Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP OF helpers
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/device.h>
  16#include <linux/of.h>
  17#include <linux/pm_domain.h>
  18#include <linux/slab.h>
  19#include <linux/export.h>
  20#include <linux/energy_model.h>
  21
  22#include "opp.h"
  23
  24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
  25static LIST_HEAD(lazy_opp_tables);
  26
  27/*
  28 * Returns opp descriptor node for a device node, caller must
  29 * do of_node_put().
  30 */
  31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
  32						     int index)
  33{
  34	/* "operating-points-v2" can be an array for power domain providers */
  35	return of_parse_phandle(np, "operating-points-v2", index);
  36}
  37
  38/* Returns opp descriptor node for a device, caller must do of_node_put() */
  39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
  40{
  41	return _opp_of_get_opp_desc_node(dev->of_node, 0);
  42}
  43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
  44
  45struct opp_table *_managed_opp(struct device *dev, int index)
  46{
  47	struct opp_table *opp_table, *managed_table = NULL;
  48	struct device_node *np;
  49
  50	np = _opp_of_get_opp_desc_node(dev->of_node, index);
  51	if (!np)
  52		return NULL;
  53
  54	list_for_each_entry(opp_table, &opp_tables, node) {
  55		if (opp_table->np == np) {
  56			/*
  57			 * Multiple devices can point to the same OPP table and
  58			 * so will have same node-pointer, np.
  59			 *
  60			 * But the OPPs will be considered as shared only if the
  61			 * OPP table contains a "opp-shared" property.
  62			 */
  63			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
  64				_get_opp_table_kref(opp_table);
  65				managed_table = opp_table;
  66			}
  67
  68			break;
  69		}
  70	}
  71
  72	of_node_put(np);
  73
  74	return managed_table;
  75}
  76
  77/* The caller must call dev_pm_opp_put() after the OPP is used */
  78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
  79					  struct device_node *opp_np)
  80{
  81	struct dev_pm_opp *opp;
  82
  83	mutex_lock(&opp_table->lock);
  84
  85	list_for_each_entry(opp, &opp_table->opp_list, node) {
  86		if (opp->np == opp_np) {
  87			dev_pm_opp_get(opp);
  88			mutex_unlock(&opp_table->lock);
  89			return opp;
  90		}
  91	}
  92
  93	mutex_unlock(&opp_table->lock);
  94
  95	return NULL;
  96}
  97
  98static struct device_node *of_parse_required_opp(struct device_node *np,
  99						 int index)
 100{
 101	return of_parse_phandle(np, "required-opps", index);
 
 
 
 
 
 
 
 
 102}
 103
 104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
 105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
 106{
 107	struct opp_table *opp_table;
 108	struct device_node *opp_table_np;
 109
 
 
 110	opp_table_np = of_get_parent(opp_np);
 111	if (!opp_table_np)
 112		goto err;
 113
 114	/* It is safe to put the node now as all we need now is its address */
 115	of_node_put(opp_table_np);
 116
 117	mutex_lock(&opp_table_lock);
 118	list_for_each_entry(opp_table, &opp_tables, node) {
 119		if (opp_table_np == opp_table->np) {
 120			_get_opp_table_kref(opp_table);
 121			mutex_unlock(&opp_table_lock);
 122			return opp_table;
 123		}
 124	}
 125	mutex_unlock(&opp_table_lock);
 126
 127err:
 128	return ERR_PTR(-ENODEV);
 129}
 130
 131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
 132static void _opp_table_free_required_tables(struct opp_table *opp_table)
 133{
 134	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 135	int i;
 136
 137	if (!required_opp_tables)
 138		return;
 139
 140	for (i = 0; i < opp_table->required_opp_count; i++) {
 141		if (IS_ERR_OR_NULL(required_opp_tables[i]))
 142			continue;
 143
 144		dev_pm_opp_put_opp_table(required_opp_tables[i]);
 145	}
 146
 147	kfree(required_opp_tables);
 148
 149	opp_table->required_opp_count = 0;
 150	opp_table->required_opp_tables = NULL;
 151
 152	mutex_lock(&opp_table_lock);
 153	list_del(&opp_table->lazy);
 154	mutex_unlock(&opp_table_lock);
 155}
 156
 157/*
 158 * Populate all devices and opp tables which are part of "required-opps" list.
 159 * Checking only the first OPP node should be enough.
 160 */
 161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
 162					     struct device *dev,
 163					     struct device_node *opp_np)
 164{
 165	struct opp_table **required_opp_tables;
 166	struct device_node *required_np, *np;
 167	bool lazy = false;
 168	int count, i, size;
 169
 170	/* Traversing the first OPP node is all we need */
 171	np = of_get_next_available_child(opp_np, NULL);
 172	if (!np) {
 173		dev_warn(dev, "Empty OPP table\n");
 174
 175		return;
 176	}
 177
 178	count = of_count_phandle_with_args(np, "required-opps", NULL);
 179	if (count <= 0)
 180		goto put_np;
 181
 182	size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
 183	required_opp_tables = kcalloc(count, size, GFP_KERNEL);
 184	if (!required_opp_tables)
 185		goto put_np;
 186
 187	opp_table->required_opp_tables = required_opp_tables;
 188	opp_table->required_devs = (void *)(required_opp_tables + count);
 189	opp_table->required_opp_count = count;
 190
 191	for (i = 0; i < count; i++) {
 192		required_np = of_parse_required_opp(np, i);
 193		if (!required_np)
 194			goto free_required_tables;
 195
 196		required_opp_tables[i] = _find_table_of_opp_np(required_np);
 197		of_node_put(required_np);
 198
 199		if (IS_ERR(required_opp_tables[i]))
 200			lazy = true;
 201	}
 202
 203	/* Let's do the linking later on */
 204	if (lazy) {
 205		/*
 206		 * The OPP table is not held while allocating the table, take it
 207		 * now to avoid corruption to the lazy_opp_tables list.
 
 208		 */
 209		mutex_lock(&opp_table_lock);
 210		list_add(&opp_table->lazy, &lazy_opp_tables);
 211		mutex_unlock(&opp_table_lock);
 
 
 212	}
 213
 214	goto put_np;
 215
 216free_required_tables:
 217	_opp_table_free_required_tables(opp_table);
 218put_np:
 219	of_node_put(np);
 220}
 221
 222void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
 223			int index)
 224{
 225	struct device_node *np, *opp_np;
 226	u32 val;
 227
 228	/*
 229	 * Only required for backward compatibility with v1 bindings, but isn't
 230	 * harmful for other cases. And so we do it unconditionally.
 231	 */
 232	np = of_node_get(dev->of_node);
 233	if (!np)
 234		return;
 235
 236	if (!of_property_read_u32(np, "clock-latency", &val))
 237		opp_table->clock_latency_ns_max = val;
 238	of_property_read_u32(np, "voltage-tolerance",
 239			     &opp_table->voltage_tolerance_v1);
 240
 241	if (of_property_present(np, "#power-domain-cells"))
 242		opp_table->is_genpd = true;
 243
 244	/* Get OPP table node */
 245	opp_np = _opp_of_get_opp_desc_node(np, index);
 246	of_node_put(np);
 247
 248	if (!opp_np)
 249		return;
 250
 251	if (of_property_read_bool(opp_np, "opp-shared"))
 252		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
 253	else
 254		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
 255
 256	opp_table->np = opp_np;
 257
 258	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
 
 259}
 260
 261void _of_clear_opp_table(struct opp_table *opp_table)
 262{
 263	_opp_table_free_required_tables(opp_table);
 264	of_node_put(opp_table->np);
 265}
 266
 267/*
 268 * Release all resources previously acquired with a call to
 269 * _of_opp_alloc_required_opps().
 270 */
 271static void _of_opp_free_required_opps(struct opp_table *opp_table,
 272				       struct dev_pm_opp *opp)
 273{
 274	struct dev_pm_opp **required_opps = opp->required_opps;
 275	int i;
 276
 277	if (!required_opps)
 278		return;
 279
 280	for (i = 0; i < opp_table->required_opp_count; i++) {
 281		if (!required_opps[i])
 282			continue;
 283
 284		/* Put the reference back */
 285		dev_pm_opp_put(required_opps[i]);
 286	}
 287
 288	opp->required_opps = NULL;
 289	kfree(required_opps);
 290}
 291
 292void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
 293{
 294	_of_opp_free_required_opps(opp_table, opp);
 295	of_node_put(opp->np);
 296}
 297
 298static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
 299			       struct opp_table *required_table, int index)
 300{
 301	struct device_node *np;
 302
 303	np = of_parse_required_opp(opp->np, index);
 304	if (unlikely(!np))
 305		return -ENODEV;
 306
 307	opp->required_opps[index] = _find_opp_of_np(required_table, np);
 308	of_node_put(np);
 309
 310	if (!opp->required_opps[index]) {
 311		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 312		       __func__, opp->np, index);
 313		return -ENODEV;
 314	}
 315
 316	/*
 317	 * There are two genpd (as required-opp) cases that we need to handle,
 318	 * devices with a single genpd and ones with multiple genpds.
 319	 *
 320	 * The single genpd case requires special handling as we need to use the
 321	 * same `dev` structure (instead of a virtual one provided by genpd
 322	 * core) for setting the performance state.
 323	 *
 324	 * It doesn't make sense for a device's DT entry to have both
 325	 * "opp-level" and single "required-opps" entry pointing to a genpd's
 326	 * OPP, as that would make the OPP core call
 327	 * dev_pm_domain_set_performance_state() for two different values for
 328	 * the same device structure. Lets treat single genpd configuration as a
 329	 * case where the OPP's level is directly available without required-opp
 330	 * link in the DT.
 331	 *
 332	 * Just update the `level` with the right value, which
 333	 * dev_pm_opp_set_opp() will take care of in the normal path itself.
 334	 *
 335	 * There is another case though, where a genpd's OPP table has
 336	 * required-opps set to a parent genpd. The OPP core expects the user to
 337	 * set the respective required `struct device` pointer via
 338	 * dev_pm_opp_set_config().
 339	 */
 340	if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
 341	    !opp_table->required_devs[0]) {
 342		/* Genpd core takes care of propagation to parent genpd */
 343		if (!opp_table->is_genpd) {
 344			if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
 345				opp->level = opp->required_opps[0]->level;
 346		}
 347	}
 348
 349	return 0;
 350}
 351
 352/* Populate all required OPPs which are part of "required-opps" list */
 353static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
 354				       struct dev_pm_opp *opp)
 355{
 
 356	struct opp_table *required_table;
 
 357	int i, ret, count = opp_table->required_opp_count;
 358
 359	if (!count)
 360		return 0;
 361
 362	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
 363	if (!opp->required_opps)
 364		return -ENOMEM;
 365
 
 
 366	for (i = 0; i < count; i++) {
 367		required_table = opp_table->required_opp_tables[i];
 368
 369		/* Required table not added yet, we will link later */
 370		if (IS_ERR_OR_NULL(required_table))
 371			continue;
 372
 373		ret = _link_required_opps(opp, opp_table, required_table, i);
 374		if (ret)
 375			goto free_required_opps;
 376	}
 377
 378	return 0;
 379
 380free_required_opps:
 381	_of_opp_free_required_opps(opp_table, opp);
 382
 383	return ret;
 384}
 385
 386/* Link required OPPs for an individual OPP */
 387static int lazy_link_required_opps(struct opp_table *opp_table,
 388				   struct opp_table *new_table, int index)
 389{
 390	struct dev_pm_opp *opp;
 391	int ret;
 392
 393	list_for_each_entry(opp, &opp_table->opp_list, node) {
 394		ret = _link_required_opps(opp, opp_table, new_table, index);
 395		if (ret)
 396			return ret;
 397	}
 398
 399	return 0;
 400}
 401
 402/* Link required OPPs for all OPPs of the newly added OPP table */
 403static void lazy_link_required_opp_table(struct opp_table *new_table)
 404{
 405	struct opp_table *opp_table, *temp, **required_opp_tables;
 406	struct device_node *required_np, *opp_np, *required_table_np;
 407	struct dev_pm_opp *opp;
 408	int i, ret;
 409
 410	mutex_lock(&opp_table_lock);
 411
 412	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
 413		bool lazy = false;
 414
 415		/* opp_np can't be invalid here */
 416		opp_np = of_get_next_available_child(opp_table->np, NULL);
 417
 418		for (i = 0; i < opp_table->required_opp_count; i++) {
 419			required_opp_tables = opp_table->required_opp_tables;
 420
 421			/* Required opp-table is already parsed */
 422			if (!IS_ERR(required_opp_tables[i]))
 423				continue;
 424
 425			/* required_np can't be invalid here */
 426			required_np = of_parse_required_opp(opp_np, i);
 427			required_table_np = of_get_parent(required_np);
 428
 429			of_node_put(required_table_np);
 430			of_node_put(required_np);
 431
 432			/*
 433			 * Newly added table isn't the required opp-table for
 434			 * opp_table.
 435			 */
 436			if (required_table_np != new_table->np) {
 437				lazy = true;
 438				continue;
 439			}
 440
 441			required_opp_tables[i] = new_table;
 442			_get_opp_table_kref(new_table);
 443
 444			/* Link OPPs now */
 445			ret = lazy_link_required_opps(opp_table, new_table, i);
 446			if (ret) {
 447				/* The OPPs will be marked unusable */
 448				lazy = false;
 449				break;
 450			}
 451		}
 452
 453		of_node_put(opp_np);
 454
 455		/* All required opp-tables found, remove from lazy list */
 456		if (!lazy) {
 457			list_del_init(&opp_table->lazy);
 458
 459			list_for_each_entry(opp, &opp_table->opp_list, node)
 460				_required_opps_available(opp, opp_table->required_opp_count);
 461		}
 462	}
 463
 464	mutex_unlock(&opp_table_lock);
 465}
 466
 467static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
 468{
 469	struct device_node *np, *opp_np;
 470	struct property *prop;
 471
 472	if (!opp_table) {
 473		np = of_node_get(dev->of_node);
 474		if (!np)
 475			return -ENODEV;
 476
 477		opp_np = _opp_of_get_opp_desc_node(np, 0);
 478		of_node_put(np);
 479	} else {
 480		opp_np = of_node_get(opp_table->np);
 481	}
 482
 483	/* Lets not fail in case we are parsing opp-v1 bindings */
 484	if (!opp_np)
 485		return 0;
 486
 487	/* Checking only first OPP is sufficient */
 488	np = of_get_next_available_child(opp_np, NULL);
 489	of_node_put(opp_np);
 490	if (!np) {
 491		dev_err(dev, "OPP table empty\n");
 492		return -EINVAL;
 493	}
 494
 495	prop = of_find_property(np, "opp-peak-kBps", NULL);
 496	of_node_put(np);
 497
 498	if (!prop || !prop->length)
 499		return 0;
 500
 501	return 1;
 502}
 503
 504int dev_pm_opp_of_find_icc_paths(struct device *dev,
 505				 struct opp_table *opp_table)
 506{
 507	struct device_node *np;
 508	int ret, i, count, num_paths;
 509	struct icc_path **paths;
 510
 511	ret = _bandwidth_supported(dev, opp_table);
 512	if (ret == -EINVAL)
 513		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
 514	else if (ret <= 0)
 515		return ret;
 516
 517	ret = 0;
 518
 519	np = of_node_get(dev->of_node);
 520	if (!np)
 521		return 0;
 522
 523	count = of_count_phandle_with_args(np, "interconnects",
 524					   "#interconnect-cells");
 525	of_node_put(np);
 526	if (count < 0)
 527		return 0;
 528
 529	/* two phandles when #interconnect-cells = <1> */
 530	if (count % 2) {
 531		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
 532		return -EINVAL;
 533	}
 534
 535	num_paths = count / 2;
 536	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
 537	if (!paths)
 538		return -ENOMEM;
 539
 540	for (i = 0; i < num_paths; i++) {
 541		paths[i] = of_icc_get_by_index(dev, i);
 542		if (IS_ERR(paths[i])) {
 543			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
 544			goto err;
 545		}
 546	}
 547
 548	if (opp_table) {
 549		opp_table->paths = paths;
 550		opp_table->path_count = num_paths;
 551		return 0;
 552	}
 553
 554err:
 555	while (i--)
 556		icc_put(paths[i]);
 557
 558	kfree(paths);
 
 559
 560	return ret;
 561}
 562EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
 563
 564static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
 565			      struct device_node *np)
 566{
 567	unsigned int levels = opp_table->supported_hw_count;
 568	int count, versions, ret, i, j;
 569	u32 val;
 570
 571	if (!opp_table->supported_hw) {
 572		/*
 573		 * In the case that no supported_hw has been set by the
 574		 * platform but there is an opp-supported-hw value set for
 575		 * an OPP then the OPP should not be enabled as there is
 576		 * no way to see if the hardware supports it.
 577		 */
 578		if (of_property_present(np, "opp-supported-hw"))
 579			return false;
 580		else
 581			return true;
 582	}
 583
 584	count = of_property_count_u32_elems(np, "opp-supported-hw");
 585	if (count <= 0 || count % levels) {
 586		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
 587			__func__, count);
 588		return false;
 589	}
 590
 591	versions = count / levels;
 592
 593	/* All levels in at least one of the versions should match */
 594	for (i = 0; i < versions; i++) {
 595		bool supported = true;
 596
 597		for (j = 0; j < levels; j++) {
 598			ret = of_property_read_u32_index(np, "opp-supported-hw",
 599							 i * levels + j, &val);
 600			if (ret) {
 601				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
 602					 __func__, i * levels + j, ret);
 603				return false;
 604			}
 605
 606			/* Check if the level is supported */
 607			if (!(val & opp_table->supported_hw[j])) {
 608				supported = false;
 609				break;
 610			}
 611		}
 612
 613		if (supported)
 614			return true;
 
 615	}
 616
 617	return false;
 618}
 619
 620static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
 621			      struct opp_table *opp_table,
 622			      const char *prop_type, bool *triplet)
 623{
 
 
 624	struct property *prop = NULL;
 625	char name[NAME_MAX];
 626	int count, ret;
 627	u32 *out;
 628
 629	/* Search for "opp-<prop_type>-<name>" */
 630	if (opp_table->prop_name) {
 631		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
 632			 opp_table->prop_name);
 633		prop = of_find_property(opp->np, name, NULL);
 634	}
 635
 636	if (!prop) {
 637		/* Search for "opp-<prop_type>" */
 638		snprintf(name, sizeof(name), "opp-%s", prop_type);
 639		prop = of_find_property(opp->np, name, NULL);
 640		if (!prop)
 641			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642	}
 643
 644	count = of_property_count_u32_elems(opp->np, name);
 645	if (count < 0) {
 646		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
 647			count);
 648		return ERR_PTR(count);
 
 649	}
 650
 651	/*
 652	 * Initialize regulator_count, if regulator information isn't provided
 653	 * by the platform. Now that one of the properties is available, fix the
 654	 * regulator_count to 1.
 655	 */
 656	if (unlikely(opp_table->regulator_count == -1))
 657		opp_table->regulator_count = 1;
 658
 659	if (count != opp_table->regulator_count &&
 660	    (!triplet || count != opp_table->regulator_count * 3)) {
 661		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
 662			__func__, prop_type, count, opp_table->regulator_count);
 663		return ERR_PTR(-EINVAL);
 664	}
 665
 666	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
 667	if (!out)
 668		return ERR_PTR(-EINVAL);
 669
 670	ret = of_property_read_u32_array(opp->np, name, out, count);
 671	if (ret) {
 672		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
 673		kfree(out);
 674		return ERR_PTR(-EINVAL);
 675	}
 676
 677	if (triplet)
 678		*triplet = count != opp_table->regulator_count;
 679
 680	return out;
 681}
 682
 683static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
 684				struct opp_table *opp_table, bool *triplet)
 685{
 686	u32 *microvolt;
 687
 688	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
 689	if (IS_ERR(microvolt))
 690		return microvolt;
 
 
 691
 692	if (!microvolt) {
 693		/*
 694		 * Missing property isn't a problem, but an invalid
 695		 * entry is. This property isn't optional if regulator
 696		 * information is provided. Check only for the first OPP, as
 697		 * regulator_count may get initialized after that to a valid
 698		 * value.
 699		 */
 700		if (list_empty(&opp_table->opp_list) &&
 701		    opp_table->regulator_count > 0) {
 702			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
 703				__func__);
 704			return ERR_PTR(-EINVAL);
 705		}
 706	}
 707
 708	return microvolt;
 709}
 
 
 
 
 710
 711static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
 712			      struct opp_table *opp_table)
 713{
 714	u32 *microvolt, *microamp, *microwatt;
 715	int ret = 0, i, j;
 716	bool triplet;
 717
 718	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
 719	if (IS_ERR(microvolt))
 720		return PTR_ERR(microvolt);
 721
 722	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
 723	if (IS_ERR(microamp)) {
 724		ret = PTR_ERR(microamp);
 725		goto free_microvolt;
 726	}
 727
 728	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
 729	if (IS_ERR(microwatt)) {
 730		ret = PTR_ERR(microwatt);
 731		goto free_microamp;
 
 
 
 
 732	}
 733
 734	/*
 735	 * Initialize regulator_count if it is uninitialized and no properties
 736	 * are found.
 737	 */
 738	if (unlikely(opp_table->regulator_count == -1)) {
 739		opp_table->regulator_count = 0;
 740		return 0;
 741	}
 742
 743	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
 744		if (microvolt) {
 745			opp->supplies[i].u_volt = microvolt[j++];
 746
 747			if (triplet) {
 748				opp->supplies[i].u_volt_min = microvolt[j++];
 749				opp->supplies[i].u_volt_max = microvolt[j++];
 750			} else {
 751				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
 752				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
 753			}
 754		}
 755
 756		if (microamp)
 757			opp->supplies[i].u_amp = microamp[i];
 758
 759		if (microwatt)
 760			opp->supplies[i].u_watt = microwatt[i];
 761	}
 762
 763	kfree(microwatt);
 764free_microamp:
 765	kfree(microamp);
 766free_microvolt:
 767	kfree(microvolt);
 768
 769	return ret;
 770}
 771
 772/**
 773 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 774 *				  entries
 775 * @dev:	device pointer used to lookup OPP table.
 776 *
 777 * Free OPPs created using static entries present in DT.
 778 */
 779void dev_pm_opp_of_remove_table(struct device *dev)
 780{
 781	dev_pm_opp_remove_table(dev);
 782}
 783EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
 784
 785static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 786		      struct device_node *np)
 787{
 788	struct property *prop;
 789	int i, count, ret;
 790	u64 *rates;
 791
 792	prop = of_find_property(np, "opp-hz", NULL);
 793	if (!prop)
 794		return -ENODEV;
 795
 796	count = prop->length / sizeof(u64);
 797	if (opp_table->clk_count != count) {
 798		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
 799		       __func__, count, opp_table->clk_count);
 800		return -EINVAL;
 801	}
 802
 803	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
 804	if (!rates)
 805		return -ENOMEM;
 806
 807	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
 808	if (ret) {
 809		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
 810	} else {
 811		/*
 812		 * Rate is defined as an unsigned long in clk API, and so
 813		 * casting explicitly to its type. Must be fixed once rate is 64
 814		 * bit guaranteed in clk API.
 815		 */
 816		for (i = 0; i < count; i++) {
 817			new_opp->rates[i] = (unsigned long)rates[i];
 818
 819			/* This will happen for frequencies > 4.29 GHz */
 820			WARN_ON(new_opp->rates[i] != rates[i]);
 821		}
 822	}
 823
 824	kfree(rates);
 825
 826	return ret;
 827}
 828
 829static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 830		    struct device_node *np, bool peak)
 831{
 832	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
 833	struct property *prop;
 834	int i, count, ret;
 835	u32 *bw;
 836
 837	prop = of_find_property(np, name, NULL);
 838	if (!prop)
 839		return -ENODEV;
 840
 841	count = prop->length / sizeof(u32);
 842	if (opp_table->path_count != count) {
 843		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
 844				__func__, name, count, opp_table->path_count);
 845		return -EINVAL;
 846	}
 847
 848	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
 849	if (!bw)
 850		return -ENOMEM;
 851
 852	ret = of_property_read_u32_array(np, name, bw, count);
 853	if (ret) {
 854		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
 855		goto out;
 856	}
 857
 858	for (i = 0; i < count; i++) {
 859		if (peak)
 860			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
 861		else
 862			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
 863	}
 864
 865out:
 866	kfree(bw);
 867	return ret;
 868}
 869
 870static int _read_opp_key(struct dev_pm_opp *new_opp,
 871			 struct opp_table *opp_table, struct device_node *np)
 872{
 873	bool found = false;
 874	int ret;
 875
 876	ret = _read_rate(new_opp, opp_table, np);
 877	if (!ret)
 878		found = true;
 879	else if (ret != -ENODEV)
 880		return ret;
 881
 882	/*
 883	 * Bandwidth consists of peak and average (optional) values:
 884	 * opp-peak-kBps = <path1_value path2_value>;
 885	 * opp-avg-kBps = <path1_value path2_value>;
 886	 */
 887	ret = _read_bw(new_opp, opp_table, np, true);
 888	if (!ret) {
 889		found = true;
 890		ret = _read_bw(new_opp, opp_table, np, false);
 891	}
 892
 893	/* The properties were found but we failed to parse them */
 894	if (ret && ret != -ENODEV)
 895		return ret;
 896
 897	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
 898		found = true;
 899
 900	if (found)
 901		return 0;
 902
 903	return ret;
 904}
 905
 906/**
 907 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
 908 * @opp_table:	OPP table
 909 * @dev:	device for which we do this operation
 910 * @np:		device node
 911 *
 912 * This function adds an opp definition to the opp table and returns status. The
 913 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 914 * removed by dev_pm_opp_remove.
 915 *
 916 * Return:
 917 * Valid OPP pointer:
 918 *		On success
 919 * NULL:
 920 *		Duplicate OPPs (both freq and volt are same) and opp->available
 921 *		OR if the OPP is not supported by hardware.
 922 * ERR_PTR(-EEXIST):
 923 *		Freq are same and volt are different OR
 924 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 925 * ERR_PTR(-ENOMEM):
 926 *		Memory allocation failure
 927 * ERR_PTR(-EINVAL):
 928 *		Failed parsing the OPP node
 929 */
 930static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
 931		struct device *dev, struct device_node *np)
 932{
 933	struct dev_pm_opp *new_opp;
 
 934	u32 val;
 935	int ret;
 
 936
 937	new_opp = _opp_allocate(opp_table);
 938	if (!new_opp)
 939		return ERR_PTR(-ENOMEM);
 940
 941	ret = _read_opp_key(new_opp, opp_table, np);
 942	if (ret < 0) {
 943		dev_err(dev, "%s: opp key field not found\n", __func__);
 944		goto free_opp;
 
 
 
 
 
 
 
 
 
 
 
 
 945	}
 946
 
 
 947	/* Check if the OPP supports hardware's hierarchy of versions or not */
 948	if (!_opp_is_supported(dev, opp_table, np)) {
 949		dev_dbg(dev, "OPP not supported by hardware: %s\n",
 950			of_node_full_name(np));
 951		goto free_opp;
 952	}
 953
 954	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
 955
 956	new_opp->np = of_node_get(np);
 957	new_opp->dynamic = false;
 958	new_opp->available = true;
 959
 960	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
 961	if (ret)
 962		goto free_opp;
 963
 964	if (!of_property_read_u32(np, "clock-latency-ns", &val))
 965		new_opp->clock_latency_ns = val;
 966
 967	ret = opp_parse_supplies(new_opp, dev, opp_table);
 968	if (ret)
 969		goto free_required_opps;
 970
 971	ret = _opp_add(dev, new_opp, opp_table);
 
 
 
 972	if (ret) {
 973		/* Don't return error for duplicate OPPs */
 974		if (ret == -EBUSY)
 975			ret = 0;
 976		goto free_required_opps;
 977	}
 978
 979	/* OPP to select on device suspend */
 980	if (of_property_read_bool(np, "opp-suspend")) {
 981		if (opp_table->suspend_opp) {
 982			/* Pick the OPP with higher rate/bw/level as suspend OPP */
 983			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
 984				opp_table->suspend_opp->suspend = false;
 985				new_opp->suspend = true;
 986				opp_table->suspend_opp = new_opp;
 987			}
 988		} else {
 989			new_opp->suspend = true;
 990			opp_table->suspend_opp = new_opp;
 991		}
 992	}
 993
 994	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
 995		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
 996
 997	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
 998		 __func__, new_opp->turbo, new_opp->rates[0],
 999		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001		 new_opp->level);
1002
1003	/*
1004	 * Notify the changes in the availability of the operable
1005	 * frequency/voltage list.
1006	 */
1007	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008	return new_opp;
1009
1010free_required_opps:
1011	_of_opp_free_required_opps(opp_table, new_opp);
1012free_opp:
1013	_opp_free(new_opp);
1014
1015	return ret ? ERR_PTR(ret) : NULL;
1016}
1017
1018/* Initializes OPP tables based on new bindings */
1019static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1020{
1021	struct device_node *np;
1022	int ret, count = 0;
1023	struct dev_pm_opp *opp;
1024
1025	/* OPP table is already initialized for the device */
1026	mutex_lock(&opp_table->lock);
1027	if (opp_table->parsed_static_opps) {
1028		opp_table->parsed_static_opps++;
1029		mutex_unlock(&opp_table->lock);
1030		return 0;
1031	}
1032
1033	opp_table->parsed_static_opps = 1;
1034	mutex_unlock(&opp_table->lock);
 
 
 
 
1035
1036	/* We have opp-table node now, iterate over it and add OPPs */
1037	for_each_available_child_of_node(opp_table->np, np) {
1038		opp = _opp_add_static_v2(opp_table, dev, np);
1039		if (IS_ERR(opp)) {
1040			ret = PTR_ERR(opp);
1041			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042				ret);
1043			of_node_put(np);
1044			goto remove_static_opp;
1045		} else if (opp) {
1046			count++;
1047		}
1048	}
1049
1050	/* There should be one or more OPPs defined */
1051	if (!count) {
1052		dev_err(dev, "%s: no supported OPPs", __func__);
1053		ret = -ENOENT;
1054		goto remove_static_opp;
1055	}
1056
1057	lazy_link_required_opp_table(opp_table);
 
1058
1059	return 0;
 
 
 
 
 
1060
1061remove_static_opp:
1062	_opp_remove_all_static(opp_table);
1063
1064	return ret;
 
 
1065}
1066
1067/* Initializes OPP tables based on old-deprecated bindings */
1068static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1069{
1070	const struct property *prop;
1071	const __be32 *val;
1072	int nr, ret = 0;
1073
1074	mutex_lock(&opp_table->lock);
1075	if (opp_table->parsed_static_opps) {
1076		opp_table->parsed_static_opps++;
1077		mutex_unlock(&opp_table->lock);
1078		return 0;
1079	}
1080
1081	opp_table->parsed_static_opps = 1;
1082	mutex_unlock(&opp_table->lock);
1083
1084	prop = of_find_property(dev->of_node, "operating-points", NULL);
1085	if (!prop) {
1086		ret = -ENODEV;
1087		goto remove_static_opp;
1088	}
1089	if (!prop->value) {
1090		ret = -ENODATA;
1091		goto remove_static_opp;
1092	}
1093
1094	/*
1095	 * Each OPP is a set of tuples consisting of frequency and
1096	 * voltage like <freq-kHz vol-uV>.
1097	 */
1098	nr = prop->length / sizeof(u32);
1099	if (nr % 2) {
1100		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101		ret = -EINVAL;
1102		goto remove_static_opp;
1103	}
1104
1105	val = prop->value;
1106	while (nr) {
1107		unsigned long freq = be32_to_cpup(val++) * 1000;
1108		unsigned long volt = be32_to_cpup(val++);
1109		struct dev_pm_opp_data data = {
1110			.freq = freq,
1111			.u_volt = volt,
1112		};
1113
1114		ret = _opp_add_v1(opp_table, dev, &data, false);
1115		if (ret) {
1116			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117				__func__, data.freq, ret);
1118			goto remove_static_opp;
1119		}
1120		nr -= 2;
1121	}
1122
1123	return 0;
1124
1125remove_static_opp:
1126	_opp_remove_all_static(opp_table);
1127
1128	return ret;
1129}
1130
1131static int _of_add_table_indexed(struct device *dev, int index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132{
1133	struct opp_table *opp_table;
1134	int ret, count;
1135
1136	if (index) {
1137		/*
1138		 * If only one phandle is present, then the same OPP table
1139		 * applies for all index requests.
1140		 */
1141		count = of_count_phandle_with_args(dev->of_node,
1142						   "operating-points-v2", NULL);
1143		if (count == 1)
1144			index = 0;
1145	}
1146
1147	opp_table = _add_opp_table_indexed(dev, index, true);
1148	if (IS_ERR(opp_table))
1149		return PTR_ERR(opp_table);
1150
1151	/*
1152	 * OPPs have two version of bindings now. Also try the old (v1)
1153	 * bindings for backward compatibility with older dtbs.
1154	 */
1155	if (opp_table->np)
1156		ret = _of_add_opp_table_v2(dev, opp_table);
1157	else
1158		ret = _of_add_opp_table_v1(dev, opp_table);
1159
1160	if (ret)
1161		dev_pm_opp_put_opp_table(opp_table);
1162
1163	return ret;
1164}
1165
1166static void devm_pm_opp_of_table_release(void *data)
1167{
1168	dev_pm_opp_of_remove_table(data);
1169}
1170
1171static int _devm_of_add_table_indexed(struct device *dev, int index)
1172{
1173	int ret;
1174
1175	ret = _of_add_table_indexed(dev, index);
1176	if (ret)
1177		return ret;
1178
1179	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1180}
1181
1182/**
1183 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184 * @dev:	device pointer used to lookup OPP table.
 
1185 *
1186 * Register the initial OPP table with the OPP library for given device.
1187 *
1188 * The opp_table structure will be freed after the device is destroyed.
1189 *
1190 * Return:
1191 * 0		On success OR
1192 *		Duplicate OPPs (both freq and volt are same) and opp->available
1193 * -EEXIST	Freq are same and volt are different OR
1194 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1195 * -ENOMEM	Memory allocation failure
1196 * -ENODEV	when 'operating-points' property is not found or is invalid data
1197 *		in device node.
1198 * -ENODATA	when empty 'operating-points' property is found
1199 * -EINVAL	when invalid entries are found in opp-v2 table
1200 */
1201int devm_pm_opp_of_add_table(struct device *dev)
1202{
1203	return _devm_of_add_table_indexed(dev, 0);
1204}
1205EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1206
1207/**
1208 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209 * @dev:	device pointer used to lookup OPP table.
1210 *
1211 * Register the initial OPP table with the OPP library for given device.
1212 *
1213 * Return:
1214 * 0		On success OR
1215 *		Duplicate OPPs (both freq and volt are same) and opp->available
1216 * -EEXIST	Freq are same and volt are different OR
1217 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1218 * -ENOMEM	Memory allocation failure
1219 * -ENODEV	when 'operating-points' property is not found or is invalid data
1220 *		in device node.
1221 * -ENODATA	when empty 'operating-points' property is found
1222 * -EINVAL	when invalid entries are found in opp-v2 table
1223 */
1224int dev_pm_opp_of_add_table(struct device *dev)
1225{
1226	return _of_add_table_indexed(dev, 0);
1227}
1228EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1229
1230/**
1231 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232 * @dev:	device pointer used to lookup OPP table.
1233 * @index:	Index number.
1234 *
1235 * Register the initial OPP table with the OPP library for given device only
1236 * using the "operating-points-v2" property.
1237 *
1238 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1239 */
1240int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1241{
1242	return _of_add_table_indexed(dev, index);
1243}
1244EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1245
1246/**
1247 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248 * @dev:	device pointer used to lookup OPP table.
1249 * @index:	Index number.
1250 *
1251 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1252 */
1253int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1254{
1255	return _devm_of_add_table_indexed(dev, index);
1256}
1257EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1258
1259/* CPU device specific helpers */
1260
1261/**
1262 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263 * @cpumask:	cpumask for which OPP table needs to be removed
1264 *
1265 * This removes the OPP tables for CPUs present in the @cpumask.
1266 * This should be used only to remove static entries created from DT.
1267 */
1268void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1269{
1270	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1271}
1272EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1273
1274/**
1275 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276 * @cpumask:	cpumask for which OPP table needs to be added.
1277 *
1278 * This adds the OPP tables for CPUs present in the @cpumask.
1279 */
1280int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1281{
1282	struct device *cpu_dev;
1283	int cpu, ret;
1284
1285	if (WARN_ON(cpumask_empty(cpumask)))
1286		return -ENODEV;
1287
1288	for_each_cpu(cpu, cpumask) {
1289		cpu_dev = get_cpu_device(cpu);
1290		if (!cpu_dev) {
1291			pr_err("%s: failed to get cpu%d device\n", __func__,
1292			       cpu);
1293			ret = -ENODEV;
1294			goto remove_table;
1295		}
1296
1297		ret = dev_pm_opp_of_add_table(cpu_dev);
1298		if (ret) {
1299			/*
1300			 * OPP may get registered dynamically, don't print error
1301			 * message here.
1302			 */
1303			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304				 __func__, cpu, ret);
1305
1306			goto remove_table;
1307		}
1308	}
1309
1310	return 0;
1311
1312remove_table:
1313	/* Free all other OPPs */
1314	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1315
1316	return ret;
1317}
1318EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1319
1320/*
1321 * Works only for OPP v2 bindings.
1322 *
1323 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1324 */
1325/**
1326 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327 *				      @cpu_dev using operating-points-v2
1328 *				      bindings.
1329 *
1330 * @cpu_dev:	CPU device for which we do this operation
1331 * @cpumask:	cpumask to update with information of sharing CPUs
1332 *
1333 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1334 *
1335 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1336 */
1337int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338				   struct cpumask *cpumask)
1339{
1340	struct device_node *np, *tmp_np, *cpu_np;
1341	int cpu, ret = 0;
1342
1343	/* Get OPP descriptor node */
1344	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345	if (!np) {
1346		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347		return -ENOENT;
1348	}
1349
1350	cpumask_set_cpu(cpu_dev->id, cpumask);
1351
1352	/* OPPs are shared ? */
1353	if (!of_property_read_bool(np, "opp-shared"))
1354		goto put_cpu_node;
1355
1356	for_each_possible_cpu(cpu) {
1357		if (cpu == cpu_dev->id)
1358			continue;
1359
1360		cpu_np = of_cpu_device_node_get(cpu);
1361		if (!cpu_np) {
1362			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363				__func__, cpu);
1364			ret = -ENOENT;
1365			goto put_cpu_node;
1366		}
1367
1368		/* Get OPP descriptor node */
1369		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370		of_node_put(cpu_np);
1371		if (!tmp_np) {
1372			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373			ret = -ENOENT;
1374			goto put_cpu_node;
1375		}
1376
1377		/* CPUs are sharing opp node */
1378		if (np == tmp_np)
1379			cpumask_set_cpu(cpu, cpumask);
1380
1381		of_node_put(tmp_np);
1382	}
1383
1384put_cpu_node:
1385	of_node_put(np);
1386	return ret;
1387}
1388EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1389
1390/**
1391 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392 * @np: Node that contains the "required-opps" property.
1393 * @index: Index of the phandle to parse.
1394 *
1395 * Returns the performance state of the OPP pointed out by the "required-opps"
1396 * property at @index in @np.
1397 *
1398 * Return: Zero or positive performance state on success, otherwise negative
1399 * value on errors.
1400 */
1401int of_get_required_opp_performance_state(struct device_node *np, int index)
1402{
1403	struct dev_pm_opp *opp;
1404	struct device_node *required_np;
1405	struct opp_table *opp_table;
1406	int pstate = -EINVAL;
1407
1408	required_np = of_parse_required_opp(np, index);
1409	if (!required_np)
1410		return -ENODEV;
1411
1412	opp_table = _find_table_of_opp_np(required_np);
1413	if (IS_ERR(opp_table)) {
1414		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415		       __func__, np, PTR_ERR(opp_table));
1416		goto put_required_np;
1417	}
1418
1419	/* The OPP tables must belong to a genpd */
1420	if (unlikely(!opp_table->is_genpd)) {
1421		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422		goto put_required_np;
1423	}
1424
1425	opp = _find_opp_of_np(opp_table, required_np);
1426	if (opp) {
1427		if (opp->level == OPP_LEVEL_UNSET) {
1428			pr_err("%s: OPP levels aren't available for %pOF\n",
1429			       __func__, np);
1430		} else {
1431			pstate = opp->level;
1432		}
1433		dev_pm_opp_put(opp);
1434
1435	}
1436
1437	dev_pm_opp_put_opp_table(opp_table);
1438
1439put_required_np:
1440	of_node_put(required_np);
1441
1442	return pstate;
1443}
1444EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1445
1446/**
1447 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1448 * @opp:	opp for which DT node has to be returned for
1449 *
1450 * Return: DT node corresponding to the opp, else 0 on success.
1451 *
1452 * The caller needs to put the node with of_node_put() after using it.
1453 */
1454struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1455{
1456	if (IS_ERR_OR_NULL(opp)) {
1457		pr_err("%s: Invalid parameters\n", __func__);
1458		return NULL;
1459	}
1460
1461	return of_node_get(opp->np);
1462}
1463EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1464
1465/*
1466 * Callback function provided to the Energy Model framework upon registration.
1467 * It provides the power used by @dev at @kHz if it is the frequency of an
1468 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1469 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1470 * frequency and @uW to the associated power.
1471 *
1472 * Returns 0 on success or a proper -EINVAL value in case of error.
1473 */
1474static int __maybe_unused
1475_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1476{
1477	struct dev_pm_opp *opp;
1478	unsigned long opp_freq, opp_power;
1479
1480	/* Find the right frequency and related OPP */
1481	opp_freq = *kHz * 1000;
1482	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1483	if (IS_ERR(opp))
1484		return -EINVAL;
1485
1486	opp_power = dev_pm_opp_get_power(opp);
1487	dev_pm_opp_put(opp);
1488	if (!opp_power)
1489		return -EINVAL;
1490
1491	*kHz = opp_freq / 1000;
1492	*uW = opp_power;
1493
1494	return 0;
1495}
1496
1497/*
1498 * Callback function provided to the Energy Model framework upon registration.
1499 * This computes the power estimated by @dev at @kHz if it is the frequency
1500 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502 * frequency and @uW to the associated power. The power is estimated as
1503 * P = C * V^2 * f with C being the device's capacitance and V and f
1504 * respectively the voltage and frequency of the OPP.
1505 *
1506 * Returns -EINVAL if the power calculation failed because of missing
1507 * parameters, 0 otherwise.
1508 */
1509static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1510				     unsigned long *kHz)
1511{
 
1512	struct dev_pm_opp *opp;
1513	struct device_node *np;
1514	unsigned long mV, Hz;
1515	u32 cap;
1516	u64 tmp;
1517	int ret;
1518
1519	np = of_node_get(dev->of_node);
 
 
 
 
1520	if (!np)
1521		return -EINVAL;
1522
1523	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1524	of_node_put(np);
1525	if (ret)
1526		return -EINVAL;
1527
1528	Hz = *kHz * 1000;
1529	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1530	if (IS_ERR(opp))
1531		return -EINVAL;
1532
1533	mV = dev_pm_opp_get_voltage(opp) / 1000;
1534	dev_pm_opp_put(opp);
1535	if (!mV)
1536		return -EINVAL;
1537
1538	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1539	/* Provide power in micro-Watts */
1540	do_div(tmp, 1000000);
1541
1542	*uW = (unsigned long)tmp;
1543	*kHz = Hz / 1000;
1544
1545	return 0;
1546}
1547
1548static bool _of_has_opp_microwatt_property(struct device *dev)
1549{
1550	unsigned long power, freq = 0;
1551	struct dev_pm_opp *opp;
1552
1553	/* Check if at least one OPP has needed property */
1554	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1555	if (IS_ERR(opp))
1556		return false;
1557
1558	power = dev_pm_opp_get_power(opp);
1559	dev_pm_opp_put(opp);
1560	if (!power)
1561		return false;
1562
1563	return true;
1564}
1565
1566/**
1567 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1568 * @dev		: Device for which an Energy Model has to be registered
1569 * @cpus	: CPUs for which an Energy Model has to be registered. For
1570 *		other type of devices it should be set to NULL.
1571 *
1572 * This checks whether the "dynamic-power-coefficient" devicetree property has
1573 * been specified, and tries to register an Energy Model with it if it has.
1574 * Having this property means the voltages are known for OPPs and the EM
1575 * might be calculated.
1576 */
1577int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1578{
1579	struct em_data_callback em_cb;
 
 
1580	struct device_node *np;
1581	int ret, nr_opp;
1582	u32 cap;
1583
1584	if (IS_ERR_OR_NULL(dev)) {
1585		ret = -EINVAL;
1586		goto failed;
1587	}
1588
1589	nr_opp = dev_pm_opp_get_opp_count(dev);
1590	if (nr_opp <= 0) {
1591		ret = -EINVAL;
1592		goto failed;
1593	}
1594
1595	/* First, try to find more precised Energy Model in DT */
1596	if (_of_has_opp_microwatt_property(dev)) {
1597		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1598		goto register_em;
1599	}
1600
1601	np = of_node_get(dev->of_node);
1602	if (!np) {
1603		ret = -EINVAL;
1604		goto failed;
1605	}
1606
1607	/*
1608	 * Register an EM only if the 'dynamic-power-coefficient' property is
1609	 * set in devicetree. It is assumed the voltage values are known if that
1610	 * property is set since it is useless otherwise. If voltages are not
1611	 * known, just let the EM registration fail with an error to alert the
1612	 * user about the inconsistent configuration.
1613	 */
1614	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1615	of_node_put(np);
1616	if (ret || !cap) {
1617		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1618		ret = -EINVAL;
1619		goto failed;
1620	}
1621
1622	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1623
1624register_em:
1625	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1626	if (ret)
1627		goto failed;
1628
1629	return 0;
1630
1631failed:
1632	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1633	return ret;
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP OF helpers
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/device.h>
  16#include <linux/of_device.h>
  17#include <linux/pm_domain.h>
  18#include <linux/slab.h>
  19#include <linux/export.h>
  20#include <linux/energy_model.h>
  21
  22#include "opp.h"
  23
 
 
 
  24/*
  25 * Returns opp descriptor node for a device node, caller must
  26 * do of_node_put().
  27 */
  28static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
  29						     int index)
  30{
  31	/* "operating-points-v2" can be an array for power domain providers */
  32	return of_parse_phandle(np, "operating-points-v2", index);
  33}
  34
  35/* Returns opp descriptor node for a device, caller must do of_node_put() */
  36struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
  37{
  38	return _opp_of_get_opp_desc_node(dev->of_node, 0);
  39}
  40EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
  41
  42struct opp_table *_managed_opp(struct device *dev, int index)
  43{
  44	struct opp_table *opp_table, *managed_table = NULL;
  45	struct device_node *np;
  46
  47	np = _opp_of_get_opp_desc_node(dev->of_node, index);
  48	if (!np)
  49		return NULL;
  50
  51	list_for_each_entry(opp_table, &opp_tables, node) {
  52		if (opp_table->np == np) {
  53			/*
  54			 * Multiple devices can point to the same OPP table and
  55			 * so will have same node-pointer, np.
  56			 *
  57			 * But the OPPs will be considered as shared only if the
  58			 * OPP table contains a "opp-shared" property.
  59			 */
  60			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
  61				_get_opp_table_kref(opp_table);
  62				managed_table = opp_table;
  63			}
  64
  65			break;
  66		}
  67	}
  68
  69	of_node_put(np);
  70
  71	return managed_table;
  72}
  73
  74/* The caller must call dev_pm_opp_put() after the OPP is used */
  75static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
  76					  struct device_node *opp_np)
  77{
  78	struct dev_pm_opp *opp;
  79
  80	mutex_lock(&opp_table->lock);
  81
  82	list_for_each_entry(opp, &opp_table->opp_list, node) {
  83		if (opp->np == opp_np) {
  84			dev_pm_opp_get(opp);
  85			mutex_unlock(&opp_table->lock);
  86			return opp;
  87		}
  88	}
  89
  90	mutex_unlock(&opp_table->lock);
  91
  92	return NULL;
  93}
  94
  95static struct device_node *of_parse_required_opp(struct device_node *np,
  96						 int index)
  97{
  98	struct device_node *required_np;
  99
 100	required_np = of_parse_phandle(np, "required-opps", index);
 101	if (unlikely(!required_np)) {
 102		pr_err("%s: Unable to parse required-opps: %pOF, index: %d\n",
 103		       __func__, np, index);
 104	}
 105
 106	return required_np;
 107}
 108
 109/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
 110static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
 111{
 112	struct opp_table *opp_table;
 113	struct device_node *opp_table_np;
 114
 115	lockdep_assert_held(&opp_table_lock);
 116
 117	opp_table_np = of_get_parent(opp_np);
 118	if (!opp_table_np)
 119		goto err;
 120
 121	/* It is safe to put the node now as all we need now is its address */
 122	of_node_put(opp_table_np);
 123
 
 124	list_for_each_entry(opp_table, &opp_tables, node) {
 125		if (opp_table_np == opp_table->np) {
 126			_get_opp_table_kref(opp_table);
 
 127			return opp_table;
 128		}
 129	}
 
 130
 131err:
 132	return ERR_PTR(-ENODEV);
 133}
 134
 135/* Free resources previously acquired by _opp_table_alloc_required_tables() */
 136static void _opp_table_free_required_tables(struct opp_table *opp_table)
 137{
 138	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 139	int i;
 140
 141	if (!required_opp_tables)
 142		return;
 143
 144	for (i = 0; i < opp_table->required_opp_count; i++) {
 145		if (IS_ERR_OR_NULL(required_opp_tables[i]))
 146			break;
 147
 148		dev_pm_opp_put_opp_table(required_opp_tables[i]);
 149	}
 150
 151	kfree(required_opp_tables);
 152
 153	opp_table->required_opp_count = 0;
 154	opp_table->required_opp_tables = NULL;
 
 
 
 
 155}
 156
 157/*
 158 * Populate all devices and opp tables which are part of "required-opps" list.
 159 * Checking only the first OPP node should be enough.
 160 */
 161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
 162					     struct device *dev,
 163					     struct device_node *opp_np)
 164{
 165	struct opp_table **required_opp_tables;
 166	struct device_node *required_np, *np;
 167	int count, i;
 
 168
 169	/* Traversing the first OPP node is all we need */
 170	np = of_get_next_available_child(opp_np, NULL);
 171	if (!np) {
 172		dev_err(dev, "Empty OPP table\n");
 
 173		return;
 174	}
 175
 176	count = of_count_phandle_with_args(np, "required-opps", NULL);
 177	if (!count)
 178		goto put_np;
 179
 180	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
 181				      GFP_KERNEL);
 182	if (!required_opp_tables)
 183		goto put_np;
 184
 185	opp_table->required_opp_tables = required_opp_tables;
 
 186	opp_table->required_opp_count = count;
 187
 188	for (i = 0; i < count; i++) {
 189		required_np = of_parse_required_opp(np, i);
 190		if (!required_np)
 191			goto free_required_tables;
 192
 193		required_opp_tables[i] = _find_table_of_opp_np(required_np);
 194		of_node_put(required_np);
 195
 196		if (IS_ERR(required_opp_tables[i]))
 197			goto free_required_tables;
 
 198
 
 
 199		/*
 200		 * We only support genpd's OPPs in the "required-opps" for now,
 201		 * as we don't know how much about other cases. Error out if the
 202		 * required OPP doesn't belong to a genpd.
 203		 */
 204		if (!required_opp_tables[i]->is_genpd) {
 205			dev_err(dev, "required-opp doesn't belong to genpd: %pOF\n",
 206				required_np);
 207			goto free_required_tables;
 208		}
 209	}
 210
 211	goto put_np;
 212
 213free_required_tables:
 214	_opp_table_free_required_tables(opp_table);
 215put_np:
 216	of_node_put(np);
 217}
 218
 219void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
 220			int index)
 221{
 222	struct device_node *np, *opp_np;
 223	u32 val;
 224
 225	/*
 226	 * Only required for backward compatibility with v1 bindings, but isn't
 227	 * harmful for other cases. And so we do it unconditionally.
 228	 */
 229	np = of_node_get(dev->of_node);
 230	if (!np)
 231		return;
 232
 233	if (!of_property_read_u32(np, "clock-latency", &val))
 234		opp_table->clock_latency_ns_max = val;
 235	of_property_read_u32(np, "voltage-tolerance",
 236			     &opp_table->voltage_tolerance_v1);
 237
 238	if (of_find_property(np, "#power-domain-cells", NULL))
 239		opp_table->is_genpd = true;
 240
 241	/* Get OPP table node */
 242	opp_np = _opp_of_get_opp_desc_node(np, index);
 243	of_node_put(np);
 244
 245	if (!opp_np)
 246		return;
 247
 248	if (of_property_read_bool(opp_np, "opp-shared"))
 249		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
 250	else
 251		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
 252
 253	opp_table->np = opp_np;
 254
 255	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
 256	of_node_put(opp_np);
 257}
 258
 259void _of_clear_opp_table(struct opp_table *opp_table)
 260{
 261	_opp_table_free_required_tables(opp_table);
 
 262}
 263
 264/*
 265 * Release all resources previously acquired with a call to
 266 * _of_opp_alloc_required_opps().
 267 */
 268void _of_opp_free_required_opps(struct opp_table *opp_table,
 269				struct dev_pm_opp *opp)
 270{
 271	struct dev_pm_opp **required_opps = opp->required_opps;
 272	int i;
 273
 274	if (!required_opps)
 275		return;
 276
 277	for (i = 0; i < opp_table->required_opp_count; i++) {
 278		if (!required_opps[i])
 279			break;
 280
 281		/* Put the reference back */
 282		dev_pm_opp_put(required_opps[i]);
 283	}
 284
 
 285	kfree(required_opps);
 286	opp->required_opps = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287}
 288
 289/* Populate all required OPPs which are part of "required-opps" list */
 290static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
 291				       struct dev_pm_opp *opp)
 292{
 293	struct dev_pm_opp **required_opps;
 294	struct opp_table *required_table;
 295	struct device_node *np;
 296	int i, ret, count = opp_table->required_opp_count;
 297
 298	if (!count)
 299		return 0;
 300
 301	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
 302	if (!required_opps)
 303		return -ENOMEM;
 304
 305	opp->required_opps = required_opps;
 306
 307	for (i = 0; i < count; i++) {
 308		required_table = opp_table->required_opp_tables[i];
 309
 310		np = of_parse_required_opp(opp->np, i);
 311		if (unlikely(!np)) {
 312			ret = -ENODEV;
 
 
 
 313			goto free_required_opps;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315
 316		required_opps[i] = _find_opp_of_np(required_table, np);
 317		of_node_put(np);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319		if (!required_opps[i]) {
 320			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 321			       __func__, opp->np, i);
 322			ret = -ENODEV;
 323			goto free_required_opps;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324		}
 325	}
 326
 327	return 0;
 
 
 
 
 
 
 
 
 328
 329free_required_opps:
 330	_of_opp_free_required_opps(opp_table, opp);
 331
 332	return ret;
 333}
 
 334
 335static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
 336			      struct device_node *np)
 337{
 338	unsigned int count = opp_table->supported_hw_count;
 339	u32 version;
 340	int ret;
 341
 342	if (!opp_table->supported_hw) {
 343		/*
 344		 * In the case that no supported_hw has been set by the
 345		 * platform but there is an opp-supported-hw value set for
 346		 * an OPP then the OPP should not be enabled as there is
 347		 * no way to see if the hardware supports it.
 348		 */
 349		if (of_find_property(np, "opp-supported-hw", NULL))
 350			return false;
 351		else
 352			return true;
 353	}
 354
 355	while (count--) {
 356		ret = of_property_read_u32_index(np, "opp-supported-hw", count,
 357						 &version);
 358		if (ret) {
 359			dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
 360				 __func__, count, ret);
 361			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362		}
 363
 364		/* Both of these are bitwise masks of the versions */
 365		if (!(version & opp_table->supported_hw[count]))
 366			return false;
 367	}
 368
 369	return true;
 370}
 371
 372static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
 373			      struct opp_table *opp_table)
 
 374{
 375	u32 *microvolt, *microamp = NULL;
 376	int supplies = opp_table->regulator_count, vcount, icount, ret, i, j;
 377	struct property *prop = NULL;
 378	char name[NAME_MAX];
 
 
 379
 380	/* Search for "opp-microvolt-<name>" */
 381	if (opp_table->prop_name) {
 382		snprintf(name, sizeof(name), "opp-microvolt-%s",
 383			 opp_table->prop_name);
 384		prop = of_find_property(opp->np, name, NULL);
 385	}
 386
 387	if (!prop) {
 388		/* Search for "opp-microvolt" */
 389		sprintf(name, "opp-microvolt");
 390		prop = of_find_property(opp->np, name, NULL);
 391
 392		/* Missing property isn't a problem, but an invalid entry is */
 393		if (!prop) {
 394			if (unlikely(supplies == -1)) {
 395				/* Initialize regulator_count */
 396				opp_table->regulator_count = 0;
 397				return 0;
 398			}
 399
 400			if (!supplies)
 401				return 0;
 402
 403			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
 404				__func__);
 405			return -EINVAL;
 406		}
 407	}
 408
 409	if (unlikely(supplies == -1)) {
 410		/* Initialize regulator_count */
 411		supplies = opp_table->regulator_count = 1;
 412	} else if (unlikely(!supplies)) {
 413		dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
 414		return -EINVAL;
 415	}
 416
 417	vcount = of_property_count_u32_elems(opp->np, name);
 418	if (vcount < 0) {
 419		dev_err(dev, "%s: Invalid %s property (%d)\n",
 420			__func__, name, vcount);
 421		return vcount;
 422	}
 
 423
 424	/* There can be one or three elements per supply */
 425	if (vcount != supplies && vcount != supplies * 3) {
 426		dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
 427			__func__, name, vcount, supplies);
 428		return -EINVAL;
 429	}
 430
 431	microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
 432	if (!microvolt)
 433		return -ENOMEM;
 434
 435	ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
 436	if (ret) {
 437		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
 438		ret = -EINVAL;
 439		goto free_microvolt;
 440	}
 441
 442	/* Search for "opp-microamp-<name>" */
 443	prop = NULL;
 444	if (opp_table->prop_name) {
 445		snprintf(name, sizeof(name), "opp-microamp-%s",
 446			 opp_table->prop_name);
 447		prop = of_find_property(opp->np, name, NULL);
 448	}
 
 
 
 449
 450	if (!prop) {
 451		/* Search for "opp-microamp" */
 452		sprintf(name, "opp-microamp");
 453		prop = of_find_property(opp->np, name, NULL);
 454	}
 455
 456	if (prop) {
 457		icount = of_property_count_u32_elems(opp->np, name);
 458		if (icount < 0) {
 459			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
 460				name, icount);
 461			ret = icount;
 462			goto free_microvolt;
 
 
 
 
 
 
 463		}
 
 464
 465		if (icount != supplies) {
 466			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
 467				__func__, name, icount, supplies);
 468			ret = -EINVAL;
 469			goto free_microvolt;
 470		}
 471
 472		microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
 473		if (!microamp) {
 474			ret = -EINVAL;
 475			goto free_microvolt;
 476		}
 
 
 
 
 
 
 
 
 
 
 
 477
 478		ret = of_property_read_u32_array(opp->np, name, microamp,
 479						 icount);
 480		if (ret) {
 481			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
 482				name, ret);
 483			ret = -EINVAL;
 484			goto free_microamp;
 485		}
 486	}
 487
 488	for (i = 0, j = 0; i < supplies; i++) {
 489		opp->supplies[i].u_volt = microvolt[j++];
 
 
 
 
 
 
 490
 491		if (vcount == supplies) {
 492			opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
 493			opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
 494		} else {
 495			opp->supplies[i].u_volt_min = microvolt[j++];
 496			opp->supplies[i].u_volt_max = microvolt[j++];
 
 
 
 
 
 497		}
 498
 499		if (microamp)
 500			opp->supplies[i].u_amp = microamp[i];
 
 
 
 501	}
 502
 
 503free_microamp:
 504	kfree(microamp);
 505free_microvolt:
 506	kfree(microvolt);
 507
 508	return ret;
 509}
 510
 511/**
 512 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 513 *				  entries
 514 * @dev:	device pointer used to lookup OPP table.
 515 *
 516 * Free OPPs created using static entries present in DT.
 517 */
 518void dev_pm_opp_of_remove_table(struct device *dev)
 519{
 520	_dev_pm_opp_find_and_remove_table(dev);
 521}
 522EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524/**
 525 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
 526 * @opp_table:	OPP table
 527 * @dev:	device for which we do this operation
 528 * @np:		device node
 529 *
 530 * This function adds an opp definition to the opp table and returns status. The
 531 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 532 * removed by dev_pm_opp_remove.
 533 *
 534 * Return:
 535 * Valid OPP pointer:
 536 *		On success
 537 * NULL:
 538 *		Duplicate OPPs (both freq and volt are same) and opp->available
 539 *		OR if the OPP is not supported by hardware.
 540 * ERR_PTR(-EEXIST):
 541 *		Freq are same and volt are different OR
 542 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 543 * ERR_PTR(-ENOMEM):
 544 *		Memory allocation failure
 545 * ERR_PTR(-EINVAL):
 546 *		Failed parsing the OPP node
 547 */
 548static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
 549		struct device *dev, struct device_node *np)
 550{
 551	struct dev_pm_opp *new_opp;
 552	u64 rate = 0;
 553	u32 val;
 554	int ret;
 555	bool rate_not_available = false;
 556
 557	new_opp = _opp_allocate(opp_table);
 558	if (!new_opp)
 559		return ERR_PTR(-ENOMEM);
 560
 561	ret = of_property_read_u64(np, "opp-hz", &rate);
 562	if (ret < 0) {
 563		/* "opp-hz" is optional for devices like power domains. */
 564		if (!opp_table->is_genpd) {
 565			dev_err(dev, "%s: opp-hz not found\n", __func__);
 566			goto free_opp;
 567		}
 568
 569		rate_not_available = true;
 570	} else {
 571		/*
 572		 * Rate is defined as an unsigned long in clk API, and so
 573		 * casting explicitly to its type. Must be fixed once rate is 64
 574		 * bit guaranteed in clk API.
 575		 */
 576		new_opp->rate = (unsigned long)rate;
 577	}
 578
 579	of_property_read_u32(np, "opp-level", &new_opp->level);
 580
 581	/* Check if the OPP supports hardware's hierarchy of versions or not */
 582	if (!_opp_is_supported(dev, opp_table, np)) {
 583		dev_dbg(dev, "OPP not supported by hardware: %llu\n", rate);
 
 584		goto free_opp;
 585	}
 586
 587	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
 588
 589	new_opp->np = np;
 590	new_opp->dynamic = false;
 591	new_opp->available = true;
 592
 593	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
 594	if (ret)
 595		goto free_opp;
 596
 597	if (!of_property_read_u32(np, "clock-latency-ns", &val))
 598		new_opp->clock_latency_ns = val;
 599
 600	ret = opp_parse_supplies(new_opp, dev, opp_table);
 601	if (ret)
 602		goto free_required_opps;
 603
 604	if (opp_table->is_genpd)
 605		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
 606
 607	ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
 608	if (ret) {
 609		/* Don't return error for duplicate OPPs */
 610		if (ret == -EBUSY)
 611			ret = 0;
 612		goto free_required_opps;
 613	}
 614
 615	/* OPP to select on device suspend */
 616	if (of_property_read_bool(np, "opp-suspend")) {
 617		if (opp_table->suspend_opp) {
 618			/* Pick the OPP with higher rate as suspend OPP */
 619			if (new_opp->rate > opp_table->suspend_opp->rate) {
 620				opp_table->suspend_opp->suspend = false;
 621				new_opp->suspend = true;
 622				opp_table->suspend_opp = new_opp;
 623			}
 624		} else {
 625			new_opp->suspend = true;
 626			opp_table->suspend_opp = new_opp;
 627		}
 628	}
 629
 630	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
 631		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
 632
 633	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
 634		 __func__, new_opp->turbo, new_opp->rate,
 635		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
 636		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns);
 
 637
 638	/*
 639	 * Notify the changes in the availability of the operable
 640	 * frequency/voltage list.
 641	 */
 642	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
 643	return new_opp;
 644
 645free_required_opps:
 646	_of_opp_free_required_opps(opp_table, new_opp);
 647free_opp:
 648	_opp_free(new_opp);
 649
 650	return ERR_PTR(ret);
 651}
 652
 653/* Initializes OPP tables based on new bindings */
 654static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
 655{
 656	struct device_node *np;
 657	int ret, count = 0, pstate_count = 0;
 658	struct dev_pm_opp *opp;
 659
 660	/* OPP table is already initialized for the device */
 
 661	if (opp_table->parsed_static_opps) {
 662		kref_get(&opp_table->list_kref);
 
 663		return 0;
 664	}
 665
 666	/*
 667	 * Re-initialize list_kref every time we add static OPPs to the OPP
 668	 * table as the reference count may be 0 after the last tie static OPPs
 669	 * were removed.
 670	 */
 671	kref_init(&opp_table->list_kref);
 672
 673	/* We have opp-table node now, iterate over it and add OPPs */
 674	for_each_available_child_of_node(opp_table->np, np) {
 675		opp = _opp_add_static_v2(opp_table, dev, np);
 676		if (IS_ERR(opp)) {
 677			ret = PTR_ERR(opp);
 678			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
 679				ret);
 680			of_node_put(np);
 681			return ret;
 682		} else if (opp) {
 683			count++;
 684		}
 685	}
 686
 687	/* There should be one of more OPP defined */
 688	if (WARN_ON(!count))
 689		return -ENOENT;
 
 
 
 690
 691	list_for_each_entry(opp, &opp_table->opp_list, node)
 692		pstate_count += !!opp->pstate;
 693
 694	/* Either all or none of the nodes shall have performance state set */
 695	if (pstate_count && pstate_count != count) {
 696		dev_err(dev, "Not all nodes have performance state set (%d: %d)\n",
 697			count, pstate_count);
 698		return -ENOENT;
 699	}
 700
 701	if (pstate_count)
 702		opp_table->genpd_performance_state = true;
 703
 704	opp_table->parsed_static_opps = true;
 705
 706	return 0;
 707}
 708
 709/* Initializes OPP tables based on old-deprecated bindings */
 710static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
 711{
 712	const struct property *prop;
 713	const __be32 *val;
 714	int nr, ret = 0;
 715
 
 
 
 
 
 
 
 
 
 
 716	prop = of_find_property(dev->of_node, "operating-points", NULL);
 717	if (!prop)
 718		return -ENODEV;
 719	if (!prop->value)
 720		return -ENODATA;
 
 
 
 
 721
 722	/*
 723	 * Each OPP is a set of tuples consisting of frequency and
 724	 * voltage like <freq-kHz vol-uV>.
 725	 */
 726	nr = prop->length / sizeof(u32);
 727	if (nr % 2) {
 728		dev_err(dev, "%s: Invalid OPP table\n", __func__);
 729		return -EINVAL;
 
 730	}
 731
 732	val = prop->value;
 733	while (nr) {
 734		unsigned long freq = be32_to_cpup(val++) * 1000;
 735		unsigned long volt = be32_to_cpup(val++);
 
 
 
 
 736
 737		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
 738		if (ret) {
 739			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
 740				__func__, freq, ret);
 741			return ret;
 742		}
 743		nr -= 2;
 744	}
 745
 
 
 
 
 
 746	return ret;
 747}
 748
 749/**
 750 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
 751 * @dev:	device pointer used to lookup OPP table.
 752 *
 753 * Register the initial OPP table with the OPP library for given device.
 754 *
 755 * Return:
 756 * 0		On success OR
 757 *		Duplicate OPPs (both freq and volt are same) and opp->available
 758 * -EEXIST	Freq are same and volt are different OR
 759 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 760 * -ENOMEM	Memory allocation failure
 761 * -ENODEV	when 'operating-points' property is not found or is invalid data
 762 *		in device node.
 763 * -ENODATA	when empty 'operating-points' property is found
 764 * -EINVAL	when invalid entries are found in opp-v2 table
 765 */
 766int dev_pm_opp_of_add_table(struct device *dev)
 767{
 768	struct opp_table *opp_table;
 769	int ret;
 
 
 
 
 
 
 
 
 
 
 
 770
 771	opp_table = dev_pm_opp_get_opp_table_indexed(dev, 0);
 772	if (!opp_table)
 773		return -ENOMEM;
 774
 775	/*
 776	 * OPPs have two version of bindings now. Also try the old (v1)
 777	 * bindings for backward compatibility with older dtbs.
 778	 */
 779	if (opp_table->np)
 780		ret = _of_add_opp_table_v2(dev, opp_table);
 781	else
 782		ret = _of_add_opp_table_v1(dev, opp_table);
 783
 784	if (ret)
 785		dev_pm_opp_put_opp_table(opp_table);
 786
 787	return ret;
 788}
 789EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791/**
 792 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
 793 * @dev:	device pointer used to lookup OPP table.
 794 * @index:	Index number.
 795 *
 796 * Register the initial OPP table with the OPP library for given device only
 797 * using the "operating-points-v2" property.
 
 798 *
 799 * Return:
 800 * 0		On success OR
 801 *		Duplicate OPPs (both freq and volt are same) and opp->available
 802 * -EEXIST	Freq are same and volt are different OR
 803 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 804 * -ENOMEM	Memory allocation failure
 805 * -ENODEV	when 'operating-points' property is not found or is invalid data
 806 *		in device node.
 807 * -ENODATA	when empty 'operating-points' property is found
 808 * -EINVAL	when invalid entries are found in opp-v2 table
 809 */
 810int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
 811{
 812	struct opp_table *opp_table;
 813	int ret, count;
 
 814
 815	if (index) {
 816		/*
 817		 * If only one phandle is present, then the same OPP table
 818		 * applies for all index requests.
 819		 */
 820		count = of_count_phandle_with_args(dev->of_node,
 821						   "operating-points-v2", NULL);
 822		if (count == 1)
 823			index = 0;
 824	}
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	opp_table = dev_pm_opp_get_opp_table_indexed(dev, index);
 827	if (!opp_table)
 828		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830	ret = _of_add_opp_table_v2(dev, opp_table);
 831	if (ret)
 832		dev_pm_opp_put_opp_table(opp_table);
 833
 834	return ret;
 
 
 
 
 
 835}
 836EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
 837
 838/* CPU device specific helpers */
 839
 840/**
 841 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
 842 * @cpumask:	cpumask for which OPP table needs to be removed
 843 *
 844 * This removes the OPP tables for CPUs present in the @cpumask.
 845 * This should be used only to remove static entries created from DT.
 846 */
 847void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
 848{
 849	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
 850}
 851EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
 852
 853/**
 854 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
 855 * @cpumask:	cpumask for which OPP table needs to be added.
 856 *
 857 * This adds the OPP tables for CPUs present in the @cpumask.
 858 */
 859int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
 860{
 861	struct device *cpu_dev;
 862	int cpu, ret;
 863
 864	if (WARN_ON(cpumask_empty(cpumask)))
 865		return -ENODEV;
 866
 867	for_each_cpu(cpu, cpumask) {
 868		cpu_dev = get_cpu_device(cpu);
 869		if (!cpu_dev) {
 870			pr_err("%s: failed to get cpu%d device\n", __func__,
 871			       cpu);
 872			ret = -ENODEV;
 873			goto remove_table;
 874		}
 875
 876		ret = dev_pm_opp_of_add_table(cpu_dev);
 877		if (ret) {
 878			/*
 879			 * OPP may get registered dynamically, don't print error
 880			 * message here.
 881			 */
 882			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
 883				 __func__, cpu, ret);
 884
 885			goto remove_table;
 886		}
 887	}
 888
 889	return 0;
 890
 891remove_table:
 892	/* Free all other OPPs */
 893	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
 894
 895	return ret;
 896}
 897EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
 898
 899/*
 900 * Works only for OPP v2 bindings.
 901 *
 902 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
 903 */
 904/**
 905 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
 906 *				      @cpu_dev using operating-points-v2
 907 *				      bindings.
 908 *
 909 * @cpu_dev:	CPU device for which we do this operation
 910 * @cpumask:	cpumask to update with information of sharing CPUs
 911 *
 912 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
 913 *
 914 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
 915 */
 916int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
 917				   struct cpumask *cpumask)
 918{
 919	struct device_node *np, *tmp_np, *cpu_np;
 920	int cpu, ret = 0;
 921
 922	/* Get OPP descriptor node */
 923	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
 924	if (!np) {
 925		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
 926		return -ENOENT;
 927	}
 928
 929	cpumask_set_cpu(cpu_dev->id, cpumask);
 930
 931	/* OPPs are shared ? */
 932	if (!of_property_read_bool(np, "opp-shared"))
 933		goto put_cpu_node;
 934
 935	for_each_possible_cpu(cpu) {
 936		if (cpu == cpu_dev->id)
 937			continue;
 938
 939		cpu_np = of_cpu_device_node_get(cpu);
 940		if (!cpu_np) {
 941			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
 942				__func__, cpu);
 943			ret = -ENOENT;
 944			goto put_cpu_node;
 945		}
 946
 947		/* Get OPP descriptor node */
 948		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
 949		of_node_put(cpu_np);
 950		if (!tmp_np) {
 951			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
 952			ret = -ENOENT;
 953			goto put_cpu_node;
 954		}
 955
 956		/* CPUs are sharing opp node */
 957		if (np == tmp_np)
 958			cpumask_set_cpu(cpu, cpumask);
 959
 960		of_node_put(tmp_np);
 961	}
 962
 963put_cpu_node:
 964	of_node_put(np);
 965	return ret;
 966}
 967EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
 968
 969/**
 970 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
 971 * @np: Node that contains the "required-opps" property.
 972 * @index: Index of the phandle to parse.
 973 *
 974 * Returns the performance state of the OPP pointed out by the "required-opps"
 975 * property at @index in @np.
 976 *
 977 * Return: Zero or positive performance state on success, otherwise negative
 978 * value on errors.
 979 */
 980int of_get_required_opp_performance_state(struct device_node *np, int index)
 981{
 982	struct dev_pm_opp *opp;
 983	struct device_node *required_np;
 984	struct opp_table *opp_table;
 985	int pstate = -EINVAL;
 986
 987	required_np = of_parse_required_opp(np, index);
 988	if (!required_np)
 989		return -EINVAL;
 990
 991	opp_table = _find_table_of_opp_np(required_np);
 992	if (IS_ERR(opp_table)) {
 993		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
 994		       __func__, np, PTR_ERR(opp_table));
 995		goto put_required_np;
 996	}
 997
 
 
 
 
 
 
 998	opp = _find_opp_of_np(opp_table, required_np);
 999	if (opp) {
1000		pstate = opp->pstate;
 
 
 
 
 
1001		dev_pm_opp_put(opp);
 
1002	}
1003
1004	dev_pm_opp_put_opp_table(opp_table);
1005
1006put_required_np:
1007	of_node_put(required_np);
1008
1009	return pstate;
1010}
1011EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1012
1013/**
1014 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1015 * @opp:	opp for which DT node has to be returned for
1016 *
1017 * Return: DT node corresponding to the opp, else 0 on success.
1018 *
1019 * The caller needs to put the node with of_node_put() after using it.
1020 */
1021struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1022{
1023	if (IS_ERR_OR_NULL(opp)) {
1024		pr_err("%s: Invalid parameters\n", __func__);
1025		return NULL;
1026	}
1027
1028	return of_node_get(opp->np);
1029}
1030EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1031
1032/*
1033 * Callback function provided to the Energy Model framework upon registration.
1034 * This computes the power estimated by @CPU at @kHz if it is the frequency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1036 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1037 * frequency and @mW to the associated power. The power is estimated as
1038 * P = C * V^2 * f with C being the CPU's capacitance and V and f respectively
1039 * the voltage and frequency of the OPP.
1040 *
1041 * Returns -ENODEV if the CPU device cannot be found, -EINVAL if the power
1042 * calculation failed because of missing parameters, 0 otherwise.
1043 */
1044static int __maybe_unused _get_cpu_power(unsigned long *mW, unsigned long *kHz,
1045					 int cpu)
1046{
1047	struct device *cpu_dev;
1048	struct dev_pm_opp *opp;
1049	struct device_node *np;
1050	unsigned long mV, Hz;
1051	u32 cap;
1052	u64 tmp;
1053	int ret;
1054
1055	cpu_dev = get_cpu_device(cpu);
1056	if (!cpu_dev)
1057		return -ENODEV;
1058
1059	np = of_node_get(cpu_dev->of_node);
1060	if (!np)
1061		return -EINVAL;
1062
1063	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1064	of_node_put(np);
1065	if (ret)
1066		return -EINVAL;
1067
1068	Hz = *kHz * 1000;
1069	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &Hz);
1070	if (IS_ERR(opp))
1071		return -EINVAL;
1072
1073	mV = dev_pm_opp_get_voltage(opp) / 1000;
1074	dev_pm_opp_put(opp);
1075	if (!mV)
1076		return -EINVAL;
1077
1078	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1079	do_div(tmp, 1000000000);
 
1080
1081	*mW = (unsigned long)tmp;
1082	*kHz = Hz / 1000;
1083
1084	return 0;
1085}
1086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087/**
1088 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1089 * @cpus	: CPUs for which an Energy Model has to be registered
 
 
1090 *
1091 * This checks whether the "dynamic-power-coefficient" devicetree property has
1092 * been specified, and tries to register an Energy Model with it if it has.
 
 
1093 */
1094void dev_pm_opp_of_register_em(struct cpumask *cpus)
1095{
1096	struct em_data_callback em_cb = EM_DATA_CB(_get_cpu_power);
1097	int ret, nr_opp, cpu = cpumask_first(cpus);
1098	struct device *cpu_dev;
1099	struct device_node *np;
 
1100	u32 cap;
1101
1102	cpu_dev = get_cpu_device(cpu);
1103	if (!cpu_dev)
1104		return;
 
 
 
 
 
 
 
1105
1106	nr_opp = dev_pm_opp_get_opp_count(cpu_dev);
1107	if (nr_opp <= 0)
1108		return;
 
 
1109
1110	np = of_node_get(cpu_dev->of_node);
1111	if (!np)
1112		return;
 
 
1113
1114	/*
1115	 * Register an EM only if the 'dynamic-power-coefficient' property is
1116	 * set in devicetree. It is assumed the voltage values are known if that
1117	 * property is set since it is useless otherwise. If voltages are not
1118	 * known, just let the EM registration fail with an error to alert the
1119	 * user about the inconsistent configuration.
1120	 */
1121	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1122	of_node_put(np);
1123	if (ret || !cap)
1124		return;
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126	em_register_perf_domain(cpus, nr_opp, &em_cb);
 
 
1127}
1128EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);