Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6 *
   7 * Permission to use, copy, modify, and distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 *
  19 */
  20
  21/***********************\
  22* PHY related functions *
  23\***********************/
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/delay.h>
  28#include <linux/slab.h>
  29#include <linux/sort.h>
  30#include <asm/unaligned.h>
  31
  32#include "ath5k.h"
  33#include "reg.h"
  34#include "rfbuffer.h"
  35#include "rfgain.h"
  36#include "../regd.h"
  37
  38
  39/**
  40 * DOC: PHY related functions
  41 *
  42 * Here we handle the low-level functions related to baseband
  43 * and analog frontend (RF) parts. This is by far the most complex
  44 * part of the hw code so make sure you know what you are doing.
  45 *
  46 * Here is a list of what this is all about:
  47 *
  48 * - Channel setting/switching
  49 *
  50 * - Automatic Gain Control (AGC) calibration
  51 *
  52 * - Noise Floor calibration
  53 *
  54 * - I/Q imbalance calibration (QAM correction)
  55 *
  56 * - Calibration due to thermal changes (gain_F)
  57 *
  58 * - Spur noise mitigation
  59 *
  60 * - RF/PHY initialization for the various operating modes and bwmodes
  61 *
  62 * - Antenna control
  63 *
  64 * - TX power control per channel/rate/packet type
  65 *
  66 * Also have in mind we never got documentation for most of these
  67 * functions, what we have comes mostly from Atheros's code, reverse
  68 * engineering and patent docs/presentations etc.
  69 */
  70
  71
  72/******************\
  73* Helper functions *
  74\******************/
  75
  76/**
  77 * ath5k_hw_radio_revision() - Get the PHY Chip revision
  78 * @ah: The &struct ath5k_hw
  79 * @band: One of enum nl80211_band
  80 *
  81 * Returns the revision number of a 2GHz, 5GHz or single chip
  82 * radio.
  83 */
  84u16
  85ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
  86{
  87	unsigned int i;
  88	u32 srev;
  89	u16 ret;
  90
  91	/*
  92	 * Set the radio chip access register
  93	 */
  94	switch (band) {
  95	case NL80211_BAND_2GHZ:
  96		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  97		break;
  98	case NL80211_BAND_5GHZ:
  99		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 100		break;
 101	default:
 102		return 0;
 103	}
 104
 105	usleep_range(2000, 2500);
 106
 107	/* ...wait until PHY is ready and read the selected radio revision */
 108	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 109
 110	for (i = 0; i < 8; i++)
 111		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 112
 113	if (ah->ah_version == AR5K_AR5210) {
 114		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 115		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 116	} else {
 117		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 118		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 119				((srev & 0x0f) << 4), 8);
 120	}
 121
 122	/* Reset to the 5GHz mode */
 123	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 124
 125	return ret;
 126}
 127
 128/**
 129 * ath5k_channel_ok() - Check if a channel is supported by the hw
 130 * @ah: The &struct ath5k_hw
 131 * @channel: The &struct ieee80211_channel
 132 *
 133 * Note: We don't do any regulatory domain checks here, it's just
 134 * a sanity check.
 135 */
 136bool
 137ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 138{
 139	u16 freq = channel->center_freq;
 140
 141	/* Check if the channel is in our supported range */
 142	if (channel->band == NL80211_BAND_2GHZ) {
 143		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 144		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 145			return true;
 146	} else if (channel->band == NL80211_BAND_5GHZ)
 147		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 148		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 149			return true;
 150
 151	return false;
 152}
 153
 154/**
 155 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 156 * @ah: The &struct ath5k_hw
 157 * @channel: The &struct ieee80211_channel
 158 */
 159bool
 160ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 161				struct ieee80211_channel *channel)
 162{
 163	u8 refclk_freq;
 164
 165	if ((ah->ah_radio == AR5K_RF5112) ||
 166	(ah->ah_radio == AR5K_RF5413) ||
 167	(ah->ah_radio == AR5K_RF2413) ||
 168	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 169		refclk_freq = 40;
 170	else
 171		refclk_freq = 32;
 172
 173	if ((channel->center_freq % refclk_freq != 0) &&
 174	((channel->center_freq % refclk_freq < 10) ||
 175	(channel->center_freq % refclk_freq > 22)))
 176		return true;
 177	else
 178		return false;
 179}
 180
 181/**
 182 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 183 * @ah: The &struct ath5k_hw
 184 * @rf_regs: The struct ath5k_rf_reg
 185 * @val: New value
 186 * @reg_id: RF register ID
 187 * @set: Indicate we need to swap data
 188 *
 189 * This is an internal function used to modify RF Banks before
 190 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 191 * infos.
 192 */
 193static unsigned int
 194ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 195					u32 val, u8 reg_id, bool set)
 196{
 197	const struct ath5k_rf_reg *rfreg = NULL;
 198	u8 offset, bank, num_bits, col, position;
 199	u16 entry;
 200	u32 mask, data, last_bit, bits_shifted, first_bit;
 201	u32 *rfb;
 202	s32 bits_left;
 203	int i;
 204
 205	data = 0;
 206	rfb = ah->ah_rf_banks;
 207
 208	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 209		if (rf_regs[i].index == reg_id) {
 210			rfreg = &rf_regs[i];
 211			break;
 212		}
 213	}
 214
 215	if (rfb == NULL || rfreg == NULL) {
 216		ATH5K_PRINTF("Rf register not found!\n");
 217		/* should not happen */
 218		return 0;
 219	}
 220
 221	bank = rfreg->bank;
 222	num_bits = rfreg->field.len;
 223	first_bit = rfreg->field.pos;
 224	col = rfreg->field.col;
 225
 226	/* first_bit is an offset from bank's
 227	 * start. Since we have all banks on
 228	 * the same array, we use this offset
 229	 * to mark each bank's start */
 230	offset = ah->ah_offset[bank];
 231
 232	/* Boundary check */
 233	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 234		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 235		return 0;
 236	}
 237
 238	entry = ((first_bit - 1) / 8) + offset;
 239	position = (first_bit - 1) % 8;
 240
 241	if (set)
 242		data = ath5k_hw_bitswap(val, num_bits);
 243
 244	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 245	     position = 0, entry++) {
 246
 247		last_bit = (position + bits_left > 8) ? 8 :
 248					position + bits_left;
 249
 250		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 251								(col * 8);
 252
 253		if (set) {
 254			rfb[entry] &= ~mask;
 255			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 256			data >>= (8 - position);
 257		} else {
 258			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 259				<< bits_shifted;
 260			bits_shifted += last_bit - position;
 261		}
 262
 263		bits_left -= 8 - position;
 264	}
 265
 266	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 267
 268	return data;
 269}
 270
 271/**
 272 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 273 * @ah: the &struct ath5k_hw
 274 * @channel: the currently set channel upon reset
 275 *
 276 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 277 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 278 *
 279 * Since delta slope is floating point we split it on its exponent and
 280 * mantissa and provide these values on hw.
 281 *
 282 * For more infos i think this patent is related
 283 * "http://www.freepatentsonline.com/7184495.html"
 284 */
 285static inline int
 286ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 287				struct ieee80211_channel *channel)
 288{
 289	/* Get exponent and mantissa and set it */
 290	u32 coef_scaled, coef_exp, coef_man,
 291		ds_coef_exp, ds_coef_man, clock;
 292
 293	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 294		(channel->hw_value == AR5K_MODE_11B));
 295
 296	/* Get coefficient
 297	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 298	 * we scale coef by shifting clock value by 24 for
 299	 * better precision since we use integers */
 300	switch (ah->ah_bwmode) {
 301	case AR5K_BWMODE_40MHZ:
 302		clock = 40 * 2;
 303		break;
 304	case AR5K_BWMODE_10MHZ:
 305		clock = 40 / 2;
 306		break;
 307	case AR5K_BWMODE_5MHZ:
 308		clock = 40 / 4;
 309		break;
 310	default:
 311		clock = 40;
 312		break;
 313	}
 314	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 315
 316	/* Get exponent
 317	 * ALGO: coef_exp = 14 - highest set bit position */
 318	coef_exp = ilog2(coef_scaled);
 319
 320	/* Doesn't make sense if it's zero*/
 321	if (!coef_scaled || !coef_exp)
 322		return -EINVAL;
 323
 324	/* Note: we've shifted coef_scaled by 24 */
 325	coef_exp = 14 - (coef_exp - 24);
 326
 327
 328	/* Get mantissa (significant digits)
 329	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 330	coef_man = coef_scaled +
 331		(1 << (24 - coef_exp - 1));
 332
 333	/* Calculate delta slope coefficient exponent
 334	 * and mantissa (remove scaling) and set them on hw */
 335	ds_coef_man = coef_man >> (24 - coef_exp);
 336	ds_coef_exp = coef_exp - 16;
 337
 338	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 339		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 340	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 341		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 342
 343	return 0;
 344}
 345
 346/**
 347 * ath5k_hw_phy_disable() - Disable PHY
 348 * @ah: The &struct ath5k_hw
 349 */
 350int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 351{
 352	/*Just a try M.F.*/
 353	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 354
 355	return 0;
 356}
 357
 358/**
 359 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 360 * @ah: The &struct ath5k_hw
 361 * @channel: The &struct ieee80211_channel
 362 */
 363static void
 364ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 365			struct ieee80211_channel *channel)
 366{
 367	/*
 368	 * On 5211+ read activation -> rx delay
 369	 * and use it (100ns steps).
 370	 */
 371	if (ah->ah_version != AR5K_AR5210) {
 372		u32 delay;
 373		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 374			AR5K_PHY_RX_DELAY_M;
 375		delay = (channel->hw_value == AR5K_MODE_11B) ?
 376			((delay << 2) / 22) : (delay / 10);
 377		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 378			delay = delay << 1;
 379		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 380			delay = delay << 2;
 381		/* XXX: /2 on turbo ? Let's be safe
 382		 * for now */
 383		usleep_range(100 + delay, 100 + (2 * delay));
 384	} else {
 385		usleep_range(1000, 1500);
 386	}
 387}
 388
 389
 390/**********************\
 391* RF Gain optimization *
 392\**********************/
 393
 394/**
 395 * DOC: RF Gain optimization
 396 *
 397 * This code is used to optimize RF gain on different environments
 398 * (temperature mostly) based on feedback from a power detector.
 399 *
 400 * It's only used on RF5111 and RF5112, later RF chips seem to have
 401 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 402 * no gain optimization ladder-.
 403 *
 404 * For more infos check out this patent doc
 405 * "http://www.freepatentsonline.com/7400691.html"
 406 *
 407 * This paper describes power drops as seen on the receiver due to
 408 * probe packets
 409 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 410 * %20of%20Power%20Control.pdf"
 411 *
 412 * And this is the MadWiFi bug entry related to the above
 413 * "http://madwifi-project.org/ticket/1659"
 414 * with various measurements and diagrams
 415 */
 416
 417/**
 418 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 419 * @ah: The &struct ath5k_hw
 420 */
 421int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 422{
 423	/* Initialize the gain optimization values */
 424	switch (ah->ah_radio) {
 425	case AR5K_RF5111:
 426		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 427		ah->ah_gain.g_low = 20;
 428		ah->ah_gain.g_high = 35;
 429		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 430		break;
 431	case AR5K_RF5112:
 432		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 433		ah->ah_gain.g_low = 20;
 434		ah->ah_gain.g_high = 85;
 435		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 436		break;
 437	default:
 438		return -EINVAL;
 439	}
 440
 441	return 0;
 442}
 443
 444/**
 445 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 446 * @ah: The &struct ath5k_hw
 447 *
 448 * Schedules a gain probe check on the next transmitted packet.
 449 * That means our next packet is going to be sent with lower
 450 * tx power and a Peak to Average Power Detector (PAPD) will try
 451 * to measure the gain.
 452 *
 453 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 454 * just after we enable the probe so that we don't mess with
 455 * standard traffic.
 456 */
 457static void
 458ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 459{
 460
 461	/* Skip if gain calibration is inactive or
 462	 * we already handle a probe request */
 463	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 464		return;
 465
 466	/* Send the packet with 2dB below max power as
 467	 * patent doc suggest */
 468	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 469			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 470			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 471
 472	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 473
 474}
 475
 476/**
 477 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 478 * @ah: The &struct ath5k_hw
 479 *
 480 * Calculate Gain_F measurement correction
 481 * based on the current step for RF5112 rev. 2
 482 */
 483static u32
 484ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 485{
 486	u32 mix, step;
 487	const struct ath5k_gain_opt *go;
 488	const struct ath5k_gain_opt_step *g_step;
 489	const struct ath5k_rf_reg *rf_regs;
 490
 491	/* Only RF5112 Rev. 2 supports it */
 492	if ((ah->ah_radio != AR5K_RF5112) ||
 493	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 494		return 0;
 495
 496	go = &rfgain_opt_5112;
 497	rf_regs = rf_regs_5112a;
 498	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 499
 500	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 501
 502	if (ah->ah_rf_banks == NULL)
 503		return 0;
 504
 505	ah->ah_gain.g_f_corr = 0;
 506
 507	/* No VGA (Variable Gain Amplifier) override, skip */
 508	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 509		return 0;
 510
 511	/* Mix gain stepping */
 512	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 513
 514	/* Mix gain override */
 515	mix = g_step->gos_param[0];
 516
 517	switch (mix) {
 518	case 3:
 519		ah->ah_gain.g_f_corr = step * 2;
 520		break;
 521	case 2:
 522		ah->ah_gain.g_f_corr = (step - 5) * 2;
 523		break;
 524	case 1:
 525		ah->ah_gain.g_f_corr = step;
 526		break;
 527	default:
 528		ah->ah_gain.g_f_corr = 0;
 529		break;
 530	}
 531
 532	return ah->ah_gain.g_f_corr;
 533}
 534
 535/**
 536 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 537 * @ah: The &struct ath5k_hw
 538 *
 539 * Check if current gain_F measurement is in the range of our
 540 * power detector windows. If we get a measurement outside range
 541 * we know it's not accurate (detectors can't measure anything outside
 542 * their detection window) so we must ignore it.
 543 *
 544 * Returns true if readback was O.K. or false on failure
 545 */
 546static bool
 547ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 548{
 549	const struct ath5k_rf_reg *rf_regs;
 550	u32 step, mix_ovr, level[4];
 551
 552	if (ah->ah_rf_banks == NULL)
 553		return false;
 554
 555	if (ah->ah_radio == AR5K_RF5111) {
 556
 557		rf_regs = rf_regs_5111;
 558		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 559
 560		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 561			false);
 562
 563		level[0] = 0;
 564		level[1] = (step == 63) ? 50 : step + 4;
 565		level[2] = (step != 63) ? 64 : level[0];
 566		level[3] = level[2] + 50;
 567
 568		ah->ah_gain.g_high = level[3] -
 569			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 570		ah->ah_gain.g_low = level[0] +
 571			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 572	} else {
 573
 574		rf_regs = rf_regs_5112;
 575		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 576
 577		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 578			false);
 579
 580		level[0] = level[2] = 0;
 581
 582		if (mix_ovr == 1) {
 583			level[1] = level[3] = 83;
 584		} else {
 585			level[1] = level[3] = 107;
 586			ah->ah_gain.g_high = 55;
 587		}
 588	}
 589
 590	return (ah->ah_gain.g_current >= level[0] &&
 591			ah->ah_gain.g_current <= level[1]) ||
 592		(ah->ah_gain.g_current >= level[2] &&
 593			ah->ah_gain.g_current <= level[3]);
 594}
 595
 596/**
 597 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 598 * @ah: The &struct ath5k_hw
 599 *
 600 * Choose the right target gain based on current gain
 601 * and RF gain optimization ladder
 602 */
 603static s8
 604ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 605{
 606	const struct ath5k_gain_opt *go;
 607	const struct ath5k_gain_opt_step *g_step;
 608	int ret = 0;
 609
 610	switch (ah->ah_radio) {
 611	case AR5K_RF5111:
 612		go = &rfgain_opt_5111;
 613		break;
 614	case AR5K_RF5112:
 615		go = &rfgain_opt_5112;
 616		break;
 617	default:
 618		return 0;
 619	}
 620
 621	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 622
 623	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 624
 625		/* Reached maximum */
 626		if (ah->ah_gain.g_step_idx == 0)
 627			return -1;
 628
 629		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 630				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 631				ah->ah_gain.g_step_idx > 0;
 632				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 633			ah->ah_gain.g_target -= 2 *
 634			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 635			    g_step->gos_gain);
 636
 637		ret = 1;
 638		goto done;
 639	}
 640
 641	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 642
 643		/* Reached minimum */
 644		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 645			return -2;
 646
 647		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 648				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 649				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 650				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 651			ah->ah_gain.g_target -= 2 *
 652			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 653			    g_step->gos_gain);
 654
 655		ret = 2;
 656		goto done;
 657	}
 658
 659done:
 660	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 661		"ret %d, gain step %u, current gain %u, target gain %u\n",
 662		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 663		ah->ah_gain.g_target);
 664
 665	return ret;
 666}
 667
 668/**
 669 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 670 * @ah: The &struct ath5k_hw
 671 *
 672 * Main callback for thermal RF gain calibration engine
 673 * Check for a new gain reading and schedule an adjustment
 674 * if needed.
 675 *
 676 * Returns one of enum ath5k_rfgain codes
 677 */
 678enum ath5k_rfgain
 679ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 680{
 681	u32 data, type;
 682	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 683
 684	if (ah->ah_rf_banks == NULL ||
 685	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 686		return AR5K_RFGAIN_INACTIVE;
 687
 688	/* No check requested, either engine is inactive
 689	 * or an adjustment is already requested */
 690	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 691		goto done;
 692
 693	/* Read the PAPD (Peak to Average Power Detector)
 694	 * register */
 695	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 696
 697	/* No probe is scheduled, read gain_F measurement */
 698	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 699		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 700		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 701
 702		/* If tx packet is CCK correct the gain_F measurement
 703		 * by cck ofdm gain delta */
 704		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 705			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 706				ah->ah_gain.g_current +=
 707					ee->ee_cck_ofdm_gain_delta;
 708			else
 709				ah->ah_gain.g_current +=
 710					AR5K_GAIN_CCK_PROBE_CORR;
 711		}
 712
 713		/* Further correct gain_F measurement for
 714		 * RF5112A radios */
 715		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 716			ath5k_hw_rf_gainf_corr(ah);
 717			ah->ah_gain.g_current =
 718				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 719				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 720				0;
 721		}
 722
 723		/* Check if measurement is ok and if we need
 724		 * to adjust gain, schedule a gain adjustment,
 725		 * else switch back to the active state */
 726		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 727		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 728		ath5k_hw_rf_gainf_adjust(ah)) {
 729			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 730		} else {
 731			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 732		}
 733	}
 734
 735done:
 736	return ah->ah_gain.g_state;
 737}
 738
 739/**
 740 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 741 * @ah: The &struct ath5k_hw
 742 * @band: One of enum nl80211_band
 743 *
 744 * Write initial RF gain table to set the RF sensitivity.
 745 *
 746 * NOTE: This one works on all RF chips and has nothing to do
 747 * with Gain_F calibration
 748 */
 749static int
 750ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
 751{
 752	const struct ath5k_ini_rfgain *ath5k_rfg;
 753	unsigned int i, size, index;
 754
 755	switch (ah->ah_radio) {
 756	case AR5K_RF5111:
 757		ath5k_rfg = rfgain_5111;
 758		size = ARRAY_SIZE(rfgain_5111);
 759		break;
 760	case AR5K_RF5112:
 761		ath5k_rfg = rfgain_5112;
 762		size = ARRAY_SIZE(rfgain_5112);
 763		break;
 764	case AR5K_RF2413:
 765		ath5k_rfg = rfgain_2413;
 766		size = ARRAY_SIZE(rfgain_2413);
 767		break;
 768	case AR5K_RF2316:
 769		ath5k_rfg = rfgain_2316;
 770		size = ARRAY_SIZE(rfgain_2316);
 771		break;
 772	case AR5K_RF5413:
 773		ath5k_rfg = rfgain_5413;
 774		size = ARRAY_SIZE(rfgain_5413);
 775		break;
 776	case AR5K_RF2317:
 777	case AR5K_RF2425:
 778		ath5k_rfg = rfgain_2425;
 779		size = ARRAY_SIZE(rfgain_2425);
 780		break;
 781	default:
 782		return -EINVAL;
 783	}
 784
 785	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
 786
 787	for (i = 0; i < size; i++) {
 788		AR5K_REG_WAIT(i);
 789		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 790			(u32)ath5k_rfg[i].rfg_register);
 791	}
 792
 793	return 0;
 794}
 795
 796
 797/********************\
 798* RF Registers setup *
 799\********************/
 800
 801/**
 802 * ath5k_hw_rfregs_init() - Initialize RF register settings
 803 * @ah: The &struct ath5k_hw
 804 * @channel: The &struct ieee80211_channel
 805 * @mode: One of enum ath5k_driver_mode
 806 *
 807 * Setup RF registers by writing RF buffer on hw. For
 808 * more infos on this, check out rfbuffer.h
 809 */
 810static int
 811ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 812			struct ieee80211_channel *channel,
 813			unsigned int mode)
 814{
 815	const struct ath5k_rf_reg *rf_regs;
 816	const struct ath5k_ini_rfbuffer *ini_rfb;
 817	const struct ath5k_gain_opt *go = NULL;
 818	const struct ath5k_gain_opt_step *g_step;
 819	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 820	u8 ee_mode = 0;
 821	u32 *rfb;
 822	int i, obdb = -1, bank = -1;
 823
 824	switch (ah->ah_radio) {
 825	case AR5K_RF5111:
 826		rf_regs = rf_regs_5111;
 827		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 828		ini_rfb = rfb_5111;
 829		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 830		go = &rfgain_opt_5111;
 831		break;
 832	case AR5K_RF5112:
 833		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 834			rf_regs = rf_regs_5112a;
 835			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 836			ini_rfb = rfb_5112a;
 837			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 838		} else {
 839			rf_regs = rf_regs_5112;
 840			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 841			ini_rfb = rfb_5112;
 842			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 843		}
 844		go = &rfgain_opt_5112;
 845		break;
 846	case AR5K_RF2413:
 847		rf_regs = rf_regs_2413;
 848		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 849		ini_rfb = rfb_2413;
 850		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 851		break;
 852	case AR5K_RF2316:
 853		rf_regs = rf_regs_2316;
 854		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 855		ini_rfb = rfb_2316;
 856		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 857		break;
 858	case AR5K_RF5413:
 859		rf_regs = rf_regs_5413;
 860		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 861		ini_rfb = rfb_5413;
 862		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 863		break;
 864	case AR5K_RF2317:
 865		rf_regs = rf_regs_2425;
 866		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 867		ini_rfb = rfb_2317;
 868		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 869		break;
 870	case AR5K_RF2425:
 871		rf_regs = rf_regs_2425;
 872		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 873		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 874			ini_rfb = rfb_2425;
 875			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 876		} else {
 877			ini_rfb = rfb_2417;
 878			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 879		}
 880		break;
 881	default:
 882		return -EINVAL;
 883	}
 884
 885	/* If it's the first time we set RF buffer, allocate
 886	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 887	 * we set above */
 888	if (ah->ah_rf_banks == NULL) {
 889		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
 890								sizeof(u32),
 891								GFP_KERNEL);
 892		if (ah->ah_rf_banks == NULL) {
 893			ATH5K_ERR(ah, "out of memory\n");
 894			return -ENOMEM;
 895		}
 896	}
 897
 898	/* Copy values to modify them */
 899	rfb = ah->ah_rf_banks;
 900
 901	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 902		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 903			ATH5K_ERR(ah, "invalid bank\n");
 904			return -EINVAL;
 905		}
 906
 907		/* Bank changed, write down the offset */
 908		if (bank != ini_rfb[i].rfb_bank) {
 909			bank = ini_rfb[i].rfb_bank;
 910			ah->ah_offset[bank] = i;
 911		}
 912
 913		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 914	}
 915
 916	/* Set Output and Driver bias current (OB/DB) */
 917	if (channel->band == NL80211_BAND_2GHZ) {
 918
 919		if (channel->hw_value == AR5K_MODE_11B)
 920			ee_mode = AR5K_EEPROM_MODE_11B;
 921		else
 922			ee_mode = AR5K_EEPROM_MODE_11G;
 923
 924		/* For RF511X/RF211X combination we
 925		 * use b_OB and b_DB parameters stored
 926		 * in eeprom on ee->ee_ob[ee_mode][0]
 927		 *
 928		 * For all other chips we use OB/DB for 2GHz
 929		 * stored in the b/g modal section just like
 930		 * 802.11a on ee->ee_ob[ee_mode][1] */
 931		if ((ah->ah_radio == AR5K_RF5111) ||
 932		(ah->ah_radio == AR5K_RF5112))
 933			obdb = 0;
 934		else
 935			obdb = 1;
 936
 937		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 938						AR5K_RF_OB_2GHZ, true);
 939
 940		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 941						AR5K_RF_DB_2GHZ, true);
 942
 943	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 944	} else if ((channel->band == NL80211_BAND_5GHZ) ||
 945			(ah->ah_radio == AR5K_RF5111)) {
 946
 947		/* For 11a, Turbo and XR we need to choose
 948		 * OB/DB based on frequency range */
 949		ee_mode = AR5K_EEPROM_MODE_11A;
 950		obdb =	 channel->center_freq >= 5725 ? 3 :
 951			(channel->center_freq >= 5500 ? 2 :
 952			(channel->center_freq >= 5260 ? 1 :
 953			 (channel->center_freq > 4000 ? 0 : -1)));
 954
 955		if (obdb < 0)
 956			return -EINVAL;
 957
 958		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 959						AR5K_RF_OB_5GHZ, true);
 960
 961		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 962						AR5K_RF_DB_5GHZ, true);
 963	}
 964
 965	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 966
 967	/* Set turbo mode (N/A on RF5413) */
 968	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 969	(ah->ah_radio != AR5K_RF5413))
 970		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 971
 972	/* Bank Modifications (chip-specific) */
 973	if (ah->ah_radio == AR5K_RF5111) {
 974
 975		/* Set gain_F settings according to current step */
 976		if (channel->hw_value != AR5K_MODE_11B) {
 977
 978			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 979					AR5K_PHY_FRAME_CTL_TX_CLIP,
 980					g_step->gos_param[0]);
 981
 982			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 983							AR5K_RF_PWD_90, true);
 984
 985			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 986							AR5K_RF_PWD_84, true);
 987
 988			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 989						AR5K_RF_RFGAIN_SEL, true);
 990
 991			/* We programmed gain_F parameters, switch back
 992			 * to active state */
 993			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 994
 995		}
 996
 997		/* Bank 6/7 setup */
 998
 999		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1000						AR5K_RF_PWD_XPD, true);
1001
1002		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1003						AR5K_RF_XPD_GAIN, true);
1004
1005		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1006						AR5K_RF_GAIN_I, true);
1007
1008		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1009						AR5K_RF_PLO_SEL, true);
1010
1011		/* Tweak power detectors for half/quarter rate support */
1012		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1013		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1014			u8 wait_i;
1015
1016			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1017						AR5K_RF_WAIT_S, true);
1018
1019			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1020							0x1f : 0x10;
1021
1022			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1023						AR5K_RF_WAIT_I, true);
1024			ath5k_hw_rfb_op(ah, rf_regs, 3,
1025						AR5K_RF_MAX_TIME, true);
1026
1027		}
1028	}
1029
1030	if (ah->ah_radio == AR5K_RF5112) {
1031
1032		/* Set gain_F settings according to current step */
1033		if (channel->hw_value != AR5K_MODE_11B) {
1034
1035			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1036						AR5K_RF_MIXGAIN_OVR, true);
1037
1038			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1039						AR5K_RF_PWD_138, true);
1040
1041			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1042						AR5K_RF_PWD_137, true);
1043
1044			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1045						AR5K_RF_PWD_136, true);
1046
1047			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1048						AR5K_RF_PWD_132, true);
1049
1050			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1051						AR5K_RF_PWD_131, true);
1052
1053			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1054						AR5K_RF_PWD_130, true);
1055
1056			/* We programmed gain_F parameters, switch back
1057			 * to active state */
1058			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1059		}
1060
1061		/* Bank 6/7 setup */
1062
1063		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1064						AR5K_RF_XPD_SEL, true);
1065
1066		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1067			/* Rev. 1 supports only one xpd */
1068			ath5k_hw_rfb_op(ah, rf_regs,
1069						ee->ee_x_gain[ee_mode],
1070						AR5K_RF_XPD_GAIN, true);
1071
1072		} else {
1073			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1074			if (ee->ee_pd_gains[ee_mode] > 1) {
1075				ath5k_hw_rfb_op(ah, rf_regs,
1076						pdg_curve_to_idx[0],
1077						AR5K_RF_PD_GAIN_LO, true);
1078				ath5k_hw_rfb_op(ah, rf_regs,
1079						pdg_curve_to_idx[1],
1080						AR5K_RF_PD_GAIN_HI, true);
1081			} else {
1082				ath5k_hw_rfb_op(ah, rf_regs,
1083						pdg_curve_to_idx[0],
1084						AR5K_RF_PD_GAIN_LO, true);
1085				ath5k_hw_rfb_op(ah, rf_regs,
1086						pdg_curve_to_idx[0],
1087						AR5K_RF_PD_GAIN_HI, true);
1088			}
1089
1090			/* Lower synth voltage on Rev 2 */
1091			if (ah->ah_radio == AR5K_RF5112 &&
1092			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1093				ath5k_hw_rfb_op(ah, rf_regs, 2,
1094						AR5K_RF_HIGH_VC_CP, true);
1095
1096				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097						AR5K_RF_MID_VC_CP, true);
1098
1099				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100						AR5K_RF_LOW_VC_CP, true);
1101
1102				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103						AR5K_RF_PUSH_UP, true);
1104			}
1105
1106			/* Decrease power consumption on 5213+ BaseBand */
1107			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1108				ath5k_hw_rfb_op(ah, rf_regs, 1,
1109						AR5K_RF_PAD2GND, true);
1110
1111				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112						AR5K_RF_XB2_LVL, true);
1113
1114				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115						AR5K_RF_XB5_LVL, true);
1116
1117				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118						AR5K_RF_PWD_167, true);
1119
1120				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121						AR5K_RF_PWD_166, true);
1122			}
1123		}
1124
1125		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1126						AR5K_RF_GAIN_I, true);
1127
1128		/* Tweak power detector for half/quarter rates */
1129		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1130		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1131			u8 pd_delay;
1132
1133			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1134							0xf : 0x8;
1135
1136			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1137						AR5K_RF_PD_PERIOD_A, true);
1138			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1139						AR5K_RF_PD_DELAY_A, true);
1140
1141		}
1142	}
1143
1144	if (ah->ah_radio == AR5K_RF5413 &&
1145	channel->band == NL80211_BAND_2GHZ) {
1146
1147		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1148									true);
1149
1150		/* Set optimum value for early revisions (on pci-e chips) */
1151		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1152		ah->ah_mac_srev < AR5K_SREV_AR5413)
1153			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1154						AR5K_RF_PWD_ICLOBUF_2G, true);
1155
1156	}
1157
1158	/* Write RF banks on hw */
1159	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1160		AR5K_REG_WAIT(i);
1161		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1162	}
1163
1164	return 0;
1165}
1166
1167
1168/**************************\
1169  PHY/RF channel functions
1170\**************************/
1171
1172/**
1173 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1174 * @channel: The &struct ieee80211_channel
1175 *
1176 * Map channel frequency to IEEE channel number and convert it
1177 * to an internal channel value used by the RF5110 chipset.
1178 */
1179static u32
1180ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1181{
1182	u32 athchan;
1183
1184	athchan = (ath5k_hw_bitswap(
1185			(ieee80211_frequency_to_channel(
1186				channel->center_freq) - 24) / 2, 5)
1187				<< 1) | (1 << 6) | 0x1;
1188	return athchan;
1189}
1190
1191/**
1192 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1193 * @ah: The &struct ath5k_hw
1194 * @channel: The &struct ieee80211_channel
1195 */
1196static int
1197ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1198		struct ieee80211_channel *channel)
1199{
1200	u32 data;
1201
1202	/*
1203	 * Set the channel and wait
1204	 */
1205	data = ath5k_hw_rf5110_chan2athchan(channel);
1206	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1207	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1208	usleep_range(1000, 1500);
1209
1210	return 0;
1211}
1212
1213/**
1214 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1215 * @ieee: IEEE channel number
1216 * @athchan: The &struct ath5k_athchan_2ghz
1217 *
1218 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1219 * we need to add some offsets and extra flags to the data values we pass
1220 * on to the PHY. So for every 2GHz channel this function gets called
1221 * to do the conversion.
1222 */
1223static int
1224ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1225		struct ath5k_athchan_2ghz *athchan)
1226{
1227	int channel;
1228
1229	/* Cast this value to catch negative channel numbers (>= -19) */
1230	channel = (int)ieee;
1231
1232	/*
1233	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1234	 */
1235	if (channel <= 13) {
1236		athchan->a2_athchan = 115 + channel;
1237		athchan->a2_flags = 0x46;
1238	} else if (channel == 14) {
1239		athchan->a2_athchan = 124;
1240		athchan->a2_flags = 0x44;
1241	} else if (channel >= 15 && channel <= 26) {
1242		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1243		athchan->a2_flags = 0x46;
1244	} else
1245		return -EINVAL;
1246
1247	return 0;
1248}
1249
1250/**
1251 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1252 * @ah: The &struct ath5k_hw
1253 * @channel: The &struct ieee80211_channel
1254 */
1255static int
1256ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1257		struct ieee80211_channel *channel)
1258{
1259	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1260	unsigned int ath5k_channel =
1261		ieee80211_frequency_to_channel(channel->center_freq);
1262	u32 data0, data1, clock;
1263	int ret;
1264
1265	/*
1266	 * Set the channel on the RF5111 radio
1267	 */
1268	data0 = data1 = 0;
1269
1270	if (channel->band == NL80211_BAND_2GHZ) {
1271		/* Map 2GHz channel to 5GHz Atheros channel ID */
1272		ret = ath5k_hw_rf5111_chan2athchan(
1273			ieee80211_frequency_to_channel(channel->center_freq),
1274			&ath5k_channel_2ghz);
1275		if (ret)
1276			return ret;
1277
1278		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1279		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1280		    << 5) | (1 << 4);
1281	}
1282
1283	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1284		clock = 1;
1285		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1286			(clock << 1) | (1 << 10) | 1;
1287	} else {
1288		clock = 0;
1289		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1290			<< 2) | (clock << 1) | (1 << 10) | 1;
1291	}
1292
1293	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1294			AR5K_RF_BUFFER);
1295	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1296			AR5K_RF_BUFFER_CONTROL_3);
1297
1298	return 0;
1299}
1300
1301/**
1302 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1303 * @ah: The &struct ath5k_hw
1304 * @channel: The &struct ieee80211_channel
1305 *
1306 * On RF5112/2112 and newer we don't need to do any conversion.
1307 * We pass the frequency value after a few modifications to the
1308 * chip directly.
1309 *
1310 * NOTE: Make sure channel frequency given is within our range or else
1311 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1312 */
1313static int
1314ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1315		struct ieee80211_channel *channel)
1316{
1317	u32 data, data0, data1, data2;
1318	u16 c;
1319
1320	data = data0 = data1 = data2 = 0;
1321	c = channel->center_freq;
1322
1323	/* My guess based on code:
1324	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1325	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1326	 * (3040/2). data0 is used to set the PLL divider and data1
1327	 * selects synth mode. */
1328	if (c < 4800) {
1329		/* Channel 14 and all frequencies with 2Hz spacing
1330		 * below/above (non-standard channels) */
1331		if (!((c - 2224) % 5)) {
1332			/* Same as (c - 2224) / 5 */
1333			data0 = ((2 * (c - 704)) - 3040) / 10;
1334			data1 = 1;
1335		/* Channel 1 and all frequencies with 5Hz spacing
1336		 * below/above (standard channels without channel 14) */
1337		} else if (!((c - 2192) % 5)) {
1338			/* Same as (c - 2192) / 5 */
1339			data0 = ((2 * (c - 672)) - 3040) / 10;
1340			data1 = 0;
1341		} else
1342			return -EINVAL;
1343
1344		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1345	/* This is more complex, we have a single synthesizer with
1346	 * 4 reference clock settings (?) based on frequency spacing
1347	 * and set using data2. LO is at 4800Hz and data0 is again used
1348	 * to set some divider.
1349	 *
1350	 * NOTE: There is an old atheros presentation at Stanford
1351	 * that mentions a method called dual direct conversion
1352	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1353	 * have here, or an updated version. */
1354	} else if ((c % 5) != 2 || c > 5435) {
1355		if (!(c % 20) && c >= 5120) {
1356			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1357			data2 = ath5k_hw_bitswap(3, 2);
1358		} else if (!(c % 10)) {
1359			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1360			data2 = ath5k_hw_bitswap(2, 2);
1361		} else if (!(c % 5)) {
1362			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1363			data2 = ath5k_hw_bitswap(1, 2);
1364		} else
1365			return -EINVAL;
1366	} else {
1367		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1368		data2 = ath5k_hw_bitswap(0, 2);
1369	}
1370
1371	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1372
1373	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1374	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1375
1376	return 0;
1377}
1378
1379/**
1380 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1381 * @ah: The &struct ath5k_hw
1382 * @channel: The &struct ieee80211_channel
1383 *
1384 * AR2425/2417 have a different 2GHz RF so code changes
1385 * a little bit from RF5112.
1386 */
1387static int
1388ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1389		struct ieee80211_channel *channel)
1390{
1391	u32 data, data0, data2;
1392	u16 c;
1393
1394	data = data0 = data2 = 0;
1395	c = channel->center_freq;
1396
1397	if (c < 4800) {
1398		data0 = ath5k_hw_bitswap((c - 2272), 8);
1399		data2 = 0;
1400	/* ? 5GHz ? */
1401	} else if ((c % 5) != 2 || c > 5435) {
1402		if (!(c % 20) && c < 5120)
1403			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1404		else if (!(c % 10))
1405			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1406		else if (!(c % 5))
1407			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1408		else
1409			return -EINVAL;
1410		data2 = ath5k_hw_bitswap(1, 2);
1411	} else {
1412		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1413		data2 = ath5k_hw_bitswap(0, 2);
1414	}
1415
1416	data = (data0 << 4) | data2 << 2 | 0x1001;
1417
1418	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1419	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1420
1421	return 0;
1422}
1423
1424/**
1425 * ath5k_hw_channel() - Set a channel on the radio chip
1426 * @ah: The &struct ath5k_hw
1427 * @channel: The &struct ieee80211_channel
1428 *
1429 * This is the main function called to set a channel on the
1430 * radio chip based on the radio chip version.
1431 */
1432static int
1433ath5k_hw_channel(struct ath5k_hw *ah,
1434		struct ieee80211_channel *channel)
1435{
1436	int ret;
1437	/*
1438	 * Check bounds supported by the PHY (we don't care about regulatory
1439	 * restrictions at this point).
1440	 */
1441	if (!ath5k_channel_ok(ah, channel)) {
1442		ATH5K_ERR(ah,
1443			"channel frequency (%u MHz) out of supported "
1444			"band range\n",
1445			channel->center_freq);
1446		return -EINVAL;
1447	}
1448
1449	/*
1450	 * Set the channel and wait
1451	 */
1452	switch (ah->ah_radio) {
1453	case AR5K_RF5110:
1454		ret = ath5k_hw_rf5110_channel(ah, channel);
1455		break;
1456	case AR5K_RF5111:
1457		ret = ath5k_hw_rf5111_channel(ah, channel);
1458		break;
1459	case AR5K_RF2317:
1460	case AR5K_RF2425:
1461		ret = ath5k_hw_rf2425_channel(ah, channel);
1462		break;
1463	default:
1464		ret = ath5k_hw_rf5112_channel(ah, channel);
1465		break;
1466	}
1467
1468	if (ret)
1469		return ret;
1470
1471	/* Set JAPAN setting for channel 14 */
1472	if (channel->center_freq == 2484) {
1473		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1474				AR5K_PHY_CCKTXCTL_JAPAN);
1475	} else {
1476		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477				AR5K_PHY_CCKTXCTL_WORLD);
1478	}
1479
1480	ah->ah_current_channel = channel;
1481
1482	return 0;
1483}
1484
1485
1486/*****************\
1487  PHY calibration
1488\*****************/
1489
1490/**
1491 * DOC: PHY Calibration routines
1492 *
1493 * Noise floor calibration: When we tell the hardware to
1494 * perform a noise floor calibration by setting the
1495 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1496 * sample-and-hold the minimum noise level seen at the antennas.
1497 * This value is then stored in a ring buffer of recently measured
1498 * noise floor values so we have a moving window of the last few
1499 * samples. The median of the values in the history is then loaded
1500 * into the hardware for its own use for RSSI and CCA measurements.
1501 * This type of calibration doesn't interfere with traffic.
1502 *
1503 * AGC calibration: When we tell the hardware to perform
1504 * an AGC (Automatic Gain Control) calibration by setting the
1505 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1506 * a calibration on the DC offsets of ADCs. During this period
1507 * rx/tx gets disabled so we have to deal with it on the driver
1508 * part.
1509 *
1510 * I/Q calibration: When we tell the hardware to perform
1511 * an I/Q calibration, it tries to correct I/Q imbalance and
1512 * fix QAM constellation by sampling data from rxed frames.
1513 * It doesn't interfere with traffic.
1514 *
1515 * For more infos on AGC and I/Q calibration check out patent doc
1516 * #03/094463.
1517 */
1518
1519/**
1520 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1521 * @ah: The &struct ath5k_hw
1522 */
1523static s32
1524ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1525{
1526	s32 val;
1527
1528	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1529	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1530}
1531
1532/**
1533 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1534 * @ah: The &struct ath5k_hw
1535 */
1536void
1537ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1538{
1539	int i;
1540
1541	ah->ah_nfcal_hist.index = 0;
1542	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1543		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1544}
1545
1546/**
1547 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1548 * @ah: The &struct ath5k_hw
1549 * @noise_floor: The NF we got from hw
1550 */
1551static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1552{
1553	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1554	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1555	hist->nfval[hist->index] = noise_floor;
1556}
1557
1558static int cmps16(const void *a, const void *b)
1559{
1560	return *(s16 *)a - *(s16 *)b;
1561}
1562
1563/**
1564 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1565 * @ah: The &struct ath5k_hw
1566 */
1567static s16
1568ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1569{
1570	s16 sorted_nfval[ATH5K_NF_CAL_HIST_MAX];
1571	int i;
1572
1573	memcpy(sorted_nfval, ah->ah_nfcal_hist.nfval, sizeof(sorted_nfval));
1574	sort(sorted_nfval, ATH5K_NF_CAL_HIST_MAX, sizeof(s16), cmps16, NULL);
 
 
 
 
 
 
 
 
 
1575	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1576		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1577			"cal %d:%d\n", i, sorted_nfval[i]);
1578	}
1579	return sorted_nfval[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1580}
1581
1582/**
1583 * ath5k_hw_update_noise_floor() - Update NF on hardware
1584 * @ah: The &struct ath5k_hw
1585 *
1586 * This is the main function we call to perform a NF calibration,
1587 * it reads NF from hardware, calculates the median and updates
1588 * NF on hw.
1589 */
1590void
1591ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1592{
1593	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1594	u32 val;
1595	s16 nf, threshold;
1596	u8 ee_mode;
1597
1598	/* keep last value if calibration hasn't completed */
1599	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1600		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1601			"NF did not complete in calibration window\n");
1602
1603		return;
1604	}
1605
1606	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1607
1608	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1609
1610	/* completed NF calibration, test threshold */
1611	nf = ath5k_hw_read_measured_noise_floor(ah);
1612	threshold = ee->ee_noise_floor_thr[ee_mode];
1613
1614	if (nf > threshold) {
1615		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1616			"noise floor failure detected; "
1617			"read %d, threshold %d\n",
1618			nf, threshold);
1619
1620		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1621	}
1622
1623	ath5k_hw_update_nfcal_hist(ah, nf);
1624	nf = ath5k_hw_get_median_noise_floor(ah);
1625
1626	/* load noise floor (in .5 dBm) so the hardware will use it */
1627	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1628	val |= (nf * 2) & AR5K_PHY_NF_M;
1629	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1630
1631	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1632		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1633
1634	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635		0, false);
1636
1637	/*
1638	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1639	 * so that we're not capped by the median we just loaded.
1640	 * This will be used as the initial value for the next noise
1641	 * floor calibration.
1642	 */
1643	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1644	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1645	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1646		AR5K_PHY_AGCCTL_NF_EN |
1647		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1648		AR5K_PHY_AGCCTL_NF);
1649
1650	ah->ah_noise_floor = nf;
1651
1652	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1653
1654	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1655		"noise floor calibrated: %d\n", nf);
1656}
1657
1658/**
1659 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1660 * @ah: The &struct ath5k_hw
1661 * @channel: The &struct ieee80211_channel
1662 *
1663 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1664 */
1665static int
1666ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1667		struct ieee80211_channel *channel)
1668{
1669	u32 phy_sig, phy_agc, phy_sat, beacon;
1670	int ret;
1671
1672	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1673		return 0;
1674
1675	/*
1676	 * Disable beacons and RX/TX queues, wait
1677	 */
1678	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1679		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1680	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1681	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1682
1683	usleep_range(2000, 2500);
1684
1685	/*
1686	 * Set the channel (with AGC turned off)
1687	 */
1688	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1689	udelay(10);
1690	ret = ath5k_hw_channel(ah, channel);
1691
1692	/*
1693	 * Activate PHY and wait
1694	 */
1695	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1696	usleep_range(1000, 1500);
1697
1698	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1699
1700	if (ret)
1701		return ret;
1702
1703	/*
1704	 * Calibrate the radio chip
1705	 */
1706
1707	/* Remember normal state */
1708	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1709	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1710	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1711
1712	/* Update radio registers */
1713	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1714		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1715
1716	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1717			AR5K_PHY_AGCCOARSE_LO)) |
1718		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1719		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1720
1721	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1722			AR5K_PHY_ADCSAT_THR)) |
1723		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1724		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1725
1726	udelay(20);
1727
1728	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1729	udelay(10);
1730	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1731	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732
1733	usleep_range(1000, 1500);
1734
1735	/*
1736	 * Enable calibration and wait until completion
1737	 */
1738	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1739
1740	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1741			AR5K_PHY_AGCCTL_CAL, 0, false);
1742
1743	/* Reset to normal state */
1744	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1745	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1746	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1747
1748	if (ret) {
1749		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1750				channel->center_freq);
1751		return ret;
1752	}
1753
1754	/*
1755	 * Re-enable RX/TX and beacons
1756	 */
1757	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1758		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1759	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1760
1761	return 0;
1762}
1763
1764/**
1765 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1766 * @ah: The &struct ath5k_hw
1767 */
1768static int
1769ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1770{
1771	u32 i_pwr, q_pwr;
1772	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1773	int i;
1774
1775	/* Skip if I/Q calibration is not needed or if it's still running */
1776	if (!ah->ah_iq_cal_needed)
1777		return -EINVAL;
1778	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1779		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1780				"I/Q calibration still running");
1781		return -EBUSY;
1782	}
1783
1784	/* Calibration has finished, get the results and re-run */
1785
1786	/* Work around for empty results which can apparently happen on 5212:
1787	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1788	for (i = 0; i <= 10; i++) {
1789		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1790		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1791		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1792		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1793			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1794		if (i_pwr && q_pwr)
1795			break;
1796	}
1797
1798	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1799
1800	if (ah->ah_version == AR5K_AR5211)
1801		q_coffd = q_pwr >> 6;
1802	else
1803		q_coffd = q_pwr >> 7;
1804
1805	/* In case i_coffd became zero, cancel calibration
1806	 * not only it's too small, it'll also result a divide
1807	 * by zero later on. */
1808	if (i_coffd == 0 || q_coffd < 2)
1809		return -ECANCELED;
1810
1811	/* Protect against loss of sign bits */
1812
1813	i_coff = (-iq_corr) / i_coffd;
1814	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1815
1816	if (ah->ah_version == AR5K_AR5211)
1817		q_coff = (i_pwr / q_coffd) - 64;
1818	else
1819		q_coff = (i_pwr / q_coffd) - 128;
1820	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1821
1822	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1823			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1824			i_coff, q_coff, i_coffd, q_coffd);
1825
1826	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1827	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1828	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1829	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1830
1831	/* Re-enable calibration -if we don't we'll commit
1832	 * the same values again and again */
1833	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1834			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1835	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1836
1837	return 0;
1838}
1839
1840/**
1841 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1842 * @ah: The &struct ath5k_hw
1843 * @channel: The &struct ieee80211_channel
1844 *
1845 * The main function we call from above to perform
1846 * a short or full PHY calibration based on RF chip
1847 * and current channel
1848 */
1849int
1850ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1851		struct ieee80211_channel *channel)
1852{
1853	int ret;
1854
1855	if (ah->ah_radio == AR5K_RF5110)
1856		return ath5k_hw_rf5110_calibrate(ah, channel);
1857
1858	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1859	if (ret) {
1860		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1861			"No I/Q correction performed (%uMHz)\n",
1862			channel->center_freq);
1863
1864		/* Happens all the time if there is not much
1865		 * traffic, consider it normal behaviour. */
1866		ret = 0;
1867	}
1868
1869	/* On full calibration request a PAPD probe for
1870	 * gainf calibration if needed */
1871	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1872	    (ah->ah_radio == AR5K_RF5111 ||
1873	     ah->ah_radio == AR5K_RF5112) &&
1874	    channel->hw_value != AR5K_MODE_11B)
1875		ath5k_hw_request_rfgain_probe(ah);
1876
1877	/* Update noise floor */
1878	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1879		ath5k_hw_update_noise_floor(ah);
1880
1881	return ret;
1882}
1883
1884
1885/***************************\
1886* Spur mitigation functions *
1887\***************************/
1888
1889/**
1890 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1891 * @ah: The &struct ath5k_hw
1892 * @channel: The &struct ieee80211_channel
1893 *
1894 * This function gets called during PHY initialization to
1895 * configure the spur filter for the given channel. Spur is noise
1896 * generated due to "reflection" effects, for more information on this
1897 * method check out patent US7643810
1898 */
1899static void
1900ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1901				struct ieee80211_channel *channel)
1902{
1903	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1904	u32 mag_mask[4] = {0, 0, 0, 0};
1905	u32 pilot_mask[2] = {0, 0};
1906	/* Note: fbin values are scaled up by 2 */
1907	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1908	s32 spur_delta_phase, spur_freq_sigma_delta;
1909	s32 spur_offset, num_symbols_x16;
1910	u8 num_symbol_offsets, i, freq_band;
1911
1912	/* Convert current frequency to fbin value (the same way channels
1913	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1914	 * up by 2 so we can compare it later */
1915	if (channel->band == NL80211_BAND_2GHZ) {
1916		chan_fbin = (channel->center_freq - 2300) * 10;
1917		freq_band = AR5K_EEPROM_BAND_2GHZ;
1918	} else {
1919		chan_fbin = (channel->center_freq - 4900) * 10;
1920		freq_band = AR5K_EEPROM_BAND_5GHZ;
1921	}
1922
1923	/* Check if any spur_chan_fbin from EEPROM is
1924	 * within our current channel's spur detection range */
1925	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1926	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1927	/* XXX: Half/Quarter channels ?*/
1928	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1929		spur_detection_window *= 2;
1930
1931	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1932		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1933
1934		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1935		 * so it's zero if we got nothing from EEPROM */
1936		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1937			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1938			break;
1939		}
1940
1941		if ((chan_fbin - spur_detection_window <=
1942		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1943		(chan_fbin + spur_detection_window >=
1944		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1945			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1946			break;
1947		}
1948	}
1949
1950	/* We need to enable spur filter for this channel */
1951	if (spur_chan_fbin) {
1952		spur_offset = spur_chan_fbin - chan_fbin;
1953		/*
1954		 * Calculate deltas:
1955		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1956		 * spur_delta_phase -> spur_offset / chip_freq << 11
1957		 * Note: Both values have 100Hz resolution
1958		 */
1959		switch (ah->ah_bwmode) {
1960		case AR5K_BWMODE_40MHZ:
1961			/* Both sample_freq and chip_freq are 80MHz */
1962			spur_delta_phase = (spur_offset << 16) / 25;
1963			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1964			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1965			break;
1966		case AR5K_BWMODE_10MHZ:
1967			/* Both sample_freq and chip_freq are 20MHz (?) */
1968			spur_delta_phase = (spur_offset << 18) / 25;
1969			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1970			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1971			break;
1972		case AR5K_BWMODE_5MHZ:
1973			/* Both sample_freq and chip_freq are 10MHz (?) */
1974			spur_delta_phase = (spur_offset << 19) / 25;
1975			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1976			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1977			break;
1978		default:
1979			if (channel->band == NL80211_BAND_5GHZ) {
1980				/* Both sample_freq and chip_freq are 40MHz */
1981				spur_delta_phase = (spur_offset << 17) / 25;
1982				spur_freq_sigma_delta =
1983						(spur_delta_phase >> 10);
1984				symbol_width =
1985					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1986			} else {
1987				/* sample_freq -> 40MHz chip_freq -> 44MHz
1988				 * (for b compatibility) */
1989				spur_delta_phase = (spur_offset << 17) / 25;
1990				spur_freq_sigma_delta =
1991						(spur_offset << 8) / 55;
1992				symbol_width =
1993					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1994			}
1995			break;
1996		}
1997
1998		/* Calculate pilot and magnitude masks */
1999
2000		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2001		 * and divide by symbol_width to find how many symbols we have
2002		 * Note: number of symbols is scaled up by 16 */
2003		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2004
2005		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2006		if (!(num_symbols_x16 & 0xF))
2007			/* _X_ */
2008			num_symbol_offsets = 3;
2009		else
2010			/* _xx_ */
2011			num_symbol_offsets = 4;
2012
2013		for (i = 0; i < num_symbol_offsets; i++) {
2014
2015			/* Calculate pilot mask */
2016			s32 curr_sym_off =
2017				(num_symbols_x16 / 16) + i + 25;
2018
2019			/* Pilot magnitude mask seems to be a way to
2020			 * declare the boundaries for our detection
2021			 * window or something, it's 2 for the middle
2022			 * value(s) where the symbol is expected to be
2023			 * and 1 on the boundary values */
2024			u8 plt_mag_map =
2025				(i == 0 || i == (num_symbol_offsets - 1))
2026								? 1 : 2;
2027
2028			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2029				if (curr_sym_off <= 25)
2030					pilot_mask[0] |= 1 << curr_sym_off;
2031				else if (curr_sym_off >= 27)
2032					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2033			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2034				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2035
2036			/* Calculate magnitude mask (for viterbi decoder) */
2037			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2038				mag_mask[0] |=
2039					plt_mag_map << (curr_sym_off + 1) * 2;
2040			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2041				mag_mask[1] |=
2042					plt_mag_map << (curr_sym_off - 15) * 2;
2043			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2044				mag_mask[2] |=
2045					plt_mag_map << (curr_sym_off - 31) * 2;
2046			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2047				mag_mask[3] |=
2048					plt_mag_map << (curr_sym_off - 47) * 2;
2049
2050		}
2051
2052		/* Write settings on hw to enable spur filter */
2053		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2054					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2055		/* XXX: Self correlator also ? */
2056		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2057					AR5K_PHY_IQ_PILOT_MASK_EN |
2058					AR5K_PHY_IQ_CHAN_MASK_EN |
2059					AR5K_PHY_IQ_SPUR_FILT_EN);
2060
2061		/* Set delta phase and freq sigma delta */
2062		ath5k_hw_reg_write(ah,
2063				AR5K_REG_SM(spur_delta_phase,
2064					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2065				AR5K_REG_SM(spur_freq_sigma_delta,
2066				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2067				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2068				AR5K_PHY_TIMING_11);
2069
2070		/* Write pilot masks */
2071		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2072		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2073					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2074					pilot_mask[1]);
2075
2076		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2077		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2078					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2079					pilot_mask[1]);
2080
2081		/* Write magnitude masks */
2082		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2083		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2084		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2085		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2086					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2087					mag_mask[3]);
2088
2089		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2090		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2091		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2092		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2093					AR5K_PHY_BIN_MASK2_4_MASK_4,
2094					mag_mask[3]);
2095
2096	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2097	AR5K_PHY_IQ_SPUR_FILT_EN) {
2098		/* Clean up spur mitigation settings and disable filter */
2099		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2100					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2101		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2102					AR5K_PHY_IQ_PILOT_MASK_EN |
2103					AR5K_PHY_IQ_CHAN_MASK_EN |
2104					AR5K_PHY_IQ_SPUR_FILT_EN);
2105		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2106
2107		/* Clear pilot masks */
2108		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2109		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2110					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2111					0);
2112
2113		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2114		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2115					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2116					0);
2117
2118		/* Clear magnitude masks */
2119		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2120		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2121		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2122		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2123					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2124					0);
2125
2126		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2127		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2128		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2129		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2130					AR5K_PHY_BIN_MASK2_4_MASK_4,
2131					0);
2132	}
2133}
2134
2135
2136/*****************\
2137* Antenna control *
2138\*****************/
2139
2140/**
2141 * DOC: Antenna control
2142 *
2143 * Hw supports up to 14 antennas ! I haven't found any card that implements
2144 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2145 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2146 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2147 *
2148 * We can have a single antenna for RX and multiple antennas for TX.
2149 * RX antenna is our "default" antenna (usually antenna 1) set on
2150 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2151 * (0 for automatic selection, 1 - 14 antenna number).
2152 *
2153 * We can let hw do all the work doing fast antenna diversity for both
2154 * tx and rx or we can do things manually. Here are the options we have
2155 * (all are bits of STA_ID1 register):
2156 *
2157 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2158 * control descriptor, use the default antenna to transmit or else use the last
2159 * antenna on which we received an ACK.
2160 *
2161 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2162 * the antenna on which we got the ACK for that frame.
2163 *
2164 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2165 * one on the TX descriptor.
2166 *
2167 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2168 * (ACKs etc), or else use current antenna (the one we just used for TX).
2169 *
2170 * Using the above we support the following scenarios:
2171 *
2172 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2173 *
2174 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2175 *
2176 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2177 *
2178 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2179 *
2180 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2181 *
2182 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2183 *
2184 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2185 *
2186 * Also note that when setting antenna to F on tx descriptor card inverts
2187 * current tx antenna.
2188 */
2189
2190/**
2191 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2192 * @ah: The &struct ath5k_hw
2193 * @ant: Antenna number
2194 */
2195static void
2196ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2197{
2198	if (ah->ah_version != AR5K_AR5210)
2199		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2200}
2201
2202/**
2203 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2204 * @ah: The &struct ath5k_hw
2205 * @ee_mode: One of enum ath5k_driver_mode
2206 * @enable: True to enable, false to disable
2207 */
2208static void
2209ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2210{
2211	switch (ee_mode) {
2212	case AR5K_EEPROM_MODE_11G:
2213		/* XXX: This is set to
2214		 * disabled on initvals !!! */
2215	case AR5K_EEPROM_MODE_11A:
2216		if (enable)
2217			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2218					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2219		else
2220			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222		break;
2223	case AR5K_EEPROM_MODE_11B:
2224		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226		break;
2227	default:
2228		return;
2229	}
2230
2231	if (enable) {
2232		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2233				AR5K_PHY_RESTART_DIV_GC, 4);
2234
2235		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2236					AR5K_PHY_FAST_ANT_DIV_EN);
2237	} else {
2238		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2239				AR5K_PHY_RESTART_DIV_GC, 0);
2240
2241		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2242					AR5K_PHY_FAST_ANT_DIV_EN);
2243	}
2244}
2245
2246/**
2247 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2248 * @ah: The &struct ath5k_hw
2249 * @ee_mode: One of enum ath5k_driver_mode
2250 *
2251 * Switch table comes from EEPROM and includes information on controlling
2252 * the 2 antenna RX attenuators
2253 */
2254void
2255ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2256{
2257	u8 ant0, ant1;
2258
2259	/*
2260	 * In case a fixed antenna was set as default
2261	 * use the same switch table twice.
2262	 */
2263	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2264		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2265	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2266		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2267	else {
2268		ant0 = AR5K_ANT_SWTABLE_A;
2269		ant1 = AR5K_ANT_SWTABLE_B;
2270	}
2271
2272	/* Set antenna idle switch table */
2273	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2274			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2275			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2276			AR5K_PHY_ANT_CTL_TXRX_EN));
2277
2278	/* Set antenna switch tables */
2279	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2280		AR5K_PHY_ANT_SWITCH_TABLE_0);
2281	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2282		AR5K_PHY_ANT_SWITCH_TABLE_1);
2283}
2284
2285/**
2286 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2287 * @ah: The &struct ath5k_hw
2288 * @ant_mode: One of enum ath5k_ant_mode
2289 */
2290void
2291ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2292{
2293	struct ieee80211_channel *channel = ah->ah_current_channel;
2294	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2295	bool use_def_for_sg;
2296	int ee_mode;
2297	u8 def_ant, tx_ant;
2298	u32 sta_id1 = 0;
2299
2300	/* if channel is not initialized yet we can't set the antennas
2301	 * so just store the mode. it will be set on the next reset */
2302	if (channel == NULL) {
2303		ah->ah_ant_mode = ant_mode;
2304		return;
2305	}
2306
2307	def_ant = ah->ah_def_ant;
2308
2309	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2310
2311	switch (ant_mode) {
2312	case AR5K_ANTMODE_DEFAULT:
2313		tx_ant = 0;
2314		use_def_for_tx = false;
2315		update_def_on_tx = false;
2316		use_def_for_rts = false;
2317		use_def_for_sg = false;
2318		fast_div = true;
2319		break;
2320	case AR5K_ANTMODE_FIXED_A:
2321		def_ant = 1;
2322		tx_ant = 1;
2323		use_def_for_tx = true;
2324		update_def_on_tx = false;
2325		use_def_for_rts = true;
2326		use_def_for_sg = true;
2327		fast_div = false;
2328		break;
2329	case AR5K_ANTMODE_FIXED_B:
2330		def_ant = 2;
2331		tx_ant = 2;
2332		use_def_for_tx = true;
2333		update_def_on_tx = false;
2334		use_def_for_rts = true;
2335		use_def_for_sg = true;
2336		fast_div = false;
2337		break;
2338	case AR5K_ANTMODE_SINGLE_AP:
2339		def_ant = 1;	/* updated on tx */
2340		tx_ant = 0;
2341		use_def_for_tx = true;
2342		update_def_on_tx = true;
2343		use_def_for_rts = true;
2344		use_def_for_sg = true;
2345		fast_div = true;
2346		break;
2347	case AR5K_ANTMODE_SECTOR_AP:
2348		tx_ant = 1;	/* variable */
2349		use_def_for_tx = false;
2350		update_def_on_tx = false;
2351		use_def_for_rts = true;
2352		use_def_for_sg = false;
2353		fast_div = false;
2354		break;
2355	case AR5K_ANTMODE_SECTOR_STA:
2356		tx_ant = 1;	/* variable */
2357		use_def_for_tx = true;
2358		update_def_on_tx = false;
2359		use_def_for_rts = true;
2360		use_def_for_sg = false;
2361		fast_div = true;
2362		break;
2363	case AR5K_ANTMODE_DEBUG:
2364		def_ant = 1;
2365		tx_ant = 2;
2366		use_def_for_tx = false;
2367		update_def_on_tx = false;
2368		use_def_for_rts = false;
2369		use_def_for_sg = false;
2370		fast_div = false;
2371		break;
2372	default:
2373		return;
2374	}
2375
2376	ah->ah_tx_ant = tx_ant;
2377	ah->ah_ant_mode = ant_mode;
2378	ah->ah_def_ant = def_ant;
2379
2380	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2381	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2382	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2383	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2384
2385	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2386
2387	if (sta_id1)
2388		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2389
2390	ath5k_hw_set_antenna_switch(ah, ee_mode);
2391	/* Note: set diversity before default antenna
2392	 * because it won't work correctly */
2393	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2394	ath5k_hw_set_def_antenna(ah, def_ant);
2395}
2396
2397
2398/****************\
2399* TX power setup *
2400\****************/
2401
2402/*
2403 * Helper functions
2404 */
2405
2406/**
2407 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2408 * @target: X value of the middle point
2409 * @x_left: X value of the left point
2410 * @x_right: X value of the right point
2411 * @y_left: Y value of the left point
2412 * @y_right: Y value of the right point
2413 */
2414static s16
2415ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2416					s16 y_left, s16 y_right)
2417{
2418	s16 ratio, result;
2419
2420	/* Avoid divide by zero and skip interpolation
2421	 * if we have the same point */
2422	if ((x_left == x_right) || (y_left == y_right))
2423		return y_left;
2424
2425	/*
2426	 * Since we use ints and not fps, we need to scale up in
2427	 * order to get a sane ratio value (or else we 'll eg. get
2428	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2429	 * to have some accuracy both for 0.5 and 0.25 steps.
2430	 */
2431	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2432
2433	/* Now scale down to be in range */
2434	result = y_left + (ratio * (target - x_left) / 100);
2435
2436	return result;
2437}
2438
2439/**
2440 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2441 * linear PCDAC curve
2442 * @stepL: Left array with y values (pcdac steps)
2443 * @stepR: Right array with y values (pcdac steps)
2444 * @pwrL: Left array with x values (power steps)
2445 * @pwrR: Right array with x values (power steps)
2446 *
2447 * Since we have the top of the curve and we draw the line below
2448 * until we reach 1 (1 pcdac step) we need to know which point
2449 * (x value) that is so that we don't go below x axis and have negative
2450 * pcdac values when creating the curve, or fill the table with zeros.
2451 */
2452static s16
2453ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2454				const s16 *pwrL, const s16 *pwrR)
2455{
2456	s8 tmp;
2457	s16 min_pwrL, min_pwrR;
2458	s16 pwr_i;
2459
2460	/* Some vendors write the same pcdac value twice !!! */
2461	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2462		return max(pwrL[0], pwrR[0]);
2463
2464	if (pwrL[0] == pwrL[1])
2465		min_pwrL = pwrL[0];
2466	else {
2467		pwr_i = pwrL[0];
2468		do {
2469			pwr_i--;
2470			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2471							pwrL[0], pwrL[1],
2472							stepL[0], stepL[1]);
2473		} while (tmp > 1);
2474
2475		min_pwrL = pwr_i;
2476	}
2477
2478	if (pwrR[0] == pwrR[1])
2479		min_pwrR = pwrR[0];
2480	else {
2481		pwr_i = pwrR[0];
2482		do {
2483			pwr_i--;
2484			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2485							pwrR[0], pwrR[1],
2486							stepR[0], stepR[1]);
2487		} while (tmp > 1);
2488
2489		min_pwrR = pwr_i;
2490	}
2491
2492	/* Keep the right boundary so that it works for both curves */
2493	return max(min_pwrL, min_pwrR);
2494}
2495
2496/**
2497 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2498 * @pmin: Minimum power value (xmin)
2499 * @pmax: Maximum power value (xmax)
2500 * @pwr: Array of power steps (x values)
2501 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2502 * @num_points: Number of provided points
2503 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2504 * @type: One of enum ath5k_powertable_type (eeprom.h)
2505 *
2506 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2507 * Power to PCDAC curve.
2508 *
2509 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2510 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2511 * PCDAC/PDADC step for each curve is 64 but we can write more than
2512 * one curves on hw so we can go up to 128 (which is the max step we
2513 * can write on the final table).
2514 *
2515 * We write y values (PCDAC/PDADC steps) on hw.
2516 */
2517static void
2518ath5k_create_power_curve(s16 pmin, s16 pmax,
2519			const s16 *pwr, const u8 *vpd,
2520			u8 num_points,
2521			u8 *vpd_table, u8 type)
2522{
2523	u8 idx[2] = { 0, 1 };
2524	s16 pwr_i = 2 * pmin;
2525	int i;
2526
2527	if (num_points < 2)
2528		return;
2529
2530	/* We want the whole line, so adjust boundaries
2531	 * to cover the entire power range. Note that
2532	 * power values are already 0.25dB so no need
2533	 * to multiply pwr_i by 2 */
2534	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2535		pwr_i = pmin;
2536		pmin = 0;
2537		pmax = 63;
2538	}
2539
2540	/* Find surrounding turning points (TPs)
2541	 * and interpolate between them */
2542	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2543	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2544
2545		/* We passed the right TP, move to the next set of TPs
2546		 * if we pass the last TP, extrapolate above using the last
2547		 * two TPs for ratio */
2548		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2549			idx[0]++;
2550			idx[1]++;
2551		}
2552
2553		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2554						pwr[idx[0]], pwr[idx[1]],
2555						vpd[idx[0]], vpd[idx[1]]);
2556
2557		/* Increase by 0.5dB
2558		 * (0.25 dB units) */
2559		pwr_i += 2;
2560	}
2561}
2562
2563/**
2564 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2565 * for a given channel.
2566 * @ah: The &struct ath5k_hw
2567 * @channel: The &struct ieee80211_channel
2568 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2569 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2570 *
2571 * Get the surrounding per-channel power calibration piers
2572 * for a given frequency so that we can interpolate between
2573 * them and come up with an appropriate dataset for our current
2574 * channel.
2575 */
2576static void
2577ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2578			struct ieee80211_channel *channel,
2579			struct ath5k_chan_pcal_info **pcinfo_l,
2580			struct ath5k_chan_pcal_info **pcinfo_r)
2581{
2582	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2583	struct ath5k_chan_pcal_info *pcinfo;
2584	u8 idx_l, idx_r;
2585	u8 mode, max, i;
2586	u32 target = channel->center_freq;
2587
2588	idx_l = 0;
2589	idx_r = 0;
2590
2591	switch (channel->hw_value) {
2592	case AR5K_EEPROM_MODE_11A:
2593		pcinfo = ee->ee_pwr_cal_a;
2594		mode = AR5K_EEPROM_MODE_11A;
2595		break;
2596	case AR5K_EEPROM_MODE_11B:
2597		pcinfo = ee->ee_pwr_cal_b;
2598		mode = AR5K_EEPROM_MODE_11B;
2599		break;
2600	case AR5K_EEPROM_MODE_11G:
2601	default:
2602		pcinfo = ee->ee_pwr_cal_g;
2603		mode = AR5K_EEPROM_MODE_11G;
2604		break;
2605	}
2606	max = ee->ee_n_piers[mode] - 1;
2607
2608	/* Frequency is below our calibrated
2609	 * range. Use the lowest power curve
2610	 * we have */
2611	if (target < pcinfo[0].freq) {
2612		idx_l = idx_r = 0;
2613		goto done;
2614	}
2615
2616	/* Frequency is above our calibrated
2617	 * range. Use the highest power curve
2618	 * we have */
2619	if (target > pcinfo[max].freq) {
2620		idx_l = idx_r = max;
2621		goto done;
2622	}
2623
2624	/* Frequency is inside our calibrated
2625	 * channel range. Pick the surrounding
2626	 * calibration piers so that we can
2627	 * interpolate */
2628	for (i = 0; i <= max; i++) {
2629
2630		/* Frequency matches one of our calibration
2631		 * piers, no need to interpolate, just use
2632		 * that calibration pier */
2633		if (pcinfo[i].freq == target) {
2634			idx_l = idx_r = i;
2635			goto done;
2636		}
2637
2638		/* We found a calibration pier that's above
2639		 * frequency, use this pier and the previous
2640		 * one to interpolate */
2641		if (target < pcinfo[i].freq) {
2642			idx_r = i;
2643			idx_l = idx_r - 1;
2644			goto done;
2645		}
2646	}
2647
2648done:
2649	*pcinfo_l = &pcinfo[idx_l];
2650	*pcinfo_r = &pcinfo[idx_r];
2651}
2652
2653/**
2654 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2655 * calibration data
2656 * @ah: The &struct ath5k_hw *ah,
2657 * @channel: The &struct ieee80211_channel
2658 * @rates: The &struct ath5k_rate_pcal_info to fill
2659 *
2660 * Get the surrounding per-rate power calibration data
2661 * for a given frequency and interpolate between power
2662 * values to set max target power supported by hw for
2663 * each rate on this frequency.
2664 */
2665static void
2666ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2667			struct ieee80211_channel *channel,
2668			struct ath5k_rate_pcal_info *rates)
2669{
2670	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2671	struct ath5k_rate_pcal_info *rpinfo;
2672	u8 idx_l, idx_r;
2673	u8 mode, max, i;
2674	u32 target = channel->center_freq;
2675
2676	idx_l = 0;
2677	idx_r = 0;
2678
2679	switch (channel->hw_value) {
2680	case AR5K_MODE_11A:
2681		rpinfo = ee->ee_rate_tpwr_a;
2682		mode = AR5K_EEPROM_MODE_11A;
2683		break;
2684	case AR5K_MODE_11B:
2685		rpinfo = ee->ee_rate_tpwr_b;
2686		mode = AR5K_EEPROM_MODE_11B;
2687		break;
2688	case AR5K_MODE_11G:
2689	default:
2690		rpinfo = ee->ee_rate_tpwr_g;
2691		mode = AR5K_EEPROM_MODE_11G;
2692		break;
2693	}
2694	max = ee->ee_rate_target_pwr_num[mode] - 1;
2695
2696	/* Get the surrounding calibration
2697	 * piers - same as above */
2698	if (target < rpinfo[0].freq) {
2699		idx_l = idx_r = 0;
2700		goto done;
2701	}
2702
2703	if (target > rpinfo[max].freq) {
2704		idx_l = idx_r = max;
2705		goto done;
2706	}
2707
2708	for (i = 0; i <= max; i++) {
2709
2710		if (rpinfo[i].freq == target) {
2711			idx_l = idx_r = i;
2712			goto done;
2713		}
2714
2715		if (target < rpinfo[i].freq) {
2716			idx_r = i;
2717			idx_l = idx_r - 1;
2718			goto done;
2719		}
2720	}
2721
2722done:
2723	/* Now interpolate power value, based on the frequency */
2724	rates->freq = target;
2725
2726	rates->target_power_6to24 =
2727		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2728					rpinfo[idx_r].freq,
2729					rpinfo[idx_l].target_power_6to24,
2730					rpinfo[idx_r].target_power_6to24);
2731
2732	rates->target_power_36 =
2733		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2734					rpinfo[idx_r].freq,
2735					rpinfo[idx_l].target_power_36,
2736					rpinfo[idx_r].target_power_36);
2737
2738	rates->target_power_48 =
2739		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2740					rpinfo[idx_r].freq,
2741					rpinfo[idx_l].target_power_48,
2742					rpinfo[idx_r].target_power_48);
2743
2744	rates->target_power_54 =
2745		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2746					rpinfo[idx_r].freq,
2747					rpinfo[idx_l].target_power_54,
2748					rpinfo[idx_r].target_power_54);
2749}
2750
2751/**
2752 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2753 * @ah: the &struct ath5k_hw
2754 * @channel: The &struct ieee80211_channel
2755 *
2756 * Get the max edge power for this channel if
2757 * we have such data from EEPROM's Conformance Test
2758 * Limits (CTL), and limit max power if needed.
2759 */
2760static void
2761ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2762			struct ieee80211_channel *channel)
2763{
2764	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2765	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2766	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2767	u8 *ctl_val = ee->ee_ctl;
2768	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2769	s16 edge_pwr = 0;
2770	u8 rep_idx;
2771	u8 i, ctl_mode;
2772	u8 ctl_idx = 0xFF;
2773	u32 target = channel->center_freq;
2774
2775	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2776
2777	switch (channel->hw_value) {
2778	case AR5K_MODE_11A:
2779		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2780			ctl_mode |= AR5K_CTL_TURBO;
2781		else
2782			ctl_mode |= AR5K_CTL_11A;
2783		break;
2784	case AR5K_MODE_11G:
2785		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2786			ctl_mode |= AR5K_CTL_TURBOG;
2787		else
2788			ctl_mode |= AR5K_CTL_11G;
2789		break;
2790	case AR5K_MODE_11B:
2791		ctl_mode |= AR5K_CTL_11B;
2792		break;
2793	default:
2794		return;
2795	}
2796
2797	for (i = 0; i < ee->ee_ctls; i++) {
2798		if (ctl_val[i] == ctl_mode) {
2799			ctl_idx = i;
2800			break;
2801		}
2802	}
2803
2804	/* If we have a CTL dataset available grab it and find the
2805	 * edge power for our frequency */
2806	if (ctl_idx == 0xFF)
2807		return;
2808
2809	/* Edge powers are sorted by frequency from lower
2810	 * to higher. Each CTL corresponds to 8 edge power
2811	 * measurements. */
2812	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2813
2814	/* Don't do boundaries check because we
2815	 * might have more that one bands defined
2816	 * for this mode */
2817
2818	/* Get the edge power that's closer to our
2819	 * frequency */
2820	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2821		rep_idx += i;
2822		if (target <= rep[rep_idx].freq)
2823			edge_pwr = (s16) rep[rep_idx].edge;
2824	}
2825
2826	if (edge_pwr)
2827		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2828}
2829
2830
2831/*
2832 * Power to PCDAC table functions
2833 */
2834
2835/**
2836 * DOC: Power to PCDAC table functions
2837 *
2838 * For RF5111 we have an XPD -eXternal Power Detector- curve
2839 * for each calibrated channel. Each curve has 0,5dB Power steps
2840 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2841 * exponential function. To recreate the curve we read 11 points
2842 * from eeprom (eeprom.c) and interpolate here.
2843 *
2844 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2845 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2846 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2847 * power steps on x axis and PCDAC steps on y axis and looks like a
2848 * linear function. To recreate the curve and pass the power values
2849 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2850 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2851 * and interpolate here.
2852 *
2853 * For a given channel we get the calibrated points (piers) for it or
2854 * -if we don't have calibration data for this specific channel- from the
2855 * available surrounding channels we have calibration data for, after we do a
2856 * linear interpolation between them. Then since we have our calibrated points
2857 * for this channel, we do again a linear interpolation between them to get the
2858 * whole curve.
2859 *
2860 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2861 */
2862
2863/**
2864 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2865 * @ah: The &struct ath5k_hw
2866 * @table_min: Minimum power (x min)
2867 * @table_max: Maximum power (x max)
2868 *
2869 * No further processing is needed for RF5111, the only thing we have to
2870 * do is fill the values below and above calibration range since eeprom data
2871 * may not cover the entire PCDAC table.
2872 */
2873static void
2874ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2875							s16 *table_max)
2876{
2877	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2878	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2879	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2880	s16	min_pwr, max_pwr;
2881
2882	/* Get table boundaries */
2883	min_pwr = table_min[0];
2884	pcdac_0 = pcdac_tmp[0];
2885
2886	max_pwr = table_max[0];
2887	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2888
2889	/* Extrapolate below minimum using pcdac_0 */
2890	pcdac_i = 0;
2891	for (i = 0; i < min_pwr; i++)
2892		pcdac_out[pcdac_i++] = pcdac_0;
2893
2894	/* Copy values from pcdac_tmp */
2895	pwr_idx = min_pwr;
2896	for (i = 0; pwr_idx <= max_pwr &&
2897		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2898		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2899		pwr_idx++;
2900	}
2901
2902	/* Extrapolate above maximum */
2903	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2904		pcdac_out[pcdac_i++] = pcdac_n;
2905
2906}
2907
2908/**
2909 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2910 * @ah: The &struct ath5k_hw
2911 * @table_min: Minimum power (x min)
2912 * @table_max: Maximum power (x max)
2913 * @pdcurves: Number of pd curves
2914 *
2915 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2916 * RFX112 can have up to 2 curves (one for low txpower range and one for
2917 * higher txpower range). We need to put them both on pcdac_out and place
2918 * them in the correct location. In case we only have one curve available
2919 * just fit it on pcdac_out (it's supposed to cover the entire range of
2920 * available pwr levels since it's always the higher power curve). Extrapolate
2921 * below and above final table if needed.
2922 */
2923static void
2924ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2925						s16 *table_max, u8 pdcurves)
2926{
2927	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2928	u8	*pcdac_low_pwr;
2929	u8	*pcdac_high_pwr;
2930	u8	*pcdac_tmp;
2931	u8	pwr;
2932	s16	max_pwr_idx;
2933	s16	min_pwr_idx;
2934	s16	mid_pwr_idx = 0;
2935	/* Edge flag turns on the 7nth bit on the PCDAC
2936	 * to declare the higher power curve (force values
2937	 * to be greater than 64). If we only have one curve
2938	 * we don't need to set this, if we have 2 curves and
2939	 * fill the table backwards this can also be used to
2940	 * switch from higher power curve to lower power curve */
2941	u8	edge_flag;
2942	int	i;
2943
2944	/* When we have only one curve available
2945	 * that's the higher power curve. If we have
2946	 * two curves the first is the high power curve
2947	 * and the next is the low power curve. */
2948	if (pdcurves > 1) {
2949		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2950		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2951		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2952		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2953
2954		/* If table size goes beyond 31.5dB, keep the
2955		 * upper 31.5dB range when setting tx power.
2956		 * Note: 126 = 31.5 dB in quarter dB steps */
2957		if (table_max[0] - table_min[1] > 126)
2958			min_pwr_idx = table_max[0] - 126;
2959		else
2960			min_pwr_idx = table_min[1];
2961
2962		/* Since we fill table backwards
2963		 * start from high power curve */
2964		pcdac_tmp = pcdac_high_pwr;
2965
2966		edge_flag = 0x40;
2967	} else {
2968		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2969		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2970		min_pwr_idx = table_min[0];
2971		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2972		pcdac_tmp = pcdac_high_pwr;
2973		edge_flag = 0;
2974	}
2975
2976	/* This is used when setting tx power*/
2977	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2978
2979	/* Fill Power to PCDAC table backwards */
2980	pwr = max_pwr_idx;
2981	for (i = 63; i >= 0; i--) {
2982		/* Entering lower power range, reset
2983		 * edge flag and set pcdac_tmp to lower
2984		 * power curve.*/
2985		if (edge_flag == 0x40 &&
2986		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2987			edge_flag = 0x00;
2988			pcdac_tmp = pcdac_low_pwr;
2989			pwr = mid_pwr_idx / 2;
2990		}
2991
2992		/* Don't go below 1, extrapolate below if we have
2993		 * already switched to the lower power curve -or
2994		 * we only have one curve and edge_flag is zero
2995		 * anyway */
2996		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2997			while (i >= 0) {
2998				pcdac_out[i] = pcdac_out[i + 1];
2999				i--;
3000			}
3001			break;
3002		}
3003
3004		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3005
3006		/* Extrapolate above if pcdac is greater than
3007		 * 126 -this can happen because we OR pcdac_out
3008		 * value with edge_flag on high power curve */
3009		if (pcdac_out[i] > 126)
3010			pcdac_out[i] = 126;
3011
3012		/* Decrease by a 0.5dB step */
3013		pwr--;
3014	}
3015}
3016
3017/**
3018 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3019 * @ah: The &struct ath5k_hw
3020 */
3021static void
3022ath5k_write_pcdac_table(struct ath5k_hw *ah)
3023{
3024	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3025	int	i;
3026
3027	/*
3028	 * Write TX power values
3029	 */
3030	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3031		ath5k_hw_reg_write(ah,
3032			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3033			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3034			AR5K_PHY_PCDAC_TXPOWER(i));
3035	}
3036}
3037
3038
3039/*
3040 * Power to PDADC table functions
3041 */
3042
3043/**
3044 * DOC: Power to PDADC table functions
3045 *
3046 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3047 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3048 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3049 * PDADC steps on y axis and looks like an exponential function like the
3050 * RF5111 curve.
3051 *
3052 * To recreate the curves we read the points from eeprom (eeprom.c)
3053 * and interpolate here. Note that in most cases only 2 (higher and lower)
3054 * curves are used (like RF5112) but vendors have the opportunity to include
3055 * all 4 curves on eeprom. The final curve (higher power) has an extra
3056 * point for better accuracy like RF5112.
3057 *
3058 * The process is similar to what we do above for RF5111/5112
3059 */
3060
3061/**
3062 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3063 * @ah: The &struct ath5k_hw
3064 * @pwr_min: Minimum power (x min)
3065 * @pwr_max: Maximum power (x max)
3066 * @pdcurves: Number of available curves
3067 *
3068 * Combine the various pd curves and create the final Power to PDADC table
3069 * We can have up to 4 pd curves, we need to do a similar process
3070 * as we do for RF5112. This time we don't have an edge_flag but we
3071 * set the gain boundaries on a separate register.
3072 */
3073static void
3074ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3075			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3076{
3077	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3078	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3079	u8 *pdadc_tmp;
3080	s16 pdadc_0;
3081	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3082	u8 pd_gain_overlap;
3083
3084	/* Note: Register value is initialized on initvals
3085	 * there is no feedback from hw.
3086	 * XXX: What about pd_gain_overlap from EEPROM ? */
3087	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3088		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3089
3090	/* Create final PDADC table */
3091	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3092		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3093
3094		if (pdg == pdcurves - 1)
3095			/* 2 dB boundary stretch for last
3096			 * (higher power) curve */
3097			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3098		else
3099			/* Set gain boundary in the middle
3100			 * between this curve and the next one */
3101			gain_boundaries[pdg] =
3102				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3103
3104		/* Sanity check in case our 2 db stretch got out of
3105		 * range. */
3106		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3107			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3108
3109		/* For the first curve (lower power)
3110		 * start from 0 dB */
3111		if (pdg == 0)
3112			pdadc_0 = 0;
3113		else
3114			/* For the other curves use the gain overlap */
3115			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3116							pd_gain_overlap;
3117
3118		/* Force each power step to be at least 0.5 dB */
3119		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3120			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3121		else
3122			pwr_step = 1;
3123
3124		/* If pdadc_0 is negative, we need to extrapolate
3125		 * below this pdgain by a number of pwr_steps */
3126		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3127			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3128			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3129			pdadc_0++;
3130		}
3131
3132		/* Set last pwr level, using gain boundaries */
3133		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3134		/* Limit it to be inside pwr range */
3135		table_size = pwr_max[pdg] - pwr_min[pdg];
3136		max_idx = min(pdadc_n, table_size);
3137
3138		/* Fill pdadc_out table */
3139		while (pdadc_0 < max_idx && pdadc_i < 128)
3140			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3141
3142		/* Need to extrapolate above this pdgain? */
3143		if (pdadc_n <= max_idx)
3144			continue;
3145
3146		/* Force each power step to be at least 0.5 dB */
3147		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3148			pwr_step = pdadc_tmp[table_size - 1] -
3149						pdadc_tmp[table_size - 2];
3150		else
3151			pwr_step = 1;
3152
3153		/* Extrapolate above */
3154		while ((pdadc_0 < (s16) pdadc_n) &&
3155		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3156			s16 tmp = pdadc_tmp[table_size - 1] +
3157					(pdadc_0 - max_idx) * pwr_step;
3158			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3159			pdadc_0++;
3160		}
3161	}
3162
3163	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3164		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3165		pdg++;
3166	}
3167
3168	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3169		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3170		pdadc_i++;
3171	}
3172
3173	/* Set gain boundaries */
3174	ath5k_hw_reg_write(ah,
3175		AR5K_REG_SM(pd_gain_overlap,
3176			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3177		AR5K_REG_SM(gain_boundaries[0],
3178			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3179		AR5K_REG_SM(gain_boundaries[1],
3180			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3181		AR5K_REG_SM(gain_boundaries[2],
3182			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3183		AR5K_REG_SM(gain_boundaries[3],
3184			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3185		AR5K_PHY_TPC_RG5);
3186
3187	/* Used for setting rate power table */
3188	ah->ah_txpower.txp_min_idx = pwr_min[0];
3189
3190}
3191
3192/**
3193 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3194 * @ah: The &struct ath5k_hw
3195 * @ee_mode: One of enum ath5k_driver_mode
3196 */
3197static void
3198ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3199{
3200	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3201	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3202	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3203	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3204	u32 reg;
3205	u8 i;
3206
3207	/* Select the right pdgain curves */
3208
3209	/* Clear current settings */
3210	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3211	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3212		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3213		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3214		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3215
3216	/*
3217	 * Use pd_gains curve from eeprom
3218	 *
3219	 * This overrides the default setting from initvals
3220	 * in case some vendors (e.g. Zcomax) don't use the default
3221	 * curves. If we don't honor their settings we 'll get a
3222	 * 5dB (1 * gain overlap ?) drop.
3223	 */
3224	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3225
3226	switch (pdcurves) {
3227	case 3:
3228		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3229		fallthrough;
3230	case 2:
3231		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3232		fallthrough;
3233	case 1:
3234		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3235		break;
3236	}
3237	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3238
3239	/*
3240	 * Write TX power values
3241	 */
3242	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3243		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3244		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3245	}
3246}
3247
3248
3249/*
3250 * Common code for PCDAC/PDADC tables
3251 */
3252
3253/**
3254 * ath5k_setup_channel_powertable() - Set up power table for this channel
3255 * @ah: The &struct ath5k_hw
3256 * @channel: The &struct ieee80211_channel
3257 * @ee_mode: One of enum ath5k_driver_mode
3258 * @type: One of enum ath5k_powertable_type (eeprom.h)
3259 *
3260 * This is the main function that uses all of the above
3261 * to set PCDAC/PDADC table on hw for the current channel.
3262 * This table is used for tx power calibration on the baseband,
3263 * without it we get weird tx power levels and in some cases
3264 * distorted spectral mask
3265 */
3266static int
3267ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3268			struct ieee80211_channel *channel,
3269			u8 ee_mode, u8 type)
3270{
3271	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3272	struct ath5k_chan_pcal_info *pcinfo_L;
3273	struct ath5k_chan_pcal_info *pcinfo_R;
3274	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3275	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3276	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3277	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3278	u8 *tmpL;
3279	u8 *tmpR;
3280	u32 target = channel->center_freq;
3281	int pdg, i;
3282
3283	/* Get surrounding freq piers for this channel */
3284	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3285						&pcinfo_L,
3286						&pcinfo_R);
3287
3288	/* Loop over pd gain curves on
3289	 * surrounding freq piers by index */
3290	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3291
3292		/* Fill curves in reverse order
3293		 * from lower power (max gain)
3294		 * to higher power. Use curve -> idx
3295		 * backmapping we did on eeprom init */
3296		u8 idx = pdg_curve_to_idx[pdg];
3297
3298		/* Grab the needed curves by index */
3299		pdg_L = &pcinfo_L->pd_curves[idx];
3300		pdg_R = &pcinfo_R->pd_curves[idx];
3301
3302		/* Initialize the temp tables */
3303		tmpL = ah->ah_txpower.tmpL[pdg];
3304		tmpR = ah->ah_txpower.tmpR[pdg];
3305
3306		/* Set curve's x boundaries and create
3307		 * curves so that they cover the same
3308		 * range (if we don't do that one table
3309		 * will have values on some range and the
3310		 * other one won't have any so interpolation
3311		 * will fail) */
3312		table_min[pdg] = min(pdg_L->pd_pwr[0],
3313					pdg_R->pd_pwr[0]) / 2;
3314
3315		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3316				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3317
3318		/* Now create the curves on surrounding channels
3319		 * and interpolate if needed to get the final
3320		 * curve for this gain on this channel */
3321		switch (type) {
3322		case AR5K_PWRTABLE_LINEAR_PCDAC:
3323			/* Override min/max so that we don't loose
3324			 * accuracy (don't divide by 2) */
3325			table_min[pdg] = min(pdg_L->pd_pwr[0],
3326						pdg_R->pd_pwr[0]);
3327
3328			table_max[pdg] =
3329				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3330					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3331
3332			/* Override minimum so that we don't get
3333			 * out of bounds while extrapolating
3334			 * below. Don't do this when we have 2
3335			 * curves and we are on the high power curve
3336			 * because table_min is ok in this case */
3337			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3338
3339				table_min[pdg] =
3340					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3341								pdg_R->pd_step,
3342								pdg_L->pd_pwr,
3343								pdg_R->pd_pwr);
3344
3345				/* Don't go too low because we will
3346				 * miss the upper part of the curve.
3347				 * Note: 126 = 31.5dB (max power supported)
3348				 * in 0.25dB units */
3349				if (table_max[pdg] - table_min[pdg] > 126)
3350					table_min[pdg] = table_max[pdg] - 126;
3351			}
3352
3353			fallthrough;
3354		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3355		case AR5K_PWRTABLE_PWR_TO_PDADC:
3356
3357			ath5k_create_power_curve(table_min[pdg],
3358						table_max[pdg],
3359						pdg_L->pd_pwr,
3360						pdg_L->pd_step,
3361						pdg_L->pd_points, tmpL, type);
3362
3363			/* We are in a calibration
3364			 * pier, no need to interpolate
3365			 * between freq piers */
3366			if (pcinfo_L == pcinfo_R)
3367				continue;
3368
3369			ath5k_create_power_curve(table_min[pdg],
3370						table_max[pdg],
3371						pdg_R->pd_pwr,
3372						pdg_R->pd_step,
3373						pdg_R->pd_points, tmpR, type);
3374			break;
3375		default:
3376			return -EINVAL;
3377		}
3378
3379		/* Interpolate between curves
3380		 * of surrounding freq piers to
3381		 * get the final curve for this
3382		 * pd gain. Re-use tmpL for interpolation
3383		 * output */
3384		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3385		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3386			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3387							(s16) pcinfo_L->freq,
3388							(s16) pcinfo_R->freq,
3389							(s16) tmpL[i],
3390							(s16) tmpR[i]);
3391		}
3392	}
3393
3394	/* Now we have a set of curves for this
3395	 * channel on tmpL (x range is table_max - table_min
3396	 * and y values are tmpL[pdg][]) sorted in the same
3397	 * order as EEPROM (because we've used the backmapping).
3398	 * So for RF5112 it's from higher power to lower power
3399	 * and for RF2413 it's from lower power to higher power.
3400	 * For RF5111 we only have one curve. */
3401
3402	/* Fill min and max power levels for this
3403	 * channel by interpolating the values on
3404	 * surrounding channels to complete the dataset */
3405	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3406					(s16) pcinfo_L->freq,
3407					(s16) pcinfo_R->freq,
3408					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3409
3410	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3411					(s16) pcinfo_L->freq,
3412					(s16) pcinfo_R->freq,
3413					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3414
3415	/* Fill PCDAC/PDADC table */
3416	switch (type) {
3417	case AR5K_PWRTABLE_LINEAR_PCDAC:
3418		/* For RF5112 we can have one or two curves
3419		 * and each curve covers a certain power lvl
3420		 * range so we need to do some more processing */
3421		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3422						ee->ee_pd_gains[ee_mode]);
3423
3424		/* Set txp.offset so that we can
3425		 * match max power value with max
3426		 * table index */
3427		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3428		break;
3429	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3430		/* We are done for RF5111 since it has only
3431		 * one curve, just fit the curve on the table */
3432		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3433
3434		/* No rate powertable adjustment for RF5111 */
3435		ah->ah_txpower.txp_min_idx = 0;
3436		ah->ah_txpower.txp_offset = 0;
3437		break;
3438	case AR5K_PWRTABLE_PWR_TO_PDADC:
3439		/* Set PDADC boundaries and fill
3440		 * final PDADC table */
3441		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3442						ee->ee_pd_gains[ee_mode]);
3443
3444		/* Set txp.offset, note that table_min
3445		 * can be negative */
3446		ah->ah_txpower.txp_offset = table_min[0];
3447		break;
3448	default:
3449		return -EINVAL;
3450	}
3451
3452	ah->ah_txpower.txp_setup = true;
3453
3454	return 0;
3455}
3456
3457/**
3458 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3459 * @ah: The &struct ath5k_hw
3460 * @ee_mode: One of enum ath5k_driver_mode
3461 * @type: One of enum ath5k_powertable_type (eeprom.h)
3462 */
3463static void
3464ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3465{
3466	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3467		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3468	else
3469		ath5k_write_pcdac_table(ah);
3470}
3471
3472
3473/**
3474 * DOC: Per-rate tx power setting
3475 *
3476 * This is the code that sets the desired tx power limit (below
3477 * maximum) on hw for each rate (we also have TPC that sets
3478 * power per packet type). We do that by providing an index on the
3479 * PCDAC/PDADC table we set up above, for each rate.
3480 *
3481 * For now we only limit txpower based on maximum tx power
3482 * supported by hw (what's inside rate_info) + conformance test
3483 * limits. We need to limit this even more, based on regulatory domain
3484 * etc to be safe. Normally this is done from above so we don't care
3485 * here, all we care is that the tx power we set will be O.K.
3486 * for the hw (e.g. won't create noise on PA etc).
3487 *
3488 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3489 * x values) and is indexed as follows:
3490 * rates[0] - rates[7] -> OFDM rates
3491 * rates[8] - rates[14] -> CCK rates
3492 * rates[15] -> XR rates (they all have the same power)
3493 */
3494
3495/**
3496 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3497 * @ah: The &struct ath5k_hw
3498 * @max_pwr: The maximum tx power requested in 0.5dB steps
3499 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3500 * @ee_mode: One of enum ath5k_driver_mode
3501 */
3502static void
3503ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3504			struct ath5k_rate_pcal_info *rate_info,
3505			u8 ee_mode)
3506{
3507	unsigned int i;
3508	u16 *rates;
3509	s16 rate_idx_scaled = 0;
3510
3511	/* max_pwr is power level we got from driver/user in 0.5dB
3512	 * units, switch to 0.25dB units so we can compare */
3513	max_pwr *= 2;
3514	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3515
3516	/* apply rate limits */
3517	rates = ah->ah_txpower.txp_rates_power_table;
3518
3519	/* OFDM rates 6 to 24Mb/s */
3520	for (i = 0; i < 5; i++)
3521		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3522
3523	/* Rest OFDM rates */
3524	rates[5] = min(rates[0], rate_info->target_power_36);
3525	rates[6] = min(rates[0], rate_info->target_power_48);
3526	rates[7] = min(rates[0], rate_info->target_power_54);
3527
3528	/* CCK rates */
3529	/* 1L */
3530	rates[8] = min(rates[0], rate_info->target_power_6to24);
3531	/* 2L */
3532	rates[9] = min(rates[0], rate_info->target_power_36);
3533	/* 2S */
3534	rates[10] = min(rates[0], rate_info->target_power_36);
3535	/* 5L */
3536	rates[11] = min(rates[0], rate_info->target_power_48);
3537	/* 5S */
3538	rates[12] = min(rates[0], rate_info->target_power_48);
3539	/* 11L */
3540	rates[13] = min(rates[0], rate_info->target_power_54);
3541	/* 11S */
3542	rates[14] = min(rates[0], rate_info->target_power_54);
3543
3544	/* XR rates */
3545	rates[15] = min(rates[0], rate_info->target_power_6to24);
3546
3547	/* CCK rates have different peak to average ratio
3548	 * so we have to tweak their power so that gainf
3549	 * correction works ok. For this we use OFDM to
3550	 * CCK delta from eeprom */
3551	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3552	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3553		for (i = 8; i <= 15; i++)
3554			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3555
3556	/* Save min/max and current tx power for this channel
3557	 * in 0.25dB units.
3558	 *
3559	 * Note: We use rates[0] for current tx power because
3560	 * it covers most of the rates, in most cases. It's our
3561	 * tx power limit and what the user expects to see. */
3562	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3563	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3564
3565	/* Set max txpower for correct OFDM operation on all rates
3566	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3567	 * gain probe and it's in 0.5dB units */
3568	ah->ah_txpower.txp_ofdm = rates[7];
3569
3570	/* Now that we have all rates setup use table offset to
3571	 * match the power range set by user with the power indices
3572	 * on PCDAC/PDADC table */
3573	for (i = 0; i < 16; i++) {
3574		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3575		/* Don't get out of bounds */
3576		if (rate_idx_scaled > 63)
3577			rate_idx_scaled = 63;
3578		if (rate_idx_scaled < 0)
3579			rate_idx_scaled = 0;
3580		rates[i] = rate_idx_scaled;
3581	}
3582}
3583
3584
3585/**
3586 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3587 * @ah: The &struct ath5k_hw
3588 * @channel: The &struct ieee80211_channel
3589 * @txpower: Requested tx power in 0.5dB steps
3590 *
3591 * Combines all of the above to set the requested tx power limit
3592 * on hw.
3593 */
3594static int
3595ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3596		 u8 txpower)
3597{
3598	struct ath5k_rate_pcal_info rate_info;
3599	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3600	int ee_mode;
3601	u8 type;
3602	int ret;
3603
3604	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3605		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3606		return -EINVAL;
3607	}
3608
3609	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3610
3611	/* Initialize TX power table */
3612	switch (ah->ah_radio) {
3613	case AR5K_RF5110:
3614		/* TODO */
3615		return 0;
3616	case AR5K_RF5111:
3617		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3618		break;
3619	case AR5K_RF5112:
3620		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3621		break;
3622	case AR5K_RF2413:
3623	case AR5K_RF5413:
3624	case AR5K_RF2316:
3625	case AR5K_RF2317:
3626	case AR5K_RF2425:
3627		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3628		break;
3629	default:
3630		return -EINVAL;
3631	}
3632
3633	/*
3634	 * If we don't change channel/mode skip tx powertable calculation
3635	 * and use the cached one.
3636	 */
3637	if (!ah->ah_txpower.txp_setup ||
3638	    (channel->hw_value != curr_channel->hw_value) ||
3639	    (channel->center_freq != curr_channel->center_freq)) {
3640		/* Reset TX power values but preserve requested
3641		 * tx power from above */
3642		int requested_txpower = ah->ah_txpower.txp_requested;
3643
3644		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3645
3646		/* Restore TPC setting and requested tx power */
3647		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3648
3649		ah->ah_txpower.txp_requested = requested_txpower;
3650
3651		/* Calculate the powertable */
3652		ret = ath5k_setup_channel_powertable(ah, channel,
3653							ee_mode, type);
3654		if (ret)
3655			return ret;
3656	}
3657
3658	/* Write table on hw */
3659	ath5k_write_channel_powertable(ah, ee_mode, type);
3660
3661	/* Limit max power if we have a CTL available */
3662	ath5k_get_max_ctl_power(ah, channel);
3663
3664	/* FIXME: Antenna reduction stuff */
3665
3666	/* FIXME: Limit power on turbo modes */
3667
3668	/* FIXME: TPC scale reduction */
3669
3670	/* Get surrounding channels for per-rate power table
3671	 * calibration */
3672	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3673
3674	/* Setup rate power table */
3675	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3676
3677	/* Write rate power table on hw */
3678	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3679		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3680		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3681
3682	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3683		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3684		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3685
3686	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3687		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3688		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3689
3690	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3691		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3692		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3693
3694	/* FIXME: TPC support */
3695	if (ah->ah_txpower.txp_tpc) {
3696		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3697			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3698
3699		ath5k_hw_reg_write(ah,
3700			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3701			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3702			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3703			AR5K_TPC);
3704	} else {
3705		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3706			AR5K_PHY_TXPOWER_RATE_MAX);
3707	}
3708
3709	return 0;
3710}
3711
3712/**
3713 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3714 * @ah: The &struct ath5k_hw
3715 * @txpower: The requested tx power limit in 0.5dB steps
3716 *
3717 * This function provides access to ath5k_hw_txpower to the driver in
3718 * case user or an application changes it while PHY is running.
3719 */
3720int
3721ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3722{
3723	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3724		"changing txpower to %d\n", txpower);
3725
3726	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3727}
3728
3729
3730/*************\
3731 Init function
3732\*************/
3733
3734/**
3735 * ath5k_hw_phy_init() - Initialize PHY
3736 * @ah: The &struct ath5k_hw
3737 * @channel: The @struct ieee80211_channel
3738 * @mode: One of enum ath5k_driver_mode
3739 * @fast: Try a fast channel switch instead
3740 *
3741 * This is the main function used during reset to initialize PHY
3742 * or do a fast channel change if possible.
3743 *
3744 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3745 * warm reset state !
3746 */
3747int
3748ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3749		      u8 mode, bool fast)
3750{
3751	struct ieee80211_channel *curr_channel;
3752	int ret, i;
3753	u32 phy_tst1;
3754	ret = 0;
3755
3756	/*
3757	 * Sanity check for fast flag
3758	 * Don't try fast channel change when changing modulation
3759	 * mode/band. We check for chip compatibility on
3760	 * ath5k_hw_reset.
3761	 */
3762	curr_channel = ah->ah_current_channel;
3763	if (fast && (channel->hw_value != curr_channel->hw_value))
3764		return -EINVAL;
3765
3766	/*
3767	 * On fast channel change we only set the synth parameters
3768	 * while PHY is running, enable calibration and skip the rest.
3769	 */
3770	if (fast) {
3771		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3772				    AR5K_PHY_RFBUS_REQ_REQUEST);
3773		for (i = 0; i < 100; i++) {
3774			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3775				break;
3776			udelay(5);
3777		}
3778		/* Failed */
3779		if (i >= 100)
3780			return -EIO;
3781
3782		/* Set channel and wait for synth */
3783		ret = ath5k_hw_channel(ah, channel);
3784		if (ret)
3785			return ret;
3786
3787		ath5k_hw_wait_for_synth(ah, channel);
3788	}
3789
3790	/*
3791	 * Set TX power
3792	 *
3793	 * Note: We need to do that before we set
3794	 * RF buffer settings on 5211/5212+ so that we
3795	 * properly set curve indices.
3796	 */
3797	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3798					ah->ah_txpower.txp_requested * 2 :
3799					AR5K_TUNE_MAX_TXPOWER);
3800	if (ret)
3801		return ret;
3802
3803	/* Write OFDM timings on 5212*/
3804	if (ah->ah_version == AR5K_AR5212 &&
3805		channel->hw_value != AR5K_MODE_11B) {
3806
3807		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3808		if (ret)
3809			return ret;
3810
3811		/* Spur info is available only from EEPROM versions
3812		 * greater than 5.3, but the EEPROM routines will use
3813		 * static values for older versions */
3814		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3815			ath5k_hw_set_spur_mitigation_filter(ah,
3816							    channel);
3817	}
3818
3819	/* If we used fast channel switching
3820	 * we are done, release RF bus and
3821	 * fire up NF calibration.
3822	 *
3823	 * Note: Only NF calibration due to
3824	 * channel change, not AGC calibration
3825	 * since AGC is still running !
3826	 */
3827	if (fast) {
3828		/*
3829		 * Release RF Bus grant
3830		 */
3831		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3832				    AR5K_PHY_RFBUS_REQ_REQUEST);
3833
3834		/*
3835		 * Start NF calibration
3836		 */
3837		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3838					AR5K_PHY_AGCCTL_NF);
3839
3840		return ret;
3841	}
3842
3843	/*
3844	 * For 5210 we do all initialization using
3845	 * initvals, so we don't have to modify
3846	 * any settings (5210 also only supports
3847	 * a/aturbo modes)
3848	 */
3849	if (ah->ah_version != AR5K_AR5210) {
3850
3851		/*
3852		 * Write initial RF gain settings
3853		 * This should work for both 5111/5112
3854		 */
3855		ret = ath5k_hw_rfgain_init(ah, channel->band);
3856		if (ret)
3857			return ret;
3858
3859		usleep_range(1000, 1500);
3860
3861		/*
3862		 * Write RF buffer
3863		 */
3864		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3865		if (ret)
3866			return ret;
3867
3868		/*Enable/disable 802.11b mode on 5111
3869		(enable 2111 frequency converter + CCK)*/
3870		if (ah->ah_radio == AR5K_RF5111) {
3871			if (mode == AR5K_MODE_11B)
3872				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3873				    AR5K_TXCFG_B_MODE);
3874			else
3875				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3876				    AR5K_TXCFG_B_MODE);
3877		}
3878
3879	} else if (ah->ah_version == AR5K_AR5210) {
3880		usleep_range(1000, 1500);
3881		/* Disable phy and wait */
3882		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3883		usleep_range(1000, 1500);
3884	}
3885
3886	/* Set channel on PHY */
3887	ret = ath5k_hw_channel(ah, channel);
3888	if (ret)
3889		return ret;
3890
3891	/*
3892	 * Enable the PHY and wait until completion
3893	 * This includes BaseBand and Synthesizer
3894	 * activation.
3895	 */
3896	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3897
3898	ath5k_hw_wait_for_synth(ah, channel);
3899
3900	/*
3901	 * Perform ADC test to see if baseband is ready
3902	 * Set tx hold and check adc test register
3903	 */
3904	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3905	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3906	for (i = 0; i <= 20; i++) {
3907		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3908			break;
3909		usleep_range(200, 250);
3910	}
3911	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3912
3913	/*
3914	 * Start automatic gain control calibration
3915	 *
3916	 * During AGC calibration RX path is re-routed to
3917	 * a power detector so we don't receive anything.
3918	 *
3919	 * This method is used to calibrate some static offsets
3920	 * used together with on-the fly I/Q calibration (the
3921	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3922	 * interrupt rx path.
3923	 *
3924	 * While rx path is re-routed to the power detector we also
3925	 * start a noise floor calibration to measure the
3926	 * card's noise floor (the noise we measure when we are not
3927	 * transmitting or receiving anything).
3928	 *
3929	 * If we are in a noisy environment, AGC calibration may time
3930	 * out and/or noise floor calibration might timeout.
3931	 */
3932	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3933				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3934
3935	/* At the same time start I/Q calibration for QAM constellation
3936	 * -no need for CCK- */
3937	ah->ah_iq_cal_needed = false;
3938	if (!(mode == AR5K_MODE_11B)) {
3939		ah->ah_iq_cal_needed = true;
3940		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3941				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3942		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3943				AR5K_PHY_IQ_RUN);
3944	}
3945
3946	/* Wait for gain calibration to finish (we check for I/Q calibration
3947	 * during ath5k_phy_calibrate) */
3948	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3949			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3950		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3951			channel->center_freq);
3952	}
3953
3954	/* Restore antenna mode */
3955	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3956
3957	return ret;
3958}
v5.4
   1/*
   2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6 *
   7 * Permission to use, copy, modify, and distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 *
  19 */
  20
  21/***********************\
  22* PHY related functions *
  23\***********************/
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/delay.h>
  28#include <linux/slab.h>
 
  29#include <asm/unaligned.h>
  30
  31#include "ath5k.h"
  32#include "reg.h"
  33#include "rfbuffer.h"
  34#include "rfgain.h"
  35#include "../regd.h"
  36
  37
  38/**
  39 * DOC: PHY related functions
  40 *
  41 * Here we handle the low-level functions related to baseband
  42 * and analog frontend (RF) parts. This is by far the most complex
  43 * part of the hw code so make sure you know what you are doing.
  44 *
  45 * Here is a list of what this is all about:
  46 *
  47 * - Channel setting/switching
  48 *
  49 * - Automatic Gain Control (AGC) calibration
  50 *
  51 * - Noise Floor calibration
  52 *
  53 * - I/Q imbalance calibration (QAM correction)
  54 *
  55 * - Calibration due to thermal changes (gain_F)
  56 *
  57 * - Spur noise mitigation
  58 *
  59 * - RF/PHY initialization for the various operating modes and bwmodes
  60 *
  61 * - Antenna control
  62 *
  63 * - TX power control per channel/rate/packet type
  64 *
  65 * Also have in mind we never got documentation for most of these
  66 * functions, what we have comes mostly from Atheros's code, reverse
  67 * engineering and patent docs/presentations etc.
  68 */
  69
  70
  71/******************\
  72* Helper functions *
  73\******************/
  74
  75/**
  76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
  77 * @ah: The &struct ath5k_hw
  78 * @band: One of enum nl80211_band
  79 *
  80 * Returns the revision number of a 2GHz, 5GHz or single chip
  81 * radio.
  82 */
  83u16
  84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
  85{
  86	unsigned int i;
  87	u32 srev;
  88	u16 ret;
  89
  90	/*
  91	 * Set the radio chip access register
  92	 */
  93	switch (band) {
  94	case NL80211_BAND_2GHZ:
  95		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  96		break;
  97	case NL80211_BAND_5GHZ:
  98		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  99		break;
 100	default:
 101		return 0;
 102	}
 103
 104	usleep_range(2000, 2500);
 105
 106	/* ...wait until PHY is ready and read the selected radio revision */
 107	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 108
 109	for (i = 0; i < 8; i++)
 110		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 111
 112	if (ah->ah_version == AR5K_AR5210) {
 113		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 114		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 115	} else {
 116		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 117		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 118				((srev & 0x0f) << 4), 8);
 119	}
 120
 121	/* Reset to the 5GHz mode */
 122	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 123
 124	return ret;
 125}
 126
 127/**
 128 * ath5k_channel_ok() - Check if a channel is supported by the hw
 129 * @ah: The &struct ath5k_hw
 130 * @channel: The &struct ieee80211_channel
 131 *
 132 * Note: We don't do any regulatory domain checks here, it's just
 133 * a sanity check.
 134 */
 135bool
 136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 137{
 138	u16 freq = channel->center_freq;
 139
 140	/* Check if the channel is in our supported range */
 141	if (channel->band == NL80211_BAND_2GHZ) {
 142		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 143		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 144			return true;
 145	} else if (channel->band == NL80211_BAND_5GHZ)
 146		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 147		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 148			return true;
 149
 150	return false;
 151}
 152
 153/**
 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 155 * @ah: The &struct ath5k_hw
 156 * @channel: The &struct ieee80211_channel
 157 */
 158bool
 159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 160				struct ieee80211_channel *channel)
 161{
 162	u8 refclk_freq;
 163
 164	if ((ah->ah_radio == AR5K_RF5112) ||
 165	(ah->ah_radio == AR5K_RF5413) ||
 166	(ah->ah_radio == AR5K_RF2413) ||
 167	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 168		refclk_freq = 40;
 169	else
 170		refclk_freq = 32;
 171
 172	if ((channel->center_freq % refclk_freq != 0) &&
 173	((channel->center_freq % refclk_freq < 10) ||
 174	(channel->center_freq % refclk_freq > 22)))
 175		return true;
 176	else
 177		return false;
 178}
 179
 180/**
 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 182 * @ah: The &struct ath5k_hw
 183 * @rf_regs: The struct ath5k_rf_reg
 184 * @val: New value
 185 * @reg_id: RF register ID
 186 * @set: Indicate we need to swap data
 187 *
 188 * This is an internal function used to modify RF Banks before
 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 190 * infos.
 191 */
 192static unsigned int
 193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 194					u32 val, u8 reg_id, bool set)
 195{
 196	const struct ath5k_rf_reg *rfreg = NULL;
 197	u8 offset, bank, num_bits, col, position;
 198	u16 entry;
 199	u32 mask, data, last_bit, bits_shifted, first_bit;
 200	u32 *rfb;
 201	s32 bits_left;
 202	int i;
 203
 204	data = 0;
 205	rfb = ah->ah_rf_banks;
 206
 207	for (i = 0; i < ah->ah_rf_regs_count; i++) {
 208		if (rf_regs[i].index == reg_id) {
 209			rfreg = &rf_regs[i];
 210			break;
 211		}
 212	}
 213
 214	if (rfb == NULL || rfreg == NULL) {
 215		ATH5K_PRINTF("Rf register not found!\n");
 216		/* should not happen */
 217		return 0;
 218	}
 219
 220	bank = rfreg->bank;
 221	num_bits = rfreg->field.len;
 222	first_bit = rfreg->field.pos;
 223	col = rfreg->field.col;
 224
 225	/* first_bit is an offset from bank's
 226	 * start. Since we have all banks on
 227	 * the same array, we use this offset
 228	 * to mark each bank's start */
 229	offset = ah->ah_offset[bank];
 230
 231	/* Boundary check */
 232	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 233		ATH5K_PRINTF("invalid values at offset %u\n", offset);
 234		return 0;
 235	}
 236
 237	entry = ((first_bit - 1) / 8) + offset;
 238	position = (first_bit - 1) % 8;
 239
 240	if (set)
 241		data = ath5k_hw_bitswap(val, num_bits);
 242
 243	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 244	     position = 0, entry++) {
 245
 246		last_bit = (position + bits_left > 8) ? 8 :
 247					position + bits_left;
 248
 249		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 250								(col * 8);
 251
 252		if (set) {
 253			rfb[entry] &= ~mask;
 254			rfb[entry] |= ((data << position) << (col * 8)) & mask;
 255			data >>= (8 - position);
 256		} else {
 257			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 258				<< bits_shifted;
 259			bits_shifted += last_bit - position;
 260		}
 261
 262		bits_left -= 8 - position;
 263	}
 264
 265	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 266
 267	return data;
 268}
 269
 270/**
 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 272 * @ah: the &struct ath5k_hw
 273 * @channel: the currently set channel upon reset
 274 *
 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 277 *
 278 * Since delta slope is floating point we split it on its exponent and
 279 * mantissa and provide these values on hw.
 280 *
 281 * For more infos i think this patent is related
 282 * "http://www.freepatentsonline.com/7184495.html"
 283 */
 284static inline int
 285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 286				struct ieee80211_channel *channel)
 287{
 288	/* Get exponent and mantissa and set it */
 289	u32 coef_scaled, coef_exp, coef_man,
 290		ds_coef_exp, ds_coef_man, clock;
 291
 292	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 293		(channel->hw_value == AR5K_MODE_11B));
 294
 295	/* Get coefficient
 296	 * ALGO: coef = (5 * clock / carrier_freq) / 2
 297	 * we scale coef by shifting clock value by 24 for
 298	 * better precision since we use integers */
 299	switch (ah->ah_bwmode) {
 300	case AR5K_BWMODE_40MHZ:
 301		clock = 40 * 2;
 302		break;
 303	case AR5K_BWMODE_10MHZ:
 304		clock = 40 / 2;
 305		break;
 306	case AR5K_BWMODE_5MHZ:
 307		clock = 40 / 4;
 308		break;
 309	default:
 310		clock = 40;
 311		break;
 312	}
 313	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 314
 315	/* Get exponent
 316	 * ALGO: coef_exp = 14 - highest set bit position */
 317	coef_exp = ilog2(coef_scaled);
 318
 319	/* Doesn't make sense if it's zero*/
 320	if (!coef_scaled || !coef_exp)
 321		return -EINVAL;
 322
 323	/* Note: we've shifted coef_scaled by 24 */
 324	coef_exp = 14 - (coef_exp - 24);
 325
 326
 327	/* Get mantissa (significant digits)
 328	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 329	coef_man = coef_scaled +
 330		(1 << (24 - coef_exp - 1));
 331
 332	/* Calculate delta slope coefficient exponent
 333	 * and mantissa (remove scaling) and set them on hw */
 334	ds_coef_man = coef_man >> (24 - coef_exp);
 335	ds_coef_exp = coef_exp - 16;
 336
 337	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 338		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 339	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 340		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 341
 342	return 0;
 343}
 344
 345/**
 346 * ath5k_hw_phy_disable() - Disable PHY
 347 * @ah: The &struct ath5k_hw
 348 */
 349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 350{
 351	/*Just a try M.F.*/
 352	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 353
 354	return 0;
 355}
 356
 357/**
 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 359 * @ah: The &struct ath5k_hw
 360 * @channel: The &struct ieee80211_channel
 361 */
 362static void
 363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 364			struct ieee80211_channel *channel)
 365{
 366	/*
 367	 * On 5211+ read activation -> rx delay
 368	 * and use it (100ns steps).
 369	 */
 370	if (ah->ah_version != AR5K_AR5210) {
 371		u32 delay;
 372		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 373			AR5K_PHY_RX_DELAY_M;
 374		delay = (channel->hw_value == AR5K_MODE_11B) ?
 375			((delay << 2) / 22) : (delay / 10);
 376		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 377			delay = delay << 1;
 378		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 379			delay = delay << 2;
 380		/* XXX: /2 on turbo ? Let's be safe
 381		 * for now */
 382		usleep_range(100 + delay, 100 + (2 * delay));
 383	} else {
 384		usleep_range(1000, 1500);
 385	}
 386}
 387
 388
 389/**********************\
 390* RF Gain optimization *
 391\**********************/
 392
 393/**
 394 * DOC: RF Gain optimization
 395 *
 396 * This code is used to optimize RF gain on different environments
 397 * (temperature mostly) based on feedback from a power detector.
 398 *
 399 * It's only used on RF5111 and RF5112, later RF chips seem to have
 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 401 * no gain optimization ladder-.
 402 *
 403 * For more infos check out this patent doc
 404 * "http://www.freepatentsonline.com/7400691.html"
 405 *
 406 * This paper describes power drops as seen on the receiver due to
 407 * probe packets
 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 409 * %20of%20Power%20Control.pdf"
 410 *
 411 * And this is the MadWiFi bug entry related to the above
 412 * "http://madwifi-project.org/ticket/1659"
 413 * with various measurements and diagrams
 414 */
 415
 416/**
 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 418 * @ah: The &struct ath5k_hw
 419 */
 420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 421{
 422	/* Initialize the gain optimization values */
 423	switch (ah->ah_radio) {
 424	case AR5K_RF5111:
 425		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 426		ah->ah_gain.g_low = 20;
 427		ah->ah_gain.g_high = 35;
 428		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 429		break;
 430	case AR5K_RF5112:
 431		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 432		ah->ah_gain.g_low = 20;
 433		ah->ah_gain.g_high = 85;
 434		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 435		break;
 436	default:
 437		return -EINVAL;
 438	}
 439
 440	return 0;
 441}
 442
 443/**
 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 445 * @ah: The &struct ath5k_hw
 446 *
 447 * Schedules a gain probe check on the next transmitted packet.
 448 * That means our next packet is going to be sent with lower
 449 * tx power and a Peak to Average Power Detector (PAPD) will try
 450 * to measure the gain.
 451 *
 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 453 * just after we enable the probe so that we don't mess with
 454 * standard traffic.
 455 */
 456static void
 457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 458{
 459
 460	/* Skip if gain calibration is inactive or
 461	 * we already handle a probe request */
 462	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 463		return;
 464
 465	/* Send the packet with 2dB below max power as
 466	 * patent doc suggest */
 467	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 468			AR5K_PHY_PAPD_PROBE_TXPOWER) |
 469			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 470
 471	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 472
 473}
 474
 475/**
 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 477 * @ah: The &struct ath5k_hw
 478 *
 479 * Calculate Gain_F measurement correction
 480 * based on the current step for RF5112 rev. 2
 481 */
 482static u32
 483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 484{
 485	u32 mix, step;
 486	const struct ath5k_gain_opt *go;
 487	const struct ath5k_gain_opt_step *g_step;
 488	const struct ath5k_rf_reg *rf_regs;
 489
 490	/* Only RF5112 Rev. 2 supports it */
 491	if ((ah->ah_radio != AR5K_RF5112) ||
 492	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 493		return 0;
 494
 495	go = &rfgain_opt_5112;
 496	rf_regs = rf_regs_5112a;
 497	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 498
 499	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 500
 501	if (ah->ah_rf_banks == NULL)
 502		return 0;
 503
 504	ah->ah_gain.g_f_corr = 0;
 505
 506	/* No VGA (Variable Gain Amplifier) override, skip */
 507	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 508		return 0;
 509
 510	/* Mix gain stepping */
 511	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 512
 513	/* Mix gain override */
 514	mix = g_step->gos_param[0];
 515
 516	switch (mix) {
 517	case 3:
 518		ah->ah_gain.g_f_corr = step * 2;
 519		break;
 520	case 2:
 521		ah->ah_gain.g_f_corr = (step - 5) * 2;
 522		break;
 523	case 1:
 524		ah->ah_gain.g_f_corr = step;
 525		break;
 526	default:
 527		ah->ah_gain.g_f_corr = 0;
 528		break;
 529	}
 530
 531	return ah->ah_gain.g_f_corr;
 532}
 533
 534/**
 535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 536 * @ah: The &struct ath5k_hw
 537 *
 538 * Check if current gain_F measurement is in the range of our
 539 * power detector windows. If we get a measurement outside range
 540 * we know it's not accurate (detectors can't measure anything outside
 541 * their detection window) so we must ignore it.
 542 *
 543 * Returns true if readback was O.K. or false on failure
 544 */
 545static bool
 546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 547{
 548	const struct ath5k_rf_reg *rf_regs;
 549	u32 step, mix_ovr, level[4];
 550
 551	if (ah->ah_rf_banks == NULL)
 552		return false;
 553
 554	if (ah->ah_radio == AR5K_RF5111) {
 555
 556		rf_regs = rf_regs_5111;
 557		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 558
 559		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 560			false);
 561
 562		level[0] = 0;
 563		level[1] = (step == 63) ? 50 : step + 4;
 564		level[2] = (step != 63) ? 64 : level[0];
 565		level[3] = level[2] + 50;
 566
 567		ah->ah_gain.g_high = level[3] -
 568			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 569		ah->ah_gain.g_low = level[0] +
 570			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 571	} else {
 572
 573		rf_regs = rf_regs_5112;
 574		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 575
 576		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 577			false);
 578
 579		level[0] = level[2] = 0;
 580
 581		if (mix_ovr == 1) {
 582			level[1] = level[3] = 83;
 583		} else {
 584			level[1] = level[3] = 107;
 585			ah->ah_gain.g_high = 55;
 586		}
 587	}
 588
 589	return (ah->ah_gain.g_current >= level[0] &&
 590			ah->ah_gain.g_current <= level[1]) ||
 591		(ah->ah_gain.g_current >= level[2] &&
 592			ah->ah_gain.g_current <= level[3]);
 593}
 594
 595/**
 596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 597 * @ah: The &struct ath5k_hw
 598 *
 599 * Choose the right target gain based on current gain
 600 * and RF gain optimization ladder
 601 */
 602static s8
 603ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 604{
 605	const struct ath5k_gain_opt *go;
 606	const struct ath5k_gain_opt_step *g_step;
 607	int ret = 0;
 608
 609	switch (ah->ah_radio) {
 610	case AR5K_RF5111:
 611		go = &rfgain_opt_5111;
 612		break;
 613	case AR5K_RF5112:
 614		go = &rfgain_opt_5112;
 615		break;
 616	default:
 617		return 0;
 618	}
 619
 620	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 621
 622	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 623
 624		/* Reached maximum */
 625		if (ah->ah_gain.g_step_idx == 0)
 626			return -1;
 627
 628		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 629				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 630				ah->ah_gain.g_step_idx > 0;
 631				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 632			ah->ah_gain.g_target -= 2 *
 633			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 634			    g_step->gos_gain);
 635
 636		ret = 1;
 637		goto done;
 638	}
 639
 640	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 641
 642		/* Reached minimum */
 643		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 644			return -2;
 645
 646		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 647				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 648				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 649				g_step = &go->go_step[ah->ah_gain.g_step_idx])
 650			ah->ah_gain.g_target -= 2 *
 651			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 652			    g_step->gos_gain);
 653
 654		ret = 2;
 655		goto done;
 656	}
 657
 658done:
 659	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 660		"ret %d, gain step %u, current gain %u, target gain %u\n",
 661		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 662		ah->ah_gain.g_target);
 663
 664	return ret;
 665}
 666
 667/**
 668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 669 * @ah: The &struct ath5k_hw
 670 *
 671 * Main callback for thermal RF gain calibration engine
 672 * Check for a new gain reading and schedule an adjustment
 673 * if needed.
 674 *
 675 * Returns one of enum ath5k_rfgain codes
 676 */
 677enum ath5k_rfgain
 678ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 679{
 680	u32 data, type;
 681	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 682
 683	if (ah->ah_rf_banks == NULL ||
 684	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 685		return AR5K_RFGAIN_INACTIVE;
 686
 687	/* No check requested, either engine is inactive
 688	 * or an adjustment is already requested */
 689	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 690		goto done;
 691
 692	/* Read the PAPD (Peak to Average Power Detector)
 693	 * register */
 694	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 695
 696	/* No probe is scheduled, read gain_F measurement */
 697	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 698		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 699		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 700
 701		/* If tx packet is CCK correct the gain_F measurement
 702		 * by cck ofdm gain delta */
 703		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 704			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 705				ah->ah_gain.g_current +=
 706					ee->ee_cck_ofdm_gain_delta;
 707			else
 708				ah->ah_gain.g_current +=
 709					AR5K_GAIN_CCK_PROBE_CORR;
 710		}
 711
 712		/* Further correct gain_F measurement for
 713		 * RF5112A radios */
 714		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 715			ath5k_hw_rf_gainf_corr(ah);
 716			ah->ah_gain.g_current =
 717				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 718				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 719				0;
 720		}
 721
 722		/* Check if measurement is ok and if we need
 723		 * to adjust gain, schedule a gain adjustment,
 724		 * else switch back to the active state */
 725		if (ath5k_hw_rf_check_gainf_readback(ah) &&
 726		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 727		ath5k_hw_rf_gainf_adjust(ah)) {
 728			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 729		} else {
 730			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 731		}
 732	}
 733
 734done:
 735	return ah->ah_gain.g_state;
 736}
 737
 738/**
 739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 740 * @ah: The &struct ath5k_hw
 741 * @band: One of enum nl80211_band
 742 *
 743 * Write initial RF gain table to set the RF sensitivity.
 744 *
 745 * NOTE: This one works on all RF chips and has nothing to do
 746 * with Gain_F calibration
 747 */
 748static int
 749ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
 750{
 751	const struct ath5k_ini_rfgain *ath5k_rfg;
 752	unsigned int i, size, index;
 753
 754	switch (ah->ah_radio) {
 755	case AR5K_RF5111:
 756		ath5k_rfg = rfgain_5111;
 757		size = ARRAY_SIZE(rfgain_5111);
 758		break;
 759	case AR5K_RF5112:
 760		ath5k_rfg = rfgain_5112;
 761		size = ARRAY_SIZE(rfgain_5112);
 762		break;
 763	case AR5K_RF2413:
 764		ath5k_rfg = rfgain_2413;
 765		size = ARRAY_SIZE(rfgain_2413);
 766		break;
 767	case AR5K_RF2316:
 768		ath5k_rfg = rfgain_2316;
 769		size = ARRAY_SIZE(rfgain_2316);
 770		break;
 771	case AR5K_RF5413:
 772		ath5k_rfg = rfgain_5413;
 773		size = ARRAY_SIZE(rfgain_5413);
 774		break;
 775	case AR5K_RF2317:
 776	case AR5K_RF2425:
 777		ath5k_rfg = rfgain_2425;
 778		size = ARRAY_SIZE(rfgain_2425);
 779		break;
 780	default:
 781		return -EINVAL;
 782	}
 783
 784	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
 785
 786	for (i = 0; i < size; i++) {
 787		AR5K_REG_WAIT(i);
 788		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 789			(u32)ath5k_rfg[i].rfg_register);
 790	}
 791
 792	return 0;
 793}
 794
 795
 796/********************\
 797* RF Registers setup *
 798\********************/
 799
 800/**
 801 * ath5k_hw_rfregs_init() - Initialize RF register settings
 802 * @ah: The &struct ath5k_hw
 803 * @channel: The &struct ieee80211_channel
 804 * @mode: One of enum ath5k_driver_mode
 805 *
 806 * Setup RF registers by writing RF buffer on hw. For
 807 * more infos on this, check out rfbuffer.h
 808 */
 809static int
 810ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 811			struct ieee80211_channel *channel,
 812			unsigned int mode)
 813{
 814	const struct ath5k_rf_reg *rf_regs;
 815	const struct ath5k_ini_rfbuffer *ini_rfb;
 816	const struct ath5k_gain_opt *go = NULL;
 817	const struct ath5k_gain_opt_step *g_step;
 818	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 819	u8 ee_mode = 0;
 820	u32 *rfb;
 821	int i, obdb = -1, bank = -1;
 822
 823	switch (ah->ah_radio) {
 824	case AR5K_RF5111:
 825		rf_regs = rf_regs_5111;
 826		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 827		ini_rfb = rfb_5111;
 828		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 829		go = &rfgain_opt_5111;
 830		break;
 831	case AR5K_RF5112:
 832		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 833			rf_regs = rf_regs_5112a;
 834			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 835			ini_rfb = rfb_5112a;
 836			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 837		} else {
 838			rf_regs = rf_regs_5112;
 839			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 840			ini_rfb = rfb_5112;
 841			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 842		}
 843		go = &rfgain_opt_5112;
 844		break;
 845	case AR5K_RF2413:
 846		rf_regs = rf_regs_2413;
 847		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 848		ini_rfb = rfb_2413;
 849		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 850		break;
 851	case AR5K_RF2316:
 852		rf_regs = rf_regs_2316;
 853		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 854		ini_rfb = rfb_2316;
 855		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 856		break;
 857	case AR5K_RF5413:
 858		rf_regs = rf_regs_5413;
 859		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 860		ini_rfb = rfb_5413;
 861		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 862		break;
 863	case AR5K_RF2317:
 864		rf_regs = rf_regs_2425;
 865		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 866		ini_rfb = rfb_2317;
 867		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 868		break;
 869	case AR5K_RF2425:
 870		rf_regs = rf_regs_2425;
 871		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 872		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 873			ini_rfb = rfb_2425;
 874			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 875		} else {
 876			ini_rfb = rfb_2417;
 877			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 878		}
 879		break;
 880	default:
 881		return -EINVAL;
 882	}
 883
 884	/* If it's the first time we set RF buffer, allocate
 885	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
 886	 * we set above */
 887	if (ah->ah_rf_banks == NULL) {
 888		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
 889								sizeof(u32),
 890								GFP_KERNEL);
 891		if (ah->ah_rf_banks == NULL) {
 892			ATH5K_ERR(ah, "out of memory\n");
 893			return -ENOMEM;
 894		}
 895	}
 896
 897	/* Copy values to modify them */
 898	rfb = ah->ah_rf_banks;
 899
 900	for (i = 0; i < ah->ah_rf_banks_size; i++) {
 901		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 902			ATH5K_ERR(ah, "invalid bank\n");
 903			return -EINVAL;
 904		}
 905
 906		/* Bank changed, write down the offset */
 907		if (bank != ini_rfb[i].rfb_bank) {
 908			bank = ini_rfb[i].rfb_bank;
 909			ah->ah_offset[bank] = i;
 910		}
 911
 912		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 913	}
 914
 915	/* Set Output and Driver bias current (OB/DB) */
 916	if (channel->band == NL80211_BAND_2GHZ) {
 917
 918		if (channel->hw_value == AR5K_MODE_11B)
 919			ee_mode = AR5K_EEPROM_MODE_11B;
 920		else
 921			ee_mode = AR5K_EEPROM_MODE_11G;
 922
 923		/* For RF511X/RF211X combination we
 924		 * use b_OB and b_DB parameters stored
 925		 * in eeprom on ee->ee_ob[ee_mode][0]
 926		 *
 927		 * For all other chips we use OB/DB for 2GHz
 928		 * stored in the b/g modal section just like
 929		 * 802.11a on ee->ee_ob[ee_mode][1] */
 930		if ((ah->ah_radio == AR5K_RF5111) ||
 931		(ah->ah_radio == AR5K_RF5112))
 932			obdb = 0;
 933		else
 934			obdb = 1;
 935
 936		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 937						AR5K_RF_OB_2GHZ, true);
 938
 939		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 940						AR5K_RF_DB_2GHZ, true);
 941
 942	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 943	} else if ((channel->band == NL80211_BAND_5GHZ) ||
 944			(ah->ah_radio == AR5K_RF5111)) {
 945
 946		/* For 11a, Turbo and XR we need to choose
 947		 * OB/DB based on frequency range */
 948		ee_mode = AR5K_EEPROM_MODE_11A;
 949		obdb =	 channel->center_freq >= 5725 ? 3 :
 950			(channel->center_freq >= 5500 ? 2 :
 951			(channel->center_freq >= 5260 ? 1 :
 952			 (channel->center_freq > 4000 ? 0 : -1)));
 953
 954		if (obdb < 0)
 955			return -EINVAL;
 956
 957		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 958						AR5K_RF_OB_5GHZ, true);
 959
 960		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 961						AR5K_RF_DB_5GHZ, true);
 962	}
 963
 964	g_step = &go->go_step[ah->ah_gain.g_step_idx];
 965
 966	/* Set turbo mode (N/A on RF5413) */
 967	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 968	(ah->ah_radio != AR5K_RF5413))
 969		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 970
 971	/* Bank Modifications (chip-specific) */
 972	if (ah->ah_radio == AR5K_RF5111) {
 973
 974		/* Set gain_F settings according to current step */
 975		if (channel->hw_value != AR5K_MODE_11B) {
 976
 977			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 978					AR5K_PHY_FRAME_CTL_TX_CLIP,
 979					g_step->gos_param[0]);
 980
 981			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 982							AR5K_RF_PWD_90, true);
 983
 984			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 985							AR5K_RF_PWD_84, true);
 986
 987			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 988						AR5K_RF_RFGAIN_SEL, true);
 989
 990			/* We programmed gain_F parameters, switch back
 991			 * to active state */
 992			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 993
 994		}
 995
 996		/* Bank 6/7 setup */
 997
 998		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 999						AR5K_RF_PWD_XPD, true);
1000
1001		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002						AR5K_RF_XPD_GAIN, true);
1003
1004		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005						AR5K_RF_GAIN_I, true);
1006
1007		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008						AR5K_RF_PLO_SEL, true);
1009
1010		/* Tweak power detectors for half/quarter rate support */
1011		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013			u8 wait_i;
1014
1015			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016						AR5K_RF_WAIT_S, true);
1017
1018			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019							0x1f : 0x10;
1020
1021			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022						AR5K_RF_WAIT_I, true);
1023			ath5k_hw_rfb_op(ah, rf_regs, 3,
1024						AR5K_RF_MAX_TIME, true);
1025
1026		}
1027	}
1028
1029	if (ah->ah_radio == AR5K_RF5112) {
1030
1031		/* Set gain_F settings according to current step */
1032		if (channel->hw_value != AR5K_MODE_11B) {
1033
1034			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035						AR5K_RF_MIXGAIN_OVR, true);
1036
1037			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038						AR5K_RF_PWD_138, true);
1039
1040			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041						AR5K_RF_PWD_137, true);
1042
1043			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044						AR5K_RF_PWD_136, true);
1045
1046			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047						AR5K_RF_PWD_132, true);
1048
1049			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050						AR5K_RF_PWD_131, true);
1051
1052			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053						AR5K_RF_PWD_130, true);
1054
1055			/* We programmed gain_F parameters, switch back
1056			 * to active state */
1057			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058		}
1059
1060		/* Bank 6/7 setup */
1061
1062		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063						AR5K_RF_XPD_SEL, true);
1064
1065		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066			/* Rev. 1 supports only one xpd */
1067			ath5k_hw_rfb_op(ah, rf_regs,
1068						ee->ee_x_gain[ee_mode],
1069						AR5K_RF_XPD_GAIN, true);
1070
1071		} else {
1072			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073			if (ee->ee_pd_gains[ee_mode] > 1) {
1074				ath5k_hw_rfb_op(ah, rf_regs,
1075						pdg_curve_to_idx[0],
1076						AR5K_RF_PD_GAIN_LO, true);
1077				ath5k_hw_rfb_op(ah, rf_regs,
1078						pdg_curve_to_idx[1],
1079						AR5K_RF_PD_GAIN_HI, true);
1080			} else {
1081				ath5k_hw_rfb_op(ah, rf_regs,
1082						pdg_curve_to_idx[0],
1083						AR5K_RF_PD_GAIN_LO, true);
1084				ath5k_hw_rfb_op(ah, rf_regs,
1085						pdg_curve_to_idx[0],
1086						AR5K_RF_PD_GAIN_HI, true);
1087			}
1088
1089			/* Lower synth voltage on Rev 2 */
1090			if (ah->ah_radio == AR5K_RF5112 &&
1091			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092				ath5k_hw_rfb_op(ah, rf_regs, 2,
1093						AR5K_RF_HIGH_VC_CP, true);
1094
1095				ath5k_hw_rfb_op(ah, rf_regs, 2,
1096						AR5K_RF_MID_VC_CP, true);
1097
1098				ath5k_hw_rfb_op(ah, rf_regs, 2,
1099						AR5K_RF_LOW_VC_CP, true);
1100
1101				ath5k_hw_rfb_op(ah, rf_regs, 2,
1102						AR5K_RF_PUSH_UP, true);
1103			}
1104
1105			/* Decrease power consumption on 5213+ BaseBand */
1106			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107				ath5k_hw_rfb_op(ah, rf_regs, 1,
1108						AR5K_RF_PAD2GND, true);
1109
1110				ath5k_hw_rfb_op(ah, rf_regs, 1,
1111						AR5K_RF_XB2_LVL, true);
1112
1113				ath5k_hw_rfb_op(ah, rf_regs, 1,
1114						AR5K_RF_XB5_LVL, true);
1115
1116				ath5k_hw_rfb_op(ah, rf_regs, 1,
1117						AR5K_RF_PWD_167, true);
1118
1119				ath5k_hw_rfb_op(ah, rf_regs, 1,
1120						AR5K_RF_PWD_166, true);
1121			}
1122		}
1123
1124		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125						AR5K_RF_GAIN_I, true);
1126
1127		/* Tweak power detector for half/quarter rates */
1128		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130			u8 pd_delay;
1131
1132			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133							0xf : 0x8;
1134
1135			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136						AR5K_RF_PD_PERIOD_A, true);
1137			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138						AR5K_RF_PD_DELAY_A, true);
1139
1140		}
1141	}
1142
1143	if (ah->ah_radio == AR5K_RF5413 &&
1144	channel->band == NL80211_BAND_2GHZ) {
1145
1146		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147									true);
1148
1149		/* Set optimum value for early revisions (on pci-e chips) */
1150		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151		ah->ah_mac_srev < AR5K_SREV_AR5413)
1152			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153						AR5K_RF_PWD_ICLOBUF_2G, true);
1154
1155	}
1156
1157	/* Write RF banks on hw */
1158	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159		AR5K_REG_WAIT(i);
1160		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161	}
1162
1163	return 0;
1164}
1165
1166
1167/**************************\
1168  PHY/RF channel functions
1169\**************************/
1170
1171/**
1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173 * @channel: The &struct ieee80211_channel
1174 *
1175 * Map channel frequency to IEEE channel number and convert it
1176 * to an internal channel value used by the RF5110 chipset.
1177 */
1178static u32
1179ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180{
1181	u32 athchan;
1182
1183	athchan = (ath5k_hw_bitswap(
1184			(ieee80211_frequency_to_channel(
1185				channel->center_freq) - 24) / 2, 5)
1186				<< 1) | (1 << 6) | 0x1;
1187	return athchan;
1188}
1189
1190/**
1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192 * @ah: The &struct ath5k_hw
1193 * @channel: The &struct ieee80211_channel
1194 */
1195static int
1196ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197		struct ieee80211_channel *channel)
1198{
1199	u32 data;
1200
1201	/*
1202	 * Set the channel and wait
1203	 */
1204	data = ath5k_hw_rf5110_chan2athchan(channel);
1205	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207	usleep_range(1000, 1500);
1208
1209	return 0;
1210}
1211
1212/**
1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214 * @ieee: IEEE channel number
1215 * @athchan: The &struct ath5k_athchan_2ghz
1216 *
1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218 * we need to add some offsets and extra flags to the data values we pass
1219 * on to the PHY. So for every 2GHz channel this function gets called
1220 * to do the conversion.
1221 */
1222static int
1223ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224		struct ath5k_athchan_2ghz *athchan)
1225{
1226	int channel;
1227
1228	/* Cast this value to catch negative channel numbers (>= -19) */
1229	channel = (int)ieee;
1230
1231	/*
1232	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1233	 */
1234	if (channel <= 13) {
1235		athchan->a2_athchan = 115 + channel;
1236		athchan->a2_flags = 0x46;
1237	} else if (channel == 14) {
1238		athchan->a2_athchan = 124;
1239		athchan->a2_flags = 0x44;
1240	} else if (channel >= 15 && channel <= 26) {
1241		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242		athchan->a2_flags = 0x46;
1243	} else
1244		return -EINVAL;
1245
1246	return 0;
1247}
1248
1249/**
1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251 * @ah: The &struct ath5k_hw
1252 * @channel: The &struct ieee80211_channel
1253 */
1254static int
1255ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256		struct ieee80211_channel *channel)
1257{
1258	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259	unsigned int ath5k_channel =
1260		ieee80211_frequency_to_channel(channel->center_freq);
1261	u32 data0, data1, clock;
1262	int ret;
1263
1264	/*
1265	 * Set the channel on the RF5111 radio
1266	 */
1267	data0 = data1 = 0;
1268
1269	if (channel->band == NL80211_BAND_2GHZ) {
1270		/* Map 2GHz channel to 5GHz Atheros channel ID */
1271		ret = ath5k_hw_rf5111_chan2athchan(
1272			ieee80211_frequency_to_channel(channel->center_freq),
1273			&ath5k_channel_2ghz);
1274		if (ret)
1275			return ret;
1276
1277		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279		    << 5) | (1 << 4);
1280	}
1281
1282	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283		clock = 1;
1284		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285			(clock << 1) | (1 << 10) | 1;
1286	} else {
1287		clock = 0;
1288		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289			<< 2) | (clock << 1) | (1 << 10) | 1;
1290	}
1291
1292	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293			AR5K_RF_BUFFER);
1294	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295			AR5K_RF_BUFFER_CONTROL_3);
1296
1297	return 0;
1298}
1299
1300/**
1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302 * @ah: The &struct ath5k_hw
1303 * @channel: The &struct ieee80211_channel
1304 *
1305 * On RF5112/2112 and newer we don't need to do any conversion.
1306 * We pass the frequency value after a few modifications to the
1307 * chip directly.
1308 *
1309 * NOTE: Make sure channel frequency given is within our range or else
1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311 */
1312static int
1313ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314		struct ieee80211_channel *channel)
1315{
1316	u32 data, data0, data1, data2;
1317	u16 c;
1318
1319	data = data0 = data1 = data2 = 0;
1320	c = channel->center_freq;
1321
1322	/* My guess based on code:
1323	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325	 * (3040/2). data0 is used to set the PLL divider and data1
1326	 * selects synth mode. */
1327	if (c < 4800) {
1328		/* Channel 14 and all frequencies with 2Hz spacing
1329		 * below/above (non-standard channels) */
1330		if (!((c - 2224) % 5)) {
1331			/* Same as (c - 2224) / 5 */
1332			data0 = ((2 * (c - 704)) - 3040) / 10;
1333			data1 = 1;
1334		/* Channel 1 and all frequencies with 5Hz spacing
1335		 * below/above (standard channels without channel 14) */
1336		} else if (!((c - 2192) % 5)) {
1337			/* Same as (c - 2192) / 5 */
1338			data0 = ((2 * (c - 672)) - 3040) / 10;
1339			data1 = 0;
1340		} else
1341			return -EINVAL;
1342
1343		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344	/* This is more complex, we have a single synthesizer with
1345	 * 4 reference clock settings (?) based on frequency spacing
1346	 * and set using data2. LO is at 4800Hz and data0 is again used
1347	 * to set some divider.
1348	 *
1349	 * NOTE: There is an old atheros presentation at Stanford
1350	 * that mentions a method called dual direct conversion
1351	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1352	 * have here, or an updated version. */
1353	} else if ((c % 5) != 2 || c > 5435) {
1354		if (!(c % 20) && c >= 5120) {
1355			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356			data2 = ath5k_hw_bitswap(3, 2);
1357		} else if (!(c % 10)) {
1358			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359			data2 = ath5k_hw_bitswap(2, 2);
1360		} else if (!(c % 5)) {
1361			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362			data2 = ath5k_hw_bitswap(1, 2);
1363		} else
1364			return -EINVAL;
1365	} else {
1366		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367		data2 = ath5k_hw_bitswap(0, 2);
1368	}
1369
1370	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371
1372	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374
1375	return 0;
1376}
1377
1378/**
1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380 * @ah: The &struct ath5k_hw
1381 * @channel: The &struct ieee80211_channel
1382 *
1383 * AR2425/2417 have a different 2GHz RF so code changes
1384 * a little bit from RF5112.
1385 */
1386static int
1387ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388		struct ieee80211_channel *channel)
1389{
1390	u32 data, data0, data2;
1391	u16 c;
1392
1393	data = data0 = data2 = 0;
1394	c = channel->center_freq;
1395
1396	if (c < 4800) {
1397		data0 = ath5k_hw_bitswap((c - 2272), 8);
1398		data2 = 0;
1399	/* ? 5GHz ? */
1400	} else if ((c % 5) != 2 || c > 5435) {
1401		if (!(c % 20) && c < 5120)
1402			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403		else if (!(c % 10))
1404			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405		else if (!(c % 5))
1406			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407		else
1408			return -EINVAL;
1409		data2 = ath5k_hw_bitswap(1, 2);
1410	} else {
1411		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412		data2 = ath5k_hw_bitswap(0, 2);
1413	}
1414
1415	data = (data0 << 4) | data2 << 2 | 0x1001;
1416
1417	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419
1420	return 0;
1421}
1422
1423/**
1424 * ath5k_hw_channel() - Set a channel on the radio chip
1425 * @ah: The &struct ath5k_hw
1426 * @channel: The &struct ieee80211_channel
1427 *
1428 * This is the main function called to set a channel on the
1429 * radio chip based on the radio chip version.
1430 */
1431static int
1432ath5k_hw_channel(struct ath5k_hw *ah,
1433		struct ieee80211_channel *channel)
1434{
1435	int ret;
1436	/*
1437	 * Check bounds supported by the PHY (we don't care about regulatory
1438	 * restrictions at this point).
1439	 */
1440	if (!ath5k_channel_ok(ah, channel)) {
1441		ATH5K_ERR(ah,
1442			"channel frequency (%u MHz) out of supported "
1443			"band range\n",
1444			channel->center_freq);
1445		return -EINVAL;
1446	}
1447
1448	/*
1449	 * Set the channel and wait
1450	 */
1451	switch (ah->ah_radio) {
1452	case AR5K_RF5110:
1453		ret = ath5k_hw_rf5110_channel(ah, channel);
1454		break;
1455	case AR5K_RF5111:
1456		ret = ath5k_hw_rf5111_channel(ah, channel);
1457		break;
1458	case AR5K_RF2317:
1459	case AR5K_RF2425:
1460		ret = ath5k_hw_rf2425_channel(ah, channel);
1461		break;
1462	default:
1463		ret = ath5k_hw_rf5112_channel(ah, channel);
1464		break;
1465	}
1466
1467	if (ret)
1468		return ret;
1469
1470	/* Set JAPAN setting for channel 14 */
1471	if (channel->center_freq == 2484) {
1472		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473				AR5K_PHY_CCKTXCTL_JAPAN);
1474	} else {
1475		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476				AR5K_PHY_CCKTXCTL_WORLD);
1477	}
1478
1479	ah->ah_current_channel = channel;
1480
1481	return 0;
1482}
1483
1484
1485/*****************\
1486  PHY calibration
1487\*****************/
1488
1489/**
1490 * DOC: PHY Calibration routines
1491 *
1492 * Noise floor calibration: When we tell the hardware to
1493 * perform a noise floor calibration by setting the
1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495 * sample-and-hold the minimum noise level seen at the antennas.
1496 * This value is then stored in a ring buffer of recently measured
1497 * noise floor values so we have a moving window of the last few
1498 * samples. The median of the values in the history is then loaded
1499 * into the hardware for its own use for RSSI and CCA measurements.
1500 * This type of calibration doesn't interfere with traffic.
1501 *
1502 * AGC calibration: When we tell the hardware to perform
1503 * an AGC (Automatic Gain Control) calibration by setting the
1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505 * a calibration on the DC offsets of ADCs. During this period
1506 * rx/tx gets disabled so we have to deal with it on the driver
1507 * part.
1508 *
1509 * I/Q calibration: When we tell the hardware to perform
1510 * an I/Q calibration, it tries to correct I/Q imbalance and
1511 * fix QAM constellation by sampling data from rxed frames.
1512 * It doesn't interfere with traffic.
1513 *
1514 * For more infos on AGC and I/Q calibration check out patent doc
1515 * #03/094463.
1516 */
1517
1518/**
1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520 * @ah: The &struct ath5k_hw
1521 */
1522static s32
1523ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524{
1525	s32 val;
1526
1527	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529}
1530
1531/**
1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533 * @ah: The &struct ath5k_hw
1534 */
1535void
1536ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537{
1538	int i;
1539
1540	ah->ah_nfcal_hist.index = 0;
1541	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543}
1544
1545/**
1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547 * @ah: The &struct ath5k_hw
1548 * @noise_floor: The NF we got from hw
1549 */
1550static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551{
1552	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554	hist->nfval[hist->index] = noise_floor;
1555}
1556
 
 
 
 
 
1557/**
1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559 * @ah: The &struct ath5k_hw
1560 */
1561static s16
1562ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563{
1564	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565	s16 tmp;
1566	int i, j;
1567
1568	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571			if (sort[j] > sort[j - 1]) {
1572				tmp = sort[j];
1573				sort[j] = sort[j - 1];
1574				sort[j - 1] = tmp;
1575			}
1576		}
1577	}
1578	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580			"cal %d:%d\n", i, sort[i]);
1581	}
1582	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583}
1584
1585/**
1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
1587 * @ah: The &struct ath5k_hw
1588 *
1589 * This is the main function we call to perform a NF calibration,
1590 * it reads NF from hardware, calculates the median and updates
1591 * NF on hw.
1592 */
1593void
1594ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595{
1596	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597	u32 val;
1598	s16 nf, threshold;
1599	u8 ee_mode;
1600
1601	/* keep last value if calibration hasn't completed */
1602	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604			"NF did not complete in calibration window\n");
1605
1606		return;
1607	}
1608
1609	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610
1611	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612
1613	/* completed NF calibration, test threshold */
1614	nf = ath5k_hw_read_measured_noise_floor(ah);
1615	threshold = ee->ee_noise_floor_thr[ee_mode];
1616
1617	if (nf > threshold) {
1618		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619			"noise floor failure detected; "
1620			"read %d, threshold %d\n",
1621			nf, threshold);
1622
1623		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624	}
1625
1626	ath5k_hw_update_nfcal_hist(ah, nf);
1627	nf = ath5k_hw_get_median_noise_floor(ah);
1628
1629	/* load noise floor (in .5 dBm) so the hardware will use it */
1630	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631	val |= (nf * 2) & AR5K_PHY_NF_M;
1632	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633
1634	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636
1637	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638		0, false);
1639
1640	/*
1641	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642	 * so that we're not capped by the median we just loaded.
1643	 * This will be used as the initial value for the next noise
1644	 * floor calibration.
1645	 */
1646	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649		AR5K_PHY_AGCCTL_NF_EN |
1650		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651		AR5K_PHY_AGCCTL_NF);
1652
1653	ah->ah_noise_floor = nf;
1654
1655	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656
1657	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658		"noise floor calibrated: %d\n", nf);
1659}
1660
1661/**
1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663 * @ah: The &struct ath5k_hw
1664 * @channel: The &struct ieee80211_channel
1665 *
1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667 */
1668static int
1669ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670		struct ieee80211_channel *channel)
1671{
1672	u32 phy_sig, phy_agc, phy_sat, beacon;
1673	int ret;
1674
1675	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676		return 0;
1677
1678	/*
1679	 * Disable beacons and RX/TX queues, wait
1680	 */
1681	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685
1686	usleep_range(2000, 2500);
1687
1688	/*
1689	 * Set the channel (with AGC turned off)
1690	 */
1691	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692	udelay(10);
1693	ret = ath5k_hw_channel(ah, channel);
1694
1695	/*
1696	 * Activate PHY and wait
1697	 */
1698	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699	usleep_range(1000, 1500);
1700
1701	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702
1703	if (ret)
1704		return ret;
1705
1706	/*
1707	 * Calibrate the radio chip
1708	 */
1709
1710	/* Remember normal state */
1711	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714
1715	/* Update radio registers */
1716	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718
1719	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720			AR5K_PHY_AGCCOARSE_LO)) |
1721		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723
1724	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725			AR5K_PHY_ADCSAT_THR)) |
1726		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728
1729	udelay(20);
1730
1731	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732	udelay(10);
1733	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735
1736	usleep_range(1000, 1500);
1737
1738	/*
1739	 * Enable calibration and wait until completion
1740	 */
1741	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742
1743	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744			AR5K_PHY_AGCCTL_CAL, 0, false);
1745
1746	/* Reset to normal state */
1747	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750
1751	if (ret) {
1752		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753				channel->center_freq);
1754		return ret;
1755	}
1756
1757	/*
1758	 * Re-enable RX/TX and beacons
1759	 */
1760	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763
1764	return 0;
1765}
1766
1767/**
1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769 * @ah: The &struct ath5k_hw
1770 */
1771static int
1772ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773{
1774	u32 i_pwr, q_pwr;
1775	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776	int i;
1777
1778	/* Skip if I/Q calibration is not needed or if it's still running */
1779	if (!ah->ah_iq_cal_needed)
1780		return -EINVAL;
1781	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783				"I/Q calibration still running");
1784		return -EBUSY;
1785	}
1786
1787	/* Calibration has finished, get the results and re-run */
1788
1789	/* Work around for empty results which can apparently happen on 5212:
1790	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1791	for (i = 0; i <= 10; i++) {
1792		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797		if (i_pwr && q_pwr)
1798			break;
1799	}
1800
1801	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802
1803	if (ah->ah_version == AR5K_AR5211)
1804		q_coffd = q_pwr >> 6;
1805	else
1806		q_coffd = q_pwr >> 7;
1807
1808	/* In case i_coffd became zero, cancel calibration
1809	 * not only it's too small, it'll also result a divide
1810	 * by zero later on. */
1811	if (i_coffd == 0 || q_coffd < 2)
1812		return -ECANCELED;
1813
1814	/* Protect against loss of sign bits */
1815
1816	i_coff = (-iq_corr) / i_coffd;
1817	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818
1819	if (ah->ah_version == AR5K_AR5211)
1820		q_coff = (i_pwr / q_coffd) - 64;
1821	else
1822		q_coff = (i_pwr / q_coffd) - 128;
1823	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824
1825	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827			i_coff, q_coff, i_coffd, q_coffd);
1828
1829	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1830	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833
1834	/* Re-enable calibration -if we don't we'll commit
1835	 * the same values again and again */
1836	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839
1840	return 0;
1841}
1842
1843/**
1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845 * @ah: The &struct ath5k_hw
1846 * @channel: The &struct ieee80211_channel
1847 *
1848 * The main function we call from above to perform
1849 * a short or full PHY calibration based on RF chip
1850 * and current channel
1851 */
1852int
1853ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854		struct ieee80211_channel *channel)
1855{
1856	int ret;
1857
1858	if (ah->ah_radio == AR5K_RF5110)
1859		return ath5k_hw_rf5110_calibrate(ah, channel);
1860
1861	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862	if (ret) {
1863		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864			"No I/Q correction performed (%uMHz)\n",
1865			channel->center_freq);
1866
1867		/* Happens all the time if there is not much
1868		 * traffic, consider it normal behaviour. */
1869		ret = 0;
1870	}
1871
1872	/* On full calibration request a PAPD probe for
1873	 * gainf calibration if needed */
1874	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875	    (ah->ah_radio == AR5K_RF5111 ||
1876	     ah->ah_radio == AR5K_RF5112) &&
1877	    channel->hw_value != AR5K_MODE_11B)
1878		ath5k_hw_request_rfgain_probe(ah);
1879
1880	/* Update noise floor */
1881	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882		ath5k_hw_update_noise_floor(ah);
1883
1884	return ret;
1885}
1886
1887
1888/***************************\
1889* Spur mitigation functions *
1890\***************************/
1891
1892/**
1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894 * @ah: The &struct ath5k_hw
1895 * @channel: The &struct ieee80211_channel
1896 *
1897 * This function gets called during PHY initialization to
1898 * configure the spur filter for the given channel. Spur is noise
1899 * generated due to "reflection" effects, for more information on this
1900 * method check out patent US7643810
1901 */
1902static void
1903ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904				struct ieee80211_channel *channel)
1905{
1906	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907	u32 mag_mask[4] = {0, 0, 0, 0};
1908	u32 pilot_mask[2] = {0, 0};
1909	/* Note: fbin values are scaled up by 2 */
1910	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911	s32 spur_delta_phase, spur_freq_sigma_delta;
1912	s32 spur_offset, num_symbols_x16;
1913	u8 num_symbol_offsets, i, freq_band;
1914
1915	/* Convert current frequency to fbin value (the same way channels
1916	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917	 * up by 2 so we can compare it later */
1918	if (channel->band == NL80211_BAND_2GHZ) {
1919		chan_fbin = (channel->center_freq - 2300) * 10;
1920		freq_band = AR5K_EEPROM_BAND_2GHZ;
1921	} else {
1922		chan_fbin = (channel->center_freq - 4900) * 10;
1923		freq_band = AR5K_EEPROM_BAND_5GHZ;
1924	}
1925
1926	/* Check if any spur_chan_fbin from EEPROM is
1927	 * within our current channel's spur detection range */
1928	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930	/* XXX: Half/Quarter channels ?*/
1931	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932		spur_detection_window *= 2;
1933
1934	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936
1937		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938		 * so it's zero if we got nothing from EEPROM */
1939		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941			break;
1942		}
1943
1944		if ((chan_fbin - spur_detection_window <=
1945		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946		(chan_fbin + spur_detection_window >=
1947		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949			break;
1950		}
1951	}
1952
1953	/* We need to enable spur filter for this channel */
1954	if (spur_chan_fbin) {
1955		spur_offset = spur_chan_fbin - chan_fbin;
1956		/*
1957		 * Calculate deltas:
1958		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959		 * spur_delta_phase -> spur_offset / chip_freq << 11
1960		 * Note: Both values have 100Hz resolution
1961		 */
1962		switch (ah->ah_bwmode) {
1963		case AR5K_BWMODE_40MHZ:
1964			/* Both sample_freq and chip_freq are 80MHz */
1965			spur_delta_phase = (spur_offset << 16) / 25;
1966			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968			break;
1969		case AR5K_BWMODE_10MHZ:
1970			/* Both sample_freq and chip_freq are 20MHz (?) */
1971			spur_delta_phase = (spur_offset << 18) / 25;
1972			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974			break;
1975		case AR5K_BWMODE_5MHZ:
1976			/* Both sample_freq and chip_freq are 10MHz (?) */
1977			spur_delta_phase = (spur_offset << 19) / 25;
1978			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980			break;
1981		default:
1982			if (channel->band == NL80211_BAND_5GHZ) {
1983				/* Both sample_freq and chip_freq are 40MHz */
1984				spur_delta_phase = (spur_offset << 17) / 25;
1985				spur_freq_sigma_delta =
1986						(spur_delta_phase >> 10);
1987				symbol_width =
1988					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989			} else {
1990				/* sample_freq -> 40MHz chip_freq -> 44MHz
1991				 * (for b compatibility) */
1992				spur_delta_phase = (spur_offset << 17) / 25;
1993				spur_freq_sigma_delta =
1994						(spur_offset << 8) / 55;
1995				symbol_width =
1996					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997			}
1998			break;
1999		}
2000
2001		/* Calculate pilot and magnitude masks */
2002
2003		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004		 * and divide by symbol_width to find how many symbols we have
2005		 * Note: number of symbols is scaled up by 16 */
2006		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007
2008		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009		if (!(num_symbols_x16 & 0xF))
2010			/* _X_ */
2011			num_symbol_offsets = 3;
2012		else
2013			/* _xx_ */
2014			num_symbol_offsets = 4;
2015
2016		for (i = 0; i < num_symbol_offsets; i++) {
2017
2018			/* Calculate pilot mask */
2019			s32 curr_sym_off =
2020				(num_symbols_x16 / 16) + i + 25;
2021
2022			/* Pilot magnitude mask seems to be a way to
2023			 * declare the boundaries for our detection
2024			 * window or something, it's 2 for the middle
2025			 * value(s) where the symbol is expected to be
2026			 * and 1 on the boundary values */
2027			u8 plt_mag_map =
2028				(i == 0 || i == (num_symbol_offsets - 1))
2029								? 1 : 2;
2030
2031			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032				if (curr_sym_off <= 25)
2033					pilot_mask[0] |= 1 << curr_sym_off;
2034				else if (curr_sym_off >= 27)
2035					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038
2039			/* Calculate magnitude mask (for viterbi decoder) */
2040			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041				mag_mask[0] |=
2042					plt_mag_map << (curr_sym_off + 1) * 2;
2043			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044				mag_mask[1] |=
2045					plt_mag_map << (curr_sym_off - 15) * 2;
2046			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047				mag_mask[2] |=
2048					plt_mag_map << (curr_sym_off - 31) * 2;
2049			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050				mag_mask[3] |=
2051					plt_mag_map << (curr_sym_off - 47) * 2;
2052
2053		}
2054
2055		/* Write settings on hw to enable spur filter */
2056		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058		/* XXX: Self correlator also ? */
2059		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060					AR5K_PHY_IQ_PILOT_MASK_EN |
2061					AR5K_PHY_IQ_CHAN_MASK_EN |
2062					AR5K_PHY_IQ_SPUR_FILT_EN);
2063
2064		/* Set delta phase and freq sigma delta */
2065		ath5k_hw_reg_write(ah,
2066				AR5K_REG_SM(spur_delta_phase,
2067					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068				AR5K_REG_SM(spur_freq_sigma_delta,
2069				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071				AR5K_PHY_TIMING_11);
2072
2073		/* Write pilot masks */
2074		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077					pilot_mask[1]);
2078
2079		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082					pilot_mask[1]);
2083
2084		/* Write magnitude masks */
2085		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090					mag_mask[3]);
2091
2092		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096					AR5K_PHY_BIN_MASK2_4_MASK_4,
2097					mag_mask[3]);
2098
2099	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100	AR5K_PHY_IQ_SPUR_FILT_EN) {
2101		/* Clean up spur mitigation settings and disable filter */
2102		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105					AR5K_PHY_IQ_PILOT_MASK_EN |
2106					AR5K_PHY_IQ_CHAN_MASK_EN |
2107					AR5K_PHY_IQ_SPUR_FILT_EN);
2108		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109
2110		/* Clear pilot masks */
2111		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114					0);
2115
2116		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119					0);
2120
2121		/* Clear magnitude masks */
2122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127					0);
2128
2129		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133					AR5K_PHY_BIN_MASK2_4_MASK_4,
2134					0);
2135	}
2136}
2137
2138
2139/*****************\
2140* Antenna control *
2141\*****************/
2142
2143/**
2144 * DOC: Antenna control
2145 *
2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150 *
2151 * We can have a single antenna for RX and multiple antennas for TX.
2152 * RX antenna is our "default" antenna (usually antenna 1) set on
2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154 * (0 for automatic selection, 1 - 14 antenna number).
2155 *
2156 * We can let hw do all the work doing fast antenna diversity for both
2157 * tx and rx or we can do things manually. Here are the options we have
2158 * (all are bits of STA_ID1 register):
2159 *
2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161 * control descriptor, use the default antenna to transmit or else use the last
2162 * antenna on which we received an ACK.
2163 *
2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165 * the antenna on which we got the ACK for that frame.
2166 *
2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168 * one on the TX descriptor.
2169 *
2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
2172 *
2173 * Using the above we support the following scenarios:
2174 *
2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176 *
2177 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2178 *
2179 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2180 *
2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182 *
2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184 *
2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186 *
2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188 *
2189 * Also note that when setting antenna to F on tx descriptor card inverts
2190 * current tx antenna.
2191 */
2192
2193/**
2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195 * @ah: The &struct ath5k_hw
2196 * @ant: Antenna number
2197 */
2198static void
2199ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200{
2201	if (ah->ah_version != AR5K_AR5210)
2202		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203}
2204
2205/**
2206 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207 * @ah: The &struct ath5k_hw
2208 * @ee_mode: One of enum ath5k_driver_mode
2209 * @enable: True to enable, false to disable
2210 */
2211static void
2212ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213{
2214	switch (ee_mode) {
2215	case AR5K_EEPROM_MODE_11G:
2216		/* XXX: This is set to
2217		 * disabled on initvals !!! */
2218	case AR5K_EEPROM_MODE_11A:
2219		if (enable)
2220			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222		else
2223			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225		break;
2226	case AR5K_EEPROM_MODE_11B:
2227		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229		break;
2230	default:
2231		return;
2232	}
2233
2234	if (enable) {
2235		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236				AR5K_PHY_RESTART_DIV_GC, 4);
2237
2238		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239					AR5K_PHY_FAST_ANT_DIV_EN);
2240	} else {
2241		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242				AR5K_PHY_RESTART_DIV_GC, 0);
2243
2244		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245					AR5K_PHY_FAST_ANT_DIV_EN);
2246	}
2247}
2248
2249/**
2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251 * @ah: The &struct ath5k_hw
2252 * @ee_mode: One of enum ath5k_driver_mode
2253 *
2254 * Switch table comes from EEPROM and includes information on controlling
2255 * the 2 antenna RX attenuators
2256 */
2257void
2258ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259{
2260	u8 ant0, ant1;
2261
2262	/*
2263	 * In case a fixed antenna was set as default
2264	 * use the same switch table twice.
2265	 */
2266	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270	else {
2271		ant0 = AR5K_ANT_SWTABLE_A;
2272		ant1 = AR5K_ANT_SWTABLE_B;
2273	}
2274
2275	/* Set antenna idle switch table */
2276	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279			AR5K_PHY_ANT_CTL_TXRX_EN));
2280
2281	/* Set antenna switch tables */
2282	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283		AR5K_PHY_ANT_SWITCH_TABLE_0);
2284	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285		AR5K_PHY_ANT_SWITCH_TABLE_1);
2286}
2287
2288/**
2289 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290 * @ah: The &struct ath5k_hw
2291 * @ant_mode: One of enum ath5k_ant_mode
2292 */
2293void
2294ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295{
2296	struct ieee80211_channel *channel = ah->ah_current_channel;
2297	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298	bool use_def_for_sg;
2299	int ee_mode;
2300	u8 def_ant, tx_ant;
2301	u32 sta_id1 = 0;
2302
2303	/* if channel is not initialized yet we can't set the antennas
2304	 * so just store the mode. it will be set on the next reset */
2305	if (channel == NULL) {
2306		ah->ah_ant_mode = ant_mode;
2307		return;
2308	}
2309
2310	def_ant = ah->ah_def_ant;
2311
2312	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313
2314	switch (ant_mode) {
2315	case AR5K_ANTMODE_DEFAULT:
2316		tx_ant = 0;
2317		use_def_for_tx = false;
2318		update_def_on_tx = false;
2319		use_def_for_rts = false;
2320		use_def_for_sg = false;
2321		fast_div = true;
2322		break;
2323	case AR5K_ANTMODE_FIXED_A:
2324		def_ant = 1;
2325		tx_ant = 1;
2326		use_def_for_tx = true;
2327		update_def_on_tx = false;
2328		use_def_for_rts = true;
2329		use_def_for_sg = true;
2330		fast_div = false;
2331		break;
2332	case AR5K_ANTMODE_FIXED_B:
2333		def_ant = 2;
2334		tx_ant = 2;
2335		use_def_for_tx = true;
2336		update_def_on_tx = false;
2337		use_def_for_rts = true;
2338		use_def_for_sg = true;
2339		fast_div = false;
2340		break;
2341	case AR5K_ANTMODE_SINGLE_AP:
2342		def_ant = 1;	/* updated on tx */
2343		tx_ant = 0;
2344		use_def_for_tx = true;
2345		update_def_on_tx = true;
2346		use_def_for_rts = true;
2347		use_def_for_sg = true;
2348		fast_div = true;
2349		break;
2350	case AR5K_ANTMODE_SECTOR_AP:
2351		tx_ant = 1;	/* variable */
2352		use_def_for_tx = false;
2353		update_def_on_tx = false;
2354		use_def_for_rts = true;
2355		use_def_for_sg = false;
2356		fast_div = false;
2357		break;
2358	case AR5K_ANTMODE_SECTOR_STA:
2359		tx_ant = 1;	/* variable */
2360		use_def_for_tx = true;
2361		update_def_on_tx = false;
2362		use_def_for_rts = true;
2363		use_def_for_sg = false;
2364		fast_div = true;
2365		break;
2366	case AR5K_ANTMODE_DEBUG:
2367		def_ant = 1;
2368		tx_ant = 2;
2369		use_def_for_tx = false;
2370		update_def_on_tx = false;
2371		use_def_for_rts = false;
2372		use_def_for_sg = false;
2373		fast_div = false;
2374		break;
2375	default:
2376		return;
2377	}
2378
2379	ah->ah_tx_ant = tx_ant;
2380	ah->ah_ant_mode = ant_mode;
2381	ah->ah_def_ant = def_ant;
2382
2383	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387
2388	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389
2390	if (sta_id1)
2391		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392
2393	ath5k_hw_set_antenna_switch(ah, ee_mode);
2394	/* Note: set diversity before default antenna
2395	 * because it won't work correctly */
2396	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397	ath5k_hw_set_def_antenna(ah, def_ant);
2398}
2399
2400
2401/****************\
2402* TX power setup *
2403\****************/
2404
2405/*
2406 * Helper functions
2407 */
2408
2409/**
2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411 * @target: X value of the middle point
2412 * @x_left: X value of the left point
2413 * @x_right: X value of the right point
2414 * @y_left: Y value of the left point
2415 * @y_right: Y value of the right point
2416 */
2417static s16
2418ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419					s16 y_left, s16 y_right)
2420{
2421	s16 ratio, result;
2422
2423	/* Avoid divide by zero and skip interpolation
2424	 * if we have the same point */
2425	if ((x_left == x_right) || (y_left == y_right))
2426		return y_left;
2427
2428	/*
2429	 * Since we use ints and not fps, we need to scale up in
2430	 * order to get a sane ratio value (or else we 'll eg. get
2431	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432	 * to have some accuracy both for 0.5 and 0.25 steps.
2433	 */
2434	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435
2436	/* Now scale down to be in range */
2437	result = y_left + (ratio * (target - x_left) / 100);
2438
2439	return result;
2440}
2441
2442/**
2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444 * linear PCDAC curve
2445 * @stepL: Left array with y values (pcdac steps)
2446 * @stepR: Right array with y values (pcdac steps)
2447 * @pwrL: Left array with x values (power steps)
2448 * @pwrR: Right array with x values (power steps)
2449 *
2450 * Since we have the top of the curve and we draw the line below
2451 * until we reach 1 (1 pcdac step) we need to know which point
2452 * (x value) that is so that we don't go below x axis and have negative
2453 * pcdac values when creating the curve, or fill the table with zeros.
2454 */
2455static s16
2456ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457				const s16 *pwrL, const s16 *pwrR)
2458{
2459	s8 tmp;
2460	s16 min_pwrL, min_pwrR;
2461	s16 pwr_i;
2462
2463	/* Some vendors write the same pcdac value twice !!! */
2464	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465		return max(pwrL[0], pwrR[0]);
2466
2467	if (pwrL[0] == pwrL[1])
2468		min_pwrL = pwrL[0];
2469	else {
2470		pwr_i = pwrL[0];
2471		do {
2472			pwr_i--;
2473			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474							pwrL[0], pwrL[1],
2475							stepL[0], stepL[1]);
2476		} while (tmp > 1);
2477
2478		min_pwrL = pwr_i;
2479	}
2480
2481	if (pwrR[0] == pwrR[1])
2482		min_pwrR = pwrR[0];
2483	else {
2484		pwr_i = pwrR[0];
2485		do {
2486			pwr_i--;
2487			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488							pwrR[0], pwrR[1],
2489							stepR[0], stepR[1]);
2490		} while (tmp > 1);
2491
2492		min_pwrR = pwr_i;
2493	}
2494
2495	/* Keep the right boundary so that it works for both curves */
2496	return max(min_pwrL, min_pwrR);
2497}
2498
2499/**
2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501 * @pmin: Minimum power value (xmin)
2502 * @pmax: Maximum power value (xmax)
2503 * @pwr: Array of power steps (x values)
2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505 * @num_points: Number of provided points
2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
2508 *
2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510 * Power to PCDAC curve.
2511 *
2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
2515 * one curves on hw so we can go up to 128 (which is the max step we
2516 * can write on the final table).
2517 *
2518 * We write y values (PCDAC/PDADC steps) on hw.
2519 */
2520static void
2521ath5k_create_power_curve(s16 pmin, s16 pmax,
2522			const s16 *pwr, const u8 *vpd,
2523			u8 num_points,
2524			u8 *vpd_table, u8 type)
2525{
2526	u8 idx[2] = { 0, 1 };
2527	s16 pwr_i = 2 * pmin;
2528	int i;
2529
2530	if (num_points < 2)
2531		return;
2532
2533	/* We want the whole line, so adjust boundaries
2534	 * to cover the entire power range. Note that
2535	 * power values are already 0.25dB so no need
2536	 * to multiply pwr_i by 2 */
2537	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538		pwr_i = pmin;
2539		pmin = 0;
2540		pmax = 63;
2541	}
2542
2543	/* Find surrounding turning points (TPs)
2544	 * and interpolate between them */
2545	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547
2548		/* We passed the right TP, move to the next set of TPs
2549		 * if we pass the last TP, extrapolate above using the last
2550		 * two TPs for ratio */
2551		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552			idx[0]++;
2553			idx[1]++;
2554		}
2555
2556		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557						pwr[idx[0]], pwr[idx[1]],
2558						vpd[idx[0]], vpd[idx[1]]);
2559
2560		/* Increase by 0.5dB
2561		 * (0.25 dB units) */
2562		pwr_i += 2;
2563	}
2564}
2565
2566/**
2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568 * for a given channel.
2569 * @ah: The &struct ath5k_hw
2570 * @channel: The &struct ieee80211_channel
2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573 *
2574 * Get the surrounding per-channel power calibration piers
2575 * for a given frequency so that we can interpolate between
2576 * them and come up with an appropriate dataset for our current
2577 * channel.
2578 */
2579static void
2580ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581			struct ieee80211_channel *channel,
2582			struct ath5k_chan_pcal_info **pcinfo_l,
2583			struct ath5k_chan_pcal_info **pcinfo_r)
2584{
2585	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586	struct ath5k_chan_pcal_info *pcinfo;
2587	u8 idx_l, idx_r;
2588	u8 mode, max, i;
2589	u32 target = channel->center_freq;
2590
2591	idx_l = 0;
2592	idx_r = 0;
2593
2594	switch (channel->hw_value) {
2595	case AR5K_EEPROM_MODE_11A:
2596		pcinfo = ee->ee_pwr_cal_a;
2597		mode = AR5K_EEPROM_MODE_11A;
2598		break;
2599	case AR5K_EEPROM_MODE_11B:
2600		pcinfo = ee->ee_pwr_cal_b;
2601		mode = AR5K_EEPROM_MODE_11B;
2602		break;
2603	case AR5K_EEPROM_MODE_11G:
2604	default:
2605		pcinfo = ee->ee_pwr_cal_g;
2606		mode = AR5K_EEPROM_MODE_11G;
2607		break;
2608	}
2609	max = ee->ee_n_piers[mode] - 1;
2610
2611	/* Frequency is below our calibrated
2612	 * range. Use the lowest power curve
2613	 * we have */
2614	if (target < pcinfo[0].freq) {
2615		idx_l = idx_r = 0;
2616		goto done;
2617	}
2618
2619	/* Frequency is above our calibrated
2620	 * range. Use the highest power curve
2621	 * we have */
2622	if (target > pcinfo[max].freq) {
2623		idx_l = idx_r = max;
2624		goto done;
2625	}
2626
2627	/* Frequency is inside our calibrated
2628	 * channel range. Pick the surrounding
2629	 * calibration piers so that we can
2630	 * interpolate */
2631	for (i = 0; i <= max; i++) {
2632
2633		/* Frequency matches one of our calibration
2634		 * piers, no need to interpolate, just use
2635		 * that calibration pier */
2636		if (pcinfo[i].freq == target) {
2637			idx_l = idx_r = i;
2638			goto done;
2639		}
2640
2641		/* We found a calibration pier that's above
2642		 * frequency, use this pier and the previous
2643		 * one to interpolate */
2644		if (target < pcinfo[i].freq) {
2645			idx_r = i;
2646			idx_l = idx_r - 1;
2647			goto done;
2648		}
2649	}
2650
2651done:
2652	*pcinfo_l = &pcinfo[idx_l];
2653	*pcinfo_r = &pcinfo[idx_r];
2654}
2655
2656/**
2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658 * calibration data
2659 * @ah: The &struct ath5k_hw *ah,
2660 * @channel: The &struct ieee80211_channel
2661 * @rates: The &struct ath5k_rate_pcal_info to fill
2662 *
2663 * Get the surrounding per-rate power calibration data
2664 * for a given frequency and interpolate between power
2665 * values to set max target power supported by hw for
2666 * each rate on this frequency.
2667 */
2668static void
2669ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670			struct ieee80211_channel *channel,
2671			struct ath5k_rate_pcal_info *rates)
2672{
2673	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674	struct ath5k_rate_pcal_info *rpinfo;
2675	u8 idx_l, idx_r;
2676	u8 mode, max, i;
2677	u32 target = channel->center_freq;
2678
2679	idx_l = 0;
2680	idx_r = 0;
2681
2682	switch (channel->hw_value) {
2683	case AR5K_MODE_11A:
2684		rpinfo = ee->ee_rate_tpwr_a;
2685		mode = AR5K_EEPROM_MODE_11A;
2686		break;
2687	case AR5K_MODE_11B:
2688		rpinfo = ee->ee_rate_tpwr_b;
2689		mode = AR5K_EEPROM_MODE_11B;
2690		break;
2691	case AR5K_MODE_11G:
2692	default:
2693		rpinfo = ee->ee_rate_tpwr_g;
2694		mode = AR5K_EEPROM_MODE_11G;
2695		break;
2696	}
2697	max = ee->ee_rate_target_pwr_num[mode] - 1;
2698
2699	/* Get the surrounding calibration
2700	 * piers - same as above */
2701	if (target < rpinfo[0].freq) {
2702		idx_l = idx_r = 0;
2703		goto done;
2704	}
2705
2706	if (target > rpinfo[max].freq) {
2707		idx_l = idx_r = max;
2708		goto done;
2709	}
2710
2711	for (i = 0; i <= max; i++) {
2712
2713		if (rpinfo[i].freq == target) {
2714			idx_l = idx_r = i;
2715			goto done;
2716		}
2717
2718		if (target < rpinfo[i].freq) {
2719			idx_r = i;
2720			idx_l = idx_r - 1;
2721			goto done;
2722		}
2723	}
2724
2725done:
2726	/* Now interpolate power value, based on the frequency */
2727	rates->freq = target;
2728
2729	rates->target_power_6to24 =
2730		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731					rpinfo[idx_r].freq,
2732					rpinfo[idx_l].target_power_6to24,
2733					rpinfo[idx_r].target_power_6to24);
2734
2735	rates->target_power_36 =
2736		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737					rpinfo[idx_r].freq,
2738					rpinfo[idx_l].target_power_36,
2739					rpinfo[idx_r].target_power_36);
2740
2741	rates->target_power_48 =
2742		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743					rpinfo[idx_r].freq,
2744					rpinfo[idx_l].target_power_48,
2745					rpinfo[idx_r].target_power_48);
2746
2747	rates->target_power_54 =
2748		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749					rpinfo[idx_r].freq,
2750					rpinfo[idx_l].target_power_54,
2751					rpinfo[idx_r].target_power_54);
2752}
2753
2754/**
2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756 * @ah: the &struct ath5k_hw
2757 * @channel: The &struct ieee80211_channel
2758 *
2759 * Get the max edge power for this channel if
2760 * we have such data from EEPROM's Conformance Test
2761 * Limits (CTL), and limit max power if needed.
2762 */
2763static void
2764ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765			struct ieee80211_channel *channel)
2766{
2767	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770	u8 *ctl_val = ee->ee_ctl;
2771	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772	s16 edge_pwr = 0;
2773	u8 rep_idx;
2774	u8 i, ctl_mode;
2775	u8 ctl_idx = 0xFF;
2776	u32 target = channel->center_freq;
2777
2778	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779
2780	switch (channel->hw_value) {
2781	case AR5K_MODE_11A:
2782		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783			ctl_mode |= AR5K_CTL_TURBO;
2784		else
2785			ctl_mode |= AR5K_CTL_11A;
2786		break;
2787	case AR5K_MODE_11G:
2788		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789			ctl_mode |= AR5K_CTL_TURBOG;
2790		else
2791			ctl_mode |= AR5K_CTL_11G;
2792		break;
2793	case AR5K_MODE_11B:
2794		ctl_mode |= AR5K_CTL_11B;
2795		break;
2796	default:
2797		return;
2798	}
2799
2800	for (i = 0; i < ee->ee_ctls; i++) {
2801		if (ctl_val[i] == ctl_mode) {
2802			ctl_idx = i;
2803			break;
2804		}
2805	}
2806
2807	/* If we have a CTL dataset available grab it and find the
2808	 * edge power for our frequency */
2809	if (ctl_idx == 0xFF)
2810		return;
2811
2812	/* Edge powers are sorted by frequency from lower
2813	 * to higher. Each CTL corresponds to 8 edge power
2814	 * measurements. */
2815	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816
2817	/* Don't do boundaries check because we
2818	 * might have more that one bands defined
2819	 * for this mode */
2820
2821	/* Get the edge power that's closer to our
2822	 * frequency */
2823	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824		rep_idx += i;
2825		if (target <= rep[rep_idx].freq)
2826			edge_pwr = (s16) rep[rep_idx].edge;
2827	}
2828
2829	if (edge_pwr)
2830		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831}
2832
2833
2834/*
2835 * Power to PCDAC table functions
2836 */
2837
2838/**
2839 * DOC: Power to PCDAC table functions
2840 *
2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
2842 * for each calibrated channel. Each curve has 0,5dB Power steps
2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844 * exponential function. To recreate the curve we read 11 points
2845 * from eeprom (eeprom.c) and interpolate here.
2846 *
2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850 * power steps on x axis and PCDAC steps on y axis and looks like a
2851 * linear function. To recreate the curve and pass the power values
2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854 * and interpolate here.
2855 *
2856 * For a given channel we get the calibrated points (piers) for it or
2857 * -if we don't have calibration data for this specific channel- from the
2858 * available surrounding channels we have calibration data for, after we do a
2859 * linear interpolation between them. Then since we have our calibrated points
2860 * for this channel, we do again a linear interpolation between them to get the
2861 * whole curve.
2862 *
2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864 */
2865
2866/**
2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868 * @ah: The &struct ath5k_hw
2869 * @table_min: Minimum power (x min)
2870 * @table_max: Maximum power (x max)
2871 *
2872 * No further processing is needed for RF5111, the only thing we have to
2873 * do is fill the values below and above calibration range since eeprom data
2874 * may not cover the entire PCDAC table.
2875 */
2876static void
2877ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878							s16 *table_max)
2879{
2880	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2881	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2882	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883	s16	min_pwr, max_pwr;
2884
2885	/* Get table boundaries */
2886	min_pwr = table_min[0];
2887	pcdac_0 = pcdac_tmp[0];
2888
2889	max_pwr = table_max[0];
2890	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891
2892	/* Extrapolate below minimum using pcdac_0 */
2893	pcdac_i = 0;
2894	for (i = 0; i < min_pwr; i++)
2895		pcdac_out[pcdac_i++] = pcdac_0;
2896
2897	/* Copy values from pcdac_tmp */
2898	pwr_idx = min_pwr;
2899	for (i = 0; pwr_idx <= max_pwr &&
2900		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902		pwr_idx++;
2903	}
2904
2905	/* Extrapolate above maximum */
2906	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907		pcdac_out[pcdac_i++] = pcdac_n;
2908
2909}
2910
2911/**
2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913 * @ah: The &struct ath5k_hw
2914 * @table_min: Minimum power (x min)
2915 * @table_max: Maximum power (x max)
2916 * @pdcurves: Number of pd curves
2917 *
2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
2920 * higher txpower range). We need to put them both on pcdac_out and place
2921 * them in the correct location. In case we only have one curve available
2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
2923 * available pwr levels since it's always the higher power curve). Extrapolate
2924 * below and above final table if needed.
2925 */
2926static void
2927ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928						s16 *table_max, u8 pdcurves)
2929{
2930	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2931	u8	*pcdac_low_pwr;
2932	u8	*pcdac_high_pwr;
2933	u8	*pcdac_tmp;
2934	u8	pwr;
2935	s16	max_pwr_idx;
2936	s16	min_pwr_idx;
2937	s16	mid_pwr_idx = 0;
2938	/* Edge flag turns on the 7nth bit on the PCDAC
2939	 * to declare the higher power curve (force values
2940	 * to be greater than 64). If we only have one curve
2941	 * we don't need to set this, if we have 2 curves and
2942	 * fill the table backwards this can also be used to
2943	 * switch from higher power curve to lower power curve */
2944	u8	edge_flag;
2945	int	i;
2946
2947	/* When we have only one curve available
2948	 * that's the higher power curve. If we have
2949	 * two curves the first is the high power curve
2950	 * and the next is the low power curve. */
2951	if (pdcurves > 1) {
2952		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956
2957		/* If table size goes beyond 31.5dB, keep the
2958		 * upper 31.5dB range when setting tx power.
2959		 * Note: 126 = 31.5 dB in quarter dB steps */
2960		if (table_max[0] - table_min[1] > 126)
2961			min_pwr_idx = table_max[0] - 126;
2962		else
2963			min_pwr_idx = table_min[1];
2964
2965		/* Since we fill table backwards
2966		 * start from high power curve */
2967		pcdac_tmp = pcdac_high_pwr;
2968
2969		edge_flag = 0x40;
2970	} else {
2971		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973		min_pwr_idx = table_min[0];
2974		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975		pcdac_tmp = pcdac_high_pwr;
2976		edge_flag = 0;
2977	}
2978
2979	/* This is used when setting tx power*/
2980	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981
2982	/* Fill Power to PCDAC table backwards */
2983	pwr = max_pwr_idx;
2984	for (i = 63; i >= 0; i--) {
2985		/* Entering lower power range, reset
2986		 * edge flag and set pcdac_tmp to lower
2987		 * power curve.*/
2988		if (edge_flag == 0x40 &&
2989		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990			edge_flag = 0x00;
2991			pcdac_tmp = pcdac_low_pwr;
2992			pwr = mid_pwr_idx / 2;
2993		}
2994
2995		/* Don't go below 1, extrapolate below if we have
2996		 * already switched to the lower power curve -or
2997		 * we only have one curve and edge_flag is zero
2998		 * anyway */
2999		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000			while (i >= 0) {
3001				pcdac_out[i] = pcdac_out[i + 1];
3002				i--;
3003			}
3004			break;
3005		}
3006
3007		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008
3009		/* Extrapolate above if pcdac is greater than
3010		 * 126 -this can happen because we OR pcdac_out
3011		 * value with edge_flag on high power curve */
3012		if (pcdac_out[i] > 126)
3013			pcdac_out[i] = 126;
3014
3015		/* Decrease by a 0.5dB step */
3016		pwr--;
3017	}
3018}
3019
3020/**
3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022 * @ah: The &struct ath5k_hw
3023 */
3024static void
3025ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026{
3027	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3028	int	i;
3029
3030	/*
3031	 * Write TX power values
3032	 */
3033	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034		ath5k_hw_reg_write(ah,
3035			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037			AR5K_PHY_PCDAC_TXPOWER(i));
3038	}
3039}
3040
3041
3042/*
3043 * Power to PDADC table functions
3044 */
3045
3046/**
3047 * DOC: Power to PDADC table functions
3048 *
3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052 * PDADC steps on y axis and looks like an exponential function like the
3053 * RF5111 curve.
3054 *
3055 * To recreate the curves we read the points from eeprom (eeprom.c)
3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
3057 * curves are used (like RF5112) but vendors have the opportunity to include
3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
3059 * point for better accuracy like RF5112.
3060 *
3061 * The process is similar to what we do above for RF5111/5112
3062 */
3063
3064/**
3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066 * @ah: The &struct ath5k_hw
3067 * @pwr_min: Minimum power (x min)
3068 * @pwr_max: Maximum power (x max)
3069 * @pdcurves: Number of available curves
3070 *
3071 * Combine the various pd curves and create the final Power to PDADC table
3072 * We can have up to 4 pd curves, we need to do a similar process
3073 * as we do for RF5112. This time we don't have an edge_flag but we
3074 * set the gain boundaries on a separate register.
3075 */
3076static void
3077ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079{
3080	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082	u8 *pdadc_tmp;
3083	s16 pdadc_0;
3084	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085	u8 pd_gain_overlap;
3086
3087	/* Note: Register value is initialized on initvals
3088	 * there is no feedback from hw.
3089	 * XXX: What about pd_gain_overlap from EEPROM ? */
3090	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092
3093	/* Create final PDADC table */
3094	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096
3097		if (pdg == pdcurves - 1)
3098			/* 2 dB boundary stretch for last
3099			 * (higher power) curve */
3100			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101		else
3102			/* Set gain boundary in the middle
3103			 * between this curve and the next one */
3104			gain_boundaries[pdg] =
3105				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106
3107		/* Sanity check in case our 2 db stretch got out of
3108		 * range. */
3109		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111
3112		/* For the first curve (lower power)
3113		 * start from 0 dB */
3114		if (pdg == 0)
3115			pdadc_0 = 0;
3116		else
3117			/* For the other curves use the gain overlap */
3118			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119							pd_gain_overlap;
3120
3121		/* Force each power step to be at least 0.5 dB */
3122		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124		else
3125			pwr_step = 1;
3126
3127		/* If pdadc_0 is negative, we need to extrapolate
3128		 * below this pdgain by a number of pwr_steps */
3129		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132			pdadc_0++;
3133		}
3134
3135		/* Set last pwr level, using gain boundaries */
3136		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137		/* Limit it to be inside pwr range */
3138		table_size = pwr_max[pdg] - pwr_min[pdg];
3139		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3140
3141		/* Fill pdadc_out table */
3142		while (pdadc_0 < max_idx && pdadc_i < 128)
3143			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144
3145		/* Need to extrapolate above this pdgain? */
3146		if (pdadc_n <= max_idx)
3147			continue;
3148
3149		/* Force each power step to be at least 0.5 dB */
3150		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151			pwr_step = pdadc_tmp[table_size - 1] -
3152						pdadc_tmp[table_size - 2];
3153		else
3154			pwr_step = 1;
3155
3156		/* Extrapolate above */
3157		while ((pdadc_0 < (s16) pdadc_n) &&
3158		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159			s16 tmp = pdadc_tmp[table_size - 1] +
3160					(pdadc_0 - max_idx) * pwr_step;
3161			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162			pdadc_0++;
3163		}
3164	}
3165
3166	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168		pdg++;
3169	}
3170
3171	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173		pdadc_i++;
3174	}
3175
3176	/* Set gain boundaries */
3177	ath5k_hw_reg_write(ah,
3178		AR5K_REG_SM(pd_gain_overlap,
3179			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180		AR5K_REG_SM(gain_boundaries[0],
3181			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182		AR5K_REG_SM(gain_boundaries[1],
3183			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184		AR5K_REG_SM(gain_boundaries[2],
3185			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186		AR5K_REG_SM(gain_boundaries[3],
3187			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188		AR5K_PHY_TPC_RG5);
3189
3190	/* Used for setting rate power table */
3191	ah->ah_txpower.txp_min_idx = pwr_min[0];
3192
3193}
3194
3195/**
3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197 * @ah: The &struct ath5k_hw
3198 * @ee_mode: One of enum ath5k_driver_mode
3199 */
3200static void
3201ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202{
3203	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207	u32 reg;
3208	u8 i;
3209
3210	/* Select the right pdgain curves */
3211
3212	/* Clear current settings */
3213	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218
3219	/*
3220	 * Use pd_gains curve from eeprom
3221	 *
3222	 * This overrides the default setting from initvals
3223	 * in case some vendors (e.g. Zcomax) don't use the default
3224	 * curves. If we don't honor their settings we 'll get a
3225	 * 5dB (1 * gain overlap ?) drop.
3226	 */
3227	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228
3229	switch (pdcurves) {
3230	case 3:
3231		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232		/* Fall through */
3233	case 2:
3234		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235		/* Fall through */
3236	case 1:
3237		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238		break;
3239	}
3240	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241
3242	/*
3243	 * Write TX power values
3244	 */
3245	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248	}
3249}
3250
3251
3252/*
3253 * Common code for PCDAC/PDADC tables
3254 */
3255
3256/**
3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
3258 * @ah: The &struct ath5k_hw
3259 * @channel: The &struct ieee80211_channel
3260 * @ee_mode: One of enum ath5k_driver_mode
3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
3262 *
3263 * This is the main function that uses all of the above
3264 * to set PCDAC/PDADC table on hw for the current channel.
3265 * This table is used for tx power calibration on the baseband,
3266 * without it we get weird tx power levels and in some cases
3267 * distorted spectral mask
3268 */
3269static int
3270ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271			struct ieee80211_channel *channel,
3272			u8 ee_mode, u8 type)
3273{
3274	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275	struct ath5k_chan_pcal_info *pcinfo_L;
3276	struct ath5k_chan_pcal_info *pcinfo_R;
3277	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281	u8 *tmpL;
3282	u8 *tmpR;
3283	u32 target = channel->center_freq;
3284	int pdg, i;
3285
3286	/* Get surrounding freq piers for this channel */
3287	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288						&pcinfo_L,
3289						&pcinfo_R);
3290
3291	/* Loop over pd gain curves on
3292	 * surrounding freq piers by index */
3293	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294
3295		/* Fill curves in reverse order
3296		 * from lower power (max gain)
3297		 * to higher power. Use curve -> idx
3298		 * backmapping we did on eeprom init */
3299		u8 idx = pdg_curve_to_idx[pdg];
3300
3301		/* Grab the needed curves by index */
3302		pdg_L = &pcinfo_L->pd_curves[idx];
3303		pdg_R = &pcinfo_R->pd_curves[idx];
3304
3305		/* Initialize the temp tables */
3306		tmpL = ah->ah_txpower.tmpL[pdg];
3307		tmpR = ah->ah_txpower.tmpR[pdg];
3308
3309		/* Set curve's x boundaries and create
3310		 * curves so that they cover the same
3311		 * range (if we don't do that one table
3312		 * will have values on some range and the
3313		 * other one won't have any so interpolation
3314		 * will fail) */
3315		table_min[pdg] = min(pdg_L->pd_pwr[0],
3316					pdg_R->pd_pwr[0]) / 2;
3317
3318		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320
3321		/* Now create the curves on surrounding channels
3322		 * and interpolate if needed to get the final
3323		 * curve for this gain on this channel */
3324		switch (type) {
3325		case AR5K_PWRTABLE_LINEAR_PCDAC:
3326			/* Override min/max so that we don't loose
3327			 * accuracy (don't divide by 2) */
3328			table_min[pdg] = min(pdg_L->pd_pwr[0],
3329						pdg_R->pd_pwr[0]);
3330
3331			table_max[pdg] =
3332				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334
3335			/* Override minimum so that we don't get
3336			 * out of bounds while extrapolating
3337			 * below. Don't do this when we have 2
3338			 * curves and we are on the high power curve
3339			 * because table_min is ok in this case */
3340			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341
3342				table_min[pdg] =
3343					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344								pdg_R->pd_step,
3345								pdg_L->pd_pwr,
3346								pdg_R->pd_pwr);
3347
3348				/* Don't go too low because we will
3349				 * miss the upper part of the curve.
3350				 * Note: 126 = 31.5dB (max power supported)
3351				 * in 0.25dB units */
3352				if (table_max[pdg] - table_min[pdg] > 126)
3353					table_min[pdg] = table_max[pdg] - 126;
3354			}
3355
3356			/* Fall through */
3357		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358		case AR5K_PWRTABLE_PWR_TO_PDADC:
3359
3360			ath5k_create_power_curve(table_min[pdg],
3361						table_max[pdg],
3362						pdg_L->pd_pwr,
3363						pdg_L->pd_step,
3364						pdg_L->pd_points, tmpL, type);
3365
3366			/* We are in a calibration
3367			 * pier, no need to interpolate
3368			 * between freq piers */
3369			if (pcinfo_L == pcinfo_R)
3370				continue;
3371
3372			ath5k_create_power_curve(table_min[pdg],
3373						table_max[pdg],
3374						pdg_R->pd_pwr,
3375						pdg_R->pd_step,
3376						pdg_R->pd_points, tmpR, type);
3377			break;
3378		default:
3379			return -EINVAL;
3380		}
3381
3382		/* Interpolate between curves
3383		 * of surrounding freq piers to
3384		 * get the final curve for this
3385		 * pd gain. Re-use tmpL for interpolation
3386		 * output */
3387		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390							(s16) pcinfo_L->freq,
3391							(s16) pcinfo_R->freq,
3392							(s16) tmpL[i],
3393							(s16) tmpR[i]);
3394		}
3395	}
3396
3397	/* Now we have a set of curves for this
3398	 * channel on tmpL (x range is table_max - table_min
3399	 * and y values are tmpL[pdg][]) sorted in the same
3400	 * order as EEPROM (because we've used the backmapping).
3401	 * So for RF5112 it's from higher power to lower power
3402	 * and for RF2413 it's from lower power to higher power.
3403	 * For RF5111 we only have one curve. */
3404
3405	/* Fill min and max power levels for this
3406	 * channel by interpolating the values on
3407	 * surrounding channels to complete the dataset */
3408	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409					(s16) pcinfo_L->freq,
3410					(s16) pcinfo_R->freq,
3411					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412
3413	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414					(s16) pcinfo_L->freq,
3415					(s16) pcinfo_R->freq,
3416					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417
3418	/* Fill PCDAC/PDADC table */
3419	switch (type) {
3420	case AR5K_PWRTABLE_LINEAR_PCDAC:
3421		/* For RF5112 we can have one or two curves
3422		 * and each curve covers a certain power lvl
3423		 * range so we need to do some more processing */
3424		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425						ee->ee_pd_gains[ee_mode]);
3426
3427		/* Set txp.offset so that we can
3428		 * match max power value with max
3429		 * table index */
3430		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431		break;
3432	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433		/* We are done for RF5111 since it has only
3434		 * one curve, just fit the curve on the table */
3435		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436
3437		/* No rate powertable adjustment for RF5111 */
3438		ah->ah_txpower.txp_min_idx = 0;
3439		ah->ah_txpower.txp_offset = 0;
3440		break;
3441	case AR5K_PWRTABLE_PWR_TO_PDADC:
3442		/* Set PDADC boundaries and fill
3443		 * final PDADC table */
3444		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445						ee->ee_pd_gains[ee_mode]);
3446
3447		/* Set txp.offset, note that table_min
3448		 * can be negative */
3449		ah->ah_txpower.txp_offset = table_min[0];
3450		break;
3451	default:
3452		return -EINVAL;
3453	}
3454
3455	ah->ah_txpower.txp_setup = true;
3456
3457	return 0;
3458}
3459
3460/**
3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462 * @ah: The &struct ath5k_hw
3463 * @ee_mode: One of enum ath5k_driver_mode
3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
3465 */
3466static void
3467ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468{
3469	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471	else
3472		ath5k_write_pcdac_table(ah);
3473}
3474
3475
3476/**
3477 * DOC: Per-rate tx power setting
3478 *
3479 * This is the code that sets the desired tx power limit (below
3480 * maximum) on hw for each rate (we also have TPC that sets
3481 * power per packet type). We do that by providing an index on the
3482 * PCDAC/PDADC table we set up above, for each rate.
3483 *
3484 * For now we only limit txpower based on maximum tx power
3485 * supported by hw (what's inside rate_info) + conformance test
3486 * limits. We need to limit this even more, based on regulatory domain
3487 * etc to be safe. Normally this is done from above so we don't care
3488 * here, all we care is that the tx power we set will be O.K.
3489 * for the hw (e.g. won't create noise on PA etc).
3490 *
3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492 * x values) and is indexed as follows:
3493 * rates[0] - rates[7] -> OFDM rates
3494 * rates[8] - rates[14] -> CCK rates
3495 * rates[15] -> XR rates (they all have the same power)
3496 */
3497
3498/**
3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500 * @ah: The &struct ath5k_hw
3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503 * @ee_mode: One of enum ath5k_driver_mode
3504 */
3505static void
3506ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507			struct ath5k_rate_pcal_info *rate_info,
3508			u8 ee_mode)
3509{
3510	unsigned int i;
3511	u16 *rates;
3512	s16 rate_idx_scaled = 0;
3513
3514	/* max_pwr is power level we got from driver/user in 0.5dB
3515	 * units, switch to 0.25dB units so we can compare */
3516	max_pwr *= 2;
3517	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518
3519	/* apply rate limits */
3520	rates = ah->ah_txpower.txp_rates_power_table;
3521
3522	/* OFDM rates 6 to 24Mb/s */
3523	for (i = 0; i < 5; i++)
3524		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525
3526	/* Rest OFDM rates */
3527	rates[5] = min(rates[0], rate_info->target_power_36);
3528	rates[6] = min(rates[0], rate_info->target_power_48);
3529	rates[7] = min(rates[0], rate_info->target_power_54);
3530
3531	/* CCK rates */
3532	/* 1L */
3533	rates[8] = min(rates[0], rate_info->target_power_6to24);
3534	/* 2L */
3535	rates[9] = min(rates[0], rate_info->target_power_36);
3536	/* 2S */
3537	rates[10] = min(rates[0], rate_info->target_power_36);
3538	/* 5L */
3539	rates[11] = min(rates[0], rate_info->target_power_48);
3540	/* 5S */
3541	rates[12] = min(rates[0], rate_info->target_power_48);
3542	/* 11L */
3543	rates[13] = min(rates[0], rate_info->target_power_54);
3544	/* 11S */
3545	rates[14] = min(rates[0], rate_info->target_power_54);
3546
3547	/* XR rates */
3548	rates[15] = min(rates[0], rate_info->target_power_6to24);
3549
3550	/* CCK rates have different peak to average ratio
3551	 * so we have to tweak their power so that gainf
3552	 * correction works ok. For this we use OFDM to
3553	 * CCK delta from eeprom */
3554	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556		for (i = 8; i <= 15; i++)
3557			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558
3559	/* Save min/max and current tx power for this channel
3560	 * in 0.25dB units.
3561	 *
3562	 * Note: We use rates[0] for current tx power because
3563	 * it covers most of the rates, in most cases. It's our
3564	 * tx power limit and what the user expects to see. */
3565	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567
3568	/* Set max txpower for correct OFDM operation on all rates
3569	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3570	 * gain probe and it's in 0.5dB units */
3571	ah->ah_txpower.txp_ofdm = rates[7];
3572
3573	/* Now that we have all rates setup use table offset to
3574	 * match the power range set by user with the power indices
3575	 * on PCDAC/PDADC table */
3576	for (i = 0; i < 16; i++) {
3577		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578		/* Don't get out of bounds */
3579		if (rate_idx_scaled > 63)
3580			rate_idx_scaled = 63;
3581		if (rate_idx_scaled < 0)
3582			rate_idx_scaled = 0;
3583		rates[i] = rate_idx_scaled;
3584	}
3585}
3586
3587
3588/**
3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590 * @ah: The &struct ath5k_hw
3591 * @channel: The &struct ieee80211_channel
3592 * @txpower: Requested tx power in 0.5dB steps
3593 *
3594 * Combines all of the above to set the requested tx power limit
3595 * on hw.
3596 */
3597static int
3598ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599		 u8 txpower)
3600{
3601	struct ath5k_rate_pcal_info rate_info;
3602	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603	int ee_mode;
3604	u8 type;
3605	int ret;
3606
3607	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609		return -EINVAL;
3610	}
3611
3612	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613
3614	/* Initialize TX power table */
3615	switch (ah->ah_radio) {
3616	case AR5K_RF5110:
3617		/* TODO */
3618		return 0;
3619	case AR5K_RF5111:
3620		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621		break;
3622	case AR5K_RF5112:
3623		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624		break;
3625	case AR5K_RF2413:
3626	case AR5K_RF5413:
3627	case AR5K_RF2316:
3628	case AR5K_RF2317:
3629	case AR5K_RF2425:
3630		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631		break;
3632	default:
3633		return -EINVAL;
3634	}
3635
3636	/*
3637	 * If we don't change channel/mode skip tx powertable calculation
3638	 * and use the cached one.
3639	 */
3640	if (!ah->ah_txpower.txp_setup ||
3641	    (channel->hw_value != curr_channel->hw_value) ||
3642	    (channel->center_freq != curr_channel->center_freq)) {
3643		/* Reset TX power values but preserve requested
3644		 * tx power from above */
3645		int requested_txpower = ah->ah_txpower.txp_requested;
3646
3647		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648
3649		/* Restore TPC setting and requested tx power */
3650		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651
3652		ah->ah_txpower.txp_requested = requested_txpower;
3653
3654		/* Calculate the powertable */
3655		ret = ath5k_setup_channel_powertable(ah, channel,
3656							ee_mode, type);
3657		if (ret)
3658			return ret;
3659	}
3660
3661	/* Write table on hw */
3662	ath5k_write_channel_powertable(ah, ee_mode, type);
3663
3664	/* Limit max power if we have a CTL available */
3665	ath5k_get_max_ctl_power(ah, channel);
3666
3667	/* FIXME: Antenna reduction stuff */
3668
3669	/* FIXME: Limit power on turbo modes */
3670
3671	/* FIXME: TPC scale reduction */
3672
3673	/* Get surrounding channels for per-rate power table
3674	 * calibration */
3675	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676
3677	/* Setup rate power table */
3678	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679
3680	/* Write rate power table on hw */
3681	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684
3685	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688
3689	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692
3693	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696
3697	/* FIXME: TPC support */
3698	if (ah->ah_txpower.txp_tpc) {
3699		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701
3702		ath5k_hw_reg_write(ah,
3703			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706			AR5K_TPC);
3707	} else {
3708		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709			AR5K_PHY_TXPOWER_RATE_MAX);
3710	}
3711
3712	return 0;
3713}
3714
3715/**
3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717 * @ah: The &struct ath5k_hw
3718 * @txpower: The requested tx power limit in 0.5dB steps
3719 *
3720 * This function provides access to ath5k_hw_txpower to the driver in
3721 * case user or an application changes it while PHY is running.
3722 */
3723int
3724ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725{
3726	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727		"changing txpower to %d\n", txpower);
3728
3729	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730}
3731
3732
3733/*************\
3734 Init function
3735\*************/
3736
3737/**
3738 * ath5k_hw_phy_init() - Initialize PHY
3739 * @ah: The &struct ath5k_hw
3740 * @channel: The @struct ieee80211_channel
3741 * @mode: One of enum ath5k_driver_mode
3742 * @fast: Try a fast channel switch instead
3743 *
3744 * This is the main function used during reset to initialize PHY
3745 * or do a fast channel change if possible.
3746 *
3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748 * warm reset state !
3749 */
3750int
3751ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752		      u8 mode, bool fast)
3753{
3754	struct ieee80211_channel *curr_channel;
3755	int ret, i;
3756	u32 phy_tst1;
3757	ret = 0;
3758
3759	/*
3760	 * Sanity check for fast flag
3761	 * Don't try fast channel change when changing modulation
3762	 * mode/band. We check for chip compatibility on
3763	 * ath5k_hw_reset.
3764	 */
3765	curr_channel = ah->ah_current_channel;
3766	if (fast && (channel->hw_value != curr_channel->hw_value))
3767		return -EINVAL;
3768
3769	/*
3770	 * On fast channel change we only set the synth parameters
3771	 * while PHY is running, enable calibration and skip the rest.
3772	 */
3773	if (fast) {
3774		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775				    AR5K_PHY_RFBUS_REQ_REQUEST);
3776		for (i = 0; i < 100; i++) {
3777			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778				break;
3779			udelay(5);
3780		}
3781		/* Failed */
3782		if (i >= 100)
3783			return -EIO;
3784
3785		/* Set channel and wait for synth */
3786		ret = ath5k_hw_channel(ah, channel);
3787		if (ret)
3788			return ret;
3789
3790		ath5k_hw_wait_for_synth(ah, channel);
3791	}
3792
3793	/*
3794	 * Set TX power
3795	 *
3796	 * Note: We need to do that before we set
3797	 * RF buffer settings on 5211/5212+ so that we
3798	 * properly set curve indices.
3799	 */
3800	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801					ah->ah_txpower.txp_requested * 2 :
3802					AR5K_TUNE_MAX_TXPOWER);
3803	if (ret)
3804		return ret;
3805
3806	/* Write OFDM timings on 5212*/
3807	if (ah->ah_version == AR5K_AR5212 &&
3808		channel->hw_value != AR5K_MODE_11B) {
3809
3810		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811		if (ret)
3812			return ret;
3813
3814		/* Spur info is available only from EEPROM versions
3815		 * greater than 5.3, but the EEPROM routines will use
3816		 * static values for older versions */
3817		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818			ath5k_hw_set_spur_mitigation_filter(ah,
3819							    channel);
3820	}
3821
3822	/* If we used fast channel switching
3823	 * we are done, release RF bus and
3824	 * fire up NF calibration.
3825	 *
3826	 * Note: Only NF calibration due to
3827	 * channel change, not AGC calibration
3828	 * since AGC is still running !
3829	 */
3830	if (fast) {
3831		/*
3832		 * Release RF Bus grant
3833		 */
3834		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835				    AR5K_PHY_RFBUS_REQ_REQUEST);
3836
3837		/*
3838		 * Start NF calibration
3839		 */
3840		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841					AR5K_PHY_AGCCTL_NF);
3842
3843		return ret;
3844	}
3845
3846	/*
3847	 * For 5210 we do all initialization using
3848	 * initvals, so we don't have to modify
3849	 * any settings (5210 also only supports
3850	 * a/aturbo modes)
3851	 */
3852	if (ah->ah_version != AR5K_AR5210) {
3853
3854		/*
3855		 * Write initial RF gain settings
3856		 * This should work for both 5111/5112
3857		 */
3858		ret = ath5k_hw_rfgain_init(ah, channel->band);
3859		if (ret)
3860			return ret;
3861
3862		usleep_range(1000, 1500);
3863
3864		/*
3865		 * Write RF buffer
3866		 */
3867		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868		if (ret)
3869			return ret;
3870
3871		/*Enable/disable 802.11b mode on 5111
3872		(enable 2111 frequency converter + CCK)*/
3873		if (ah->ah_radio == AR5K_RF5111) {
3874			if (mode == AR5K_MODE_11B)
3875				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876				    AR5K_TXCFG_B_MODE);
3877			else
3878				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879				    AR5K_TXCFG_B_MODE);
3880		}
3881
3882	} else if (ah->ah_version == AR5K_AR5210) {
3883		usleep_range(1000, 1500);
3884		/* Disable phy and wait */
3885		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886		usleep_range(1000, 1500);
3887	}
3888
3889	/* Set channel on PHY */
3890	ret = ath5k_hw_channel(ah, channel);
3891	if (ret)
3892		return ret;
3893
3894	/*
3895	 * Enable the PHY and wait until completion
3896	 * This includes BaseBand and Synthesizer
3897	 * activation.
3898	 */
3899	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900
3901	ath5k_hw_wait_for_synth(ah, channel);
3902
3903	/*
3904	 * Perform ADC test to see if baseband is ready
3905	 * Set tx hold and check adc test register
3906	 */
3907	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909	for (i = 0; i <= 20; i++) {
3910		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911			break;
3912		usleep_range(200, 250);
3913	}
3914	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915
3916	/*
3917	 * Start automatic gain control calibration
3918	 *
3919	 * During AGC calibration RX path is re-routed to
3920	 * a power detector so we don't receive anything.
3921	 *
3922	 * This method is used to calibrate some static offsets
3923	 * used together with on-the fly I/Q calibration (the
3924	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3925	 * interrupt rx path.
3926	 *
3927	 * While rx path is re-routed to the power detector we also
3928	 * start a noise floor calibration to measure the
3929	 * card's noise floor (the noise we measure when we are not
3930	 * transmitting or receiving anything).
3931	 *
3932	 * If we are in a noisy environment, AGC calibration may time
3933	 * out and/or noise floor calibration might timeout.
3934	 */
3935	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937
3938	/* At the same time start I/Q calibration for QAM constellation
3939	 * -no need for CCK- */
3940	ah->ah_iq_cal_needed = false;
3941	if (!(mode == AR5K_MODE_11B)) {
3942		ah->ah_iq_cal_needed = true;
3943		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946				AR5K_PHY_IQ_RUN);
3947	}
3948
3949	/* Wait for gain calibration to finish (we check for I/Q calibration
3950	 * during ath5k_phy_calibrate) */
3951	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954			channel->center_freq);
3955	}
3956
3957	/* Restore antenna mode */
3958	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959
3960	return ret;
3961}