Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/sched.h>
   8#include <linux/wait.h>
   9#include <linux/gfp.h>
  10
  11#include "iwl-prph.h"
  12#include "iwl-io.h"
  13#include "internal.h"
  14#include "iwl-op-mode.h"
  15#include "iwl-context-info-gen3.h"
  16
  17/******************************************************************************
  18 *
  19 * RX path functions
  20 *
  21 ******************************************************************************/
  22
  23/*
  24 * Rx theory of operation
  25 *
  26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  27 * each of which point to Receive Buffers to be filled by the NIC.  These get
  28 * used not only for Rx frames, but for any command response or notification
  29 * from the NIC.  The driver and NIC manage the Rx buffers by means
  30 * of indexes into the circular buffer.
  31 *
  32 * Rx Queue Indexes
  33 * The host/firmware share two index registers for managing the Rx buffers.
  34 *
  35 * The READ index maps to the first position that the firmware may be writing
  36 * to -- the driver can read up to (but not including) this position and get
  37 * good data.
  38 * The READ index is managed by the firmware once the card is enabled.
  39 *
  40 * The WRITE index maps to the last position the driver has read from -- the
  41 * position preceding WRITE is the last slot the firmware can place a packet.
  42 *
  43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
  44 * WRITE = READ.
  45 *
  46 * During initialization, the host sets up the READ queue position to the first
  47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
  48 *
  49 * When the firmware places a packet in a buffer, it will advance the READ index
  50 * and fire the RX interrupt.  The driver can then query the READ index and
  51 * process as many packets as possible, moving the WRITE index forward as it
  52 * resets the Rx queue buffers with new memory.
  53 *
  54 * The management in the driver is as follows:
  55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
  56 *   When the interrupt handler is called, the request is processed.
  57 *   The page is either stolen - transferred to the upper layer
  58 *   or reused - added immediately to the iwl->rxq->rx_free list.
  59 * + When the page is stolen - the driver updates the matching queue's used
  60 *   count, detaches the RBD and transfers it to the queue used list.
  61 *   When there are two used RBDs - they are transferred to the allocator empty
  62 *   list. Work is then scheduled for the allocator to start allocating
  63 *   eight buffers.
  64 *   When there are another 6 used RBDs - they are transferred to the allocator
  65 *   empty list and the driver tries to claim the pre-allocated buffers and
  66 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
  67 *   until ready.
  68 *   When there are 8+ buffers in the free list - either from allocation or from
  69 *   8 reused unstolen pages - restock is called to update the FW and indexes.
  70 * + In order to make sure the allocator always has RBDs to use for allocation
  71 *   the allocator has initial pool in the size of num_queues*(8-2) - the
  72 *   maximum missing RBDs per allocation request (request posted with 2
  73 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
  74 *   The queues supplies the recycle of the rest of the RBDs.
  75 * + A received packet is processed and handed to the kernel network stack,
  76 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
  77 * + If there are no allocated buffers in iwl->rxq->rx_free,
  78 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
  79 *   If there were enough free buffers and RX_STALLED is set it is cleared.
  80 *
  81 *
  82 * Driver sequence:
  83 *
  84 * iwl_rxq_alloc()            Allocates rx_free
  85 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
  86 *                            iwl_pcie_rxq_restock.
  87 *                            Used only during initialization.
  88 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
  89 *                            queue, updates firmware pointers, and updates
  90 *                            the WRITE index.
  91 * iwl_pcie_rx_allocator()     Background work for allocating pages.
  92 *
  93 * -- enable interrupts --
  94 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
  95 *                            READ INDEX, detaching the SKB from the pool.
  96 *                            Moves the packet buffer from queue to rx_used.
  97 *                            Posts and claims requests to the allocator.
  98 *                            Calls iwl_pcie_rxq_restock to refill any empty
  99 *                            slots.
 100 *
 101 * RBD life-cycle:
 102 *
 103 * Init:
 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 105 *
 106 * Regular Receive interrupt:
 107 * Page Stolen:
 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 110 * Page not Stolen:
 111 * rxq.queue -> rxq.rx_free -> rxq.queue
 112 * ...
 113 *
 114 */
 115
 116/*
 117 * iwl_rxq_space - Return number of free slots available in queue.
 118 */
 119static int iwl_rxq_space(const struct iwl_rxq *rxq)
 120{
 121	/* Make sure rx queue size is a power of 2 */
 122	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 123
 124	/*
 125	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 126	 * between empty and completely full queues.
 127	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 128	 * defined for negative dividends.
 129	 */
 130	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 131}
 132
 133/*
 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 135 */
 136static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 137{
 138	return cpu_to_le32((u32)(dma_addr >> 8));
 139}
 140
 141/*
 142 * iwl_pcie_rx_stop - stops the Rx DMA
 143 */
 144int iwl_pcie_rx_stop(struct iwl_trans *trans)
 145{
 146	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 147		/* TODO: remove this once fw does it */
 148		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
 149		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
 150					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 151	} else if (trans->trans_cfg->mq_rx_supported) {
 152		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 153		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
 154					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 155	} else {
 156		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 157		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 158					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
 159					   1000);
 160	}
 161}
 162
 163/*
 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 165 */
 166static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 167				    struct iwl_rxq *rxq)
 168{
 169	u32 reg;
 170
 171	lockdep_assert_held(&rxq->lock);
 172
 173	/*
 174	 * explicitly wake up the NIC if:
 175	 * 1. shadow registers aren't enabled
 176	 * 2. there is a chance that the NIC is asleep
 177	 */
 178	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
 179	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 180		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 181
 182		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 183			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 184				       reg);
 185			iwl_set_bit(trans, CSR_GP_CNTRL,
 186				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
 187			rxq->need_update = true;
 188			return;
 189		}
 190	}
 191
 192	rxq->write_actual = round_down(rxq->write, 8);
 193	if (!trans->trans_cfg->mq_rx_supported)
 194		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 195	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 196		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
 197			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
 198	else
 199		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
 200			    rxq->write_actual);
 
 
 201}
 202
 203static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 204{
 205	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 206	int i;
 207
 208	for (i = 0; i < trans->num_rx_queues; i++) {
 209		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 210
 211		if (!rxq->need_update)
 212			continue;
 213		spin_lock_bh(&rxq->lock);
 214		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 215		rxq->need_update = false;
 216		spin_unlock_bh(&rxq->lock);
 217	}
 218}
 219
 220static void iwl_pcie_restock_bd(struct iwl_trans *trans,
 221				struct iwl_rxq *rxq,
 222				struct iwl_rx_mem_buffer *rxb)
 223{
 224	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 225		struct iwl_rx_transfer_desc *bd = rxq->bd;
 226
 227		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
 228
 229		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
 230		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
 231	} else {
 232		__le64 *bd = rxq->bd;
 233
 234		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 235	}
 236
 237	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
 238		     (u32)rxb->vid, rxq->id, rxq->write);
 239}
 240
 241/*
 242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 243 */
 244static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
 245				  struct iwl_rxq *rxq)
 246{
 247	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 248	struct iwl_rx_mem_buffer *rxb;
 249
 250	/*
 251	 * If the device isn't enabled - no need to try to add buffers...
 252	 * This can happen when we stop the device and still have an interrupt
 253	 * pending. We stop the APM before we sync the interrupts because we
 254	 * have to (see comment there). On the other hand, since the APM is
 255	 * stopped, we cannot access the HW (in particular not prph).
 256	 * So don't try to restock if the APM has been already stopped.
 257	 */
 258	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 259		return;
 260
 261	spin_lock_bh(&rxq->lock);
 262	while (rxq->free_count) {
 263		/* Get next free Rx buffer, remove from free list */
 264		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 265				       list);
 266		list_del(&rxb->list);
 267		rxb->invalid = false;
 268		/* some low bits are expected to be unset (depending on hw) */
 269		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
 270		/* Point to Rx buffer via next RBD in circular buffer */
 271		iwl_pcie_restock_bd(trans, rxq, rxb);
 272		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
 273		rxq->free_count--;
 274	}
 275	spin_unlock_bh(&rxq->lock);
 276
 277	/*
 278	 * If we've added more space for the firmware to place data, tell it.
 279	 * Increment device's write pointer in multiples of 8.
 280	 */
 281	if (rxq->write_actual != (rxq->write & ~0x7)) {
 282		spin_lock_bh(&rxq->lock);
 283		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 284		spin_unlock_bh(&rxq->lock);
 285	}
 286}
 287
 288/*
 289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 290 */
 291static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
 292				  struct iwl_rxq *rxq)
 293{
 294	struct iwl_rx_mem_buffer *rxb;
 295
 296	/*
 297	 * If the device isn't enabled - not need to try to add buffers...
 298	 * This can happen when we stop the device and still have an interrupt
 299	 * pending. We stop the APM before we sync the interrupts because we
 300	 * have to (see comment there). On the other hand, since the APM is
 301	 * stopped, we cannot access the HW (in particular not prph).
 302	 * So don't try to restock if the APM has been already stopped.
 303	 */
 304	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 305		return;
 306
 307	spin_lock_bh(&rxq->lock);
 308	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 309		__le32 *bd = (__le32 *)rxq->bd;
 310		/* The overwritten rxb must be a used one */
 311		rxb = rxq->queue[rxq->write];
 312		BUG_ON(rxb && rxb->page);
 313
 314		/* Get next free Rx buffer, remove from free list */
 315		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 316				       list);
 317		list_del(&rxb->list);
 318		rxb->invalid = false;
 319
 320		/* Point to Rx buffer via next RBD in circular buffer */
 321		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 322		rxq->queue[rxq->write] = rxb;
 323		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 324		rxq->free_count--;
 325	}
 326	spin_unlock_bh(&rxq->lock);
 327
 328	/* If we've added more space for the firmware to place data, tell it.
 329	 * Increment device's write pointer in multiples of 8. */
 330	if (rxq->write_actual != (rxq->write & ~0x7)) {
 331		spin_lock_bh(&rxq->lock);
 332		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 333		spin_unlock_bh(&rxq->lock);
 334	}
 335}
 336
 337/*
 338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 339 *
 340 * If there are slots in the RX queue that need to be restocked,
 341 * and we have free pre-allocated buffers, fill the ranks as much
 342 * as we can, pulling from rx_free.
 343 *
 344 * This moves the 'write' index forward to catch up with 'processed', and
 345 * also updates the memory address in the firmware to reference the new
 346 * target buffer.
 347 */
 348static
 349void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 350{
 351	if (trans->trans_cfg->mq_rx_supported)
 352		iwl_pcie_rxmq_restock(trans, rxq);
 353	else
 354		iwl_pcie_rxsq_restock(trans, rxq);
 355}
 356
 357/*
 358 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 359 *
 360 */
 361static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 362					   u32 *offset, gfp_t priority)
 363{
 364	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 365	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
 366	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
 367	struct page *page;
 368	gfp_t gfp_mask = priority;
 369
 370	if (trans_pcie->rx_page_order > 0)
 371		gfp_mask |= __GFP_COMP;
 372
 373	if (trans_pcie->alloc_page) {
 374		spin_lock_bh(&trans_pcie->alloc_page_lock);
 375		/* recheck */
 376		if (trans_pcie->alloc_page) {
 377			*offset = trans_pcie->alloc_page_used;
 378			page = trans_pcie->alloc_page;
 379			trans_pcie->alloc_page_used += rbsize;
 380			if (trans_pcie->alloc_page_used >= allocsize)
 381				trans_pcie->alloc_page = NULL;
 382			else
 383				get_page(page);
 384			spin_unlock_bh(&trans_pcie->alloc_page_lock);
 385			return page;
 386		}
 387		spin_unlock_bh(&trans_pcie->alloc_page_lock);
 388	}
 389
 390	/* Alloc a new receive buffer */
 391	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 392	if (!page) {
 393		if (net_ratelimit())
 394			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 395				       trans_pcie->rx_page_order);
 396		/*
 397		 * Issue an error if we don't have enough pre-allocated
 398		  * buffers.
 399		 */
 400		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 401			IWL_CRIT(trans,
 402				 "Failed to alloc_pages\n");
 403		return NULL;
 404	}
 405
 406	if (2 * rbsize <= allocsize) {
 407		spin_lock_bh(&trans_pcie->alloc_page_lock);
 408		if (!trans_pcie->alloc_page) {
 409			get_page(page);
 410			trans_pcie->alloc_page = page;
 411			trans_pcie->alloc_page_used = rbsize;
 412		}
 413		spin_unlock_bh(&trans_pcie->alloc_page_lock);
 414	}
 415
 416	*offset = 0;
 417	return page;
 418}
 419
 420/*
 421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 422 *
 423 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 424 * a page must be allocated and the RBD must point to the page. This function
 425 * doesn't change the HW pointer but handles the list of pages that is used by
 426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 427 * allocated buffers.
 428 */
 429void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 430			    struct iwl_rxq *rxq)
 431{
 432	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 433	struct iwl_rx_mem_buffer *rxb;
 434	struct page *page;
 435
 436	while (1) {
 437		unsigned int offset;
 438
 439		spin_lock_bh(&rxq->lock);
 440		if (list_empty(&rxq->rx_used)) {
 441			spin_unlock_bh(&rxq->lock);
 442			return;
 443		}
 444		spin_unlock_bh(&rxq->lock);
 445
 446		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
 
 447		if (!page)
 448			return;
 449
 450		spin_lock_bh(&rxq->lock);
 451
 452		if (list_empty(&rxq->rx_used)) {
 453			spin_unlock_bh(&rxq->lock);
 454			__free_pages(page, trans_pcie->rx_page_order);
 455			return;
 456		}
 457		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 458				       list);
 459		list_del(&rxb->list);
 460		spin_unlock_bh(&rxq->lock);
 461
 462		BUG_ON(rxb->page);
 463		rxb->page = page;
 464		rxb->offset = offset;
 465		/* Get physical address of the RB */
 466		rxb->page_dma =
 467			dma_map_page(trans->dev, page, rxb->offset,
 468				     trans_pcie->rx_buf_bytes,
 469				     DMA_FROM_DEVICE);
 470		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 471			rxb->page = NULL;
 472			spin_lock_bh(&rxq->lock);
 473			list_add(&rxb->list, &rxq->rx_used);
 474			spin_unlock_bh(&rxq->lock);
 475			__free_pages(page, trans_pcie->rx_page_order);
 476			return;
 477		}
 478
 479		spin_lock_bh(&rxq->lock);
 480
 481		list_add_tail(&rxb->list, &rxq->rx_free);
 482		rxq->free_count++;
 483
 484		spin_unlock_bh(&rxq->lock);
 485	}
 486}
 487
 488void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 489{
 490	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 491	int i;
 492
 493	if (!trans_pcie->rx_pool)
 494		return;
 495
 496	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
 497		if (!trans_pcie->rx_pool[i].page)
 498			continue;
 499		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 500			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
 
 501		__free_pages(trans_pcie->rx_pool[i].page,
 502			     trans_pcie->rx_page_order);
 503		trans_pcie->rx_pool[i].page = NULL;
 504	}
 505}
 506
 507/*
 508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 509 *
 510 * Allocates for each received request 8 pages
 511 * Called as a scheduled work item.
 512 */
 513static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 514{
 515	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 516	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 517	struct list_head local_empty;
 518	int pending = atomic_read(&rba->req_pending);
 519
 520	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
 521
 522	/* If we were scheduled - there is at least one request */
 523	spin_lock_bh(&rba->lock);
 524	/* swap out the rba->rbd_empty to a local list */
 525	list_replace_init(&rba->rbd_empty, &local_empty);
 526	spin_unlock_bh(&rba->lock);
 527
 528	while (pending) {
 529		int i;
 530		LIST_HEAD(local_allocated);
 531		gfp_t gfp_mask = GFP_KERNEL;
 532
 533		/* Do not post a warning if there are only a few requests */
 534		if (pending < RX_PENDING_WATERMARK)
 535			gfp_mask |= __GFP_NOWARN;
 536
 537		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 538			struct iwl_rx_mem_buffer *rxb;
 539			struct page *page;
 540
 541			/* List should never be empty - each reused RBD is
 542			 * returned to the list, and initial pool covers any
 543			 * possible gap between the time the page is allocated
 544			 * to the time the RBD is added.
 545			 */
 546			BUG_ON(list_empty(&local_empty));
 547			/* Get the first rxb from the rbd list */
 548			rxb = list_first_entry(&local_empty,
 549					       struct iwl_rx_mem_buffer, list);
 550			BUG_ON(rxb->page);
 551
 552			/* Alloc a new receive buffer */
 553			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
 554						      gfp_mask);
 555			if (!page)
 556				continue;
 557			rxb->page = page;
 558
 559			/* Get physical address of the RB */
 560			rxb->page_dma = dma_map_page(trans->dev, page,
 561						     rxb->offset,
 562						     trans_pcie->rx_buf_bytes,
 563						     DMA_FROM_DEVICE);
 564			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 565				rxb->page = NULL;
 566				__free_pages(page, trans_pcie->rx_page_order);
 567				continue;
 568			}
 569
 570			/* move the allocated entry to the out list */
 571			list_move(&rxb->list, &local_allocated);
 572			i++;
 573		}
 574
 575		atomic_dec(&rba->req_pending);
 576		pending--;
 577
 578		if (!pending) {
 579			pending = atomic_read(&rba->req_pending);
 580			if (pending)
 581				IWL_DEBUG_TPT(trans,
 582					      "Got more pending allocation requests = %d\n",
 583					      pending);
 584		}
 585
 586		spin_lock_bh(&rba->lock);
 587		/* add the allocated rbds to the allocator allocated list */
 588		list_splice_tail(&local_allocated, &rba->rbd_allocated);
 589		/* get more empty RBDs for current pending requests */
 590		list_splice_tail_init(&rba->rbd_empty, &local_empty);
 591		spin_unlock_bh(&rba->lock);
 592
 593		atomic_inc(&rba->req_ready);
 594
 595	}
 596
 597	spin_lock_bh(&rba->lock);
 598	/* return unused rbds to the allocator empty list */
 599	list_splice_tail(&local_empty, &rba->rbd_empty);
 600	spin_unlock_bh(&rba->lock);
 601
 602	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
 603}
 604
 605/*
 606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 607.*
 608.* Called by queue when the queue posted allocation request and
 609 * has freed 8 RBDs in order to restock itself.
 610 * This function directly moves the allocated RBs to the queue's ownership
 611 * and updates the relevant counters.
 612 */
 613static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 614				      struct iwl_rxq *rxq)
 615{
 616	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 617	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 618	int i;
 619
 620	lockdep_assert_held(&rxq->lock);
 621
 622	/*
 623	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 624	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 625	 * function will return early, as there are no ready requests.
 626	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
 627	 * req_ready > 0, i.e. - there are ready requests and the function
 628	 * hands one request to the caller.
 629	 */
 630	if (atomic_dec_if_positive(&rba->req_ready) < 0)
 631		return;
 632
 633	spin_lock(&rba->lock);
 634	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 635		/* Get next free Rx buffer, remove it from free list */
 636		struct iwl_rx_mem_buffer *rxb =
 637			list_first_entry(&rba->rbd_allocated,
 638					 struct iwl_rx_mem_buffer, list);
 639
 640		list_move(&rxb->list, &rxq->rx_free);
 641	}
 642	spin_unlock(&rba->lock);
 643
 644	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 645	rxq->free_count += RX_CLAIM_REQ_ALLOC;
 646}
 647
 648void iwl_pcie_rx_allocator_work(struct work_struct *data)
 649{
 650	struct iwl_rb_allocator *rba_p =
 651		container_of(data, struct iwl_rb_allocator, rx_alloc);
 652	struct iwl_trans_pcie *trans_pcie =
 653		container_of(rba_p, struct iwl_trans_pcie, rba);
 654
 655	iwl_pcie_rx_allocator(trans_pcie->trans);
 656}
 657
 658static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
 659{
 660	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 661		return sizeof(struct iwl_rx_transfer_desc);
 662
 663	return trans->trans_cfg->mq_rx_supported ?
 664			sizeof(__le64) : sizeof(__le32);
 665}
 666
 667static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
 668{
 669	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 670		return sizeof(struct iwl_rx_completion_desc_bz);
 671
 672	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 673		return sizeof(struct iwl_rx_completion_desc);
 674
 675	return sizeof(__le32);
 676}
 677
 678static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
 679				  struct iwl_rxq *rxq)
 680{
 681	int free_size = iwl_pcie_free_bd_size(trans);
 
 
 
 682
 683	if (rxq->bd)
 684		dma_free_coherent(trans->dev,
 685				  free_size * rxq->queue_size,
 686				  rxq->bd, rxq->bd_dma);
 687	rxq->bd_dma = 0;
 688	rxq->bd = NULL;
 689
 690	rxq->rb_stts_dma = 0;
 691	rxq->rb_stts = NULL;
 692
 693	if (rxq->used_bd)
 694		dma_free_coherent(trans->dev,
 695				  iwl_pcie_used_bd_size(trans) *
 696					rxq->queue_size,
 697				  rxq->used_bd, rxq->used_bd_dma);
 698	rxq->used_bd_dma = 0;
 699	rxq->used_bd = NULL;
 700}
 701
 702static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans)
 703{
 704	bool use_rx_td = (trans->trans_cfg->device_family >=
 705			  IWL_DEVICE_FAMILY_AX210);
 706
 707	if (use_rx_td)
 708		return sizeof(__le16);
 709
 710	return sizeof(struct iwl_rb_status);
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
 714				  struct iwl_rxq *rxq)
 715{
 716	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 717	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
 718	struct device *dev = trans->dev;
 719	int i;
 720	int free_size;
 
 
 
 
 721
 722	spin_lock_init(&rxq->lock);
 723	if (trans->trans_cfg->mq_rx_supported)
 724		rxq->queue_size = trans->cfg->num_rbds;
 725	else
 726		rxq->queue_size = RX_QUEUE_SIZE;
 727
 728	free_size = iwl_pcie_free_bd_size(trans);
 729
 730	/*
 731	 * Allocate the circular buffer of Read Buffer Descriptors
 732	 * (RBDs)
 733	 */
 734	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
 735				     &rxq->bd_dma, GFP_KERNEL);
 736	if (!rxq->bd)
 737		goto err;
 738
 739	if (trans->trans_cfg->mq_rx_supported) {
 740		rxq->used_bd = dma_alloc_coherent(dev,
 741						  iwl_pcie_used_bd_size(trans) *
 742							rxq->queue_size,
 743						  &rxq->used_bd_dma,
 744						  GFP_KERNEL);
 745		if (!rxq->used_bd)
 746			goto err;
 747	}
 748
 749	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
 750	rxq->rb_stts_dma =
 751		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
 752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753	return 0;
 754
 755err:
 756	for (i = 0; i < trans->num_rx_queues; i++) {
 757		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 758
 759		iwl_pcie_free_rxq_dma(trans, rxq);
 760	}
 761
 762	return -ENOMEM;
 763}
 764
 765static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 766{
 767	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 768	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
 769	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 770	int i, ret;
 
 
 
 771
 772	if (WARN_ON(trans_pcie->rxq))
 773		return -EINVAL;
 774
 775	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 776				  GFP_KERNEL);
 777	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
 778				      sizeof(trans_pcie->rx_pool[0]),
 779				      GFP_KERNEL);
 780	trans_pcie->global_table =
 781		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
 782			sizeof(trans_pcie->global_table[0]),
 783			GFP_KERNEL);
 784	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
 785	    !trans_pcie->global_table) {
 786		ret = -ENOMEM;
 787		goto err;
 788	}
 789
 790	spin_lock_init(&rba->lock);
 791
 792	/*
 793	 * Allocate the driver's pointer to receive buffer status.
 794	 * Allocate for all queues continuously (HW requirement).
 795	 */
 796	trans_pcie->base_rb_stts =
 797			dma_alloc_coherent(trans->dev,
 798					   rb_stts_size * trans->num_rx_queues,
 799					   &trans_pcie->base_rb_stts_dma,
 800					   GFP_KERNEL);
 801	if (!trans_pcie->base_rb_stts) {
 802		ret = -ENOMEM;
 803		goto err;
 804	}
 805
 806	for (i = 0; i < trans->num_rx_queues; i++) {
 807		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 808
 809		rxq->id = i;
 810		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
 811		if (ret)
 812			goto err;
 813	}
 814	return 0;
 815
 816err:
 817	if (trans_pcie->base_rb_stts) {
 818		dma_free_coherent(trans->dev,
 819				  rb_stts_size * trans->num_rx_queues,
 820				  trans_pcie->base_rb_stts,
 821				  trans_pcie->base_rb_stts_dma);
 822		trans_pcie->base_rb_stts = NULL;
 823		trans_pcie->base_rb_stts_dma = 0;
 824	}
 825	kfree(trans_pcie->rx_pool);
 826	trans_pcie->rx_pool = NULL;
 827	kfree(trans_pcie->global_table);
 828	trans_pcie->global_table = NULL;
 829	kfree(trans_pcie->rxq);
 830	trans_pcie->rxq = NULL;
 831
 832	return ret;
 833}
 834
 835static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 836{
 837	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 838	u32 rb_size;
 
 839	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 840
 841	switch (trans_pcie->rx_buf_size) {
 842	case IWL_AMSDU_4K:
 843		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 844		break;
 845	case IWL_AMSDU_8K:
 846		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 847		break;
 848	case IWL_AMSDU_12K:
 849		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 850		break;
 851	default:
 852		WARN_ON(1);
 853		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 854	}
 855
 856	if (!iwl_trans_grab_nic_access(trans))
 857		return;
 858
 859	/* Stop Rx DMA */
 860	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 861	/* reset and flush pointers */
 862	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 863	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 864	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 865
 866	/* Reset driver's Rx queue write index */
 867	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 868
 869	/* Tell device where to find RBD circular buffer in DRAM */
 870	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 871		    (u32)(rxq->bd_dma >> 8));
 872
 873	/* Tell device where in DRAM to update its Rx status */
 874	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 875		    rxq->rb_stts_dma >> 4);
 876
 877	/* Enable Rx DMA
 878	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 879	 *      the credit mechanism in 5000 HW RX FIFO
 880	 * Direct rx interrupts to hosts
 881	 * Rx buffer size 4 or 8k or 12k
 882	 * RB timeout 0x10
 883	 * 256 RBDs
 884	 */
 885	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 886		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 887		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 888		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 889		    rb_size |
 890		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
 891		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 892
 893	iwl_trans_release_nic_access(trans);
 894
 895	/* Set interrupt coalescing timer to default (2048 usecs) */
 896	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 897
 898	/* W/A for interrupt coalescing bug in 7260 and 3160 */
 899	if (trans->cfg->host_interrupt_operation_mode)
 900		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 901}
 902
 903static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 904{
 905	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 906	u32 rb_size, enabled = 0;
 
 907	int i;
 908
 909	switch (trans_pcie->rx_buf_size) {
 910	case IWL_AMSDU_2K:
 911		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
 912		break;
 913	case IWL_AMSDU_4K:
 914		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 915		break;
 916	case IWL_AMSDU_8K:
 917		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 918		break;
 919	case IWL_AMSDU_12K:
 920		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 921		break;
 922	default:
 923		WARN_ON(1);
 924		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 925	}
 926
 927	if (!iwl_trans_grab_nic_access(trans))
 928		return;
 929
 930	/* Stop Rx DMA */
 931	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
 932	/* disable free amd used rx queue operation */
 933	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
 934
 935	for (i = 0; i < trans->num_rx_queues; i++) {
 936		/* Tell device where to find RBD free table in DRAM */
 937		iwl_write_prph64_no_grab(trans,
 938					 RFH_Q_FRBDCB_BA_LSB(i),
 939					 trans_pcie->rxq[i].bd_dma);
 940		/* Tell device where to find RBD used table in DRAM */
 941		iwl_write_prph64_no_grab(trans,
 942					 RFH_Q_URBDCB_BA_LSB(i),
 943					 trans_pcie->rxq[i].used_bd_dma);
 944		/* Tell device where in DRAM to update its Rx status */
 945		iwl_write_prph64_no_grab(trans,
 946					 RFH_Q_URBD_STTS_WPTR_LSB(i),
 947					 trans_pcie->rxq[i].rb_stts_dma);
 948		/* Reset device indice tables */
 949		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 950		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 951		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
 952
 953		enabled |= BIT(i) | BIT(i + 16);
 954	}
 955
 956	/*
 957	 * Enable Rx DMA
 958	 * Rx buffer size 4 or 8k or 12k
 959	 * Min RB size 4 or 8
 960	 * Drop frames that exceed RB size
 961	 * 512 RBDs
 962	 */
 963	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
 964			       RFH_DMA_EN_ENABLE_VAL | rb_size |
 965			       RFH_RXF_DMA_MIN_RB_4_8 |
 966			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 967			       RFH_RXF_DMA_RBDCB_SIZE_512);
 968
 969	/*
 970	 * Activate DMA snooping.
 971	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
 972	 * Default queue is 0
 973	 */
 974	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
 975			       RFH_GEN_CFG_RFH_DMA_SNOOP |
 976			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
 977			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
 978			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
 979					       trans->trans_cfg->integrated ?
 980					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
 981					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
 982	/* Enable the relevant rx queues */
 983	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
 984
 985	iwl_trans_release_nic_access(trans);
 986
 987	/* Set interrupt coalescing timer to default (2048 usecs) */
 988	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 989}
 990
 991void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
 992{
 993	lockdep_assert_held(&rxq->lock);
 994
 995	INIT_LIST_HEAD(&rxq->rx_free);
 996	INIT_LIST_HEAD(&rxq->rx_used);
 997	rxq->free_count = 0;
 998	rxq->used_count = 0;
 999}
1000
1001static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1002
1003static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1004{
1005	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1006	struct iwl_trans_pcie *trans_pcie;
1007	struct iwl_trans *trans;
1008	int ret;
1009
1010	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1011	trans = trans_pcie->trans;
1012
1013	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1014
1015	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1016		      rxq->id, ret, budget);
1017
1018	if (ret < budget) {
1019		spin_lock(&trans_pcie->irq_lock);
1020		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1021			_iwl_enable_interrupts(trans);
1022		spin_unlock(&trans_pcie->irq_lock);
1023
1024		napi_complete_done(&rxq->napi, ret);
1025	}
1026
1027	return ret;
1028}
1029
1030static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1031{
1032	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1033	struct iwl_trans_pcie *trans_pcie;
1034	struct iwl_trans *trans;
1035	int ret;
1036
1037	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1038	trans = trans_pcie->trans;
1039
1040	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1041	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1042		      budget);
1043
1044	if (ret < budget) {
1045		int irq_line = rxq->id;
1046
1047		/* FIRST_RSS is shared with line 0 */
1048		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1049		    rxq->id == 1)
1050			irq_line = 0;
1051
1052		spin_lock(&trans_pcie->irq_lock);
1053		iwl_pcie_clear_irq(trans, irq_line);
1054		spin_unlock(&trans_pcie->irq_lock);
1055
1056		napi_complete_done(&rxq->napi, ret);
1057	}
1058
1059	return ret;
1060}
1061
1062void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1063{
1064	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1065	int i;
1066
1067	if (unlikely(!trans_pcie->rxq))
1068		return;
1069
1070	for (i = 0; i < trans->num_rx_queues; i++) {
1071		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1072
1073		if (rxq && rxq->napi.poll)
1074			napi_synchronize(&rxq->napi);
1075	}
1076}
1077
1078static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1079{
1080	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1081	struct iwl_rxq *def_rxq;
1082	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1083	int i, err, queue_size, allocator_pool_size, num_alloc;
1084
1085	if (!trans_pcie->rxq) {
1086		err = iwl_pcie_rx_alloc(trans);
1087		if (err)
1088			return err;
1089	}
1090	def_rxq = trans_pcie->rxq;
1091
1092	cancel_work_sync(&rba->rx_alloc);
1093
1094	spin_lock_bh(&rba->lock);
1095	atomic_set(&rba->req_pending, 0);
1096	atomic_set(&rba->req_ready, 0);
1097	INIT_LIST_HEAD(&rba->rbd_allocated);
1098	INIT_LIST_HEAD(&rba->rbd_empty);
1099	spin_unlock_bh(&rba->lock);
1100
1101	/* free all first - we overwrite everything here */
1102	iwl_pcie_free_rbs_pool(trans);
1103
1104	for (i = 0; i < RX_QUEUE_SIZE; i++)
1105		def_rxq->queue[i] = NULL;
1106
1107	for (i = 0; i < trans->num_rx_queues; i++) {
1108		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1109
1110		spin_lock_bh(&rxq->lock);
1111		/*
1112		 * Set read write pointer to reflect that we have processed
1113		 * and used all buffers, but have not restocked the Rx queue
1114		 * with fresh buffers
1115		 */
1116		rxq->read = 0;
1117		rxq->write = 0;
1118		rxq->write_actual = 0;
1119		memset(rxq->rb_stts, 0,
1120		       (trans->trans_cfg->device_family >=
1121			IWL_DEVICE_FAMILY_AX210) ?
1122		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1123
1124		iwl_pcie_rx_init_rxb_lists(rxq);
1125
1126		spin_unlock_bh(&rxq->lock);
1127
1128		if (!rxq->napi.poll) {
1129			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1130
1131			if (trans_pcie->msix_enabled)
1132				poll = iwl_pcie_napi_poll_msix;
1133
1134			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1135				       poll);
1136			napi_enable(&rxq->napi);
1137		}
1138
 
1139	}
1140
1141	/* move the pool to the default queue and allocator ownerships */
1142	queue_size = trans->trans_cfg->mq_rx_supported ?
1143			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1144	allocator_pool_size = trans->num_rx_queues *
1145		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1146	num_alloc = queue_size + allocator_pool_size;
1147
 
1148	for (i = 0; i < num_alloc; i++) {
1149		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1150
1151		if (i < allocator_pool_size)
1152			list_add(&rxb->list, &rba->rbd_empty);
1153		else
1154			list_add(&rxb->list, &def_rxq->rx_used);
1155		trans_pcie->global_table[i] = rxb;
1156		rxb->vid = (u16)(i + 1);
1157		rxb->invalid = true;
1158	}
1159
1160	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1161
1162	return 0;
1163}
1164
1165int iwl_pcie_rx_init(struct iwl_trans *trans)
1166{
1167	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1168	int ret = _iwl_pcie_rx_init(trans);
1169
1170	if (ret)
1171		return ret;
1172
1173	if (trans->trans_cfg->mq_rx_supported)
1174		iwl_pcie_rx_mq_hw_init(trans);
1175	else
1176		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1177
1178	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1179
1180	spin_lock_bh(&trans_pcie->rxq->lock);
1181	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1182	spin_unlock_bh(&trans_pcie->rxq->lock);
1183
1184	return 0;
1185}
1186
1187int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1188{
1189	/* Set interrupt coalescing timer to default (2048 usecs) */
1190	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1191
1192	/*
1193	 * We don't configure the RFH.
1194	 * Restock will be done at alive, after firmware configured the RFH.
1195	 */
1196	return _iwl_pcie_rx_init(trans);
1197}
1198
1199void iwl_pcie_rx_free(struct iwl_trans *trans)
1200{
1201	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1202	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
1203	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1204	int i;
 
 
 
1205
1206	/*
1207	 * if rxq is NULL, it means that nothing has been allocated,
1208	 * exit now
1209	 */
1210	if (!trans_pcie->rxq) {
1211		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1212		return;
1213	}
1214
1215	cancel_work_sync(&rba->rx_alloc);
1216
1217	iwl_pcie_free_rbs_pool(trans);
1218
1219	if (trans_pcie->base_rb_stts) {
1220		dma_free_coherent(trans->dev,
1221				  rb_stts_size * trans->num_rx_queues,
1222				  trans_pcie->base_rb_stts,
1223				  trans_pcie->base_rb_stts_dma);
1224		trans_pcie->base_rb_stts = NULL;
1225		trans_pcie->base_rb_stts_dma = 0;
1226	}
1227
1228	for (i = 0; i < trans->num_rx_queues; i++) {
1229		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1230
1231		iwl_pcie_free_rxq_dma(trans, rxq);
1232
1233		if (rxq->napi.poll) {
1234			napi_disable(&rxq->napi);
1235			netif_napi_del(&rxq->napi);
1236		}
1237	}
1238	kfree(trans_pcie->rx_pool);
1239	kfree(trans_pcie->global_table);
1240	kfree(trans_pcie->rxq);
1241
1242	if (trans_pcie->alloc_page)
1243		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1244}
1245
1246static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1247					  struct iwl_rb_allocator *rba)
1248{
1249	spin_lock(&rba->lock);
1250	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1251	spin_unlock(&rba->lock);
1252}
1253
1254/*
1255 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1256 *
1257 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1258 * When there are 2 empty RBDs - a request for allocation is posted
1259 */
1260static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1261				  struct iwl_rx_mem_buffer *rxb,
1262				  struct iwl_rxq *rxq, bool emergency)
1263{
1264	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1265	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1266
1267	/* Move the RBD to the used list, will be moved to allocator in batches
1268	 * before claiming or posting a request*/
1269	list_add_tail(&rxb->list, &rxq->rx_used);
1270
1271	if (unlikely(emergency))
1272		return;
1273
1274	/* Count the allocator owned RBDs */
1275	rxq->used_count++;
1276
1277	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1278	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1279	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1280	 * after but we still need to post another request.
1281	 */
1282	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1283		/* Move the 2 RBDs to the allocator ownership.
1284		 Allocator has another 6 from pool for the request completion*/
1285		iwl_pcie_rx_move_to_allocator(rxq, rba);
1286
1287		atomic_inc(&rba->req_pending);
1288		queue_work(rba->alloc_wq, &rba->rx_alloc);
1289	}
1290}
1291
1292static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1293				struct iwl_rxq *rxq,
1294				struct iwl_rx_mem_buffer *rxb,
1295				bool emergency,
1296				int i)
1297{
1298	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1299	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1300	bool page_stolen = false;
1301	int max_len = trans_pcie->rx_buf_bytes;
1302	u32 offset = 0;
1303
1304	if (WARN_ON(!rxb))
1305		return;
1306
1307	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1308
1309	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1310		struct iwl_rx_packet *pkt;
 
1311		bool reclaim;
1312		int len;
1313		struct iwl_rx_cmd_buffer rxcb = {
1314			._offset = rxb->offset + offset,
1315			._rx_page_order = trans_pcie->rx_page_order,
1316			._page = rxb->page,
1317			._page_stolen = false,
1318			.truesize = max_len,
1319		};
1320
1321		pkt = rxb_addr(&rxcb);
1322
1323		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1324			IWL_DEBUG_RX(trans,
1325				     "Q %d: RB end marker at offset %d\n",
1326				     rxq->id, offset);
1327			break;
1328		}
1329
1330		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1331			FH_RSCSR_RXQ_POS != rxq->id,
1332		     "frame on invalid queue - is on %d and indicates %d\n",
1333		     rxq->id,
1334		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1335			FH_RSCSR_RXQ_POS);
1336
1337		IWL_DEBUG_RX(trans,
1338			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1339			     rxq->id, offset,
1340			     iwl_get_cmd_string(trans,
1341						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
 
 
1342			     pkt->hdr.group_id, pkt->hdr.cmd,
1343			     le16_to_cpu(pkt->hdr.sequence));
1344
1345		len = iwl_rx_packet_len(pkt);
1346		len += sizeof(u32); /* account for status word */
1347
1348		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1349
1350		/* check that what the device tells us made sense */
1351		if (len < sizeof(*pkt) || offset > max_len)
1352			break;
1353
1354		maybe_trace_iwlwifi_dev_rx(trans, pkt, len);
1355
1356		/* Reclaim a command buffer only if this packet is a response
1357		 *   to a (driver-originated) command.
1358		 * If the packet (e.g. Rx frame) originated from uCode,
1359		 *   there is no command buffer to reclaim.
1360		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1361		 *   but apparently a few don't get set; catch them here. */
1362		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1363		if (reclaim && !pkt->hdr.group_id) {
1364			int i;
1365
1366			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1367				if (trans_pcie->no_reclaim_cmds[i] ==
1368							pkt->hdr.cmd) {
1369					reclaim = false;
1370					break;
1371				}
1372			}
1373		}
1374
1375		if (rxq->id == IWL_DEFAULT_RX_QUEUE)
 
 
 
 
1376			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1377				       &rxcb);
1378		else
1379			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1380					   &rxcb, rxq->id);
1381
 
 
 
 
 
1382		/*
1383		 * After here, we should always check rxcb._page_stolen,
1384		 * if it is true then one of the handlers took the page.
1385		 */
1386
1387		if (reclaim && txq) {
1388			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1389			int index = SEQ_TO_INDEX(sequence);
1390			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1391
1392			kfree_sensitive(txq->entries[cmd_index].free_buf);
1393			txq->entries[cmd_index].free_buf = NULL;
1394
1395			/* Invoke any callbacks, transfer the buffer to caller,
1396			 * and fire off the (possibly) blocking
1397			 * iwl_trans_send_cmd()
1398			 * as we reclaim the driver command queue */
1399			if (!rxcb._page_stolen)
1400				iwl_pcie_hcmd_complete(trans, &rxcb);
1401			else
1402				IWL_WARN(trans, "Claim null rxb?\n");
1403		}
1404
1405		page_stolen |= rxcb._page_stolen;
1406		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1407			break;
 
1408	}
1409
1410	/* page was stolen from us -- free our reference */
1411	if (page_stolen) {
1412		__free_pages(rxb->page, trans_pcie->rx_page_order);
1413		rxb->page = NULL;
1414	}
1415
1416	/* Reuse the page if possible. For notification packets and
1417	 * SKBs that fail to Rx correctly, add them back into the
1418	 * rx_free list for reuse later. */
1419	if (rxb->page != NULL) {
1420		rxb->page_dma =
1421			dma_map_page(trans->dev, rxb->page, rxb->offset,
1422				     trans_pcie->rx_buf_bytes,
1423				     DMA_FROM_DEVICE);
1424		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1425			/*
1426			 * free the page(s) as well to not break
1427			 * the invariant that the items on the used
1428			 * list have no page(s)
1429			 */
1430			__free_pages(rxb->page, trans_pcie->rx_page_order);
1431			rxb->page = NULL;
1432			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1433		} else {
1434			list_add_tail(&rxb->list, &rxq->rx_free);
1435			rxq->free_count++;
1436		}
1437	} else
1438		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1439}
1440
1441static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1442						  struct iwl_rxq *rxq, int i,
1443						  bool *join)
1444{
1445	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1446	struct iwl_rx_mem_buffer *rxb;
1447	u16 vid;
1448
1449	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1450	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1451
1452	if (!trans->trans_cfg->mq_rx_supported) {
1453		rxb = rxq->queue[i];
1454		rxq->queue[i] = NULL;
1455		return rxb;
1456	}
1457
1458	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1459		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1460
1461		vid = le16_to_cpu(cd[i].rbid);
1462		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1463	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1464		struct iwl_rx_completion_desc *cd = rxq->used_bd;
1465
1466		vid = le16_to_cpu(cd[i].rbid);
1467		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1468	} else {
1469		__le32 *cd = rxq->used_bd;
1470
1471		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1472	}
1473
1474	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1475		goto out_err;
1476
1477	rxb = trans_pcie->global_table[vid - 1];
1478	if (rxb->invalid)
1479		goto out_err;
1480
1481	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1482
1483	rxb->invalid = true;
1484
1485	return rxb;
1486
1487out_err:
1488	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1489	iwl_force_nmi(trans);
1490	return NULL;
1491}
1492
1493/*
1494 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1495 */
1496static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1497{
1498	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1499	struct iwl_rxq *rxq;
1500	u32 r, i, count = 0, handled = 0;
1501	bool emergency = false;
1502
1503	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1504		return budget;
1505
1506	rxq = &trans_pcie->rxq[queue];
1507
1508restart:
1509	spin_lock(&rxq->lock);
1510	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1511	 * buffer that the driver may process (last buffer filled by ucode). */
1512	r = iwl_get_closed_rb_stts(trans, rxq);
1513	i = rxq->read;
1514
1515	/* W/A 9000 device step A0 wrap-around bug */
1516	r &= (rxq->queue_size - 1);
1517
1518	/* Rx interrupt, but nothing sent from uCode */
1519	if (i == r)
1520		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1521
1522	while (i != r && ++handled < budget) {
1523		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1524		struct iwl_rx_mem_buffer *rxb;
1525		/* number of RBDs still waiting for page allocation */
1526		u32 rb_pending_alloc =
1527			atomic_read(&trans_pcie->rba.req_pending) *
1528			RX_CLAIM_REQ_ALLOC;
1529		bool join = false;
1530
1531		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1532			     !emergency)) {
1533			iwl_pcie_rx_move_to_allocator(rxq, rba);
1534			emergency = true;
1535			IWL_DEBUG_TPT(trans,
1536				      "RX path is in emergency. Pending allocations %d\n",
1537				      rb_pending_alloc);
1538		}
1539
1540		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1541
1542		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1543		if (!rxb)
1544			goto out;
1545
1546		if (unlikely(join || rxq->next_rb_is_fragment)) {
1547			rxq->next_rb_is_fragment = join;
1548			/*
1549			 * We can only get a multi-RB in the following cases:
1550			 *  - firmware issue, sending a too big notification
1551			 *  - sniffer mode with a large A-MSDU
1552			 *  - large MTU frames (>2k)
1553			 * since the multi-RB functionality is limited to newer
1554			 * hardware that cannot put multiple entries into a
1555			 * single RB.
1556			 *
1557			 * Right now, the higher layers aren't set up to deal
1558			 * with that, so discard all of these.
1559			 */
1560			list_add_tail(&rxb->list, &rxq->rx_free);
1561			rxq->free_count++;
1562		} else {
1563			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1564		}
1565
1566		i = (i + 1) & (rxq->queue_size - 1);
1567
1568		/*
1569		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1570		 * try to claim the pre-allocated buffers from the allocator.
1571		 * If not ready - will try to reclaim next time.
1572		 * There is no need to reschedule work - allocator exits only
1573		 * on success
1574		 */
1575		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1576			iwl_pcie_rx_allocator_get(trans, rxq);
1577
1578		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1579			/* Add the remaining empty RBDs for allocator use */
1580			iwl_pcie_rx_move_to_allocator(rxq, rba);
1581		} else if (emergency) {
1582			count++;
1583			if (count == 8) {
1584				count = 0;
1585				if (rb_pending_alloc < rxq->queue_size / 3) {
1586					IWL_DEBUG_TPT(trans,
1587						      "RX path exited emergency. Pending allocations %d\n",
1588						      rb_pending_alloc);
1589					emergency = false;
1590				}
1591
1592				rxq->read = i;
1593				spin_unlock(&rxq->lock);
1594				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1595				iwl_pcie_rxq_restock(trans, rxq);
1596				goto restart;
1597			}
1598		}
1599	}
1600out:
1601	/* Backtrack one entry */
1602	rxq->read = i;
 
 
 
1603	spin_unlock(&rxq->lock);
1604
1605	/*
1606	 * handle a case where in emergency there are some unallocated RBDs.
1607	 * those RBDs are in the used list, but are not tracked by the queue's
1608	 * used_count which counts allocator owned RBDs.
1609	 * unallocated emergency RBDs must be allocated on exit, otherwise
1610	 * when called again the function may not be in emergency mode and
1611	 * they will be handed to the allocator with no tracking in the RBD
1612	 * allocator counters, which will lead to them never being claimed back
1613	 * by the queue.
1614	 * by allocating them here, they are now in the queue free list, and
1615	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1616	 */
1617	if (unlikely(emergency && count))
1618		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1619
1620	iwl_pcie_rxq_restock(trans, rxq);
 
1621
1622	return handled;
1623}
1624
1625static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1626{
1627	u8 queue = entry->entry;
1628	struct msix_entry *entries = entry - queue;
1629
1630	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1631}
1632
1633/*
1634 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1635 * This interrupt handler should be used with RSS queue only.
1636 */
1637irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1638{
1639	struct msix_entry *entry = dev_id;
1640	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1641	struct iwl_trans *trans = trans_pcie->trans;
1642	struct iwl_rxq *rxq;
1643
1644	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1645
1646	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1647		return IRQ_NONE;
1648
1649	if (!trans_pcie->rxq) {
1650		if (net_ratelimit())
1651			IWL_ERR(trans,
1652				"[%d] Got MSI-X interrupt before we have Rx queues\n",
1653				entry->entry);
1654		return IRQ_NONE;
1655	}
1656
1657	rxq = &trans_pcie->rxq[entry->entry];
1658	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1659	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1660
1661	local_bh_disable();
1662	if (!napi_schedule(&rxq->napi))
1663		iwl_pcie_clear_irq(trans, entry->entry);
1664	local_bh_enable();
1665
 
 
1666	lock_map_release(&trans->sync_cmd_lockdep_map);
1667
1668	return IRQ_HANDLED;
1669}
1670
1671/*
1672 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1673 */
1674static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1675{
 
1676	int i;
1677
1678	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1679	if (trans->cfg->internal_wimax_coex &&
1680	    !trans->cfg->apmg_not_supported &&
1681	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1682			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1683	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1684			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1685		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1686		iwl_op_mode_wimax_active(trans->op_mode);
1687		wake_up(&trans->wait_command_queue);
1688		return;
1689	}
1690
1691	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1692		if (!trans->txqs.txq[i])
1693			continue;
1694		del_timer(&trans->txqs.txq[i]->stuck_timer);
1695	}
1696
1697	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1698	 * before we wake up the command caller, to ensure a proper cleanup. */
1699	iwl_trans_fw_error(trans, false);
1700
1701	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1702	wake_up(&trans->wait_command_queue);
1703}
1704
1705static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1706{
1707	u32 inta;
1708
1709	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1710
1711	trace_iwlwifi_dev_irq(trans->dev);
1712
1713	/* Discover which interrupts are active/pending */
1714	inta = iwl_read32(trans, CSR_INT);
1715
1716	/* the thread will service interrupts and re-enable them */
1717	return inta;
1718}
1719
1720/* a device (PCI-E) page is 4096 bytes long */
1721#define ICT_SHIFT	12
1722#define ICT_SIZE	(1 << ICT_SHIFT)
1723#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1724
1725/* interrupt handler using ict table, with this interrupt driver will
1726 * stop using INTA register to get device's interrupt, reading this register
1727 * is expensive, device will write interrupts in ICT dram table, increment
1728 * index then will fire interrupt to driver, driver will OR all ICT table
1729 * entries from current index up to table entry with 0 value. the result is
1730 * the interrupt we need to service, driver will set the entries back to 0 and
1731 * set index.
1732 */
1733static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1734{
1735	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1736	u32 inta;
1737	u32 val = 0;
1738	u32 read;
1739
1740	trace_iwlwifi_dev_irq(trans->dev);
1741
1742	/* Ignore interrupt if there's nothing in NIC to service.
1743	 * This may be due to IRQ shared with another device,
1744	 * or due to sporadic interrupts thrown from our NIC. */
1745	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1746	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1747	if (!read)
1748		return 0;
1749
1750	/*
1751	 * Collect all entries up to the first 0, starting from ict_index;
1752	 * note we already read at ict_index.
1753	 */
1754	do {
1755		val |= read;
1756		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1757				trans_pcie->ict_index, read);
1758		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1759		trans_pcie->ict_index =
1760			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1761
1762		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1763		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1764					   read);
1765	} while (read);
1766
1767	/* We should not get this value, just ignore it. */
1768	if (val == 0xffffffff)
1769		val = 0;
1770
1771	/*
1772	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1773	 * (bit 15 before shifting it to 31) to clear when using interrupt
1774	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1775	 * so we use them to decide on the real state of the Rx bit.
1776	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1777	 */
1778	if (val & 0xC0000)
1779		val |= 0x8000;
1780
1781	inta = (0xff & val) | ((0xff00 & val) << 16);
1782	return inta;
1783}
1784
1785void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
1786{
1787	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1788	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1789	bool hw_rfkill, prev, report;
1790
1791	mutex_lock(&trans_pcie->mutex);
1792	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1793	hw_rfkill = iwl_is_rfkill_set(trans);
1794	if (hw_rfkill) {
1795		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1796		set_bit(STATUS_RFKILL_HW, &trans->status);
1797	}
1798	if (trans_pcie->opmode_down)
1799		report = hw_rfkill;
1800	else
1801		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1802
1803	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1804		 hw_rfkill ? "disable radio" : "enable radio");
1805
1806	isr_stats->rfkill++;
1807
1808	if (prev != report)
1809		iwl_trans_pcie_rf_kill(trans, report, from_irq);
1810	mutex_unlock(&trans_pcie->mutex);
1811
1812	if (hw_rfkill) {
1813		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1814				       &trans->status))
1815			IWL_DEBUG_RF_KILL(trans,
1816					  "Rfkill while SYNC HCMD in flight\n");
1817		wake_up(&trans->wait_command_queue);
1818	} else {
1819		clear_bit(STATUS_RFKILL_HW, &trans->status);
1820		if (trans_pcie->opmode_down)
1821			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1822	}
1823}
1824
1825irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1826{
1827	struct iwl_trans *trans = dev_id;
1828	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1829	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1830	u32 inta = 0;
1831	u32 handled = 0;
1832	bool polling = false;
1833
1834	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1835
1836	spin_lock_bh(&trans_pcie->irq_lock);
1837
1838	/* dram interrupt table not set yet,
1839	 * use legacy interrupt.
1840	 */
1841	if (likely(trans_pcie->use_ict))
1842		inta = iwl_pcie_int_cause_ict(trans);
1843	else
1844		inta = iwl_pcie_int_cause_non_ict(trans);
1845
1846	if (iwl_have_debug_level(IWL_DL_ISR)) {
1847		IWL_DEBUG_ISR(trans,
1848			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1849			      inta, trans_pcie->inta_mask,
1850			      iwl_read32(trans, CSR_INT_MASK),
1851			      iwl_read32(trans, CSR_FH_INT_STATUS));
1852		if (inta & (~trans_pcie->inta_mask))
1853			IWL_DEBUG_ISR(trans,
1854				      "We got a masked interrupt (0x%08x)\n",
1855				      inta & (~trans_pcie->inta_mask));
1856	}
1857
1858	inta &= trans_pcie->inta_mask;
1859
1860	/*
1861	 * Ignore interrupt if there's nothing in NIC to service.
1862	 * This may be due to IRQ shared with another device,
1863	 * or due to sporadic interrupts thrown from our NIC.
1864	 */
1865	if (unlikely(!inta)) {
1866		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1867		/*
1868		 * Re-enable interrupts here since we don't
1869		 * have anything to service
1870		 */
1871		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1872			_iwl_enable_interrupts(trans);
1873		spin_unlock_bh(&trans_pcie->irq_lock);
1874		lock_map_release(&trans->sync_cmd_lockdep_map);
1875		return IRQ_NONE;
1876	}
1877
1878	if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) {
1879		/*
1880		 * Hardware disappeared. It might have
1881		 * already raised an interrupt.
1882		 */
1883		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1884		spin_unlock_bh(&trans_pcie->irq_lock);
1885		goto out;
1886	}
1887
1888	/* Ack/clear/reset pending uCode interrupts.
1889	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1890	 */
1891	/* There is a hardware bug in the interrupt mask function that some
1892	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1893	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1894	 * ICT interrupt handling mechanism has another bug that might cause
1895	 * these unmasked interrupts fail to be detected. We workaround the
1896	 * hardware bugs here by ACKing all the possible interrupts so that
1897	 * interrupt coalescing can still be achieved.
1898	 */
1899	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1900
1901	if (iwl_have_debug_level(IWL_DL_ISR))
1902		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1903			      inta, iwl_read32(trans, CSR_INT_MASK));
1904
1905	spin_unlock_bh(&trans_pcie->irq_lock);
1906
1907	/* Now service all interrupt bits discovered above. */
1908	if (inta & CSR_INT_BIT_HW_ERR) {
1909		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1910
1911		/* Tell the device to stop sending interrupts */
1912		iwl_disable_interrupts(trans);
1913
1914		isr_stats->hw++;
1915		iwl_pcie_irq_handle_error(trans);
1916
1917		handled |= CSR_INT_BIT_HW_ERR;
1918
1919		goto out;
1920	}
1921
1922	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1923	if (inta & CSR_INT_BIT_SCD) {
1924		IWL_DEBUG_ISR(trans,
1925			      "Scheduler finished to transmit the frame/frames.\n");
1926		isr_stats->sch++;
1927	}
1928
1929	/* Alive notification via Rx interrupt will do the real work */
1930	if (inta & CSR_INT_BIT_ALIVE) {
1931		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1932		isr_stats->alive++;
1933		if (trans->trans_cfg->gen2) {
1934			/*
1935			 * We can restock, since firmware configured
1936			 * the RFH
1937			 */
1938			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1939		}
1940
1941		handled |= CSR_INT_BIT_ALIVE;
1942	}
1943
1944	/* Safely ignore these bits for debug checks below */
1945	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1946
1947	/* HW RF KILL switch toggled */
1948	if (inta & CSR_INT_BIT_RF_KILL) {
1949		iwl_pcie_handle_rfkill_irq(trans, true);
1950		handled |= CSR_INT_BIT_RF_KILL;
1951	}
1952
1953	/* Chip got too hot and stopped itself */
1954	if (inta & CSR_INT_BIT_CT_KILL) {
1955		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1956		isr_stats->ctkill++;
1957		handled |= CSR_INT_BIT_CT_KILL;
1958	}
1959
1960	/* Error detected by uCode */
1961	if (inta & CSR_INT_BIT_SW_ERR) {
1962		IWL_ERR(trans, "Microcode SW error detected. "
1963			" Restarting 0x%X.\n", inta);
1964		isr_stats->sw++;
1965		iwl_pcie_irq_handle_error(trans);
1966		handled |= CSR_INT_BIT_SW_ERR;
1967	}
1968
1969	/* uCode wakes up after power-down sleep */
1970	if (inta & CSR_INT_BIT_WAKEUP) {
1971		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1972		iwl_pcie_rxq_check_wrptr(trans);
1973		iwl_pcie_txq_check_wrptrs(trans);
1974
1975		isr_stats->wakeup++;
1976
1977		handled |= CSR_INT_BIT_WAKEUP;
1978	}
1979
1980	/* All uCode command responses, including Tx command responses,
1981	 * Rx "responses" (frame-received notification), and other
1982	 * notifications from uCode come through here*/
1983	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1984		    CSR_INT_BIT_RX_PERIODIC)) {
1985		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1986		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1987			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1988			iwl_write32(trans, CSR_FH_INT_STATUS,
1989					CSR_FH_INT_RX_MASK);
1990		}
1991		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1992			handled |= CSR_INT_BIT_RX_PERIODIC;
1993			iwl_write32(trans,
1994				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1995		}
1996		/* Sending RX interrupt require many steps to be done in the
1997		 * device:
1998		 * 1- write interrupt to current index in ICT table.
1999		 * 2- dma RX frame.
2000		 * 3- update RX shared data to indicate last write index.
2001		 * 4- send interrupt.
2002		 * This could lead to RX race, driver could receive RX interrupt
2003		 * but the shared data changes does not reflect this;
2004		 * periodic interrupt will detect any dangling Rx activity.
2005		 */
2006
2007		/* Disable periodic interrupt; we use it as just a one-shot. */
2008		iwl_write8(trans, CSR_INT_PERIODIC_REG,
2009			    CSR_INT_PERIODIC_DIS);
2010
2011		/*
2012		 * Enable periodic interrupt in 8 msec only if we received
2013		 * real RX interrupt (instead of just periodic int), to catch
2014		 * any dangling Rx interrupt.  If it was just the periodic
2015		 * interrupt, there was no dangling Rx activity, and no need
2016		 * to extend the periodic interrupt; one-shot is enough.
2017		 */
2018		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2019			iwl_write8(trans, CSR_INT_PERIODIC_REG,
2020				   CSR_INT_PERIODIC_ENA);
2021
2022		isr_stats->rx++;
2023
2024		local_bh_disable();
2025		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2026			polling = true;
2027			__napi_schedule(&trans_pcie->rxq[0].napi);
2028		}
2029		local_bh_enable();
2030	}
2031
2032	/* This "Tx" DMA channel is used only for loading uCode */
2033	if (inta & CSR_INT_BIT_FH_TX) {
2034		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2035		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2036		isr_stats->tx++;
2037		handled |= CSR_INT_BIT_FH_TX;
2038		/* Wake up uCode load routine, now that load is complete */
2039		trans_pcie->ucode_write_complete = true;
2040		wake_up(&trans_pcie->ucode_write_waitq);
2041		/* Wake up IMR write routine, now that write to SRAM is complete */
2042		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2043			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2044			wake_up(&trans_pcie->ucode_write_waitq);
2045		}
2046	}
2047
2048	if (inta & ~handled) {
2049		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2050		isr_stats->unhandled++;
2051	}
2052
2053	if (inta & ~(trans_pcie->inta_mask)) {
2054		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2055			 inta & ~trans_pcie->inta_mask);
2056	}
2057
2058	if (!polling) {
2059		spin_lock_bh(&trans_pcie->irq_lock);
2060		/* only Re-enable all interrupt if disabled by irq */
2061		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2062			_iwl_enable_interrupts(trans);
2063		/* we are loading the firmware, enable FH_TX interrupt only */
2064		else if (handled & CSR_INT_BIT_FH_TX)
2065			iwl_enable_fw_load_int(trans);
2066		/* Re-enable RF_KILL if it occurred */
2067		else if (handled & CSR_INT_BIT_RF_KILL)
2068			iwl_enable_rfkill_int(trans);
2069		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2070		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2071			iwl_enable_fw_load_int_ctx_info(trans);
2072		spin_unlock_bh(&trans_pcie->irq_lock);
2073	}
2074
2075out:
2076	lock_map_release(&trans->sync_cmd_lockdep_map);
2077	return IRQ_HANDLED;
2078}
2079
2080/******************************************************************************
2081 *
2082 * ICT functions
2083 *
2084 ******************************************************************************/
2085
2086/* Free dram table */
2087void iwl_pcie_free_ict(struct iwl_trans *trans)
2088{
2089	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2090
2091	if (trans_pcie->ict_tbl) {
2092		dma_free_coherent(trans->dev, ICT_SIZE,
2093				  trans_pcie->ict_tbl,
2094				  trans_pcie->ict_tbl_dma);
2095		trans_pcie->ict_tbl = NULL;
2096		trans_pcie->ict_tbl_dma = 0;
2097	}
2098}
2099
2100/*
2101 * allocate dram shared table, it is an aligned memory
2102 * block of ICT_SIZE.
2103 * also reset all data related to ICT table interrupt.
2104 */
2105int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2106{
2107	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2108
2109	trans_pcie->ict_tbl =
2110		dma_alloc_coherent(trans->dev, ICT_SIZE,
2111				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2112	if (!trans_pcie->ict_tbl)
2113		return -ENOMEM;
2114
2115	/* just an API sanity check ... it is guaranteed to be aligned */
2116	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2117		iwl_pcie_free_ict(trans);
2118		return -EINVAL;
2119	}
2120
2121	return 0;
2122}
2123
2124/* Device is going up inform it about using ICT interrupt table,
2125 * also we need to tell the driver to start using ICT interrupt.
2126 */
2127void iwl_pcie_reset_ict(struct iwl_trans *trans)
2128{
2129	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2130	u32 val;
2131
2132	if (!trans_pcie->ict_tbl)
2133		return;
2134
2135	spin_lock_bh(&trans_pcie->irq_lock);
2136	_iwl_disable_interrupts(trans);
2137
2138	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2139
2140	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2141
2142	val |= CSR_DRAM_INT_TBL_ENABLE |
2143	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2144	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2145
2146	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2147
2148	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2149	trans_pcie->use_ict = true;
2150	trans_pcie->ict_index = 0;
2151	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2152	_iwl_enable_interrupts(trans);
2153	spin_unlock_bh(&trans_pcie->irq_lock);
2154}
2155
2156/* Device is going down disable ict interrupt usage */
2157void iwl_pcie_disable_ict(struct iwl_trans *trans)
2158{
2159	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2160
2161	spin_lock_bh(&trans_pcie->irq_lock);
2162	trans_pcie->use_ict = false;
2163	spin_unlock_bh(&trans_pcie->irq_lock);
2164}
2165
2166irqreturn_t iwl_pcie_isr(int irq, void *data)
2167{
2168	struct iwl_trans *trans = data;
2169
2170	if (!trans)
2171		return IRQ_NONE;
2172
2173	/* Disable (but don't clear!) interrupts here to avoid
2174	 * back-to-back ISRs and sporadic interrupts from our NIC.
2175	 * If we have something to service, the tasklet will re-enable ints.
2176	 * If we *don't* have something, we'll re-enable before leaving here.
2177	 */
2178	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2179
2180	return IRQ_WAKE_THREAD;
2181}
2182
2183irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2184{
2185	return IRQ_WAKE_THREAD;
2186}
2187
2188irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2189{
2190	struct msix_entry *entry = dev_id;
2191	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2192	struct iwl_trans *trans = trans_pcie->trans;
2193	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2194	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2195	u32 inta_fh, inta_hw;
2196	bool polling = false;
2197	bool sw_err;
2198
2199	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2200		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2201
2202	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2203		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2204
2205	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2206
2207	spin_lock_bh(&trans_pcie->irq_lock);
2208	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2209	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2210	/*
2211	 * Clear causes registers to avoid being handling the same cause.
2212	 */
2213	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2214	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2215	spin_unlock_bh(&trans_pcie->irq_lock);
2216
2217	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2218
2219	if (unlikely(!(inta_fh | inta_hw))) {
2220		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2221		lock_map_release(&trans->sync_cmd_lockdep_map);
2222		return IRQ_NONE;
2223	}
2224
2225	if (iwl_have_debug_level(IWL_DL_ISR)) {
2226		IWL_DEBUG_ISR(trans,
2227			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2228			      entry->entry, inta_fh, trans_pcie->fh_mask,
2229			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2230		if (inta_fh & ~trans_pcie->fh_mask)
2231			IWL_DEBUG_ISR(trans,
2232				      "We got a masked interrupt (0x%08x)\n",
2233				      inta_fh & ~trans_pcie->fh_mask);
2234	}
2235
2236	inta_fh &= trans_pcie->fh_mask;
2237
2238	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2239	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2240		local_bh_disable();
2241		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2242			polling = true;
2243			__napi_schedule(&trans_pcie->rxq[0].napi);
2244		}
2245		local_bh_enable();
2246	}
2247
2248	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2249	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2250		local_bh_disable();
2251		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2252			polling = true;
2253			__napi_schedule(&trans_pcie->rxq[1].napi);
2254		}
2255		local_bh_enable();
2256	}
2257
2258	/* This "Tx" DMA channel is used only for loading uCode */
2259	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2260	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2261		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2262		isr_stats->tx++;
2263
2264		/* Wake up IMR routine once write to SRAM is complete */
2265		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2266			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2267			wake_up(&trans_pcie->ucode_write_waitq);
2268		}
2269	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2270		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2271		isr_stats->tx++;
2272		/*
2273		 * Wake up uCode load routine,
2274		 * now that load is complete
2275		 */
2276		trans_pcie->ucode_write_complete = true;
2277		wake_up(&trans_pcie->ucode_write_waitq);
2278
2279		/* Wake up IMR routine once write to SRAM is complete */
2280		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2281			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2282			wake_up(&trans_pcie->ucode_write_waitq);
2283		}
2284	}
2285
2286	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2287		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2288	else
2289		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2290
2291	if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) {
2292		IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n",
2293			inta_hw);
2294		/* TODO: PLDR flow required here for >= Bz */
2295	}
2296
2297	/* Error detected by uCode */
2298	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
 
 
2299		IWL_ERR(trans,
2300			"Microcode SW error detected. Restarting 0x%X.\n",
2301			inta_fh);
2302		isr_stats->sw++;
2303		/* during FW reset flow report errors from there */
2304		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2305			trans_pcie->imr_status = IMR_D2S_ERROR;
2306			wake_up(&trans_pcie->imr_waitq);
2307		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2308			trans_pcie->fw_reset_state = FW_RESET_ERROR;
2309			wake_up(&trans_pcie->fw_reset_waitq);
2310		} else {
2311			iwl_pcie_irq_handle_error(trans);
2312		}
2313	}
2314
2315	/* After checking FH register check HW register */
2316	if (iwl_have_debug_level(IWL_DL_ISR)) {
2317		IWL_DEBUG_ISR(trans,
2318			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2319			      entry->entry, inta_hw, trans_pcie->hw_mask,
2320			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2321		if (inta_hw & ~trans_pcie->hw_mask)
2322			IWL_DEBUG_ISR(trans,
2323				      "We got a masked interrupt 0x%08x\n",
2324				      inta_hw & ~trans_pcie->hw_mask);
2325	}
2326
2327	inta_hw &= trans_pcie->hw_mask;
2328
2329	/* Alive notification via Rx interrupt will do the real work */
2330	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2331		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2332		isr_stats->alive++;
2333		if (trans->trans_cfg->gen2) {
2334			/* We can restock, since firmware configured the RFH */
2335			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2336		}
2337	}
2338
2339	/*
2340	 * In some rare cases when the HW is in a bad state, we may
2341	 * get this interrupt too early, when prph_info is still NULL.
2342	 * So make sure that it's not NULL to prevent crashing.
2343	 */
2344	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
 
 
 
 
 
2345		u32 sleep_notif =
2346			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2347		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2348		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2349			IWL_DEBUG_ISR(trans,
2350				      "Sx interrupt: sleep notification = 0x%x\n",
2351				      sleep_notif);
2352			trans_pcie->sx_complete = true;
2353			wake_up(&trans_pcie->sx_waitq);
2354		} else {
2355			/* uCode wakes up after power-down sleep */
2356			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2357			iwl_pcie_rxq_check_wrptr(trans);
2358			iwl_pcie_txq_check_wrptrs(trans);
2359
2360			isr_stats->wakeup++;
2361		}
2362	}
2363
 
 
 
 
 
 
 
 
 
 
 
2364	/* Chip got too hot and stopped itself */
2365	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2366		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2367		isr_stats->ctkill++;
2368	}
2369
2370	/* HW RF KILL switch toggled */
2371	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2372		iwl_pcie_handle_rfkill_irq(trans, true);
2373
2374	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2375		IWL_ERR(trans,
2376			"Hardware error detected. Restarting.\n");
2377
2378		isr_stats->hw++;
2379		trans->dbg.hw_error = true;
2380		iwl_pcie_irq_handle_error(trans);
2381	}
2382
2383	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2384		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2385		trans_pcie->fw_reset_state = FW_RESET_OK;
2386		wake_up(&trans_pcie->fw_reset_waitq);
2387	}
2388
2389	if (!polling)
2390		iwl_pcie_clear_irq(trans, entry->entry);
2391
2392	lock_map_release(&trans->sync_cmd_lockdep_map);
2393
2394	return IRQ_HANDLED;
2395}
v5.4
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
   9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  11 * Copyright(c) 2018 - 2019 Intel Corporation
  12 *
  13 * This program is free software; you can redistribute it and/or modify it
  14 * under the terms of version 2 of the GNU General Public License as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful, but WITHOUT
  18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  20 * more details.
  21 *
  22 * The full GNU General Public License is included in this distribution in the
  23 * file called COPYING.
  24 *
  25 * Contact Information:
  26 *  Intel Linux Wireless <linuxwifi@intel.com>
  27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  28 *
  29 * BSD LICENSE
  30 *
  31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
  32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  34 * Copyright(c) 2018 - 2019 Intel Corporation
  35 * All rights reserved.
  36 *
  37 * Redistribution and use in source and binary forms, with or without
  38 * modification, are permitted provided that the following conditions
  39 * are met:
  40 *
  41 *  * Redistributions of source code must retain the above copyright
  42 *    notice, this list of conditions and the following disclaimer.
  43 *  * Redistributions in binary form must reproduce the above copyright
  44 *    notice, this list of conditions and the following disclaimer in
  45 *    the documentation and/or other materials provided with the
  46 *    distribution.
  47 *  * Neither the name Intel Corporation nor the names of its
  48 *    contributors may be used to endorse or promote products derived
  49 *    from this software without specific prior written permission.
  50 *
  51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  62 *
  63 *****************************************************************************/
  64#include <linux/sched.h>
  65#include <linux/wait.h>
  66#include <linux/gfp.h>
  67
  68#include "iwl-prph.h"
  69#include "iwl-io.h"
  70#include "internal.h"
  71#include "iwl-op-mode.h"
  72#include "iwl-context-info-gen3.h"
  73
  74/******************************************************************************
  75 *
  76 * RX path functions
  77 *
  78 ******************************************************************************/
  79
  80/*
  81 * Rx theory of operation
  82 *
  83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  84 * each of which point to Receive Buffers to be filled by the NIC.  These get
  85 * used not only for Rx frames, but for any command response or notification
  86 * from the NIC.  The driver and NIC manage the Rx buffers by means
  87 * of indexes into the circular buffer.
  88 *
  89 * Rx Queue Indexes
  90 * The host/firmware share two index registers for managing the Rx buffers.
  91 *
  92 * The READ index maps to the first position that the firmware may be writing
  93 * to -- the driver can read up to (but not including) this position and get
  94 * good data.
  95 * The READ index is managed by the firmware once the card is enabled.
  96 *
  97 * The WRITE index maps to the last position the driver has read from -- the
  98 * position preceding WRITE is the last slot the firmware can place a packet.
  99 *
 100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 101 * WRITE = READ.
 102 *
 103 * During initialization, the host sets up the READ queue position to the first
 104 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 105 *
 106 * When the firmware places a packet in a buffer, it will advance the READ index
 107 * and fire the RX interrupt.  The driver can then query the READ index and
 108 * process as many packets as possible, moving the WRITE index forward as it
 109 * resets the Rx queue buffers with new memory.
 110 *
 111 * The management in the driver is as follows:
 112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 113 *   When the interrupt handler is called, the request is processed.
 114 *   The page is either stolen - transferred to the upper layer
 115 *   or reused - added immediately to the iwl->rxq->rx_free list.
 116 * + When the page is stolen - the driver updates the matching queue's used
 117 *   count, detaches the RBD and transfers it to the queue used list.
 118 *   When there are two used RBDs - they are transferred to the allocator empty
 119 *   list. Work is then scheduled for the allocator to start allocating
 120 *   eight buffers.
 121 *   When there are another 6 used RBDs - they are transferred to the allocator
 122 *   empty list and the driver tries to claim the pre-allocated buffers and
 123 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 124 *   until ready.
 125 *   When there are 8+ buffers in the free list - either from allocation or from
 126 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 127 * + In order to make sure the allocator always has RBDs to use for allocation
 128 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 129 *   maximum missing RBDs per allocation request (request posted with 2
 130 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 131 *   The queues supplies the recycle of the rest of the RBDs.
 132 * + A received packet is processed and handed to the kernel network stack,
 133 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
 134 * + If there are no allocated buffers in iwl->rxq->rx_free,
 135 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 136 *   If there were enough free buffers and RX_STALLED is set it is cleared.
 137 *
 138 *
 139 * Driver sequence:
 140 *
 141 * iwl_rxq_alloc()            Allocates rx_free
 142 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
 143 *                            iwl_pcie_rxq_restock.
 144 *                            Used only during initialization.
 145 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
 146 *                            queue, updates firmware pointers, and updates
 147 *                            the WRITE index.
 148 * iwl_pcie_rx_allocator()     Background work for allocating pages.
 149 *
 150 * -- enable interrupts --
 151 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
 152 *                            READ INDEX, detaching the SKB from the pool.
 153 *                            Moves the packet buffer from queue to rx_used.
 154 *                            Posts and claims requests to the allocator.
 155 *                            Calls iwl_pcie_rxq_restock to refill any empty
 156 *                            slots.
 157 *
 158 * RBD life-cycle:
 159 *
 160 * Init:
 161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 162 *
 163 * Regular Receive interrupt:
 164 * Page Stolen:
 165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 167 * Page not Stolen:
 168 * rxq.queue -> rxq.rx_free -> rxq.queue
 169 * ...
 170 *
 171 */
 172
 173/*
 174 * iwl_rxq_space - Return number of free slots available in queue.
 175 */
 176static int iwl_rxq_space(const struct iwl_rxq *rxq)
 177{
 178	/* Make sure rx queue size is a power of 2 */
 179	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 180
 181	/*
 182	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 183	 * between empty and completely full queues.
 184	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 185	 * defined for negative dividends.
 186	 */
 187	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 188}
 189
 190/*
 191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 192 */
 193static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 194{
 195	return cpu_to_le32((u32)(dma_addr >> 8));
 196}
 197
 198/*
 199 * iwl_pcie_rx_stop - stops the Rx DMA
 200 */
 201int iwl_pcie_rx_stop(struct iwl_trans *trans)
 202{
 203	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
 204		/* TODO: remove this for 22560 once fw does it */
 205		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
 206		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
 207					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 208	} else if (trans->trans_cfg->mq_rx_supported) {
 209		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 210		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
 211					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 212	} else {
 213		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 214		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 215					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
 216					   1000);
 217	}
 218}
 219
 220/*
 221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 222 */
 223static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 224				    struct iwl_rxq *rxq)
 225{
 226	u32 reg;
 227
 228	lockdep_assert_held(&rxq->lock);
 229
 230	/*
 231	 * explicitly wake up the NIC if:
 232	 * 1. shadow registers aren't enabled
 233	 * 2. there is a chance that the NIC is asleep
 234	 */
 235	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
 236	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 237		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 238
 239		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 240			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 241				       reg);
 242			iwl_set_bit(trans, CSR_GP_CNTRL,
 243				    BIT(trans->trans_cfg->csr->flag_mac_access_req));
 244			rxq->need_update = true;
 245			return;
 246		}
 247	}
 248
 249	rxq->write_actual = round_down(rxq->write, 8);
 250	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22560)
 251		iwl_write32(trans, HBUS_TARG_WRPTR,
 252			    (rxq->write_actual |
 253			     ((FIRST_RX_QUEUE + rxq->id) << 16)));
 254	else if (trans->trans_cfg->mq_rx_supported)
 
 255		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
 256			    rxq->write_actual);
 257	else
 258		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 259}
 260
 261static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 262{
 263	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 264	int i;
 265
 266	for (i = 0; i < trans->num_rx_queues; i++) {
 267		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 268
 269		if (!rxq->need_update)
 270			continue;
 271		spin_lock(&rxq->lock);
 272		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 273		rxq->need_update = false;
 274		spin_unlock(&rxq->lock);
 275	}
 276}
 277
 278static void iwl_pcie_restock_bd(struct iwl_trans *trans,
 279				struct iwl_rxq *rxq,
 280				struct iwl_rx_mem_buffer *rxb)
 281{
 282	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
 283		struct iwl_rx_transfer_desc *bd = rxq->bd;
 284
 285		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
 286
 287		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
 288		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
 289	} else {
 290		__le64 *bd = rxq->bd;
 291
 292		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 293	}
 294
 295	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
 296		     (u32)rxb->vid, rxq->id, rxq->write);
 297}
 298
 299/*
 300 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 301 */
 302static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
 303				  struct iwl_rxq *rxq)
 304{
 
 305	struct iwl_rx_mem_buffer *rxb;
 306
 307	/*
 308	 * If the device isn't enabled - no need to try to add buffers...
 309	 * This can happen when we stop the device and still have an interrupt
 310	 * pending. We stop the APM before we sync the interrupts because we
 311	 * have to (see comment there). On the other hand, since the APM is
 312	 * stopped, we cannot access the HW (in particular not prph).
 313	 * So don't try to restock if the APM has been already stopped.
 314	 */
 315	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 316		return;
 317
 318	spin_lock(&rxq->lock);
 319	while (rxq->free_count) {
 320		/* Get next free Rx buffer, remove from free list */
 321		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 322				       list);
 323		list_del(&rxb->list);
 324		rxb->invalid = false;
 325		/* 12 first bits are expected to be empty */
 326		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
 327		/* Point to Rx buffer via next RBD in circular buffer */
 328		iwl_pcie_restock_bd(trans, rxq, rxb);
 329		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
 330		rxq->free_count--;
 331	}
 332	spin_unlock(&rxq->lock);
 333
 334	/*
 335	 * If we've added more space for the firmware to place data, tell it.
 336	 * Increment device's write pointer in multiples of 8.
 337	 */
 338	if (rxq->write_actual != (rxq->write & ~0x7)) {
 339		spin_lock(&rxq->lock);
 340		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 341		spin_unlock(&rxq->lock);
 342	}
 343}
 344
 345/*
 346 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 347 */
 348static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
 349				  struct iwl_rxq *rxq)
 350{
 351	struct iwl_rx_mem_buffer *rxb;
 352
 353	/*
 354	 * If the device isn't enabled - not need to try to add buffers...
 355	 * This can happen when we stop the device and still have an interrupt
 356	 * pending. We stop the APM before we sync the interrupts because we
 357	 * have to (see comment there). On the other hand, since the APM is
 358	 * stopped, we cannot access the HW (in particular not prph).
 359	 * So don't try to restock if the APM has been already stopped.
 360	 */
 361	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 362		return;
 363
 364	spin_lock(&rxq->lock);
 365	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 366		__le32 *bd = (__le32 *)rxq->bd;
 367		/* The overwritten rxb must be a used one */
 368		rxb = rxq->queue[rxq->write];
 369		BUG_ON(rxb && rxb->page);
 370
 371		/* Get next free Rx buffer, remove from free list */
 372		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 373				       list);
 374		list_del(&rxb->list);
 375		rxb->invalid = false;
 376
 377		/* Point to Rx buffer via next RBD in circular buffer */
 378		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 379		rxq->queue[rxq->write] = rxb;
 380		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 381		rxq->free_count--;
 382	}
 383	spin_unlock(&rxq->lock);
 384
 385	/* If we've added more space for the firmware to place data, tell it.
 386	 * Increment device's write pointer in multiples of 8. */
 387	if (rxq->write_actual != (rxq->write & ~0x7)) {
 388		spin_lock(&rxq->lock);
 389		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 390		spin_unlock(&rxq->lock);
 391	}
 392}
 393
 394/*
 395 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 396 *
 397 * If there are slots in the RX queue that need to be restocked,
 398 * and we have free pre-allocated buffers, fill the ranks as much
 399 * as we can, pulling from rx_free.
 400 *
 401 * This moves the 'write' index forward to catch up with 'processed', and
 402 * also updates the memory address in the firmware to reference the new
 403 * target buffer.
 404 */
 405static
 406void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 407{
 408	if (trans->trans_cfg->mq_rx_supported)
 409		iwl_pcie_rxmq_restock(trans, rxq);
 410	else
 411		iwl_pcie_rxsq_restock(trans, rxq);
 412}
 413
 414/*
 415 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 416 *
 417 */
 418static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 419					   gfp_t priority)
 420{
 421	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 
 422	struct page *page;
 423	gfp_t gfp_mask = priority;
 424
 425	if (trans_pcie->rx_page_order > 0)
 426		gfp_mask |= __GFP_COMP;
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	/* Alloc a new receive buffer */
 429	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 430	if (!page) {
 431		if (net_ratelimit())
 432			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 433				       trans_pcie->rx_page_order);
 434		/*
 435		 * Issue an error if we don't have enough pre-allocated
 436		  * buffers.
 437		 */
 438		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 439			IWL_CRIT(trans,
 440				 "Failed to alloc_pages\n");
 441		return NULL;
 442	}
 
 
 
 
 
 
 
 
 
 
 
 
 443	return page;
 444}
 445
 446/*
 447 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 448 *
 449 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 450 * a page must be allocated and the RBD must point to the page. This function
 451 * doesn't change the HW pointer but handles the list of pages that is used by
 452 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 453 * allocated buffers.
 454 */
 455void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 456			    struct iwl_rxq *rxq)
 457{
 458	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 459	struct iwl_rx_mem_buffer *rxb;
 460	struct page *page;
 461
 462	while (1) {
 463		spin_lock(&rxq->lock);
 
 
 464		if (list_empty(&rxq->rx_used)) {
 465			spin_unlock(&rxq->lock);
 466			return;
 467		}
 468		spin_unlock(&rxq->lock);
 469
 470		/* Alloc a new receive buffer */
 471		page = iwl_pcie_rx_alloc_page(trans, priority);
 472		if (!page)
 473			return;
 474
 475		spin_lock(&rxq->lock);
 476
 477		if (list_empty(&rxq->rx_used)) {
 478			spin_unlock(&rxq->lock);
 479			__free_pages(page, trans_pcie->rx_page_order);
 480			return;
 481		}
 482		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 483				       list);
 484		list_del(&rxb->list);
 485		spin_unlock(&rxq->lock);
 486
 487		BUG_ON(rxb->page);
 488		rxb->page = page;
 
 489		/* Get physical address of the RB */
 490		rxb->page_dma =
 491			dma_map_page(trans->dev, page, 0,
 492				     PAGE_SIZE << trans_pcie->rx_page_order,
 493				     DMA_FROM_DEVICE);
 494		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 495			rxb->page = NULL;
 496			spin_lock(&rxq->lock);
 497			list_add(&rxb->list, &rxq->rx_used);
 498			spin_unlock(&rxq->lock);
 499			__free_pages(page, trans_pcie->rx_page_order);
 500			return;
 501		}
 502
 503		spin_lock(&rxq->lock);
 504
 505		list_add_tail(&rxb->list, &rxq->rx_free);
 506		rxq->free_count++;
 507
 508		spin_unlock(&rxq->lock);
 509	}
 510}
 511
 512void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 513{
 514	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 515	int i;
 516
 517	for (i = 0; i < RX_POOL_SIZE; i++) {
 
 
 
 518		if (!trans_pcie->rx_pool[i].page)
 519			continue;
 520		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 521			       PAGE_SIZE << trans_pcie->rx_page_order,
 522			       DMA_FROM_DEVICE);
 523		__free_pages(trans_pcie->rx_pool[i].page,
 524			     trans_pcie->rx_page_order);
 525		trans_pcie->rx_pool[i].page = NULL;
 526	}
 527}
 528
 529/*
 530 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 531 *
 532 * Allocates for each received request 8 pages
 533 * Called as a scheduled work item.
 534 */
 535static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 536{
 537	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 538	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 539	struct list_head local_empty;
 540	int pending = atomic_read(&rba->req_pending);
 541
 542	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
 543
 544	/* If we were scheduled - there is at least one request */
 545	spin_lock(&rba->lock);
 546	/* swap out the rba->rbd_empty to a local list */
 547	list_replace_init(&rba->rbd_empty, &local_empty);
 548	spin_unlock(&rba->lock);
 549
 550	while (pending) {
 551		int i;
 552		LIST_HEAD(local_allocated);
 553		gfp_t gfp_mask = GFP_KERNEL;
 554
 555		/* Do not post a warning if there are only a few requests */
 556		if (pending < RX_PENDING_WATERMARK)
 557			gfp_mask |= __GFP_NOWARN;
 558
 559		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 560			struct iwl_rx_mem_buffer *rxb;
 561			struct page *page;
 562
 563			/* List should never be empty - each reused RBD is
 564			 * returned to the list, and initial pool covers any
 565			 * possible gap between the time the page is allocated
 566			 * to the time the RBD is added.
 567			 */
 568			BUG_ON(list_empty(&local_empty));
 569			/* Get the first rxb from the rbd list */
 570			rxb = list_first_entry(&local_empty,
 571					       struct iwl_rx_mem_buffer, list);
 572			BUG_ON(rxb->page);
 573
 574			/* Alloc a new receive buffer */
 575			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
 
 576			if (!page)
 577				continue;
 578			rxb->page = page;
 579
 580			/* Get physical address of the RB */
 581			rxb->page_dma = dma_map_page(trans->dev, page, 0,
 582					PAGE_SIZE << trans_pcie->rx_page_order,
 583					DMA_FROM_DEVICE);
 
 584			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 585				rxb->page = NULL;
 586				__free_pages(page, trans_pcie->rx_page_order);
 587				continue;
 588			}
 589
 590			/* move the allocated entry to the out list */
 591			list_move(&rxb->list, &local_allocated);
 592			i++;
 593		}
 594
 595		atomic_dec(&rba->req_pending);
 596		pending--;
 597
 598		if (!pending) {
 599			pending = atomic_read(&rba->req_pending);
 600			if (pending)
 601				IWL_DEBUG_TPT(trans,
 602					      "Got more pending allocation requests = %d\n",
 603					      pending);
 604		}
 605
 606		spin_lock(&rba->lock);
 607		/* add the allocated rbds to the allocator allocated list */
 608		list_splice_tail(&local_allocated, &rba->rbd_allocated);
 609		/* get more empty RBDs for current pending requests */
 610		list_splice_tail_init(&rba->rbd_empty, &local_empty);
 611		spin_unlock(&rba->lock);
 612
 613		atomic_inc(&rba->req_ready);
 614
 615	}
 616
 617	spin_lock(&rba->lock);
 618	/* return unused rbds to the allocator empty list */
 619	list_splice_tail(&local_empty, &rba->rbd_empty);
 620	spin_unlock(&rba->lock);
 621
 622	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
 623}
 624
 625/*
 626 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 627.*
 628.* Called by queue when the queue posted allocation request and
 629 * has freed 8 RBDs in order to restock itself.
 630 * This function directly moves the allocated RBs to the queue's ownership
 631 * and updates the relevant counters.
 632 */
 633static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 634				      struct iwl_rxq *rxq)
 635{
 636	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 637	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 638	int i;
 639
 640	lockdep_assert_held(&rxq->lock);
 641
 642	/*
 643	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 644	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 645	 * function will return early, as there are no ready requests.
 646	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
 647	 * req_ready > 0, i.e. - there are ready requests and the function
 648	 * hands one request to the caller.
 649	 */
 650	if (atomic_dec_if_positive(&rba->req_ready) < 0)
 651		return;
 652
 653	spin_lock(&rba->lock);
 654	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 655		/* Get next free Rx buffer, remove it from free list */
 656		struct iwl_rx_mem_buffer *rxb =
 657			list_first_entry(&rba->rbd_allocated,
 658					 struct iwl_rx_mem_buffer, list);
 659
 660		list_move(&rxb->list, &rxq->rx_free);
 661	}
 662	spin_unlock(&rba->lock);
 663
 664	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 665	rxq->free_count += RX_CLAIM_REQ_ALLOC;
 666}
 667
 668void iwl_pcie_rx_allocator_work(struct work_struct *data)
 669{
 670	struct iwl_rb_allocator *rba_p =
 671		container_of(data, struct iwl_rb_allocator, rx_alloc);
 672	struct iwl_trans_pcie *trans_pcie =
 673		container_of(rba_p, struct iwl_trans_pcie, rba);
 674
 675	iwl_pcie_rx_allocator(trans_pcie->trans);
 676}
 677
 678static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
 679{
 680	struct iwl_rx_transfer_desc *rx_td;
 
 
 
 
 
 681
 682	if (use_rx_td)
 683		return sizeof(*rx_td);
 684	else
 685		return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
 686			sizeof(__le32);
 
 
 
 
 687}
 688
 689static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
 690				  struct iwl_rxq *rxq)
 691{
 692	struct device *dev = trans->dev;
 693	bool use_rx_td = (trans->trans_cfg->device_family >=
 694			  IWL_DEVICE_FAMILY_22560);
 695	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
 696
 697	if (rxq->bd)
 698		dma_free_coherent(trans->dev,
 699				  free_size * rxq->queue_size,
 700				  rxq->bd, rxq->bd_dma);
 701	rxq->bd_dma = 0;
 702	rxq->bd = NULL;
 703
 704	rxq->rb_stts_dma = 0;
 705	rxq->rb_stts = NULL;
 706
 707	if (rxq->used_bd)
 708		dma_free_coherent(trans->dev,
 709				  (use_rx_td ? sizeof(*rxq->cd) :
 710				   sizeof(__le32)) * rxq->queue_size,
 711				  rxq->used_bd, rxq->used_bd_dma);
 712	rxq->used_bd_dma = 0;
 713	rxq->used_bd = NULL;
 
 
 
 
 
 
 714
 715	if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_22560)
 716		return;
 717
 718	if (rxq->tr_tail)
 719		dma_free_coherent(dev, sizeof(__le16),
 720				  rxq->tr_tail, rxq->tr_tail_dma);
 721	rxq->tr_tail_dma = 0;
 722	rxq->tr_tail = NULL;
 723
 724	if (rxq->cr_tail)
 725		dma_free_coherent(dev, sizeof(__le16),
 726				  rxq->cr_tail, rxq->cr_tail_dma);
 727	rxq->cr_tail_dma = 0;
 728	rxq->cr_tail = NULL;
 729}
 730
 731static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
 732				  struct iwl_rxq *rxq)
 733{
 734	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 735	struct device *dev = trans->dev;
 736	int i;
 737	int free_size;
 738	bool use_rx_td = (trans->trans_cfg->device_family >=
 739			  IWL_DEVICE_FAMILY_22560);
 740	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
 741			      sizeof(struct iwl_rb_status);
 742
 743	spin_lock_init(&rxq->lock);
 744	if (trans->trans_cfg->mq_rx_supported)
 745		rxq->queue_size = MQ_RX_TABLE_SIZE;
 746	else
 747		rxq->queue_size = RX_QUEUE_SIZE;
 748
 749	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
 750
 751	/*
 752	 * Allocate the circular buffer of Read Buffer Descriptors
 753	 * (RBDs)
 754	 */
 755	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
 756				     &rxq->bd_dma, GFP_KERNEL);
 757	if (!rxq->bd)
 758		goto err;
 759
 760	if (trans->trans_cfg->mq_rx_supported) {
 761		rxq->used_bd = dma_alloc_coherent(dev,
 762						  (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
 
 763						  &rxq->used_bd_dma,
 764						  GFP_KERNEL);
 765		if (!rxq->used_bd)
 766			goto err;
 767	}
 768
 769	rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
 770	rxq->rb_stts_dma =
 771		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
 772
 773	if (!use_rx_td)
 774		return 0;
 775
 776	/* Allocate the driver's pointer to TR tail */
 777	rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
 778					  &rxq->tr_tail_dma, GFP_KERNEL);
 779	if (!rxq->tr_tail)
 780		goto err;
 781
 782	/* Allocate the driver's pointer to CR tail */
 783	rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
 784					  &rxq->cr_tail_dma, GFP_KERNEL);
 785	if (!rxq->cr_tail)
 786		goto err;
 787	/*
 788	 * W/A 22560 device step Z0 must be non zero bug
 789	 * TODO: remove this when stop supporting Z0
 790	 */
 791	*rxq->cr_tail = cpu_to_le16(500);
 792
 793	return 0;
 794
 795err:
 796	for (i = 0; i < trans->num_rx_queues; i++) {
 797		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 798
 799		iwl_pcie_free_rxq_dma(trans, rxq);
 800	}
 801
 802	return -ENOMEM;
 803}
 804
 805int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 806{
 807	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 808	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 809	int i, ret;
 810	size_t rb_stts_size = trans->trans_cfg->device_family >=
 811			      IWL_DEVICE_FAMILY_22560 ?
 812			      sizeof(__le16) : sizeof(struct iwl_rb_status);
 813
 814	if (WARN_ON(trans_pcie->rxq))
 815		return -EINVAL;
 816
 817	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 818				  GFP_KERNEL);
 819	if (!trans_pcie->rxq)
 820		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 821
 822	spin_lock_init(&rba->lock);
 823
 824	/*
 825	 * Allocate the driver's pointer to receive buffer status.
 826	 * Allocate for all queues continuously (HW requirement).
 827	 */
 828	trans_pcie->base_rb_stts =
 829			dma_alloc_coherent(trans->dev,
 830					   rb_stts_size * trans->num_rx_queues,
 831					   &trans_pcie->base_rb_stts_dma,
 832					   GFP_KERNEL);
 833	if (!trans_pcie->base_rb_stts) {
 834		ret = -ENOMEM;
 835		goto err;
 836	}
 837
 838	for (i = 0; i < trans->num_rx_queues; i++) {
 839		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 840
 841		rxq->id = i;
 842		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
 843		if (ret)
 844			goto err;
 845	}
 846	return 0;
 847
 848err:
 849	if (trans_pcie->base_rb_stts) {
 850		dma_free_coherent(trans->dev,
 851				  rb_stts_size * trans->num_rx_queues,
 852				  trans_pcie->base_rb_stts,
 853				  trans_pcie->base_rb_stts_dma);
 854		trans_pcie->base_rb_stts = NULL;
 855		trans_pcie->base_rb_stts_dma = 0;
 856	}
 
 
 
 
 857	kfree(trans_pcie->rxq);
 
 858
 859	return ret;
 860}
 861
 862static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 863{
 864	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 865	u32 rb_size;
 866	unsigned long flags;
 867	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 868
 869	switch (trans_pcie->rx_buf_size) {
 870	case IWL_AMSDU_4K:
 871		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 872		break;
 873	case IWL_AMSDU_8K:
 874		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 875		break;
 876	case IWL_AMSDU_12K:
 877		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 878		break;
 879	default:
 880		WARN_ON(1);
 881		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 882	}
 883
 884	if (!iwl_trans_grab_nic_access(trans, &flags))
 885		return;
 886
 887	/* Stop Rx DMA */
 888	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 889	/* reset and flush pointers */
 890	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 891	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 892	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 893
 894	/* Reset driver's Rx queue write index */
 895	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 896
 897	/* Tell device where to find RBD circular buffer in DRAM */
 898	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 899		    (u32)(rxq->bd_dma >> 8));
 900
 901	/* Tell device where in DRAM to update its Rx status */
 902	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 903		    rxq->rb_stts_dma >> 4);
 904
 905	/* Enable Rx DMA
 906	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 907	 *      the credit mechanism in 5000 HW RX FIFO
 908	 * Direct rx interrupts to hosts
 909	 * Rx buffer size 4 or 8k or 12k
 910	 * RB timeout 0x10
 911	 * 256 RBDs
 912	 */
 913	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 914		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 915		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 916		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 917		    rb_size |
 918		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
 919		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 920
 921	iwl_trans_release_nic_access(trans, &flags);
 922
 923	/* Set interrupt coalescing timer to default (2048 usecs) */
 924	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 925
 926	/* W/A for interrupt coalescing bug in 7260 and 3160 */
 927	if (trans->cfg->host_interrupt_operation_mode)
 928		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 929}
 930
 931static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 932{
 933	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 934	u32 rb_size, enabled = 0;
 935	unsigned long flags;
 936	int i;
 937
 938	switch (trans_pcie->rx_buf_size) {
 939	case IWL_AMSDU_2K:
 940		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
 941		break;
 942	case IWL_AMSDU_4K:
 943		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 944		break;
 945	case IWL_AMSDU_8K:
 946		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 947		break;
 948	case IWL_AMSDU_12K:
 949		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 950		break;
 951	default:
 952		WARN_ON(1);
 953		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 954	}
 955
 956	if (!iwl_trans_grab_nic_access(trans, &flags))
 957		return;
 958
 959	/* Stop Rx DMA */
 960	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
 961	/* disable free amd used rx queue operation */
 962	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
 963
 964	for (i = 0; i < trans->num_rx_queues; i++) {
 965		/* Tell device where to find RBD free table in DRAM */
 966		iwl_write_prph64_no_grab(trans,
 967					 RFH_Q_FRBDCB_BA_LSB(i),
 968					 trans_pcie->rxq[i].bd_dma);
 969		/* Tell device where to find RBD used table in DRAM */
 970		iwl_write_prph64_no_grab(trans,
 971					 RFH_Q_URBDCB_BA_LSB(i),
 972					 trans_pcie->rxq[i].used_bd_dma);
 973		/* Tell device where in DRAM to update its Rx status */
 974		iwl_write_prph64_no_grab(trans,
 975					 RFH_Q_URBD_STTS_WPTR_LSB(i),
 976					 trans_pcie->rxq[i].rb_stts_dma);
 977		/* Reset device indice tables */
 978		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 979		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 980		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
 981
 982		enabled |= BIT(i) | BIT(i + 16);
 983	}
 984
 985	/*
 986	 * Enable Rx DMA
 987	 * Rx buffer size 4 or 8k or 12k
 988	 * Min RB size 4 or 8
 989	 * Drop frames that exceed RB size
 990	 * 512 RBDs
 991	 */
 992	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
 993			       RFH_DMA_EN_ENABLE_VAL | rb_size |
 994			       RFH_RXF_DMA_MIN_RB_4_8 |
 995			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 996			       RFH_RXF_DMA_RBDCB_SIZE_512);
 997
 998	/*
 999	 * Activate DMA snooping.
1000	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1001	 * Default queue is 0
1002	 */
1003	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1004			       RFH_GEN_CFG_RFH_DMA_SNOOP |
1005			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1006			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1007			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1008					       trans->cfg->integrated ?
1009					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1010					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1011	/* Enable the relevant rx queues */
1012	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1013
1014	iwl_trans_release_nic_access(trans, &flags);
1015
1016	/* Set interrupt coalescing timer to default (2048 usecs) */
1017	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1018}
1019
1020void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1021{
1022	lockdep_assert_held(&rxq->lock);
1023
1024	INIT_LIST_HEAD(&rxq->rx_free);
1025	INIT_LIST_HEAD(&rxq->rx_used);
1026	rxq->free_count = 0;
1027	rxq->used_count = 0;
1028}
1029
1030int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
 
 
1031{
1032	WARN_ON(1);
1033	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034}
1035
1036int _iwl_pcie_rx_init(struct iwl_trans *trans)
1037{
1038	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1039	struct iwl_rxq *def_rxq;
1040	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1041	int i, err, queue_size, allocator_pool_size, num_alloc;
1042
1043	if (!trans_pcie->rxq) {
1044		err = iwl_pcie_rx_alloc(trans);
1045		if (err)
1046			return err;
1047	}
1048	def_rxq = trans_pcie->rxq;
1049
1050	cancel_work_sync(&rba->rx_alloc);
1051
1052	spin_lock(&rba->lock);
1053	atomic_set(&rba->req_pending, 0);
1054	atomic_set(&rba->req_ready, 0);
1055	INIT_LIST_HEAD(&rba->rbd_allocated);
1056	INIT_LIST_HEAD(&rba->rbd_empty);
1057	spin_unlock(&rba->lock);
1058
1059	/* free all first - we might be reconfigured for a different size */
1060	iwl_pcie_free_rbs_pool(trans);
1061
1062	for (i = 0; i < RX_QUEUE_SIZE; i++)
1063		def_rxq->queue[i] = NULL;
1064
1065	for (i = 0; i < trans->num_rx_queues; i++) {
1066		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1067
1068		spin_lock(&rxq->lock);
1069		/*
1070		 * Set read write pointer to reflect that we have processed
1071		 * and used all buffers, but have not restocked the Rx queue
1072		 * with fresh buffers
1073		 */
1074		rxq->read = 0;
1075		rxq->write = 0;
1076		rxq->write_actual = 0;
1077		memset(rxq->rb_stts, 0, (trans->trans_cfg->device_family >=
1078					 IWL_DEVICE_FAMILY_22560) ?
 
1079		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1080
1081		iwl_pcie_rx_init_rxb_lists(rxq);
1082
1083		if (!rxq->napi.poll)
 
 
 
 
 
 
 
1084			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1085				       iwl_pcie_dummy_napi_poll, 64);
 
 
1086
1087		spin_unlock(&rxq->lock);
1088	}
1089
1090	/* move the pool to the default queue and allocator ownerships */
1091	queue_size = trans->trans_cfg->mq_rx_supported ?
1092		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1093	allocator_pool_size = trans->num_rx_queues *
1094		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1095	num_alloc = queue_size + allocator_pool_size;
1096	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1097		     ARRAY_SIZE(trans_pcie->rx_pool));
1098	for (i = 0; i < num_alloc; i++) {
1099		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1100
1101		if (i < allocator_pool_size)
1102			list_add(&rxb->list, &rba->rbd_empty);
1103		else
1104			list_add(&rxb->list, &def_rxq->rx_used);
1105		trans_pcie->global_table[i] = rxb;
1106		rxb->vid = (u16)(i + 1);
1107		rxb->invalid = true;
1108	}
1109
1110	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1111
1112	return 0;
1113}
1114
1115int iwl_pcie_rx_init(struct iwl_trans *trans)
1116{
1117	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1118	int ret = _iwl_pcie_rx_init(trans);
1119
1120	if (ret)
1121		return ret;
1122
1123	if (trans->trans_cfg->mq_rx_supported)
1124		iwl_pcie_rx_mq_hw_init(trans);
1125	else
1126		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1127
1128	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1129
1130	spin_lock(&trans_pcie->rxq->lock);
1131	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1132	spin_unlock(&trans_pcie->rxq->lock);
1133
1134	return 0;
1135}
1136
1137int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1138{
1139	/* Set interrupt coalescing timer to default (2048 usecs) */
1140	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1141
1142	/*
1143	 * We don't configure the RFH.
1144	 * Restock will be done at alive, after firmware configured the RFH.
1145	 */
1146	return _iwl_pcie_rx_init(trans);
1147}
1148
1149void iwl_pcie_rx_free(struct iwl_trans *trans)
1150{
1151	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
1152	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1153	int i;
1154	size_t rb_stts_size = trans->trans_cfg->device_family >=
1155			      IWL_DEVICE_FAMILY_22560 ?
1156			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1157
1158	/*
1159	 * if rxq is NULL, it means that nothing has been allocated,
1160	 * exit now
1161	 */
1162	if (!trans_pcie->rxq) {
1163		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1164		return;
1165	}
1166
1167	cancel_work_sync(&rba->rx_alloc);
1168
1169	iwl_pcie_free_rbs_pool(trans);
1170
1171	if (trans_pcie->base_rb_stts) {
1172		dma_free_coherent(trans->dev,
1173				  rb_stts_size * trans->num_rx_queues,
1174				  trans_pcie->base_rb_stts,
1175				  trans_pcie->base_rb_stts_dma);
1176		trans_pcie->base_rb_stts = NULL;
1177		trans_pcie->base_rb_stts_dma = 0;
1178	}
1179
1180	for (i = 0; i < trans->num_rx_queues; i++) {
1181		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1182
1183		iwl_pcie_free_rxq_dma(trans, rxq);
1184
1185		if (rxq->napi.poll)
 
1186			netif_napi_del(&rxq->napi);
 
1187	}
 
 
1188	kfree(trans_pcie->rxq);
 
 
 
1189}
1190
1191static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1192					  struct iwl_rb_allocator *rba)
1193{
1194	spin_lock(&rba->lock);
1195	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1196	spin_unlock(&rba->lock);
1197}
1198
1199/*
1200 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1201 *
1202 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1203 * When there are 2 empty RBDs - a request for allocation is posted
1204 */
1205static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1206				  struct iwl_rx_mem_buffer *rxb,
1207				  struct iwl_rxq *rxq, bool emergency)
1208{
1209	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1210	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1211
1212	/* Move the RBD to the used list, will be moved to allocator in batches
1213	 * before claiming or posting a request*/
1214	list_add_tail(&rxb->list, &rxq->rx_used);
1215
1216	if (unlikely(emergency))
1217		return;
1218
1219	/* Count the allocator owned RBDs */
1220	rxq->used_count++;
1221
1222	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1223	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1224	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1225	 * after but we still need to post another request.
1226	 */
1227	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1228		/* Move the 2 RBDs to the allocator ownership.
1229		 Allocator has another 6 from pool for the request completion*/
1230		iwl_pcie_rx_move_to_allocator(rxq, rba);
1231
1232		atomic_inc(&rba->req_pending);
1233		queue_work(rba->alloc_wq, &rba->rx_alloc);
1234	}
1235}
1236
1237static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1238				struct iwl_rxq *rxq,
1239				struct iwl_rx_mem_buffer *rxb,
1240				bool emergency,
1241				int i)
1242{
1243	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1244	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1245	bool page_stolen = false;
1246	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1247	u32 offset = 0;
1248
1249	if (WARN_ON(!rxb))
1250		return;
1251
1252	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1253
1254	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1255		struct iwl_rx_packet *pkt;
1256		u16 sequence;
1257		bool reclaim;
1258		int index, cmd_index, len;
1259		struct iwl_rx_cmd_buffer rxcb = {
1260			._offset = offset,
1261			._rx_page_order = trans_pcie->rx_page_order,
1262			._page = rxb->page,
1263			._page_stolen = false,
1264			.truesize = max_len,
1265		};
1266
1267		pkt = rxb_addr(&rxcb);
1268
1269		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1270			IWL_DEBUG_RX(trans,
1271				     "Q %d: RB end marker at offset %d\n",
1272				     rxq->id, offset);
1273			break;
1274		}
1275
1276		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1277			FH_RSCSR_RXQ_POS != rxq->id,
1278		     "frame on invalid queue - is on %d and indicates %d\n",
1279		     rxq->id,
1280		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1281			FH_RSCSR_RXQ_POS);
1282
1283		IWL_DEBUG_RX(trans,
1284			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1285			     rxq->id, offset,
1286			     iwl_get_cmd_string(trans,
1287						iwl_cmd_id(pkt->hdr.cmd,
1288							   pkt->hdr.group_id,
1289							   0)),
1290			     pkt->hdr.group_id, pkt->hdr.cmd,
1291			     le16_to_cpu(pkt->hdr.sequence));
1292
1293		len = iwl_rx_packet_len(pkt);
1294		len += sizeof(u32); /* account for status word */
1295		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1296		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
 
 
 
 
 
 
1297
1298		/* Reclaim a command buffer only if this packet is a response
1299		 *   to a (driver-originated) command.
1300		 * If the packet (e.g. Rx frame) originated from uCode,
1301		 *   there is no command buffer to reclaim.
1302		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1303		 *   but apparently a few don't get set; catch them here. */
1304		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1305		if (reclaim && !pkt->hdr.group_id) {
1306			int i;
1307
1308			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1309				if (trans_pcie->no_reclaim_cmds[i] ==
1310							pkt->hdr.cmd) {
1311					reclaim = false;
1312					break;
1313				}
1314			}
1315		}
1316
1317		sequence = le16_to_cpu(pkt->hdr.sequence);
1318		index = SEQ_TO_INDEX(sequence);
1319		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1320
1321		if (rxq->id == trans_pcie->def_rx_queue)
1322			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1323				       &rxcb);
1324		else
1325			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1326					   &rxcb, rxq->id);
1327
1328		if (reclaim) {
1329			kzfree(txq->entries[cmd_index].free_buf);
1330			txq->entries[cmd_index].free_buf = NULL;
1331		}
1332
1333		/*
1334		 * After here, we should always check rxcb._page_stolen,
1335		 * if it is true then one of the handlers took the page.
1336		 */
1337
1338		if (reclaim) {
 
 
 
 
 
 
 
1339			/* Invoke any callbacks, transfer the buffer to caller,
1340			 * and fire off the (possibly) blocking
1341			 * iwl_trans_send_cmd()
1342			 * as we reclaim the driver command queue */
1343			if (!rxcb._page_stolen)
1344				iwl_pcie_hcmd_complete(trans, &rxcb);
1345			else
1346				IWL_WARN(trans, "Claim null rxb?\n");
1347		}
1348
1349		page_stolen |= rxcb._page_stolen;
1350		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1351			break;
1352		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1353	}
1354
1355	/* page was stolen from us -- free our reference */
1356	if (page_stolen) {
1357		__free_pages(rxb->page, trans_pcie->rx_page_order);
1358		rxb->page = NULL;
1359	}
1360
1361	/* Reuse the page if possible. For notification packets and
1362	 * SKBs that fail to Rx correctly, add them back into the
1363	 * rx_free list for reuse later. */
1364	if (rxb->page != NULL) {
1365		rxb->page_dma =
1366			dma_map_page(trans->dev, rxb->page, 0,
1367				     PAGE_SIZE << trans_pcie->rx_page_order,
1368				     DMA_FROM_DEVICE);
1369		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1370			/*
1371			 * free the page(s) as well to not break
1372			 * the invariant that the items on the used
1373			 * list have no page(s)
1374			 */
1375			__free_pages(rxb->page, trans_pcie->rx_page_order);
1376			rxb->page = NULL;
1377			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1378		} else {
1379			list_add_tail(&rxb->list, &rxq->rx_free);
1380			rxq->free_count++;
1381		}
1382	} else
1383		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1384}
1385
1386static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1387						  struct iwl_rxq *rxq, int i)
 
1388{
1389	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1390	struct iwl_rx_mem_buffer *rxb;
1391	u16 vid;
1392
1393	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
 
1394
1395	if (!trans->trans_cfg->mq_rx_supported) {
1396		rxb = rxq->queue[i];
1397		rxq->queue[i] = NULL;
1398		return rxb;
1399	}
1400
1401	/* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1402	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1403		vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1404	else
1405		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
 
 
 
 
 
 
 
 
 
 
1406
1407	if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1408		goto out_err;
1409
1410	rxb = trans_pcie->global_table[vid - 1];
1411	if (rxb->invalid)
1412		goto out_err;
1413
1414	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1415
1416	rxb->invalid = true;
1417
1418	return rxb;
1419
1420out_err:
1421	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1422	iwl_force_nmi(trans);
1423	return NULL;
1424}
1425
1426/*
1427 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1428 */
1429static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1430{
1431	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1432	struct iwl_rxq *rxq;
1433	u32 r, i, count = 0;
1434	bool emergency = false;
1435
1436	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1437		return;
1438
1439	rxq = &trans_pcie->rxq[queue];
1440
1441restart:
1442	spin_lock(&rxq->lock);
1443	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1444	 * buffer that the driver may process (last buffer filled by ucode). */
1445	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1446	i = rxq->read;
1447
1448	/* W/A 9000 device step A0 wrap-around bug */
1449	r &= (rxq->queue_size - 1);
1450
1451	/* Rx interrupt, but nothing sent from uCode */
1452	if (i == r)
1453		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1454
1455	while (i != r) {
1456		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1457		struct iwl_rx_mem_buffer *rxb;
1458		/* number of RBDs still waiting for page allocation */
1459		u32 rb_pending_alloc =
1460			atomic_read(&trans_pcie->rba.req_pending) *
1461			RX_CLAIM_REQ_ALLOC;
 
1462
1463		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1464			     !emergency)) {
1465			iwl_pcie_rx_move_to_allocator(rxq, rba);
1466			emergency = true;
1467			IWL_DEBUG_TPT(trans,
1468				      "RX path is in emergency. Pending allocations %d\n",
1469				      rb_pending_alloc);
1470		}
1471
1472		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1473
1474		rxb = iwl_pcie_get_rxb(trans, rxq, i);
1475		if (!rxb)
1476			goto out;
1477
1478		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479
1480		i = (i + 1) & (rxq->queue_size - 1);
1481
1482		/*
1483		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1484		 * try to claim the pre-allocated buffers from the allocator.
1485		 * If not ready - will try to reclaim next time.
1486		 * There is no need to reschedule work - allocator exits only
1487		 * on success
1488		 */
1489		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1490			iwl_pcie_rx_allocator_get(trans, rxq);
1491
1492		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1493			/* Add the remaining empty RBDs for allocator use */
1494			iwl_pcie_rx_move_to_allocator(rxq, rba);
1495		} else if (emergency) {
1496			count++;
1497			if (count == 8) {
1498				count = 0;
1499				if (rb_pending_alloc < rxq->queue_size / 3) {
1500					IWL_DEBUG_TPT(trans,
1501						      "RX path exited emergency. Pending allocations %d\n",
1502						      rb_pending_alloc);
1503					emergency = false;
1504				}
1505
1506				rxq->read = i;
1507				spin_unlock(&rxq->lock);
1508				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1509				iwl_pcie_rxq_restock(trans, rxq);
1510				goto restart;
1511			}
1512		}
1513	}
1514out:
1515	/* Backtrack one entry */
1516	rxq->read = i;
1517	/* update cr tail with the rxq read pointer */
1518	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1519		*rxq->cr_tail = cpu_to_le16(r);
1520	spin_unlock(&rxq->lock);
1521
1522	/*
1523	 * handle a case where in emergency there are some unallocated RBDs.
1524	 * those RBDs are in the used list, but are not tracked by the queue's
1525	 * used_count which counts allocator owned RBDs.
1526	 * unallocated emergency RBDs must be allocated on exit, otherwise
1527	 * when called again the function may not be in emergency mode and
1528	 * they will be handed to the allocator with no tracking in the RBD
1529	 * allocator counters, which will lead to them never being claimed back
1530	 * by the queue.
1531	 * by allocating them here, they are now in the queue free list, and
1532	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1533	 */
1534	if (unlikely(emergency && count))
1535		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1536
1537	if (rxq->napi.poll)
1538		napi_gro_flush(&rxq->napi, false);
1539
1540	iwl_pcie_rxq_restock(trans, rxq);
1541}
1542
1543static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1544{
1545	u8 queue = entry->entry;
1546	struct msix_entry *entries = entry - queue;
1547
1548	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1549}
1550
1551/*
1552 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1553 * This interrupt handler should be used with RSS queue only.
1554 */
1555irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1556{
1557	struct msix_entry *entry = dev_id;
1558	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1559	struct iwl_trans *trans = trans_pcie->trans;
 
1560
1561	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1562
1563	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1564		return IRQ_NONE;
1565
 
 
 
 
 
 
 
 
 
1566	lock_map_acquire(&trans->sync_cmd_lockdep_map);
 
1567
1568	local_bh_disable();
1569	iwl_pcie_rx_handle(trans, entry->entry);
 
1570	local_bh_enable();
1571
1572	iwl_pcie_clear_irq(trans, entry);
1573
1574	lock_map_release(&trans->sync_cmd_lockdep_map);
1575
1576	return IRQ_HANDLED;
1577}
1578
1579/*
1580 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1581 */
1582static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1583{
1584	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1585	int i;
1586
1587	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1588	if (trans->cfg->internal_wimax_coex &&
1589	    !trans->cfg->apmg_not_supported &&
1590	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1591			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1592	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1593			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1594		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1595		iwl_op_mode_wimax_active(trans->op_mode);
1596		wake_up(&trans_pcie->wait_command_queue);
1597		return;
1598	}
1599
1600	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1601		if (!trans_pcie->txq[i])
1602			continue;
1603		del_timer(&trans_pcie->txq[i]->stuck_timer);
1604	}
1605
1606	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1607	 * before we wake up the command caller, to ensure a proper cleanup. */
1608	iwl_trans_fw_error(trans);
1609
1610	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1611	wake_up(&trans_pcie->wait_command_queue);
1612}
1613
1614static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1615{
1616	u32 inta;
1617
1618	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1619
1620	trace_iwlwifi_dev_irq(trans->dev);
1621
1622	/* Discover which interrupts are active/pending */
1623	inta = iwl_read32(trans, CSR_INT);
1624
1625	/* the thread will service interrupts and re-enable them */
1626	return inta;
1627}
1628
1629/* a device (PCI-E) page is 4096 bytes long */
1630#define ICT_SHIFT	12
1631#define ICT_SIZE	(1 << ICT_SHIFT)
1632#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1633
1634/* interrupt handler using ict table, with this interrupt driver will
1635 * stop using INTA register to get device's interrupt, reading this register
1636 * is expensive, device will write interrupts in ICT dram table, increment
1637 * index then will fire interrupt to driver, driver will OR all ICT table
1638 * entries from current index up to table entry with 0 value. the result is
1639 * the interrupt we need to service, driver will set the entries back to 0 and
1640 * set index.
1641 */
1642static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1643{
1644	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1645	u32 inta;
1646	u32 val = 0;
1647	u32 read;
1648
1649	trace_iwlwifi_dev_irq(trans->dev);
1650
1651	/* Ignore interrupt if there's nothing in NIC to service.
1652	 * This may be due to IRQ shared with another device,
1653	 * or due to sporadic interrupts thrown from our NIC. */
1654	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1655	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1656	if (!read)
1657		return 0;
1658
1659	/*
1660	 * Collect all entries up to the first 0, starting from ict_index;
1661	 * note we already read at ict_index.
1662	 */
1663	do {
1664		val |= read;
1665		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1666				trans_pcie->ict_index, read);
1667		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1668		trans_pcie->ict_index =
1669			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1670
1671		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1672		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1673					   read);
1674	} while (read);
1675
1676	/* We should not get this value, just ignore it. */
1677	if (val == 0xffffffff)
1678		val = 0;
1679
1680	/*
1681	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1682	 * (bit 15 before shifting it to 31) to clear when using interrupt
1683	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1684	 * so we use them to decide on the real state of the Rx bit.
1685	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1686	 */
1687	if (val & 0xC0000)
1688		val |= 0x8000;
1689
1690	inta = (0xff & val) | ((0xff00 & val) << 16);
1691	return inta;
1692}
1693
1694void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1695{
1696	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1697	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1698	bool hw_rfkill, prev, report;
1699
1700	mutex_lock(&trans_pcie->mutex);
1701	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1702	hw_rfkill = iwl_is_rfkill_set(trans);
1703	if (hw_rfkill) {
1704		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1705		set_bit(STATUS_RFKILL_HW, &trans->status);
1706	}
1707	if (trans_pcie->opmode_down)
1708		report = hw_rfkill;
1709	else
1710		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1711
1712	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1713		 hw_rfkill ? "disable radio" : "enable radio");
1714
1715	isr_stats->rfkill++;
1716
1717	if (prev != report)
1718		iwl_trans_pcie_rf_kill(trans, report);
1719	mutex_unlock(&trans_pcie->mutex);
1720
1721	if (hw_rfkill) {
1722		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1723				       &trans->status))
1724			IWL_DEBUG_RF_KILL(trans,
1725					  "Rfkill while SYNC HCMD in flight\n");
1726		wake_up(&trans_pcie->wait_command_queue);
1727	} else {
1728		clear_bit(STATUS_RFKILL_HW, &trans->status);
1729		if (trans_pcie->opmode_down)
1730			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1731	}
1732}
1733
1734irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1735{
1736	struct iwl_trans *trans = dev_id;
1737	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1738	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1739	u32 inta = 0;
1740	u32 handled = 0;
 
1741
1742	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1743
1744	spin_lock(&trans_pcie->irq_lock);
1745
1746	/* dram interrupt table not set yet,
1747	 * use legacy interrupt.
1748	 */
1749	if (likely(trans_pcie->use_ict))
1750		inta = iwl_pcie_int_cause_ict(trans);
1751	else
1752		inta = iwl_pcie_int_cause_non_ict(trans);
1753
1754	if (iwl_have_debug_level(IWL_DL_ISR)) {
1755		IWL_DEBUG_ISR(trans,
1756			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1757			      inta, trans_pcie->inta_mask,
1758			      iwl_read32(trans, CSR_INT_MASK),
1759			      iwl_read32(trans, CSR_FH_INT_STATUS));
1760		if (inta & (~trans_pcie->inta_mask))
1761			IWL_DEBUG_ISR(trans,
1762				      "We got a masked interrupt (0x%08x)\n",
1763				      inta & (~trans_pcie->inta_mask));
1764	}
1765
1766	inta &= trans_pcie->inta_mask;
1767
1768	/*
1769	 * Ignore interrupt if there's nothing in NIC to service.
1770	 * This may be due to IRQ shared with another device,
1771	 * or due to sporadic interrupts thrown from our NIC.
1772	 */
1773	if (unlikely(!inta)) {
1774		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1775		/*
1776		 * Re-enable interrupts here since we don't
1777		 * have anything to service
1778		 */
1779		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1780			_iwl_enable_interrupts(trans);
1781		spin_unlock(&trans_pcie->irq_lock);
1782		lock_map_release(&trans->sync_cmd_lockdep_map);
1783		return IRQ_NONE;
1784	}
1785
1786	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1787		/*
1788		 * Hardware disappeared. It might have
1789		 * already raised an interrupt.
1790		 */
1791		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1792		spin_unlock(&trans_pcie->irq_lock);
1793		goto out;
1794	}
1795
1796	/* Ack/clear/reset pending uCode interrupts.
1797	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1798	 */
1799	/* There is a hardware bug in the interrupt mask function that some
1800	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1801	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1802	 * ICT interrupt handling mechanism has another bug that might cause
1803	 * these unmasked interrupts fail to be detected. We workaround the
1804	 * hardware bugs here by ACKing all the possible interrupts so that
1805	 * interrupt coalescing can still be achieved.
1806	 */
1807	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1808
1809	if (iwl_have_debug_level(IWL_DL_ISR))
1810		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1811			      inta, iwl_read32(trans, CSR_INT_MASK));
1812
1813	spin_unlock(&trans_pcie->irq_lock);
1814
1815	/* Now service all interrupt bits discovered above. */
1816	if (inta & CSR_INT_BIT_HW_ERR) {
1817		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1818
1819		/* Tell the device to stop sending interrupts */
1820		iwl_disable_interrupts(trans);
1821
1822		isr_stats->hw++;
1823		iwl_pcie_irq_handle_error(trans);
1824
1825		handled |= CSR_INT_BIT_HW_ERR;
1826
1827		goto out;
1828	}
1829
1830	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1831	if (inta & CSR_INT_BIT_SCD) {
1832		IWL_DEBUG_ISR(trans,
1833			      "Scheduler finished to transmit the frame/frames.\n");
1834		isr_stats->sch++;
1835	}
1836
1837	/* Alive notification via Rx interrupt will do the real work */
1838	if (inta & CSR_INT_BIT_ALIVE) {
1839		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1840		isr_stats->alive++;
1841		if (trans->trans_cfg->gen2) {
1842			/*
1843			 * We can restock, since firmware configured
1844			 * the RFH
1845			 */
1846			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1847		}
1848
1849		handled |= CSR_INT_BIT_ALIVE;
1850	}
1851
1852	/* Safely ignore these bits for debug checks below */
1853	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1854
1855	/* HW RF KILL switch toggled */
1856	if (inta & CSR_INT_BIT_RF_KILL) {
1857		iwl_pcie_handle_rfkill_irq(trans);
1858		handled |= CSR_INT_BIT_RF_KILL;
1859	}
1860
1861	/* Chip got too hot and stopped itself */
1862	if (inta & CSR_INT_BIT_CT_KILL) {
1863		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1864		isr_stats->ctkill++;
1865		handled |= CSR_INT_BIT_CT_KILL;
1866	}
1867
1868	/* Error detected by uCode */
1869	if (inta & CSR_INT_BIT_SW_ERR) {
1870		IWL_ERR(trans, "Microcode SW error detected. "
1871			" Restarting 0x%X.\n", inta);
1872		isr_stats->sw++;
1873		iwl_pcie_irq_handle_error(trans);
1874		handled |= CSR_INT_BIT_SW_ERR;
1875	}
1876
1877	/* uCode wakes up after power-down sleep */
1878	if (inta & CSR_INT_BIT_WAKEUP) {
1879		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1880		iwl_pcie_rxq_check_wrptr(trans);
1881		iwl_pcie_txq_check_wrptrs(trans);
1882
1883		isr_stats->wakeup++;
1884
1885		handled |= CSR_INT_BIT_WAKEUP;
1886	}
1887
1888	/* All uCode command responses, including Tx command responses,
1889	 * Rx "responses" (frame-received notification), and other
1890	 * notifications from uCode come through here*/
1891	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1892		    CSR_INT_BIT_RX_PERIODIC)) {
1893		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1894		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1895			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1896			iwl_write32(trans, CSR_FH_INT_STATUS,
1897					CSR_FH_INT_RX_MASK);
1898		}
1899		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1900			handled |= CSR_INT_BIT_RX_PERIODIC;
1901			iwl_write32(trans,
1902				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1903		}
1904		/* Sending RX interrupt require many steps to be done in the
1905		 * the device:
1906		 * 1- write interrupt to current index in ICT table.
1907		 * 2- dma RX frame.
1908		 * 3- update RX shared data to indicate last write index.
1909		 * 4- send interrupt.
1910		 * This could lead to RX race, driver could receive RX interrupt
1911		 * but the shared data changes does not reflect this;
1912		 * periodic interrupt will detect any dangling Rx activity.
1913		 */
1914
1915		/* Disable periodic interrupt; we use it as just a one-shot. */
1916		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1917			    CSR_INT_PERIODIC_DIS);
1918
1919		/*
1920		 * Enable periodic interrupt in 8 msec only if we received
1921		 * real RX interrupt (instead of just periodic int), to catch
1922		 * any dangling Rx interrupt.  If it was just the periodic
1923		 * interrupt, there was no dangling Rx activity, and no need
1924		 * to extend the periodic interrupt; one-shot is enough.
1925		 */
1926		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1927			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1928				   CSR_INT_PERIODIC_ENA);
1929
1930		isr_stats->rx++;
1931
1932		local_bh_disable();
1933		iwl_pcie_rx_handle(trans, 0);
 
 
 
1934		local_bh_enable();
1935	}
1936
1937	/* This "Tx" DMA channel is used only for loading uCode */
1938	if (inta & CSR_INT_BIT_FH_TX) {
1939		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1940		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1941		isr_stats->tx++;
1942		handled |= CSR_INT_BIT_FH_TX;
1943		/* Wake up uCode load routine, now that load is complete */
1944		trans_pcie->ucode_write_complete = true;
1945		wake_up(&trans_pcie->ucode_write_waitq);
 
 
 
 
 
1946	}
1947
1948	if (inta & ~handled) {
1949		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1950		isr_stats->unhandled++;
1951	}
1952
1953	if (inta & ~(trans_pcie->inta_mask)) {
1954		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1955			 inta & ~trans_pcie->inta_mask);
1956	}
1957
1958	spin_lock(&trans_pcie->irq_lock);
1959	/* only Re-enable all interrupt if disabled by irq */
1960	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1961		_iwl_enable_interrupts(trans);
1962	/* we are loading the firmware, enable FH_TX interrupt only */
1963	else if (handled & CSR_INT_BIT_FH_TX)
1964		iwl_enable_fw_load_int(trans);
1965	/* Re-enable RF_KILL if it occurred */
1966	else if (handled & CSR_INT_BIT_RF_KILL)
1967		iwl_enable_rfkill_int(trans);
1968	/* Re-enable the ALIVE / Rx interrupt if it occurred */
1969	else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
1970		iwl_enable_fw_load_int_ctx_info(trans);
1971	spin_unlock(&trans_pcie->irq_lock);
 
 
1972
1973out:
1974	lock_map_release(&trans->sync_cmd_lockdep_map);
1975	return IRQ_HANDLED;
1976}
1977
1978/******************************************************************************
1979 *
1980 * ICT functions
1981 *
1982 ******************************************************************************/
1983
1984/* Free dram table */
1985void iwl_pcie_free_ict(struct iwl_trans *trans)
1986{
1987	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1988
1989	if (trans_pcie->ict_tbl) {
1990		dma_free_coherent(trans->dev, ICT_SIZE,
1991				  trans_pcie->ict_tbl,
1992				  trans_pcie->ict_tbl_dma);
1993		trans_pcie->ict_tbl = NULL;
1994		trans_pcie->ict_tbl_dma = 0;
1995	}
1996}
1997
1998/*
1999 * allocate dram shared table, it is an aligned memory
2000 * block of ICT_SIZE.
2001 * also reset all data related to ICT table interrupt.
2002 */
2003int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2004{
2005	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2006
2007	trans_pcie->ict_tbl =
2008		dma_alloc_coherent(trans->dev, ICT_SIZE,
2009				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2010	if (!trans_pcie->ict_tbl)
2011		return -ENOMEM;
2012
2013	/* just an API sanity check ... it is guaranteed to be aligned */
2014	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2015		iwl_pcie_free_ict(trans);
2016		return -EINVAL;
2017	}
2018
2019	return 0;
2020}
2021
2022/* Device is going up inform it about using ICT interrupt table,
2023 * also we need to tell the driver to start using ICT interrupt.
2024 */
2025void iwl_pcie_reset_ict(struct iwl_trans *trans)
2026{
2027	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2028	u32 val;
2029
2030	if (!trans_pcie->ict_tbl)
2031		return;
2032
2033	spin_lock(&trans_pcie->irq_lock);
2034	_iwl_disable_interrupts(trans);
2035
2036	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2037
2038	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2039
2040	val |= CSR_DRAM_INT_TBL_ENABLE |
2041	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2042	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2043
2044	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2045
2046	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2047	trans_pcie->use_ict = true;
2048	trans_pcie->ict_index = 0;
2049	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2050	_iwl_enable_interrupts(trans);
2051	spin_unlock(&trans_pcie->irq_lock);
2052}
2053
2054/* Device is going down disable ict interrupt usage */
2055void iwl_pcie_disable_ict(struct iwl_trans *trans)
2056{
2057	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2058
2059	spin_lock(&trans_pcie->irq_lock);
2060	trans_pcie->use_ict = false;
2061	spin_unlock(&trans_pcie->irq_lock);
2062}
2063
2064irqreturn_t iwl_pcie_isr(int irq, void *data)
2065{
2066	struct iwl_trans *trans = data;
2067
2068	if (!trans)
2069		return IRQ_NONE;
2070
2071	/* Disable (but don't clear!) interrupts here to avoid
2072	 * back-to-back ISRs and sporadic interrupts from our NIC.
2073	 * If we have something to service, the tasklet will re-enable ints.
2074	 * If we *don't* have something, we'll re-enable before leaving here.
2075	 */
2076	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2077
2078	return IRQ_WAKE_THREAD;
2079}
2080
2081irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2082{
2083	return IRQ_WAKE_THREAD;
2084}
2085
2086irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2087{
2088	struct msix_entry *entry = dev_id;
2089	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2090	struct iwl_trans *trans = trans_pcie->trans;
2091	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
 
2092	u32 inta_fh, inta_hw;
 
 
 
 
 
 
 
 
2093
2094	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2095
2096	spin_lock(&trans_pcie->irq_lock);
2097	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2098	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2099	/*
2100	 * Clear causes registers to avoid being handling the same cause.
2101	 */
2102	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2103	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2104	spin_unlock(&trans_pcie->irq_lock);
2105
2106	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2107
2108	if (unlikely(!(inta_fh | inta_hw))) {
2109		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2110		lock_map_release(&trans->sync_cmd_lockdep_map);
2111		return IRQ_NONE;
2112	}
2113
2114	if (iwl_have_debug_level(IWL_DL_ISR)) {
2115		IWL_DEBUG_ISR(trans,
2116			      "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2117			      inta_fh, trans_pcie->fh_mask,
2118			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2119		if (inta_fh & ~trans_pcie->fh_mask)
2120			IWL_DEBUG_ISR(trans,
2121				      "We got a masked interrupt (0x%08x)\n",
2122				      inta_fh & ~trans_pcie->fh_mask);
2123	}
2124
2125	inta_fh &= trans_pcie->fh_mask;
2126
2127	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2128	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2129		local_bh_disable();
2130		iwl_pcie_rx_handle(trans, 0);
 
 
 
2131		local_bh_enable();
2132	}
2133
2134	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2135	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2136		local_bh_disable();
2137		iwl_pcie_rx_handle(trans, 1);
 
 
 
2138		local_bh_enable();
2139	}
2140
2141	/* This "Tx" DMA channel is used only for loading uCode */
2142	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
 
 
 
 
 
 
 
 
 
 
2143		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2144		isr_stats->tx++;
2145		/*
2146		 * Wake up uCode load routine,
2147		 * now that load is complete
2148		 */
2149		trans_pcie->ucode_write_complete = true;
2150		wake_up(&trans_pcie->ucode_write_waitq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151	}
2152
2153	/* Error detected by uCode */
2154	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2155	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2156	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2157		IWL_ERR(trans,
2158			"Microcode SW error detected. Restarting 0x%X.\n",
2159			inta_fh);
2160		isr_stats->sw++;
2161		iwl_pcie_irq_handle_error(trans);
 
 
 
 
 
 
 
 
 
2162	}
2163
2164	/* After checking FH register check HW register */
2165	if (iwl_have_debug_level(IWL_DL_ISR)) {
2166		IWL_DEBUG_ISR(trans,
2167			      "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2168			      inta_hw, trans_pcie->hw_mask,
2169			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2170		if (inta_hw & ~trans_pcie->hw_mask)
2171			IWL_DEBUG_ISR(trans,
2172				      "We got a masked interrupt 0x%08x\n",
2173				      inta_hw & ~trans_pcie->hw_mask);
2174	}
2175
2176	inta_hw &= trans_pcie->hw_mask;
2177
2178	/* Alive notification via Rx interrupt will do the real work */
2179	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2180		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2181		isr_stats->alive++;
2182		if (trans->trans_cfg->gen2) {
2183			/* We can restock, since firmware configured the RFH */
2184			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2185		}
2186	}
2187
2188	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22560 &&
2189	    inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2190		/* Reflect IML transfer status */
2191		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2192
2193		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2194		if (res == IWL_IMAGE_RESP_FAIL) {
2195			isr_stats->sw++;
2196			iwl_pcie_irq_handle_error(trans);
2197		}
2198	} else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2199		u32 sleep_notif =
2200			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2201		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2202		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2203			IWL_DEBUG_ISR(trans,
2204				      "Sx interrupt: sleep notification = 0x%x\n",
2205				      sleep_notif);
2206			trans_pcie->sx_complete = true;
2207			wake_up(&trans_pcie->sx_waitq);
2208		} else {
2209			/* uCode wakes up after power-down sleep */
2210			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2211			iwl_pcie_rxq_check_wrptr(trans);
2212			iwl_pcie_txq_check_wrptrs(trans);
2213
2214			isr_stats->wakeup++;
2215		}
2216	}
2217
2218	if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2219		/* Reflect IML transfer status */
2220		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2221
2222		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2223		if (res == IWL_IMAGE_RESP_FAIL) {
2224			isr_stats->sw++;
2225			iwl_pcie_irq_handle_error(trans);
2226		}
2227	}
2228
2229	/* Chip got too hot and stopped itself */
2230	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2231		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2232		isr_stats->ctkill++;
2233	}
2234
2235	/* HW RF KILL switch toggled */
2236	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2237		iwl_pcie_handle_rfkill_irq(trans);
2238
2239	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2240		IWL_ERR(trans,
2241			"Hardware error detected. Restarting.\n");
2242
2243		isr_stats->hw++;
2244		trans->dbg.hw_error = true;
2245		iwl_pcie_irq_handle_error(trans);
2246	}
2247
2248	iwl_pcie_clear_irq(trans, entry);
 
 
 
 
 
 
 
2249
2250	lock_map_release(&trans->sync_cmd_lockdep_map);
2251
2252	return IRQ_HANDLED;
2253}