Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Endpoint Function Driver to implement Non-Transparent Bridge functionality
   4 * Between PCI RC and EP
   5 *
   6 * Copyright (C) 2020 Texas Instruments
   7 * Copyright (C) 2022 NXP
   8 *
   9 * Based on pci-epf-ntb.c
  10 * Author: Frank Li <Frank.Li@nxp.com>
  11 * Author: Kishon Vijay Abraham I <kishon@ti.com>
  12 */
  13
  14/*
  15 * +------------+         +---------------------------------------+
  16 * |            |         |                                       |
  17 * +------------+         |                        +--------------+
  18 * | NTB        |         |                        | NTB          |
  19 * | NetDev     |         |                        | NetDev       |
  20 * +------------+         |                        +--------------+
  21 * | NTB        |         |                        | NTB          |
  22 * | Transfer   |         |                        | Transfer     |
  23 * +------------+         |                        +--------------+
  24 * |            |         |                        |              |
  25 * |  PCI NTB   |         |                        |              |
  26 * |    EPF     |         |                        |              |
  27 * |   Driver   |         |                        | PCI Virtual  |
  28 * |            |         +---------------+        | NTB Driver   |
  29 * |            |         | PCI EP NTB    |<------>|              |
  30 * |            |         |  FN Driver    |        |              |
  31 * +------------+         +---------------+        +--------------+
  32 * |            |         |               |        |              |
  33 * |  PCI Bus   | <-----> |  PCI EP Bus   |        |  Virtual PCI |
  34 * |            |  PCI    |               |        |     Bus      |
  35 * +------------+         +---------------+--------+--------------+
  36 * PCIe Root Port                        PCI EP
  37 */
  38
  39#include <linux/delay.h>
  40#include <linux/io.h>
  41#include <linux/module.h>
  42#include <linux/slab.h>
  43
  44#include <linux/pci-epc.h>
  45#include <linux/pci-epf.h>
  46#include <linux/ntb.h>
  47
  48static struct workqueue_struct *kpcintb_workqueue;
  49
  50#define COMMAND_CONFIGURE_DOORBELL	1
  51#define COMMAND_TEARDOWN_DOORBELL	2
  52#define COMMAND_CONFIGURE_MW		3
  53#define COMMAND_TEARDOWN_MW		4
  54#define COMMAND_LINK_UP			5
  55#define COMMAND_LINK_DOWN		6
  56
  57#define COMMAND_STATUS_OK		1
  58#define COMMAND_STATUS_ERROR		2
  59
  60#define LINK_STATUS_UP			BIT(0)
  61
  62#define SPAD_COUNT			64
  63#define DB_COUNT			4
  64#define NTB_MW_OFFSET			2
  65#define DB_COUNT_MASK			GENMASK(15, 0)
  66#define MSIX_ENABLE			BIT(16)
  67#define MAX_DB_COUNT			32
  68#define MAX_MW				4
  69
  70enum epf_ntb_bar {
  71	BAR_CONFIG,
  72	BAR_DB,
  73	BAR_MW0,
  74	BAR_MW1,
  75	BAR_MW2,
  76};
  77
  78/*
  79 * +--------------------------------------------------+ Base
  80 * |                                                  |
  81 * |                                                  |
  82 * |                                                  |
  83 * |          Common Control Register                 |
  84 * |                                                  |
  85 * |                                                  |
  86 * |                                                  |
  87 * +-----------------------+--------------------------+ Base+spad_offset
  88 * |                       |                          |
  89 * |    Peer Spad Space    |    Spad Space            |
  90 * |                       |                          |
  91 * |                       |                          |
  92 * +-----------------------+--------------------------+ Base+spad_offset
  93 * |                       |                          |     +spad_count * 4
  94 * |                       |                          |
  95 * |     Spad Space        |   Peer Spad Space        |
  96 * |                       |                          |
  97 * +-----------------------+--------------------------+
  98 *       Virtual PCI             PCIe Endpoint
  99 *       NTB Driver               NTB Driver
 100 */
 101struct epf_ntb_ctrl {
 102	u32 command;
 103	u32 argument;
 104	u16 command_status;
 105	u16 link_status;
 106	u32 topology;
 107	u64 addr;
 108	u64 size;
 109	u32 num_mws;
 110	u32 reserved;
 111	u32 spad_offset;
 112	u32 spad_count;
 113	u32 db_entry_size;
 114	u32 db_data[MAX_DB_COUNT];
 115	u32 db_offset[MAX_DB_COUNT];
 116} __packed;
 117
 118struct epf_ntb {
 119	struct ntb_dev ntb;
 120	struct pci_epf *epf;
 121	struct config_group group;
 122
 123	u32 num_mws;
 124	u32 db_count;
 125	u32 spad_count;
 126	u64 mws_size[MAX_MW];
 127	u64 db;
 128	u32 vbus_number;
 129	u16 vntb_pid;
 130	u16 vntb_vid;
 131
 132	bool linkup;
 133	u32 spad_size;
 134
 135	enum pci_barno epf_ntb_bar[6];
 136
 137	struct epf_ntb_ctrl *reg;
 138
 139	u32 *epf_db;
 140
 141	phys_addr_t vpci_mw_phy[MAX_MW];
 142	void __iomem *vpci_mw_addr[MAX_MW];
 143
 144	struct delayed_work cmd_handler;
 145};
 146
 147#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
 148#define ntb_ndev(__ntb) container_of(__ntb, struct epf_ntb, ntb)
 149
 150static struct pci_epf_header epf_ntb_header = {
 151	.vendorid	= PCI_ANY_ID,
 152	.deviceid	= PCI_ANY_ID,
 153	.baseclass_code	= PCI_BASE_CLASS_MEMORY,
 154	.interrupt_pin	= PCI_INTERRUPT_INTA,
 155};
 156
 157/**
 158 * epf_ntb_link_up() - Raise link_up interrupt to Virtual Host (VHOST)
 159 * @ntb: NTB device that facilitates communication between HOST and VHOST
 160 * @link_up: true or false indicating Link is UP or Down
 161 *
 162 * Once NTB function in HOST invoke ntb_link_enable(),
 163 * this NTB function driver will trigger a link event to VHOST.
 164 *
 165 * Returns: Zero for success, or an error code in case of failure
 166 */
 167static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
 168{
 169	if (link_up)
 170		ntb->reg->link_status |= LINK_STATUS_UP;
 171	else
 172		ntb->reg->link_status &= ~LINK_STATUS_UP;
 173
 174	ntb_link_event(&ntb->ntb);
 175	return 0;
 176}
 177
 178/**
 179 * epf_ntb_configure_mw() - Configure the Outbound Address Space for VHOST
 180 *   to access the memory window of HOST
 181 * @ntb: NTB device that facilitates communication between HOST and VHOST
 182 * @mw: Index of the memory window (either 0, 1, 2 or 3)
 183 *
 184 *                          EP Outbound Window
 185 * +--------+              +-----------+
 186 * |        |              |           |
 187 * |        |              |           |
 188 * |        |              |           |
 189 * |        |              |           |
 190 * |        |              +-----------+
 191 * | Virtual|              | Memory Win|
 192 * | NTB    | -----------> |           |
 193 * | Driver |              |           |
 194 * |        |              +-----------+
 195 * |        |              |           |
 196 * |        |              |           |
 197 * +--------+              +-----------+
 198 *  VHOST                   PCI EP
 199 *
 200 * Returns: Zero for success, or an error code in case of failure
 201 */
 202static int epf_ntb_configure_mw(struct epf_ntb *ntb, u32 mw)
 203{
 204	phys_addr_t phys_addr;
 205	u8 func_no, vfunc_no;
 206	u64 addr, size;
 207	int ret = 0;
 208
 209	phys_addr = ntb->vpci_mw_phy[mw];
 210	addr = ntb->reg->addr;
 211	size = ntb->reg->size;
 212
 213	func_no = ntb->epf->func_no;
 214	vfunc_no = ntb->epf->vfunc_no;
 215
 216	ret = pci_epc_map_addr(ntb->epf->epc, func_no, vfunc_no, phys_addr, addr, size);
 217	if (ret)
 218		dev_err(&ntb->epf->epc->dev,
 219			"Failed to map memory window %d address\n", mw);
 220	return ret;
 221}
 222
 223/**
 224 * epf_ntb_teardown_mw() - Teardown the configured OB ATU
 225 * @ntb: NTB device that facilitates communication between HOST and VHOST
 226 * @mw: Index of the memory window (either 0, 1, 2 or 3)
 227 *
 228 * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
 229 * pci_epc_unmap_addr()
 230 */
 231static void epf_ntb_teardown_mw(struct epf_ntb *ntb, u32 mw)
 232{
 233	pci_epc_unmap_addr(ntb->epf->epc,
 234			   ntb->epf->func_no,
 235			   ntb->epf->vfunc_no,
 236			   ntb->vpci_mw_phy[mw]);
 237}
 238
 239/**
 240 * epf_ntb_cmd_handler() - Handle commands provided by the NTB HOST
 241 * @work: work_struct for the epf_ntb_epc
 242 *
 243 * Workqueue function that gets invoked for the two epf_ntb_epc
 244 * periodically (once every 5ms) to see if it has received any commands
 245 * from NTB HOST. The HOST can send commands to configure doorbell or
 246 * configure memory window or to update link status.
 247 */
 248static void epf_ntb_cmd_handler(struct work_struct *work)
 249{
 250	struct epf_ntb_ctrl *ctrl;
 251	u32 command, argument;
 252	struct epf_ntb *ntb;
 253	struct device *dev;
 254	int ret;
 255	int i;
 256
 257	ntb = container_of(work, struct epf_ntb, cmd_handler.work);
 258
 259	for (i = 1; i < ntb->db_count; i++) {
 260		if (ntb->epf_db[i]) {
 261			ntb->db |= 1 << (i - 1);
 262			ntb_db_event(&ntb->ntb, i);
 263			ntb->epf_db[i] = 0;
 264		}
 265	}
 266
 267	ctrl = ntb->reg;
 268	command = ctrl->command;
 269	if (!command)
 270		goto reset_handler;
 271	argument = ctrl->argument;
 272
 273	ctrl->command = 0;
 274	ctrl->argument = 0;
 275
 276	ctrl = ntb->reg;
 277	dev = &ntb->epf->dev;
 278
 279	switch (command) {
 280	case COMMAND_CONFIGURE_DOORBELL:
 281		ctrl->command_status = COMMAND_STATUS_OK;
 282		break;
 283	case COMMAND_TEARDOWN_DOORBELL:
 284		ctrl->command_status = COMMAND_STATUS_OK;
 285		break;
 286	case COMMAND_CONFIGURE_MW:
 287		ret = epf_ntb_configure_mw(ntb, argument);
 288		if (ret < 0)
 289			ctrl->command_status = COMMAND_STATUS_ERROR;
 290		else
 291			ctrl->command_status = COMMAND_STATUS_OK;
 292		break;
 293	case COMMAND_TEARDOWN_MW:
 294		epf_ntb_teardown_mw(ntb, argument);
 295		ctrl->command_status = COMMAND_STATUS_OK;
 296		break;
 297	case COMMAND_LINK_UP:
 298		ntb->linkup = true;
 299		ret = epf_ntb_link_up(ntb, true);
 300		if (ret < 0)
 301			ctrl->command_status = COMMAND_STATUS_ERROR;
 302		else
 303			ctrl->command_status = COMMAND_STATUS_OK;
 304		goto reset_handler;
 305	case COMMAND_LINK_DOWN:
 306		ntb->linkup = false;
 307		ret = epf_ntb_link_up(ntb, false);
 308		if (ret < 0)
 309			ctrl->command_status = COMMAND_STATUS_ERROR;
 310		else
 311			ctrl->command_status = COMMAND_STATUS_OK;
 312		break;
 313	default:
 314		dev_err(dev, "UNKNOWN command: %d\n", command);
 315		break;
 316	}
 317
 318reset_handler:
 319	queue_delayed_work(kpcintb_workqueue, &ntb->cmd_handler,
 320			   msecs_to_jiffies(5));
 321}
 322
 323/**
 324 * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
 325 * @ntb: EPC associated with one of the HOST which holds peer's outbound
 326 *	 address.
 327 *
 328 * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
 329 * self scratchpad region (removes inbound ATU configuration). While BAR0 is
 330 * the default self scratchpad BAR, an NTB could have other BARs for self
 331 * scratchpad (because of reserved BARs). This function can get the exact BAR
 332 * used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
 333 *
 334 * Please note the self scratchpad region and config region is combined to
 335 * a single region and mapped using the same BAR. Also note VHOST's peer
 336 * scratchpad is HOST's self scratchpad.
 337 *
 338 * Returns: void
 339 */
 340static void epf_ntb_config_sspad_bar_clear(struct epf_ntb *ntb)
 341{
 342	struct pci_epf_bar *epf_bar;
 343	enum pci_barno barno;
 344
 345	barno = ntb->epf_ntb_bar[BAR_CONFIG];
 346	epf_bar = &ntb->epf->bar[barno];
 347
 348	pci_epc_clear_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
 349}
 350
 351/**
 352 * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
 353 * @ntb: NTB device that facilitates communication between HOST and VHOST
 354 *
 355 * Map BAR0 of EP CONTROLLER which contains the VHOST's config and
 356 * self scratchpad region.
 357 *
 358 * Please note the self scratchpad region and config region is combined to
 359 * a single region and mapped using the same BAR.
 360 *
 361 * Returns: Zero for success, or an error code in case of failure
 362 */
 363static int epf_ntb_config_sspad_bar_set(struct epf_ntb *ntb)
 364{
 365	struct pci_epf_bar *epf_bar;
 366	enum pci_barno barno;
 367	u8 func_no, vfunc_no;
 368	struct device *dev;
 369	int ret;
 370
 371	dev = &ntb->epf->dev;
 372	func_no = ntb->epf->func_no;
 373	vfunc_no = ntb->epf->vfunc_no;
 374	barno = ntb->epf_ntb_bar[BAR_CONFIG];
 375	epf_bar = &ntb->epf->bar[barno];
 376
 377	ret = pci_epc_set_bar(ntb->epf->epc, func_no, vfunc_no, epf_bar);
 378	if (ret) {
 379		dev_err(dev, "inft: Config/Status/SPAD BAR set failed\n");
 380		return ret;
 381	}
 382	return 0;
 383}
 384
 385/**
 386 * epf_ntb_config_spad_bar_free() - Free the physical memory associated with
 387 *   config + scratchpad region
 388 * @ntb: NTB device that facilitates communication between HOST and VHOST
 389 */
 390static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
 391{
 392	enum pci_barno barno;
 393
 394	barno = ntb->epf_ntb_bar[BAR_CONFIG];
 395	pci_epf_free_space(ntb->epf, ntb->reg, barno, 0);
 396}
 397
 398/**
 399 * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
 400 *   region
 401 * @ntb: NTB device that facilitates communication between HOST and VHOST
 402 *
 403 * Allocate the Local Memory mentioned in the above diagram. The size of
 404 * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
 405 * is obtained from "spad-count" configfs entry.
 406 *
 407 * Returns: Zero for success, or an error code in case of failure
 408 */
 409static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb)
 410{
 411	size_t align;
 412	enum pci_barno barno;
 413	struct epf_ntb_ctrl *ctrl;
 414	u32 spad_size, ctrl_size;
 415	u64 size;
 416	struct pci_epf *epf = ntb->epf;
 417	struct device *dev = &epf->dev;
 418	u32 spad_count;
 419	void *base;
 420	int i;
 421	const struct pci_epc_features *epc_features = pci_epc_get_features(epf->epc,
 422								epf->func_no,
 423								epf->vfunc_no);
 424	barno = ntb->epf_ntb_bar[BAR_CONFIG];
 425	size = epc_features->bar_fixed_size[barno];
 426	align = epc_features->align;
 427
 428	if ((!IS_ALIGNED(size, align)))
 429		return -EINVAL;
 430
 431	spad_count = ntb->spad_count;
 432
 433	ctrl_size = sizeof(struct epf_ntb_ctrl);
 434	spad_size = 2 * spad_count * sizeof(u32);
 435
 436	if (!align) {
 437		ctrl_size = roundup_pow_of_two(ctrl_size);
 438		spad_size = roundup_pow_of_two(spad_size);
 439	} else {
 440		ctrl_size = ALIGN(ctrl_size, align);
 441		spad_size = ALIGN(spad_size, align);
 442	}
 443
 444	if (!size)
 445		size = ctrl_size + spad_size;
 446	else if (size < ctrl_size + spad_size)
 447		return -EINVAL;
 448
 449	base = pci_epf_alloc_space(epf, size, barno, align, 0);
 450	if (!base) {
 451		dev_err(dev, "Config/Status/SPAD alloc region fail\n");
 452		return -ENOMEM;
 453	}
 454
 455	ntb->reg = base;
 456
 457	ctrl = ntb->reg;
 458	ctrl->spad_offset = ctrl_size;
 459
 460	ctrl->spad_count = spad_count;
 461	ctrl->num_mws = ntb->num_mws;
 462	ntb->spad_size = spad_size;
 463
 464	ctrl->db_entry_size = sizeof(u32);
 465
 466	for (i = 0; i < ntb->db_count; i++) {
 467		ntb->reg->db_data[i] = 1 + i;
 468		ntb->reg->db_offset[i] = 0;
 469	}
 470
 471	return 0;
 472}
 473
 474/**
 475 * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capability
 476 * @ntb: NTB device that facilitates communication between HOST and VHOST
 477 *
 478 * Configure MSI/MSI-X capability for each interface with number of
 479 * interrupts equal to "db_count" configfs entry.
 480 *
 481 * Returns: Zero for success, or an error code in case of failure
 482 */
 483static int epf_ntb_configure_interrupt(struct epf_ntb *ntb)
 484{
 485	const struct pci_epc_features *epc_features;
 486	struct device *dev;
 487	u32 db_count;
 488	int ret;
 489
 490	dev = &ntb->epf->dev;
 491
 492	epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
 493
 494	if (!(epc_features->msix_capable || epc_features->msi_capable)) {
 495		dev_err(dev, "MSI or MSI-X is required for doorbell\n");
 496		return -EINVAL;
 497	}
 498
 499	db_count = ntb->db_count;
 500	if (db_count > MAX_DB_COUNT) {
 501		dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
 502		return -EINVAL;
 503	}
 504
 505	ntb->db_count = db_count;
 506
 507	if (epc_features->msi_capable) {
 508		ret = pci_epc_set_msi(ntb->epf->epc,
 509				      ntb->epf->func_no,
 510				      ntb->epf->vfunc_no,
 511				      16);
 512		if (ret) {
 513			dev_err(dev, "MSI configuration failed\n");
 514			return ret;
 515		}
 516	}
 517
 518	return 0;
 519}
 520
 521/**
 522 * epf_ntb_db_bar_init() - Configure Doorbell window BARs
 523 * @ntb: NTB device that facilitates communication between HOST and VHOST
 524 *
 525 * Returns: Zero for success, or an error code in case of failure
 526 */
 527static int epf_ntb_db_bar_init(struct epf_ntb *ntb)
 528{
 529	const struct pci_epc_features *epc_features;
 530	u32 align;
 531	struct device *dev = &ntb->epf->dev;
 532	int ret;
 533	struct pci_epf_bar *epf_bar;
 534	void __iomem *mw_addr;
 535	enum pci_barno barno;
 536	size_t size = sizeof(u32) * ntb->db_count;
 537
 538	epc_features = pci_epc_get_features(ntb->epf->epc,
 539					    ntb->epf->func_no,
 540					    ntb->epf->vfunc_no);
 541	align = epc_features->align;
 542
 543	if (size < 128)
 544		size = 128;
 545
 546	if (align)
 547		size = ALIGN(size, align);
 548	else
 549		size = roundup_pow_of_two(size);
 550
 551	barno = ntb->epf_ntb_bar[BAR_DB];
 552
 553	mw_addr = pci_epf_alloc_space(ntb->epf, size, barno, align, 0);
 554	if (!mw_addr) {
 555		dev_err(dev, "Failed to allocate OB address\n");
 556		return -ENOMEM;
 557	}
 558
 559	ntb->epf_db = mw_addr;
 560
 561	epf_bar = &ntb->epf->bar[barno];
 562
 563	ret = pci_epc_set_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
 564	if (ret) {
 565		dev_err(dev, "Doorbell BAR set failed\n");
 566			goto err_alloc_peer_mem;
 567	}
 568	return ret;
 569
 570err_alloc_peer_mem:
 571	pci_epf_free_space(ntb->epf, mw_addr, barno, 0);
 572	return -1;
 573}
 574
 575static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws);
 576
 577/**
 578 * epf_ntb_db_bar_clear() - Clear doorbell BAR and free memory
 579 *   allocated in peer's outbound address space
 580 * @ntb: NTB device that facilitates communication between HOST and VHOST
 581 */
 582static void epf_ntb_db_bar_clear(struct epf_ntb *ntb)
 583{
 584	enum pci_barno barno;
 585
 586	barno = ntb->epf_ntb_bar[BAR_DB];
 587	pci_epf_free_space(ntb->epf, ntb->epf_db, barno, 0);
 588	pci_epc_clear_bar(ntb->epf->epc,
 589			  ntb->epf->func_no,
 590			  ntb->epf->vfunc_no,
 591			  &ntb->epf->bar[barno]);
 592}
 593
 594/**
 595 * epf_ntb_mw_bar_init() - Configure Memory window BARs
 596 * @ntb: NTB device that facilitates communication between HOST and VHOST
 597 *
 598 * Returns: Zero for success, or an error code in case of failure
 599 */
 600static int epf_ntb_mw_bar_init(struct epf_ntb *ntb)
 601{
 602	int ret = 0;
 603	int i;
 604	u64 size;
 605	enum pci_barno barno;
 606	struct device *dev = &ntb->epf->dev;
 607
 608	for (i = 0; i < ntb->num_mws; i++) {
 609		size = ntb->mws_size[i];
 610		barno = ntb->epf_ntb_bar[BAR_MW0 + i];
 611
 612		ntb->epf->bar[barno].barno = barno;
 613		ntb->epf->bar[barno].size = size;
 614		ntb->epf->bar[barno].addr = NULL;
 615		ntb->epf->bar[barno].phys_addr = 0;
 616		ntb->epf->bar[barno].flags |= upper_32_bits(size) ?
 617				PCI_BASE_ADDRESS_MEM_TYPE_64 :
 618				PCI_BASE_ADDRESS_MEM_TYPE_32;
 619
 620		ret = pci_epc_set_bar(ntb->epf->epc,
 621				      ntb->epf->func_no,
 622				      ntb->epf->vfunc_no,
 623				      &ntb->epf->bar[barno]);
 624		if (ret) {
 625			dev_err(dev, "MW set failed\n");
 626			goto err_alloc_mem;
 627		}
 628
 629		/* Allocate EPC outbound memory windows to vpci vntb device */
 630		ntb->vpci_mw_addr[i] = pci_epc_mem_alloc_addr(ntb->epf->epc,
 631							      &ntb->vpci_mw_phy[i],
 632							      size);
 633		if (!ntb->vpci_mw_addr[i]) {
 634			ret = -ENOMEM;
 635			dev_err(dev, "Failed to allocate source address\n");
 636			goto err_set_bar;
 637		}
 638	}
 639
 640	return ret;
 641
 642err_set_bar:
 643	pci_epc_clear_bar(ntb->epf->epc,
 644			  ntb->epf->func_no,
 645			  ntb->epf->vfunc_no,
 646			  &ntb->epf->bar[barno]);
 647err_alloc_mem:
 648	epf_ntb_mw_bar_clear(ntb, i);
 649	return ret;
 650}
 651
 652/**
 653 * epf_ntb_mw_bar_clear() - Clear Memory window BARs
 654 * @ntb: NTB device that facilitates communication between HOST and VHOST
 655 * @num_mws: the number of Memory window BARs that to be cleared
 656 */
 657static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws)
 658{
 659	enum pci_barno barno;
 660	int i;
 661
 662	for (i = 0; i < num_mws; i++) {
 663		barno = ntb->epf_ntb_bar[BAR_MW0 + i];
 664		pci_epc_clear_bar(ntb->epf->epc,
 665				  ntb->epf->func_no,
 666				  ntb->epf->vfunc_no,
 667				  &ntb->epf->bar[barno]);
 668
 669		pci_epc_mem_free_addr(ntb->epf->epc,
 670				      ntb->vpci_mw_phy[i],
 671				      ntb->vpci_mw_addr[i],
 672				      ntb->mws_size[i]);
 673	}
 674}
 675
 676/**
 677 * epf_ntb_epc_destroy() - Cleanup NTB EPC interface
 678 * @ntb: NTB device that facilitates communication between HOST and VHOST
 679 *
 680 * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
 681 */
 682static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
 683{
 684	pci_epc_remove_epf(ntb->epf->epc, ntb->epf, 0);
 685	pci_epc_put(ntb->epf->epc);
 686}
 687
 688/**
 689 * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
 690 * constructs (scratchpad region, doorbell, memorywindow)
 691 * @ntb: NTB device that facilitates communication between HOST and VHOST
 692 *
 693 * Returns: Zero for success, or an error code in case of failure
 694 */
 695static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
 696{
 697	const struct pci_epc_features *epc_features;
 698	enum pci_barno barno;
 699	enum epf_ntb_bar bar;
 700	struct device *dev;
 701	u32 num_mws;
 702	int i;
 703
 704	barno = BAR_0;
 705	num_mws = ntb->num_mws;
 706	dev = &ntb->epf->dev;
 707	epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
 708
 709	/* These are required BARs which are mandatory for NTB functionality */
 710	for (bar = BAR_CONFIG; bar <= BAR_MW0; bar++, barno++) {
 711		barno = pci_epc_get_next_free_bar(epc_features, barno);
 712		if (barno < 0) {
 713			dev_err(dev, "Fail to get NTB function BAR\n");
 714			return barno;
 715		}
 716		ntb->epf_ntb_bar[bar] = barno;
 717	}
 718
 719	/* These are optional BARs which don't impact NTB functionality */
 720	for (bar = BAR_MW1, i = 1; i < num_mws; bar++, barno++, i++) {
 721		barno = pci_epc_get_next_free_bar(epc_features, barno);
 722		if (barno < 0) {
 723			ntb->num_mws = i;
 724			dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
 725		}
 726		ntb->epf_ntb_bar[bar] = barno;
 727	}
 728
 729	return 0;
 730}
 731
 732/**
 733 * epf_ntb_epc_init() - Initialize NTB interface
 734 * @ntb: NTB device that facilitates communication between HOST and VHOST
 735 *
 736 * Wrapper to initialize a particular EPC interface and start the workqueue
 737 * to check for commands from HOST. This function will write to the
 738 * EP controller HW for configuring it.
 739 *
 740 * Returns: Zero for success, or an error code in case of failure
 741 */
 742static int epf_ntb_epc_init(struct epf_ntb *ntb)
 743{
 744	u8 func_no, vfunc_no;
 745	struct pci_epc *epc;
 746	struct pci_epf *epf;
 747	struct device *dev;
 748	int ret;
 749
 750	epf = ntb->epf;
 751	dev = &epf->dev;
 752	epc = epf->epc;
 753	func_no = ntb->epf->func_no;
 754	vfunc_no = ntb->epf->vfunc_no;
 755
 756	ret = epf_ntb_config_sspad_bar_set(ntb);
 757	if (ret) {
 758		dev_err(dev, "Config/self SPAD BAR init failed");
 759		return ret;
 760	}
 761
 762	ret = epf_ntb_configure_interrupt(ntb);
 763	if (ret) {
 764		dev_err(dev, "Interrupt configuration failed\n");
 765		goto err_config_interrupt;
 766	}
 767
 768	ret = epf_ntb_db_bar_init(ntb);
 769	if (ret) {
 770		dev_err(dev, "DB BAR init failed\n");
 771		goto err_db_bar_init;
 772	}
 773
 774	ret = epf_ntb_mw_bar_init(ntb);
 775	if (ret) {
 776		dev_err(dev, "MW BAR init failed\n");
 777		goto err_mw_bar_init;
 778	}
 779
 780	if (vfunc_no <= 1) {
 781		ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
 782		if (ret) {
 783			dev_err(dev, "Configuration header write failed\n");
 784			goto err_write_header;
 785		}
 786	}
 787
 788	INIT_DELAYED_WORK(&ntb->cmd_handler, epf_ntb_cmd_handler);
 789	queue_work(kpcintb_workqueue, &ntb->cmd_handler.work);
 790
 791	return 0;
 792
 793err_write_header:
 794	epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
 795err_mw_bar_init:
 796	epf_ntb_db_bar_clear(ntb);
 797err_db_bar_init:
 798err_config_interrupt:
 799	epf_ntb_config_sspad_bar_clear(ntb);
 800
 801	return ret;
 802}
 803
 804
 805/**
 806 * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
 807 * @ntb: NTB device that facilitates communication between HOST and VHOST
 808 *
 809 * Wrapper to cleanup all NTB interfaces.
 810 */
 811static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
 812{
 813	epf_ntb_db_bar_clear(ntb);
 814	epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
 815}
 816
 817#define EPF_NTB_R(_name)						\
 818static ssize_t epf_ntb_##_name##_show(struct config_item *item,		\
 819				      char *page)			\
 820{									\
 821	struct config_group *group = to_config_group(item);		\
 822	struct epf_ntb *ntb = to_epf_ntb(group);			\
 823									\
 824	return sprintf(page, "%d\n", ntb->_name);			\
 825}
 826
 827#define EPF_NTB_W(_name)						\
 828static ssize_t epf_ntb_##_name##_store(struct config_item *item,	\
 829				       const char *page, size_t len)	\
 830{									\
 831	struct config_group *group = to_config_group(item);		\
 832	struct epf_ntb *ntb = to_epf_ntb(group);			\
 833	u32 val;							\
 834	int ret;							\
 835									\
 836	ret = kstrtou32(page, 0, &val);					\
 837	if (ret)							\
 838		return ret;						\
 839									\
 840	ntb->_name = val;						\
 841									\
 842	return len;							\
 843}
 844
 845#define EPF_NTB_MW_R(_name)						\
 846static ssize_t epf_ntb_##_name##_show(struct config_item *item,		\
 847				      char *page)			\
 848{									\
 849	struct config_group *group = to_config_group(item);		\
 850	struct epf_ntb *ntb = to_epf_ntb(group);			\
 851	struct device *dev = &ntb->epf->dev;				\
 852	int win_no;							\
 853									\
 854	if (sscanf(#_name, "mw%d", &win_no) != 1)			\
 855		return -EINVAL;						\
 856									\
 857	if (win_no <= 0 || win_no > ntb->num_mws) {			\
 858		dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
 859		return -EINVAL;						\
 860	}								\
 861									\
 862	return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]);	\
 863}
 864
 865#define EPF_NTB_MW_W(_name)						\
 866static ssize_t epf_ntb_##_name##_store(struct config_item *item,	\
 867				       const char *page, size_t len)	\
 868{									\
 869	struct config_group *group = to_config_group(item);		\
 870	struct epf_ntb *ntb = to_epf_ntb(group);			\
 871	struct device *dev = &ntb->epf->dev;				\
 872	int win_no;							\
 873	u64 val;							\
 874	int ret;							\
 875									\
 876	ret = kstrtou64(page, 0, &val);					\
 877	if (ret)							\
 878		return ret;						\
 879									\
 880	if (sscanf(#_name, "mw%d", &win_no) != 1)			\
 881		return -EINVAL;						\
 882									\
 883	if (win_no <= 0 || win_no > ntb->num_mws) {			\
 884		dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
 885		return -EINVAL;						\
 886	}								\
 887									\
 888	ntb->mws_size[win_no - 1] = val;				\
 889									\
 890	return len;							\
 891}
 892
 893static ssize_t epf_ntb_num_mws_store(struct config_item *item,
 894				     const char *page, size_t len)
 895{
 896	struct config_group *group = to_config_group(item);
 897	struct epf_ntb *ntb = to_epf_ntb(group);
 898	u32 val;
 899	int ret;
 900
 901	ret = kstrtou32(page, 0, &val);
 902	if (ret)
 903		return ret;
 904
 905	if (val > MAX_MW)
 906		return -EINVAL;
 907
 908	ntb->num_mws = val;
 909
 910	return len;
 911}
 912
 913EPF_NTB_R(spad_count)
 914EPF_NTB_W(spad_count)
 915EPF_NTB_R(db_count)
 916EPF_NTB_W(db_count)
 917EPF_NTB_R(num_mws)
 918EPF_NTB_R(vbus_number)
 919EPF_NTB_W(vbus_number)
 920EPF_NTB_R(vntb_pid)
 921EPF_NTB_W(vntb_pid)
 922EPF_NTB_R(vntb_vid)
 923EPF_NTB_W(vntb_vid)
 924EPF_NTB_MW_R(mw1)
 925EPF_NTB_MW_W(mw1)
 926EPF_NTB_MW_R(mw2)
 927EPF_NTB_MW_W(mw2)
 928EPF_NTB_MW_R(mw3)
 929EPF_NTB_MW_W(mw3)
 930EPF_NTB_MW_R(mw4)
 931EPF_NTB_MW_W(mw4)
 932
 933CONFIGFS_ATTR(epf_ntb_, spad_count);
 934CONFIGFS_ATTR(epf_ntb_, db_count);
 935CONFIGFS_ATTR(epf_ntb_, num_mws);
 936CONFIGFS_ATTR(epf_ntb_, mw1);
 937CONFIGFS_ATTR(epf_ntb_, mw2);
 938CONFIGFS_ATTR(epf_ntb_, mw3);
 939CONFIGFS_ATTR(epf_ntb_, mw4);
 940CONFIGFS_ATTR(epf_ntb_, vbus_number);
 941CONFIGFS_ATTR(epf_ntb_, vntb_pid);
 942CONFIGFS_ATTR(epf_ntb_, vntb_vid);
 943
 944static struct configfs_attribute *epf_ntb_attrs[] = {
 945	&epf_ntb_attr_spad_count,
 946	&epf_ntb_attr_db_count,
 947	&epf_ntb_attr_num_mws,
 948	&epf_ntb_attr_mw1,
 949	&epf_ntb_attr_mw2,
 950	&epf_ntb_attr_mw3,
 951	&epf_ntb_attr_mw4,
 952	&epf_ntb_attr_vbus_number,
 953	&epf_ntb_attr_vntb_pid,
 954	&epf_ntb_attr_vntb_vid,
 955	NULL,
 956};
 957
 958static const struct config_item_type ntb_group_type = {
 959	.ct_attrs	= epf_ntb_attrs,
 960	.ct_owner	= THIS_MODULE,
 961};
 962
 963/**
 964 * epf_ntb_add_cfs() - Add configfs directory specific to NTB
 965 * @epf: NTB endpoint function device
 966 * @group: A pointer to the config_group structure referencing a group of
 967 *	   config_items of a specific type that belong to a specific sub-system.
 968 *
 969 * Add configfs directory specific to NTB. This directory will hold
 970 * NTB specific properties like db_count, spad_count, num_mws etc.,
 971 *
 972 * Returns: Pointer to config_group
 973 */
 974static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
 975					    struct config_group *group)
 976{
 977	struct epf_ntb *ntb = epf_get_drvdata(epf);
 978	struct config_group *ntb_group = &ntb->group;
 979	struct device *dev = &epf->dev;
 980
 981	config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
 982
 983	return ntb_group;
 984}
 985
 986/*==== virtual PCI bus driver, which only load virtual NTB PCI driver ====*/
 987
 988static u32 pci_space[] = {
 989	0xffffffff,	/* Device ID, Vendor ID */
 990	0,		/* Status, Command */
 991	0xffffffff,	/* Base Class, Subclass, Prog Intf, Revision ID */
 992	0x40,		/* BIST, Header Type, Latency Timer, Cache Line Size */
 993	0,		/* BAR 0 */
 994	0,		/* BAR 1 */
 995	0,		/* BAR 2 */
 996	0,		/* BAR 3 */
 997	0,		/* BAR 4 */
 998	0,		/* BAR 5 */
 999	0,		/* Cardbus CIS Pointer */
1000	0,		/* Subsystem ID, Subsystem Vendor ID */
1001	0,		/* ROM Base Address */
1002	0,		/* Reserved, Capabilities Pointer */
1003	0,		/* Reserved */
1004	0,		/* Max_Lat, Min_Gnt, Interrupt Pin, Interrupt Line */
1005};
1006
1007static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val)
1008{
1009	if (devfn == 0) {
1010		memcpy(val, ((u8 *)pci_space) + where, size);
1011		return PCIBIOS_SUCCESSFUL;
1012	}
1013	return PCIBIOS_DEVICE_NOT_FOUND;
1014}
1015
1016static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val)
1017{
1018	return 0;
1019}
1020
1021static struct pci_ops vpci_ops = {
1022	.read = pci_read,
1023	.write = pci_write,
1024};
1025
1026static int vpci_scan_bus(void *sysdata)
1027{
1028	struct pci_bus *vpci_bus;
1029	struct epf_ntb *ndev = sysdata;
1030
1031	vpci_bus = pci_scan_bus(ndev->vbus_number, &vpci_ops, sysdata);
1032	if (vpci_bus)
1033		pr_err("create pci bus\n");
1034
1035	pci_bus_add_devices(vpci_bus);
1036
1037	return 0;
1038}
1039
1040/*==================== Virtual PCIe NTB driver ==========================*/
1041
1042static int vntb_epf_mw_count(struct ntb_dev *ntb, int pidx)
1043{
1044	struct epf_ntb *ndev = ntb_ndev(ntb);
1045
1046	return ndev->num_mws;
1047}
1048
1049static int vntb_epf_spad_count(struct ntb_dev *ntb)
1050{
1051	return ntb_ndev(ntb)->spad_count;
1052}
1053
1054static int vntb_epf_peer_mw_count(struct ntb_dev *ntb)
1055{
1056	return ntb_ndev(ntb)->num_mws;
1057}
1058
1059static u64 vntb_epf_db_valid_mask(struct ntb_dev *ntb)
1060{
1061	return BIT_ULL(ntb_ndev(ntb)->db_count) - 1;
1062}
1063
1064static int vntb_epf_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1065{
1066	return 0;
1067}
1068
1069static int vntb_epf_mw_set_trans(struct ntb_dev *ndev, int pidx, int idx,
1070		dma_addr_t addr, resource_size_t size)
1071{
1072	struct epf_ntb *ntb = ntb_ndev(ndev);
1073	struct pci_epf_bar *epf_bar;
1074	enum pci_barno barno;
1075	int ret;
1076	struct device *dev;
1077
1078	dev = &ntb->ntb.dev;
1079	barno = ntb->epf_ntb_bar[BAR_MW0 + idx];
1080	epf_bar = &ntb->epf->bar[barno];
1081	epf_bar->phys_addr = addr;
1082	epf_bar->barno = barno;
1083	epf_bar->size = size;
1084
1085	ret = pci_epc_set_bar(ntb->epf->epc, 0, 0, epf_bar);
1086	if (ret) {
1087		dev_err(dev, "failure set mw trans\n");
1088		return ret;
1089	}
1090	return 0;
1091}
1092
1093static int vntb_epf_mw_clear_trans(struct ntb_dev *ntb, int pidx, int idx)
1094{
1095	return 0;
1096}
1097
1098static int vntb_epf_peer_mw_get_addr(struct ntb_dev *ndev, int idx,
1099				phys_addr_t *base, resource_size_t *size)
1100{
1101
1102	struct epf_ntb *ntb = ntb_ndev(ndev);
1103
1104	if (base)
1105		*base = ntb->vpci_mw_phy[idx];
1106
1107	if (size)
1108		*size = ntb->mws_size[idx];
1109
1110	return 0;
1111}
1112
1113static int vntb_epf_link_enable(struct ntb_dev *ntb,
1114			enum ntb_speed max_speed,
1115			enum ntb_width max_width)
1116{
1117	return 0;
1118}
1119
1120static u32 vntb_epf_spad_read(struct ntb_dev *ndev, int idx)
1121{
1122	struct epf_ntb *ntb = ntb_ndev(ndev);
1123	int off = ntb->reg->spad_offset, ct = ntb->reg->spad_count * sizeof(u32);
1124	u32 val;
1125	void __iomem *base = (void __iomem *)ntb->reg;
1126
1127	val = readl(base + off + ct + idx * sizeof(u32));
1128	return val;
1129}
1130
1131static int vntb_epf_spad_write(struct ntb_dev *ndev, int idx, u32 val)
1132{
1133	struct epf_ntb *ntb = ntb_ndev(ndev);
1134	struct epf_ntb_ctrl *ctrl = ntb->reg;
1135	int off = ctrl->spad_offset, ct = ctrl->spad_count * sizeof(u32);
1136	void __iomem *base = (void __iomem *)ntb->reg;
1137
1138	writel(val, base + off + ct + idx * sizeof(u32));
1139	return 0;
1140}
1141
1142static u32 vntb_epf_peer_spad_read(struct ntb_dev *ndev, int pidx, int idx)
1143{
1144	struct epf_ntb *ntb = ntb_ndev(ndev);
1145	struct epf_ntb_ctrl *ctrl = ntb->reg;
1146	int off = ctrl->spad_offset;
1147	void __iomem *base = (void __iomem *)ntb->reg;
1148	u32 val;
1149
1150	val = readl(base + off + idx * sizeof(u32));
1151	return val;
1152}
1153
1154static int vntb_epf_peer_spad_write(struct ntb_dev *ndev, int pidx, int idx, u32 val)
1155{
1156	struct epf_ntb *ntb = ntb_ndev(ndev);
1157	struct epf_ntb_ctrl *ctrl = ntb->reg;
1158	int off = ctrl->spad_offset;
1159	void __iomem *base = (void __iomem *)ntb->reg;
1160
1161	writel(val, base + off + idx * sizeof(u32));
1162	return 0;
1163}
1164
1165static int vntb_epf_peer_db_set(struct ntb_dev *ndev, u64 db_bits)
1166{
1167	u32 interrupt_num = ffs(db_bits) + 1;
1168	struct epf_ntb *ntb = ntb_ndev(ndev);
1169	u8 func_no, vfunc_no;
1170	int ret;
1171
1172	func_no = ntb->epf->func_no;
1173	vfunc_no = ntb->epf->vfunc_no;
1174
1175	ret = pci_epc_raise_irq(ntb->epf->epc, func_no, vfunc_no,
1176				PCI_IRQ_MSI, interrupt_num + 1);
1177	if (ret)
1178		dev_err(&ntb->ntb.dev, "Failed to raise IRQ\n");
1179
1180	return ret;
1181}
1182
1183static u64 vntb_epf_db_read(struct ntb_dev *ndev)
1184{
1185	struct epf_ntb *ntb = ntb_ndev(ndev);
1186
1187	return ntb->db;
1188}
1189
1190static int vntb_epf_mw_get_align(struct ntb_dev *ndev, int pidx, int idx,
1191			resource_size_t *addr_align,
1192			resource_size_t *size_align,
1193			resource_size_t *size_max)
1194{
1195	struct epf_ntb *ntb = ntb_ndev(ndev);
1196
1197	if (addr_align)
1198		*addr_align = SZ_4K;
1199
1200	if (size_align)
1201		*size_align = 1;
1202
1203	if (size_max)
1204		*size_max = ntb->mws_size[idx];
1205
1206	return 0;
1207}
1208
1209static u64 vntb_epf_link_is_up(struct ntb_dev *ndev,
1210			enum ntb_speed *speed,
1211			enum ntb_width *width)
1212{
1213	struct epf_ntb *ntb = ntb_ndev(ndev);
1214
1215	return ntb->reg->link_status;
1216}
1217
1218static int vntb_epf_db_clear_mask(struct ntb_dev *ndev, u64 db_bits)
1219{
1220	return 0;
1221}
1222
1223static int vntb_epf_db_clear(struct ntb_dev *ndev, u64 db_bits)
1224{
1225	struct epf_ntb *ntb = ntb_ndev(ndev);
1226
1227	ntb->db &= ~db_bits;
1228	return 0;
1229}
1230
1231static int vntb_epf_link_disable(struct ntb_dev *ntb)
1232{
1233	return 0;
1234}
1235
1236static const struct ntb_dev_ops vntb_epf_ops = {
1237	.mw_count		= vntb_epf_mw_count,
1238	.spad_count		= vntb_epf_spad_count,
1239	.peer_mw_count		= vntb_epf_peer_mw_count,
1240	.db_valid_mask		= vntb_epf_db_valid_mask,
1241	.db_set_mask		= vntb_epf_db_set_mask,
1242	.mw_set_trans		= vntb_epf_mw_set_trans,
1243	.mw_clear_trans		= vntb_epf_mw_clear_trans,
1244	.peer_mw_get_addr	= vntb_epf_peer_mw_get_addr,
1245	.link_enable		= vntb_epf_link_enable,
1246	.spad_read		= vntb_epf_spad_read,
1247	.spad_write		= vntb_epf_spad_write,
1248	.peer_spad_read		= vntb_epf_peer_spad_read,
1249	.peer_spad_write	= vntb_epf_peer_spad_write,
1250	.peer_db_set		= vntb_epf_peer_db_set,
1251	.db_read		= vntb_epf_db_read,
1252	.mw_get_align		= vntb_epf_mw_get_align,
1253	.link_is_up		= vntb_epf_link_is_up,
1254	.db_clear_mask		= vntb_epf_db_clear_mask,
1255	.db_clear		= vntb_epf_db_clear,
1256	.link_disable		= vntb_epf_link_disable,
1257};
1258
1259static int pci_vntb_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1260{
1261	int ret;
1262	struct epf_ntb *ndev = (struct epf_ntb *)pdev->sysdata;
1263	struct device *dev = &pdev->dev;
1264
1265	ndev->ntb.pdev = pdev;
1266	ndev->ntb.topo = NTB_TOPO_NONE;
1267	ndev->ntb.ops =  &vntb_epf_ops;
1268
1269	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1270	if (ret) {
1271		dev_err(dev, "Cannot set DMA mask\n");
1272		return -EINVAL;
1273	}
1274
1275	ret = ntb_register_device(&ndev->ntb);
1276	if (ret) {
1277		dev_err(dev, "Failed to register NTB device\n");
1278		goto err_register_dev;
1279	}
1280
1281	dev_dbg(dev, "PCI Virtual NTB driver loaded\n");
1282	return 0;
1283
1284err_register_dev:
1285	put_device(&ndev->ntb.dev);
1286	return -EINVAL;
1287}
1288
1289static struct pci_device_id pci_vntb_table[] = {
1290	{
1291		PCI_DEVICE(0xffff, 0xffff),
1292	},
1293	{},
1294};
1295
1296static struct pci_driver vntb_pci_driver = {
1297	.name           = "pci-vntb",
1298	.id_table       = pci_vntb_table,
1299	.probe          = pci_vntb_probe,
1300};
1301
1302/* ============ PCIe EPF Driver Bind ====================*/
1303
1304/**
1305 * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
1306 * @epf: NTB endpoint function device
1307 *
1308 * Initialize both the endpoint controllers associated with NTB function device.
1309 * Invoked when a primary interface or secondary interface is bound to EPC
1310 * device. This function will succeed only when EPC is bound to both the
1311 * interfaces.
1312 *
1313 * Returns: Zero for success, or an error code in case of failure
1314 */
1315static int epf_ntb_bind(struct pci_epf *epf)
1316{
1317	struct epf_ntb *ntb = epf_get_drvdata(epf);
1318	struct device *dev = &epf->dev;
1319	int ret;
1320
1321	if (!epf->epc) {
1322		dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
1323		return 0;
1324	}
1325
1326	ret = epf_ntb_init_epc_bar(ntb);
1327	if (ret) {
1328		dev_err(dev, "Failed to create NTB EPC\n");
1329		goto err_bar_init;
1330	}
1331
1332	ret = epf_ntb_config_spad_bar_alloc(ntb);
1333	if (ret) {
1334		dev_err(dev, "Failed to allocate BAR memory\n");
1335		goto err_bar_alloc;
1336	}
1337
1338	ret = epf_ntb_epc_init(ntb);
1339	if (ret) {
1340		dev_err(dev, "Failed to initialize EPC\n");
1341		goto err_bar_alloc;
1342	}
1343
1344	epf_set_drvdata(epf, ntb);
1345
1346	pci_space[0] = (ntb->vntb_pid << 16) | ntb->vntb_vid;
1347	pci_vntb_table[0].vendor = ntb->vntb_vid;
1348	pci_vntb_table[0].device = ntb->vntb_pid;
1349
1350	ret = pci_register_driver(&vntb_pci_driver);
1351	if (ret) {
1352		dev_err(dev, "failure register vntb pci driver\n");
1353		goto err_bar_alloc;
1354	}
1355
1356	vpci_scan_bus(ntb);
1357
1358	return 0;
1359
1360err_bar_alloc:
1361	epf_ntb_config_spad_bar_free(ntb);
1362
1363err_bar_init:
1364	epf_ntb_epc_destroy(ntb);
1365
1366	return ret;
1367}
1368
1369/**
1370 * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
1371 * @epf: NTB endpoint function device
1372 *
1373 * Cleanup the initialization from epf_ntb_bind()
1374 */
1375static void epf_ntb_unbind(struct pci_epf *epf)
1376{
1377	struct epf_ntb *ntb = epf_get_drvdata(epf);
1378
1379	epf_ntb_epc_cleanup(ntb);
1380	epf_ntb_config_spad_bar_free(ntb);
1381	epf_ntb_epc_destroy(ntb);
1382
1383	pci_unregister_driver(&vntb_pci_driver);
1384}
1385
1386// EPF driver probe
1387static const struct pci_epf_ops epf_ntb_ops = {
1388	.bind   = epf_ntb_bind,
1389	.unbind = epf_ntb_unbind,
1390	.add_cfs = epf_ntb_add_cfs,
1391};
1392
1393/**
1394 * epf_ntb_probe() - Probe NTB function driver
1395 * @epf: NTB endpoint function device
1396 * @id: NTB endpoint function device ID
1397 *
1398 * Probe NTB function driver when endpoint function bus detects a NTB
1399 * endpoint function.
1400 *
1401 * Returns: Zero for success, or an error code in case of failure
1402 */
1403static int epf_ntb_probe(struct pci_epf *epf,
1404			 const struct pci_epf_device_id *id)
1405{
1406	struct epf_ntb *ntb;
1407	struct device *dev;
1408
1409	dev = &epf->dev;
1410
1411	ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
1412	if (!ntb)
1413		return -ENOMEM;
1414
1415	epf->header = &epf_ntb_header;
1416	ntb->epf = epf;
1417	ntb->vbus_number = 0xff;
1418	epf_set_drvdata(epf, ntb);
1419
1420	dev_info(dev, "pci-ep epf driver loaded\n");
1421	return 0;
1422}
1423
1424static const struct pci_epf_device_id epf_ntb_ids[] = {
1425	{
1426		.name = "pci_epf_vntb",
1427	},
1428	{},
1429};
1430
1431static struct pci_epf_driver epf_ntb_driver = {
1432	.driver.name    = "pci_epf_vntb",
1433	.probe          = epf_ntb_probe,
1434	.id_table       = epf_ntb_ids,
1435	.ops            = &epf_ntb_ops,
1436	.owner          = THIS_MODULE,
1437};
1438
1439static int __init epf_ntb_init(void)
1440{
1441	int ret;
1442
1443	kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
1444					    WQ_HIGHPRI, 0);
1445	ret = pci_epf_register_driver(&epf_ntb_driver);
1446	if (ret) {
1447		destroy_workqueue(kpcintb_workqueue);
1448		pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
1449		return ret;
1450	}
1451
1452	return 0;
1453}
1454module_init(epf_ntb_init);
1455
1456static void __exit epf_ntb_exit(void)
1457{
1458	pci_epf_unregister_driver(&epf_ntb_driver);
1459	destroy_workqueue(kpcintb_workqueue);
1460}
1461module_exit(epf_ntb_exit);
1462
1463MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
1464MODULE_AUTHOR("Frank Li <Frank.li@nxp.com>");
1465MODULE_LICENSE("GPL v2");