
5951		pci_dev_restore(dev);
5952		if (dev->subordinate)
5953			pci_bus_restore_locked(dev->subordinate);
5954	}
5955}
5956
5957static int pci_slot_reset(struct pci_slot *slot, bool probe)
5958{
5959	int rc;
5960
5961	if (!slot || !pci_slot_resettable(slot))
5962		return -ENOTTY;
5963
5964	if (!probe)
5965		pci_slot_lock(slot);
5966
5967	might_sleep();
5968
5969	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5970
5971	if (!probe)
5972		pci_slot_unlock(slot);
5973
5974	return rc;
5975}
5976
5977/**
5978 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5979 * @slot: PCI slot to probe
5980 *
5981 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5982 */
5983int pci_probe_reset_slot(struct pci_slot *slot)
5984{
5985	return pci_slot_reset(slot, PCI_RESET_PROBE);
5986}
5987EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5988
5989/**
5990 * __pci_reset_slot - Try to reset a PCI slot
5991 * @slot: PCI slot to reset
5992 *
5993 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5994 * independent of other slots.  For instance, some slots may support slot power
5995 * control.  In the case of a 1:1 bus to slot architecture, this function may
5996 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5997 * Generally a slot reset should be attempted before a bus reset.  All of the
5998 * function of the slot and any subordinate buses behind the slot are reset
5999 * through this function.  PCI config space of all devices in the slot and
6000 * behind the slot is saved before and restored after reset.
6001 *
6002 * Same as above except return -EAGAIN if the slot cannot be locked
6003 */
6004static int __pci_reset_slot(struct pci_slot *slot)
6005{
6006	int rc;
6007
6008	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
6009	if (rc)
6010		return rc;
6011
6012	if (pci_slot_trylock(slot)) {
6013		pci_slot_save_and_disable_locked(slot);
6014		might_sleep();
6015		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
6016		pci_slot_restore_locked(slot);
6017		pci_slot_unlock(slot);
6018	} else
6019		rc = -EAGAIN;
6020
6021	return rc;
6022}
6023
6024static int pci_bus_reset(struct pci_bus *bus, bool probe)
6025{
6026	int ret;
6027
6028	if (!bus->self || !pci_bus_resettable(bus))
6029		return -ENOTTY;
6030
6031	if (probe)
6032		return 0;
6033
6034	pci_bus_lock(bus);
6035
6036	might_sleep();
6037
6038	ret = pci_bridge_secondary_bus_reset(bus->self);
6039
6040	pci_bus_unlock(bus);
6041
6042	return ret;
6043}
6044
6045/**
6046 * pci_bus_error_reset - reset the bridge's subordinate bus
6047 * @bridge: The parent device that connects to the bus to reset
6048 *
6049 * This function will first try to reset the slots on this bus if the method is
6050 * available. If slot reset fails or is not available, this will fall back to a
6051 * secondary bus reset.
6052 */
6053int pci_bus_error_reset(struct pci_dev *bridge)
6054{
6055	struct pci_bus *bus = bridge->subordinate;
6056	struct pci_slot *slot;
6057
6058	if (!bus)
6059		return -ENOTTY;
6060
6061	mutex_lock(&pci_slot_mutex);
6062	if (list_empty(&bus->slots))
6063		goto bus_reset;
6064
6065	list_for_each_entry(slot, &bus->slots, list)
6066		if (pci_probe_reset_slot(slot))
6067			goto bus_reset;
6068
6069	list_for_each_entry(slot, &bus->slots, list)
6070		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6071			goto bus_reset;
6072
6073	mutex_unlock(&pci_slot_mutex);
6074	return 0;
6075bus_reset:
6076	mutex_unlock(&pci_slot_mutex);
6077	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6078}
6079
6080/**
6081 * pci_probe_reset_bus - probe whether a PCI bus can be reset
6082 * @bus: PCI bus to probe
6083 *
6084 * Return 0 if bus can be reset, negative if a bus reset is not supported.
6085 */
6086int pci_probe_reset_bus(struct pci_bus *bus)
6087{
6088	return pci_bus_reset(bus, PCI_RESET_PROBE);
6089}
6090EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6091
6092/**
6093 * __pci_reset_bus - Try to reset a PCI bus
6094 * @bus: top level PCI bus to reset
6095 *
6096 * Same as above except return -EAGAIN if the bus cannot be locked
6097 */
6098static int __pci_reset_bus(struct pci_bus *bus)
6099{
6100	int rc;
6101
6102	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6103	if (rc)
6104		return rc;
6105
6106	if (pci_bus_trylock(bus)) {
6107		pci_bus_save_and_disable_locked(bus);
6108		might_sleep();
6109		rc = pci_bridge_secondary_bus_reset(bus->self);
6110		pci_bus_restore_locked(bus);
6111		pci_bus_unlock(bus);
6112	} else
6113		rc = -EAGAIN;
6114
6115	return rc;
6116}
6117
6118/**
6119 * pci_reset_bus - Try to reset a PCI bus
6120 * @pdev: top level PCI device to reset via slot/bus
6121 *
6122 * Same as above except return -EAGAIN if the bus cannot be locked
6123 */
6124int pci_reset_bus(struct pci_dev *pdev)
6125{
6126	return (!pci_probe_reset_slot(pdev->slot)) ?
6127	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6128}
6129EXPORT_SYMBOL_GPL(pci_reset_bus);
6130
6131/**
6132 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6133 * @dev: PCI device to query
6134 *
6135 * Returns mmrbc: maximum designed memory read count in bytes or
6136 * appropriate error value.
6137 */
6138int pcix_get_max_mmrbc(struct pci_dev *dev)
6139{
6140	int cap;
6141	u32 stat;
6142
6143	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6144	if (!cap)
6145		return -EINVAL;
6146
6147	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6148		return -EINVAL;
6149
6150	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6151}
6152EXPORT_SYMBOL(pcix_get_max_mmrbc);
6153
6154/**
6155 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6156 * @dev: PCI device to query
6157 *
6158 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6159 * value.
6160 */
6161int pcix_get_mmrbc(struct pci_dev *dev)
6162{
6163	int cap;
6164	u16 cmd;
6165
6166	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6167	if (!cap)
6168		return -EINVAL;
6169
6170	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6171		return -EINVAL;
6172
6173	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6174}
6175EXPORT_SYMBOL(pcix_get_mmrbc);
6176
6177/**
6178 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6179 * @dev: PCI device to query
6180 * @mmrbc: maximum memory read count in bytes
6181 *    valid values are 512, 1024, 2048, 4096
6182 *
6183 * If possible sets maximum memory read byte count, some bridges have errata
6184 * that prevent this.
6185 */
6186int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6187{
6188	int cap;
6189	u32 stat, v, o;
6190	u16 cmd;
6191
6192	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6193		return -EINVAL;
6194
6195	v = ffs(mmrbc) - 10;
6196
6197	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6198	if (!cap)
6199		return -EINVAL;
6200
6201	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6202		return -EINVAL;
6203
6204	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6205		return -E2BIG;
6206
6207	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6208		return -EINVAL;
6209
6210	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6211	if (o != v) {
6212		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6213			return -EIO;
6214
6215		cmd &= ~PCI_X_CMD_MAX_READ;
6216		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6217		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6218			return -EIO;
6219	}
6220	return 0;
6221}
6222EXPORT_SYMBOL(pcix_set_mmrbc);
6223
6224/**
6225 * pcie_get_readrq - get PCI Express read request size
6226 * @dev: PCI device to query
6227 *
6228 * Returns maximum memory read request in bytes or appropriate error value.
6229 */
6230int pcie_get_readrq(struct pci_dev *dev)
6231{
6232	u16 ctl;
6233
6234	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6235
6236	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6237}
6238EXPORT_SYMBOL(pcie_get_readrq);
6239
6240/**
6241 * pcie_set_readrq - set PCI Express maximum memory read request
6242 * @dev: PCI device to query
6243 * @rq: maximum memory read count in bytes
6244 *    valid values are 128, 256, 512, 1024, 2048, 4096
6245 *
6246 * If possible sets maximum memory read request in bytes
6247 */
6248int pcie_set_readrq(struct pci_dev *dev, int rq)
6249{
6250	u16 v;
6251	int ret;
6252	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6253
6254	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6255		return -EINVAL;
6256
6257	/*
6258	 * If using the "performance" PCIe config, we clamp the read rq
6259	 * size to the max packet size to keep the host bridge from
6260	 * generating requests larger than we can cope with.
6261	 */
6262	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6263		int mps = pcie_get_mps(dev);
6264
6265		if (mps < rq)
6266			rq = mps;
6267	}
6268
6269	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6270
6271	if (bridge->no_inc_mrrs) {
6272		int max_mrrs = pcie_get_readrq(dev);
6273
6274		if (rq > max_mrrs) {
6275			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6276			return -EINVAL;
6277		}
6278	}
6279
6280	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6281						  PCI_EXP_DEVCTL_READRQ, v);
6282
6283	return pcibios_err_to_errno(ret);
6284}
6285EXPORT_SYMBOL(pcie_set_readrq);
6286
6287/**
6288 * pcie_get_mps - get PCI Express maximum payload size
6289 * @dev: PCI device to query
6290 *
6291 * Returns maximum payload size in bytes
6292 */
6293int pcie_get_mps(struct pci_dev *dev)
6294{
6295	u16 ctl;
6296
6297	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6298
6299	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6300}
6301EXPORT_SYMBOL(pcie_get_mps);
6302
6303/**
6304 * pcie_set_mps - set PCI Express maximum payload size
6305 * @dev: PCI device to query
6306 * @mps: maximum payload size in bytes
6307 *    valid values are 128, 256, 512, 1024, 2048, 4096
6308 *
6309 * If possible sets maximum payload size
6310 */
6311int pcie_set_mps(struct pci_dev *dev, int mps)
6312{
6313	u16 v;
6314	int ret;
6315
6316	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6317		return -EINVAL;
6318
6319	v = ffs(mps) - 8;
6320	if (v > dev->pcie_mpss)
6321		return -EINVAL;
6322	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6323
6324	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6325						  PCI_EXP_DEVCTL_PAYLOAD, v);
6326
6327	return pcibios_err_to_errno(ret);
6328}
6329EXPORT_SYMBOL(pcie_set_mps);
6330
6331static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6332{
6333	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6334}
6335
6336int pcie_link_speed_mbps(struct pci_dev *pdev)
6337{
6338	u16 lnksta;
6339	int err;
6340
6341	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6342	if (err)
6343		return err;
6344
6345	switch (to_pcie_link_speed(lnksta)) {
6346	case PCIE_SPEED_2_5GT:
6347		return 2500;
6348	case PCIE_SPEED_5_0GT:
6349		return 5000;
6350	case PCIE_SPEED_8_0GT:
6351		return 8000;
6352	case PCIE_SPEED_16_0GT:
6353		return 16000;
6354	case PCIE_SPEED_32_0GT:
6355		return 32000;
6356	case PCIE_SPEED_64_0GT:
6357		return 64000;
6358	default:
6359		break;
6360	}
6361
6362	return -EINVAL;
6363}
6364EXPORT_SYMBOL(pcie_link_speed_mbps);
6365
6366/**
6367 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6368 *			      device and its bandwidth limitation
6369 * @dev: PCI device to query
6370 * @limiting_dev: storage for device causing the bandwidth limitation
6371 * @speed: storage for speed of limiting device
6372 * @width: storage for width of limiting device
6373 *
6374 * Walk up the PCI device chain and find the point where the minimum
6375 * bandwidth is available.  Return the bandwidth available there and (if
6376 * limiting_dev, speed, and width pointers are supplied) information about
6377 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6378 * raw bandwidth.
6379 */
6380u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6381			     enum pci_bus_speed *speed,
6382			     enum pcie_link_width *width)
6383{
6384	u16 lnksta;
6385	enum pci_bus_speed next_speed;
6386	enum pcie_link_width next_width;
6387	u32 bw, next_bw;
6388
6389	if (speed)
6390		*speed = PCI_SPEED_UNKNOWN;
6391	if (width)
6392		*width = PCIE_LNK_WIDTH_UNKNOWN;
6393
6394	bw = 0;
6395
6396	while (dev) {
6397		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6398
6399		next_speed = to_pcie_link_speed(lnksta);
6400		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
 
6401
6402		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6403
6404		/* Check if current device limits the total bandwidth */
6405		if (!bw || next_bw <= bw) {
6406			bw = next_bw;
6407
6408			if (limiting_dev)
6409				*limiting_dev = dev;
6410			if (speed)
6411				*speed = next_speed;
6412			if (width)
6413				*width = next_width;
6414		}
6415
6416		dev = pci_upstream_bridge(dev);
6417	}
6418
6419	return bw;
6420}
6421EXPORT_SYMBOL(pcie_bandwidth_available);
6422
6423/**
6424 * pcie_get_speed_cap - query for the PCI device's link speed capability
6425 * @dev: PCI device to query
6426 *
6427 * Query the PCI device speed capability.  Return the maximum link speed
6428 * supported by the device.
6429 */
6430enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6431{
6432	u32 lnkcap2, lnkcap;
6433
6434	/*
6435	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6436	 * implementation note there recommends using the Supported Link
6437	 * Speeds Vector in Link Capabilities 2 when supported.
6438	 *
6439	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6440	 * should use the Supported Link Speeds field in Link Capabilities,
6441	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6442	 */
6443	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6444
6445	/* PCIe r3.0-compliant */
6446	if (lnkcap2)
6447		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
 
 
 
 
 
 
 
 
 
6448
6449	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6450	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6451		return PCIE_SPEED_5_0GT;
6452	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6453		return PCIE_SPEED_2_5GT;
6454
6455	return PCI_SPEED_UNKNOWN;
6456}
6457EXPORT_SYMBOL(pcie_get_speed_cap);
6458
6459/**
6460 * pcie_get_width_cap - query for the PCI device's link width capability
6461 * @dev: PCI device to query
6462 *
6463 * Query the PCI device width capability.  Return the maximum link width
6464 * supported by the device.
6465 */
6466enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6467{
6468	u32 lnkcap;
6469
6470	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6471	if (lnkcap)
6472		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6473
6474	return PCIE_LNK_WIDTH_UNKNOWN;
6475}
6476EXPORT_SYMBOL(pcie_get_width_cap);
6477
6478/**
6479 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6480 * @dev: PCI device
6481 * @speed: storage for link speed
6482 * @width: storage for link width
6483 *
6484 * Calculate a PCI device's link bandwidth by querying for its link speed
6485 * and width, multiplying them, and applying encoding overhead.  The result
6486 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6487 */
6488u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6489			   enum pcie_link_width *width)
6490{
6491	*speed = pcie_get_speed_cap(dev);
6492	*width = pcie_get_width_cap(dev);
6493
6494	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6495		return 0;
6496
6497	return *width * PCIE_SPEED2MBS_ENC(*speed);
6498}
6499
6500/**
6501 * __pcie_print_link_status - Report the PCI device's link speed and width
6502 * @dev: PCI device to query
6503 * @verbose: Print info even when enough bandwidth is available
6504 *
6505 * If the available bandwidth at the device is less than the device is
6506 * capable of, report the device's maximum possible bandwidth and the
6507 * upstream link that limits its performance.  If @verbose, always print
6508 * the available bandwidth, even if the device isn't constrained.
6509 */
6510void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6511{
6512	enum pcie_link_width width, width_cap;
6513	enum pci_bus_speed speed, speed_cap;
6514	struct pci_dev *limiting_dev = NULL;
6515	u32 bw_avail, bw_cap;
6516
6517	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6518	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6519
6520	if (bw_avail >= bw_cap && verbose)
6521		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6522			 bw_cap / 1000, bw_cap % 1000,
6523			 pci_speed_string(speed_cap), width_cap);
6524	else if (bw_avail < bw_cap)
6525		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6526			 bw_avail / 1000, bw_avail % 1000,
6527			 pci_speed_string(speed), width,
6528			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6529			 bw_cap / 1000, bw_cap % 1000,
6530			 pci_speed_string(speed_cap), width_cap);
6531}
6532
6533/**
6534 * pcie_print_link_status - Report the PCI device's link speed and width
6535 * @dev: PCI device to query
6536 *
6537 * Report the available bandwidth at the device.
6538 */
6539void pcie_print_link_status(struct pci_dev *dev)
6540{
6541	__pcie_print_link_status(dev, true);
6542}
6543EXPORT_SYMBOL(pcie_print_link_status);
6544
6545/**
6546 * pci_select_bars - Make BAR mask from the type of resource
6547 * @dev: the PCI device for which BAR mask is made
6548 * @flags: resource type mask to be selected
6549 *
6550 * This helper routine makes bar mask from the type of resource.
6551 */
6552int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6553{
6554	int i, bars = 0;
6555	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6556		if (pci_resource_flags(dev, i) & flags)
6557			bars |= (1 << i);
6558	return bars;
6559}
6560EXPORT_SYMBOL(pci_select_bars);
6561
6562/* Some architectures require additional programming to enable VGA */
6563static arch_set_vga_state_t arch_set_vga_state;
6564
6565void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6566{
6567	arch_set_vga_state = func;	/* NULL disables */
6568}
6569
6570static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6571				  unsigned int command_bits, u32 flags)
6572{
6573	if (arch_set_vga_state)
6574		return arch_set_vga_state(dev, decode, command_bits,
6575						flags);
6576	return 0;
6577}
6578
6579/**
6580 * pci_set_vga_state - set VGA decode state on device and parents if requested
6581 * @dev: the PCI device
6582 * @decode: true = enable decoding, false = disable decoding
6583 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6584 * @flags: traverse ancestors and change bridges
6585 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6586 */
6587int pci_set_vga_state(struct pci_dev *dev, bool decode,
6588		      unsigned int command_bits, u32 flags)
6589{
6590	struct pci_bus *bus;
6591	struct pci_dev *bridge;
6592	u16 cmd;
6593	int rc;
6594
6595	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6596
6597	/* ARCH specific VGA enables */
6598	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6599	if (rc)
6600		return rc;
6601
6602	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6603		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6604		if (decode)
6605			cmd |= command_bits;
6606		else
6607			cmd &= ~command_bits;
6608		pci_write_config_word(dev, PCI_COMMAND, cmd);
6609	}
6610
6611	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6612		return 0;
6613
6614	bus = dev->bus;
6615	while (bus) {
6616		bridge = bus->self;
6617		if (bridge) {
6618			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6619					     &cmd);
6620			if (decode)
6621				cmd |= PCI_BRIDGE_CTL_VGA;
6622			else
6623				cmd &= ~PCI_BRIDGE_CTL_VGA;
6624			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6625					      cmd);
6626		}
6627		bus = bus->parent;
6628	}
6629	return 0;
6630}
6631
6632#ifdef CONFIG_ACPI
6633bool pci_pr3_present(struct pci_dev *pdev)
6634{
6635	struct acpi_device *adev;
6636
6637	if (acpi_disabled)
6638		return false;
6639
6640	adev = ACPI_COMPANION(&pdev->dev);
6641	if (!adev)
6642		return false;
6643
6644	return adev->power.flags.power_resources &&
6645		acpi_has_method(adev->handle, "_PR3");
6646}
6647EXPORT_SYMBOL_GPL(pci_pr3_present);
6648#endif
6649
6650/**
6651 * pci_add_dma_alias - Add a DMA devfn alias for a device
6652 * @dev: the PCI device for which alias is added
6653 * @devfn_from: alias slot and function
6654 * @nr_devfns: number of subsequent devfns to alias
6655 *
6656 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6657 * which is used to program permissible bus-devfn source addresses for DMA
6658 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6659 * and are useful for devices generating DMA requests beyond or different
6660 * from their logical bus-devfn.  Examples include device quirks where the
6661 * device simply uses the wrong devfn, as well as non-transparent bridges
6662 * where the alias may be a proxy for devices in another domain.
6663 *
6664 * IOMMU group creation is performed during device discovery or addition,
6665 * prior to any potential DMA mapping and therefore prior to driver probing
6666 * (especially for userspace assigned devices where IOMMU group definition
6667 * cannot be left as a userspace activity).  DMA aliases should therefore
6668 * be configured via quirks, such as the PCI fixup header quirk.
6669 */
6670void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6671		       unsigned int nr_devfns)
6672{
6673	int devfn_to;
6674
6675	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6676	devfn_to = devfn_from + nr_devfns - 1;
6677
6678	if (!dev->dma_alias_mask)
6679		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6680	if (!dev->dma_alias_mask) {
6681		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6682		return;
6683	}
6684
6685	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6686
6687	if (nr_devfns == 1)
6688		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6689				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6690	else if (nr_devfns > 1)
6691		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6692				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6693				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6694}
6695
6696bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6697{
6698	return (dev1->dma_alias_mask &&
6699		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6700	       (dev2->dma_alias_mask &&
6701		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6702	       pci_real_dma_dev(dev1) == dev2 ||
6703	       pci_real_dma_dev(dev2) == dev1;
6704}
6705
6706bool pci_device_is_present(struct pci_dev *pdev)
6707{
6708	u32 v;
6709
6710	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6711	pdev = pci_physfn(pdev);
6712	if (pci_dev_is_disconnected(pdev))
6713		return false;
6714	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6715}
6716EXPORT_SYMBOL_GPL(pci_device_is_present);
6717
6718void pci_ignore_hotplug(struct pci_dev *dev)
6719{
6720	struct pci_dev *bridge = dev->bus->self;
6721
6722	dev->ignore_hotplug = 1;
6723	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6724	if (bridge)
6725		bridge->ignore_hotplug = 1;
6726}
6727EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6728
6729/**
6730 * pci_real_dma_dev - Get PCI DMA device for PCI device
6731 * @dev: the PCI device that may have a PCI DMA alias
6732 *
6733 * Permits the platform to provide architecture-specific functionality to
6734 * devices needing to alias DMA to another PCI device on another PCI bus. If
6735 * the PCI device is on the same bus, it is recommended to use
6736 * pci_add_dma_alias(). This is the default implementation. Architecture
6737 * implementations can override this.
6738 */
6739struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6740{
6741	return dev;
6742}
6743
6744resource_size_t __weak pcibios_default_alignment(void)
6745{
6746	return 0;
6747}
6748
6749/*
6750 * Arches that don't want to expose struct resource to userland as-is in
6751 * sysfs and /proc can implement their own pci_resource_to_user().
6752 */
6753void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6754				 const struct resource *rsrc,
6755				 resource_size_t *start, resource_size_t *end)
6756{
6757	*start = rsrc->start;
6758	*end = rsrc->end;
6759}
6760
6761static char *resource_alignment_param;
6762static DEFINE_SPINLOCK(resource_alignment_lock);
6763
6764/**
6765 * pci_specified_resource_alignment - get resource alignment specified by user.
6766 * @dev: the PCI device to get
6767 * @resize: whether or not to change resources' size when reassigning alignment
6768 *
6769 * RETURNS: Resource alignment if it is specified.
6770 *          Zero if it is not specified.
6771 */
6772static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6773							bool *resize)
6774{
6775	int align_order, count;
6776	resource_size_t align = pcibios_default_alignment();
6777	const char *p;
6778	int ret;
6779
6780	spin_lock(&resource_alignment_lock);
6781	p = resource_alignment_param;
6782	if (!p || !*p)
6783		goto out;
6784	if (pci_has_flag(PCI_PROBE_ONLY)) {
6785		align = 0;
6786		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6787		goto out;
6788	}
6789
6790	while (*p) {
6791		count = 0;
6792		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6793		    p[count] == '@') {
6794			p += count + 1;
6795			if (align_order > 63) {
6796				pr_err("PCI: Invalid requested alignment (order %d)\n",
6797				       align_order);
6798				align_order = PAGE_SHIFT;
6799			}
6800		} else {
6801			align_order = PAGE_SHIFT;
6802		}
6803
6804		ret = pci_dev_str_match(dev, p, &p);
6805		if (ret == 1) {
6806			*resize = true;
6807			align = 1ULL << align_order;
 
 
 
6808			break;
6809		} else if (ret < 0) {
6810			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6811			       p);
6812			break;
6813		}
6814
6815		if (*p != ';' && *p != ',') {
6816			/* End of param or invalid format */
6817			break;
6818		}
6819		p++;
6820	}
6821out:
6822	spin_unlock(&resource_alignment_lock);
6823	return align;
6824}
6825
6826static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6827					   resource_size_t align, bool resize)
6828{
6829	struct resource *r = &dev->resource[bar];
6830	const char *r_name = pci_resource_name(dev, bar);
6831	resource_size_t size;
6832
6833	if (!(r->flags & IORESOURCE_MEM))
6834		return;
6835
6836	if (r->flags & IORESOURCE_PCI_FIXED) {
6837		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6838			 r_name, r, (unsigned long long)align);
6839		return;
6840	}
6841
6842	size = resource_size(r);
6843	if (size >= align)
6844		return;
6845
6846	/*
6847	 * Increase the alignment of the resource.  There are two ways we
6848	 * can do this:
6849	 *
6850	 * 1) Increase the size of the resource.  BARs are aligned on their
6851	 *    size, so when we reallocate space for this resource, we'll
6852	 *    allocate it with the larger alignment.  This also prevents
6853	 *    assignment of any other BARs inside the alignment region, so
6854	 *    if we're requesting page alignment, this means no other BARs
6855	 *    will share the page.
6856	 *
6857	 *    The disadvantage is that this makes the resource larger than
6858	 *    the hardware BAR, which may break drivers that compute things
6859	 *    based on the resource size, e.g., to find registers at a
6860	 *    fixed offset before the end of the BAR.
6861	 *
6862	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6863	 *    set r->start to the desired alignment.  By itself this
6864	 *    doesn't prevent other BARs being put inside the alignment
6865	 *    region, but if we realign *every* resource of every device in
6866	 *    the system, none of them will share an alignment region.
6867	 *
6868	 * When the user has requested alignment for only some devices via
6869	 * the "pci=resource_alignment" argument, "resize" is true and we
6870	 * use the first method.  Otherwise we assume we're aligning all
6871	 * devices and we use the second.
6872	 */
6873
6874	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6875		 r_name, r, (unsigned long long)align);
6876
6877	if (resize) {
6878		r->start = 0;
6879		r->end = align - 1;
6880	} else {
6881		r->flags &= ~IORESOURCE_SIZEALIGN;
6882		r->flags |= IORESOURCE_STARTALIGN;
6883		r->start = align;
6884		r->end = r->start + size - 1;
6885	}
6886	r->flags |= IORESOURCE_UNSET;
6887}
6888
6889/*
6890 * This function disables memory decoding and releases memory resources
6891 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6892 * It also rounds up size to specified alignment.
6893 * Later on, the kernel will assign page-aligned memory resource back
6894 * to the device.
6895 */
6896void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6897{
6898	int i;
6899	struct resource *r;
6900	resource_size_t align;
6901	u16 command;
6902	bool resize = false;
6903
6904	/*
6905	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6906	 * 3.4.1.11.  Their resources are allocated from the space
6907	 * described by the VF BARx register in the PF's SR-IOV capability.
6908	 * We can't influence their alignment here.
6909	 */
6910	if (dev->is_virtfn)
6911		return;
6912
6913	/* check if specified PCI is target device to reassign */
6914	align = pci_specified_resource_alignment(dev, &resize);
6915	if (!align)
6916		return;
6917
6918	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6919	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6920		pci_warn(dev, "Can't reassign resources to host bridge\n");
6921		return;
6922	}
6923
6924	pci_read_config_word(dev, PCI_COMMAND, &command);
6925	command &= ~PCI_COMMAND_MEMORY;
6926	pci_write_config_word(dev, PCI_COMMAND, command);
6927
6928	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6929		pci_request_resource_alignment(dev, i, align, resize);
6930
6931	/*
6932	 * Need to disable bridge's resource window,
6933	 * to enable the kernel to reassign new resource
6934	 * window later on.
6935	 */
6936	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6937		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6938			r = &dev->resource[i];
6939			if (!(r->flags & IORESOURCE_MEM))
6940				continue;
6941			r->flags |= IORESOURCE_UNSET;
6942			r->end = resource_size(r) - 1;
6943			r->start = 0;
6944		}
6945		pci_disable_bridge_window(dev);
6946	}
6947}
6948
6949static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6950{
6951	size_t count = 0;
6952
6953	spin_lock(&resource_alignment_lock);
6954	if (resource_alignment_param)
6955		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6956	spin_unlock(&resource_alignment_lock);
6957
 
 
 
 
 
 
 
 
 
 
6958	return count;
6959}
6960
6961static ssize_t resource_alignment_store(const struct bus_type *bus,
6962					const char *buf, size_t count)
6963{
6964	char *param, *old, *end;
6965
6966	if (count >= (PAGE_SIZE - 1))
6967		return -EINVAL;
6968
6969	param = kstrndup(buf, count, GFP_KERNEL);
6970	if (!param)
6971		return -ENOMEM;
6972
6973	end = strchr(param, '\n');
6974	if (end)
6975		*end = '\0';
6976
6977	spin_lock(&resource_alignment_lock);
6978	old = resource_alignment_param;
6979	if (strlen(param)) {
6980		resource_alignment_param = param;
6981	} else {
6982		kfree(param);
6983		resource_alignment_param = NULL;
6984	}
6985	spin_unlock(&resource_alignment_lock);
6986
6987	kfree(old);
6988
6989	return count;
6990}
6991
6992static BUS_ATTR_RW(resource_alignment);
6993
6994static int __init pci_resource_alignment_sysfs_init(void)
6995{
6996	return bus_create_file(&pci_bus_type,
6997					&bus_attr_resource_alignment);
6998}
6999late_initcall(pci_resource_alignment_sysfs_init);
7000
7001static void pci_no_domains(void)
7002{
7003#ifdef CONFIG_PCI_DOMAINS
7004	pci_domains_supported = 0;
7005#endif
7006}
7007
7008#ifdef CONFIG_PCI_DOMAINS_GENERIC
7009static DEFINE_IDA(pci_domain_nr_static_ida);
7010static DEFINE_IDA(pci_domain_nr_dynamic_ida);
7011
7012static void of_pci_reserve_static_domain_nr(void)
7013{
7014	struct device_node *np;
7015	int domain_nr;
7016
7017	for_each_node_by_type(np, "pci") {
7018		domain_nr = of_get_pci_domain_nr(np);
7019		if (domain_nr < 0)
7020			continue;
7021		/*
7022		 * Permanently allocate domain_nr in dynamic_ida
7023		 * to prevent it from dynamic allocation.
7024		 */
7025		ida_alloc_range(&pci_domain_nr_dynamic_ida,
7026				domain_nr, domain_nr, GFP_KERNEL);
7027	}
7028}
7029
7030static int of_pci_bus_find_domain_nr(struct device *parent)
7031{
7032	static bool static_domains_reserved = false;
7033	int domain_nr;
7034
7035	/* On the first call scan device tree for static allocations. */
7036	if (!static_domains_reserved) {
7037		of_pci_reserve_static_domain_nr();
7038		static_domains_reserved = true;
7039	}
7040
7041	if (parent) {
7042		/*
7043		 * If domain is in DT, allocate it in static IDA.  This
7044		 * prevents duplicate static allocations in case of errors
7045		 * in DT.
7046		 */
7047		domain_nr = of_get_pci_domain_nr(parent->of_node);
7048		if (domain_nr >= 0)
7049			return ida_alloc_range(&pci_domain_nr_static_ida,
7050					       domain_nr, domain_nr,
7051					       GFP_KERNEL);
7052	}
7053
7054	/*
7055	 * If domain was not specified in DT, choose a free ID from dynamic
7056	 * allocations. All domain numbers from DT are permanently in
7057	 * dynamic allocations to prevent assigning them to other DT nodes
7058	 * without static domain.
7059	 */
7060	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
7061}
7062
7063static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7064{
7065	if (bus->domain_nr < 0)
7066		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7067
7068	/* Release domain from IDA where it was allocated. */
7069	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7070		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7071	else
7072		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7073}
7074
7075int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7076{
7077	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7078			       acpi_pci_bus_find_domain_nr(bus);
7079}
7080
7081void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7082{
7083	if (!acpi_disabled)
7084		return;
7085	of_pci_bus_release_domain_nr(bus, parent);
7086}
7087#endif
7088
7089/**
7090 * pci_ext_cfg_avail - can we access extended PCI config space?
7091 *
7092 * Returns 1 if we can access PCI extended config space (offsets
7093 * greater than 0xff). This is the default implementation. Architecture
7094 * implementations can override this.
7095 */
7096int __weak pci_ext_cfg_avail(void)
7097{
7098	return 1;
7099}
7100
7101void __weak pci_fixup_cardbus(struct pci_bus *bus)
7102{
7103}
7104EXPORT_SYMBOL(pci_fixup_cardbus);
7105
7106static int __init pci_setup(char *str)
7107{
7108	while (str) {
7109		char *k = strchr(str, ',');
7110		if (k)
7111			*k++ = 0;
7112		if (*str && (str = pcibios_setup(str)) && *str) {
7113			if (!strcmp(str, "nomsi")) {
7114				pci_no_msi();
7115			} else if (!strncmp(str, "noats", 5)) {
7116				pr_info("PCIe: ATS is disabled\n");
7117				pcie_ats_disabled = true;
7118			} else if (!strcmp(str, "noaer")) {
7119				pci_no_aer();
7120			} else if (!strcmp(str, "earlydump")) {
7121				pci_early_dump = true;
7122			} else if (!strncmp(str, "realloc=", 8)) {
7123				pci_realloc_get_opt(str + 8);
7124			} else if (!strncmp(str, "realloc", 7)) {
7125				pci_realloc_get_opt("on");
7126			} else if (!strcmp(str, "nodomains")) {
7127				pci_no_domains();
7128			} else if (!strncmp(str, "noari", 5)) {
7129				pcie_ari_disabled = true;
7130			} else if (!strncmp(str, "cbiosize=", 9)) {
7131				pci_cardbus_io_size = memparse(str + 9, &str);
7132			} else if (!strncmp(str, "cbmemsize=", 10)) {
7133				pci_cardbus_mem_size = memparse(str + 10, &str);
7134			} else if (!strncmp(str, "resource_alignment=", 19)) {
7135				resource_alignment_param = str + 19;
7136			} else if (!strncmp(str, "ecrc=", 5)) {
7137				pcie_ecrc_get_policy(str + 5);
7138			} else if (!strncmp(str, "hpiosize=", 9)) {
7139				pci_hotplug_io_size = memparse(str + 9, &str);
7140			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7141				pci_hotplug_mmio_size = memparse(str + 11, &str);
7142			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7143				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7144			} else if (!strncmp(str, "hpmemsize=", 10)) {
7145				pci_hotplug_mmio_size = memparse(str + 10, &str);
7146				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7147			} else if (!strncmp(str, "hpbussize=", 10)) {
7148				pci_hotplug_bus_size =
7149					simple_strtoul(str + 10, &str, 0);
7150				if (pci_hotplug_bus_size > 0xff)
7151					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7152			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7153				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7154			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7155				pcie_bus_config = PCIE_BUS_SAFE;
7156			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7157				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7158			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7159				pcie_bus_config = PCIE_BUS_PEER2PEER;
7160			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7161				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7162			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7163				disable_acs_redir_param = str + 18;
7164			} else {
7165				pr_err("PCI: Unknown option `%s'\n", str);
7166			}
7167		}
7168		str = k;
7169	}
7170	return 0;
7171}
7172early_param("pci", pci_setup);
7173
7174/*
7175 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7176 * in pci_setup(), above, to point to data in the __initdata section which
7177 * will be freed after the init sequence is complete. We can't allocate memory
7178 * in pci_setup() because some architectures do not have any memory allocation
7179 * service available during an early_param() call. So we allocate memory and
7180 * copy the variable here before the init section is freed.
7181 *
7182 */
7183static int __init pci_realloc_setup_params(void)
7184{
7185	resource_alignment_param = kstrdup(resource_alignment_param,
7186					   GFP_KERNEL);
7187	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7188
7189	return 0;
7190}
7191pure_initcall(pci_realloc_setup_params);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
 
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pci-ats.h>
  33#include <asm/setup.h>
  34#include <asm/dma.h>
  35#include <linux/aer.h>
 
  36#include "pci.h"
  37
  38DEFINE_MUTEX(pci_slot_mutex);
  39
  40const char *pci_power_names[] = {
  41	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  42};
  43EXPORT_SYMBOL_GPL(pci_power_names);
  44
 
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
 
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static void pci_dev_d3_sleep(struct pci_dev *dev)
  67{
  68	unsigned int delay = dev->d3_delay;
 
  69
  70	if (delay < pci_pm_d3_delay)
  71		delay = pci_pm_d3_delay;
 
 
 
 
 
  72
  73	if (delay)
  74		msleep(delay);
 
  75}
  76
  77#ifdef CONFIG_PCI_DOMAINS
  78int pci_domains_supported = 1;
  79#endif
  80
  81#define DEFAULT_CARDBUS_IO_SIZE		(256)
  82#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  86
  87#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  88#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
 
  90unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
 
 
 
 
 
 
  92
  93#define DEFAULT_HOTPLUG_BUS_SIZE	1
  94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  95
 
 
 
 
 
 
 
 
 
 
 
  96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 
  97
  98/*
  99 * The default CLS is used if arch didn't set CLS explicitly and not
 100 * all pci devices agree on the same value.  Arch can override either
 101 * the dfl or actual value as it sees fit.  Don't forget this is
 102 * measured in 32-bit words, not bytes.
 103 */
 104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 105u8 pci_cache_line_size;
 106
 107/*
 108 * If we set up a device for bus mastering, we need to check the latency
 109 * timer as certain BIOSes forget to set it properly.
 110 */
 111unsigned int pcibios_max_latency = 255;
 112
 113/* If set, the PCIe ARI capability will not be used. */
 114static bool pcie_ari_disabled;
 115
 116/* If set, the PCIe ATS capability will not be used. */
 117static bool pcie_ats_disabled;
 118
 119/* If set, the PCI config space of each device is printed during boot. */
 120bool pci_early_dump;
 121
 122bool pci_ats_disabled(void)
 123{
 124	return pcie_ats_disabled;
 125}
 
 126
 127/* Disable bridge_d3 for all PCIe ports */
 128static bool pci_bridge_d3_disable;
 129/* Force bridge_d3 for all PCIe ports */
 130static bool pci_bridge_d3_force;
 131
 132static int __init pcie_port_pm_setup(char *str)
 133{
 134	if (!strcmp(str, "off"))
 135		pci_bridge_d3_disable = true;
 136	else if (!strcmp(str, "force"))
 137		pci_bridge_d3_force = true;
 138	return 1;
 139}
 140__setup("pcie_port_pm=", pcie_port_pm_setup);
 141
 142/* Time to wait after a reset for device to become responsive */
 143#define PCIE_RESET_READY_POLL_MS 60000
 144
 145/**
 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 147 * @bus: pointer to PCI bus structure to search
 148 *
 149 * Given a PCI bus, returns the highest PCI bus number present in the set
 150 * including the given PCI bus and its list of child PCI buses.
 151 */
 152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 153{
 154	struct pci_bus *tmp;
 155	unsigned char max, n;
 156
 157	max = bus->busn_res.end;
 158	list_for_each_entry(tmp, &bus->children, node) {
 159		n = pci_bus_max_busnr(tmp);
 160		if (n > max)
 161			max = n;
 162	}
 163	return max;
 164}
 165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167#ifdef CONFIG_HAS_IOMEM
 168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 
 169{
 170	struct resource *res = &pdev->resource[bar];
 
 
 171
 172	/*
 173	 * Make sure the BAR is actually a memory resource, not an IO resource
 174	 */
 175	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 176		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 177		return NULL;
 178	}
 179	return ioremap_nocache(res->start, resource_size(res));
 
 
 
 
 
 
 
 
 
 180}
 181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 182
 183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 184{
 185	/*
 186	 * Make sure the BAR is actually a memory resource, not an IO resource
 187	 */
 188	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 189		WARN_ON(1);
 190		return NULL;
 191	}
 192	return ioremap_wc(pci_resource_start(pdev, bar),
 193			  pci_resource_len(pdev, bar));
 194}
 195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 196#endif
 197
 198/**
 199 * pci_dev_str_match_path - test if a path string matches a device
 200 * @dev: the PCI device to test
 201 * @path: string to match the device against
 202 * @endptr: pointer to the string after the match
 203 *
 204 * Test if a string (typically from a kernel parameter) formatted as a
 205 * path of device/function addresses matches a PCI device. The string must
 206 * be of the form:
 207 *
 208 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 209 *
 210 * A path for a device can be obtained using 'lspci -t'.  Using a path
 211 * is more robust against bus renumbering than using only a single bus,
 212 * device and function address.
 213 *
 214 * Returns 1 if the string matches the device, 0 if it does not and
 215 * a negative error code if it fails to parse the string.
 216 */
 217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 218				  const char **endptr)
 219{
 220	int ret;
 221	int seg, bus, slot, func;
 222	char *wpath, *p;
 223	char end;
 224
 225	*endptr = strchrnul(path, ';');
 226
 227	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 228	if (!wpath)
 229		return -ENOMEM;
 230
 231	while (1) {
 232		p = strrchr(wpath, '/');
 233		if (!p)
 234			break;
 235		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 236		if (ret != 2) {
 237			ret = -EINVAL;
 238			goto free_and_exit;
 239		}
 240
 241		if (dev->devfn != PCI_DEVFN(slot, func)) {
 242			ret = 0;
 243			goto free_and_exit;
 244		}
 245
 246		/*
 247		 * Note: we don't need to get a reference to the upstream
 248		 * bridge because we hold a reference to the top level
 249		 * device which should hold a reference to the bridge,
 250		 * and so on.
 251		 */
 252		dev = pci_upstream_bridge(dev);
 253		if (!dev) {
 254			ret = 0;
 255			goto free_and_exit;
 256		}
 257
 258		*p = 0;
 259	}
 260
 261	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 262		     &func, &end);
 263	if (ret != 4) {
 264		seg = 0;
 265		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 266		if (ret != 3) {
 267			ret = -EINVAL;
 268			goto free_and_exit;
 269		}
 270	}
 271
 272	ret = (seg == pci_domain_nr(dev->bus) &&
 273	       bus == dev->bus->number &&
 274	       dev->devfn == PCI_DEVFN(slot, func));
 275
 276free_and_exit:
 277	kfree(wpath);
 278	return ret;
 279}
 280
 281/**
 282 * pci_dev_str_match - test if a string matches a device
 283 * @dev: the PCI device to test
 284 * @p: string to match the device against
 285 * @endptr: pointer to the string after the match
 286 *
 287 * Test if a string (typically from a kernel parameter) matches a specified
 288 * PCI device. The string may be of one of the following formats:
 289 *
 290 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 291 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 292 *
 293 * The first format specifies a PCI bus/device/function address which
 294 * may change if new hardware is inserted, if motherboard firmware changes,
 295 * or due to changes caused in kernel parameters. If the domain is
 296 * left unspecified, it is taken to be 0.  In order to be robust against
 297 * bus renumbering issues, a path of PCI device/function numbers may be used
 298 * to address the specific device.  The path for a device can be determined
 299 * through the use of 'lspci -t'.
 300 *
 301 * The second format matches devices using IDs in the configuration
 302 * space which may match multiple devices in the system. A value of 0
 303 * for any field will match all devices. (Note: this differs from
 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 305 * legacy reasons and convenience so users don't have to specify
 306 * FFFFFFFFs on the command line.)
 307 *
 308 * Returns 1 if the string matches the device, 0 if it does not and
 309 * a negative error code if the string cannot be parsed.
 310 */
 311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 312			     const char **endptr)
 313{
 314	int ret;
 315	int count;
 316	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 317
 318	if (strncmp(p, "pci:", 4) == 0) {
 319		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 320		p += 4;
 321		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 322			     &subsystem_vendor, &subsystem_device, &count);
 323		if (ret != 4) {
 324			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 325			if (ret != 2)
 326				return -EINVAL;
 327
 328			subsystem_vendor = 0;
 329			subsystem_device = 0;
 330		}
 331
 332		p += count;
 333
 334		if ((!vendor || vendor == dev->vendor) &&
 335		    (!device || device == dev->device) &&
 336		    (!subsystem_vendor ||
 337			    subsystem_vendor == dev->subsystem_vendor) &&
 338		    (!subsystem_device ||
 339			    subsystem_device == dev->subsystem_device))
 340			goto found;
 341	} else {
 342		/*
 343		 * PCI Bus, Device, Function IDs are specified
 344		 * (optionally, may include a path of devfns following it)
 345		 */
 346		ret = pci_dev_str_match_path(dev, p, &p);
 347		if (ret < 0)
 348			return ret;
 349		else if (ret)
 350			goto found;
 351	}
 352
 353	*endptr = p;
 354	return 0;
 355
 356found:
 357	*endptr = p;
 358	return 1;
 359}
 360
 361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 362				   u8 pos, int cap, int *ttl)
 363{
 364	u8 id;
 365	u16 ent;
 366
 367	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 368
 369	while ((*ttl)--) {
 370		if (pos < 0x40)
 371			break;
 372		pos &= ~3;
 373		pci_bus_read_config_word(bus, devfn, pos, &ent);
 374
 375		id = ent & 0xff;
 376		if (id == 0xff)
 377			break;
 378		if (id == cap)
 379			return pos;
 380		pos = (ent >> 8);
 381	}
 382	return 0;
 383}
 384
 385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 386			       u8 pos, int cap)
 387{
 388	int ttl = PCI_FIND_CAP_TTL;
 389
 390	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 391}
 392
 393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 394{
 395	return __pci_find_next_cap(dev->bus, dev->devfn,
 396				   pos + PCI_CAP_LIST_NEXT, cap);
 397}
 398EXPORT_SYMBOL_GPL(pci_find_next_capability);
 399
 400static int __pci_bus_find_cap_start(struct pci_bus *bus,
 401				    unsigned int devfn, u8 hdr_type)
 402{
 403	u16 status;
 404
 405	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 406	if (!(status & PCI_STATUS_CAP_LIST))
 407		return 0;
 408
 409	switch (hdr_type) {
 410	case PCI_HEADER_TYPE_NORMAL:
 411	case PCI_HEADER_TYPE_BRIDGE:
 412		return PCI_CAPABILITY_LIST;
 413	case PCI_HEADER_TYPE_CARDBUS:
 414		return PCI_CB_CAPABILITY_LIST;
 415	}
 416
 417	return 0;
 418}
 419
 420/**
 421 * pci_find_capability - query for devices' capabilities
 422 * @dev: PCI device to query
 423 * @cap: capability code
 424 *
 425 * Tell if a device supports a given PCI capability.
 426 * Returns the address of the requested capability structure within the
 427 * device's PCI configuration space or 0 in case the device does not
 428 * support it.  Possible values for @cap include:
 429 *
 430 *  %PCI_CAP_ID_PM           Power Management
 431 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 432 *  %PCI_CAP_ID_VPD          Vital Product Data
 433 *  %PCI_CAP_ID_SLOTID       Slot Identification
 434 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 435 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 436 *  %PCI_CAP_ID_PCIX         PCI-X
 437 *  %PCI_CAP_ID_EXP          PCI Express
 438 */
 439int pci_find_capability(struct pci_dev *dev, int cap)
 440{
 441	int pos;
 442
 443	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 444	if (pos)
 445		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 446
 447	return pos;
 448}
 449EXPORT_SYMBOL(pci_find_capability);
 450
 451/**
 452 * pci_bus_find_capability - query for devices' capabilities
 453 * @bus: the PCI bus to query
 454 * @devfn: PCI device to query
 455 * @cap: capability code
 456 *
 457 * Like pci_find_capability() but works for PCI devices that do not have a
 458 * pci_dev structure set up yet.
 459 *
 460 * Returns the address of the requested capability structure within the
 461 * device's PCI configuration space or 0 in case the device does not
 462 * support it.
 463 */
 464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 465{
 466	int pos;
 467	u8 hdr_type;
 468
 469	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 470
 471	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 472	if (pos)
 473		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 474
 475	return pos;
 476}
 477EXPORT_SYMBOL(pci_bus_find_capability);
 478
 479/**
 480 * pci_find_next_ext_capability - Find an extended capability
 481 * @dev: PCI device to query
 482 * @start: address at which to start looking (0 to start at beginning of list)
 483 * @cap: capability code
 484 *
 485 * Returns the address of the next matching extended capability structure
 486 * within the device's PCI configuration space or 0 if the device does
 487 * not support it.  Some capabilities can occur several times, e.g., the
 488 * vendor-specific capability, and this provides a way to find them all.
 489 */
 490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 491{
 492	u32 header;
 493	int ttl;
 494	int pos = PCI_CFG_SPACE_SIZE;
 495
 496	/* minimum 8 bytes per capability */
 497	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 498
 499	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 500		return 0;
 501
 502	if (start)
 503		pos = start;
 504
 505	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 506		return 0;
 507
 508	/*
 509	 * If we have no capabilities, this is indicated by cap ID,
 510	 * cap version and next pointer all being 0.
 511	 */
 512	if (header == 0)
 513		return 0;
 514
 515	while (ttl-- > 0) {
 516		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 517			return pos;
 518
 519		pos = PCI_EXT_CAP_NEXT(header);
 520		if (pos < PCI_CFG_SPACE_SIZE)
 521			break;
 522
 523		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 524			break;
 525	}
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 530
 531/**
 532 * pci_find_ext_capability - Find an extended capability
 533 * @dev: PCI device to query
 534 * @cap: capability code
 535 *
 536 * Returns the address of the requested extended capability structure
 537 * within the device's PCI configuration space or 0 if the device does
 538 * not support it.  Possible values for @cap include:
 539 *
 540 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 541 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 542 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 543 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 544 */
 545int pci_find_ext_capability(struct pci_dev *dev, int cap)
 546{
 547	return pci_find_next_ext_capability(dev, 0, cap);
 548}
 549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 550
 551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552{
 553	int rc, ttl = PCI_FIND_CAP_TTL;
 554	u8 cap, mask;
 555
 556	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 557		mask = HT_3BIT_CAP_MASK;
 558	else
 559		mask = HT_5BIT_CAP_MASK;
 560
 561	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 562				      PCI_CAP_ID_HT, &ttl);
 563	while (pos) {
 564		rc = pci_read_config_byte(dev, pos + 3, &cap);
 565		if (rc != PCIBIOS_SUCCESSFUL)
 566			return 0;
 567
 568		if ((cap & mask) == ht_cap)
 569			return pos;
 570
 571		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 572					      pos + PCI_CAP_LIST_NEXT,
 573					      PCI_CAP_ID_HT, &ttl);
 574	}
 575
 576	return 0;
 577}
 
 578/**
 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 580 * @dev: PCI device to query
 581 * @pos: Position from which to continue searching
 582 * @ht_cap: Hypertransport capability code
 583 *
 584 * To be used in conjunction with pci_find_ht_capability() to search for
 585 * all capabilities matching @ht_cap. @pos should always be a value returned
 586 * from pci_find_ht_capability().
 587 *
 588 * NB. To be 100% safe against broken PCI devices, the caller should take
 589 * steps to avoid an infinite loop.
 590 */
 591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 592{
 593	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 596
 597/**
 598 * pci_find_ht_capability - query a device's Hypertransport capabilities
 599 * @dev: PCI device to query
 600 * @ht_cap: Hypertransport capability code
 601 *
 602 * Tell if a device supports a given Hypertransport capability.
 603 * Returns an address within the device's PCI configuration space
 604 * or 0 in case the device does not support the request capability.
 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 606 * which has a Hypertransport capability matching @ht_cap.
 607 */
 608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 609{
 610	int pos;
 611
 612	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 613	if (pos)
 614		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 615
 616	return pos;
 617}
 618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 619
 620/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * pci_find_parent_resource - return resource region of parent bus of given
 622 *			      region
 623 * @dev: PCI device structure contains resources to be searched
 624 * @res: child resource record for which parent is sought
 625 *
 626 * For given resource region of given device, return the resource region of
 627 * parent bus the given region is contained in.
 628 */
 629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 630					  struct resource *res)
 631{
 632	const struct pci_bus *bus = dev->bus;
 633	struct resource *r;
 634	int i;
 635
 636	pci_bus_for_each_resource(bus, r, i) {
 637		if (!r)
 638			continue;
 639		if (resource_contains(r, res)) {
 640
 641			/*
 642			 * If the window is prefetchable but the BAR is
 643			 * not, the allocator made a mistake.
 644			 */
 645			if (r->flags & IORESOURCE_PREFETCH &&
 646			    !(res->flags & IORESOURCE_PREFETCH))
 647				return NULL;
 648
 649			/*
 650			 * If we're below a transparent bridge, there may
 651			 * be both a positively-decoded aperture and a
 652			 * subtractively-decoded region that contain the BAR.
 653			 * We want the positively-decoded one, so this depends
 654			 * on pci_bus_for_each_resource() giving us those
 655			 * first.
 656			 */
 657			return r;
 658		}
 659	}
 660	return NULL;
 661}
 662EXPORT_SYMBOL(pci_find_parent_resource);
 663
 664/**
 665 * pci_find_resource - Return matching PCI device resource
 666 * @dev: PCI device to query
 667 * @res: Resource to look for
 668 *
 669 * Goes over standard PCI resources (BARs) and checks if the given resource
 670 * is partially or fully contained in any of them. In that case the
 671 * matching resource is returned, %NULL otherwise.
 672 */
 673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 674{
 675	int i;
 676
 677	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 678		struct resource *r = &dev->resource[i];
 679
 680		if (r->start && resource_contains(r, res))
 681			return r;
 682	}
 683
 684	return NULL;
 685}
 686EXPORT_SYMBOL(pci_find_resource);
 687
 688/**
 689 * pci_find_pcie_root_port - return PCIe Root Port
 690 * @dev: PCI device to query
 
 691 *
 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 693 * for a given PCI Device.
 694 */
 695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 696{
 697	struct pci_dev *bridge, *highest_pcie_bridge = dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	bridge = pci_upstream_bridge(dev);
 700	while (bridge && pci_is_pcie(bridge)) {
 701		highest_pcie_bridge = bridge;
 702		bridge = pci_upstream_bridge(bridge);
 703	}
 704
 705	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 706		return NULL;
 707
 708	return highest_pcie_bridge;
 709}
 710EXPORT_SYMBOL(pci_find_pcie_root_port);
 711
 712/**
 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 714 * @dev: the PCI device to operate on
 715 * @pos: config space offset of status word
 716 * @mask: mask of bit(s) to care about in status word
 717 *
 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 719 */
 720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 721{
 722	int i;
 723
 724	/* Wait for Transaction Pending bit clean */
 725	for (i = 0; i < 4; i++) {
 726		u16 status;
 727		if (i)
 728			msleep((1 << (i - 1)) * 100);
 729
 730		pci_read_config_word(dev, pos, &status);
 731		if (!(status & mask))
 732			return 1;
 733	}
 734
 735	return 0;
 736}
 737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738/**
 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 740 * @dev: PCI device to have its BARs restored
 741 *
 742 * Restore the BAR values for a given device, so as to make it
 743 * accessible by its driver.
 744 */
 745static void pci_restore_bars(struct pci_dev *dev)
 746{
 747	int i;
 748
 749	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 750		pci_update_resource(dev, i);
 751}
 752
 753static const struct pci_platform_pm_ops *pci_platform_pm;
 754
 755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 756{
 757	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 758	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 759		return -EINVAL;
 760	pci_platform_pm = ops;
 761	return 0;
 762}
 763
 764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 765{
 766	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 767}
 768
 769static inline int platform_pci_set_power_state(struct pci_dev *dev,
 770					       pci_power_t t)
 771{
 772	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 
 
 
 773}
 774
 775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 776{
 777	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 
 
 
 778}
 779
 780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 781{
 782	if (pci_platform_pm && pci_platform_pm->refresh_state)
 783		pci_platform_pm->refresh_state(dev);
 784}
 785
 786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 787{
 788	return pci_platform_pm ?
 789			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 
 
 790}
 791
 792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 793{
 794	return pci_platform_pm ?
 795			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 
 
 796}
 797
 798static inline bool platform_pci_need_resume(struct pci_dev *dev)
 799{
 800	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 
 
 
 801}
 802
 803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 804{
 805	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
 806}
 807
 808/**
 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 810 *			     given PCI device
 811 * @dev: PCI device to handle.
 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 813 *
 814 * RETURN VALUE:
 815 * -EINVAL if the requested state is invalid.
 816 * -EIO if device does not support PCI PM or its PM capabilities register has a
 817 * wrong version, or device doesn't support the requested state.
 818 * 0 if device already is in the requested state.
 819 * 0 if device's power state has been successfully changed.
 820 */
 821static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 822{
 823	u16 pmcsr;
 824	bool need_restore = false;
 825
 826	/* Check if we're already there */
 827	if (dev->current_state == state)
 828		return 0;
 829
 830	if (!dev->pm_cap)
 831		return -EIO;
 832
 833	if (state < PCI_D0 || state > PCI_D3hot)
 834		return -EINVAL;
 835
 836	/*
 837	 * Validate current state:
 838	 * Can enter D0 from any state, but if we can only go deeper
 839	 * to sleep if we're already in a low power state
 840	 */
 841	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 842	    && dev->current_state > state) {
 843		pci_err(dev, "invalid power transition (from state %d to %d)\n",
 844			dev->current_state, state);
 845		return -EINVAL;
 846	}
 847
 848	/* Check if this device supports the desired state */
 849	if ((state == PCI_D1 && !dev->d1_support)
 850	   || (state == PCI_D2 && !dev->d2_support))
 851		return -EIO;
 852
 853	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 854
 855	/*
 856	 * If we're (effectively) in D3, force entire word to 0.
 857	 * This doesn't affect PME_Status, disables PME_En, and
 858	 * sets PowerState to 0.
 859	 */
 860	switch (dev->current_state) {
 861	case PCI_D0:
 862	case PCI_D1:
 863	case PCI_D2:
 864		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 865		pmcsr |= state;
 866		break;
 867	case PCI_D3hot:
 868	case PCI_D3cold:
 869	case PCI_UNKNOWN: /* Boot-up */
 870		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 871		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 872			need_restore = true;
 873		/* Fall-through - force to D0 */
 874	default:
 875		pmcsr = 0;
 876		break;
 877	}
 878
 879	/* Enter specified state */
 880	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 881
 882	/*
 883	 * Mandatory power management transition delays; see PCI PM 1.1
 884	 * 5.6.1 table 18
 885	 */
 886	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 887		pci_dev_d3_sleep(dev);
 888	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 889		udelay(PCI_PM_D2_DELAY);
 890
 891	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 892	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 893	if (dev->current_state != state)
 894		pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
 895			 dev->current_state);
 896
 897	/*
 898	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 899	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 900	 * from D3hot to D0 _may_ perform an internal reset, thereby
 901	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 902	 * For example, at least some versions of the 3c905B and the
 903	 * 3c556B exhibit this behaviour.
 904	 *
 905	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 906	 * devices in a D3hot state at boot.  Consequently, we need to
 907	 * restore at least the BARs so that the device will be
 908	 * accessible to its driver.
 909	 */
 910	if (need_restore)
 911		pci_restore_bars(dev);
 912
 913	if (dev->bus->self)
 914		pcie_aspm_pm_state_change(dev->bus->self);
 915
 916	return 0;
 917}
 918
 919/**
 920 * pci_update_current_state - Read power state of given device and cache it
 921 * @dev: PCI device to handle.
 922 * @state: State to cache in case the device doesn't have the PM capability
 923 *
 924 * The power state is read from the PMCSR register, which however is
 925 * inaccessible in D3cold.  The platform firmware is therefore queried first
 926 * to detect accessibility of the register.  In case the platform firmware
 927 * reports an incorrect state or the device isn't power manageable by the
 928 * platform at all, we try to detect D3cold by testing accessibility of the
 929 * vendor ID in config space.
 930 */
 931void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 932{
 933	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 934	    !pci_device_is_present(dev)) {
 935		dev->current_state = PCI_D3cold;
 936	} else if (dev->pm_cap) {
 937		u16 pmcsr;
 938
 939		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 940		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 
 
 
 
 941	} else {
 942		dev->current_state = state;
 943	}
 944}
 945
 946/**
 947 * pci_refresh_power_state - Refresh the given device's power state data
 948 * @dev: Target PCI device.
 949 *
 950 * Ask the platform to refresh the devices power state information and invoke
 951 * pci_update_current_state() to update its current PCI power state.
 952 */
 953void pci_refresh_power_state(struct pci_dev *dev)
 954{
 955	if (platform_pci_power_manageable(dev))
 956		platform_pci_refresh_power_state(dev);
 957
 958	pci_update_current_state(dev, dev->current_state);
 959}
 960
 961/**
 962 * pci_platform_power_transition - Use platform to change device power state
 963 * @dev: PCI device to handle.
 964 * @state: State to put the device into.
 965 */
 966static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 967{
 968	int error;
 969
 970	if (platform_pci_power_manageable(dev)) {
 971		error = platform_pci_set_power_state(dev, state);
 972		if (!error)
 973			pci_update_current_state(dev, state);
 974	} else
 975		error = -ENODEV;
 976
 977	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 978		dev->current_state = PCI_D0;
 979
 980	return error;
 981}
 
 982
 983/**
 984 * pci_wakeup - Wake up a PCI device
 985 * @pci_dev: Device to handle.
 986 * @ign: ignored parameter
 987 */
 988static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 989{
 990	pci_wakeup_event(pci_dev);
 991	pm_request_resume(&pci_dev->dev);
 992	return 0;
 993}
 994
 995/**
 996 * pci_wakeup_bus - Walk given bus and wake up devices on it
 997 * @bus: Top bus of the subtree to walk.
 998 */
 999void pci_wakeup_bus(struct pci_bus *bus)
1000{
1001	if (bus)
1002		pci_walk_bus(bus, pci_wakeup, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005/**
1006 * __pci_start_power_transition - Start power transition of a PCI device
1007 * @dev: PCI device to handle.
1008 * @state: State to put the device into.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009 */
1010static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011{
1012	if (state == PCI_D0) {
1013		pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014		/*
1015		 * Mandatory power management transition delays, see
1016		 * PCI Express Base Specification Revision 2.0 Section
1017		 * 6.6.1: Conventional Reset.  Do not delay for
1018		 * devices powered on/off by corresponding bridge,
1019		 * because have already delayed for the bridge.
 
 
 
 
 
 
1020		 */
1021		if (dev->runtime_d3cold) {
1022			if (dev->d3cold_delay && !dev->imm_ready)
1023				msleep(dev->d3cold_delay);
1024			/*
1025			 * When powering on a bridge from D3cold, the
1026			 * whole hierarchy may be powered on into
1027			 * D0uninitialized state, resume them to give
1028			 * them a chance to suspend again
1029			 */
1030			pci_wakeup_bus(dev->subordinate);
1031		}
1032	}
 
 
 
 
 
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042	pci_power_t state = *(pci_power_t *)data;
1043
1044	dev->current_state = state;
1045	return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055	if (bus)
1056		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068	int ret;
 
1069
1070	if (state <= PCI_D0)
1071		return -EINVAL;
1072	ret = pci_platform_power_transition(dev, state);
1073	/* Power off the bridge may power off the whole hierarchy */
1074	if (!ret && state == PCI_D3cold)
1075		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076	return ret;
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098{
1099	int error;
1100
1101	/* Bound the state we're entering */
1102	if (state > PCI_D3cold)
1103		state = PCI_D3cold;
1104	else if (state < PCI_D0)
1105		state = PCI_D0;
1106	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107
1108		/*
1109		 * If the device or the parent bridge do not support PCI
1110		 * PM, ignore the request if we're doing anything other
1111		 * than putting it into D0 (which would only happen on
1112		 * boot).
1113		 */
1114		return 0;
1115
1116	/* Check if we're already there */
1117	if (dev->current_state == state)
1118		return 0;
1119
1120	__pci_start_power_transition(dev, state);
 
1121
1122	/*
1123	 * This device is quirked not to be put into D3, so don't put it in
1124	 * D3
1125	 */
1126	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127		return 0;
1128
1129	/*
1130	 * To put device in D3cold, we put device into D3hot in native
1131	 * way, then put device into D3cold with platform ops
1132	 */
1133	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134					PCI_D3hot : state);
 
 
 
1135
1136	if (!__pci_complete_power_transition(dev, state))
1137		error = 0;
 
 
 
1138
1139	return error;
 
 
 
 
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
1144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
 
 
 
 
 
 
 
 
 
 
 
 
 
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149	__pci_start_power_transition(dev, PCI_D0);
1150	pci_raw_set_power_state(dev, PCI_D0);
1151	pci_update_current_state(dev, PCI_D0);
1152}
 
1153
1154/**
1155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
1158 *	   that is passed to suspend() function.
1159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
1163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165	pci_power_t ret;
1166
1167	if (!dev->pm_cap)
1168		return PCI_D0;
1169
1170	ret = platform_pci_choose_state(dev);
1171	if (ret != PCI_POWER_ERROR)
1172		return ret;
1173
1174	switch (state.event) {
1175	case PM_EVENT_ON:
1176		return PCI_D0;
1177	case PM_EVENT_FREEZE:
1178	case PM_EVENT_PRETHAW:
1179		/* REVISIT both freeze and pre-thaw "should" use D0 */
1180	case PM_EVENT_SUSPEND:
1181	case PM_EVENT_HIBERNATE:
1182		return PCI_D3hot;
1183	default:
1184		pci_info(dev, "unrecognized suspend event %d\n",
1185			 state.event);
1186		BUG();
1187	}
1188	return PCI_D0;
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS	7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195						       u16 cap, bool extended)
1196{
1197	struct pci_cap_saved_state *tmp;
1198
1199	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201			return tmp;
1202	}
1203	return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208	return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213	return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218	int i = 0;
1219	struct pci_cap_saved_state *save_state;
1220	u16 *cap;
1221
1222	if (!pci_is_pcie(dev))
1223		return 0;
1224
1225	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226	if (!save_state) {
1227		pci_err(dev, "buffer not found in %s\n", __func__);
1228		return -ENOMEM;
1229	}
1230
1231	cap = (u16 *)&save_state->cap.data[0];
1232	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1236	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240	return 0;
1241}
1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245	int i = 0;
1246	struct pci_cap_saved_state *save_state;
1247	u16 *cap;
1248
1249	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250	if (!save_state)
1251		return;
1252
 
 
 
 
 
 
 
1253	cap = (u16 *)&save_state->cap.data[0];
1254	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
1263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265	int pos;
1266	struct pci_cap_saved_state *save_state;
1267
1268	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269	if (!pos)
1270		return 0;
1271
1272	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273	if (!save_state) {
1274		pci_err(dev, "buffer not found in %s\n", __func__);
1275		return -ENOMEM;
1276	}
1277
1278	pci_read_config_word(dev, pos + PCI_X_CMD,
1279			     (u16 *)save_state->cap.data);
1280
1281	return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286	int i = 0, pos;
1287	struct pci_cap_saved_state *save_state;
1288	u16 *cap;
1289
1290	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292	if (!save_state || !pos)
1293		return;
1294	cap = (u16 *)&save_state->cap.data[0];
1295
1296	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
1299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301	int ltr;
1302	struct pci_cap_saved_state *save_state;
1303	u16 *cap;
1304
1305	if (!pci_is_pcie(dev))
1306		return;
1307
1308	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309	if (!ltr)
1310		return;
1311
1312	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313	if (!save_state) {
1314		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315		return;
1316	}
1317
1318	cap = (u16 *)&save_state->cap.data[0];
1319	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325	struct pci_cap_saved_state *save_state;
1326	int ltr;
1327	u16 *cap;
1328
1329	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331	if (!save_state || !ltr)
1332		return;
1333
1334	cap = (u16 *)&save_state->cap.data[0];
1335	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
1338
1339/**
1340 * pci_save_state - save the PCI configuration space of a device before
1341 *		    suspending
1342 * @dev: PCI device that we're dealing with
1343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346	int i;
1347	/* XXX: 100% dword access ok here? */
1348	for (i = 0; i < 16; i++)
1349		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 
 
 
1350	dev->state_saved = true;
1351
1352	i = pci_save_pcie_state(dev);
1353	if (i != 0)
1354		return i;
1355
1356	i = pci_save_pcix_state(dev);
1357	if (i != 0)
1358		return i;
1359
1360	pci_save_ltr_state(dev);
1361	pci_save_dpc_state(dev);
 
 
1362	return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367				     u32 saved_val, int retry, bool force)
1368{
1369	u32 val;
1370
1371	pci_read_config_dword(pdev, offset, &val);
1372	if (!force && val == saved_val)
1373		return;
1374
1375	for (;;) {
1376		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377			offset, val, saved_val);
1378		pci_write_config_dword(pdev, offset, saved_val);
1379		if (retry-- <= 0)
1380			return;
1381
1382		pci_read_config_dword(pdev, offset, &val);
1383		if (val == saved_val)
1384			return;
1385
1386		mdelay(1);
1387	}
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391					   int start, int end, int retry,
1392					   bool force)
1393{
1394	int index;
1395
1396	for (index = end; index >= start; index--)
1397		pci_restore_config_dword(pdev, 4 * index,
1398					 pdev->saved_config_space[index],
1399					 retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406		/* Restore BARs before the command register. */
1407		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412		/*
1413		 * Force rewriting of prefetch registers to avoid S3 resume
1414		 * issues on Intel PCI bridges that occur when these
1415		 * registers are not explicitly written.
1416		 */
1417		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419	} else {
1420		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421	}
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426	unsigned int pos, nbars, i;
1427	u32 ctrl;
1428
1429	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430	if (!pos)
1431		return;
1432
1433	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435		    PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437	for (i = 0; i < nbars; i++, pos += 8) {
1438		struct resource *res;
1439		int bar_idx, size;
1440
1441		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443		res = pdev->resource + bar_idx;
1444		size = ilog2(resource_size(res)) - 20;
1445		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448	}
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
1453 * @dev: PCI device that we're dealing with
1454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457	if (!dev->state_saved)
1458		return;
1459
1460	/*
1461	 * Restore max latencies (in the LTR capability) before enabling
1462	 * LTR itself (in the PCIe capability).
1463	 */
1464	pci_restore_ltr_state(dev);
1465
1466	pci_restore_pcie_state(dev);
1467	pci_restore_pasid_state(dev);
1468	pci_restore_pri_state(dev);
1469	pci_restore_ats_state(dev);
1470	pci_restore_vc_state(dev);
1471	pci_restore_rebar_state(dev);
1472	pci_restore_dpc_state(dev);
 
1473
1474	pci_cleanup_aer_error_status_regs(dev);
 
1475
1476	pci_restore_config_space(dev);
1477
1478	pci_restore_pcix_state(dev);
1479	pci_restore_msi_state(dev);
1480
1481	/* Restore ACS and IOV configuration state */
1482	pci_enable_acs(dev);
1483	pci_restore_iov_state(dev);
1484
1485	dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490	u32 config_space[16];
1491	struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 *			   the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503	struct pci_saved_state *state;
1504	struct pci_cap_saved_state *tmp;
1505	struct pci_cap_saved_data *cap;
1506	size_t size;
1507
1508	if (!dev->state_saved)
1509		return NULL;
1510
1511	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516	state = kzalloc(size, GFP_KERNEL);
1517	if (!state)
1518		return NULL;
1519
1520	memcpy(state->config_space, dev->saved_config_space,
1521	       sizeof(state->config_space));
1522
1523	cap = state->cap;
1524	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526		memcpy(cap, &tmp->cap, len);
1527		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528	}
1529	/* Empty cap_save terminates list */
1530
1531	return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541			 struct pci_saved_state *state)
1542{
1543	struct pci_cap_saved_data *cap;
1544
1545	dev->state_saved = false;
1546
1547	if (!state)
1548		return 0;
1549
1550	memcpy(dev->saved_config_space, state->config_space,
1551	       sizeof(state->config_space));
1552
1553	cap = state->cap;
1554	while (cap->size) {
1555		struct pci_cap_saved_state *tmp;
1556
1557		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558		if (!tmp || tmp->cap.size != cap->size)
1559			return -EINVAL;
1560
1561		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563		       sizeof(struct pci_cap_saved_data) + cap->size);
1564	}
1565
1566	dev->state_saved = true;
1567	return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 *				   and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578				  struct pci_saved_state **state)
1579{
1580	int ret = pci_load_saved_state(dev, *state);
1581	kfree(*state);
1582	*state = NULL;
1583	return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589	return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594	int err;
1595	struct pci_dev *bridge;
1596	u16 cmd;
1597	u8 pin;
1598
1599	err = pci_set_power_state(dev, PCI_D0);
1600	if (err < 0 && err != -EIO)
1601		return err;
1602
1603	bridge = pci_upstream_bridge(dev);
1604	if (bridge)
1605		pcie_aspm_powersave_config_link(bridge);
1606
1607	err = pcibios_enable_device(dev, bars);
1608	if (err < 0)
1609		return err;
1610	pci_fixup_device(pci_fixup_enable, dev);
1611
1612	if (dev->msi_enabled || dev->msix_enabled)
1613		return 0;
1614
1615	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616	if (pin) {
1617		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618		if (cmd & PCI_COMMAND_INTX_DISABLE)
1619			pci_write_config_word(dev, PCI_COMMAND,
1620					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
1632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635	if (pci_is_enabled(dev))
1636		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637	return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643	struct pci_dev *bridge;
1644	int retval;
1645
1646	bridge = pci_upstream_bridge(dev);
1647	if (bridge)
1648		pci_enable_bridge(bridge);
1649
1650	if (pci_is_enabled(dev)) {
1651		if (!dev->is_busmaster)
1652			pci_set_master(dev);
1653		return;
1654	}
1655
1656	retval = pci_enable_device(dev);
1657	if (retval)
1658		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659			retval);
1660	pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665	struct pci_dev *bridge;
1666	int err;
1667	int i, bars = 0;
1668
1669	/*
1670	 * Power state could be unknown at this point, either due to a fresh
1671	 * boot or a device removal call.  So get the current power state
1672	 * so that things like MSI message writing will behave as expected
1673	 * (e.g. if the device really is in D0 at enable time).
1674	 */
1675	if (dev->pm_cap) {
1676		u16 pmcsr;
1677		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679	}
1680
1681	if (atomic_inc_return(&dev->enable_cnt) > 1)
1682		return 0;		/* already enabled */
1683
1684	bridge = pci_upstream_bridge(dev);
1685	if (bridge)
1686		pci_enable_bridge(bridge);
1687
1688	/* only skip sriov related */
1689	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690		if (dev->resource[i].flags & flags)
1691			bars |= (1 << i);
1692	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693		if (dev->resource[i].flags & flags)
1694			bars |= (1 << i);
1695
1696	err = do_pci_enable_device(dev, bars);
1697	if (err < 0)
1698		atomic_dec(&dev->enable_cnt);
1699	return err;
1700}
1701
1702/**
1703 * pci_enable_device_io - Initialize a device for use with IO space
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O resources. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 */
1710int pci_enable_device_io(struct pci_dev *dev)
1711{
1712	return pci_enable_device_flags(dev, IORESOURCE_IO);
1713}
1714EXPORT_SYMBOL(pci_enable_device_io);
1715
1716/**
1717 * pci_enable_device_mem - Initialize a device for use with Memory space
1718 * @dev: PCI device to be initialized
1719 *
1720 * Initialize device before it's used by a driver. Ask low-level code
1721 * to enable Memory resources. Wake up the device if it was suspended.
1722 * Beware, this function can fail.
1723 */
1724int pci_enable_device_mem(struct pci_dev *dev)
1725{
1726	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727}
1728EXPORT_SYMBOL(pci_enable_device_mem);
1729
1730/**
1731 * pci_enable_device - Initialize device before it's used by a driver.
1732 * @dev: PCI device to be initialized
1733 *
1734 * Initialize device before it's used by a driver. Ask low-level code
1735 * to enable I/O and memory. Wake up the device if it was suspended.
1736 * Beware, this function can fail.
1737 *
1738 * Note we don't actually enable the device many times if we call
1739 * this function repeatedly (we just increment the count).
1740 */
1741int pci_enable_device(struct pci_dev *dev)
1742{
1743	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744}
1745EXPORT_SYMBOL(pci_enable_device);
1746
1747/*
1748 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1749 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1750 * there's no need to track it separately.  pci_devres is initialized
1751 * when a device is enabled using managed PCI device enable interface.
1752 */
1753struct pci_devres {
1754	unsigned int enabled:1;
1755	unsigned int pinned:1;
1756	unsigned int orig_intx:1;
1757	unsigned int restore_intx:1;
1758	unsigned int mwi:1;
1759	u32 region_mask;
1760};
1761
1762static void pcim_release(struct device *gendev, void *res)
1763{
1764	struct pci_dev *dev = to_pci_dev(gendev);
1765	struct pci_devres *this = res;
1766	int i;
1767
1768	if (dev->msi_enabled)
1769		pci_disable_msi(dev);
1770	if (dev->msix_enabled)
1771		pci_disable_msix(dev);
1772
1773	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774		if (this->region_mask & (1 << i))
1775			pci_release_region(dev, i);
1776
1777	if (this->mwi)
1778		pci_clear_mwi(dev);
1779
1780	if (this->restore_intx)
1781		pci_intx(dev, this->orig_intx);
1782
1783	if (this->enabled && !this->pinned)
1784		pci_disable_device(dev);
1785}
1786
1787static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788{
1789	struct pci_devres *dr, *new_dr;
1790
1791	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792	if (dr)
1793		return dr;
1794
1795	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796	if (!new_dr)
1797		return NULL;
1798	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799}
1800
1801static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802{
1803	if (pci_is_managed(pdev))
1804		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805	return NULL;
1806}
1807
1808/**
1809 * pcim_enable_device - Managed pci_enable_device()
1810 * @pdev: PCI device to be initialized
1811 *
1812 * Managed pci_enable_device().
1813 */
1814int pcim_enable_device(struct pci_dev *pdev)
1815{
1816	struct pci_devres *dr;
1817	int rc;
1818
1819	dr = get_pci_dr(pdev);
1820	if (unlikely(!dr))
1821		return -ENOMEM;
1822	if (dr->enabled)
1823		return 0;
1824
1825	rc = pci_enable_device(pdev);
1826	if (!rc) {
1827		pdev->is_managed = 1;
1828		dr->enabled = 1;
1829	}
1830	return rc;
1831}
1832EXPORT_SYMBOL(pcim_enable_device);
1833
1834/**
1835 * pcim_pin_device - Pin managed PCI device
1836 * @pdev: PCI device to pin
1837 *
1838 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1839 * driver detach.  @pdev must have been enabled with
1840 * pcim_enable_device().
1841 */
1842void pcim_pin_device(struct pci_dev *pdev)
1843{
1844	struct pci_devres *dr;
1845
1846	dr = find_pci_dr(pdev);
1847	WARN_ON(!dr || !dr->enabled);
1848	if (dr)
1849		dr->pinned = 1;
1850}
1851EXPORT_SYMBOL(pcim_pin_device);
1852
1853/*
1854 * pcibios_add_device - provide arch specific hooks when adding device dev
1855 * @dev: the PCI device being added
1856 *
1857 * Permits the platform to provide architecture specific functionality when
1858 * devices are added. This is the default implementation. Architecture
1859 * implementations can override this.
1860 */
1861int __weak pcibios_add_device(struct pci_dev *dev)
1862{
1863	return 0;
1864}
1865
1866/**
1867 * pcibios_release_device - provide arch specific hooks when releasing
1868 *			    device dev
1869 * @dev: the PCI device being released
1870 *
1871 * Permits the platform to provide architecture specific functionality when
1872 * devices are released. This is the default implementation. Architecture
1873 * implementations can override this.
1874 */
1875void __weak pcibios_release_device(struct pci_dev *dev) {}
1876
1877/**
1878 * pcibios_disable_device - disable arch specific PCI resources for device dev
1879 * @dev: the PCI device to disable
1880 *
1881 * Disables architecture specific PCI resources for the device. This
1882 * is the default implementation. Architecture implementations can
1883 * override this.
1884 */
1885void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886
1887/**
1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889 * @irq: ISA IRQ to penalize
1890 * @active: IRQ active or not
1891 *
1892 * Permits the platform to provide architecture-specific functionality when
1893 * penalizing ISA IRQs. This is the default implementation. Architecture
1894 * implementations can override this.
1895 */
1896void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897
1898static void do_pci_disable_device(struct pci_dev *dev)
1899{
1900	u16 pci_command;
1901
1902	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903	if (pci_command & PCI_COMMAND_MASTER) {
1904		pci_command &= ~PCI_COMMAND_MASTER;
1905		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906	}
1907
1908	pcibios_disable_device(dev);
1909}
1910
1911/**
1912 * pci_disable_enabled_device - Disable device without updating enable_cnt
1913 * @dev: PCI device to disable
1914 *
1915 * NOTE: This function is a backend of PCI power management routines and is
1916 * not supposed to be called drivers.
1917 */
1918void pci_disable_enabled_device(struct pci_dev *dev)
1919{
1920	if (pci_is_enabled(dev))
1921		do_pci_disable_device(dev);
1922}
1923
1924/**
1925 * pci_disable_device - Disable PCI device after use
1926 * @dev: PCI device to be disabled
1927 *
1928 * Signal to the system that the PCI device is not in use by the system
1929 * anymore.  This only involves disabling PCI bus-mastering, if active.
1930 *
1931 * Note we don't actually disable the device until all callers of
1932 * pci_enable_device() have called pci_disable_device().
1933 */
1934void pci_disable_device(struct pci_dev *dev)
1935{
1936	struct pci_devres *dr;
1937
1938	dr = find_pci_dr(dev);
1939	if (dr)
1940		dr->enabled = 0;
1941
1942	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943		      "disabling already-disabled device");
1944
1945	if (atomic_dec_return(&dev->enable_cnt) != 0)
1946		return;
1947
1948	do_pci_disable_device(dev);
1949
1950	dev->is_busmaster = 0;
1951}
1952EXPORT_SYMBOL(pci_disable_device);
1953
1954/**
1955 * pcibios_set_pcie_reset_state - set reset state for device dev
1956 * @dev: the PCIe device reset
1957 * @state: Reset state to enter into
1958 *
1959 * Set the PCIe reset state for the device. This is the default
1960 * implementation. Architecture implementations can override this.
1961 */
1962int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963					enum pcie_reset_state state)
1964{
1965	return -EINVAL;
1966}
1967
1968/**
1969 * pci_set_pcie_reset_state - set reset state for device dev
1970 * @dev: the PCIe device reset
1971 * @state: Reset state to enter into
1972 *
1973 * Sets the PCI reset state for the device.
1974 */
1975int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976{
1977	return pcibios_set_pcie_reset_state(dev, state);
1978}
1979EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980
 
 
 
 
 
 
 
 
 
 
1981/**
1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983 * @dev: PCIe root port or event collector.
1984 */
1985void pcie_clear_root_pme_status(struct pci_dev *dev)
1986{
1987	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988}
1989
1990/**
1991 * pci_check_pme_status - Check if given device has generated PME.
1992 * @dev: Device to check.
1993 *
1994 * Check the PME status of the device and if set, clear it and clear PME enable
1995 * (if set).  Return 'true' if PME status and PME enable were both set or
1996 * 'false' otherwise.
1997 */
1998bool pci_check_pme_status(struct pci_dev *dev)
1999{
2000	int pmcsr_pos;
2001	u16 pmcsr;
2002	bool ret = false;
2003
2004	if (!dev->pm_cap)
2005		return false;
2006
2007	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010		return false;
2011
2012	/* Clear PME status. */
2013	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015		/* Disable PME to avoid interrupt flood. */
2016		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017		ret = true;
2018	}
2019
2020	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021
2022	return ret;
2023}
2024
2025/**
2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027 * @dev: Device to handle.
2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029 *
2030 * Check if @dev has generated PME and queue a resume request for it in that
2031 * case.
2032 */
2033static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034{
2035	if (pme_poll_reset && dev->pme_poll)
2036		dev->pme_poll = false;
2037
2038	if (pci_check_pme_status(dev)) {
2039		pci_wakeup_event(dev);
2040		pm_request_resume(&dev->dev);
2041	}
2042	return 0;
2043}
2044
2045/**
2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047 * @bus: Top bus of the subtree to walk.
2048 */
2049void pci_pme_wakeup_bus(struct pci_bus *bus)
2050{
2051	if (bus)
2052		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053}
2054
2055
2056/**
2057 * pci_pme_capable - check the capability of PCI device to generate PME#
2058 * @dev: PCI device to handle.
2059 * @state: PCI state from which device will issue PME#.
2060 */
2061bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062{
2063	if (!dev->pm_cap)
2064		return false;
2065
2066	return !!(dev->pme_support & (1 << state));
2067}
2068EXPORT_SYMBOL(pci_pme_capable);
2069
2070static void pci_pme_list_scan(struct work_struct *work)
2071{
2072	struct pci_pme_device *pme_dev, *n;
2073
2074	mutex_lock(&pci_pme_list_mutex);
2075	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076		if (pme_dev->dev->pme_poll) {
2077			struct pci_dev *bridge;
 
 
 
 
 
2078
2079			bridge = pme_dev->dev->bus->self;
2080			/*
2081			 * If bridge is in low power state, the
2082			 * configuration space of subordinate devices
2083			 * may be not accessible
 
2084			 */
2085			if (bridge && bridge->current_state != PCI_D0)
2086				continue;
 
 
 
 
 
 
 
2087			/*
2088			 * If the device is in D3cold it should not be
2089			 * polled either.
 
2090			 */
2091			if (pme_dev->dev->current_state == PCI_D3cold)
2092				continue;
2093
2094			pci_pme_wakeup(pme_dev->dev, NULL);
 
 
 
2095		} else {
2096			list_del(&pme_dev->list);
2097			kfree(pme_dev);
2098		}
2099	}
2100	if (!list_empty(&pci_pme_list))
2101		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102				   msecs_to_jiffies(PME_TIMEOUT));
2103	mutex_unlock(&pci_pme_list_mutex);
2104}
2105
2106static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107{
2108	u16 pmcsr;
2109
2110	if (!dev->pme_support)
2111		return;
2112
2113	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114	/* Clear PME_Status by writing 1 to it and enable PME# */
2115	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116	if (!enable)
2117		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118
2119	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120}
2121
2122/**
2123 * pci_pme_restore - Restore PME configuration after config space restore.
2124 * @dev: PCI device to update.
2125 */
2126void pci_pme_restore(struct pci_dev *dev)
2127{
2128	u16 pmcsr;
2129
2130	if (!dev->pme_support)
2131		return;
2132
2133	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134	if (dev->wakeup_prepared) {
2135		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137	} else {
2138		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140	}
2141	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142}
2143
2144/**
2145 * pci_pme_active - enable or disable PCI device's PME# function
2146 * @dev: PCI device to handle.
2147 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148 *
2149 * The caller must verify that the device is capable of generating PME# before
2150 * calling this function with @enable equal to 'true'.
2151 */
2152void pci_pme_active(struct pci_dev *dev, bool enable)
2153{
2154	__pci_pme_active(dev, enable);
2155
2156	/*
2157	 * PCI (as opposed to PCIe) PME requires that the device have
2158	 * its PME# line hooked up correctly. Not all hardware vendors
2159	 * do this, so the PME never gets delivered and the device
2160	 * remains asleep. The easiest way around this is to
2161	 * periodically walk the list of suspended devices and check
2162	 * whether any have their PME flag set. The assumption is that
2163	 * we'll wake up often enough anyway that this won't be a huge
2164	 * hit, and the power savings from the devices will still be a
2165	 * win.
2166	 *
2167	 * Although PCIe uses in-band PME message instead of PME# line
2168	 * to report PME, PME does not work for some PCIe devices in
2169	 * reality.  For example, there are devices that set their PME
2170	 * status bits, but don't really bother to send a PME message;
2171	 * there are PCI Express Root Ports that don't bother to
2172	 * trigger interrupts when they receive PME messages from the
2173	 * devices below.  So PME poll is used for PCIe devices too.
2174	 */
2175
2176	if (dev->pme_poll) {
2177		struct pci_pme_device *pme_dev;
2178		if (enable) {
2179			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180					  GFP_KERNEL);
2181			if (!pme_dev) {
2182				pci_warn(dev, "can't enable PME#\n");
2183				return;
2184			}
2185			pme_dev->dev = dev;
2186			mutex_lock(&pci_pme_list_mutex);
2187			list_add(&pme_dev->list, &pci_pme_list);
2188			if (list_is_singular(&pci_pme_list))
2189				queue_delayed_work(system_freezable_wq,
2190						   &pci_pme_work,
2191						   msecs_to_jiffies(PME_TIMEOUT));
2192			mutex_unlock(&pci_pme_list_mutex);
2193		} else {
2194			mutex_lock(&pci_pme_list_mutex);
2195			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196				if (pme_dev->dev == dev) {
2197					list_del(&pme_dev->list);
2198					kfree(pme_dev);
2199					break;
2200				}
2201			}
2202			mutex_unlock(&pci_pme_list_mutex);
2203		}
2204	}
2205
2206	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207}
2208EXPORT_SYMBOL(pci_pme_active);
2209
2210/**
2211 * __pci_enable_wake - enable PCI device as wakeup event source
2212 * @dev: PCI device affected
2213 * @state: PCI state from which device will issue wakeup events
2214 * @enable: True to enable event generation; false to disable
2215 *
2216 * This enables the device as a wakeup event source, or disables it.
2217 * When such events involves platform-specific hooks, those hooks are
2218 * called automatically by this routine.
2219 *
2220 * Devices with legacy power management (no standard PCI PM capabilities)
2221 * always require such platform hooks.
2222 *
2223 * RETURN VALUE:
2224 * 0 is returned on success
2225 * -EINVAL is returned if device is not supposed to wake up the system
2226 * Error code depending on the platform is returned if both the platform and
2227 * the native mechanism fail to enable the generation of wake-up events
2228 */
2229static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230{
2231	int ret = 0;
2232
2233	/*
2234	 * Bridges that are not power-manageable directly only signal
2235	 * wakeup on behalf of subordinate devices which is set up
2236	 * elsewhere, so skip them. However, bridges that are
2237	 * power-manageable may signal wakeup for themselves (for example,
2238	 * on a hotplug event) and they need to be covered here.
2239	 */
2240	if (!pci_power_manageable(dev))
2241		return 0;
2242
2243	/* Don't do the same thing twice in a row for one device. */
2244	if (!!enable == !!dev->wakeup_prepared)
2245		return 0;
2246
2247	/*
2248	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2250	 * enable.  To disable wake-up we call the platform first, for symmetry.
2251	 */
2252
2253	if (enable) {
2254		int error;
2255
2256		if (pci_pme_capable(dev, state))
 
 
 
 
 
 
 
2257			pci_pme_active(dev, true);
2258		else
2259			ret = 1;
2260		error = platform_pci_set_wakeup(dev, true);
2261		if (ret)
2262			ret = error;
2263		if (!ret)
2264			dev->wakeup_prepared = true;
2265	} else {
2266		platform_pci_set_wakeup(dev, false);
2267		pci_pme_active(dev, false);
2268		dev->wakeup_prepared = false;
2269	}
2270
2271	return ret;
2272}
2273
2274/**
2275 * pci_enable_wake - change wakeup settings for a PCI device
2276 * @pci_dev: Target device
2277 * @state: PCI state from which device will issue wakeup events
2278 * @enable: Whether or not to enable event generation
2279 *
2280 * If @enable is set, check device_may_wakeup() for the device before calling
2281 * __pci_enable_wake() for it.
2282 */
2283int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284{
2285	if (enable && !device_may_wakeup(&pci_dev->dev))
2286		return -EINVAL;
2287
2288	return __pci_enable_wake(pci_dev, state, enable);
2289}
2290EXPORT_SYMBOL(pci_enable_wake);
2291
2292/**
2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294 * @dev: PCI device to prepare
2295 * @enable: True to enable wake-up event generation; false to disable
2296 *
2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298 * and this function allows them to set that up cleanly - pci_enable_wake()
2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300 * ordering constraints.
2301 *
2302 * This function only returns error code if the device is not allowed to wake
2303 * up the system from sleep or it is not capable of generating PME# from both
2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305 */
2306int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307{
2308	return pci_pme_capable(dev, PCI_D3cold) ?
2309			pci_enable_wake(dev, PCI_D3cold, enable) :
2310			pci_enable_wake(dev, PCI_D3hot, enable);
2311}
2312EXPORT_SYMBOL(pci_wake_from_d3);
2313
2314/**
2315 * pci_target_state - find an appropriate low power state for a given PCI dev
2316 * @dev: PCI device
2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318 *
2319 * Use underlying platform code to find a supported low power state for @dev.
2320 * If the platform can't manage @dev, return the deepest state from which it
2321 * can generate wake events, based on any available PME info.
2322 */
2323static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324{
2325	pci_power_t target_state = PCI_D3hot;
2326
2327	if (platform_pci_power_manageable(dev)) {
2328		/*
2329		 * Call the platform to find the target state for the device.
2330		 */
2331		pci_power_t state = platform_pci_choose_state(dev);
2332
2333		switch (state) {
2334		case PCI_POWER_ERROR:
2335		case PCI_UNKNOWN:
2336			break;
 
2337		case PCI_D1:
2338		case PCI_D2:
2339			if (pci_no_d1d2(dev))
2340				break;
2341			/* else, fall through */
2342		default:
2343			target_state = state;
2344		}
2345
2346		return target_state;
2347	}
2348
2349	if (!dev->pm_cap)
2350		target_state = PCI_D0;
2351
2352	/*
2353	 * If the device is in D3cold even though it's not power-manageable by
2354	 * the platform, it may have been powered down by non-standard means.
2355	 * Best to let it slumber.
2356	 */
2357	if (dev->current_state == PCI_D3cold)
2358		target_state = PCI_D3cold;
 
 
 
 
 
2359
2360	if (wakeup) {
2361		/*
2362		 * Find the deepest state from which the device can generate
2363		 * PME#.
2364		 */
2365		if (dev->pme_support) {
2366			while (target_state
2367			      && !(dev->pme_support & (1 << target_state)))
2368				target_state--;
2369		}
 
 
2370	}
2371
2372	return target_state;
2373}
2374
2375/**
2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377 *			  into a sleep state
2378 * @dev: Device to handle.
2379 *
2380 * Choose the power state appropriate for the device depending on whether
2381 * it can wake up the system and/or is power manageable by the platform
2382 * (PCI_D3hot is the default) and put the device into that state.
2383 */
2384int pci_prepare_to_sleep(struct pci_dev *dev)
2385{
2386	bool wakeup = device_may_wakeup(&dev->dev);
2387	pci_power_t target_state = pci_target_state(dev, wakeup);
2388	int error;
2389
2390	if (target_state == PCI_POWER_ERROR)
2391		return -EIO;
2392
2393	pci_enable_wake(dev, target_state, wakeup);
2394
2395	error = pci_set_power_state(dev, target_state);
2396
2397	if (error)
2398		pci_enable_wake(dev, target_state, false);
2399
2400	return error;
2401}
2402EXPORT_SYMBOL(pci_prepare_to_sleep);
2403
2404/**
2405 * pci_back_from_sleep - turn PCI device on during system-wide transition
2406 *			 into working state
2407 * @dev: Device to handle.
2408 *
2409 * Disable device's system wake-up capability and put it into D0.
2410 */
2411int pci_back_from_sleep(struct pci_dev *dev)
2412{
 
 
 
 
 
2413	pci_enable_wake(dev, PCI_D0, false);
2414	return pci_set_power_state(dev, PCI_D0);
2415}
2416EXPORT_SYMBOL(pci_back_from_sleep);
2417
2418/**
2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420 * @dev: PCI device being suspended.
2421 *
2422 * Prepare @dev to generate wake-up events at run time and put it into a low
2423 * power state.
2424 */
2425int pci_finish_runtime_suspend(struct pci_dev *dev)
2426{
2427	pci_power_t target_state;
2428	int error;
2429
2430	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431	if (target_state == PCI_POWER_ERROR)
2432		return -EIO;
2433
2434	dev->runtime_d3cold = target_state == PCI_D3cold;
2435
2436	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437
2438	error = pci_set_power_state(dev, target_state);
2439
2440	if (error) {
2441		pci_enable_wake(dev, target_state, false);
2442		dev->runtime_d3cold = false;
2443	}
2444
2445	return error;
2446}
2447
2448/**
2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450 * @dev: Device to check.
2451 *
2452 * Return true if the device itself is capable of generating wake-up events
2453 * (through the platform or using the native PCIe PME) or if the device supports
2454 * PME and one of its upstream bridges can generate wake-up events.
2455 */
2456bool pci_dev_run_wake(struct pci_dev *dev)
2457{
2458	struct pci_bus *bus = dev->bus;
2459
2460	if (!dev->pme_support)
2461		return false;
2462
2463	/* PME-capable in principle, but not from the target power state */
2464	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465		return false;
2466
2467	if (device_can_wakeup(&dev->dev))
2468		return true;
2469
2470	while (bus->parent) {
2471		struct pci_dev *bridge = bus->self;
2472
2473		if (device_can_wakeup(&bridge->dev))
2474			return true;
2475
2476		bus = bus->parent;
2477	}
2478
2479	/* We have reached the root bus. */
2480	if (bus->bridge)
2481		return device_can_wakeup(bus->bridge);
2482
2483	return false;
2484}
2485EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486
2487/**
2488 * pci_dev_need_resume - Check if it is necessary to resume the device.
2489 * @pci_dev: Device to check.
2490 *
2491 * Return 'true' if the device is not runtime-suspended or it has to be
2492 * reconfigured due to wakeup settings difference between system and runtime
2493 * suspend, or the current power state of it is not suitable for the upcoming
2494 * (system-wide) transition.
2495 */
2496bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497{
2498	struct device *dev = &pci_dev->dev;
2499	pci_power_t target_state;
2500
2501	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502		return true;
2503
2504	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505
2506	/*
2507	 * If the earlier platform check has not triggered, D3cold is just power
2508	 * removal on top of D3hot, so no need to resume the device in that
2509	 * case.
2510	 */
2511	return target_state != pci_dev->current_state &&
2512		target_state != PCI_D3cold &&
2513		pci_dev->current_state != PCI_D3hot;
2514}
2515
2516/**
2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518 * @pci_dev: Device to check.
2519 *
2520 * If the device is suspended and it is not configured for system wakeup,
2521 * disable PME for it to prevent it from waking up the system unnecessarily.
2522 *
2523 * Note that if the device's power state is D3cold and the platform check in
2524 * pci_dev_need_resume() has not triggered, the device's configuration need not
2525 * be changed.
2526 */
2527void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528{
2529	struct device *dev = &pci_dev->dev;
2530
2531	spin_lock_irq(&dev->power.lock);
2532
2533	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534	    pci_dev->current_state < PCI_D3cold)
2535		__pci_pme_active(pci_dev, false);
2536
2537	spin_unlock_irq(&dev->power.lock);
2538}
2539
2540/**
2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542 * @pci_dev: Device to handle.
2543 *
2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545 * it might have been disabled during the prepare phase of system suspend if
2546 * the device was not configured for system wakeup.
2547 */
2548void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549{
2550	struct device *dev = &pci_dev->dev;
2551
2552	if (!pci_dev_run_wake(pci_dev))
2553		return;
2554
2555	spin_lock_irq(&dev->power.lock);
2556
2557	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558		__pci_pme_active(pci_dev, true);
2559
2560	spin_unlock_irq(&dev->power.lock);
2561}
2562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564{
2565	struct device *dev = &pdev->dev;
2566	struct device *parent = dev->parent;
2567
2568	if (parent)
2569		pm_runtime_get_sync(parent);
2570	pm_runtime_get_noresume(dev);
2571	/*
2572	 * pdev->current_state is set to PCI_D3cold during suspending,
2573	 * so wait until suspending completes
2574	 */
2575	pm_runtime_barrier(dev);
2576	/*
2577	 * Only need to resume devices in D3cold, because config
2578	 * registers are still accessible for devices suspended but
2579	 * not in D3cold.
2580	 */
2581	if (pdev->current_state == PCI_D3cold)
2582		pm_runtime_resume(dev);
2583}
2584
2585void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586{
2587	struct device *dev = &pdev->dev;
2588	struct device *parent = dev->parent;
2589
2590	pm_runtime_put(dev);
2591	if (parent)
2592		pm_runtime_put_sync(parent);
2593}
2594
2595static const struct dmi_system_id bridge_d3_blacklist[] = {
2596#ifdef CONFIG_X86
2597	{
2598		/*
2599		 * Gigabyte X299 root port is not marked as hotplug capable
2600		 * which allows Linux to power manage it.  However, this
2601		 * confuses the BIOS SMI handler so don't power manage root
2602		 * ports on that system.
2603		 */
2604		.ident = "X299 DESIGNARE EX-CF",
2605		.matches = {
2606			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608		},
2609	},
 
 
 
 
 
 
 
 
 
 
 
 
2610#endif
2611	{ }
2612};
2613
2614/**
2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616 * @bridge: Bridge to check
2617 *
2618 * This function checks if it is possible to move the bridge to D3.
2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620 */
2621bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622{
2623	if (!pci_is_pcie(bridge))
2624		return false;
2625
2626	switch (pci_pcie_type(bridge)) {
2627	case PCI_EXP_TYPE_ROOT_PORT:
2628	case PCI_EXP_TYPE_UPSTREAM:
2629	case PCI_EXP_TYPE_DOWNSTREAM:
2630		if (pci_bridge_d3_disable)
2631			return false;
2632
2633		/*
2634		 * Hotplug ports handled by firmware in System Management Mode
2635		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636		 */
2637		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638			return false;
2639
2640		if (pci_bridge_d3_force)
2641			return true;
2642
2643		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2644		if (bridge->is_thunderbolt)
2645			return true;
2646
2647		/* Platform might know better if the bridge supports D3 */
2648		if (platform_pci_bridge_d3(bridge))
2649			return true;
2650
2651		/*
2652		 * Hotplug ports handled natively by the OS were not validated
2653		 * by vendors for runtime D3 at least until 2018 because there
2654		 * was no OS support.
2655		 */
2656		if (bridge->is_hotplug_bridge)
2657			return false;
2658
2659		if (dmi_check_system(bridge_d3_blacklist))
2660			return false;
2661
2662		/*
2663		 * It should be safe to put PCIe ports from 2015 or newer
2664		 * to D3.
2665		 */
2666		if (dmi_get_bios_year() >= 2015)
2667			return true;
2668		break;
2669	}
2670
2671	return false;
2672}
2673
2674static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675{
2676	bool *d3cold_ok = data;
2677
2678	if (/* The device needs to be allowed to go D3cold ... */
2679	    dev->no_d3cold || !dev->d3cold_allowed ||
2680
2681	    /* ... and if it is wakeup capable to do so from D3cold. */
2682	    (device_may_wakeup(&dev->dev) &&
2683	     !pci_pme_capable(dev, PCI_D3cold)) ||
2684
2685	    /* If it is a bridge it must be allowed to go to D3. */
2686	    !pci_power_manageable(dev))
2687
2688		*d3cold_ok = false;
2689
2690	return !*d3cold_ok;
2691}
2692
2693/*
2694 * pci_bridge_d3_update - Update bridge D3 capabilities
2695 * @dev: PCI device which is changed
2696 *
2697 * Update upstream bridge PM capabilities accordingly depending on if the
2698 * device PM configuration was changed or the device is being removed.  The
2699 * change is also propagated upstream.
2700 */
2701void pci_bridge_d3_update(struct pci_dev *dev)
2702{
2703	bool remove = !device_is_registered(&dev->dev);
2704	struct pci_dev *bridge;
2705	bool d3cold_ok = true;
2706
2707	bridge = pci_upstream_bridge(dev);
2708	if (!bridge || !pci_bridge_d3_possible(bridge))
2709		return;
2710
2711	/*
2712	 * If D3 is currently allowed for the bridge, removing one of its
2713	 * children won't change that.
2714	 */
2715	if (remove && bridge->bridge_d3)
2716		return;
2717
2718	/*
2719	 * If D3 is currently allowed for the bridge and a child is added or
2720	 * changed, disallowance of D3 can only be caused by that child, so
2721	 * we only need to check that single device, not any of its siblings.
2722	 *
2723	 * If D3 is currently not allowed for the bridge, checking the device
2724	 * first may allow us to skip checking its siblings.
2725	 */
2726	if (!remove)
2727		pci_dev_check_d3cold(dev, &d3cold_ok);
2728
2729	/*
2730	 * If D3 is currently not allowed for the bridge, this may be caused
2731	 * either by the device being changed/removed or any of its siblings,
2732	 * so we need to go through all children to find out if one of them
2733	 * continues to block D3.
2734	 */
2735	if (d3cold_ok && !bridge->bridge_d3)
2736		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737			     &d3cold_ok);
2738
2739	if (bridge->bridge_d3 != d3cold_ok) {
2740		bridge->bridge_d3 = d3cold_ok;
2741		/* Propagate change to upstream bridges */
2742		pci_bridge_d3_update(bridge);
2743	}
2744}
2745
2746/**
2747 * pci_d3cold_enable - Enable D3cold for device
2748 * @dev: PCI device to handle
2749 *
2750 * This function can be used in drivers to enable D3cold from the device
2751 * they handle.  It also updates upstream PCI bridge PM capabilities
2752 * accordingly.
2753 */
2754void pci_d3cold_enable(struct pci_dev *dev)
2755{
2756	if (dev->no_d3cold) {
2757		dev->no_d3cold = false;
2758		pci_bridge_d3_update(dev);
2759	}
2760}
2761EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762
2763/**
2764 * pci_d3cold_disable - Disable D3cold for device
2765 * @dev: PCI device to handle
2766 *
2767 * This function can be used in drivers to disable D3cold from the device
2768 * they handle.  It also updates upstream PCI bridge PM capabilities
2769 * accordingly.
2770 */
2771void pci_d3cold_disable(struct pci_dev *dev)
2772{
2773	if (!dev->no_d3cold) {
2774		dev->no_d3cold = true;
2775		pci_bridge_d3_update(dev);
2776	}
2777}
2778EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779
2780/**
2781 * pci_pm_init - Initialize PM functions of given PCI device
2782 * @dev: PCI device to handle.
2783 */
2784void pci_pm_init(struct pci_dev *dev)
2785{
2786	int pm;
2787	u16 status;
2788	u16 pmc;
2789
2790	pm_runtime_forbid(&dev->dev);
2791	pm_runtime_set_active(&dev->dev);
2792	pm_runtime_enable(&dev->dev);
2793	device_enable_async_suspend(&dev->dev);
2794	dev->wakeup_prepared = false;
2795
2796	dev->pm_cap = 0;
2797	dev->pme_support = 0;
2798
2799	/* find PCI PM capability in list */
2800	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801	if (!pm)
2802		return;
2803	/* Check device's ability to generate PME# */
2804	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805
2806	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808			pmc & PCI_PM_CAP_VER_MASK);
2809		return;
2810	}
2811
2812	dev->pm_cap = pm;
2813	dev->d3_delay = PCI_PM_D3_WAIT;
2814	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816	dev->d3cold_allowed = true;
2817
2818	dev->d1_support = false;
2819	dev->d2_support = false;
2820	if (!pci_no_d1d2(dev)) {
2821		if (pmc & PCI_PM_CAP_D1)
2822			dev->d1_support = true;
2823		if (pmc & PCI_PM_CAP_D2)
2824			dev->d2_support = true;
2825
2826		if (dev->d1_support || dev->d2_support)
2827			pci_info(dev, "supports%s%s\n",
2828				   dev->d1_support ? " D1" : "",
2829				   dev->d2_support ? " D2" : "");
2830	}
2831
2832	pmc &= PCI_PM_CAP_PME_MASK;
2833	if (pmc) {
2834		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841		dev->pme_poll = true;
2842		/*
2843		 * Make device's PM flags reflect the wake-up capability, but
2844		 * let the user space enable it to wake up the system as needed.
2845		 */
2846		device_set_wakeup_capable(&dev->dev, true);
2847		/* Disable the PME# generation functionality */
2848		pci_pme_active(dev, false);
2849	}
2850
2851	pci_read_config_word(dev, PCI_STATUS, &status);
2852	if (status & PCI_STATUS_IMM_READY)
2853		dev->imm_ready = 1;
2854}
2855
2856static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857{
2858	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859
2860	switch (prop) {
2861	case PCI_EA_P_MEM:
2862	case PCI_EA_P_VF_MEM:
2863		flags |= IORESOURCE_MEM;
2864		break;
2865	case PCI_EA_P_MEM_PREFETCH:
2866	case PCI_EA_P_VF_MEM_PREFETCH:
2867		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868		break;
2869	case PCI_EA_P_IO:
2870		flags |= IORESOURCE_IO;
2871		break;
2872	default:
2873		return 0;
2874	}
2875
2876	return flags;
2877}
2878
2879static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880					    u8 prop)
2881{
2882	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883		return &dev->resource[bei];
2884#ifdef CONFIG_PCI_IOV
2885	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887		return &dev->resource[PCI_IOV_RESOURCES +
2888				      bei - PCI_EA_BEI_VF_BAR0];
2889#endif
2890	else if (bei == PCI_EA_BEI_ROM)
2891		return &dev->resource[PCI_ROM_RESOURCE];
2892	else
2893		return NULL;
2894}
2895
2896/* Read an Enhanced Allocation (EA) entry */
2897static int pci_ea_read(struct pci_dev *dev, int offset)
2898{
2899	struct resource *res;
 
2900	int ent_size, ent_offset = offset;
2901	resource_size_t start, end;
2902	unsigned long flags;
2903	u32 dw0, bei, base, max_offset;
2904	u8 prop;
2905	bool support_64 = (sizeof(resource_size_t) >= 8);
2906
2907	pci_read_config_dword(dev, ent_offset, &dw0);
2908	ent_offset += 4;
2909
2910	/* Entry size field indicates DWORDs after 1st */
2911	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912
2913	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914		goto out;
2915
2916	bei = (dw0 & PCI_EA_BEI) >> 4;
2917	prop = (dw0 & PCI_EA_PP) >> 8;
2918
2919	/*
2920	 * If the Property is in the reserved range, try the Secondary
2921	 * Property instead.
2922	 */
2923	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924		prop = (dw0 & PCI_EA_SP) >> 16;
2925	if (prop > PCI_EA_P_BRIDGE_IO)
2926		goto out;
2927
2928	res = pci_ea_get_resource(dev, bei, prop);
 
2929	if (!res) {
2930		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931		goto out;
2932	}
2933
2934	flags = pci_ea_flags(dev, prop);
2935	if (!flags) {
2936		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937		goto out;
2938	}
2939
2940	/* Read Base */
2941	pci_read_config_dword(dev, ent_offset, &base);
2942	start = (base & PCI_EA_FIELD_MASK);
2943	ent_offset += 4;
2944
2945	/* Read MaxOffset */
2946	pci_read_config_dword(dev, ent_offset, &max_offset);
2947	ent_offset += 4;
2948
2949	/* Read Base MSBs (if 64-bit entry) */
2950	if (base & PCI_EA_IS_64) {
2951		u32 base_upper;
2952
2953		pci_read_config_dword(dev, ent_offset, &base_upper);
2954		ent_offset += 4;
2955
2956		flags |= IORESOURCE_MEM_64;
2957
2958		/* entry starts above 32-bit boundary, can't use */
2959		if (!support_64 && base_upper)
2960			goto out;
2961
2962		if (support_64)
2963			start |= ((u64)base_upper << 32);
2964	}
2965
2966	end = start + (max_offset | 0x03);
2967
2968	/* Read MaxOffset MSBs (if 64-bit entry) */
2969	if (max_offset & PCI_EA_IS_64) {
2970		u32 max_offset_upper;
2971
2972		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973		ent_offset += 4;
2974
2975		flags |= IORESOURCE_MEM_64;
2976
2977		/* entry too big, can't use */
2978		if (!support_64 && max_offset_upper)
2979			goto out;
2980
2981		if (support_64)
2982			end += ((u64)max_offset_upper << 32);
2983	}
2984
2985	if (end < start) {
2986		pci_err(dev, "EA Entry crosses address boundary\n");
2987		goto out;
2988	}
2989
2990	if (ent_size != ent_offset - offset) {
2991		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992			ent_size, ent_offset - offset);
2993		goto out;
2994	}
2995
2996	res->name = pci_name(dev);
2997	res->start = start;
2998	res->end = end;
2999	res->flags = flags;
3000
3001	if (bei <= PCI_EA_BEI_BAR5)
3002		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003			   bei, res, prop);
3004	else if (bei == PCI_EA_BEI_ROM)
3005		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006			   res, prop);
3007	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010	else
3011		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012			   bei, res, prop);
3013
3014out:
3015	return offset + ent_size;
3016}
3017
3018/* Enhanced Allocation Initialization */
3019void pci_ea_init(struct pci_dev *dev)
3020{
3021	int ea;
3022	u8 num_ent;
3023	int offset;
3024	int i;
3025
3026	/* find PCI EA capability in list */
3027	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028	if (!ea)
3029		return;
3030
3031	/* determine the number of entries */
3032	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033					&num_ent);
3034	num_ent &= PCI_EA_NUM_ENT_MASK;
3035
3036	offset = ea + PCI_EA_FIRST_ENT;
3037
3038	/* Skip DWORD 2 for type 1 functions */
3039	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040		offset += 4;
3041
3042	/* parse each EA entry */
3043	for (i = 0; i < num_ent; ++i)
3044		offset = pci_ea_read(dev, offset);
3045}
3046
3047static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048	struct pci_cap_saved_state *new_cap)
3049{
3050	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051}
3052
3053/**
3054 * _pci_add_cap_save_buffer - allocate buffer for saving given
3055 *			      capability registers
3056 * @dev: the PCI device
3057 * @cap: the capability to allocate the buffer for
3058 * @extended: Standard or Extended capability ID
3059 * @size: requested size of the buffer
3060 */
3061static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062				    bool extended, unsigned int size)
3063{
3064	int pos;
3065	struct pci_cap_saved_state *save_state;
3066
3067	if (extended)
3068		pos = pci_find_ext_capability(dev, cap);
3069	else
3070		pos = pci_find_capability(dev, cap);
3071
3072	if (!pos)
3073		return 0;
3074
3075	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076	if (!save_state)
3077		return -ENOMEM;
3078
3079	save_state->cap.cap_nr = cap;
3080	save_state->cap.cap_extended = extended;
3081	save_state->cap.size = size;
3082	pci_add_saved_cap(dev, save_state);
3083
3084	return 0;
3085}
3086
3087int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088{
3089	return _pci_add_cap_save_buffer(dev, cap, false, size);
3090}
3091
3092int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093{
3094	return _pci_add_cap_save_buffer(dev, cap, true, size);
3095}
3096
3097/**
3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099 * @dev: the PCI device
3100 */
3101void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102{
3103	int error;
3104
3105	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106					PCI_EXP_SAVE_REGS * sizeof(u16));
3107	if (error)
3108		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109
3110	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111	if (error)
3112		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113
3114	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115					    2 * sizeof(u16));
3116	if (error)
3117		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118
3119	pci_allocate_vc_save_buffers(dev);
3120}
3121
3122void pci_free_cap_save_buffers(struct pci_dev *dev)
3123{
3124	struct pci_cap_saved_state *tmp;
3125	struct hlist_node *n;
3126
3127	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128		kfree(tmp);
3129}
3130
3131/**
3132 * pci_configure_ari - enable or disable ARI forwarding
3133 * @dev: the PCI device
3134 *
3135 * If @dev and its upstream bridge both support ARI, enable ARI in the
3136 * bridge.  Otherwise, disable ARI in the bridge.
3137 */
3138void pci_configure_ari(struct pci_dev *dev)
3139{
3140	u32 cap;
3141	struct pci_dev *bridge;
3142
3143	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144		return;
3145
3146	bridge = dev->bus->self;
3147	if (!bridge)
3148		return;
3149
3150	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152		return;
3153
3154	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156					 PCI_EXP_DEVCTL2_ARI);
3157		bridge->ari_enabled = 1;
3158	} else {
3159		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160					   PCI_EXP_DEVCTL2_ARI);
3161		bridge->ari_enabled = 0;
3162	}
3163}
3164
3165static int pci_acs_enable;
3166
3167/**
3168 * pci_request_acs - ask for ACS to be enabled if supported
3169 */
3170void pci_request_acs(void)
3171{
3172	pci_acs_enable = 1;
3173}
3174
3175static const char *disable_acs_redir_param;
3176
3177/**
3178 * pci_disable_acs_redir - disable ACS redirect capabilities
3179 * @dev: the PCI device
3180 *
3181 * For only devices specified in the disable_acs_redir parameter.
3182 */
3183static void pci_disable_acs_redir(struct pci_dev *dev)
3184{
3185	int ret = 0;
3186	const char *p;
3187	int pos;
3188	u16 ctrl;
3189
3190	if (!disable_acs_redir_param)
3191		return;
3192
3193	p = disable_acs_redir_param;
3194	while (*p) {
3195		ret = pci_dev_str_match(dev, p, &p);
3196		if (ret < 0) {
3197			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198				     disable_acs_redir_param);
3199
3200			break;
3201		} else if (ret == 1) {
3202			/* Found a match */
3203			break;
3204		}
3205
3206		if (*p != ';' && *p != ',') {
3207			/* End of param or invalid format */
3208			break;
3209		}
3210		p++;
3211	}
3212
3213	if (ret != 1)
3214		return;
3215
3216	if (!pci_dev_specific_disable_acs_redir(dev))
3217		return;
3218
3219	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220	if (!pos) {
3221		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222		return;
3223	}
3224
3225	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226
3227	/* P2P Request & Completion Redirect */
3228	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229
3230	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231
3232	pci_info(dev, "disabled ACS redirect\n");
3233}
3234
3235/**
3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237 * @dev: the PCI device
3238 */
3239static void pci_std_enable_acs(struct pci_dev *dev)
3240{
3241	int pos;
3242	u16 cap;
3243	u16 ctrl;
3244
3245	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246	if (!pos)
3247		return;
3248
3249	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251
3252	/* Source Validation */
3253	ctrl |= (cap & PCI_ACS_SV);
3254
3255	/* P2P Request Redirect */
3256	ctrl |= (cap & PCI_ACS_RR);
3257
3258	/* P2P Completion Redirect */
3259	ctrl |= (cap & PCI_ACS_CR);
3260
3261	/* Upstream Forwarding */
3262	ctrl |= (cap & PCI_ACS_UF);
3263
3264	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265}
3266
3267/**
3268 * pci_enable_acs - enable ACS if hardware support it
3269 * @dev: the PCI device
3270 */
3271void pci_enable_acs(struct pci_dev *dev)
3272{
3273	if (!pci_acs_enable)
3274		goto disable_acs_redir;
3275
3276	if (!pci_dev_specific_enable_acs(dev))
3277		goto disable_acs_redir;
3278
3279	pci_std_enable_acs(dev);
3280
3281disable_acs_redir:
3282	/*
3283	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3284	 * enabled by the kernel because it may have been enabled by
3285	 * platform firmware.  So if we are told to disable it, we should
3286	 * always disable it after setting the kernel's default
3287	 * preferences.
3288	 */
3289	pci_disable_acs_redir(dev);
3290}
3291
3292static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293{
3294	int pos;
3295	u16 cap, ctrl;
3296
3297	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298	if (!pos)
3299		return false;
3300
3301	/*
3302	 * Except for egress control, capabilities are either required
3303	 * or only required if controllable.  Features missing from the
3304	 * capability field can therefore be assumed as hard-wired enabled.
3305	 */
3306	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307	acs_flags &= (cap | PCI_ACS_EC);
3308
3309	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310	return (ctrl & acs_flags) == acs_flags;
3311}
3312
3313/**
3314 * pci_acs_enabled - test ACS against required flags for a given device
3315 * @pdev: device to test
3316 * @acs_flags: required PCI ACS flags
3317 *
3318 * Return true if the device supports the provided flags.  Automatically
3319 * filters out flags that are not implemented on multifunction devices.
3320 *
3321 * Note that this interface checks the effective ACS capabilities of the
3322 * device rather than the actual capabilities.  For instance, most single
3323 * function endpoints are not required to support ACS because they have no
3324 * opportunity for peer-to-peer access.  We therefore return 'true'
3325 * regardless of whether the device exposes an ACS capability.  This makes
3326 * it much easier for callers of this function to ignore the actual type
3327 * or topology of the device when testing ACS support.
3328 */
3329bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330{
3331	int ret;
3332
3333	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334	if (ret >= 0)
3335		return ret > 0;
3336
3337	/*
3338	 * Conventional PCI and PCI-X devices never support ACS, either
3339	 * effectively or actually.  The shared bus topology implies that
3340	 * any device on the bus can receive or snoop DMA.
3341	 */
3342	if (!pci_is_pcie(pdev))
3343		return false;
3344
3345	switch (pci_pcie_type(pdev)) {
3346	/*
3347	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348	 * but since their primary interface is PCI/X, we conservatively
3349	 * handle them as we would a non-PCIe device.
3350	 */
3351	case PCI_EXP_TYPE_PCIE_BRIDGE:
3352	/*
3353	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3354	 * applicable... must never implement an ACS Extended Capability...".
3355	 * This seems arbitrary, but we take a conservative interpretation
3356	 * of this statement.
3357	 */
3358	case PCI_EXP_TYPE_PCI_BRIDGE:
3359	case PCI_EXP_TYPE_RC_EC:
3360		return false;
3361	/*
3362	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363	 * implement ACS in order to indicate their peer-to-peer capabilities,
3364	 * regardless of whether they are single- or multi-function devices.
3365	 */
3366	case PCI_EXP_TYPE_DOWNSTREAM:
3367	case PCI_EXP_TYPE_ROOT_PORT:
3368		return pci_acs_flags_enabled(pdev, acs_flags);
3369	/*
3370	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371	 * implemented by the remaining PCIe types to indicate peer-to-peer
3372	 * capabilities, but only when they are part of a multifunction
3373	 * device.  The footnote for section 6.12 indicates the specific
3374	 * PCIe types included here.
3375	 */
3376	case PCI_EXP_TYPE_ENDPOINT:
3377	case PCI_EXP_TYPE_UPSTREAM:
3378	case PCI_EXP_TYPE_LEG_END:
3379	case PCI_EXP_TYPE_RC_END:
3380		if (!pdev->multifunction)
3381			break;
3382
3383		return pci_acs_flags_enabled(pdev, acs_flags);
3384	}
3385
3386	/*
3387	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388	 * to single function devices with the exception of downstream ports.
3389	 */
3390	return true;
3391}
3392
3393/**
3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395 * @start: starting downstream device
3396 * @end: ending upstream device or NULL to search to the root bus
3397 * @acs_flags: required flags
3398 *
3399 * Walk up a device tree from start to end testing PCI ACS support.  If
3400 * any step along the way does not support the required flags, return false.
3401 */
3402bool pci_acs_path_enabled(struct pci_dev *start,
3403			  struct pci_dev *end, u16 acs_flags)
3404{
3405	struct pci_dev *pdev, *parent = start;
3406
3407	do {
3408		pdev = parent;
3409
3410		if (!pci_acs_enabled(pdev, acs_flags))
3411			return false;
3412
3413		if (pci_is_root_bus(pdev->bus))
3414			return (end == NULL);
3415
3416		parent = pdev->bus->self;
3417	} while (pdev != end);
3418
3419	return true;
3420}
3421
3422/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * @pdev: PCI device
3425 * @bar: BAR to find
3426 *
3427 * Helper to find the position of the ctrl register for a BAR.
3428 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429 * Returns -ENOENT if no ctrl register for the BAR could be found.
3430 */
3431static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432{
3433	unsigned int pos, nbars, i;
3434	u32 ctrl;
3435
3436	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437	if (!pos)
3438		return -ENOTSUPP;
3439
3440	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442		    PCI_REBAR_CTRL_NBAR_SHIFT;
3443
3444	for (i = 0; i < nbars; i++, pos += 8) {
3445		int bar_idx;
3446
3447		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449		if (bar_idx == bar)
3450			return pos;
3451	}
3452
3453	return -ENOENT;
3454}
3455
3456/**
3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458 * @pdev: PCI device
3459 * @bar: BAR to query
3460 *
3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463 */
3464u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465{
3466	int pos;
3467	u32 cap;
3468
3469	pos = pci_rebar_find_pos(pdev, bar);
3470	if (pos < 0)
3471		return 0;
3472
3473	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
 
 
 
 
 
 
 
3475}
 
3476
3477/**
3478 * pci_rebar_get_current_size - get the current size of a BAR
3479 * @pdev: PCI device
3480 * @bar: BAR to set size to
3481 *
3482 * Read the size of a BAR from the resizable BAR config.
3483 * Returns size if found or negative error code.
3484 */
3485int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486{
3487	int pos;
3488	u32 ctrl;
3489
3490	pos = pci_rebar_find_pos(pdev, bar);
3491	if (pos < 0)
3492		return pos;
3493
3494	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496}
3497
3498/**
3499 * pci_rebar_set_size - set a new size for a BAR
3500 * @pdev: PCI device
3501 * @bar: BAR to set size to
3502 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503 *
3504 * Set the new size of a BAR as defined in the spec.
3505 * Returns zero if resizing was successful, error code otherwise.
3506 */
3507int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508{
3509	int pos;
3510	u32 ctrl;
3511
3512	pos = pci_rebar_find_pos(pdev, bar);
3513	if (pos < 0)
3514		return pos;
3515
3516	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520	return 0;
3521}
3522
3523/**
3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525 * @dev: the PCI device
3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530 *
3531 * Return 0 if all upstream bridges support AtomicOp routing, egress
3532 * blocking is disabled on all upstream ports, and the root port supports
3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534 * AtomicOp completion), or negative otherwise.
3535 */
3536int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537{
3538	struct pci_bus *bus = dev->bus;
3539	struct pci_dev *bridge;
3540	u32 cap, ctl2;
3541
 
 
 
 
 
 
 
 
3542	if (!pci_is_pcie(dev))
3543		return -EINVAL;
3544
3545	/*
3546	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547	 * AtomicOp requesters.  For now, we only support endpoints as
3548	 * requesters and root ports as completers.  No endpoints as
3549	 * completers, and no peer-to-peer.
3550	 */
3551
3552	switch (pci_pcie_type(dev)) {
3553	case PCI_EXP_TYPE_ENDPOINT:
3554	case PCI_EXP_TYPE_LEG_END:
3555	case PCI_EXP_TYPE_RC_END:
3556		break;
3557	default:
3558		return -EINVAL;
3559	}
3560
3561	while (bus->parent) {
3562		bridge = bus->self;
3563
3564		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565
3566		switch (pci_pcie_type(bridge)) {
3567		/* Ensure switch ports support AtomicOp routing */
3568		case PCI_EXP_TYPE_UPSTREAM:
3569		case PCI_EXP_TYPE_DOWNSTREAM:
3570			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571				return -EINVAL;
3572			break;
3573
3574		/* Ensure root port supports all the sizes we care about */
3575		case PCI_EXP_TYPE_ROOT_PORT:
3576			if ((cap & cap_mask) != cap_mask)
3577				return -EINVAL;
3578			break;
3579		}
3580
3581		/* Ensure upstream ports don't block AtomicOps on egress */
3582		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584						   &ctl2);
3585			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586				return -EINVAL;
3587		}
3588
3589		bus = bus->parent;
3590	}
3591
3592	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594	return 0;
3595}
3596EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597
3598/**
3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600 * @dev: the PCI device
3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602 *
3603 * Perform INTx swizzling for a device behind one level of bridge.  This is
3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607 * the PCI Express Base Specification, Revision 2.1)
3608 */
3609u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610{
3611	int slot;
3612
3613	if (pci_ari_enabled(dev->bus))
3614		slot = 0;
3615	else
3616		slot = PCI_SLOT(dev->devfn);
3617
3618	return (((pin - 1) + slot) % 4) + 1;
3619}
3620
3621int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622{
3623	u8 pin;
3624
3625	pin = dev->pin;
3626	if (!pin)
3627		return -1;
3628
3629	while (!pci_is_root_bus(dev->bus)) {
3630		pin = pci_swizzle_interrupt_pin(dev, pin);
3631		dev = dev->bus->self;
3632	}
3633	*bridge = dev;
3634	return pin;
3635}
3636
3637/**
3638 * pci_common_swizzle - swizzle INTx all the way to root bridge
3639 * @dev: the PCI device
3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641 *
3642 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3643 * bridges all the way up to a PCI root bus.
3644 */
3645u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646{
3647	u8 pin = *pinp;
3648
3649	while (!pci_is_root_bus(dev->bus)) {
3650		pin = pci_swizzle_interrupt_pin(dev, pin);
3651		dev = dev->bus->self;
3652	}
3653	*pinp = pin;
3654	return PCI_SLOT(dev->devfn);
3655}
3656EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657
3658/**
3659 * pci_release_region - Release a PCI bar
3660 * @pdev: PCI device whose resources were previously reserved by
3661 *	  pci_request_region()
3662 * @bar: BAR to release
3663 *
3664 * Releases the PCI I/O and memory resources previously reserved by a
3665 * successful call to pci_request_region().  Call this function only
3666 * after all use of the PCI regions has ceased.
3667 */
3668void pci_release_region(struct pci_dev *pdev, int bar)
3669{
3670	struct pci_devres *dr;
3671
3672	if (pci_resource_len(pdev, bar) == 0)
3673		return;
3674	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675		release_region(pci_resource_start(pdev, bar),
3676				pci_resource_len(pdev, bar));
3677	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678		release_mem_region(pci_resource_start(pdev, bar),
3679				pci_resource_len(pdev, bar));
3680
3681	dr = find_pci_dr(pdev);
3682	if (dr)
3683		dr->region_mask &= ~(1 << bar);
3684}
3685EXPORT_SYMBOL(pci_release_region);
3686
3687/**
3688 * __pci_request_region - Reserved PCI I/O and memory resource
3689 * @pdev: PCI device whose resources are to be reserved
3690 * @bar: BAR to be reserved
3691 * @res_name: Name to be associated with resource.
3692 * @exclusive: whether the region access is exclusive or not
3693 *
3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695 * being reserved by owner @res_name.  Do not access any
3696 * address inside the PCI regions unless this call returns
3697 * successfully.
3698 *
3699 * If @exclusive is set, then the region is marked so that userspace
3700 * is explicitly not allowed to map the resource via /dev/mem or
3701 * sysfs MMIO access.
3702 *
3703 * Returns 0 on success, or %EBUSY on error.  A warning
3704 * message is also printed on failure.
3705 */
3706static int __pci_request_region(struct pci_dev *pdev, int bar,
3707				const char *res_name, int exclusive)
3708{
3709	struct pci_devres *dr;
3710
3711	if (pci_resource_len(pdev, bar) == 0)
3712		return 0;
3713
3714	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715		if (!request_region(pci_resource_start(pdev, bar),
3716			    pci_resource_len(pdev, bar), res_name))
3717			goto err_out;
3718	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719		if (!__request_mem_region(pci_resource_start(pdev, bar),
3720					pci_resource_len(pdev, bar), res_name,
3721					exclusive))
3722			goto err_out;
3723	}
3724
3725	dr = find_pci_dr(pdev);
3726	if (dr)
3727		dr->region_mask |= 1 << bar;
3728
3729	return 0;
3730
3731err_out:
3732	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733		 &pdev->resource[bar]);
3734	return -EBUSY;
3735}
3736
3737/**
3738 * pci_request_region - Reserve PCI I/O and memory resource
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @bar: BAR to be reserved
3741 * @res_name: Name to be associated with resource
3742 *
3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744 * being reserved by owner @res_name.  Do not access any
3745 * address inside the PCI regions unless this call returns
3746 * successfully.
3747 *
3748 * Returns 0 on success, or %EBUSY on error.  A warning
3749 * message is also printed on failure.
3750 */
3751int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752{
3753	return __pci_request_region(pdev, bar, res_name, 0);
3754}
3755EXPORT_SYMBOL(pci_request_region);
3756
3757/**
3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759 * @pdev: PCI device whose resources were previously reserved
3760 * @bars: Bitmask of BARs to be released
3761 *
3762 * Release selected PCI I/O and memory resources previously reserved.
3763 * Call this function only after all use of the PCI regions has ceased.
3764 */
3765void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766{
3767	int i;
3768
3769	for (i = 0; i < 6; i++)
3770		if (bars & (1 << i))
3771			pci_release_region(pdev, i);
3772}
3773EXPORT_SYMBOL(pci_release_selected_regions);
3774
3775static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776					  const char *res_name, int excl)
3777{
3778	int i;
3779
3780	for (i = 0; i < 6; i++)
3781		if (bars & (1 << i))
3782			if (__pci_request_region(pdev, i, res_name, excl))
3783				goto err_out;
3784	return 0;
3785
3786err_out:
3787	while (--i >= 0)
3788		if (bars & (1 << i))
3789			pci_release_region(pdev, i);
3790
3791	return -EBUSY;
3792}
3793
3794
3795/**
3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797 * @pdev: PCI device whose resources are to be reserved
3798 * @bars: Bitmask of BARs to be requested
3799 * @res_name: Name to be associated with resource
3800 */
3801int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802				 const char *res_name)
3803{
3804	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805}
3806EXPORT_SYMBOL(pci_request_selected_regions);
3807
3808int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809					   const char *res_name)
3810{
3811	return __pci_request_selected_regions(pdev, bars, res_name,
3812			IORESOURCE_EXCLUSIVE);
3813}
3814EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815
3816/**
3817 * pci_release_regions - Release reserved PCI I/O and memory resources
3818 * @pdev: PCI device whose resources were previously reserved by
3819 *	  pci_request_regions()
3820 *
3821 * Releases all PCI I/O and memory resources previously reserved by a
3822 * successful call to pci_request_regions().  Call this function only
3823 * after all use of the PCI regions has ceased.
3824 */
3825
3826void pci_release_regions(struct pci_dev *pdev)
3827{
3828	pci_release_selected_regions(pdev, (1 << 6) - 1);
3829}
3830EXPORT_SYMBOL(pci_release_regions);
3831
3832/**
3833 * pci_request_regions - Reserve PCI I/O and memory resources
3834 * @pdev: PCI device whose resources are to be reserved
3835 * @res_name: Name to be associated with resource.
3836 *
3837 * Mark all PCI regions associated with PCI device @pdev as
3838 * being reserved by owner @res_name.  Do not access any
3839 * address inside the PCI regions unless this call returns
3840 * successfully.
3841 *
3842 * Returns 0 on success, or %EBUSY on error.  A warning
3843 * message is also printed on failure.
3844 */
3845int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846{
3847	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
 
3848}
3849EXPORT_SYMBOL(pci_request_regions);
3850
3851/**
3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @res_name: Name to be associated with resource.
3855 *
3856 * Mark all PCI regions associated with PCI device @pdev as being reserved
3857 * by owner @res_name.  Do not access any address inside the PCI regions
3858 * unless this call returns successfully.
3859 *
3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861 * and the sysfs MMIO access will not be allowed.
3862 *
3863 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3864 * printed on failure.
3865 */
3866int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867{
3868	return pci_request_selected_regions_exclusive(pdev,
3869					((1 << 6) - 1), res_name);
3870}
3871EXPORT_SYMBOL(pci_request_regions_exclusive);
3872
3873/*
3874 * Record the PCI IO range (expressed as CPU physical address + size).
3875 * Return a negative value if an error has occurred, zero otherwise
3876 */
3877int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878			resource_size_t	size)
3879{
3880	int ret = 0;
3881#ifdef PCI_IOBASE
3882	struct logic_pio_hwaddr *range;
3883
3884	if (!size || addr + size < addr)
3885		return -EINVAL;
3886
3887	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888	if (!range)
3889		return -ENOMEM;
3890
3891	range->fwnode = fwnode;
3892	range->size = size;
3893	range->hw_start = addr;
3894	range->flags = LOGIC_PIO_CPU_MMIO;
3895
3896	ret = logic_pio_register_range(range);
3897	if (ret)
3898		kfree(range);
 
 
 
 
3899#endif
3900
3901	return ret;
3902}
3903
3904phys_addr_t pci_pio_to_address(unsigned long pio)
3905{
3906	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907
3908#ifdef PCI_IOBASE
3909	if (pio >= MMIO_UPPER_LIMIT)
3910		return address;
3911
3912	address = logic_pio_to_hwaddr(pio);
3913#endif
3914
3915	return address;
3916}
 
3917
3918unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919{
3920#ifdef PCI_IOBASE
3921	return logic_pio_trans_cpuaddr(address);
3922#else
3923	if (address > IO_SPACE_LIMIT)
3924		return (unsigned long)-1;
3925
3926	return (unsigned long) address;
3927#endif
3928}
3929
3930/**
3931 * pci_remap_iospace - Remap the memory mapped I/O space
3932 * @res: Resource describing the I/O space
3933 * @phys_addr: physical address of range to be mapped
3934 *
3935 * Remap the memory mapped I/O space described by the @res and the CPU
3936 * physical address @phys_addr into virtual address space.  Only
3937 * architectures that have memory mapped IO functions defined (and the
3938 * PCI_IOBASE value defined) should call this function.
3939 */
 
3940int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941{
3942#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944
3945	if (!(res->flags & IORESOURCE_IO))
3946		return -EINVAL;
3947
3948	if (res->end > IO_SPACE_LIMIT)
3949		return -EINVAL;
3950
3951	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952				  pgprot_device(PAGE_KERNEL));
3953#else
3954	/*
3955	 * This architecture does not have memory mapped I/O space,
3956	 * so this function should never be called
3957	 */
3958	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959	return -ENODEV;
3960#endif
3961}
3962EXPORT_SYMBOL(pci_remap_iospace);
 
3963
3964/**
3965 * pci_unmap_iospace - Unmap the memory mapped I/O space
3966 * @res: resource to be unmapped
3967 *
3968 * Unmap the CPU virtual address @res from virtual address space.  Only
3969 * architectures that have memory mapped IO functions defined (and the
3970 * PCI_IOBASE value defined) should call this function.
3971 */
3972void pci_unmap_iospace(struct resource *res)
3973{
3974#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976
3977	unmap_kernel_range(vaddr, resource_size(res));
3978#endif
3979}
3980EXPORT_SYMBOL(pci_unmap_iospace);
3981
3982static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983{
3984	struct resource **res = ptr;
3985
3986	pci_unmap_iospace(*res);
3987}
3988
3989/**
3990 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991 * @dev: Generic device to remap IO address for
3992 * @res: Resource describing the I/O space
3993 * @phys_addr: physical address of range to be mapped
3994 *
3995 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3996 * detach.
3997 */
3998int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999			   phys_addr_t phys_addr)
4000{
4001	const struct resource **ptr;
4002	int error;
4003
4004	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005	if (!ptr)
4006		return -ENOMEM;
4007
4008	error = pci_remap_iospace(res, phys_addr);
4009	if (error) {
4010		devres_free(ptr);
4011	} else	{
4012		*ptr = res;
4013		devres_add(dev, ptr);
4014	}
4015
4016	return error;
4017}
4018EXPORT_SYMBOL(devm_pci_remap_iospace);
4019
4020/**
4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022 * @dev: Generic device to remap IO address for
4023 * @offset: Resource address to map
4024 * @size: Size of map
4025 *
4026 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4027 * detach.
4028 */
4029void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030				      resource_size_t offset,
4031				      resource_size_t size)
4032{
4033	void __iomem **ptr, *addr;
4034
4035	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036	if (!ptr)
4037		return NULL;
4038
4039	addr = pci_remap_cfgspace(offset, size);
4040	if (addr) {
4041		*ptr = addr;
4042		devres_add(dev, ptr);
4043	} else
4044		devres_free(ptr);
4045
4046	return addr;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049
4050/**
4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052 * @dev: generic device to handle the resource for
4053 * @res: configuration space resource to be handled
4054 *
4055 * Checks that a resource is a valid memory region, requests the memory
4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057 * proper PCI configuration space memory attributes are guaranteed.
4058 *
4059 * All operations are managed and will be undone on driver detach.
4060 *
4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062 * on failure. Usage example::
4063 *
4064 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066 *	if (IS_ERR(base))
4067 *		return PTR_ERR(base);
4068 */
4069void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070					  struct resource *res)
4071{
4072	resource_size_t size;
4073	const char *name;
4074	void __iomem *dest_ptr;
4075
4076	BUG_ON(!dev);
4077
4078	if (!res || resource_type(res) != IORESOURCE_MEM) {
4079		dev_err(dev, "invalid resource\n");
4080		return IOMEM_ERR_PTR(-EINVAL);
4081	}
4082
4083	size = resource_size(res);
4084	name = res->name ?: dev_name(dev);
 
 
 
 
 
 
 
4085
4086	if (!devm_request_mem_region(dev, res->start, size, name)) {
4087		dev_err(dev, "can't request region for resource %pR\n", res);
4088		return IOMEM_ERR_PTR(-EBUSY);
4089	}
4090
4091	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092	if (!dest_ptr) {
4093		dev_err(dev, "ioremap failed for resource %pR\n", res);
4094		devm_release_mem_region(dev, res->start, size);
4095		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096	}
4097
4098	return dest_ptr;
4099}
4100EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101
4102static void __pci_set_master(struct pci_dev *dev, bool enable)
4103{
4104	u16 old_cmd, cmd;
4105
4106	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107	if (enable)
4108		cmd = old_cmd | PCI_COMMAND_MASTER;
4109	else
4110		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111	if (cmd != old_cmd) {
4112		pci_dbg(dev, "%s bus mastering\n",
4113			enable ? "enabling" : "disabling");
4114		pci_write_config_word(dev, PCI_COMMAND, cmd);
4115	}
4116	dev->is_busmaster = enable;
4117}
4118
4119/**
4120 * pcibios_setup - process "pci=" kernel boot arguments
4121 * @str: string used to pass in "pci=" kernel boot arguments
4122 *
4123 * Process kernel boot arguments.  This is the default implementation.
4124 * Architecture specific implementations can override this as necessary.
4125 */
4126char * __weak __init pcibios_setup(char *str)
4127{
4128	return str;
4129}
4130
4131/**
4132 * pcibios_set_master - enable PCI bus-mastering for device dev
4133 * @dev: the PCI device to enable
4134 *
4135 * Enables PCI bus-mastering for the device.  This is the default
4136 * implementation.  Architecture specific implementations can override
4137 * this if necessary.
4138 */
4139void __weak pcibios_set_master(struct pci_dev *dev)
4140{
4141	u8 lat;
4142
4143	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144	if (pci_is_pcie(dev))
4145		return;
4146
4147	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148	if (lat < 16)
4149		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150	else if (lat > pcibios_max_latency)
4151		lat = pcibios_max_latency;
4152	else
4153		return;
4154
4155	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156}
4157
4158/**
4159 * pci_set_master - enables bus-mastering for device dev
4160 * @dev: the PCI device to enable
4161 *
4162 * Enables bus-mastering on the device and calls pcibios_set_master()
4163 * to do the needed arch specific settings.
4164 */
4165void pci_set_master(struct pci_dev *dev)
4166{
4167	__pci_set_master(dev, true);
4168	pcibios_set_master(dev);
4169}
4170EXPORT_SYMBOL(pci_set_master);
4171
4172/**
4173 * pci_clear_master - disables bus-mastering for device dev
4174 * @dev: the PCI device to disable
4175 */
4176void pci_clear_master(struct pci_dev *dev)
4177{
4178	__pci_set_master(dev, false);
4179}
4180EXPORT_SYMBOL(pci_clear_master);
4181
4182/**
4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184 * @dev: the PCI device for which MWI is to be enabled
4185 *
4186 * Helper function for pci_set_mwi.
4187 * Originally copied from drivers/net/acenic.c.
4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189 *
4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191 */
4192int pci_set_cacheline_size(struct pci_dev *dev)
4193{
4194	u8 cacheline_size;
4195
4196	if (!pci_cache_line_size)
4197		return -EINVAL;
4198
4199	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200	   equal to or multiple of the right value. */
4201	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202	if (cacheline_size >= pci_cache_line_size &&
4203	    (cacheline_size % pci_cache_line_size) == 0)
4204		return 0;
4205
4206	/* Write the correct value. */
4207	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208	/* Read it back. */
4209	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210	if (cacheline_size == pci_cache_line_size)
4211		return 0;
4212
4213	pci_info(dev, "cache line size of %d is not supported\n",
4214		   pci_cache_line_size << 2);
4215
4216	return -EINVAL;
4217}
4218EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219
4220/**
4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222 * @dev: the PCI device for which MWI is enabled
4223 *
4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225 *
4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227 */
4228int pci_set_mwi(struct pci_dev *dev)
4229{
4230#ifdef PCI_DISABLE_MWI
4231	return 0;
4232#else
4233	int rc;
4234	u16 cmd;
4235
4236	rc = pci_set_cacheline_size(dev);
4237	if (rc)
4238		return rc;
4239
4240	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243		cmd |= PCI_COMMAND_INVALIDATE;
4244		pci_write_config_word(dev, PCI_COMMAND, cmd);
4245	}
4246	return 0;
4247#endif
4248}
4249EXPORT_SYMBOL(pci_set_mwi);
4250
4251/**
4252 * pcim_set_mwi - a device-managed pci_set_mwi()
4253 * @dev: the PCI device for which MWI is enabled
4254 *
4255 * Managed pci_set_mwi().
4256 *
4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 */
4259int pcim_set_mwi(struct pci_dev *dev)
4260{
4261	struct pci_devres *dr;
4262
4263	dr = find_pci_dr(dev);
4264	if (!dr)
4265		return -ENOMEM;
4266
4267	dr->mwi = 1;
4268	return pci_set_mwi(dev);
4269}
4270EXPORT_SYMBOL(pcim_set_mwi);
4271
4272/**
4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274 * @dev: the PCI device for which MWI is enabled
4275 *
4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277 * Callers are not required to check the return value.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_try_set_mwi(struct pci_dev *dev)
4282{
4283#ifdef PCI_DISABLE_MWI
4284	return 0;
4285#else
4286	return pci_set_mwi(dev);
4287#endif
4288}
4289EXPORT_SYMBOL(pci_try_set_mwi);
4290
4291/**
4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293 * @dev: the PCI device to disable
4294 *
4295 * Disables PCI Memory-Write-Invalidate transaction on the device
4296 */
4297void pci_clear_mwi(struct pci_dev *dev)
4298{
4299#ifndef PCI_DISABLE_MWI
4300	u16 cmd;
4301
4302	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303	if (cmd & PCI_COMMAND_INVALIDATE) {
4304		cmd &= ~PCI_COMMAND_INVALIDATE;
4305		pci_write_config_word(dev, PCI_COMMAND, cmd);
4306	}
4307#endif
4308}
4309EXPORT_SYMBOL(pci_clear_mwi);
4310
4311/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312 * pci_intx - enables/disables PCI INTx for device dev
4313 * @pdev: the PCI device to operate on
4314 * @enable: boolean: whether to enable or disable PCI INTx
4315 *
4316 * Enables/disables PCI INTx for device @pdev
4317 */
4318void pci_intx(struct pci_dev *pdev, int enable)
4319{
4320	u16 pci_command, new;
4321
4322	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323
4324	if (enable)
4325		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326	else
4327		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328
4329	if (new != pci_command) {
4330		struct pci_devres *dr;
4331
4332		pci_write_config_word(pdev, PCI_COMMAND, new);
4333
4334		dr = find_pci_dr(pdev);
4335		if (dr && !dr->restore_intx) {
4336			dr->restore_intx = 1;
4337			dr->orig_intx = !enable;
4338		}
4339	}
4340}
4341EXPORT_SYMBOL_GPL(pci_intx);
4342
4343static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344{
4345	struct pci_bus *bus = dev->bus;
4346	bool mask_updated = true;
4347	u32 cmd_status_dword;
4348	u16 origcmd, newcmd;
4349	unsigned long flags;
4350	bool irq_pending;
4351
4352	/*
4353	 * We do a single dword read to retrieve both command and status.
4354	 * Document assumptions that make this possible.
4355	 */
4356	BUILD_BUG_ON(PCI_COMMAND % 4);
4357	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358
4359	raw_spin_lock_irqsave(&pci_lock, flags);
4360
4361	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362
4363	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364
4365	/*
4366	 * Check interrupt status register to see whether our device
4367	 * triggered the interrupt (when masking) or the next IRQ is
4368	 * already pending (when unmasking).
4369	 */
4370	if (mask != irq_pending) {
4371		mask_updated = false;
4372		goto done;
4373	}
4374
4375	origcmd = cmd_status_dword;
4376	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377	if (mask)
4378		newcmd |= PCI_COMMAND_INTX_DISABLE;
4379	if (newcmd != origcmd)
4380		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381
4382done:
4383	raw_spin_unlock_irqrestore(&pci_lock, flags);
4384
4385	return mask_updated;
4386}
4387
4388/**
4389 * pci_check_and_mask_intx - mask INTx on pending interrupt
4390 * @dev: the PCI device to operate on
4391 *
4392 * Check if the device dev has its INTx line asserted, mask it and return
4393 * true in that case. False is returned if no interrupt was pending.
4394 */
4395bool pci_check_and_mask_intx(struct pci_dev *dev)
4396{
4397	return pci_check_and_set_intx_mask(dev, true);
4398}
4399EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400
4401/**
4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403 * @dev: the PCI device to operate on
4404 *
4405 * Check if the device dev has its INTx line asserted, unmask it if not and
4406 * return true. False is returned and the mask remains active if there was
4407 * still an interrupt pending.
4408 */
4409bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410{
4411	return pci_check_and_set_intx_mask(dev, false);
4412}
4413EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414
4415/**
4416 * pci_wait_for_pending_transaction - wait for pending transaction
4417 * @dev: the PCI device to operate on
4418 *
4419 * Return 0 if transaction is pending 1 otherwise.
4420 */
4421int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422{
4423	if (!pci_is_pcie(dev))
4424		return 1;
4425
4426	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427				    PCI_EXP_DEVSTA_TRPND);
4428}
4429EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430
4431static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432{
4433	int delay = 1;
4434	u32 id;
4435
4436	/*
4437	 * After reset, the device should not silently discard config
4438	 * requests, but it may still indicate that it needs more time by
4439	 * responding to them with CRS completions.  The Root Port will
4440	 * generally synthesize ~0 data to complete the read (except when
4441	 * CRS SV is enabled and the read was for the Vendor ID; in that
4442	 * case it synthesizes 0x0001 data).
4443	 *
4444	 * Wait for the device to return a non-CRS completion.  Read the
4445	 * Command register instead of Vendor ID so we don't have to
4446	 * contend with the CRS SV value.
4447	 */
4448	pci_read_config_dword(dev, PCI_COMMAND, &id);
4449	while (id == ~0) {
4450		if (delay > timeout) {
4451			pci_warn(dev, "not ready %dms after %s; giving up\n",
4452				 delay - 1, reset_type);
4453			return -ENOTTY;
4454		}
4455
4456		if (delay > 1000)
4457			pci_info(dev, "not ready %dms after %s; waiting\n",
4458				 delay - 1, reset_type);
4459
4460		msleep(delay);
4461		delay *= 2;
4462		pci_read_config_dword(dev, PCI_COMMAND, &id);
4463	}
4464
4465	if (delay > 1000)
4466		pci_info(dev, "ready %dms after %s\n", delay - 1,
4467			 reset_type);
4468
4469	return 0;
4470}
4471
4472/**
4473 * pcie_has_flr - check if a device supports function level resets
4474 * @dev: device to check
4475 *
4476 * Returns true if the device advertises support for PCIe function level
4477 * resets.
4478 */
4479bool pcie_has_flr(struct pci_dev *dev)
4480{
4481	u32 cap;
4482
4483	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484		return false;
4485
4486	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487	return cap & PCI_EXP_DEVCAP_FLR;
4488}
4489EXPORT_SYMBOL_GPL(pcie_has_flr);
4490
4491/**
4492 * pcie_flr - initiate a PCIe function level reset
4493 * @dev: device to reset
4494 *
4495 * Initiate a function level reset on @dev.  The caller should ensure the
4496 * device supports FLR before calling this function, e.g. by using the
4497 * pcie_has_flr() helper.
4498 */
4499int pcie_flr(struct pci_dev *dev)
4500{
4501	if (!pci_wait_for_pending_transaction(dev))
4502		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503
4504	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505
4506	if (dev->imm_ready)
4507		return 0;
4508
4509	/*
4510	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511	 * 100ms, but may silently discard requests while the FLR is in
4512	 * progress.  Wait 100ms before trying to access the device.
4513	 */
4514	msleep(100);
4515
4516	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517}
4518EXPORT_SYMBOL_GPL(pcie_flr);
4519
4520static int pci_af_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4521{
4522	int pos;
4523	u8 cap;
4524
4525	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526	if (!pos)
4527		return -ENOTTY;
4528
4529	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530		return -ENOTTY;
4531
4532	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534		return -ENOTTY;
4535
4536	if (probe)
4537		return 0;
4538
4539	/*
4540	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4541	 * is used, so we use the control offset rather than status and shift
4542	 * the test bit to match.
4543	 */
4544	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545				 PCI_AF_STATUS_TP << 8))
4546		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547
4548	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549
4550	if (dev->imm_ready)
4551		return 0;
4552
4553	/*
4554	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555	 * updated 27 July 2006; a device must complete an FLR within
4556	 * 100ms, but may silently discard requests while the FLR is in
4557	 * progress.  Wait 100ms before trying to access the device.
4558	 */
4559	msleep(100);
4560
4561	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562}
4563
4564/**
4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566 * @dev: Device to reset.
4567 * @probe: If set, only check if the device can be reset this way.
4568 *
4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570 * unset, it will be reinitialized internally when going from PCI_D3hot to
4571 * PCI_D0.  If that's the case and the device is not in a low-power state
4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573 *
4574 * NOTE: This causes the caller to sleep for twice the device power transition
4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576 * by default (i.e. unless the @dev's d3_delay field has a different value).
4577 * Moreover, only devices in D0 can be reset by this function.
4578 */
4579static int pci_pm_reset(struct pci_dev *dev, int probe)
4580{
4581	u16 csr;
4582
4583	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584		return -ENOTTY;
4585
4586	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588		return -ENOTTY;
4589
4590	if (probe)
4591		return 0;
4592
4593	if (dev->current_state != PCI_D0)
4594		return -EINVAL;
4595
4596	csr &= ~PCI_PM_CTRL_STATE_MASK;
4597	csr |= PCI_D3hot;
4598	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599	pci_dev_d3_sleep(dev);
4600
4601	csr &= ~PCI_PM_CTRL_STATE_MASK;
4602	csr |= PCI_D0;
4603	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604	pci_dev_d3_sleep(dev);
4605
4606	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4607}
 
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
 
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
 
4616{
4617	int timeout = 1000;
4618	bool ret;
4619	u16 lnk_status;
4620
4621	/*
4622	 * Some controllers might not implement link active reporting. In this
4623	 * case, we wait for 1000 + 100 ms.
4624	 */
4625	if (!pdev->link_active_reporting) {
4626		msleep(1100);
4627		return true;
4628	}
4629
4630	/*
4631	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632	 * after which we should expect an link active if the reset was
4633	 * successful. If so, software must wait a minimum 100ms before sending
4634	 * configuration requests to devices downstream this port.
4635	 *
4636	 * If the link fails to activate, either the device was physically
4637	 * removed or the link is permanently failed.
4638	 */
4639	if (active)
4640		msleep(20);
4641	for (;;) {
4642		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644		if (ret == active)
4645			break;
4646		if (timeout <= 0)
4647			break;
4648		msleep(10);
4649		timeout -= 10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4650	}
4651	if (active && ret)
4652		msleep(100);
4653	else if (ret != active)
4654		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655			active ? "set" : "cleared");
4656	return ret == active;
4657}
4658
4659void pci_reset_secondary_bus(struct pci_dev *dev)
4660{
4661	u16 ctrl;
4662
4663	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666
4667	/*
4668	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4669	 * this to 2ms to ensure that we meet the minimum requirement.
4670	 */
4671	msleep(2);
4672
4673	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675
4676	/*
4677	 * Trhfa for conventional PCI is 2^25 clock cycles.
4678	 * Assuming a minimum 33MHz clock this results in a 1s
4679	 * delay before we can consider subordinate devices to
4680	 * be re-initialized.  PCIe has some ways to shorten this,
4681	 * but we don't make use of them yet.
4682	 */
4683	ssleep(1);
4684}
4685
4686void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687{
4688	pci_reset_secondary_bus(dev);
4689}
4690
4691/**
4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693 * @dev: Bridge device
4694 *
4695 * Use the bridge control register to assert reset on the secondary bus.
4696 * Devices on the secondary bus are left in power-on state.
4697 */
4698int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699{
4700	pcibios_reset_secondary_bus(dev);
4701
4702	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703}
4704EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705
4706static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707{
4708	struct pci_dev *pdev;
4709
4710	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712		return -ENOTTY;
4713
4714	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715		if (pdev != dev)
4716			return -ENOTTY;
4717
4718	if (probe)
4719		return 0;
4720
4721	return pci_bridge_secondary_bus_reset(dev->bus->self);
4722}
4723
4724static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725{
4726	int rc = -ENOTTY;
4727
4728	if (!hotplug || !try_module_get(hotplug->owner))
4729		return rc;
4730
4731	if (hotplug->ops->reset_slot)
4732		rc = hotplug->ops->reset_slot(hotplug, probe);
4733
4734	module_put(hotplug->owner);
4735
4736	return rc;
4737}
4738
4739static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740{
4741	struct pci_dev *pdev;
4742
4743	if (dev->subordinate || !dev->slot ||
4744	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745		return -ENOTTY;
4746
4747	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748		if (pdev != dev && pdev->slot == dev->slot)
4749			return -ENOTTY;
 
 
 
4750
4751	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
 
 
 
4752}
4753
4754static void pci_dev_lock(struct pci_dev *dev)
4755{
4756	pci_cfg_access_lock(dev);
4757	/* block PM suspend, driver probe, etc. */
4758	device_lock(&dev->dev);
 
4759}
 
4760
4761/* Return 1 on successful lock, 0 on contention */
4762static int pci_dev_trylock(struct pci_dev *dev)
4763{
4764	if (pci_cfg_access_trylock(dev)) {
4765		if (device_trylock(&dev->dev))
4766			return 1;
4767		pci_cfg_access_unlock(dev);
4768	}
4769
4770	return 0;
4771}
 
4772
4773static void pci_dev_unlock(struct pci_dev *dev)
4774{
 
4775	device_unlock(&dev->dev);
4776	pci_cfg_access_unlock(dev);
4777}
 
4778
4779static void pci_dev_save_and_disable(struct pci_dev *dev)
4780{
4781	const struct pci_error_handlers *err_handler =
4782			dev->driver ? dev->driver->err_handler : NULL;
4783
4784	/*
4785	 * dev->driver->err_handler->reset_prepare() is protected against
4786	 * races with ->remove() by the device lock, which must be held by
4787	 * the caller.
4788	 */
4789	if (err_handler && err_handler->reset_prepare)
4790		err_handler->reset_prepare(dev);
4791
4792	/*
4793	 * Wake-up device prior to save.  PM registers default to D0 after
4794	 * reset and a simple register restore doesn't reliably return
4795	 * to a non-D0 state anyway.
4796	 */
4797	pci_set_power_state(dev, PCI_D0);
4798
4799	pci_save_state(dev);
4800	/*
4801	 * Disable the device by clearing the Command register, except for
4802	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4803	 * BARs, but also prevents the device from being Bus Master, preventing
4804	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4805	 * compliant devices, INTx-disable prevents legacy interrupts.
4806	 */
4807	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808}
4809
4810static void pci_dev_restore(struct pci_dev *dev)
4811{
4812	const struct pci_error_handlers *err_handler =
4813			dev->driver ? dev->driver->err_handler : NULL;
4814
4815	pci_restore_state(dev);
4816
4817	/*
4818	 * dev->driver->err_handler->reset_done() is protected against
4819	 * races with ->remove() by the device lock, which must be held by
4820	 * the caller.
4821	 */
4822	if (err_handler && err_handler->reset_done)
4823		err_handler->reset_done(dev);
4824}
4825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826/**
4827 * __pci_reset_function_locked - reset a PCI device function while holding
4828 * the @dev mutex lock.
4829 * @dev: PCI device to reset
4830 *
4831 * Some devices allow an individual function to be reset without affecting
4832 * other functions in the same device.  The PCI device must be responsive
4833 * to PCI config space in order to use this function.
4834 *
4835 * The device function is presumed to be unused and the caller is holding
4836 * the device mutex lock when this function is called.
4837 *
4838 * Resetting the device will make the contents of PCI configuration space
4839 * random, so any caller of this must be prepared to reinitialise the
4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841 * etc.
4842 *
4843 * Returns 0 if the device function was successfully reset or negative if the
4844 * device doesn't support resetting a single function.
4845 */
4846int __pci_reset_function_locked(struct pci_dev *dev)
4847{
4848	int rc;
4849
4850	might_sleep();
4851
4852	/*
4853	 * A reset method returns -ENOTTY if it doesn't support this device
4854	 * and we should try the next method.
4855	 *
4856	 * If it returns 0 (success), we're finished.  If it returns any
4857	 * other error, we're also finished: this indicates that further
4858	 * reset mechanisms might be broken on the device.
4859	 */
4860	rc = pci_dev_specific_reset(dev, 0);
4861	if (rc != -ENOTTY)
4862		return rc;
4863	if (pcie_has_flr(dev)) {
4864		rc = pcie_flr(dev);
 
 
 
4865		if (rc != -ENOTTY)
4866			return rc;
4867	}
4868	rc = pci_af_flr(dev, 0);
4869	if (rc != -ENOTTY)
4870		return rc;
4871	rc = pci_pm_reset(dev, 0);
4872	if (rc != -ENOTTY)
4873		return rc;
4874	rc = pci_dev_reset_slot_function(dev, 0);
4875	if (rc != -ENOTTY)
4876		return rc;
4877	return pci_parent_bus_reset(dev, 0);
4878}
4879EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880
4881/**
4882 * pci_probe_reset_function - check whether the device can be safely reset
4883 * @dev: PCI device to reset
 
4884 *
4885 * Some devices allow an individual function to be reset without affecting
4886 * other functions in the same device.  The PCI device must be responsive
4887 * to PCI config space in order to use this function.
4888 *
4889 * Returns 0 if the device function can be reset or negative if the
4890 * device doesn't support resetting a single function.
4891 */
4892int pci_probe_reset_function(struct pci_dev *dev)
4893{
4894	int rc;
 
 
4895
4896	might_sleep();
4897
4898	rc = pci_dev_specific_reset(dev, 1);
4899	if (rc != -ENOTTY)
4900		return rc;
4901	if (pcie_has_flr(dev))
4902		return 0;
4903	rc = pci_af_flr(dev, 1);
4904	if (rc != -ENOTTY)
4905		return rc;
4906	rc = pci_pm_reset(dev, 1);
4907	if (rc != -ENOTTY)
4908		return rc;
4909	rc = pci_dev_reset_slot_function(dev, 1);
4910	if (rc != -ENOTTY)
4911		return rc;
4912
4913	return pci_parent_bus_reset(dev, 1);
4914}
4915
4916/**
4917 * pci_reset_function - quiesce and reset a PCI device function
4918 * @dev: PCI device to reset
4919 *
4920 * Some devices allow an individual function to be reset without affecting
4921 * other functions in the same device.  The PCI device must be responsive
4922 * to PCI config space in order to use this function.
4923 *
4924 * This function does not just reset the PCI portion of a device, but
4925 * clears all the state associated with the device.  This function differs
4926 * from __pci_reset_function_locked() in that it saves and restores device state
4927 * over the reset and takes the PCI device lock.
4928 *
4929 * Returns 0 if the device function was successfully reset or negative if the
4930 * device doesn't support resetting a single function.
4931 */
4932int pci_reset_function(struct pci_dev *dev)
4933{
4934	int rc;
4935
4936	if (!dev->reset_fn)
4937		return -ENOTTY;
4938
4939	pci_dev_lock(dev);
4940	pci_dev_save_and_disable(dev);
4941
4942	rc = __pci_reset_function_locked(dev);
4943
4944	pci_dev_restore(dev);
4945	pci_dev_unlock(dev);
4946
4947	return rc;
4948}
4949EXPORT_SYMBOL_GPL(pci_reset_function);
4950
4951/**
4952 * pci_reset_function_locked - quiesce and reset a PCI device function
4953 * @dev: PCI device to reset
4954 *
4955 * Some devices allow an individual function to be reset without affecting
4956 * other functions in the same device.  The PCI device must be responsive
4957 * to PCI config space in order to use this function.
4958 *
4959 * This function does not just reset the PCI portion of a device, but
4960 * clears all the state associated with the device.  This function differs
4961 * from __pci_reset_function_locked() in that it saves and restores device state
4962 * over the reset.  It also differs from pci_reset_function() in that it
4963 * requires the PCI device lock to be held.
4964 *
4965 * Returns 0 if the device function was successfully reset or negative if the
4966 * device doesn't support resetting a single function.
4967 */
4968int pci_reset_function_locked(struct pci_dev *dev)
4969{
4970	int rc;
4971
4972	if (!dev->reset_fn)
4973		return -ENOTTY;
4974
4975	pci_dev_save_and_disable(dev);
4976
4977	rc = __pci_reset_function_locked(dev);
4978
4979	pci_dev_restore(dev);
4980
4981	return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984
4985/**
4986 * pci_try_reset_function - quiesce and reset a PCI device function
4987 * @dev: PCI device to reset
4988 *
4989 * Same as above, except return -EAGAIN if unable to lock device.
4990 */
4991int pci_try_reset_function(struct pci_dev *dev)
4992{
4993	int rc;
4994
4995	if (!dev->reset_fn)
4996		return -ENOTTY;
4997
4998	if (!pci_dev_trylock(dev))
4999		return -EAGAIN;
5000
5001	pci_dev_save_and_disable(dev);
5002	rc = __pci_reset_function_locked(dev);
5003	pci_dev_restore(dev);
5004	pci_dev_unlock(dev);
5005
5006	return rc;
5007}
5008EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009
5010/* Do any devices on or below this bus prevent a bus reset? */
5011static bool pci_bus_resetable(struct pci_bus *bus)
5012{
5013	struct pci_dev *dev;
5014
5015
5016	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017		return false;
5018
5019	list_for_each_entry(dev, &bus->devices, bus_list) {
5020		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022			return false;
5023	}
5024
5025	return true;
5026}
5027
5028/* Lock devices from the top of the tree down */
5029static void pci_bus_lock(struct pci_bus *bus)
5030{
5031	struct pci_dev *dev;
5032
5033	list_for_each_entry(dev, &bus->devices, bus_list) {
5034		pci_dev_lock(dev);
5035		if (dev->subordinate)
5036			pci_bus_lock(dev->subordinate);
5037	}
5038}
5039
5040/* Unlock devices from the bottom of the tree up */
5041static void pci_bus_unlock(struct pci_bus *bus)
5042{
5043	struct pci_dev *dev;
5044
5045	list_for_each_entry(dev, &bus->devices, bus_list) {
5046		if (dev->subordinate)
5047			pci_bus_unlock(dev->subordinate);
5048		pci_dev_unlock(dev);
5049	}
5050}
5051
5052/* Return 1 on successful lock, 0 on contention */
5053static int pci_bus_trylock(struct pci_bus *bus)
5054{
5055	struct pci_dev *dev;
5056
5057	list_for_each_entry(dev, &bus->devices, bus_list) {
5058		if (!pci_dev_trylock(dev))
5059			goto unlock;
5060		if (dev->subordinate) {
5061			if (!pci_bus_trylock(dev->subordinate)) {
5062				pci_dev_unlock(dev);
5063				goto unlock;
5064			}
5065		}
5066	}
5067	return 1;
5068
5069unlock:
5070	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071		if (dev->subordinate)
5072			pci_bus_unlock(dev->subordinate);
5073		pci_dev_unlock(dev);
5074	}
5075	return 0;
5076}
5077
5078/* Do any devices on or below this slot prevent a bus reset? */
5079static bool pci_slot_resetable(struct pci_slot *slot)
5080{
5081	struct pci_dev *dev;
5082
5083	if (slot->bus->self &&
5084	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085		return false;
5086
5087	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088		if (!dev->slot || dev->slot != slot)
5089			continue;
5090		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092			return false;
5093	}
5094
5095	return true;
5096}
5097
5098/* Lock devices from the top of the tree down */
5099static void pci_slot_lock(struct pci_slot *slot)
5100{
5101	struct pci_dev *dev;
5102
5103	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104		if (!dev->slot || dev->slot != slot)
5105			continue;
5106		pci_dev_lock(dev);
5107		if (dev->subordinate)
5108			pci_bus_lock(dev->subordinate);
5109	}
5110}
5111
5112/* Unlock devices from the bottom of the tree up */
5113static void pci_slot_unlock(struct pci_slot *slot)
5114{
5115	struct pci_dev *dev;
5116
5117	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118		if (!dev->slot || dev->slot != slot)
5119			continue;
5120		if (dev->subordinate)
5121			pci_bus_unlock(dev->subordinate);
5122		pci_dev_unlock(dev);
5123	}
5124}
5125
5126/* Return 1 on successful lock, 0 on contention */
5127static int pci_slot_trylock(struct pci_slot *slot)
5128{
5129	struct pci_dev *dev;
5130
5131	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132		if (!dev->slot || dev->slot != slot)
5133			continue;
5134		if (!pci_dev_trylock(dev))
5135			goto unlock;
5136		if (dev->subordinate) {
5137			if (!pci_bus_trylock(dev->subordinate)) {
5138				pci_dev_unlock(dev);
5139				goto unlock;
5140			}
5141		}
5142	}
5143	return 1;
5144
5145unlock:
5146	list_for_each_entry_continue_reverse(dev,
5147					     &slot->bus->devices, bus_list) {
5148		if (!dev->slot || dev->slot != slot)
5149			continue;
5150		if (dev->subordinate)
5151			pci_bus_unlock(dev->subordinate);
5152		pci_dev_unlock(dev);
5153	}
5154	return 0;
5155}
5156
5157/*
5158 * Save and disable devices from the top of the tree down while holding
5159 * the @dev mutex lock for the entire tree.
5160 */
5161static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162{
5163	struct pci_dev *dev;
5164
5165	list_for_each_entry(dev, &bus->devices, bus_list) {
5166		pci_dev_save_and_disable(dev);
5167		if (dev->subordinate)
5168			pci_bus_save_and_disable_locked(dev->subordinate);
5169	}
5170}
5171
5172/*
5173 * Restore devices from top of the tree down while holding @dev mutex lock
5174 * for the entire tree.  Parent bridges need to be restored before we can
5175 * get to subordinate devices.
5176 */
5177static void pci_bus_restore_locked(struct pci_bus *bus)
5178{
5179	struct pci_dev *dev;
5180
5181	list_for_each_entry(dev, &bus->devices, bus_list) {
5182		pci_dev_restore(dev);
5183		if (dev->subordinate)
5184			pci_bus_restore_locked(dev->subordinate);
5185	}
5186}
5187
5188/*
5189 * Save and disable devices from the top of the tree down while holding
5190 * the @dev mutex lock for the entire tree.
5191 */
5192static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193{
5194	struct pci_dev *dev;
5195
5196	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197		if (!dev->slot || dev->slot != slot)
5198			continue;
5199		pci_dev_save_and_disable(dev);
5200		if (dev->subordinate)
5201			pci_bus_save_and_disable_locked(dev->subordinate);
5202	}
5203}
5204
5205/*
5206 * Restore devices from top of the tree down while holding @dev mutex lock
5207 * for the entire tree.  Parent bridges need to be restored before we can
5208 * get to subordinate devices.
5209 */
5210static void pci_slot_restore_locked(struct pci_slot *slot)
5211{
5212	struct pci_dev *dev;
5213
5214	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215		if (!dev->slot || dev->slot != slot)
5216			continue;
5217		pci_dev_restore(dev);
5218		if (dev->subordinate)
5219			pci_bus_restore_locked(dev->subordinate);
5220	}
5221}
5222
5223static int pci_slot_reset(struct pci_slot *slot, int probe)
5224{
5225	int rc;
5226
5227	if (!slot || !pci_slot_resetable(slot))
5228		return -ENOTTY;
5229
5230	if (!probe)
5231		pci_slot_lock(slot);
5232
5233	might_sleep();
5234
5235	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236
5237	if (!probe)
5238		pci_slot_unlock(slot);
5239
5240	return rc;
5241}
5242
5243/**
5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245 * @slot: PCI slot to probe
5246 *
5247 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248 */
5249int pci_probe_reset_slot(struct pci_slot *slot)
5250{
5251	return pci_slot_reset(slot, 1);
5252}
5253EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254
5255/**
5256 * __pci_reset_slot - Try to reset a PCI slot
5257 * @slot: PCI slot to reset
5258 *
5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260 * independent of other slots.  For instance, some slots may support slot power
5261 * control.  In the case of a 1:1 bus to slot architecture, this function may
5262 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263 * Generally a slot reset should be attempted before a bus reset.  All of the
5264 * function of the slot and any subordinate buses behind the slot are reset
5265 * through this function.  PCI config space of all devices in the slot and
5266 * behind the slot is saved before and restored after reset.
5267 *
5268 * Same as above except return -EAGAIN if the slot cannot be locked
5269 */
5270static int __pci_reset_slot(struct pci_slot *slot)
5271{
5272	int rc;
5273
5274	rc = pci_slot_reset(slot, 1);
5275	if (rc)
5276		return rc;
5277
5278	if (pci_slot_trylock(slot)) {
5279		pci_slot_save_and_disable_locked(slot);
5280		might_sleep();
5281		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282		pci_slot_restore_locked(slot);
5283		pci_slot_unlock(slot);
5284	} else
5285		rc = -EAGAIN;
5286
5287	return rc;
5288}
5289
5290static int pci_bus_reset(struct pci_bus *bus, int probe)
5291{
5292	int ret;
5293
5294	if (!bus->self || !pci_bus_resetable(bus))
5295		return -ENOTTY;
5296
5297	if (probe)
5298		return 0;
5299
5300	pci_bus_lock(bus);
5301
5302	might_sleep();
5303
5304	ret = pci_bridge_secondary_bus_reset(bus->self);
5305
5306	pci_bus_unlock(bus);
5307
5308	return ret;
5309}
5310
5311/**
5312 * pci_bus_error_reset - reset the bridge's subordinate bus
5313 * @bridge: The parent device that connects to the bus to reset
5314 *
5315 * This function will first try to reset the slots on this bus if the method is
5316 * available. If slot reset fails or is not available, this will fall back to a
5317 * secondary bus reset.
5318 */
5319int pci_bus_error_reset(struct pci_dev *bridge)
5320{
5321	struct pci_bus *bus = bridge->subordinate;
5322	struct pci_slot *slot;
5323
5324	if (!bus)
5325		return -ENOTTY;
5326
5327	mutex_lock(&pci_slot_mutex);
5328	if (list_empty(&bus->slots))
5329		goto bus_reset;
5330
5331	list_for_each_entry(slot, &bus->slots, list)
5332		if (pci_probe_reset_slot(slot))
5333			goto bus_reset;
5334
5335	list_for_each_entry(slot, &bus->slots, list)
5336		if (pci_slot_reset(slot, 0))
5337			goto bus_reset;
5338
5339	mutex_unlock(&pci_slot_mutex);
5340	return 0;
5341bus_reset:
5342	mutex_unlock(&pci_slot_mutex);
5343	return pci_bus_reset(bridge->subordinate, 0);
5344}
5345
5346/**
5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348 * @bus: PCI bus to probe
5349 *
5350 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351 */
5352int pci_probe_reset_bus(struct pci_bus *bus)
5353{
5354	return pci_bus_reset(bus, 1);
5355}
5356EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357
5358/**
5359 * __pci_reset_bus - Try to reset a PCI bus
5360 * @bus: top level PCI bus to reset
5361 *
5362 * Same as above except return -EAGAIN if the bus cannot be locked
5363 */
5364static int __pci_reset_bus(struct pci_bus *bus)
5365{
5366	int rc;
5367
5368	rc = pci_bus_reset(bus, 1);
5369	if (rc)
5370		return rc;
5371
5372	if (pci_bus_trylock(bus)) {
5373		pci_bus_save_and_disable_locked(bus);
5374		might_sleep();
5375		rc = pci_bridge_secondary_bus_reset(bus->self);
5376		pci_bus_restore_locked(bus);
5377		pci_bus_unlock(bus);
5378	} else
5379		rc = -EAGAIN;
5380
5381	return rc;
5382}
5383
5384/**
5385 * pci_reset_bus - Try to reset a PCI bus
5386 * @pdev: top level PCI device to reset via slot/bus
5387 *
5388 * Same as above except return -EAGAIN if the bus cannot be locked
5389 */
5390int pci_reset_bus(struct pci_dev *pdev)
5391{
5392	return (!pci_probe_reset_slot(pdev->slot)) ?
5393	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394}
5395EXPORT_SYMBOL_GPL(pci_reset_bus);
5396
5397/**
5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399 * @dev: PCI device to query
5400 *
5401 * Returns mmrbc: maximum designed memory read count in bytes or
5402 * appropriate error value.
5403 */
5404int pcix_get_max_mmrbc(struct pci_dev *dev)
5405{
5406	int cap;
5407	u32 stat;
5408
5409	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410	if (!cap)
5411		return -EINVAL;
5412
5413	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414		return -EINVAL;
5415
5416	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417}
5418EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419
5420/**
5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422 * @dev: PCI device to query
5423 *
5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425 * value.
5426 */
5427int pcix_get_mmrbc(struct pci_dev *dev)
5428{
5429	int cap;
5430	u16 cmd;
5431
5432	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433	if (!cap)
5434		return -EINVAL;
5435
5436	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437		return -EINVAL;
5438
5439	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440}
5441EXPORT_SYMBOL(pcix_get_mmrbc);
5442
5443/**
5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445 * @dev: PCI device to query
5446 * @mmrbc: maximum memory read count in bytes
5447 *    valid values are 512, 1024, 2048, 4096
5448 *
5449 * If possible sets maximum memory read byte count, some bridges have errata
5450 * that prevent this.
5451 */
5452int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453{
5454	int cap;
5455	u32 stat, v, o;
5456	u16 cmd;
5457
5458	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459		return -EINVAL;
5460
5461	v = ffs(mmrbc) - 10;
5462
5463	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464	if (!cap)
5465		return -EINVAL;
5466
5467	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468		return -EINVAL;
5469
5470	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471		return -E2BIG;
5472
5473	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474		return -EINVAL;
5475
5476	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477	if (o != v) {
5478		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479			return -EIO;
5480
5481		cmd &= ~PCI_X_CMD_MAX_READ;
5482		cmd |= v << 2;
5483		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484			return -EIO;
5485	}
5486	return 0;
5487}
5488EXPORT_SYMBOL(pcix_set_mmrbc);
5489
5490/**
5491 * pcie_get_readrq - get PCI Express read request size
5492 * @dev: PCI device to query
5493 *
5494 * Returns maximum memory read request in bytes or appropriate error value.
5495 */
5496int pcie_get_readrq(struct pci_dev *dev)
5497{
5498	u16 ctl;
5499
5500	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501
5502	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503}
5504EXPORT_SYMBOL(pcie_get_readrq);
5505
5506/**
5507 * pcie_set_readrq - set PCI Express maximum memory read request
5508 * @dev: PCI device to query
5509 * @rq: maximum memory read count in bytes
5510 *    valid values are 128, 256, 512, 1024, 2048, 4096
5511 *
5512 * If possible sets maximum memory read request in bytes
5513 */
5514int pcie_set_readrq(struct pci_dev *dev, int rq)
5515{
5516	u16 v;
 
 
5517
5518	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519		return -EINVAL;
5520
5521	/*
5522	 * If using the "performance" PCIe config, we clamp the read rq
5523	 * size to the max packet size to keep the host bridge from
5524	 * generating requests larger than we can cope with.
5525	 */
5526	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527		int mps = pcie_get_mps(dev);
5528
5529		if (mps < rq)
5530			rq = mps;
5531	}
5532
5533	v = (ffs(rq) - 8) << 12;
 
 
 
5534
5535	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
 
 
 
 
 
 
5536						  PCI_EXP_DEVCTL_READRQ, v);
 
 
5537}
5538EXPORT_SYMBOL(pcie_set_readrq);
5539
5540/**
5541 * pcie_get_mps - get PCI Express maximum payload size
5542 * @dev: PCI device to query
5543 *
5544 * Returns maximum payload size in bytes
5545 */
5546int pcie_get_mps(struct pci_dev *dev)
5547{
5548	u16 ctl;
5549
5550	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551
5552	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553}
5554EXPORT_SYMBOL(pcie_get_mps);
5555
5556/**
5557 * pcie_set_mps - set PCI Express maximum payload size
5558 * @dev: PCI device to query
5559 * @mps: maximum payload size in bytes
5560 *    valid values are 128, 256, 512, 1024, 2048, 4096
5561 *
5562 * If possible sets maximum payload size
5563 */
5564int pcie_set_mps(struct pci_dev *dev, int mps)
5565{
5566	u16 v;
 
5567
5568	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569		return -EINVAL;
5570
5571	v = ffs(mps) - 8;
5572	if (v > dev->pcie_mpss)
5573		return -EINVAL;
5574	v <<= 5;
5575
5576	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577						  PCI_EXP_DEVCTL_PAYLOAD, v);
 
 
5578}
5579EXPORT_SYMBOL(pcie_set_mps);
5580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5581/**
5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583 *			      device and its bandwidth limitation
5584 * @dev: PCI device to query
5585 * @limiting_dev: storage for device causing the bandwidth limitation
5586 * @speed: storage for speed of limiting device
5587 * @width: storage for width of limiting device
5588 *
5589 * Walk up the PCI device chain and find the point where the minimum
5590 * bandwidth is available.  Return the bandwidth available there and (if
5591 * limiting_dev, speed, and width pointers are supplied) information about
5592 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5593 * raw bandwidth.
5594 */
5595u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596			     enum pci_bus_speed *speed,
5597			     enum pcie_link_width *width)
5598{
5599	u16 lnksta;
5600	enum pci_bus_speed next_speed;
5601	enum pcie_link_width next_width;
5602	u32 bw, next_bw;
5603
5604	if (speed)
5605		*speed = PCI_SPEED_UNKNOWN;
5606	if (width)
5607		*width = PCIE_LNK_WIDTH_UNKNOWN;
5608
5609	bw = 0;
5610
5611	while (dev) {
5612		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613
5614		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616			PCI_EXP_LNKSTA_NLW_SHIFT;
5617
5618		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619
5620		/* Check if current device limits the total bandwidth */
5621		if (!bw || next_bw <= bw) {
5622			bw = next_bw;
5623
5624			if (limiting_dev)
5625				*limiting_dev = dev;
5626			if (speed)
5627				*speed = next_speed;
5628			if (width)
5629				*width = next_width;
5630		}
5631
5632		dev = pci_upstream_bridge(dev);
5633	}
5634
5635	return bw;
5636}
5637EXPORT_SYMBOL(pcie_bandwidth_available);
5638
5639/**
5640 * pcie_get_speed_cap - query for the PCI device's link speed capability
5641 * @dev: PCI device to query
5642 *
5643 * Query the PCI device speed capability.  Return the maximum link speed
5644 * supported by the device.
5645 */
5646enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647{
5648	u32 lnkcap2, lnkcap;
5649
5650	/*
5651	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5652	 * implementation note there recommends using the Supported Link
5653	 * Speeds Vector in Link Capabilities 2 when supported.
5654	 *
5655	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656	 * should use the Supported Link Speeds field in Link Capabilities,
5657	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658	 */
5659	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660	if (lnkcap2) { /* PCIe r3.0-compliant */
5661		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662			return PCIE_SPEED_32_0GT;
5663		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664			return PCIE_SPEED_16_0GT;
5665		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666			return PCIE_SPEED_8_0GT;
5667		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668			return PCIE_SPEED_5_0GT;
5669		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670			return PCIE_SPEED_2_5GT;
5671		return PCI_SPEED_UNKNOWN;
5672	}
5673
5674	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676		return PCIE_SPEED_5_0GT;
5677	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678		return PCIE_SPEED_2_5GT;
5679
5680	return PCI_SPEED_UNKNOWN;
5681}
5682EXPORT_SYMBOL(pcie_get_speed_cap);
5683
5684/**
5685 * pcie_get_width_cap - query for the PCI device's link width capability
5686 * @dev: PCI device to query
5687 *
5688 * Query the PCI device width capability.  Return the maximum link width
5689 * supported by the device.
5690 */
5691enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692{
5693	u32 lnkcap;
5694
5695	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696	if (lnkcap)
5697		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698
5699	return PCIE_LNK_WIDTH_UNKNOWN;
5700}
5701EXPORT_SYMBOL(pcie_get_width_cap);
5702
5703/**
5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705 * @dev: PCI device
5706 * @speed: storage for link speed
5707 * @width: storage for link width
5708 *
5709 * Calculate a PCI device's link bandwidth by querying for its link speed
5710 * and width, multiplying them, and applying encoding overhead.  The result
5711 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712 */
5713u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714			   enum pcie_link_width *width)
5715{
5716	*speed = pcie_get_speed_cap(dev);
5717	*width = pcie_get_width_cap(dev);
5718
5719	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720		return 0;
5721
5722	return *width * PCIE_SPEED2MBS_ENC(*speed);
5723}
5724
5725/**
5726 * __pcie_print_link_status - Report the PCI device's link speed and width
5727 * @dev: PCI device to query
5728 * @verbose: Print info even when enough bandwidth is available
5729 *
5730 * If the available bandwidth at the device is less than the device is
5731 * capable of, report the device's maximum possible bandwidth and the
5732 * upstream link that limits its performance.  If @verbose, always print
5733 * the available bandwidth, even if the device isn't constrained.
5734 */
5735void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736{
5737	enum pcie_link_width width, width_cap;
5738	enum pci_bus_speed speed, speed_cap;
5739	struct pci_dev *limiting_dev = NULL;
5740	u32 bw_avail, bw_cap;
5741
5742	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744
5745	if (bw_avail >= bw_cap && verbose)
5746		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747			 bw_cap / 1000, bw_cap % 1000,
5748			 PCIE_SPEED2STR(speed_cap), width_cap);
5749	else if (bw_avail < bw_cap)
5750		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751			 bw_avail / 1000, bw_avail % 1000,
5752			 PCIE_SPEED2STR(speed), width,
5753			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754			 bw_cap / 1000, bw_cap % 1000,
5755			 PCIE_SPEED2STR(speed_cap), width_cap);
5756}
5757
5758/**
5759 * pcie_print_link_status - Report the PCI device's link speed and width
5760 * @dev: PCI device to query
5761 *
5762 * Report the available bandwidth at the device.
5763 */
5764void pcie_print_link_status(struct pci_dev *dev)
5765{
5766	__pcie_print_link_status(dev, true);
5767}
5768EXPORT_SYMBOL(pcie_print_link_status);
5769
5770/**
5771 * pci_select_bars - Make BAR mask from the type of resource
5772 * @dev: the PCI device for which BAR mask is made
5773 * @flags: resource type mask to be selected
5774 *
5775 * This helper routine makes bar mask from the type of resource.
5776 */
5777int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778{
5779	int i, bars = 0;
5780	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781		if (pci_resource_flags(dev, i) & flags)
5782			bars |= (1 << i);
5783	return bars;
5784}
5785EXPORT_SYMBOL(pci_select_bars);
5786
5787/* Some architectures require additional programming to enable VGA */
5788static arch_set_vga_state_t arch_set_vga_state;
5789
5790void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791{
5792	arch_set_vga_state = func;	/* NULL disables */
5793}
5794
5795static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796				  unsigned int command_bits, u32 flags)
5797{
5798	if (arch_set_vga_state)
5799		return arch_set_vga_state(dev, decode, command_bits,
5800						flags);
5801	return 0;
5802}
5803
5804/**
5805 * pci_set_vga_state - set VGA decode state on device and parents if requested
5806 * @dev: the PCI device
5807 * @decode: true = enable decoding, false = disable decoding
5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809 * @flags: traverse ancestors and change bridges
5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811 */
5812int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813		      unsigned int command_bits, u32 flags)
5814{
5815	struct pci_bus *bus;
5816	struct pci_dev *bridge;
5817	u16 cmd;
5818	int rc;
5819
5820	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821
5822	/* ARCH specific VGA enables */
5823	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824	if (rc)
5825		return rc;
5826
5827	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829		if (decode == true)
5830			cmd |= command_bits;
5831		else
5832			cmd &= ~command_bits;
5833		pci_write_config_word(dev, PCI_COMMAND, cmd);
5834	}
5835
5836	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837		return 0;
5838
5839	bus = dev->bus;
5840	while (bus) {
5841		bridge = bus->self;
5842		if (bridge) {
5843			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844					     &cmd);
5845			if (decode == true)
5846				cmd |= PCI_BRIDGE_CTL_VGA;
5847			else
5848				cmd &= ~PCI_BRIDGE_CTL_VGA;
5849			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850					      cmd);
5851		}
5852		bus = bus->parent;
5853	}
5854	return 0;
5855}
5856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5857/**
5858 * pci_add_dma_alias - Add a DMA devfn alias for a device
5859 * @dev: the PCI device for which alias is added
5860 * @devfn: alias slot and function
 
5861 *
5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863 * which is used to program permissible bus-devfn source addresses for DMA
5864 * requests in an IOMMU.  These aliases factor into IOMMU group creation
5865 * and are useful for devices generating DMA requests beyond or different
5866 * from their logical bus-devfn.  Examples include device quirks where the
5867 * device simply uses the wrong devfn, as well as non-transparent bridges
5868 * where the alias may be a proxy for devices in another domain.
5869 *
5870 * IOMMU group creation is performed during device discovery or addition,
5871 * prior to any potential DMA mapping and therefore prior to driver probing
5872 * (especially for userspace assigned devices where IOMMU group definition
5873 * cannot be left as a userspace activity).  DMA aliases should therefore
5874 * be configured via quirks, such as the PCI fixup header quirk.
5875 */
5876void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
 
5877{
 
 
 
 
 
5878	if (!dev->dma_alias_mask)
5879		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880	if (!dev->dma_alias_mask) {
5881		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882		return;
5883	}
5884
5885	set_bit(devfn, dev->dma_alias_mask);
5886	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887		 PCI_SLOT(devfn), PCI_FUNC(devfn));
 
 
 
 
 
 
5888}
5889
5890bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891{
5892	return (dev1->dma_alias_mask &&
5893		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894	       (dev2->dma_alias_mask &&
5895		test_bit(dev1->devfn, dev2->dma_alias_mask));
 
 
5896}
5897
5898bool pci_device_is_present(struct pci_dev *pdev)
5899{
5900	u32 v;
5901
 
 
5902	if (pci_dev_is_disconnected(pdev))
5903		return false;
5904	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905}
5906EXPORT_SYMBOL_GPL(pci_device_is_present);
5907
5908void pci_ignore_hotplug(struct pci_dev *dev)
5909{
5910	struct pci_dev *bridge = dev->bus->self;
5911
5912	dev->ignore_hotplug = 1;
5913	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5914	if (bridge)
5915		bridge->ignore_hotplug = 1;
5916}
5917EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5919resource_size_t __weak pcibios_default_alignment(void)
5920{
5921	return 0;
5922}
5923
5924/*
5925 * Arches that don't want to expose struct resource to userland as-is in
5926 * sysfs and /proc can implement their own pci_resource_to_user().
5927 */
5928void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929				 const struct resource *rsrc,
5930				 resource_size_t *start, resource_size_t *end)
5931{
5932	*start = rsrc->start;
5933	*end = rsrc->end;
5934}
5935
5936static char *resource_alignment_param;
5937static DEFINE_SPINLOCK(resource_alignment_lock);
5938
5939/**
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5943 *
5944 * RETURNS: Resource alignment if it is specified.
5945 *          Zero if it is not specified.
5946 */
5947static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948							bool *resize)
5949{
5950	int align_order, count;
5951	resource_size_t align = pcibios_default_alignment();
5952	const char *p;
5953	int ret;
5954
5955	spin_lock(&resource_alignment_lock);
5956	p = resource_alignment_param;
5957	if (!p || !*p)
5958		goto out;
5959	if (pci_has_flag(PCI_PROBE_ONLY)) {
5960		align = 0;
5961		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962		goto out;
5963	}
5964
5965	while (*p) {
5966		count = 0;
5967		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968							p[count] == '@') {
5969			p += count + 1;
 
 
 
 
 
5970		} else {
5971			align_order = -1;
5972		}
5973
5974		ret = pci_dev_str_match(dev, p, &p);
5975		if (ret == 1) {
5976			*resize = true;
5977			if (align_order == -1)
5978				align = PAGE_SIZE;
5979			else
5980				align = 1 << align_order;
5981			break;
5982		} else if (ret < 0) {
5983			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984			       p);
5985			break;
5986		}
5987
5988		if (*p != ';' && *p != ',') {
5989			/* End of param or invalid format */
5990			break;
5991		}
5992		p++;
5993	}
5994out:
5995	spin_unlock(&resource_alignment_lock);
5996	return align;
5997}
5998
5999static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000					   resource_size_t align, bool resize)
6001{
6002	struct resource *r = &dev->resource[bar];
 
6003	resource_size_t size;
6004
6005	if (!(r->flags & IORESOURCE_MEM))
6006		return;
6007
6008	if (r->flags & IORESOURCE_PCI_FIXED) {
6009		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010			 bar, r, (unsigned long long)align);
6011		return;
6012	}
6013
6014	size = resource_size(r);
6015	if (size >= align)
6016		return;
6017
6018	/*
6019	 * Increase the alignment of the resource.  There are two ways we
6020	 * can do this:
6021	 *
6022	 * 1) Increase the size of the resource.  BARs are aligned on their
6023	 *    size, so when we reallocate space for this resource, we'll
6024	 *    allocate it with the larger alignment.  This also prevents
6025	 *    assignment of any other BARs inside the alignment region, so
6026	 *    if we're requesting page alignment, this means no other BARs
6027	 *    will share the page.
6028	 *
6029	 *    The disadvantage is that this makes the resource larger than
6030	 *    the hardware BAR, which may break drivers that compute things
6031	 *    based on the resource size, e.g., to find registers at a
6032	 *    fixed offset before the end of the BAR.
6033	 *
6034	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035	 *    set r->start to the desired alignment.  By itself this
6036	 *    doesn't prevent other BARs being put inside the alignment
6037	 *    region, but if we realign *every* resource of every device in
6038	 *    the system, none of them will share an alignment region.
6039	 *
6040	 * When the user has requested alignment for only some devices via
6041	 * the "pci=resource_alignment" argument, "resize" is true and we
6042	 * use the first method.  Otherwise we assume we're aligning all
6043	 * devices and we use the second.
6044	 */
6045
6046	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047		 bar, r, (unsigned long long)align);
6048
6049	if (resize) {
6050		r->start = 0;
6051		r->end = align - 1;
6052	} else {
6053		r->flags &= ~IORESOURCE_SIZEALIGN;
6054		r->flags |= IORESOURCE_STARTALIGN;
6055		r->start = align;
6056		r->end = r->start + size - 1;
6057	}
6058	r->flags |= IORESOURCE_UNSET;
6059}
6060
6061/*
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6067 */
6068void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069{
6070	int i;
6071	struct resource *r;
6072	resource_size_t align;
6073	u16 command;
6074	bool resize = false;
6075
6076	/*
6077	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078	 * 3.4.1.11.  Their resources are allocated from the space
6079	 * described by the VF BARx register in the PF's SR-IOV capability.
6080	 * We can't influence their alignment here.
6081	 */
6082	if (dev->is_virtfn)
6083		return;
6084
6085	/* check if specified PCI is target device to reassign */
6086	align = pci_specified_resource_alignment(dev, &resize);
6087	if (!align)
6088		return;
6089
6090	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092		pci_warn(dev, "Can't reassign resources to host bridge\n");
6093		return;
6094	}
6095
6096	pci_read_config_word(dev, PCI_COMMAND, &command);
6097	command &= ~PCI_COMMAND_MEMORY;
6098	pci_write_config_word(dev, PCI_COMMAND, command);
6099
6100	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101		pci_request_resource_alignment(dev, i, align, resize);
6102
6103	/*
6104	 * Need to disable bridge's resource window,
6105	 * to enable the kernel to reassign new resource
6106	 * window later on.
6107	 */
6108	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110			r = &dev->resource[i];
6111			if (!(r->flags & IORESOURCE_MEM))
6112				continue;
6113			r->flags |= IORESOURCE_UNSET;
6114			r->end = resource_size(r) - 1;
6115			r->start = 0;
6116		}
6117		pci_disable_bridge_window(dev);
6118	}
6119}
6120
6121static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122{
6123	size_t count = 0;
6124
6125	spin_lock(&resource_alignment_lock);
6126	if (resource_alignment_param)
6127		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128	spin_unlock(&resource_alignment_lock);
6129
6130	/*
6131	 * When set by the command line, resource_alignment_param will not
6132	 * have a trailing line feed, which is ugly. So conditionally add
6133	 * it here.
6134	 */
6135	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136		buf[count - 1] = '\n';
6137		buf[count++] = 0;
6138	}
6139
6140	return count;
6141}
6142
6143static ssize_t resource_alignment_store(struct bus_type *bus,
6144					const char *buf, size_t count)
6145{
6146	char *param = kstrndup(buf, count, GFP_KERNEL);
6147
 
 
 
 
6148	if (!param)
6149		return -ENOMEM;
6150
 
 
 
 
6151	spin_lock(&resource_alignment_lock);
6152	kfree(resource_alignment_param);
6153	resource_alignment_param = param;
 
 
 
 
 
6154	spin_unlock(&resource_alignment_lock);
 
 
 
6155	return count;
6156}
6157
6158static BUS_ATTR_RW(resource_alignment);
6159
6160static int __init pci_resource_alignment_sysfs_init(void)
6161{
6162	return bus_create_file(&pci_bus_type,
6163					&bus_attr_resource_alignment);
6164}
6165late_initcall(pci_resource_alignment_sysfs_init);
6166
6167static void pci_no_domains(void)
6168{
6169#ifdef CONFIG_PCI_DOMAINS
6170	pci_domains_supported = 0;
6171#endif
6172}
6173
6174#ifdef CONFIG_PCI_DOMAINS_GENERIC
6175static atomic_t __domain_nr = ATOMIC_INIT(-1);
 
6176
6177static int pci_get_new_domain_nr(void)
6178{
6179	return atomic_inc_return(&__domain_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
6180}
6181
6182static int of_pci_bus_find_domain_nr(struct device *parent)
6183{
6184	static int use_dt_domains = -1;
6185	int domain = -1;
 
 
 
 
 
 
6186
6187	if (parent)
6188		domain = of_get_pci_domain_nr(parent->of_node);
 
 
 
 
 
 
 
 
 
 
6189
6190	/*
6191	 * Check DT domain and use_dt_domains values.
6192	 *
6193	 * If DT domain property is valid (domain >= 0) and
6194	 * use_dt_domains != 0, the DT assignment is valid since this means
6195	 * we have not previously allocated a domain number by using
6196	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197	 * 1, to indicate that we have just assigned a domain number from
6198	 * DT.
6199	 *
6200	 * If DT domain property value is not valid (ie domain < 0), and we
6201	 * have not previously assigned a domain number from DT
6202	 * (use_dt_domains != 1) we should assign a domain number by
6203	 * using the:
6204	 *
6205	 * pci_get_new_domain_nr()
6206	 *
6207	 * API and update the use_dt_domains value to keep track of method we
6208	 * are using to assign domain numbers (use_dt_domains = 0).
6209	 *
6210	 * All other combinations imply we have a platform that is trying
6211	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212	 * which is a recipe for domain mishandling and it is prevented by
6213	 * invalidating the domain value (domain = -1) and printing a
6214	 * corresponding error.
6215	 */
6216	if (domain >= 0 && use_dt_domains) {
6217		use_dt_domains = 1;
6218	} else if (domain < 0 && use_dt_domains != 1) {
6219		use_dt_domains = 0;
6220		domain = pci_get_new_domain_nr();
6221	} else {
6222		if (parent)
6223			pr_err("Node %pOF has ", parent->of_node);
6224		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225		domain = -1;
6226	}
6227
6228	return domain;
 
 
 
 
6229}
6230
6231int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232{
6233	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234			       acpi_pci_bus_find_domain_nr(bus);
6235}
 
 
 
 
 
 
 
6236#endif
6237
6238/**
6239 * pci_ext_cfg_avail - can we access extended PCI config space?
6240 *
6241 * Returns 1 if we can access PCI extended config space (offsets
6242 * greater than 0xff). This is the default implementation. Architecture
6243 * implementations can override this.
6244 */
6245int __weak pci_ext_cfg_avail(void)
6246{
6247	return 1;
6248}
6249
6250void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251{
6252}
6253EXPORT_SYMBOL(pci_fixup_cardbus);
6254
6255static int __init pci_setup(char *str)
6256{
6257	while (str) {
6258		char *k = strchr(str, ',');
6259		if (k)
6260			*k++ = 0;
6261		if (*str && (str = pcibios_setup(str)) && *str) {
6262			if (!strcmp(str, "nomsi")) {
6263				pci_no_msi();
6264			} else if (!strncmp(str, "noats", 5)) {
6265				pr_info("PCIe: ATS is disabled\n");
6266				pcie_ats_disabled = true;
6267			} else if (!strcmp(str, "noaer")) {
6268				pci_no_aer();
6269			} else if (!strcmp(str, "earlydump")) {
6270				pci_early_dump = true;
6271			} else if (!strncmp(str, "realloc=", 8)) {
6272				pci_realloc_get_opt(str + 8);
6273			} else if (!strncmp(str, "realloc", 7)) {
6274				pci_realloc_get_opt("on");
6275			} else if (!strcmp(str, "nodomains")) {
6276				pci_no_domains();
6277			} else if (!strncmp(str, "noari", 5)) {
6278				pcie_ari_disabled = true;
6279			} else if (!strncmp(str, "cbiosize=", 9)) {
6280				pci_cardbus_io_size = memparse(str + 9, &str);
6281			} else if (!strncmp(str, "cbmemsize=", 10)) {
6282				pci_cardbus_mem_size = memparse(str + 10, &str);
6283			} else if (!strncmp(str, "resource_alignment=", 19)) {
6284				resource_alignment_param = str + 19;
6285			} else if (!strncmp(str, "ecrc=", 5)) {
6286				pcie_ecrc_get_policy(str + 5);
6287			} else if (!strncmp(str, "hpiosize=", 9)) {
6288				pci_hotplug_io_size = memparse(str + 9, &str);
 
 
 
 
6289			} else if (!strncmp(str, "hpmemsize=", 10)) {
6290				pci_hotplug_mem_size = memparse(str + 10, &str);
 
6291			} else if (!strncmp(str, "hpbussize=", 10)) {
6292				pci_hotplug_bus_size =
6293					simple_strtoul(str + 10, &str, 0);
6294				if (pci_hotplug_bus_size > 0xff)
6295					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299				pcie_bus_config = PCIE_BUS_SAFE;
6300			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303				pcie_bus_config = PCIE_BUS_PEER2PEER;
6304			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6305				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307				disable_acs_redir_param = str + 18;
6308			} else {
6309				pr_err("PCI: Unknown option `%s'\n", str);
6310			}
6311		}
6312		str = k;
6313	}
6314	return 0;
6315}
6316early_param("pci", pci_setup);
6317
6318/*
6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320 * in pci_setup(), above, to point to data in the __initdata section which
6321 * will be freed after the init sequence is complete. We can't allocate memory
6322 * in pci_setup() because some architectures do not have any memory allocation
6323 * service available during an early_param() call. So we allocate memory and
6324 * copy the variable here before the init section is freed.
6325 *
6326 */
6327static int __init pci_realloc_setup_params(void)
6328{
6329	resource_alignment_param = kstrdup(resource_alignment_param,
6330					   GFP_KERNEL);
6331	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332
6333	return 0;
6334}
6335pure_initcall(pci_realloc_setup_params);