Loading...
Note: File does not exist in v5.4.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI EPF driver for MHI Endpoint devices
4 *
5 * Copyright (C) 2023 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 */
8
9#include <linux/dmaengine.h>
10#include <linux/mhi_ep.h>
11#include <linux/module.h>
12#include <linux/of_dma.h>
13#include <linux/platform_device.h>
14#include <linux/pci-epc.h>
15#include <linux/pci-epf.h>
16
17#define MHI_VERSION_1_0 0x01000000
18
19#define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
20
21/* Platform specific flags */
22#define MHI_EPF_USE_DMA BIT(0)
23
24struct pci_epf_mhi_dma_transfer {
25 struct pci_epf_mhi *epf_mhi;
26 struct mhi_ep_buf_info buf_info;
27 struct list_head node;
28 dma_addr_t paddr;
29 enum dma_data_direction dir;
30 size_t size;
31};
32
33struct pci_epf_mhi_ep_info {
34 const struct mhi_ep_cntrl_config *config;
35 struct pci_epf_header *epf_header;
36 enum pci_barno bar_num;
37 u32 epf_flags;
38 u32 msi_count;
39 u32 mru;
40 u32 flags;
41};
42
43#define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction) \
44 { \
45 .num = ch_num, \
46 .name = ch_name, \
47 .dir = direction, \
48 }
49
50#define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name) \
51 MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
52
53#define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name) \
54 MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
55
56static const struct mhi_ep_channel_config mhi_v1_channels[] = {
57 MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
58 MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
59 MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
60 MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
61 MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
62 MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
63 MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
64 MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
65 MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
66 MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
67 MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
68 MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
69 MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
70 MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
71 MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
72 MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
73 MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
74 MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
75 MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
76 MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
77 MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
78 MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
79 MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
80 MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
81 MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
82 MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
83};
84
85static const struct mhi_ep_cntrl_config mhi_v1_config = {
86 .max_channels = 128,
87 .num_channels = ARRAY_SIZE(mhi_v1_channels),
88 .ch_cfg = mhi_v1_channels,
89 .mhi_version = MHI_VERSION_1_0,
90};
91
92static struct pci_epf_header sdx55_header = {
93 .vendorid = PCI_VENDOR_ID_QCOM,
94 .deviceid = 0x0306,
95 .baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
96 .subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
97 .interrupt_pin = PCI_INTERRUPT_INTA,
98};
99
100static const struct pci_epf_mhi_ep_info sdx55_info = {
101 .config = &mhi_v1_config,
102 .epf_header = &sdx55_header,
103 .bar_num = BAR_0,
104 .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
105 .msi_count = 32,
106 .mru = 0x8000,
107};
108
109static struct pci_epf_header sm8450_header = {
110 .vendorid = PCI_VENDOR_ID_QCOM,
111 .deviceid = 0x0306,
112 .baseclass_code = PCI_CLASS_OTHERS,
113 .interrupt_pin = PCI_INTERRUPT_INTA,
114};
115
116static const struct pci_epf_mhi_ep_info sm8450_info = {
117 .config = &mhi_v1_config,
118 .epf_header = &sm8450_header,
119 .bar_num = BAR_0,
120 .epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
121 .msi_count = 32,
122 .mru = 0x8000,
123 .flags = MHI_EPF_USE_DMA,
124};
125
126struct pci_epf_mhi {
127 const struct pci_epc_features *epc_features;
128 const struct pci_epf_mhi_ep_info *info;
129 struct mhi_ep_cntrl mhi_cntrl;
130 struct pci_epf *epf;
131 struct mutex lock;
132 void __iomem *mmio;
133 resource_size_t mmio_phys;
134 struct dma_chan *dma_chan_tx;
135 struct dma_chan *dma_chan_rx;
136 struct workqueue_struct *dma_wq;
137 struct work_struct dma_work;
138 struct list_head dma_list;
139 spinlock_t list_lock;
140 u32 mmio_size;
141 int irq;
142};
143
144static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
145{
146 return addr & (epf_mhi->epc_features->align -1);
147}
148
149static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
150 phys_addr_t *paddr, void __iomem **vaddr,
151 size_t offset, size_t size)
152{
153 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
154 struct pci_epf *epf = epf_mhi->epf;
155 struct pci_epc *epc = epf->epc;
156 int ret;
157
158 *vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
159 if (!*vaddr)
160 return -ENOMEM;
161
162 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
163 pci_addr - offset, size + offset);
164 if (ret) {
165 pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
166 return ret;
167 }
168
169 *paddr = *paddr + offset;
170 *vaddr = *vaddr + offset;
171
172 return 0;
173}
174
175static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
176 phys_addr_t *paddr, void __iomem **vaddr,
177 size_t size)
178{
179 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
180 size_t offset = get_align_offset(epf_mhi, pci_addr);
181
182 return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
183 offset, size);
184}
185
186static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
187 u64 pci_addr, phys_addr_t paddr,
188 void __iomem *vaddr, size_t offset,
189 size_t size)
190{
191 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
192 struct pci_epf *epf = epf_mhi->epf;
193 struct pci_epc *epc = epf->epc;
194
195 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
196 pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
197 size + offset);
198}
199
200static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
201 phys_addr_t paddr, void __iomem *vaddr,
202 size_t size)
203{
204 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
205 size_t offset = get_align_offset(epf_mhi, pci_addr);
206
207 __pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
208 size);
209}
210
211static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
212{
213 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
214 struct pci_epf *epf = epf_mhi->epf;
215 struct pci_epc *epc = epf->epc;
216
217 /*
218 * MHI supplies 0 based MSI vectors but the API expects the vector
219 * number to start from 1, so we need to increment the vector by 1.
220 */
221 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI,
222 vector + 1);
223}
224
225static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
226 struct mhi_ep_buf_info *buf_info)
227{
228 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
229 size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
230 void __iomem *tre_buf;
231 phys_addr_t tre_phys;
232 int ret;
233
234 mutex_lock(&epf_mhi->lock);
235
236 ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
237 &tre_buf, offset, buf_info->size);
238 if (ret) {
239 mutex_unlock(&epf_mhi->lock);
240 return ret;
241 }
242
243 memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);
244
245 __pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
246 tre_buf, offset, buf_info->size);
247
248 mutex_unlock(&epf_mhi->lock);
249
250 if (buf_info->cb)
251 buf_info->cb(buf_info);
252
253 return 0;
254}
255
256static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
257 struct mhi_ep_buf_info *buf_info)
258{
259 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
260 size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
261 void __iomem *tre_buf;
262 phys_addr_t tre_phys;
263 int ret;
264
265 mutex_lock(&epf_mhi->lock);
266
267 ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
268 &tre_buf, offset, buf_info->size);
269 if (ret) {
270 mutex_unlock(&epf_mhi->lock);
271 return ret;
272 }
273
274 memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);
275
276 __pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
277 tre_buf, offset, buf_info->size);
278
279 mutex_unlock(&epf_mhi->lock);
280
281 if (buf_info->cb)
282 buf_info->cb(buf_info);
283
284 return 0;
285}
286
287static void pci_epf_mhi_dma_callback(void *param)
288{
289 complete(param);
290}
291
292static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
293 struct mhi_ep_buf_info *buf_info)
294{
295 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
296 struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
297 struct dma_chan *chan = epf_mhi->dma_chan_rx;
298 struct device *dev = &epf_mhi->epf->dev;
299 DECLARE_COMPLETION_ONSTACK(complete);
300 struct dma_async_tx_descriptor *desc;
301 struct dma_slave_config config = {};
302 dma_cookie_t cookie;
303 dma_addr_t dst_addr;
304 int ret;
305
306 if (buf_info->size < SZ_4K)
307 return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);
308
309 mutex_lock(&epf_mhi->lock);
310
311 config.direction = DMA_DEV_TO_MEM;
312 config.src_addr = buf_info->host_addr;
313
314 ret = dmaengine_slave_config(chan, &config);
315 if (ret) {
316 dev_err(dev, "Failed to configure DMA channel\n");
317 goto err_unlock;
318 }
319
320 dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
321 DMA_FROM_DEVICE);
322 ret = dma_mapping_error(dma_dev, dst_addr);
323 if (ret) {
324 dev_err(dev, "Failed to map remote memory\n");
325 goto err_unlock;
326 }
327
328 desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
329 DMA_DEV_TO_MEM,
330 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
331 if (!desc) {
332 dev_err(dev, "Failed to prepare DMA\n");
333 ret = -EIO;
334 goto err_unmap;
335 }
336
337 desc->callback = pci_epf_mhi_dma_callback;
338 desc->callback_param = &complete;
339
340 cookie = dmaengine_submit(desc);
341 ret = dma_submit_error(cookie);
342 if (ret) {
343 dev_err(dev, "Failed to do DMA submit\n");
344 goto err_unmap;
345 }
346
347 dma_async_issue_pending(chan);
348 ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
349 if (!ret) {
350 dev_err(dev, "DMA transfer timeout\n");
351 dmaengine_terminate_sync(chan);
352 ret = -ETIMEDOUT;
353 }
354
355err_unmap:
356 dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
357err_unlock:
358 mutex_unlock(&epf_mhi->lock);
359
360 return ret;
361}
362
363static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
364 struct mhi_ep_buf_info *buf_info)
365{
366 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
367 struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
368 struct dma_chan *chan = epf_mhi->dma_chan_tx;
369 struct device *dev = &epf_mhi->epf->dev;
370 DECLARE_COMPLETION_ONSTACK(complete);
371 struct dma_async_tx_descriptor *desc;
372 struct dma_slave_config config = {};
373 dma_cookie_t cookie;
374 dma_addr_t src_addr;
375 int ret;
376
377 if (buf_info->size < SZ_4K)
378 return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);
379
380 mutex_lock(&epf_mhi->lock);
381
382 config.direction = DMA_MEM_TO_DEV;
383 config.dst_addr = buf_info->host_addr;
384
385 ret = dmaengine_slave_config(chan, &config);
386 if (ret) {
387 dev_err(dev, "Failed to configure DMA channel\n");
388 goto err_unlock;
389 }
390
391 src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
392 DMA_TO_DEVICE);
393 ret = dma_mapping_error(dma_dev, src_addr);
394 if (ret) {
395 dev_err(dev, "Failed to map remote memory\n");
396 goto err_unlock;
397 }
398
399 desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
400 DMA_MEM_TO_DEV,
401 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
402 if (!desc) {
403 dev_err(dev, "Failed to prepare DMA\n");
404 ret = -EIO;
405 goto err_unmap;
406 }
407
408 desc->callback = pci_epf_mhi_dma_callback;
409 desc->callback_param = &complete;
410
411 cookie = dmaengine_submit(desc);
412 ret = dma_submit_error(cookie);
413 if (ret) {
414 dev_err(dev, "Failed to do DMA submit\n");
415 goto err_unmap;
416 }
417
418 dma_async_issue_pending(chan);
419 ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
420 if (!ret) {
421 dev_err(dev, "DMA transfer timeout\n");
422 dmaengine_terminate_sync(chan);
423 ret = -ETIMEDOUT;
424 }
425
426err_unmap:
427 dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
428err_unlock:
429 mutex_unlock(&epf_mhi->lock);
430
431 return ret;
432}
433
434static void pci_epf_mhi_dma_worker(struct work_struct *work)
435{
436 struct pci_epf_mhi *epf_mhi = container_of(work, struct pci_epf_mhi, dma_work);
437 struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
438 struct pci_epf_mhi_dma_transfer *itr, *tmp;
439 struct mhi_ep_buf_info *buf_info;
440 unsigned long flags;
441 LIST_HEAD(head);
442
443 spin_lock_irqsave(&epf_mhi->list_lock, flags);
444 list_splice_tail_init(&epf_mhi->dma_list, &head);
445 spin_unlock_irqrestore(&epf_mhi->list_lock, flags);
446
447 list_for_each_entry_safe(itr, tmp, &head, node) {
448 list_del(&itr->node);
449 dma_unmap_single(dma_dev, itr->paddr, itr->size, itr->dir);
450 buf_info = &itr->buf_info;
451 buf_info->cb(buf_info);
452 kfree(itr);
453 }
454}
455
456static void pci_epf_mhi_dma_async_callback(void *param)
457{
458 struct pci_epf_mhi_dma_transfer *transfer = param;
459 struct pci_epf_mhi *epf_mhi = transfer->epf_mhi;
460
461 spin_lock(&epf_mhi->list_lock);
462 list_add_tail(&transfer->node, &epf_mhi->dma_list);
463 spin_unlock(&epf_mhi->list_lock);
464
465 queue_work(epf_mhi->dma_wq, &epf_mhi->dma_work);
466}
467
468static int pci_epf_mhi_edma_read_async(struct mhi_ep_cntrl *mhi_cntrl,
469 struct mhi_ep_buf_info *buf_info)
470{
471 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
472 struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
473 struct pci_epf_mhi_dma_transfer *transfer = NULL;
474 struct dma_chan *chan = epf_mhi->dma_chan_rx;
475 struct device *dev = &epf_mhi->epf->dev;
476 DECLARE_COMPLETION_ONSTACK(complete);
477 struct dma_async_tx_descriptor *desc;
478 struct dma_slave_config config = {};
479 dma_cookie_t cookie;
480 dma_addr_t dst_addr;
481 int ret;
482
483 mutex_lock(&epf_mhi->lock);
484
485 config.direction = DMA_DEV_TO_MEM;
486 config.src_addr = buf_info->host_addr;
487
488 ret = dmaengine_slave_config(chan, &config);
489 if (ret) {
490 dev_err(dev, "Failed to configure DMA channel\n");
491 goto err_unlock;
492 }
493
494 dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
495 DMA_FROM_DEVICE);
496 ret = dma_mapping_error(dma_dev, dst_addr);
497 if (ret) {
498 dev_err(dev, "Failed to map remote memory\n");
499 goto err_unlock;
500 }
501
502 desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
503 DMA_DEV_TO_MEM,
504 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
505 if (!desc) {
506 dev_err(dev, "Failed to prepare DMA\n");
507 ret = -EIO;
508 goto err_unmap;
509 }
510
511 transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
512 if (!transfer) {
513 ret = -ENOMEM;
514 goto err_unmap;
515 }
516
517 transfer->epf_mhi = epf_mhi;
518 transfer->paddr = dst_addr;
519 transfer->size = buf_info->size;
520 transfer->dir = DMA_FROM_DEVICE;
521 memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
522
523 desc->callback = pci_epf_mhi_dma_async_callback;
524 desc->callback_param = transfer;
525
526 cookie = dmaengine_submit(desc);
527 ret = dma_submit_error(cookie);
528 if (ret) {
529 dev_err(dev, "Failed to do DMA submit\n");
530 goto err_free_transfer;
531 }
532
533 dma_async_issue_pending(chan);
534
535 goto err_unlock;
536
537err_free_transfer:
538 kfree(transfer);
539err_unmap:
540 dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
541err_unlock:
542 mutex_unlock(&epf_mhi->lock);
543
544 return ret;
545}
546
547static int pci_epf_mhi_edma_write_async(struct mhi_ep_cntrl *mhi_cntrl,
548 struct mhi_ep_buf_info *buf_info)
549{
550 struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
551 struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
552 struct pci_epf_mhi_dma_transfer *transfer = NULL;
553 struct dma_chan *chan = epf_mhi->dma_chan_tx;
554 struct device *dev = &epf_mhi->epf->dev;
555 DECLARE_COMPLETION_ONSTACK(complete);
556 struct dma_async_tx_descriptor *desc;
557 struct dma_slave_config config = {};
558 dma_cookie_t cookie;
559 dma_addr_t src_addr;
560 int ret;
561
562 mutex_lock(&epf_mhi->lock);
563
564 config.direction = DMA_MEM_TO_DEV;
565 config.dst_addr = buf_info->host_addr;
566
567 ret = dmaengine_slave_config(chan, &config);
568 if (ret) {
569 dev_err(dev, "Failed to configure DMA channel\n");
570 goto err_unlock;
571 }
572
573 src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
574 DMA_TO_DEVICE);
575 ret = dma_mapping_error(dma_dev, src_addr);
576 if (ret) {
577 dev_err(dev, "Failed to map remote memory\n");
578 goto err_unlock;
579 }
580
581 desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
582 DMA_MEM_TO_DEV,
583 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
584 if (!desc) {
585 dev_err(dev, "Failed to prepare DMA\n");
586 ret = -EIO;
587 goto err_unmap;
588 }
589
590 transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
591 if (!transfer) {
592 ret = -ENOMEM;
593 goto err_unmap;
594 }
595
596 transfer->epf_mhi = epf_mhi;
597 transfer->paddr = src_addr;
598 transfer->size = buf_info->size;
599 transfer->dir = DMA_TO_DEVICE;
600 memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
601
602 desc->callback = pci_epf_mhi_dma_async_callback;
603 desc->callback_param = transfer;
604
605 cookie = dmaengine_submit(desc);
606 ret = dma_submit_error(cookie);
607 if (ret) {
608 dev_err(dev, "Failed to do DMA submit\n");
609 goto err_free_transfer;
610 }
611
612 dma_async_issue_pending(chan);
613
614 goto err_unlock;
615
616err_free_transfer:
617 kfree(transfer);
618err_unmap:
619 dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
620err_unlock:
621 mutex_unlock(&epf_mhi->lock);
622
623 return ret;
624}
625
626struct epf_dma_filter {
627 struct device *dev;
628 u32 dma_mask;
629};
630
631static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
632{
633 struct epf_dma_filter *filter = node;
634 struct dma_slave_caps caps;
635
636 memset(&caps, 0, sizeof(caps));
637 dma_get_slave_caps(chan, &caps);
638
639 return chan->device->dev == filter->dev && filter->dma_mask &
640 caps.directions;
641}
642
643static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
644{
645 struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
646 struct device *dev = &epf_mhi->epf->dev;
647 struct epf_dma_filter filter;
648 dma_cap_mask_t mask;
649 int ret;
650
651 dma_cap_zero(mask);
652 dma_cap_set(DMA_SLAVE, mask);
653
654 filter.dev = dma_dev;
655 filter.dma_mask = BIT(DMA_MEM_TO_DEV);
656 epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
657 &filter);
658 if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
659 dev_err(dev, "Failed to request tx channel\n");
660 return -ENODEV;
661 }
662
663 filter.dma_mask = BIT(DMA_DEV_TO_MEM);
664 epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
665 &filter);
666 if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
667 dev_err(dev, "Failed to request rx channel\n");
668 ret = -ENODEV;
669 goto err_release_tx;
670 }
671
672 epf_mhi->dma_wq = alloc_workqueue("pci_epf_mhi_dma_wq", 0, 0);
673 if (!epf_mhi->dma_wq) {
674 ret = -ENOMEM;
675 goto err_release_rx;
676 }
677
678 INIT_LIST_HEAD(&epf_mhi->dma_list);
679 INIT_WORK(&epf_mhi->dma_work, pci_epf_mhi_dma_worker);
680 spin_lock_init(&epf_mhi->list_lock);
681
682 return 0;
683
684err_release_rx:
685 dma_release_channel(epf_mhi->dma_chan_rx);
686 epf_mhi->dma_chan_rx = NULL;
687err_release_tx:
688 dma_release_channel(epf_mhi->dma_chan_tx);
689 epf_mhi->dma_chan_tx = NULL;
690
691 return ret;
692}
693
694static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
695{
696 destroy_workqueue(epf_mhi->dma_wq);
697 dma_release_channel(epf_mhi->dma_chan_tx);
698 dma_release_channel(epf_mhi->dma_chan_rx);
699 epf_mhi->dma_chan_tx = NULL;
700 epf_mhi->dma_chan_rx = NULL;
701}
702
703static int pci_epf_mhi_core_init(struct pci_epf *epf)
704{
705 struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
706 const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
707 struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
708 struct pci_epc *epc = epf->epc;
709 struct device *dev = &epf->dev;
710 int ret;
711
712 epf_bar->phys_addr = epf_mhi->mmio_phys;
713 epf_bar->size = epf_mhi->mmio_size;
714 epf_bar->barno = info->bar_num;
715 epf_bar->flags = info->epf_flags;
716 ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
717 if (ret) {
718 dev_err(dev, "Failed to set BAR: %d\n", ret);
719 return ret;
720 }
721
722 ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
723 order_base_2(info->msi_count));
724 if (ret) {
725 dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
726 return ret;
727 }
728
729 ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
730 epf->header);
731 if (ret) {
732 dev_err(dev, "Failed to set Configuration header: %d\n", ret);
733 return ret;
734 }
735
736 epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
737 if (!epf_mhi->epc_features)
738 return -ENODATA;
739
740 return 0;
741}
742
743static int pci_epf_mhi_link_up(struct pci_epf *epf)
744{
745 struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
746 const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
747 struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
748 struct pci_epc *epc = epf->epc;
749 struct device *dev = &epf->dev;
750 int ret;
751
752 if (info->flags & MHI_EPF_USE_DMA) {
753 ret = pci_epf_mhi_dma_init(epf_mhi);
754 if (ret) {
755 dev_err(dev, "Failed to initialize DMA: %d\n", ret);
756 return ret;
757 }
758 }
759
760 mhi_cntrl->mmio = epf_mhi->mmio;
761 mhi_cntrl->irq = epf_mhi->irq;
762 mhi_cntrl->mru = info->mru;
763
764 /* Assign the struct dev of PCI EP as MHI controller device */
765 mhi_cntrl->cntrl_dev = epc->dev.parent;
766 mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
767 mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
768 mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
769 mhi_cntrl->read_sync = mhi_cntrl->read_async = pci_epf_mhi_iatu_read;
770 mhi_cntrl->write_sync = mhi_cntrl->write_async = pci_epf_mhi_iatu_write;
771 if (info->flags & MHI_EPF_USE_DMA) {
772 mhi_cntrl->read_sync = pci_epf_mhi_edma_read;
773 mhi_cntrl->write_sync = pci_epf_mhi_edma_write;
774 mhi_cntrl->read_async = pci_epf_mhi_edma_read_async;
775 mhi_cntrl->write_async = pci_epf_mhi_edma_write_async;
776 }
777
778 /* Register the MHI EP controller */
779 ret = mhi_ep_register_controller(mhi_cntrl, info->config);
780 if (ret) {
781 dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
782 if (info->flags & MHI_EPF_USE_DMA)
783 pci_epf_mhi_dma_deinit(epf_mhi);
784 return ret;
785 }
786
787 return 0;
788}
789
790static int pci_epf_mhi_link_down(struct pci_epf *epf)
791{
792 struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
793 const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
794 struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
795
796 if (mhi_cntrl->mhi_dev) {
797 mhi_ep_power_down(mhi_cntrl);
798 if (info->flags & MHI_EPF_USE_DMA)
799 pci_epf_mhi_dma_deinit(epf_mhi);
800 mhi_ep_unregister_controller(mhi_cntrl);
801 }
802
803 return 0;
804}
805
806static int pci_epf_mhi_bme(struct pci_epf *epf)
807{
808 struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
809 const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
810 struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
811 struct device *dev = &epf->dev;
812 int ret;
813
814 /*
815 * Power up the MHI EP stack if link is up and stack is in power down
816 * state.
817 */
818 if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
819 ret = mhi_ep_power_up(mhi_cntrl);
820 if (ret) {
821 dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
822 if (info->flags & MHI_EPF_USE_DMA)
823 pci_epf_mhi_dma_deinit(epf_mhi);
824 mhi_ep_unregister_controller(mhi_cntrl);
825 }
826 }
827
828 return 0;
829}
830
831static int pci_epf_mhi_bind(struct pci_epf *epf)
832{
833 struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
834 struct pci_epc *epc = epf->epc;
835 struct platform_device *pdev = to_platform_device(epc->dev.parent);
836 struct resource *res;
837 int ret;
838
839 /* Get MMIO base address from Endpoint controller */
840 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
841 epf_mhi->mmio_phys = res->start;
842 epf_mhi->mmio_size = resource_size(res);
843
844 epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
845 if (!epf_mhi->mmio)
846 return -ENOMEM;
847
848 ret = platform_get_irq_byname(pdev, "doorbell");
849 if (ret < 0) {
850 iounmap(epf_mhi->mmio);
851 return ret;
852 }
853
854 epf_mhi->irq = ret;
855
856 return 0;
857}
858
859static void pci_epf_mhi_unbind(struct pci_epf *epf)
860{
861 struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
862 const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
863 struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
864 struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
865 struct pci_epc *epc = epf->epc;
866
867 /*
868 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
869 * stack back to working state after successive bind is by getting BME
870 * from host.
871 */
872 if (mhi_cntrl->mhi_dev) {
873 mhi_ep_power_down(mhi_cntrl);
874 if (info->flags & MHI_EPF_USE_DMA)
875 pci_epf_mhi_dma_deinit(epf_mhi);
876 mhi_ep_unregister_controller(mhi_cntrl);
877 }
878
879 iounmap(epf_mhi->mmio);
880 pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
881}
882
883static const struct pci_epc_event_ops pci_epf_mhi_event_ops = {
884 .core_init = pci_epf_mhi_core_init,
885 .link_up = pci_epf_mhi_link_up,
886 .link_down = pci_epf_mhi_link_down,
887 .bme = pci_epf_mhi_bme,
888};
889
890static int pci_epf_mhi_probe(struct pci_epf *epf,
891 const struct pci_epf_device_id *id)
892{
893 struct pci_epf_mhi_ep_info *info =
894 (struct pci_epf_mhi_ep_info *)id->driver_data;
895 struct pci_epf_mhi *epf_mhi;
896 struct device *dev = &epf->dev;
897
898 epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
899 if (!epf_mhi)
900 return -ENOMEM;
901
902 epf->header = info->epf_header;
903 epf_mhi->info = info;
904 epf_mhi->epf = epf;
905
906 epf->event_ops = &pci_epf_mhi_event_ops;
907
908 mutex_init(&epf_mhi->lock);
909
910 epf_set_drvdata(epf, epf_mhi);
911
912 return 0;
913}
914
915static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
916 { .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
917 { .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
918 {},
919};
920
921static const struct pci_epf_ops pci_epf_mhi_ops = {
922 .unbind = pci_epf_mhi_unbind,
923 .bind = pci_epf_mhi_bind,
924};
925
926static struct pci_epf_driver pci_epf_mhi_driver = {
927 .driver.name = "pci_epf_mhi",
928 .probe = pci_epf_mhi_probe,
929 .id_table = pci_epf_mhi_ids,
930 .ops = &pci_epf_mhi_ops,
931 .owner = THIS_MODULE,
932};
933
934static int __init pci_epf_mhi_init(void)
935{
936 return pci_epf_register_driver(&pci_epf_mhi_driver);
937}
938module_init(pci_epf_mhi_init);
939
940static void __exit pci_epf_mhi_exit(void)
941{
942 pci_epf_unregister_driver(&pci_epf_mhi_driver);
943}
944module_exit(pci_epf_mhi_exit);
945
946MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
947MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
948MODULE_LICENSE("GPL");