Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
 
  21
  22#include "internals.h"
  23
  24#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  25
  26#define FLAG_COMPAT		BIT(0)
  27struct nvmem_cell_entry {
  28	const char		*name;
  29	int			offset;
  30	size_t			raw_len;
  31	int			bytes;
  32	int			bit_offset;
  33	int			nbits;
  34	nvmem_cell_post_process_t read_post_process;
  35	void			*priv;
  36	struct device_node	*np;
  37	struct nvmem_device	*nvmem;
  38	struct list_head	node;
  39};
  40
  41struct nvmem_cell {
  42	struct nvmem_cell_entry *entry;
  43	const char		*id;
  44	int			index;
  45};
  46
  47static DEFINE_MUTEX(nvmem_mutex);
  48static DEFINE_IDA(nvmem_ida);
  49
  50static DEFINE_MUTEX(nvmem_cell_mutex);
  51static LIST_HEAD(nvmem_cell_tables);
  52
  53static DEFINE_MUTEX(nvmem_lookup_mutex);
  54static LIST_HEAD(nvmem_lookup_list);
  55
  56static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  57
  58static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  59			    void *val, size_t bytes)
  60{
  61	if (nvmem->reg_read)
  62		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  63
  64	return -EINVAL;
  65}
  66
  67static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  68			     void *val, size_t bytes)
  69{
  70	int ret;
  71
  72	if (nvmem->reg_write) {
  73		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  74		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  75		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  76		return ret;
  77	}
  78
  79	return -EINVAL;
  80}
  81
  82static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
  83				      unsigned int offset, void *val,
  84				      size_t bytes, int write)
  85{
  86
  87	unsigned int end = offset + bytes;
  88	unsigned int kend, ksize;
  89	const struct nvmem_keepout *keepout = nvmem->keepout;
  90	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
  91	int rc;
  92
  93	/*
  94	 * Skip all keepouts before the range being accessed.
  95	 * Keepouts are sorted.
  96	 */
  97	while ((keepout < keepoutend) && (keepout->end <= offset))
  98		keepout++;
  99
 100	while ((offset < end) && (keepout < keepoutend)) {
 101		/* Access the valid portion before the keepout. */
 102		if (offset < keepout->start) {
 103			kend = min(end, keepout->start);
 104			ksize = kend - offset;
 105			if (write)
 106				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 107			else
 108				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 109
 110			if (rc)
 111				return rc;
 112
 113			offset += ksize;
 114			val += ksize;
 115		}
 116
 117		/*
 118		 * Now we're aligned to the start of this keepout zone. Go
 119		 * through it.
 120		 */
 121		kend = min(end, keepout->end);
 122		ksize = kend - offset;
 123		if (!write)
 124			memset(val, keepout->value, ksize);
 125
 126		val += ksize;
 127		offset += ksize;
 128		keepout++;
 129	}
 130
 131	/*
 132	 * If we ran out of keepouts but there's still stuff to do, send it
 133	 * down directly
 134	 */
 135	if (offset < end) {
 136		ksize = end - offset;
 137		if (write)
 138			return __nvmem_reg_write(nvmem, offset, val, ksize);
 139		else
 140			return __nvmem_reg_read(nvmem, offset, val, ksize);
 141	}
 142
 143	return 0;
 144}
 145
 146static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 147			  void *val, size_t bytes)
 148{
 149	if (!nvmem->nkeepout)
 150		return __nvmem_reg_read(nvmem, offset, val, bytes);
 151
 152	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 153}
 154
 155static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 156			   void *val, size_t bytes)
 157{
 158	if (!nvmem->nkeepout)
 159		return __nvmem_reg_write(nvmem, offset, val, bytes);
 160
 161	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 162}
 163
 164#ifdef CONFIG_NVMEM_SYSFS
 165static const char * const nvmem_type_str[] = {
 166	[NVMEM_TYPE_UNKNOWN] = "Unknown",
 167	[NVMEM_TYPE_EEPROM] = "EEPROM",
 168	[NVMEM_TYPE_OTP] = "OTP",
 169	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 170	[NVMEM_TYPE_FRAM] = "FRAM",
 171};
 172
 173#ifdef CONFIG_DEBUG_LOCK_ALLOC
 174static struct lock_class_key eeprom_lock_key;
 175#endif
 176
 177static ssize_t type_show(struct device *dev,
 178			 struct device_attribute *attr, char *buf)
 179{
 180	struct nvmem_device *nvmem = to_nvmem_device(dev);
 181
 182	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 183}
 184
 185static DEVICE_ATTR_RO(type);
 186
 187static struct attribute *nvmem_attrs[] = {
 188	&dev_attr_type.attr,
 189	NULL,
 190};
 191
 192static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 193				   struct bin_attribute *attr, char *buf,
 194				   loff_t pos, size_t count)
 195{
 196	struct device *dev;
 197	struct nvmem_device *nvmem;
 198	int rc;
 199
 200	if (attr->private)
 201		dev = attr->private;
 202	else
 203		dev = kobj_to_dev(kobj);
 204	nvmem = to_nvmem_device(dev);
 205
 206	/* Stop the user from reading */
 207	if (pos >= nvmem->size)
 208		return 0;
 209
 210	if (!IS_ALIGNED(pos, nvmem->stride))
 211		return -EINVAL;
 212
 213	if (count < nvmem->word_size)
 214		return -EINVAL;
 215
 216	if (pos + count > nvmem->size)
 217		count = nvmem->size - pos;
 218
 219	count = round_down(count, nvmem->word_size);
 220
 221	if (!nvmem->reg_read)
 222		return -EPERM;
 223
 224	rc = nvmem_reg_read(nvmem, pos, buf, count);
 225
 226	if (rc)
 227		return rc;
 228
 229	return count;
 230}
 231
 232static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 233				    struct bin_attribute *attr, char *buf,
 234				    loff_t pos, size_t count)
 235{
 236	struct device *dev;
 237	struct nvmem_device *nvmem;
 238	int rc;
 239
 240	if (attr->private)
 241		dev = attr->private;
 242	else
 243		dev = kobj_to_dev(kobj);
 244	nvmem = to_nvmem_device(dev);
 245
 246	/* Stop the user from writing */
 247	if (pos >= nvmem->size)
 248		return -EFBIG;
 249
 250	if (!IS_ALIGNED(pos, nvmem->stride))
 251		return -EINVAL;
 252
 253	if (count < nvmem->word_size)
 254		return -EINVAL;
 255
 256	if (pos + count > nvmem->size)
 257		count = nvmem->size - pos;
 258
 259	count = round_down(count, nvmem->word_size);
 260
 261	if (!nvmem->reg_write)
 262		return -EPERM;
 263
 264	rc = nvmem_reg_write(nvmem, pos, buf, count);
 265
 266	if (rc)
 267		return rc;
 268
 269	return count;
 270}
 271
 272static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 273{
 274	umode_t mode = 0400;
 275
 276	if (!nvmem->root_only)
 277		mode |= 0044;
 278
 279	if (!nvmem->read_only)
 280		mode |= 0200;
 281
 282	if (!nvmem->reg_write)
 283		mode &= ~0200;
 284
 285	if (!nvmem->reg_read)
 286		mode &= ~0444;
 287
 288	return mode;
 289}
 290
 291static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 292					 struct bin_attribute *attr, int i)
 293{
 294	struct device *dev = kobj_to_dev(kobj);
 295	struct nvmem_device *nvmem = to_nvmem_device(dev);
 296
 297	attr->size = nvmem->size;
 298
 299	return nvmem_bin_attr_get_umode(nvmem);
 300}
 301
 302static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
 303					    const char *id, int index);
 304
 305static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
 306				    struct bin_attribute *attr, char *buf,
 307				    loff_t pos, size_t count)
 308{
 309	struct nvmem_cell_entry *entry;
 310	struct nvmem_cell *cell = NULL;
 311	size_t cell_sz, read_len;
 312	void *content;
 313
 314	entry = attr->private;
 315	cell = nvmem_create_cell(entry, entry->name, 0);
 316	if (IS_ERR(cell))
 317		return PTR_ERR(cell);
 318
 319	if (!cell)
 320		return -EINVAL;
 321
 322	content = nvmem_cell_read(cell, &cell_sz);
 323	if (IS_ERR(content)) {
 324		read_len = PTR_ERR(content);
 325		goto destroy_cell;
 326	}
 327
 328	read_len = min_t(unsigned int, cell_sz - pos, count);
 329	memcpy(buf, content + pos, read_len);
 330	kfree(content);
 331
 332destroy_cell:
 333	kfree_const(cell->id);
 334	kfree(cell);
 335
 336	return read_len;
 337}
 338
 339/* default read/write permissions */
 340static struct bin_attribute bin_attr_rw_nvmem = {
 341	.attr	= {
 342		.name	= "nvmem",
 343		.mode	= 0644,
 344	},
 345	.read	= bin_attr_nvmem_read,
 346	.write	= bin_attr_nvmem_write,
 347};
 348
 349static struct bin_attribute *nvmem_bin_attributes[] = {
 350	&bin_attr_rw_nvmem,
 351	NULL,
 352};
 353
 354static const struct attribute_group nvmem_bin_group = {
 355	.bin_attrs	= nvmem_bin_attributes,
 356	.attrs		= nvmem_attrs,
 357	.is_bin_visible = nvmem_bin_attr_is_visible,
 358};
 359
 360/* Cell attributes will be dynamically allocated */
 361static struct attribute_group nvmem_cells_group = {
 362	.name		= "cells",
 363};
 364
 365static const struct attribute_group *nvmem_dev_groups[] = {
 366	&nvmem_bin_group,
 367	NULL,
 368};
 369
 370static const struct attribute_group *nvmem_cells_groups[] = {
 371	&nvmem_cells_group,
 372	NULL,
 373};
 374
 375static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 376	.attr	= {
 377		.name	= "eeprom",
 378	},
 379	.read	= bin_attr_nvmem_read,
 380	.write	= bin_attr_nvmem_write,
 381};
 382
 383/*
 384 * nvmem_setup_compat() - Create an additional binary entry in
 385 * drivers sys directory, to be backwards compatible with the older
 386 * drivers/misc/eeprom drivers.
 387 */
 388static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 389				    const struct nvmem_config *config)
 390{
 391	int rval;
 392
 393	if (!config->compat)
 394		return 0;
 395
 396	if (!config->base_dev)
 397		return -EINVAL;
 398
 399	if (config->type == NVMEM_TYPE_FRAM)
 400		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 401
 402	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 403	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 404	nvmem->eeprom.size = nvmem->size;
 405#ifdef CONFIG_DEBUG_LOCK_ALLOC
 406	nvmem->eeprom.attr.key = &eeprom_lock_key;
 407#endif
 408	nvmem->eeprom.private = &nvmem->dev;
 409	nvmem->base_dev = config->base_dev;
 410
 411	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 412	if (rval) {
 413		dev_err(&nvmem->dev,
 414			"Failed to create eeprom binary file %d\n", rval);
 415		return rval;
 416	}
 417
 418	nvmem->flags |= FLAG_COMPAT;
 419
 420	return 0;
 421}
 422
 423static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 424			      const struct nvmem_config *config)
 425{
 426	if (config->compat)
 427		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 428}
 429
 430static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
 431{
 432	struct bin_attribute **cells_attrs, *attrs;
 433	struct nvmem_cell_entry *entry;
 434	unsigned int ncells = 0, i = 0;
 435	int ret = 0;
 436
 437	mutex_lock(&nvmem_mutex);
 438
 439	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated) {
 440		nvmem_cells_group.bin_attrs = NULL;
 441		goto unlock_mutex;
 442	}
 443
 444	/* Allocate an array of attributes with a sentinel */
 445	ncells = list_count_nodes(&nvmem->cells);
 446	cells_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
 447				   sizeof(struct bin_attribute *), GFP_KERNEL);
 448	if (!cells_attrs) {
 449		ret = -ENOMEM;
 450		goto unlock_mutex;
 451	}
 452
 453	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
 454	if (!attrs) {
 455		ret = -ENOMEM;
 456		goto unlock_mutex;
 457	}
 458
 459	/* Initialize each attribute to take the name and size of the cell */
 460	list_for_each_entry(entry, &nvmem->cells, node) {
 461		sysfs_bin_attr_init(&attrs[i]);
 462		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
 463						    "%s@%x,%x", entry->name,
 464						    entry->offset,
 465						    entry->bit_offset);
 466		attrs[i].attr.mode = 0444;
 467		attrs[i].size = entry->bytes;
 468		attrs[i].read = &nvmem_cell_attr_read;
 469		attrs[i].private = entry;
 470		if (!attrs[i].attr.name) {
 471			ret = -ENOMEM;
 472			goto unlock_mutex;
 473		}
 474
 475		cells_attrs[i] = &attrs[i];
 476		i++;
 477	}
 478
 479	nvmem_cells_group.bin_attrs = cells_attrs;
 480
 481	ret = devm_device_add_groups(&nvmem->dev, nvmem_cells_groups);
 482	if (ret)
 483		goto unlock_mutex;
 484
 485	nvmem->sysfs_cells_populated = true;
 486
 487unlock_mutex:
 488	mutex_unlock(&nvmem_mutex);
 489
 490	return ret;
 491}
 492
 493#else /* CONFIG_NVMEM_SYSFS */
 494
 495static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 496				    const struct nvmem_config *config)
 497{
 498	return -ENOSYS;
 499}
 500static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 501				      const struct nvmem_config *config)
 502{
 503}
 504
 505#endif /* CONFIG_NVMEM_SYSFS */
 506
 507static void nvmem_release(struct device *dev)
 508{
 509	struct nvmem_device *nvmem = to_nvmem_device(dev);
 510
 511	ida_free(&nvmem_ida, nvmem->id);
 512	gpiod_put(nvmem->wp_gpio);
 513	kfree(nvmem);
 514}
 515
 516static const struct device_type nvmem_provider_type = {
 517	.release	= nvmem_release,
 518};
 519
 520static struct bus_type nvmem_bus_type = {
 521	.name		= "nvmem",
 522};
 523
 524static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
 525{
 526	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 527	mutex_lock(&nvmem_mutex);
 528	list_del(&cell->node);
 529	mutex_unlock(&nvmem_mutex);
 530	of_node_put(cell->np);
 531	kfree_const(cell->name);
 532	kfree(cell);
 533}
 534
 535static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 536{
 537	struct nvmem_cell_entry *cell, *p;
 538
 539	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 540		nvmem_cell_entry_drop(cell);
 541}
 542
 543static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
 544{
 545	mutex_lock(&nvmem_mutex);
 546	list_add_tail(&cell->node, &cell->nvmem->cells);
 547	mutex_unlock(&nvmem_mutex);
 548	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 549}
 550
 551static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
 552						     const struct nvmem_cell_info *info,
 553						     struct nvmem_cell_entry *cell)
 554{
 555	cell->nvmem = nvmem;
 556	cell->offset = info->offset;
 557	cell->raw_len = info->raw_len ?: info->bytes;
 558	cell->bytes = info->bytes;
 559	cell->name = info->name;
 560	cell->read_post_process = info->read_post_process;
 561	cell->priv = info->priv;
 562
 563	cell->bit_offset = info->bit_offset;
 564	cell->nbits = info->nbits;
 565	cell->np = info->np;
 566
 567	if (cell->nbits)
 568		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 569					   BITS_PER_BYTE);
 570
 571	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 572		dev_err(&nvmem->dev,
 573			"cell %s unaligned to nvmem stride %d\n",
 574			cell->name ?: "<unknown>", nvmem->stride);
 575		return -EINVAL;
 576	}
 577
 578	return 0;
 579}
 580
 581static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
 582					       const struct nvmem_cell_info *info,
 583					       struct nvmem_cell_entry *cell)
 584{
 585	int err;
 586
 587	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
 588	if (err)
 589		return err;
 590
 591	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 592	if (!cell->name)
 593		return -ENOMEM;
 594
 595	return 0;
 596}
 597
 598/**
 599 * nvmem_add_one_cell() - Add one cell information to an nvmem device
 600 *
 601 * @nvmem: nvmem device to add cells to.
 602 * @info: nvmem cell info to add to the device
 603 *
 604 * Return: 0 or negative error code on failure.
 605 */
 606int nvmem_add_one_cell(struct nvmem_device *nvmem,
 607		       const struct nvmem_cell_info *info)
 608{
 609	struct nvmem_cell_entry *cell;
 610	int rval;
 611
 612	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 613	if (!cell)
 614		return -ENOMEM;
 615
 616	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 617	if (rval) {
 618		kfree(cell);
 619		return rval;
 620	}
 621
 622	nvmem_cell_entry_add(cell);
 623
 624	return 0;
 625}
 626EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
 627
 628/**
 629 * nvmem_add_cells() - Add cell information to an nvmem device
 630 *
 631 * @nvmem: nvmem device to add cells to.
 632 * @info: nvmem cell info to add to the device
 633 * @ncells: number of cells in info
 634 *
 635 * Return: 0 or negative error code on failure.
 636 */
 637static int nvmem_add_cells(struct nvmem_device *nvmem,
 638		    const struct nvmem_cell_info *info,
 639		    int ncells)
 640{
 
 641	int i, rval;
 642
 
 
 
 
 643	for (i = 0; i < ncells; i++) {
 644		rval = nvmem_add_one_cell(nvmem, &info[i]);
 645		if (rval)
 646			return rval;
 
 
 
 
 
 
 
 
 
 
 647	}
 648
 
 
 
 649	return 0;
 
 
 
 
 
 
 
 650}
 651
 652/**
 653 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 654 *
 655 * @nb: notifier block to be called on nvmem events.
 656 *
 657 * Return: 0 on success, negative error number on failure.
 658 */
 659int nvmem_register_notifier(struct notifier_block *nb)
 660{
 661	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 662}
 663EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 664
 665/**
 666 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 667 *
 668 * @nb: notifier block to be unregistered.
 669 *
 670 * Return: 0 on success, negative error number on failure.
 671 */
 672int nvmem_unregister_notifier(struct notifier_block *nb)
 673{
 674	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 675}
 676EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 677
 678static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 679{
 680	const struct nvmem_cell_info *info;
 681	struct nvmem_cell_table *table;
 682	struct nvmem_cell_entry *cell;
 683	int rval = 0, i;
 684
 685	mutex_lock(&nvmem_cell_mutex);
 686	list_for_each_entry(table, &nvmem_cell_tables, node) {
 687		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 688			for (i = 0; i < table->ncells; i++) {
 689				info = &table->cells[i];
 690
 691				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 692				if (!cell) {
 693					rval = -ENOMEM;
 694					goto out;
 695				}
 696
 697				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 
 
 698				if (rval) {
 699					kfree(cell);
 700					goto out;
 701				}
 702
 703				nvmem_cell_entry_add(cell);
 704			}
 705		}
 706	}
 707
 708out:
 709	mutex_unlock(&nvmem_cell_mutex);
 710	return rval;
 711}
 712
 713static struct nvmem_cell_entry *
 714nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
 715{
 716	struct nvmem_cell_entry *iter, *cell = NULL;
 717
 718	mutex_lock(&nvmem_mutex);
 719	list_for_each_entry(iter, &nvmem->cells, node) {
 720		if (strcmp(cell_id, iter->name) == 0) {
 721			cell = iter;
 722			break;
 723		}
 724	}
 725	mutex_unlock(&nvmem_mutex);
 726
 727	return cell;
 728}
 729
 730static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 731{
 732	unsigned int cur = 0;
 733	const struct nvmem_keepout *keepout = nvmem->keepout;
 734	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 735
 736	while (keepout < keepoutend) {
 737		/* Ensure keepouts are sorted and don't overlap. */
 738		if (keepout->start < cur) {
 739			dev_err(&nvmem->dev,
 740				"Keepout regions aren't sorted or overlap.\n");
 741
 742			return -ERANGE;
 743		}
 744
 745		if (keepout->end < keepout->start) {
 746			dev_err(&nvmem->dev,
 747				"Invalid keepout region.\n");
 748
 749			return -EINVAL;
 750		}
 751
 752		/*
 753		 * Validate keepouts (and holes between) don't violate
 754		 * word_size constraints.
 755		 */
 756		if ((keepout->end - keepout->start < nvmem->word_size) ||
 757		    ((keepout->start != cur) &&
 758		     (keepout->start - cur < nvmem->word_size))) {
 759
 760			dev_err(&nvmem->dev,
 761				"Keepout regions violate word_size constraints.\n");
 762
 763			return -ERANGE;
 764		}
 765
 766		/* Validate keepouts don't violate stride (alignment). */
 767		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 768		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 769
 770			dev_err(&nvmem->dev,
 771				"Keepout regions violate stride.\n");
 772
 773			return -EINVAL;
 774		}
 775
 776		cur = keepout->end;
 777		keepout++;
 778	}
 779
 780	return 0;
 781}
 782
 783static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
 784{
 
 785	struct device *dev = &nvmem->dev;
 786	struct device_node *child;
 787	const __be32 *addr;
 788	int len, ret;
 789
 790	for_each_child_of_node(np, child) {
 791		struct nvmem_cell_info info = {0};
 792
 
 793		addr = of_get_property(child, "reg", &len);
 794		if (!addr)
 795			continue;
 796		if (len < 2 * sizeof(u32)) {
 797			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 798			of_node_put(child);
 799			return -EINVAL;
 800		}
 801
 802		info.offset = be32_to_cpup(addr++);
 803		info.bytes = be32_to_cpup(addr);
 804		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
 
 
 
 
 
 
 805
 806		addr = of_get_property(child, "bits", &len);
 807		if (addr && len == (2 * sizeof(u32))) {
 808			info.bit_offset = be32_to_cpup(addr++);
 809			info.nbits = be32_to_cpup(addr);
 810		}
 811
 812		info.np = of_node_get(child);
 813
 814		if (nvmem->fixup_dt_cell_info)
 815			nvmem->fixup_dt_cell_info(nvmem, &info);
 816
 817		ret = nvmem_add_one_cell(nvmem, &info);
 818		kfree(info.name);
 819		if (ret) {
 820			of_node_put(child);
 821			return ret;
 
 
 822		}
 823	}
 824
 825	return 0;
 826}
 827
 828static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
 829{
 830	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
 831}
 832
 833static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
 834{
 835	struct device_node *layout_np;
 836	int err = 0;
 837
 838	layout_np = of_nvmem_layout_get_container(nvmem);
 839	if (!layout_np)
 840		return 0;
 841
 842	if (of_device_is_compatible(layout_np, "fixed-layout"))
 843		err = nvmem_add_cells_from_dt(nvmem, layout_np);
 844
 845	of_node_put(layout_np);
 846
 847	return err;
 848}
 849
 850int nvmem_layout_register(struct nvmem_layout *layout)
 851{
 852	int ret;
 853
 854	if (!layout->add_cells)
 855		return -EINVAL;
 856
 857	/* Populate the cells */
 858	ret = layout->add_cells(layout);
 859	if (ret)
 860		return ret;
 861
 862#ifdef CONFIG_NVMEM_SYSFS
 863	ret = nvmem_populate_sysfs_cells(layout->nvmem);
 864	if (ret) {
 865		nvmem_device_remove_all_cells(layout->nvmem);
 866		return ret;
 867	}
 868#endif
 869
 870	return 0;
 871}
 872EXPORT_SYMBOL_GPL(nvmem_layout_register);
 873
 874void nvmem_layout_unregister(struct nvmem_layout *layout)
 875{
 876	/* Keep the API even with an empty stub in case we need it later */
 877}
 878EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
 879
 880/**
 881 * nvmem_register() - Register a nvmem device for given nvmem_config.
 882 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 883 *
 884 * @config: nvmem device configuration with which nvmem device is created.
 885 *
 886 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 887 * on success.
 888 */
 889
 890struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 891{
 892	struct nvmem_device *nvmem;
 893	int rval;
 894
 895	if (!config->dev)
 896		return ERR_PTR(-EINVAL);
 897
 898	if (!config->reg_read && !config->reg_write)
 899		return ERR_PTR(-EINVAL);
 900
 901	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 902	if (!nvmem)
 903		return ERR_PTR(-ENOMEM);
 904
 905	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
 906	if (rval < 0) {
 907		kfree(nvmem);
 908		return ERR_PTR(rval);
 909	}
 910
 911	nvmem->id = rval;
 912
 913	nvmem->dev.type = &nvmem_provider_type;
 914	nvmem->dev.bus = &nvmem_bus_type;
 915	nvmem->dev.parent = config->dev;
 916
 917	device_initialize(&nvmem->dev);
 918
 919	if (!config->ignore_wp)
 920		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 921						    GPIOD_OUT_HIGH);
 922	if (IS_ERR(nvmem->wp_gpio)) {
 923		rval = PTR_ERR(nvmem->wp_gpio);
 924		nvmem->wp_gpio = NULL;
 925		goto err_put_device;
 926	}
 927
 928	kref_init(&nvmem->refcnt);
 929	INIT_LIST_HEAD(&nvmem->cells);
 930	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
 931
 
 932	nvmem->owner = config->owner;
 933	if (!nvmem->owner && config->dev->driver)
 934		nvmem->owner = config->dev->driver->owner;
 935	nvmem->stride = config->stride ?: 1;
 936	nvmem->word_size = config->word_size ?: 1;
 937	nvmem->size = config->size;
 938	nvmem->root_only = config->root_only;
 
 
 939	nvmem->priv = config->priv;
 940	nvmem->type = config->type;
 941	nvmem->reg_read = config->reg_read;
 942	nvmem->reg_write = config->reg_write;
 943	nvmem->keepout = config->keepout;
 944	nvmem->nkeepout = config->nkeepout;
 945	if (config->of_node)
 946		nvmem->dev.of_node = config->of_node;
 947	else
 948		nvmem->dev.of_node = config->dev->of_node;
 949
 950	switch (config->id) {
 951	case NVMEM_DEVID_NONE:
 952		rval = dev_set_name(&nvmem->dev, "%s", config->name);
 953		break;
 954	case NVMEM_DEVID_AUTO:
 955		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 956		break;
 957	default:
 958		rval = dev_set_name(&nvmem->dev, "%s%d",
 959			     config->name ? : "nvmem",
 960			     config->name ? config->id : nvmem->id);
 961		break;
 962	}
 963
 964	if (rval)
 965		goto err_put_device;
 966
 967	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 968			   config->read_only || !nvmem->reg_write;
 969
 970#ifdef CONFIG_NVMEM_SYSFS
 971	nvmem->dev.groups = nvmem_dev_groups;
 972#endif
 973
 974	if (nvmem->nkeepout) {
 975		rval = nvmem_validate_keepouts(nvmem);
 976		if (rval)
 977			goto err_put_device;
 978	}
 
 
 979
 980	if (config->compat) {
 981		rval = nvmem_sysfs_setup_compat(nvmem, config);
 982		if (rval)
 983			goto err_put_device;
 984	}
 985
 986	if (config->cells) {
 987		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 988		if (rval)
 989			goto err_remove_cells;
 990	}
 991
 992	rval = nvmem_add_cells_from_table(nvmem);
 993	if (rval)
 994		goto err_remove_cells;
 995
 996	if (config->add_legacy_fixed_of_cells) {
 997		rval = nvmem_add_cells_from_legacy_of(nvmem);
 998		if (rval)
 999			goto err_remove_cells;
1000	}
1001
1002	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1003	if (rval)
1004		goto err_remove_cells;
1005
1006	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1007
1008	rval = device_add(&nvmem->dev);
1009	if (rval)
1010		goto err_remove_cells;
1011
1012	rval = nvmem_populate_layout(nvmem);
1013	if (rval)
1014		goto err_remove_dev;
1015
1016#ifdef CONFIG_NVMEM_SYSFS
1017	rval = nvmem_populate_sysfs_cells(nvmem);
1018	if (rval)
1019		goto err_destroy_layout;
1020#endif
1021
1022	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1023
1024	return nvmem;
1025
1026#ifdef CONFIG_NVMEM_SYSFS
1027err_destroy_layout:
1028	nvmem_destroy_layout(nvmem);
1029#endif
1030err_remove_dev:
1031	device_del(&nvmem->dev);
1032err_remove_cells:
1033	nvmem_device_remove_all_cells(nvmem);
 
1034	if (config->compat)
1035		nvmem_sysfs_remove_compat(nvmem, config);
 
 
1036err_put_device:
1037	put_device(&nvmem->dev);
1038
1039	return ERR_PTR(rval);
1040}
1041EXPORT_SYMBOL_GPL(nvmem_register);
1042
1043static void nvmem_device_release(struct kref *kref)
1044{
1045	struct nvmem_device *nvmem;
1046
1047	nvmem = container_of(kref, struct nvmem_device, refcnt);
1048
1049	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1050
1051	if (nvmem->flags & FLAG_COMPAT)
1052		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1053
1054	nvmem_device_remove_all_cells(nvmem);
1055	nvmem_destroy_layout(nvmem);
1056	device_unregister(&nvmem->dev);
1057}
1058
1059/**
1060 * nvmem_unregister() - Unregister previously registered nvmem device
1061 *
1062 * @nvmem: Pointer to previously registered nvmem device.
1063 */
1064void nvmem_unregister(struct nvmem_device *nvmem)
1065{
1066	if (nvmem)
1067		kref_put(&nvmem->refcnt, nvmem_device_release);
1068}
1069EXPORT_SYMBOL_GPL(nvmem_unregister);
1070
1071static void devm_nvmem_unregister(void *nvmem)
1072{
1073	nvmem_unregister(nvmem);
1074}
1075
1076/**
1077 * devm_nvmem_register() - Register a managed nvmem device for given
1078 * nvmem_config.
1079 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1080 *
1081 * @dev: Device that uses the nvmem device.
1082 * @config: nvmem device configuration with which nvmem device is created.
1083 *
1084 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1085 * on success.
1086 */
1087struct nvmem_device *devm_nvmem_register(struct device *dev,
1088					 const struct nvmem_config *config)
1089{
1090	struct nvmem_device *nvmem;
1091	int ret;
 
 
 
1092
1093	nvmem = nvmem_register(config);
1094	if (IS_ERR(nvmem))
1095		return nvmem;
1096
1097	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1098	if (ret)
1099		return ERR_PTR(ret);
 
 
 
1100
1101	return nvmem;
1102}
1103EXPORT_SYMBOL_GPL(devm_nvmem_register);
1104
1105static struct nvmem_device *__nvmem_device_get(void *data,
1106			int (*match)(struct device *dev, const void *data))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107{
1108	struct nvmem_device *nvmem = NULL;
1109	struct device *dev;
1110
1111	mutex_lock(&nvmem_mutex);
1112	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1113	if (dev)
1114		nvmem = to_nvmem_device(dev);
1115	mutex_unlock(&nvmem_mutex);
1116	if (!nvmem)
1117		return ERR_PTR(-EPROBE_DEFER);
1118
1119	if (!try_module_get(nvmem->owner)) {
1120		dev_err(&nvmem->dev,
1121			"could not increase module refcount for cell %s\n",
1122			nvmem_dev_name(nvmem));
1123
1124		put_device(&nvmem->dev);
1125		return ERR_PTR(-EINVAL);
1126	}
1127
1128	kref_get(&nvmem->refcnt);
1129
1130	return nvmem;
1131}
1132
1133static void __nvmem_device_put(struct nvmem_device *nvmem)
1134{
1135	put_device(&nvmem->dev);
1136	module_put(nvmem->owner);
1137	kref_put(&nvmem->refcnt, nvmem_device_release);
1138}
1139
1140#if IS_ENABLED(CONFIG_OF)
1141/**
1142 * of_nvmem_device_get() - Get nvmem device from a given id
1143 *
1144 * @np: Device tree node that uses the nvmem device.
1145 * @id: nvmem name from nvmem-names property.
1146 *
1147 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1148 * on success.
1149 */
1150struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1151{
1152
1153	struct device_node *nvmem_np;
1154	struct nvmem_device *nvmem;
1155	int index = 0;
1156
1157	if (id)
1158		index = of_property_match_string(np, "nvmem-names", id);
1159
1160	nvmem_np = of_parse_phandle(np, "nvmem", index);
1161	if (!nvmem_np)
1162		return ERR_PTR(-ENOENT);
1163
1164	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1165	of_node_put(nvmem_np);
1166	return nvmem;
1167}
1168EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1169#endif
1170
1171/**
1172 * nvmem_device_get() - Get nvmem device from a given id
1173 *
1174 * @dev: Device that uses the nvmem device.
1175 * @dev_name: name of the requested nvmem device.
1176 *
1177 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1178 * on success.
1179 */
1180struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1181{
1182	if (dev->of_node) { /* try dt first */
1183		struct nvmem_device *nvmem;
1184
1185		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1186
1187		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1188			return nvmem;
1189
1190	}
1191
1192	return __nvmem_device_get((void *)dev_name, device_match_name);
1193}
1194EXPORT_SYMBOL_GPL(nvmem_device_get);
1195
1196/**
1197 * nvmem_device_find() - Find nvmem device with matching function
1198 *
1199 * @data: Data to pass to match function
1200 * @match: Callback function to check device
1201 *
1202 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1203 * on success.
1204 */
1205struct nvmem_device *nvmem_device_find(void *data,
1206			int (*match)(struct device *dev, const void *data))
1207{
1208	return __nvmem_device_get(data, match);
1209}
1210EXPORT_SYMBOL_GPL(nvmem_device_find);
1211
1212static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1213{
1214	struct nvmem_device **nvmem = res;
1215
1216	if (WARN_ON(!nvmem || !*nvmem))
1217		return 0;
1218
1219	return *nvmem == data;
1220}
1221
1222static void devm_nvmem_device_release(struct device *dev, void *res)
1223{
1224	nvmem_device_put(*(struct nvmem_device **)res);
1225}
1226
1227/**
1228 * devm_nvmem_device_put() - put alredy got nvmem device
1229 *
1230 * @dev: Device that uses the nvmem device.
1231 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1232 * that needs to be released.
1233 */
1234void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1235{
1236	int ret;
1237
1238	ret = devres_release(dev, devm_nvmem_device_release,
1239			     devm_nvmem_device_match, nvmem);
1240
1241	WARN_ON(ret);
1242}
1243EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1244
1245/**
1246 * nvmem_device_put() - put alredy got nvmem device
1247 *
1248 * @nvmem: pointer to nvmem device that needs to be released.
1249 */
1250void nvmem_device_put(struct nvmem_device *nvmem)
1251{
1252	__nvmem_device_put(nvmem);
1253}
1254EXPORT_SYMBOL_GPL(nvmem_device_put);
1255
1256/**
1257 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1258 *
1259 * @dev: Device that requests the nvmem device.
1260 * @id: name id for the requested nvmem device.
1261 *
1262 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1263 * on success.  The nvmem_cell will be freed by the automatically once the
1264 * device is freed.
1265 */
1266struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1267{
1268	struct nvmem_device **ptr, *nvmem;
1269
1270	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1271	if (!ptr)
1272		return ERR_PTR(-ENOMEM);
1273
1274	nvmem = nvmem_device_get(dev, id);
1275	if (!IS_ERR(nvmem)) {
1276		*ptr = nvmem;
1277		devres_add(dev, ptr);
1278	} else {
1279		devres_free(ptr);
1280	}
1281
1282	return nvmem;
1283}
1284EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1285
1286static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1287					    const char *id, int index)
1288{
1289	struct nvmem_cell *cell;
1290	const char *name = NULL;
1291
1292	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1293	if (!cell)
1294		return ERR_PTR(-ENOMEM);
1295
1296	if (id) {
1297		name = kstrdup_const(id, GFP_KERNEL);
1298		if (!name) {
1299			kfree(cell);
1300			return ERR_PTR(-ENOMEM);
1301		}
1302	}
1303
1304	cell->id = name;
1305	cell->entry = entry;
1306	cell->index = index;
1307
1308	return cell;
1309}
1310
1311static struct nvmem_cell *
1312nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1313{
1314	struct nvmem_cell_entry *cell_entry;
1315	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1316	struct nvmem_cell_lookup *lookup;
1317	struct nvmem_device *nvmem;
1318	const char *dev_id;
1319
1320	if (!dev)
1321		return ERR_PTR(-EINVAL);
1322
1323	dev_id = dev_name(dev);
1324
1325	mutex_lock(&nvmem_lookup_mutex);
1326
1327	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1328		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1329		    (strcmp(lookup->con_id, con_id) == 0)) {
1330			/* This is the right entry. */
1331			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1332						   device_match_name);
1333			if (IS_ERR(nvmem)) {
1334				/* Provider may not be registered yet. */
1335				cell = ERR_CAST(nvmem);
1336				break;
1337			}
1338
1339			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1340								   lookup->cell_name);
1341			if (!cell_entry) {
1342				__nvmem_device_put(nvmem);
1343				cell = ERR_PTR(-ENOENT);
1344			} else {
1345				cell = nvmem_create_cell(cell_entry, con_id, 0);
1346				if (IS_ERR(cell))
1347					__nvmem_device_put(nvmem);
1348			}
1349			break;
1350		}
1351	}
1352
1353	mutex_unlock(&nvmem_lookup_mutex);
1354	return cell;
1355}
1356
1357static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1358{
1359	if (nvmem->layout && nvmem->layout->dev.driver)
1360		module_put(nvmem->layout->dev.driver->owner);
1361}
1362
1363#if IS_ENABLED(CONFIG_OF)
1364static struct nvmem_cell_entry *
1365nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1366{
1367	struct nvmem_cell_entry *iter, *cell = NULL;
1368
1369	mutex_lock(&nvmem_mutex);
1370	list_for_each_entry(iter, &nvmem->cells, node) {
1371		if (np == iter->np) {
1372			cell = iter;
1373			break;
1374		}
1375	}
1376	mutex_unlock(&nvmem_mutex);
1377
1378	return cell;
1379}
1380
1381static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1382{
1383	if (!nvmem->layout)
1384		return 0;
1385
1386	if (!nvmem->layout->dev.driver ||
1387	    !try_module_get(nvmem->layout->dev.driver->owner))
1388		return -EPROBE_DEFER;
1389
1390	return 0;
1391}
1392
1393/**
1394 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1395 *
1396 * @np: Device tree node that uses the nvmem cell.
1397 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1398 *      for the cell at index 0 (the lone cell with no accompanying
1399 *      nvmem-cell-names property).
1400 *
1401 * Return: Will be an ERR_PTR() on error or a valid pointer
1402 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1403 * nvmem_cell_put().
1404 */
1405struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1406{
1407	struct device_node *cell_np, *nvmem_np;
1408	struct nvmem_device *nvmem;
1409	struct nvmem_cell_entry *cell_entry;
1410	struct nvmem_cell *cell;
1411	struct of_phandle_args cell_spec;
1412	int index = 0;
1413	int cell_index = 0;
1414	int ret;
1415
1416	/* if cell name exists, find index to the name */
1417	if (id)
1418		index = of_property_match_string(np, "nvmem-cell-names", id);
1419
1420	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1421						  "#nvmem-cell-cells",
1422						  index, &cell_spec);
1423	if (ret)
1424		return ERR_PTR(-ENOENT);
1425
1426	if (cell_spec.args_count > 1)
1427		return ERR_PTR(-EINVAL);
1428
1429	cell_np = cell_spec.np;
1430	if (cell_spec.args_count)
1431		cell_index = cell_spec.args[0];
1432
1433	nvmem_np = of_get_parent(cell_np);
1434	if (!nvmem_np) {
1435		of_node_put(cell_np);
1436		return ERR_PTR(-EINVAL);
1437	}
1438
1439	/* nvmem layouts produce cells within the nvmem-layout container */
1440	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1441		nvmem_np = of_get_next_parent(nvmem_np);
1442		if (!nvmem_np) {
1443			of_node_put(cell_np);
1444			return ERR_PTR(-EINVAL);
1445		}
1446	}
1447
1448	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1449	of_node_put(nvmem_np);
1450	if (IS_ERR(nvmem)) {
1451		of_node_put(cell_np);
1452		return ERR_CAST(nvmem);
1453	}
1454
1455	ret = nvmem_layout_module_get_optional(nvmem);
1456	if (ret) {
1457		of_node_put(cell_np);
1458		__nvmem_device_put(nvmem);
1459		return ERR_PTR(ret);
1460	}
1461
1462	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1463	of_node_put(cell_np);
1464	if (!cell_entry) {
1465		__nvmem_device_put(nvmem);
1466		nvmem_layout_module_put(nvmem);
1467		if (nvmem->layout)
1468			return ERR_PTR(-EPROBE_DEFER);
1469		else
1470			return ERR_PTR(-ENOENT);
1471	}
1472
1473	cell = nvmem_create_cell(cell_entry, id, cell_index);
1474	if (IS_ERR(cell)) {
1475		__nvmem_device_put(nvmem);
1476		nvmem_layout_module_put(nvmem);
1477	}
1478
1479	return cell;
1480}
1481EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1482#endif
1483
1484/**
1485 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1486 *
1487 * @dev: Device that requests the nvmem cell.
1488 * @id: nvmem cell name to get (this corresponds with the name from the
1489 *      nvmem-cell-names property for DT systems and with the con_id from
1490 *      the lookup entry for non-DT systems).
1491 *
1492 * Return: Will be an ERR_PTR() on error or a valid pointer
1493 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1494 * nvmem_cell_put().
1495 */
1496struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1497{
1498	struct nvmem_cell *cell;
1499
1500	if (dev->of_node) { /* try dt first */
1501		cell = of_nvmem_cell_get(dev->of_node, id);
1502		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1503			return cell;
1504	}
1505
1506	/* NULL cell id only allowed for device tree; invalid otherwise */
1507	if (!id)
1508		return ERR_PTR(-EINVAL);
1509
1510	return nvmem_cell_get_from_lookup(dev, id);
1511}
1512EXPORT_SYMBOL_GPL(nvmem_cell_get);
1513
1514static void devm_nvmem_cell_release(struct device *dev, void *res)
1515{
1516	nvmem_cell_put(*(struct nvmem_cell **)res);
1517}
1518
1519/**
1520 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1521 *
1522 * @dev: Device that requests the nvmem cell.
1523 * @id: nvmem cell name id to get.
1524 *
1525 * Return: Will be an ERR_PTR() on error or a valid pointer
1526 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1527 * automatically once the device is freed.
1528 */
1529struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1530{
1531	struct nvmem_cell **ptr, *cell;
1532
1533	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1534	if (!ptr)
1535		return ERR_PTR(-ENOMEM);
1536
1537	cell = nvmem_cell_get(dev, id);
1538	if (!IS_ERR(cell)) {
1539		*ptr = cell;
1540		devres_add(dev, ptr);
1541	} else {
1542		devres_free(ptr);
1543	}
1544
1545	return cell;
1546}
1547EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1548
1549static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1550{
1551	struct nvmem_cell **c = res;
1552
1553	if (WARN_ON(!c || !*c))
1554		return 0;
1555
1556	return *c == data;
1557}
1558
1559/**
1560 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1561 * from devm_nvmem_cell_get.
1562 *
1563 * @dev: Device that requests the nvmem cell.
1564 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1565 */
1566void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1567{
1568	int ret;
1569
1570	ret = devres_release(dev, devm_nvmem_cell_release,
1571				devm_nvmem_cell_match, cell);
1572
1573	WARN_ON(ret);
1574}
1575EXPORT_SYMBOL(devm_nvmem_cell_put);
1576
1577/**
1578 * nvmem_cell_put() - Release previously allocated nvmem cell.
1579 *
1580 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1581 */
1582void nvmem_cell_put(struct nvmem_cell *cell)
1583{
1584	struct nvmem_device *nvmem = cell->entry->nvmem;
1585
1586	if (cell->id)
1587		kfree_const(cell->id);
1588
1589	kfree(cell);
1590	__nvmem_device_put(nvmem);
1591	nvmem_layout_module_put(nvmem);
1592}
1593EXPORT_SYMBOL_GPL(nvmem_cell_put);
1594
1595static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1596{
1597	u8 *p, *b;
1598	int i, extra, bit_offset = cell->bit_offset;
1599
1600	p = b = buf;
1601	if (bit_offset) {
1602		/* First shift */
1603		*b++ >>= bit_offset;
1604
1605		/* setup rest of the bytes if any */
1606		for (i = 1; i < cell->bytes; i++) {
1607			/* Get bits from next byte and shift them towards msb */
1608			*p |= *b << (BITS_PER_BYTE - bit_offset);
1609
1610			p = b;
1611			*b++ >>= bit_offset;
1612		}
1613	} else {
1614		/* point to the msb */
1615		p += cell->bytes - 1;
1616	}
1617
1618	/* result fits in less bytes */
1619	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1620	while (--extra >= 0)
1621		*p-- = 0;
1622
1623	/* clear msb bits if any leftover in the last byte */
1624	if (cell->nbits % BITS_PER_BYTE)
1625		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1626}
1627
1628static int __nvmem_cell_read(struct nvmem_device *nvmem,
1629			     struct nvmem_cell_entry *cell,
1630			     void *buf, size_t *len, const char *id, int index)
1631{
1632	int rc;
1633
1634	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1635
1636	if (rc)
1637		return rc;
1638
1639	/* shift bits in-place */
1640	if (cell->bit_offset || cell->nbits)
1641		nvmem_shift_read_buffer_in_place(cell, buf);
1642
1643	if (cell->read_post_process) {
1644		rc = cell->read_post_process(cell->priv, id, index,
1645					     cell->offset, buf, cell->raw_len);
1646		if (rc)
1647			return rc;
1648	}
1649
1650	if (len)
1651		*len = cell->bytes;
1652
1653	return 0;
1654}
1655
1656/**
1657 * nvmem_cell_read() - Read a given nvmem cell
1658 *
1659 * @cell: nvmem cell to be read.
1660 * @len: pointer to length of cell which will be populated on successful read;
1661 *	 can be NULL.
1662 *
1663 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1664 * buffer should be freed by the consumer with a kfree().
1665 */
1666void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1667{
1668	struct nvmem_cell_entry *entry = cell->entry;
1669	struct nvmem_device *nvmem = entry->nvmem;
1670	u8 *buf;
1671	int rc;
1672
1673	if (!nvmem)
1674		return ERR_PTR(-EINVAL);
1675
1676	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1677	if (!buf)
1678		return ERR_PTR(-ENOMEM);
1679
1680	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1681	if (rc) {
1682		kfree(buf);
1683		return ERR_PTR(rc);
1684	}
1685
1686	return buf;
1687}
1688EXPORT_SYMBOL_GPL(nvmem_cell_read);
1689
1690static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1691					     u8 *_buf, int len)
1692{
1693	struct nvmem_device *nvmem = cell->nvmem;
1694	int i, rc, nbits, bit_offset = cell->bit_offset;
1695	u8 v, *p, *buf, *b, pbyte, pbits;
1696
1697	nbits = cell->nbits;
1698	buf = kzalloc(cell->bytes, GFP_KERNEL);
1699	if (!buf)
1700		return ERR_PTR(-ENOMEM);
1701
1702	memcpy(buf, _buf, len);
1703	p = b = buf;
1704
1705	if (bit_offset) {
1706		pbyte = *b;
1707		*b <<= bit_offset;
1708
1709		/* setup the first byte with lsb bits from nvmem */
1710		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1711		if (rc)
1712			goto err;
1713		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1714
1715		/* setup rest of the byte if any */
1716		for (i = 1; i < cell->bytes; i++) {
1717			/* Get last byte bits and shift them towards lsb */
1718			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1719			pbyte = *b;
1720			p = b;
1721			*b <<= bit_offset;
1722			*b++ |= pbits;
1723		}
1724	}
1725
1726	/* if it's not end on byte boundary */
1727	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1728		/* setup the last byte with msb bits from nvmem */
1729		rc = nvmem_reg_read(nvmem,
1730				    cell->offset + cell->bytes - 1, &v, 1);
1731		if (rc)
1732			goto err;
1733		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1734
1735	}
1736
1737	return buf;
1738err:
1739	kfree(buf);
1740	return ERR_PTR(rc);
1741}
1742
1743static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
 
 
 
 
 
 
 
 
 
1744{
1745	struct nvmem_device *nvmem = cell->nvmem;
1746	int rc;
1747
1748	if (!nvmem || nvmem->read_only ||
1749	    (cell->bit_offset == 0 && len != cell->bytes))
1750		return -EINVAL;
1751
1752	/*
1753	 * Any cells which have a read_post_process hook are read-only because
1754	 * we cannot reverse the operation and it might affect other cells,
1755	 * too.
1756	 */
1757	if (cell->read_post_process)
1758		return -EINVAL;
1759
1760	if (cell->bit_offset || cell->nbits) {
1761		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1762		if (IS_ERR(buf))
1763			return PTR_ERR(buf);
1764	}
1765
1766	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1767
1768	/* free the tmp buffer */
1769	if (cell->bit_offset || cell->nbits)
1770		kfree(buf);
1771
1772	if (rc)
1773		return rc;
1774
1775	return len;
1776}
 
1777
1778/**
1779 * nvmem_cell_write() - Write to a given nvmem cell
1780 *
1781 * @cell: nvmem cell to be written.
1782 * @buf: Buffer to be written.
1783 * @len: length of buffer to be written to nvmem cell.
1784 *
1785 * Return: length of bytes written or negative on failure.
1786 */
1787int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1788{
1789	return __nvmem_cell_entry_write(cell->entry, buf, len);
1790}
1791
1792EXPORT_SYMBOL_GPL(nvmem_cell_write);
1793
1794static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1795				  void *val, size_t count)
1796{
1797	struct nvmem_cell *cell;
1798	void *buf;
1799	size_t len;
1800
1801	cell = nvmem_cell_get(dev, cell_id);
1802	if (IS_ERR(cell))
1803		return PTR_ERR(cell);
1804
1805	buf = nvmem_cell_read(cell, &len);
1806	if (IS_ERR(buf)) {
1807		nvmem_cell_put(cell);
1808		return PTR_ERR(buf);
1809	}
1810	if (len != count) {
1811		kfree(buf);
1812		nvmem_cell_put(cell);
1813		return -EINVAL;
1814	}
1815	memcpy(val, buf, count);
1816	kfree(buf);
1817	nvmem_cell_put(cell);
1818
1819	return 0;
1820}
1821
1822/**
1823 * nvmem_cell_read_u8() - Read a cell value as a u8
1824 *
1825 * @dev: Device that requests the nvmem cell.
1826 * @cell_id: Name of nvmem cell to read.
1827 * @val: pointer to output value.
1828 *
1829 * Return: 0 on success or negative errno.
1830 */
1831int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1832{
1833	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1834}
1835EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1836
1837/**
1838 * nvmem_cell_read_u16() - Read a cell value as a u16
1839 *
1840 * @dev: Device that requests the nvmem cell.
1841 * @cell_id: Name of nvmem cell to read.
1842 * @val: pointer to output value.
1843 *
1844 * Return: 0 on success or negative errno.
1845 */
1846int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1847{
1848	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1849}
1850EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1851
1852/**
1853 * nvmem_cell_read_u32() - Read a cell value as a u32
1854 *
1855 * @dev: Device that requests the nvmem cell.
1856 * @cell_id: Name of nvmem cell to read.
1857 * @val: pointer to output value.
1858 *
1859 * Return: 0 on success or negative errno.
1860 */
1861int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1862{
1863	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1864}
1865EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1866
1867/**
1868 * nvmem_cell_read_u64() - Read a cell value as a u64
1869 *
1870 * @dev: Device that requests the nvmem cell.
1871 * @cell_id: Name of nvmem cell to read.
1872 * @val: pointer to output value.
1873 *
1874 * Return: 0 on success or negative errno.
1875 */
1876int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1877{
1878	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1879}
1880EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1881
1882static const void *nvmem_cell_read_variable_common(struct device *dev,
1883						   const char *cell_id,
1884						   size_t max_len, size_t *len)
1885{
1886	struct nvmem_cell *cell;
1887	int nbits;
1888	void *buf;
 
1889
1890	cell = nvmem_cell_get(dev, cell_id);
1891	if (IS_ERR(cell))
1892		return cell;
1893
1894	nbits = cell->entry->nbits;
1895	buf = nvmem_cell_read(cell, len);
1896	nvmem_cell_put(cell);
1897	if (IS_ERR(buf))
1898		return buf;
1899
1900	/*
1901	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1902	 * the length of the real data. Throw away the extra junk.
1903	 */
1904	if (nbits)
1905		*len = DIV_ROUND_UP(nbits, 8);
1906
1907	if (*len > max_len) {
 
 
 
 
 
1908		kfree(buf);
1909		return ERR_PTR(-ERANGE);
 
1910	}
1911
1912	return buf;
1913}
1914
1915/**
1916 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1917 *
1918 * @dev: Device that requests the nvmem cell.
1919 * @cell_id: Name of nvmem cell to read.
1920 * @val: pointer to output value.
1921 *
1922 * Return: 0 on success or negative errno.
1923 */
1924int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1925				    u32 *val)
1926{
1927	size_t len;
1928	const u8 *buf;
1929	int i;
1930
1931	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1932	if (IS_ERR(buf))
1933		return PTR_ERR(buf);
1934
1935	/* Copy w/ implicit endian conversion */
1936	*val = 0;
1937	for (i = 0; i < len; i++)
1938		*val |= buf[i] << (8 * i);
1939
1940	kfree(buf);
1941
1942	return 0;
1943}
1944EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1945
1946/**
1947 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1948 *
1949 * @dev: Device that requests the nvmem cell.
1950 * @cell_id: Name of nvmem cell to read.
1951 * @val: pointer to output value.
1952 *
1953 * Return: 0 on success or negative errno.
1954 */
1955int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1956				    u64 *val)
1957{
1958	size_t len;
1959	const u8 *buf;
1960	int i;
1961
1962	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1963	if (IS_ERR(buf))
1964		return PTR_ERR(buf);
1965
1966	/* Copy w/ implicit endian conversion */
1967	*val = 0;
1968	for (i = 0; i < len; i++)
1969		*val |= (uint64_t)buf[i] << (8 * i);
1970
1971	kfree(buf);
1972
1973	return 0;
1974}
1975EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1976
1977/**
1978 * nvmem_device_cell_read() - Read a given nvmem device and cell
1979 *
1980 * @nvmem: nvmem device to read from.
1981 * @info: nvmem cell info to be read.
1982 * @buf: buffer pointer which will be populated on successful read.
1983 *
1984 * Return: length of successful bytes read on success and negative
1985 * error code on error.
1986 */
1987ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1988			   struct nvmem_cell_info *info, void *buf)
1989{
1990	struct nvmem_cell_entry cell;
1991	int rc;
1992	ssize_t len;
1993
1994	if (!nvmem)
1995		return -EINVAL;
1996
1997	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1998	if (rc)
1999		return rc;
2000
2001	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2002	if (rc)
2003		return rc;
2004
2005	return len;
2006}
2007EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2008
2009/**
2010 * nvmem_device_cell_write() - Write cell to a given nvmem device
2011 *
2012 * @nvmem: nvmem device to be written to.
2013 * @info: nvmem cell info to be written.
2014 * @buf: buffer to be written to cell.
2015 *
2016 * Return: length of bytes written or negative error code on failure.
2017 */
2018int nvmem_device_cell_write(struct nvmem_device *nvmem,
2019			    struct nvmem_cell_info *info, void *buf)
2020{
2021	struct nvmem_cell_entry cell;
2022	int rc;
2023
2024	if (!nvmem)
2025		return -EINVAL;
2026
2027	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2028	if (rc)
2029		return rc;
2030
2031	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2032}
2033EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2034
2035/**
2036 * nvmem_device_read() - Read from a given nvmem device
2037 *
2038 * @nvmem: nvmem device to read from.
2039 * @offset: offset in nvmem device.
2040 * @bytes: number of bytes to read.
2041 * @buf: buffer pointer which will be populated on successful read.
2042 *
2043 * Return: length of successful bytes read on success and negative
2044 * error code on error.
2045 */
2046int nvmem_device_read(struct nvmem_device *nvmem,
2047		      unsigned int offset,
2048		      size_t bytes, void *buf)
2049{
2050	int rc;
2051
2052	if (!nvmem)
2053		return -EINVAL;
2054
2055	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2056
2057	if (rc)
2058		return rc;
2059
2060	return bytes;
2061}
2062EXPORT_SYMBOL_GPL(nvmem_device_read);
2063
2064/**
2065 * nvmem_device_write() - Write cell to a given nvmem device
2066 *
2067 * @nvmem: nvmem device to be written to.
2068 * @offset: offset in nvmem device.
2069 * @bytes: number of bytes to write.
2070 * @buf: buffer to be written.
2071 *
2072 * Return: length of bytes written or negative error code on failure.
2073 */
2074int nvmem_device_write(struct nvmem_device *nvmem,
2075		       unsigned int offset,
2076		       size_t bytes, void *buf)
2077{
2078	int rc;
2079
2080	if (!nvmem)
2081		return -EINVAL;
2082
2083	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2084
2085	if (rc)
2086		return rc;
2087
2088
2089	return bytes;
2090}
2091EXPORT_SYMBOL_GPL(nvmem_device_write);
2092
2093/**
2094 * nvmem_add_cell_table() - register a table of cell info entries
2095 *
2096 * @table: table of cell info entries
2097 */
2098void nvmem_add_cell_table(struct nvmem_cell_table *table)
2099{
2100	mutex_lock(&nvmem_cell_mutex);
2101	list_add_tail(&table->node, &nvmem_cell_tables);
2102	mutex_unlock(&nvmem_cell_mutex);
2103}
2104EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2105
2106/**
2107 * nvmem_del_cell_table() - remove a previously registered cell info table
2108 *
2109 * @table: table of cell info entries
2110 */
2111void nvmem_del_cell_table(struct nvmem_cell_table *table)
2112{
2113	mutex_lock(&nvmem_cell_mutex);
2114	list_del(&table->node);
2115	mutex_unlock(&nvmem_cell_mutex);
2116}
2117EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2118
2119/**
2120 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2121 *
2122 * @entries: array of cell lookup entries
2123 * @nentries: number of cell lookup entries in the array
2124 */
2125void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2126{
2127	int i;
2128
2129	mutex_lock(&nvmem_lookup_mutex);
2130	for (i = 0; i < nentries; i++)
2131		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2132	mutex_unlock(&nvmem_lookup_mutex);
2133}
2134EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2135
2136/**
2137 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2138 *                            entries
2139 *
2140 * @entries: array of cell lookup entries
2141 * @nentries: number of cell lookup entries in the array
2142 */
2143void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2144{
2145	int i;
2146
2147	mutex_lock(&nvmem_lookup_mutex);
2148	for (i = 0; i < nentries; i++)
2149		list_del(&entries[i].node);
2150	mutex_unlock(&nvmem_lookup_mutex);
2151}
2152EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2153
2154/**
2155 * nvmem_dev_name() - Get the name of a given nvmem device.
2156 *
2157 * @nvmem: nvmem device.
2158 *
2159 * Return: name of the nvmem device.
2160 */
2161const char *nvmem_dev_name(struct nvmem_device *nvmem)
2162{
2163	return dev_name(&nvmem->dev);
2164}
2165EXPORT_SYMBOL_GPL(nvmem_dev_name);
2166
2167/**
2168 * nvmem_dev_size() - Get the size of a given nvmem device.
2169 *
2170 * @nvmem: nvmem device.
2171 *
2172 * Return: size of the nvmem device.
2173 */
2174size_t nvmem_dev_size(struct nvmem_device *nvmem)
2175{
2176	return nvmem->size;
2177}
2178EXPORT_SYMBOL_GPL(nvmem_dev_size);
2179
2180static int __init nvmem_init(void)
2181{
2182	int ret;
2183
2184	ret = bus_register(&nvmem_bus_type);
2185	if (ret)
2186		return ret;
2187
2188	ret = nvmem_layout_bus_register();
2189	if (ret)
2190		bus_unregister(&nvmem_bus_type);
2191
2192	return ret;
2193}
2194
2195static void __exit nvmem_exit(void)
2196{
2197	nvmem_layout_bus_unregister();
2198	bus_unregister(&nvmem_bus_type);
2199}
2200
2201subsys_initcall(nvmem_init);
2202module_exit(nvmem_exit);
2203
2204MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2205MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2206MODULE_DESCRIPTION("nvmem Driver Core");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
 
  18#include <linux/of.h>
  19#include <linux/slab.h>
  20#include "nvmem.h"
  21
  22struct nvmem_cell {
 
 
 
 
 
  23	const char		*name;
  24	int			offset;
 
  25	int			bytes;
  26	int			bit_offset;
  27	int			nbits;
 
 
  28	struct device_node	*np;
  29	struct nvmem_device	*nvmem;
  30	struct list_head	node;
  31};
  32
 
 
 
 
 
 
  33static DEFINE_MUTEX(nvmem_mutex);
  34static DEFINE_IDA(nvmem_ida);
  35
  36static DEFINE_MUTEX(nvmem_cell_mutex);
  37static LIST_HEAD(nvmem_cell_tables);
  38
  39static DEFINE_MUTEX(nvmem_lookup_mutex);
  40static LIST_HEAD(nvmem_lookup_list);
  41
  42static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  46			  void *val, size_t bytes)
  47{
  48	if (nvmem->reg_read)
  49		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  50
  51	return -EINVAL;
  52}
  53
  54static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  55			   void *val, size_t bytes)
  56{
  57	if (nvmem->reg_write)
  58		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60	return -EINVAL;
 
 
 
  61}
  62
  63static void nvmem_release(struct device *dev)
 
  64{
 
  65	struct nvmem_device *nvmem = to_nvmem_device(dev);
  66
  67	ida_simple_remove(&nvmem_ida, nvmem->id);
  68	kfree(nvmem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69}
  70
  71static const struct device_type nvmem_provider_type = {
  72	.release	= nvmem_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73};
  74
  75static struct bus_type nvmem_bus_type = {
  76	.name		= "nvmem",
 
 
 
 
  77};
  78
  79static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	struct device *d;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82
  83	if (!nvmem_np)
  84		return NULL;
 
 
 
  85
  86	d = bus_find_device_by_of_node(&nvmem_bus_type, nvmem_np);
  87
  88	if (!d)
  89		return NULL;
  90
  91	return to_nvmem_device(d);
  92}
  93
  94static struct nvmem_device *nvmem_find(const char *name)
 
 
 
  95{
  96	struct device *d;
 
 
 
 
 
  97
  98	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
  99
 100	if (!d)
 101		return NULL;
 
 102
 103	return to_nvmem_device(d);
 
 
 104}
 105
 106static void nvmem_cell_drop(struct nvmem_cell *cell)
 
 
 
 
 
 
 
 
 107{
 108	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 109	mutex_lock(&nvmem_mutex);
 110	list_del(&cell->node);
 111	mutex_unlock(&nvmem_mutex);
 112	of_node_put(cell->np);
 113	kfree(cell->name);
 114	kfree(cell);
 115}
 116
 117static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 118{
 119	struct nvmem_cell *cell, *p;
 120
 121	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 122		nvmem_cell_drop(cell);
 123}
 124
 125static void nvmem_cell_add(struct nvmem_cell *cell)
 126{
 127	mutex_lock(&nvmem_mutex);
 128	list_add_tail(&cell->node, &cell->nvmem->cells);
 129	mutex_unlock(&nvmem_mutex);
 130	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 131}
 132
 133static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
 134				   const struct nvmem_cell_info *info,
 135				   struct nvmem_cell *cell)
 136{
 137	cell->nvmem = nvmem;
 138	cell->offset = info->offset;
 
 139	cell->bytes = info->bytes;
 140	cell->name = info->name;
 
 
 141
 142	cell->bit_offset = info->bit_offset;
 143	cell->nbits = info->nbits;
 
 144
 145	if (cell->nbits)
 146		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 147					   BITS_PER_BYTE);
 148
 149	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 150		dev_err(&nvmem->dev,
 151			"cell %s unaligned to nvmem stride %d\n",
 152			cell->name, nvmem->stride);
 153		return -EINVAL;
 154	}
 155
 156	return 0;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159/**
 160 * nvmem_add_cells() - Add cell information to an nvmem device
 161 *
 162 * @nvmem: nvmem device to add cells to.
 163 * @info: nvmem cell info to add to the device
 164 * @ncells: number of cells in info
 165 *
 166 * Return: 0 or negative error code on failure.
 167 */
 168static int nvmem_add_cells(struct nvmem_device *nvmem,
 169		    const struct nvmem_cell_info *info,
 170		    int ncells)
 171{
 172	struct nvmem_cell **cells;
 173	int i, rval;
 174
 175	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 176	if (!cells)
 177		return -ENOMEM;
 178
 179	for (i = 0; i < ncells; i++) {
 180		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 181		if (!cells[i]) {
 182			rval = -ENOMEM;
 183			goto err;
 184		}
 185
 186		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
 187		if (rval) {
 188			kfree(cells[i]);
 189			goto err;
 190		}
 191
 192		nvmem_cell_add(cells[i]);
 193	}
 194
 195	/* remove tmp array */
 196	kfree(cells);
 197
 198	return 0;
 199err:
 200	while (i--)
 201		nvmem_cell_drop(cells[i]);
 202
 203	kfree(cells);
 204
 205	return rval;
 206}
 207
 208/**
 209 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 210 *
 211 * @nb: notifier block to be called on nvmem events.
 212 *
 213 * Return: 0 on success, negative error number on failure.
 214 */
 215int nvmem_register_notifier(struct notifier_block *nb)
 216{
 217	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 218}
 219EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 220
 221/**
 222 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 223 *
 224 * @nb: notifier block to be unregistered.
 225 *
 226 * Return: 0 on success, negative error number on failure.
 227 */
 228int nvmem_unregister_notifier(struct notifier_block *nb)
 229{
 230	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 231}
 232EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 233
 234static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 235{
 236	const struct nvmem_cell_info *info;
 237	struct nvmem_cell_table *table;
 238	struct nvmem_cell *cell;
 239	int rval = 0, i;
 240
 241	mutex_lock(&nvmem_cell_mutex);
 242	list_for_each_entry(table, &nvmem_cell_tables, node) {
 243		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 244			for (i = 0; i < table->ncells; i++) {
 245				info = &table->cells[i];
 246
 247				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 248				if (!cell) {
 249					rval = -ENOMEM;
 250					goto out;
 251				}
 252
 253				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
 254								     info,
 255								     cell);
 256				if (rval) {
 257					kfree(cell);
 258					goto out;
 259				}
 260
 261				nvmem_cell_add(cell);
 262			}
 263		}
 264	}
 265
 266out:
 267	mutex_unlock(&nvmem_cell_mutex);
 268	return rval;
 269}
 270
 271static struct nvmem_cell *
 272nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
 273{
 274	struct nvmem_cell *iter, *cell = NULL;
 275
 276	mutex_lock(&nvmem_mutex);
 277	list_for_each_entry(iter, &nvmem->cells, node) {
 278		if (strcmp(cell_id, iter->name) == 0) {
 279			cell = iter;
 280			break;
 281		}
 282	}
 283	mutex_unlock(&nvmem_mutex);
 284
 285	return cell;
 286}
 287
 288static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289{
 290	struct device_node *parent, *child;
 291	struct device *dev = &nvmem->dev;
 292	struct nvmem_cell *cell;
 293	const __be32 *addr;
 294	int len;
 295
 296	parent = dev->of_node;
 
 297
 298	for_each_child_of_node(parent, child) {
 299		addr = of_get_property(child, "reg", &len);
 300		if (!addr || (len < 2 * sizeof(u32))) {
 
 
 301			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 
 302			return -EINVAL;
 303		}
 304
 305		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 306		if (!cell)
 307			return -ENOMEM;
 308
 309		cell->nvmem = nvmem;
 310		cell->np = of_node_get(child);
 311		cell->offset = be32_to_cpup(addr++);
 312		cell->bytes = be32_to_cpup(addr);
 313		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 314
 315		addr = of_get_property(child, "bits", &len);
 316		if (addr && len == (2 * sizeof(u32))) {
 317			cell->bit_offset = be32_to_cpup(addr++);
 318			cell->nbits = be32_to_cpup(addr);
 319		}
 320
 321		if (cell->nbits)
 322			cell->bytes = DIV_ROUND_UP(
 323					cell->nbits + cell->bit_offset,
 324					BITS_PER_BYTE);
 325
 326		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 327			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 328				cell->name, nvmem->stride);
 329			/* Cells already added will be freed later. */
 330			kfree(cell->name);
 331			kfree(cell);
 332			return -EINVAL;
 333		}
 
 334
 335		nvmem_cell_add(cell);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336	}
 
 337
 338	return 0;
 339}
 
 
 
 
 
 
 
 340
 341/**
 342 * nvmem_register() - Register a nvmem device for given nvmem_config.
 343 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 344 *
 345 * @config: nvmem device configuration with which nvmem device is created.
 346 *
 347 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 348 * on success.
 349 */
 350
 351struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 352{
 353	struct nvmem_device *nvmem;
 354	int rval;
 355
 356	if (!config->dev)
 357		return ERR_PTR(-EINVAL);
 358
 
 
 
 359	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 360	if (!nvmem)
 361		return ERR_PTR(-ENOMEM);
 362
 363	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
 364	if (rval < 0) {
 365		kfree(nvmem);
 366		return ERR_PTR(rval);
 367	}
 368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369	kref_init(&nvmem->refcnt);
 370	INIT_LIST_HEAD(&nvmem->cells);
 
 371
 372	nvmem->id = rval;
 373	nvmem->owner = config->owner;
 374	if (!nvmem->owner && config->dev->driver)
 375		nvmem->owner = config->dev->driver->owner;
 376	nvmem->stride = config->stride ?: 1;
 377	nvmem->word_size = config->word_size ?: 1;
 378	nvmem->size = config->size;
 379	nvmem->dev.type = &nvmem_provider_type;
 380	nvmem->dev.bus = &nvmem_bus_type;
 381	nvmem->dev.parent = config->dev;
 382	nvmem->priv = config->priv;
 383	nvmem->type = config->type;
 384	nvmem->reg_read = config->reg_read;
 385	nvmem->reg_write = config->reg_write;
 386	if (!config->no_of_node)
 
 
 
 
 387		nvmem->dev.of_node = config->dev->of_node;
 388
 389	if (config->id == -1 && config->name) {
 390		dev_set_name(&nvmem->dev, "%s", config->name);
 391	} else {
 392		dev_set_name(&nvmem->dev, "%s%d",
 
 
 
 
 
 393			     config->name ? : "nvmem",
 394			     config->name ? config->id : nvmem->id);
 
 395	}
 396
 
 
 
 397	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 398			   config->read_only || !nvmem->reg_write;
 399
 400	nvmem->dev.groups = nvmem_sysfs_get_groups(nvmem, config);
 
 
 401
 402	device_initialize(&nvmem->dev);
 403
 404	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 405
 406	rval = device_add(&nvmem->dev);
 407	if (rval)
 408		goto err_put_device;
 409
 410	if (config->compat) {
 411		rval = nvmem_sysfs_setup_compat(nvmem, config);
 412		if (rval)
 413			goto err_device_del;
 414	}
 415
 416	if (config->cells) {
 417		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 418		if (rval)
 419			goto err_teardown_compat;
 420	}
 421
 422	rval = nvmem_add_cells_from_table(nvmem);
 423	if (rval)
 424		goto err_remove_cells;
 425
 426	rval = nvmem_add_cells_from_of(nvmem);
 
 
 
 
 
 
 427	if (rval)
 428		goto err_remove_cells;
 429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 431
 432	return nvmem;
 433
 
 
 
 
 
 
 434err_remove_cells:
 435	nvmem_device_remove_all_cells(nvmem);
 436err_teardown_compat:
 437	if (config->compat)
 438		nvmem_sysfs_remove_compat(nvmem, config);
 439err_device_del:
 440	device_del(&nvmem->dev);
 441err_put_device:
 442	put_device(&nvmem->dev);
 443
 444	return ERR_PTR(rval);
 445}
 446EXPORT_SYMBOL_GPL(nvmem_register);
 447
 448static void nvmem_device_release(struct kref *kref)
 449{
 450	struct nvmem_device *nvmem;
 451
 452	nvmem = container_of(kref, struct nvmem_device, refcnt);
 453
 454	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 455
 456	if (nvmem->flags & FLAG_COMPAT)
 457		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 458
 459	nvmem_device_remove_all_cells(nvmem);
 460	device_del(&nvmem->dev);
 461	put_device(&nvmem->dev);
 462}
 463
 464/**
 465 * nvmem_unregister() - Unregister previously registered nvmem device
 466 *
 467 * @nvmem: Pointer to previously registered nvmem device.
 468 */
 469void nvmem_unregister(struct nvmem_device *nvmem)
 470{
 471	kref_put(&nvmem->refcnt, nvmem_device_release);
 
 472}
 473EXPORT_SYMBOL_GPL(nvmem_unregister);
 474
 475static void devm_nvmem_release(struct device *dev, void *res)
 476{
 477	nvmem_unregister(*(struct nvmem_device **)res);
 478}
 479
 480/**
 481 * devm_nvmem_register() - Register a managed nvmem device for given
 482 * nvmem_config.
 483 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 484 *
 485 * @dev: Device that uses the nvmem device.
 486 * @config: nvmem device configuration with which nvmem device is created.
 487 *
 488 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 489 * on success.
 490 */
 491struct nvmem_device *devm_nvmem_register(struct device *dev,
 492					 const struct nvmem_config *config)
 493{
 494	struct nvmem_device **ptr, *nvmem;
 495
 496	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
 497	if (!ptr)
 498		return ERR_PTR(-ENOMEM);
 499
 500	nvmem = nvmem_register(config);
 
 
 501
 502	if (!IS_ERR(nvmem)) {
 503		*ptr = nvmem;
 504		devres_add(dev, ptr);
 505	} else {
 506		devres_free(ptr);
 507	}
 508
 509	return nvmem;
 510}
 511EXPORT_SYMBOL_GPL(devm_nvmem_register);
 512
 513static int devm_nvmem_match(struct device *dev, void *res, void *data)
 514{
 515	struct nvmem_device **r = res;
 516
 517	return *r == data;
 518}
 519
 520/**
 521 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
 522 * device.
 523 *
 524 * @dev: Device that uses the nvmem device.
 525 * @nvmem: Pointer to previously registered nvmem device.
 526 *
 527 * Return: Will be an negative on error or a zero on success.
 528 */
 529int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
 530{
 531	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
 532}
 533EXPORT_SYMBOL(devm_nvmem_unregister);
 534
 535static struct nvmem_device *__nvmem_device_get(struct device_node *np,
 536					       const char *nvmem_name)
 537{
 538	struct nvmem_device *nvmem = NULL;
 
 539
 540	mutex_lock(&nvmem_mutex);
 541	nvmem = np ? of_nvmem_find(np) : nvmem_find(nvmem_name);
 
 
 542	mutex_unlock(&nvmem_mutex);
 543	if (!nvmem)
 544		return ERR_PTR(-EPROBE_DEFER);
 545
 546	if (!try_module_get(nvmem->owner)) {
 547		dev_err(&nvmem->dev,
 548			"could not increase module refcount for cell %s\n",
 549			nvmem_dev_name(nvmem));
 550
 551		put_device(&nvmem->dev);
 552		return ERR_PTR(-EINVAL);
 553	}
 554
 555	kref_get(&nvmem->refcnt);
 556
 557	return nvmem;
 558}
 559
 560static void __nvmem_device_put(struct nvmem_device *nvmem)
 561{
 562	put_device(&nvmem->dev);
 563	module_put(nvmem->owner);
 564	kref_put(&nvmem->refcnt, nvmem_device_release);
 565}
 566
 567#if IS_ENABLED(CONFIG_OF)
 568/**
 569 * of_nvmem_device_get() - Get nvmem device from a given id
 570 *
 571 * @np: Device tree node that uses the nvmem device.
 572 * @id: nvmem name from nvmem-names property.
 573 *
 574 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 575 * on success.
 576 */
 577struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
 578{
 579
 580	struct device_node *nvmem_np;
 
 581	int index = 0;
 582
 583	if (id)
 584		index = of_property_match_string(np, "nvmem-names", id);
 585
 586	nvmem_np = of_parse_phandle(np, "nvmem", index);
 587	if (!nvmem_np)
 588		return ERR_PTR(-ENOENT);
 589
 590	return __nvmem_device_get(nvmem_np, NULL);
 
 
 591}
 592EXPORT_SYMBOL_GPL(of_nvmem_device_get);
 593#endif
 594
 595/**
 596 * nvmem_device_get() - Get nvmem device from a given id
 597 *
 598 * @dev: Device that uses the nvmem device.
 599 * @dev_name: name of the requested nvmem device.
 600 *
 601 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 602 * on success.
 603 */
 604struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
 605{
 606	if (dev->of_node) { /* try dt first */
 607		struct nvmem_device *nvmem;
 608
 609		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
 610
 611		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
 612			return nvmem;
 613
 614	}
 615
 616	return __nvmem_device_get(NULL, dev_name);
 617}
 618EXPORT_SYMBOL_GPL(nvmem_device_get);
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
 621{
 622	struct nvmem_device **nvmem = res;
 623
 624	if (WARN_ON(!nvmem || !*nvmem))
 625		return 0;
 626
 627	return *nvmem == data;
 628}
 629
 630static void devm_nvmem_device_release(struct device *dev, void *res)
 631{
 632	nvmem_device_put(*(struct nvmem_device **)res);
 633}
 634
 635/**
 636 * devm_nvmem_device_put() - put alredy got nvmem device
 637 *
 638 * @dev: Device that uses the nvmem device.
 639 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
 640 * that needs to be released.
 641 */
 642void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
 643{
 644	int ret;
 645
 646	ret = devres_release(dev, devm_nvmem_device_release,
 647			     devm_nvmem_device_match, nvmem);
 648
 649	WARN_ON(ret);
 650}
 651EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
 652
 653/**
 654 * nvmem_device_put() - put alredy got nvmem device
 655 *
 656 * @nvmem: pointer to nvmem device that needs to be released.
 657 */
 658void nvmem_device_put(struct nvmem_device *nvmem)
 659{
 660	__nvmem_device_put(nvmem);
 661}
 662EXPORT_SYMBOL_GPL(nvmem_device_put);
 663
 664/**
 665 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
 666 *
 667 * @dev: Device that requests the nvmem device.
 668 * @id: name id for the requested nvmem device.
 669 *
 670 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
 671 * on success.  The nvmem_cell will be freed by the automatically once the
 672 * device is freed.
 673 */
 674struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
 675{
 676	struct nvmem_device **ptr, *nvmem;
 677
 678	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
 679	if (!ptr)
 680		return ERR_PTR(-ENOMEM);
 681
 682	nvmem = nvmem_device_get(dev, id);
 683	if (!IS_ERR(nvmem)) {
 684		*ptr = nvmem;
 685		devres_add(dev, ptr);
 686	} else {
 687		devres_free(ptr);
 688	}
 689
 690	return nvmem;
 691}
 692EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
 693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694static struct nvmem_cell *
 695nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
 696{
 
 697	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
 698	struct nvmem_cell_lookup *lookup;
 699	struct nvmem_device *nvmem;
 700	const char *dev_id;
 701
 702	if (!dev)
 703		return ERR_PTR(-EINVAL);
 704
 705	dev_id = dev_name(dev);
 706
 707	mutex_lock(&nvmem_lookup_mutex);
 708
 709	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
 710		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
 711		    (strcmp(lookup->con_id, con_id) == 0)) {
 712			/* This is the right entry. */
 713			nvmem = __nvmem_device_get(NULL, lookup->nvmem_name);
 
 714			if (IS_ERR(nvmem)) {
 715				/* Provider may not be registered yet. */
 716				cell = ERR_CAST(nvmem);
 717				break;
 718			}
 719
 720			cell = nvmem_find_cell_by_name(nvmem,
 721						       lookup->cell_name);
 722			if (!cell) {
 723				__nvmem_device_put(nvmem);
 724				cell = ERR_PTR(-ENOENT);
 
 
 
 
 725			}
 726			break;
 727		}
 728	}
 729
 730	mutex_unlock(&nvmem_lookup_mutex);
 731	return cell;
 732}
 733
 
 
 
 
 
 
 734#if IS_ENABLED(CONFIG_OF)
 735static struct nvmem_cell *
 736nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
 737{
 738	struct nvmem_cell *iter, *cell = NULL;
 739
 740	mutex_lock(&nvmem_mutex);
 741	list_for_each_entry(iter, &nvmem->cells, node) {
 742		if (np == iter->np) {
 743			cell = iter;
 744			break;
 745		}
 746	}
 747	mutex_unlock(&nvmem_mutex);
 748
 749	return cell;
 750}
 751
 
 
 
 
 
 
 
 
 
 
 
 
 752/**
 753 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
 754 *
 755 * @np: Device tree node that uses the nvmem cell.
 756 * @id: nvmem cell name from nvmem-cell-names property, or NULL
 757 *      for the cell at index 0 (the lone cell with no accompanying
 758 *      nvmem-cell-names property).
 759 *
 760 * Return: Will be an ERR_PTR() on error or a valid pointer
 761 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
 762 * nvmem_cell_put().
 763 */
 764struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
 765{
 766	struct device_node *cell_np, *nvmem_np;
 767	struct nvmem_device *nvmem;
 
 768	struct nvmem_cell *cell;
 
 769	int index = 0;
 
 
 770
 771	/* if cell name exists, find index to the name */
 772	if (id)
 773		index = of_property_match_string(np, "nvmem-cell-names", id);
 774
 775	cell_np = of_parse_phandle(np, "nvmem-cells", index);
 776	if (!cell_np)
 
 
 777		return ERR_PTR(-ENOENT);
 778
 779	nvmem_np = of_get_next_parent(cell_np);
 780	if (!nvmem_np)
 
 
 
 
 
 
 
 
 781		return ERR_PTR(-EINVAL);
 
 782
 783	nvmem = __nvmem_device_get(nvmem_np, NULL);
 
 
 
 
 
 
 
 
 
 784	of_node_put(nvmem_np);
 785	if (IS_ERR(nvmem))
 
 786		return ERR_CAST(nvmem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787
 788	cell = nvmem_find_cell_by_node(nvmem, cell_np);
 789	if (!cell) {
 790		__nvmem_device_put(nvmem);
 791		return ERR_PTR(-ENOENT);
 792	}
 793
 794	return cell;
 795}
 796EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
 797#endif
 798
 799/**
 800 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
 801 *
 802 * @dev: Device that requests the nvmem cell.
 803 * @id: nvmem cell name to get (this corresponds with the name from the
 804 *      nvmem-cell-names property for DT systems and with the con_id from
 805 *      the lookup entry for non-DT systems).
 806 *
 807 * Return: Will be an ERR_PTR() on error or a valid pointer
 808 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
 809 * nvmem_cell_put().
 810 */
 811struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
 812{
 813	struct nvmem_cell *cell;
 814
 815	if (dev->of_node) { /* try dt first */
 816		cell = of_nvmem_cell_get(dev->of_node, id);
 817		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
 818			return cell;
 819	}
 820
 821	/* NULL cell id only allowed for device tree; invalid otherwise */
 822	if (!id)
 823		return ERR_PTR(-EINVAL);
 824
 825	return nvmem_cell_get_from_lookup(dev, id);
 826}
 827EXPORT_SYMBOL_GPL(nvmem_cell_get);
 828
 829static void devm_nvmem_cell_release(struct device *dev, void *res)
 830{
 831	nvmem_cell_put(*(struct nvmem_cell **)res);
 832}
 833
 834/**
 835 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
 836 *
 837 * @dev: Device that requests the nvmem cell.
 838 * @id: nvmem cell name id to get.
 839 *
 840 * Return: Will be an ERR_PTR() on error or a valid pointer
 841 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
 842 * automatically once the device is freed.
 843 */
 844struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
 845{
 846	struct nvmem_cell **ptr, *cell;
 847
 848	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
 849	if (!ptr)
 850		return ERR_PTR(-ENOMEM);
 851
 852	cell = nvmem_cell_get(dev, id);
 853	if (!IS_ERR(cell)) {
 854		*ptr = cell;
 855		devres_add(dev, ptr);
 856	} else {
 857		devres_free(ptr);
 858	}
 859
 860	return cell;
 861}
 862EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
 863
 864static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
 865{
 866	struct nvmem_cell **c = res;
 867
 868	if (WARN_ON(!c || !*c))
 869		return 0;
 870
 871	return *c == data;
 872}
 873
 874/**
 875 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
 876 * from devm_nvmem_cell_get.
 877 *
 878 * @dev: Device that requests the nvmem cell.
 879 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
 880 */
 881void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
 882{
 883	int ret;
 884
 885	ret = devres_release(dev, devm_nvmem_cell_release,
 886				devm_nvmem_cell_match, cell);
 887
 888	WARN_ON(ret);
 889}
 890EXPORT_SYMBOL(devm_nvmem_cell_put);
 891
 892/**
 893 * nvmem_cell_put() - Release previously allocated nvmem cell.
 894 *
 895 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
 896 */
 897void nvmem_cell_put(struct nvmem_cell *cell)
 898{
 899	struct nvmem_device *nvmem = cell->nvmem;
 
 
 
 900
 
 901	__nvmem_device_put(nvmem);
 
 902}
 903EXPORT_SYMBOL_GPL(nvmem_cell_put);
 904
 905static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
 906{
 907	u8 *p, *b;
 908	int i, extra, bit_offset = cell->bit_offset;
 909
 910	p = b = buf;
 911	if (bit_offset) {
 912		/* First shift */
 913		*b++ >>= bit_offset;
 914
 915		/* setup rest of the bytes if any */
 916		for (i = 1; i < cell->bytes; i++) {
 917			/* Get bits from next byte and shift them towards msb */
 918			*p |= *b << (BITS_PER_BYTE - bit_offset);
 919
 920			p = b;
 921			*b++ >>= bit_offset;
 922		}
 923	} else {
 924		/* point to the msb */
 925		p += cell->bytes - 1;
 926	}
 927
 928	/* result fits in less bytes */
 929	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
 930	while (--extra >= 0)
 931		*p-- = 0;
 932
 933	/* clear msb bits if any leftover in the last byte */
 934	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
 
 935}
 936
 937static int __nvmem_cell_read(struct nvmem_device *nvmem,
 938		      struct nvmem_cell *cell,
 939		      void *buf, size_t *len)
 940{
 941	int rc;
 942
 943	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
 944
 945	if (rc)
 946		return rc;
 947
 948	/* shift bits in-place */
 949	if (cell->bit_offset || cell->nbits)
 950		nvmem_shift_read_buffer_in_place(cell, buf);
 951
 
 
 
 
 
 
 
 952	if (len)
 953		*len = cell->bytes;
 954
 955	return 0;
 956}
 957
 958/**
 959 * nvmem_cell_read() - Read a given nvmem cell
 960 *
 961 * @cell: nvmem cell to be read.
 962 * @len: pointer to length of cell which will be populated on successful read;
 963 *	 can be NULL.
 964 *
 965 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
 966 * buffer should be freed by the consumer with a kfree().
 967 */
 968void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
 969{
 970	struct nvmem_device *nvmem = cell->nvmem;
 
 971	u8 *buf;
 972	int rc;
 973
 974	if (!nvmem)
 975		return ERR_PTR(-EINVAL);
 976
 977	buf = kzalloc(cell->bytes, GFP_KERNEL);
 978	if (!buf)
 979		return ERR_PTR(-ENOMEM);
 980
 981	rc = __nvmem_cell_read(nvmem, cell, buf, len);
 982	if (rc) {
 983		kfree(buf);
 984		return ERR_PTR(rc);
 985	}
 986
 987	return buf;
 988}
 989EXPORT_SYMBOL_GPL(nvmem_cell_read);
 990
 991static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
 992					     u8 *_buf, int len)
 993{
 994	struct nvmem_device *nvmem = cell->nvmem;
 995	int i, rc, nbits, bit_offset = cell->bit_offset;
 996	u8 v, *p, *buf, *b, pbyte, pbits;
 997
 998	nbits = cell->nbits;
 999	buf = kzalloc(cell->bytes, GFP_KERNEL);
1000	if (!buf)
1001		return ERR_PTR(-ENOMEM);
1002
1003	memcpy(buf, _buf, len);
1004	p = b = buf;
1005
1006	if (bit_offset) {
1007		pbyte = *b;
1008		*b <<= bit_offset;
1009
1010		/* setup the first byte with lsb bits from nvmem */
1011		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1012		if (rc)
1013			goto err;
1014		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1015
1016		/* setup rest of the byte if any */
1017		for (i = 1; i < cell->bytes; i++) {
1018			/* Get last byte bits and shift them towards lsb */
1019			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1020			pbyte = *b;
1021			p = b;
1022			*b <<= bit_offset;
1023			*b++ |= pbits;
1024		}
1025	}
1026
1027	/* if it's not end on byte boundary */
1028	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1029		/* setup the last byte with msb bits from nvmem */
1030		rc = nvmem_reg_read(nvmem,
1031				    cell->offset + cell->bytes - 1, &v, 1);
1032		if (rc)
1033			goto err;
1034		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1035
1036	}
1037
1038	return buf;
1039err:
1040	kfree(buf);
1041	return ERR_PTR(rc);
1042}
1043
1044/**
1045 * nvmem_cell_write() - Write to a given nvmem cell
1046 *
1047 * @cell: nvmem cell to be written.
1048 * @buf: Buffer to be written.
1049 * @len: length of buffer to be written to nvmem cell.
1050 *
1051 * Return: length of bytes written or negative on failure.
1052 */
1053int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1054{
1055	struct nvmem_device *nvmem = cell->nvmem;
1056	int rc;
1057
1058	if (!nvmem || nvmem->read_only ||
1059	    (cell->bit_offset == 0 && len != cell->bytes))
1060		return -EINVAL;
1061
 
 
 
 
 
 
 
 
1062	if (cell->bit_offset || cell->nbits) {
1063		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1064		if (IS_ERR(buf))
1065			return PTR_ERR(buf);
1066	}
1067
1068	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1069
1070	/* free the tmp buffer */
1071	if (cell->bit_offset || cell->nbits)
1072		kfree(buf);
1073
1074	if (rc)
1075		return rc;
1076
1077	return len;
1078}
1079EXPORT_SYMBOL_GPL(nvmem_cell_write);
1080
1081/**
1082 * nvmem_cell_read_u16() - Read a cell value as an u16
1083 *
1084 * @dev: Device that requests the nvmem cell.
1085 * @cell_id: Name of nvmem cell to read.
1086 * @val: pointer to output value.
1087 *
1088 * Return: 0 on success or negative errno.
1089 */
1090int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
 
 
 
 
 
 
 
 
1091{
1092	struct nvmem_cell *cell;
1093	void *buf;
1094	size_t len;
1095
1096	cell = nvmem_cell_get(dev, cell_id);
1097	if (IS_ERR(cell))
1098		return PTR_ERR(cell);
1099
1100	buf = nvmem_cell_read(cell, &len);
1101	if (IS_ERR(buf)) {
1102		nvmem_cell_put(cell);
1103		return PTR_ERR(buf);
1104	}
1105	if (len != sizeof(*val)) {
1106		kfree(buf);
1107		nvmem_cell_put(cell);
1108		return -EINVAL;
1109	}
1110	memcpy(val, buf, sizeof(*val));
1111	kfree(buf);
1112	nvmem_cell_put(cell);
1113
1114	return 0;
1115}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1117
1118/**
1119 * nvmem_cell_read_u32() - Read a cell value as an u32
1120 *
1121 * @dev: Device that requests the nvmem cell.
1122 * @cell_id: Name of nvmem cell to read.
1123 * @val: pointer to output value.
1124 *
1125 * Return: 0 on success or negative errno.
1126 */
1127int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1128{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129	struct nvmem_cell *cell;
 
1130	void *buf;
1131	size_t len;
1132
1133	cell = nvmem_cell_get(dev, cell_id);
1134	if (IS_ERR(cell))
1135		return PTR_ERR(cell);
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	buf = nvmem_cell_read(cell, &len);
1138	if (IS_ERR(buf)) {
1139		nvmem_cell_put(cell);
1140		return PTR_ERR(buf);
1141	}
1142	if (len != sizeof(*val)) {
1143		kfree(buf);
1144		nvmem_cell_put(cell);
1145		return -EINVAL;
1146	}
1147	memcpy(val, buf, sizeof(*val));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148
1149	kfree(buf);
1150	nvmem_cell_put(cell);
1151	return 0;
1152}
1153EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1154
1155/**
1156 * nvmem_device_cell_read() - Read a given nvmem device and cell
1157 *
1158 * @nvmem: nvmem device to read from.
1159 * @info: nvmem cell info to be read.
1160 * @buf: buffer pointer which will be populated on successful read.
1161 *
1162 * Return: length of successful bytes read on success and negative
1163 * error code on error.
1164 */
1165ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1166			   struct nvmem_cell_info *info, void *buf)
1167{
1168	struct nvmem_cell cell;
1169	int rc;
1170	ssize_t len;
1171
1172	if (!nvmem)
1173		return -EINVAL;
1174
1175	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1176	if (rc)
1177		return rc;
1178
1179	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1180	if (rc)
1181		return rc;
1182
1183	return len;
1184}
1185EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1186
1187/**
1188 * nvmem_device_cell_write() - Write cell to a given nvmem device
1189 *
1190 * @nvmem: nvmem device to be written to.
1191 * @info: nvmem cell info to be written.
1192 * @buf: buffer to be written to cell.
1193 *
1194 * Return: length of bytes written or negative error code on failure.
1195 */
1196int nvmem_device_cell_write(struct nvmem_device *nvmem,
1197			    struct nvmem_cell_info *info, void *buf)
1198{
1199	struct nvmem_cell cell;
1200	int rc;
1201
1202	if (!nvmem)
1203		return -EINVAL;
1204
1205	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1206	if (rc)
1207		return rc;
1208
1209	return nvmem_cell_write(&cell, buf, cell.bytes);
1210}
1211EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1212
1213/**
1214 * nvmem_device_read() - Read from a given nvmem device
1215 *
1216 * @nvmem: nvmem device to read from.
1217 * @offset: offset in nvmem device.
1218 * @bytes: number of bytes to read.
1219 * @buf: buffer pointer which will be populated on successful read.
1220 *
1221 * Return: length of successful bytes read on success and negative
1222 * error code on error.
1223 */
1224int nvmem_device_read(struct nvmem_device *nvmem,
1225		      unsigned int offset,
1226		      size_t bytes, void *buf)
1227{
1228	int rc;
1229
1230	if (!nvmem)
1231		return -EINVAL;
1232
1233	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1234
1235	if (rc)
1236		return rc;
1237
1238	return bytes;
1239}
1240EXPORT_SYMBOL_GPL(nvmem_device_read);
1241
1242/**
1243 * nvmem_device_write() - Write cell to a given nvmem device
1244 *
1245 * @nvmem: nvmem device to be written to.
1246 * @offset: offset in nvmem device.
1247 * @bytes: number of bytes to write.
1248 * @buf: buffer to be written.
1249 *
1250 * Return: length of bytes written or negative error code on failure.
1251 */
1252int nvmem_device_write(struct nvmem_device *nvmem,
1253		       unsigned int offset,
1254		       size_t bytes, void *buf)
1255{
1256	int rc;
1257
1258	if (!nvmem)
1259		return -EINVAL;
1260
1261	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1262
1263	if (rc)
1264		return rc;
1265
1266
1267	return bytes;
1268}
1269EXPORT_SYMBOL_GPL(nvmem_device_write);
1270
1271/**
1272 * nvmem_add_cell_table() - register a table of cell info entries
1273 *
1274 * @table: table of cell info entries
1275 */
1276void nvmem_add_cell_table(struct nvmem_cell_table *table)
1277{
1278	mutex_lock(&nvmem_cell_mutex);
1279	list_add_tail(&table->node, &nvmem_cell_tables);
1280	mutex_unlock(&nvmem_cell_mutex);
1281}
1282EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1283
1284/**
1285 * nvmem_del_cell_table() - remove a previously registered cell info table
1286 *
1287 * @table: table of cell info entries
1288 */
1289void nvmem_del_cell_table(struct nvmem_cell_table *table)
1290{
1291	mutex_lock(&nvmem_cell_mutex);
1292	list_del(&table->node);
1293	mutex_unlock(&nvmem_cell_mutex);
1294}
1295EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1296
1297/**
1298 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1299 *
1300 * @entries: array of cell lookup entries
1301 * @nentries: number of cell lookup entries in the array
1302 */
1303void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1304{
1305	int i;
1306
1307	mutex_lock(&nvmem_lookup_mutex);
1308	for (i = 0; i < nentries; i++)
1309		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1310	mutex_unlock(&nvmem_lookup_mutex);
1311}
1312EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1313
1314/**
1315 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1316 *                            entries
1317 *
1318 * @entries: array of cell lookup entries
1319 * @nentries: number of cell lookup entries in the array
1320 */
1321void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1322{
1323	int i;
1324
1325	mutex_lock(&nvmem_lookup_mutex);
1326	for (i = 0; i < nentries; i++)
1327		list_del(&entries[i].node);
1328	mutex_unlock(&nvmem_lookup_mutex);
1329}
1330EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1331
1332/**
1333 * nvmem_dev_name() - Get the name of a given nvmem device.
1334 *
1335 * @nvmem: nvmem device.
1336 *
1337 * Return: name of the nvmem device.
1338 */
1339const char *nvmem_dev_name(struct nvmem_device *nvmem)
1340{
1341	return dev_name(&nvmem->dev);
1342}
1343EXPORT_SYMBOL_GPL(nvmem_dev_name);
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
1345static int __init nvmem_init(void)
1346{
1347	return bus_register(&nvmem_bus_type);
 
 
 
 
 
 
 
 
 
 
1348}
1349
1350static void __exit nvmem_exit(void)
1351{
 
1352	bus_unregister(&nvmem_bus_type);
1353}
1354
1355subsys_initcall(nvmem_init);
1356module_exit(nvmem_exit);
1357
1358MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1359MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1360MODULE_DESCRIPTION("nvmem Driver Core");
1361MODULE_LICENSE("GPL v2");