Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*	FDDI network adapter driver for DEC FDDIcontroller 700/700-C devices.
   3 *
   4 *	Copyright (c) 2018  Maciej W. Rozycki
   5 *
   6 *	This program is free software; you can redistribute it and/or
   7 *	modify it under the terms of the GNU General Public License
   8 *	as published by the Free Software Foundation; either version
   9 *	2 of the License, or (at your option) any later version.
  10 *
  11 *	References:
  12 *
  13 *	Dave Sawyer & Phil Weeks & Frank Itkowsky,
  14 *	"DEC FDDIcontroller 700 Port Specification",
  15 *	Revision 1.1, Digital Equipment Corporation
  16 */
  17
  18/* ------------------------------------------------------------------------- */
  19/* FZA configurable parameters.                                              */
  20
  21/* The number of transmit ring descriptors; either 0 for 512 or 1 for 1024.  */
  22#define FZA_RING_TX_MODE 0
  23
  24/* The number of receive ring descriptors; from 2 up to 256.  */
  25#define FZA_RING_RX_SIZE 256
  26
  27/* End of FZA configurable parameters.  No need to change anything below.    */
  28/* ------------------------------------------------------------------------- */
  29
  30#include <linux/delay.h>
  31#include <linux/device.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/io.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37#include <linux/ioport.h>
  38#include <linux/kernel.h>
  39#include <linux/list.h>
  40#include <linux/module.h>
  41#include <linux/netdevice.h>
  42#include <linux/fddidevice.h>
  43#include <linux/sched.h>
  44#include <linux/skbuff.h>
  45#include <linux/spinlock.h>
  46#include <linux/stat.h>
  47#include <linux/tc.h>
  48#include <linux/timer.h>
  49#include <linux/types.h>
  50#include <linux/wait.h>
  51
  52#include <asm/barrier.h>
  53
  54#include "defza.h"
  55
  56#define DRV_NAME "defza"
  57#define DRV_VERSION "v.1.1.4"
  58#define DRV_RELDATE "Oct  6 2018"
  59
  60static const char version[] =
  61	DRV_NAME ": " DRV_VERSION "  " DRV_RELDATE "  Maciej W. Rozycki\n";
  62
  63MODULE_AUTHOR("Maciej W. Rozycki <macro@orcam.me.uk>");
  64MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
  65MODULE_LICENSE("GPL");
  66
  67static int loopback;
  68module_param(loopback, int, 0644);
  69
  70/* Ring Purger Multicast */
  71static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
  72/* Directed Beacon Multicast */
  73static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
  74
  75/* Shorthands for MMIO accesses that we require to be strongly ordered
  76 * WRT preceding MMIO accesses.
  77 */
  78#define readw_o readw_relaxed
  79#define readl_o readl_relaxed
  80
  81#define writew_o writew_relaxed
  82#define writel_o writel_relaxed
  83
  84/* Shorthands for MMIO accesses that we are happy with being weakly ordered
  85 * WRT preceding MMIO accesses.
  86 */
  87#define readw_u readw_relaxed
  88#define readl_u readl_relaxed
  89#define readq_u readq_relaxed
  90
  91#define writew_u writew_relaxed
  92#define writel_u writel_relaxed
  93#define writeq_u writeq_relaxed
  94
  95static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
  96						unsigned int length)
  97{
  98	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  99}
 100
 101static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
 102					    unsigned int length)
 103{
 104	return __netdev_alloc_skb(dev, length, GFP_KERNEL);
 105}
 106
 107static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
 108{
 109	unsigned long x, y;
 110
 111	x = (unsigned long)skb->data;
 112	y = ALIGN(x, v);
 113
 114	skb_reserve(skb, y - x);
 115}
 116
 117static inline void fza_reads(const void __iomem *from, void *to,
 118			     unsigned long size)
 119{
 120	if (sizeof(unsigned long) == 8) {
 121		const u64 __iomem *src = from;
 122		const u32 __iomem *src_trail;
 123		u64 *dst = to;
 124		u32 *dst_trail;
 125
 126		for (size = (size + 3) / 4; size > 1; size -= 2)
 127			*dst++ = readq_u(src++);
 128		if (size) {
 129			src_trail = (u32 __iomem *)src;
 130			dst_trail = (u32 *)dst;
 131			*dst_trail = readl_u(src_trail);
 132		}
 133	} else {
 134		const u32 __iomem *src = from;
 135		u32 *dst = to;
 136
 137		for (size = (size + 3) / 4; size; size--)
 138			*dst++ = readl_u(src++);
 139	}
 140}
 141
 142static inline void fza_writes(const void *from, void __iomem *to,
 143			      unsigned long size)
 144{
 145	if (sizeof(unsigned long) == 8) {
 146		const u64 *src = from;
 147		const u32 *src_trail;
 148		u64 __iomem *dst = to;
 149		u32 __iomem *dst_trail;
 150
 151		for (size = (size + 3) / 4; size > 1; size -= 2)
 152			writeq_u(*src++, dst++);
 153		if (size) {
 154			src_trail = (u32 *)src;
 155			dst_trail = (u32 __iomem *)dst;
 156			writel_u(*src_trail, dst_trail);
 157		}
 158	} else {
 159		const u32 *src = from;
 160		u32 __iomem *dst = to;
 161
 162		for (size = (size + 3) / 4; size; size--)
 163			writel_u(*src++, dst++);
 164	}
 165}
 166
 167static inline void fza_moves(const void __iomem *from, void __iomem *to,
 168			     unsigned long size)
 169{
 170	if (sizeof(unsigned long) == 8) {
 171		const u64 __iomem *src = from;
 172		const u32 __iomem *src_trail;
 173		u64 __iomem *dst = to;
 174		u32 __iomem *dst_trail;
 175
 176		for (size = (size + 3) / 4; size > 1; size -= 2)
 177			writeq_u(readq_u(src++), dst++);
 178		if (size) {
 179			src_trail = (u32 __iomem *)src;
 180			dst_trail = (u32 __iomem *)dst;
 181			writel_u(readl_u(src_trail), dst_trail);
 182		}
 183	} else {
 184		const u32 __iomem *src = from;
 185		u32 __iomem *dst = to;
 186
 187		for (size = (size + 3) / 4; size; size--)
 188			writel_u(readl_u(src++), dst++);
 189	}
 190}
 191
 192static inline void fza_zeros(void __iomem *to, unsigned long size)
 193{
 194	if (sizeof(unsigned long) == 8) {
 195		u64 __iomem *dst = to;
 196		u32 __iomem *dst_trail;
 197
 198		for (size = (size + 3) / 4; size > 1; size -= 2)
 199			writeq_u(0, dst++);
 200		if (size) {
 201			dst_trail = (u32 __iomem *)dst;
 202			writel_u(0, dst_trail);
 203		}
 204	} else {
 205		u32 __iomem *dst = to;
 206
 207		for (size = (size + 3) / 4; size; size--)
 208			writel_u(0, dst++);
 209	}
 210}
 211
 212static inline void fza_regs_dump(struct fza_private *fp)
 213{
 214	pr_debug("%s: iomem registers:\n", fp->name);
 215	pr_debug(" reset:           0x%04x\n", readw_o(&fp->regs->reset));
 216	pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
 217	pr_debug(" status:          0x%04x\n", readw_u(&fp->regs->status));
 218	pr_debug(" interrupt mask:  0x%04x\n", readw_u(&fp->regs->int_mask));
 219	pr_debug(" control A:       0x%04x\n", readw_u(&fp->regs->control_a));
 220	pr_debug(" control B:       0x%04x\n", readw_u(&fp->regs->control_b));
 221}
 222
 223static inline void fza_do_reset(struct fza_private *fp)
 224{
 225	/* Reset the board. */
 226	writew_o(FZA_RESET_INIT, &fp->regs->reset);
 227	readw_o(&fp->regs->reset);	/* Synchronize. */
 228	readw_o(&fp->regs->reset);	/* Read it back for a small delay. */
 229	writew_o(FZA_RESET_CLR, &fp->regs->reset);
 230
 231	/* Enable all interrupt events we handle. */
 232	writew_o(fp->int_mask, &fp->regs->int_mask);
 233	readw_o(&fp->regs->int_mask);	/* Synchronize. */
 234}
 235
 236static inline void fza_do_shutdown(struct fza_private *fp)
 237{
 238	/* Disable the driver mode. */
 239	writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
 240
 241	/* And reset the board. */
 242	writew_o(FZA_RESET_INIT, &fp->regs->reset);
 243	readw_o(&fp->regs->reset);	/* Synchronize. */
 244	writew_o(FZA_RESET_CLR, &fp->regs->reset);
 245	readw_o(&fp->regs->reset);	/* Synchronize. */
 246}
 247
 248static int fza_reset(struct fza_private *fp)
 249{
 250	unsigned long flags;
 251	uint status, state;
 252	long t;
 253
 254	pr_info("%s: resetting the board...\n", fp->name);
 255
 256	spin_lock_irqsave(&fp->lock, flags);
 257	fp->state_chg_flag = 0;
 258	fza_do_reset(fp);
 259	spin_unlock_irqrestore(&fp->lock, flags);
 260
 261	/* DEC says RESET needs up to 30 seconds to complete.  My DEFZA-AA
 262	 * rev. C03 happily finishes in 9.7 seconds. :-)  But we need to
 263	 * be on the safe side...
 264	 */
 265	t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
 266			       45 * HZ);
 267	status = readw_u(&fp->regs->status);
 268	state = FZA_STATUS_GET_STATE(status);
 269	if (fp->state_chg_flag == 0) {
 270		pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
 271		return -EIO;
 272	}
 273	if (state != FZA_STATE_UNINITIALIZED) {
 274		pr_err("%s: RESET failed!, state %x, failure ID %x\n",
 275		       fp->name, state, FZA_STATUS_GET_TEST(status));
 276		return -EIO;
 277	}
 278	pr_info("%s: OK\n", fp->name);
 279	pr_debug("%s: RESET: %lums elapsed\n", fp->name,
 280		 (45 * HZ - t) * 1000 / HZ);
 281
 282	return 0;
 283}
 284
 285static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
 286						 int command)
 287{
 288	struct fza_private *fp = netdev_priv(dev);
 289	struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
 290	unsigned int old_mask, new_mask;
 291	union fza_cmd_buf __iomem *buf;
 292	struct netdev_hw_addr *ha;
 293	int i;
 294
 295	old_mask = fp->int_mask;
 296	new_mask = old_mask & ~FZA_MASK_STATE_CHG;
 297	writew_u(new_mask, &fp->regs->int_mask);
 298	readw_o(&fp->regs->int_mask);			/* Synchronize. */
 299	fp->int_mask = new_mask;
 300
 301	buf = fp->mmio + readl_u(&ring->buffer);
 302
 303	if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
 304	    FZA_RING_OWN_HOST) {
 305		pr_warn("%s: command buffer full, command: %u!\n", fp->name,
 306			command);
 307		return NULL;
 308	}
 309
 310	switch (command) {
 311	case FZA_RING_CMD_INIT:
 312		writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
 313		writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
 314		fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
 315		break;
 316
 317	case FZA_RING_CMD_MODCAM:
 318		i = 0;
 319		fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
 320			   sizeof(*buf->cam.hw_addr));
 321		fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
 322			   sizeof(*buf->cam.hw_addr));
 323		netdev_for_each_mc_addr(ha, dev) {
 324			if (i >= FZA_CMD_CAM_SIZE)
 325				break;
 326			fza_writes(ha->addr, &buf->cam.hw_addr[i++],
 327				   sizeof(*buf->cam.hw_addr));
 328		}
 329		while (i < FZA_CMD_CAM_SIZE)
 330			fza_zeros(&buf->cam.hw_addr[i++],
 331				  sizeof(*buf->cam.hw_addr));
 332		break;
 333
 334	case FZA_RING_CMD_PARAM:
 335		writel_u(loopback, &buf->param.loop_mode);
 336		writel_u(fp->t_max, &buf->param.t_max);
 337		writel_u(fp->t_req, &buf->param.t_req);
 338		writel_u(fp->tvx, &buf->param.tvx);
 339		writel_u(fp->lem_threshold, &buf->param.lem_threshold);
 340		fza_writes(&fp->station_id, &buf->param.station_id,
 341			   sizeof(buf->param.station_id));
 342		/* Convert to milliseconds due to buggy firmware. */
 343		writel_u(fp->rtoken_timeout / 12500,
 344			 &buf->param.rtoken_timeout);
 345		writel_u(fp->ring_purger, &buf->param.ring_purger);
 346		break;
 347
 348	case FZA_RING_CMD_MODPROM:
 349		if (dev->flags & IFF_PROMISC) {
 350			writel_u(1, &buf->modprom.llc_prom);
 351			writel_u(1, &buf->modprom.smt_prom);
 352		} else {
 353			writel_u(0, &buf->modprom.llc_prom);
 354			writel_u(0, &buf->modprom.smt_prom);
 355		}
 356		if (dev->flags & IFF_ALLMULTI ||
 357		    netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
 358			writel_u(1, &buf->modprom.llc_multi);
 359		else
 360			writel_u(0, &buf->modprom.llc_multi);
 361		writel_u(1, &buf->modprom.llc_bcast);
 362		break;
 363	}
 364
 365	/* Trigger the command. */
 366	writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
 367	writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
 368
 369	fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
 370
 371	fp->int_mask = old_mask;
 372	writew_u(fp->int_mask, &fp->regs->int_mask);
 373
 374	return ring;
 375}
 376
 377static int fza_init_send(struct net_device *dev,
 378			 struct fza_cmd_init *__iomem *init)
 379{
 380	struct fza_private *fp = netdev_priv(dev);
 381	struct fza_ring_cmd __iomem *ring;
 382	unsigned long flags;
 383	u32 stat;
 384	long t;
 385
 386	spin_lock_irqsave(&fp->lock, flags);
 387	fp->cmd_done_flag = 0;
 388	ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
 389	spin_unlock_irqrestore(&fp->lock, flags);
 390	if (!ring)
 391		/* This should never happen in the uninitialized state,
 392		 * so do not try to recover and just consider it fatal.
 393		 */
 394		return -ENOBUFS;
 395
 396	/* INIT may take quite a long time (160ms for my C03). */
 397	t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
 398	if (fp->cmd_done_flag == 0) {
 399		pr_err("%s: INIT command timed out!, state %x\n", fp->name,
 400		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
 401		return -EIO;
 402	}
 403	stat = readl_u(&ring->stat);
 404	if (stat != FZA_RING_STAT_SUCCESS) {
 405		pr_err("%s: INIT command failed!, status %02x, state %x\n",
 406		       fp->name, stat,
 407		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
 408		return -EIO;
 409	}
 410	pr_debug("%s: INIT: %lums elapsed\n", fp->name,
 411		 (3 * HZ - t) * 1000 / HZ);
 412
 413	if (init)
 414		*init = fp->mmio + readl_u(&ring->buffer);
 415	return 0;
 416}
 417
 418static void fza_rx_init(struct fza_private *fp)
 419{
 420	int i;
 421
 422	/* Fill the host receive descriptor ring. */
 423	for (i = 0; i < FZA_RING_RX_SIZE; i++) {
 424		writel_o(0, &fp->ring_hst_rx[i].rmc);
 425		writel_o((fp->rx_dma[i] + 0x1000) >> 9,
 426			 &fp->ring_hst_rx[i].buffer1);
 427		writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
 428			 &fp->ring_hst_rx[i].buf0_own);
 429	}
 430}
 431
 432static void fza_set_rx_mode(struct net_device *dev)
 433{
 434	fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
 435	fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
 436}
 437
 438union fza_buffer_txp {
 439	struct fza_buffer_tx *data_ptr;
 440	struct fza_buffer_tx __iomem *mmio_ptr;
 441};
 442
 443static int fza_do_xmit(union fza_buffer_txp ub, int len,
 444		       struct net_device *dev, int smt)
 445{
 446	struct fza_private *fp = netdev_priv(dev);
 447	struct fza_buffer_tx __iomem *rmc_tx_ptr;
 448	int i, first, frag_len, left_len;
 449	u32 own, rmc;
 450
 451	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
 452	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
 453	     FZA_TX_BUFFER_SIZE) < len)
 454		return 1;
 455
 456	first = fp->ring_rmc_tx_index;
 457
 458	left_len = len;
 459	frag_len = FZA_TX_BUFFER_SIZE;
 460	/* First descriptor is relinquished last. */
 461	own = FZA_RING_TX_OWN_HOST;
 462	/* First descriptor carries frame length; we don't use cut-through. */
 463	rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
 464	do {
 465		i = fp->ring_rmc_tx_index;
 466		rmc_tx_ptr = &fp->buffer_tx[i];
 467
 468		if (left_len < FZA_TX_BUFFER_SIZE)
 469			frag_len = left_len;
 470		left_len -= frag_len;
 471
 472		/* Length must be a multiple of 4 as only word writes are
 473		 * permitted!
 474		 */
 475		frag_len = (frag_len + 3) & ~3;
 476		if (smt)
 477			fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
 478		else
 479			fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
 480
 481		if (left_len == 0)
 482			rmc |= FZA_RING_TX_EOP;		/* Mark last frag. */
 483
 484		writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
 485		writel_o(own, &fp->ring_rmc_tx[i].own);
 486
 487		ub.data_ptr++;
 488		fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
 489					fp->ring_rmc_tx_size;
 490
 491		/* Settings for intermediate frags. */
 492		own = FZA_RING_TX_OWN_RMC;
 493		rmc = 0;
 494	} while (left_len > 0);
 495
 496	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
 497	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
 498	     FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
 499		netif_stop_queue(dev);
 500		pr_debug("%s: queue stopped\n", fp->name);
 501	}
 502
 503	writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
 504
 505	/* Go, go, go! */
 506	writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
 507
 508	return 0;
 509}
 510
 511static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
 512			   u32 rmc, struct net_device *dev)
 513{
 514	struct fza_private *fp = netdev_priv(dev);
 515	struct fza_buffer_tx __iomem *smt_rx_ptr;
 516	u32 own;
 517	int i;
 518
 519	i = fp->ring_smt_rx_index;
 520	own = readl_o(&fp->ring_smt_rx[i].own);
 521	if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 522		return 1;
 523
 524	smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
 525
 526	/* Length must be a multiple of 4 as only word writes are permitted! */
 527	fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
 528
 529	writel_o(rmc, &fp->ring_smt_rx[i].rmc);
 530	writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
 531
 532	fp->ring_smt_rx_index =
 533		(fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
 534
 535	/* Grab it! */
 536	writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
 537
 538	return 0;
 539}
 540
 541static void fza_tx(struct net_device *dev)
 542{
 543	struct fza_private *fp = netdev_priv(dev);
 544	u32 own, rmc;
 545	int i;
 546
 547	while (1) {
 548		i = fp->ring_rmc_txd_index;
 549		if (i == fp->ring_rmc_tx_index)
 550			break;
 551		own = readl_o(&fp->ring_rmc_tx[i].own);
 552		if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
 553			break;
 554
 555		rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
 556		/* Only process the first descriptor. */
 557		if ((rmc & FZA_RING_TX_SOP) != 0) {
 558			if ((rmc & FZA_RING_TX_DCC_MASK) ==
 559			    FZA_RING_TX_DCC_SUCCESS) {
 560				int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
 561								/* Omit PRH. */
 562
 563				fp->stats.tx_packets++;
 564				fp->stats.tx_bytes += pkt_len;
 565			} else {
 566				fp->stats.tx_errors++;
 567				switch (rmc & FZA_RING_TX_DCC_MASK) {
 568				case FZA_RING_TX_DCC_DTP_SOP:
 569				case FZA_RING_TX_DCC_DTP:
 570				case FZA_RING_TX_DCC_ABORT:
 571					fp->stats.tx_aborted_errors++;
 572					break;
 573				case FZA_RING_TX_DCC_UNDRRUN:
 574					fp->stats.tx_fifo_errors++;
 575					break;
 576				case FZA_RING_TX_DCC_PARITY:
 577				default:
 578					break;
 579				}
 580			}
 581		}
 582
 583		fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
 584					 fp->ring_rmc_tx_size;
 585	}
 586
 587	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
 588	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
 589	     FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
 590		if (fp->queue_active) {
 591			netif_wake_queue(dev);
 592			pr_debug("%s: queue woken\n", fp->name);
 593		}
 594	}
 595}
 596
 597static inline int fza_rx_err(struct fza_private *fp,
 598			     const u32 rmc, const u8 fc)
 599{
 600	int len, min_len, max_len;
 601
 602	len = rmc & FZA_RING_PBC_MASK;
 603
 604	if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
 605		fp->stats.rx_errors++;
 606
 607		/* Check special status codes. */
 608		if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
 609			    FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
 610		     (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
 611		      FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
 612			if (len >= 8190)
 613				fp->stats.rx_length_errors++;
 614			return 1;
 615		}
 616		if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
 617			    FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
 618		     (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
 619		      FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
 620			/* Halt the interface to trigger a reset. */
 621			writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
 622			readw_o(&fp->regs->control_a);	/* Synchronize. */
 623			return 1;
 624		}
 625
 626		/* Check the MAC status. */
 627		switch (rmc & FZA_RING_RX_RRR_MASK) {
 628		case FZA_RING_RX_RRR_OK:
 629			if ((rmc & FZA_RING_RX_CRC) != 0)
 630				fp->stats.rx_crc_errors++;
 631			else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
 632				 (rmc & FZA_RING_RX_FSB_ERR) != 0)
 633				fp->stats.rx_frame_errors++;
 634			return 1;
 635		case FZA_RING_RX_RRR_SADDR:
 636		case FZA_RING_RX_RRR_DADDR:
 637		case FZA_RING_RX_RRR_ABORT:
 638			/* Halt the interface to trigger a reset. */
 639			writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
 640			readw_o(&fp->regs->control_a);	/* Synchronize. */
 641			return 1;
 642		case FZA_RING_RX_RRR_LENGTH:
 643			fp->stats.rx_frame_errors++;
 644			return 1;
 645		default:
 646			return 1;
 647		}
 648	}
 649
 650	/* Packet received successfully; validate the length. */
 651	switch (fc & FDDI_FC_K_FORMAT_MASK) {
 652	case FDDI_FC_K_FORMAT_MANAGEMENT:
 653		if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
 654			min_len = 37;
 655		else
 656			min_len = 17;
 657		break;
 658	case FDDI_FC_K_FORMAT_LLC:
 659		min_len = 20;
 660		break;
 661	default:
 662		min_len = 17;
 663		break;
 664	}
 665	max_len = 4495;
 666	if (len < min_len || len > max_len) {
 667		fp->stats.rx_errors++;
 668		fp->stats.rx_length_errors++;
 669		return 1;
 670	}
 671
 672	return 0;
 673}
 674
 675static void fza_rx(struct net_device *dev)
 676{
 677	struct fza_private *fp = netdev_priv(dev);
 678	struct sk_buff *skb, *newskb;
 679	struct fza_fddihdr *frame;
 680	dma_addr_t dma, newdma;
 681	u32 own, rmc, buf;
 682	int i, len;
 683	u8 fc;
 684
 685	while (1) {
 686		i = fp->ring_hst_rx_index;
 687		own = readl_o(&fp->ring_hst_rx[i].buf0_own);
 688		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 689			break;
 690
 691		rmc = readl_u(&fp->ring_hst_rx[i].rmc);
 692		skb = fp->rx_skbuff[i];
 693		dma = fp->rx_dma[i];
 694
 695		/* The RMC doesn't count the preamble and the starting
 696		 * delimiter.  We fix it up here for a total of 3 octets.
 697		 */
 698		dma_rmb();
 699		len = (rmc & FZA_RING_PBC_MASK) + 3;
 700		frame = (struct fza_fddihdr *)skb->data;
 701
 702		/* We need to get at real FC. */
 703		dma_sync_single_for_cpu(fp->bdev,
 704					dma +
 705					((u8 *)&frame->hdr.fc - (u8 *)frame),
 706					sizeof(frame->hdr.fc),
 707					DMA_FROM_DEVICE);
 708		fc = frame->hdr.fc;
 709
 710		if (fza_rx_err(fp, rmc, fc))
 711			goto err_rx;
 712
 713		/* We have to 512-byte-align RX buffers... */
 714		newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
 715		if (newskb) {
 716			fza_skb_align(newskb, 512);
 717			newdma = dma_map_single(fp->bdev, newskb->data,
 718						FZA_RX_BUFFER_SIZE,
 719						DMA_FROM_DEVICE);
 720			if (dma_mapping_error(fp->bdev, newdma)) {
 721				dev_kfree_skb_irq(newskb);
 722				newskb = NULL;
 723			}
 724		}
 725		if (newskb) {
 726			int pkt_len = len - 7;	/* Omit P, SD and FCS. */
 727			int is_multi;
 728			int rx_stat;
 729
 730			dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
 731					 DMA_FROM_DEVICE);
 732
 733			/* Queue SMT frames to the SMT receive ring. */
 734			if ((fc & (FDDI_FC_K_CLASS_MASK |
 735				   FDDI_FC_K_FORMAT_MASK)) ==
 736			     (FDDI_FC_K_CLASS_ASYNC |
 737			      FDDI_FC_K_FORMAT_MANAGEMENT) &&
 738			    (rmc & FZA_RING_RX_DA_MASK) !=
 739			     FZA_RING_RX_DA_PROM) {
 740				if (fza_do_recv_smt((struct fza_buffer_tx *)
 741						    skb->data, len, rmc,
 742						    dev)) {
 743					writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
 744						 &fp->regs->control_a);
 745				}
 746			}
 747
 748			is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
 749
 750			skb_reserve(skb, 3);	/* Skip over P and SD. */
 751			skb_put(skb, pkt_len);	/* And cut off FCS. */
 752			skb->protocol = fddi_type_trans(skb, dev);
 753
 754			rx_stat = netif_rx(skb);
 755			if (rx_stat != NET_RX_DROP) {
 756				fp->stats.rx_packets++;
 757				fp->stats.rx_bytes += pkt_len;
 758				if (is_multi)
 759					fp->stats.multicast++;
 760			} else {
 761				fp->stats.rx_dropped++;
 762			}
 763
 764			skb = newskb;
 765			dma = newdma;
 766			fp->rx_skbuff[i] = skb;
 767			fp->rx_dma[i] = dma;
 768		} else {
 769			fp->stats.rx_dropped++;
 770			pr_notice("%s: memory squeeze, dropping packet\n",
 771				  fp->name);
 772		}
 773
 774err_rx:
 775		writel_o(0, &fp->ring_hst_rx[i].rmc);
 776		buf = (dma + 0x1000) >> 9;
 777		writel_o(buf, &fp->ring_hst_rx[i].buffer1);
 778		buf = dma >> 9 | FZA_RING_OWN_FZA;
 779		writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
 780		fp->ring_hst_rx_index =
 781			(fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
 782	}
 783}
 784
 785static void fza_tx_smt(struct net_device *dev)
 786{
 787	struct fza_private *fp = netdev_priv(dev);
 788	struct fza_buffer_tx __iomem *smt_tx_ptr;
 789	int i, len;
 790	u32 own;
 791
 792	while (1) {
 793		i = fp->ring_smt_tx_index;
 794		own = readl_o(&fp->ring_smt_tx[i].own);
 795		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 796			break;
 797
 798		smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
 799		len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
 800
 801		if (!netif_queue_stopped(dev)) {
 802			if (dev_nit_active(dev)) {
 803				struct fza_buffer_tx *skb_data_ptr;
 804				struct sk_buff *skb;
 805
 806				/* Length must be a multiple of 4 as only word
 807				 * reads are permitted!
 808				 */
 809				skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
 810				if (!skb)
 811					goto err_no_skb;	/* Drop. */
 812
 813				skb_data_ptr = (struct fza_buffer_tx *)
 814					       skb->data;
 815
 816				fza_reads(smt_tx_ptr, skb_data_ptr,
 817					  (len + 3) & ~3);
 818				skb->dev = dev;
 819				skb_reserve(skb, 3);	/* Skip over PRH. */
 820				skb_put(skb, len - 3);
 821				skb_reset_network_header(skb);
 822
 823				dev_queue_xmit_nit(skb, dev);
 824
 825				dev_kfree_skb_irq(skb);
 826
 827err_no_skb:
 828				;
 829			}
 830
 831			/* Queue the frame to the RMC transmit ring. */
 832			fza_do_xmit((union fza_buffer_txp)
 833				    { .mmio_ptr = smt_tx_ptr },
 834				    len, dev, 1);
 835		}
 836
 837		writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
 838		fp->ring_smt_tx_index =
 839			(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
 840	}
 841}
 842
 843static void fza_uns(struct net_device *dev)
 844{
 845	struct fza_private *fp = netdev_priv(dev);
 846	u32 own;
 847	int i;
 848
 849	while (1) {
 850		i = fp->ring_uns_index;
 851		own = readl_o(&fp->ring_uns[i].own);
 852		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 853			break;
 854
 855		if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
 856			fp->stats.rx_errors++;
 857			fp->stats.rx_over_errors++;
 858		}
 859
 860		writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
 861		fp->ring_uns_index =
 862			(fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
 863	}
 864}
 865
 866static void fza_tx_flush(struct net_device *dev)
 867{
 868	struct fza_private *fp = netdev_priv(dev);
 869	u32 own;
 870	int i;
 871
 872	/* Clean up the SMT TX ring. */
 873	i = fp->ring_smt_tx_index;
 874	do {
 875		writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
 876		fp->ring_smt_tx_index =
 877			(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
 878
 879	} while (i != fp->ring_smt_tx_index);
 880
 881	/* Clean up the RMC TX ring. */
 882	i = fp->ring_rmc_tx_index;
 883	do {
 884		own = readl_o(&fp->ring_rmc_tx[i].own);
 885		if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
 886			u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
 887
 888			writel_u(rmc | FZA_RING_TX_DTP,
 889				 &fp->ring_rmc_tx[i].rmc);
 890		}
 891		fp->ring_rmc_tx_index =
 892			(fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
 893
 894	} while (i != fp->ring_rmc_tx_index);
 895
 896	/* Done. */
 897	writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
 898}
 899
 900static irqreturn_t fza_interrupt(int irq, void *dev_id)
 901{
 902	struct net_device *dev = dev_id;
 903	struct fza_private *fp = netdev_priv(dev);
 904	uint int_event;
 905
 906	/* Get interrupt events. */
 907	int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
 908	if (int_event == 0)
 909		return IRQ_NONE;
 910
 911	/* Clear the events. */
 912	writew_u(int_event, &fp->regs->int_event);
 913
 914	/* Now handle the events.  The order matters. */
 915
 916	/* Command finished interrupt. */
 917	if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
 918		fp->irq_count_cmd_done++;
 919
 920		spin_lock(&fp->lock);
 921		fp->cmd_done_flag = 1;
 922		wake_up(&fp->cmd_done_wait);
 923		spin_unlock(&fp->lock);
 924	}
 925
 926	/* Transmit finished interrupt. */
 927	if ((int_event & FZA_EVENT_TX_DONE) != 0) {
 928		fp->irq_count_tx_done++;
 929		fza_tx(dev);
 930	}
 931
 932	/* Host receive interrupt. */
 933	if ((int_event & FZA_EVENT_RX_POLL) != 0) {
 934		fp->irq_count_rx_poll++;
 935		fza_rx(dev);
 936	}
 937
 938	/* SMT transmit interrupt. */
 939	if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
 940		fp->irq_count_smt_tx_poll++;
 941		fza_tx_smt(dev);
 942	}
 943
 944	/* Transmit ring flush request. */
 945	if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
 946		fp->irq_count_flush_tx++;
 947		fza_tx_flush(dev);
 948	}
 949
 950	/* Link status change interrupt. */
 951	if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
 952		uint status;
 953
 954		fp->irq_count_link_st_chg++;
 955		status = readw_u(&fp->regs->status);
 956		if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
 957			netif_carrier_on(dev);
 958			pr_info("%s: link available\n", fp->name);
 959		} else {
 960			netif_carrier_off(dev);
 961			pr_info("%s: link unavailable\n", fp->name);
 962		}
 963	}
 964
 965	/* Unsolicited event interrupt. */
 966	if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
 967		fp->irq_count_uns_poll++;
 968		fza_uns(dev);
 969	}
 970
 971	/* State change interrupt. */
 972	if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
 973		uint status, state;
 974
 975		fp->irq_count_state_chg++;
 976
 977		status = readw_u(&fp->regs->status);
 978		state = FZA_STATUS_GET_STATE(status);
 979		pr_debug("%s: state change: %x\n", fp->name, state);
 980		switch (state) {
 981		case FZA_STATE_RESET:
 982			break;
 983
 984		case FZA_STATE_UNINITIALIZED:
 985			netif_carrier_off(dev);
 986			del_timer_sync(&fp->reset_timer);
 987			fp->ring_cmd_index = 0;
 988			fp->ring_uns_index = 0;
 989			fp->ring_rmc_tx_index = 0;
 990			fp->ring_rmc_txd_index = 0;
 991			fp->ring_hst_rx_index = 0;
 992			fp->ring_smt_tx_index = 0;
 993			fp->ring_smt_rx_index = 0;
 994			if (fp->state > state) {
 995				pr_info("%s: OK\n", fp->name);
 996				fza_cmd_send(dev, FZA_RING_CMD_INIT);
 997			}
 998			break;
 999
1000		case FZA_STATE_INITIALIZED:
1001			if (fp->state > state) {
1002				fza_set_rx_mode(dev);
1003				fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1004			}
1005			break;
1006
1007		case FZA_STATE_RUNNING:
1008		case FZA_STATE_MAINTENANCE:
1009			fp->state = state;
1010			fza_rx_init(fp);
1011			fp->queue_active = 1;
1012			netif_wake_queue(dev);
1013			pr_debug("%s: queue woken\n", fp->name);
1014			break;
1015
1016		case FZA_STATE_HALTED:
1017			fp->queue_active = 0;
1018			netif_stop_queue(dev);
1019			pr_debug("%s: queue stopped\n", fp->name);
1020			del_timer_sync(&fp->reset_timer);
1021			pr_warn("%s: halted, reason: %x\n", fp->name,
1022				FZA_STATUS_GET_HALT(status));
1023			fza_regs_dump(fp);
1024			pr_info("%s: resetting the board...\n", fp->name);
1025			fza_do_reset(fp);
1026			fp->timer_state = 0;
1027			fp->reset_timer.expires = jiffies + 45 * HZ;
1028			add_timer(&fp->reset_timer);
1029			break;
1030
1031		default:
1032			pr_warn("%s: undefined state: %x\n", fp->name, state);
1033			break;
1034		}
1035
1036		spin_lock(&fp->lock);
1037		fp->state_chg_flag = 1;
1038		wake_up(&fp->state_chg_wait);
1039		spin_unlock(&fp->lock);
1040	}
1041
1042	return IRQ_HANDLED;
1043}
1044
1045static void fza_reset_timer(struct timer_list *t)
1046{
1047	struct fza_private *fp = from_timer(fp, t, reset_timer);
1048
1049	if (!fp->timer_state) {
1050		pr_err("%s: RESET timed out!\n", fp->name);
1051		pr_info("%s: trying harder...\n", fp->name);
1052
1053		/* Assert the board reset. */
1054		writew_o(FZA_RESET_INIT, &fp->regs->reset);
1055		readw_o(&fp->regs->reset);		/* Synchronize. */
1056
1057		fp->timer_state = 1;
1058		fp->reset_timer.expires = jiffies + HZ;
1059	} else {
1060		/* Clear the board reset. */
1061		writew_u(FZA_RESET_CLR, &fp->regs->reset);
1062
1063		/* Enable all interrupt events we handle. */
1064		writew_o(fp->int_mask, &fp->regs->int_mask);
1065		readw_o(&fp->regs->int_mask);		/* Synchronize. */
1066
1067		fp->timer_state = 0;
1068		fp->reset_timer.expires = jiffies + 45 * HZ;
1069	}
1070	add_timer(&fp->reset_timer);
1071}
1072
1073static int fza_set_mac_address(struct net_device *dev, void *addr)
1074{
1075	return -EOPNOTSUPP;
1076}
1077
1078static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
1079{
1080	struct fza_private *fp = netdev_priv(dev);
1081	unsigned int old_mask, new_mask;
1082	int ret;
1083	u8 fc;
1084
1085	skb_push(skb, 3);			/* Make room for PRH. */
1086
1087	/* Decode FC to set PRH. */
1088	fc = skb->data[3];
1089	skb->data[0] = 0;
1090	skb->data[1] = 0;
1091	skb->data[2] = FZA_PRH2_NORMAL;
1092	if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
1093		skb->data[0] |= FZA_PRH0_FRAME_SYNC;
1094	switch (fc & FDDI_FC_K_FORMAT_MASK) {
1095	case FDDI_FC_K_FORMAT_MANAGEMENT:
1096		if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
1097			/* Token. */
1098			skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
1099			skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
1100		} else {
1101			/* SMT or MAC. */
1102			skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1103			skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
1104		}
1105		skb->data[1] |= FZA_PRH1_CRC_NORMAL;
1106		break;
1107	case FDDI_FC_K_FORMAT_LLC:
1108	case FDDI_FC_K_FORMAT_FUTURE:
1109		skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1110		skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
1111		break;
1112	case FDDI_FC_K_FORMAT_IMPLEMENTOR:
1113		skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1114		skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
1115		break;
1116	}
1117
1118	/* SMT transmit interrupts may sneak frames into the RMC
1119	 * transmit ring.  We disable them while queueing a frame
1120	 * to maintain consistency.
1121	 */
1122	old_mask = fp->int_mask;
1123	new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
1124	writew_u(new_mask, &fp->regs->int_mask);
1125	readw_o(&fp->regs->int_mask);			/* Synchronize. */
1126	fp->int_mask = new_mask;
1127	ret = fza_do_xmit((union fza_buffer_txp)
1128			  { .data_ptr = (struct fza_buffer_tx *)skb->data },
1129			  skb->len, dev, 0);
1130	fp->int_mask = old_mask;
1131	writew_u(fp->int_mask, &fp->regs->int_mask);
1132
1133	if (ret) {
1134		/* Probably an SMT packet filled the remaining space,
1135		 * so just stop the queue, but don't report it as an error.
1136		 */
1137		netif_stop_queue(dev);
1138		pr_debug("%s: queue stopped\n", fp->name);
1139		fp->stats.tx_dropped++;
1140	}
1141
1142	dev_kfree_skb(skb);
1143
1144	return ret;
1145}
1146
1147static int fza_open(struct net_device *dev)
1148{
1149	struct fza_private *fp = netdev_priv(dev);
1150	struct fza_ring_cmd __iomem *ring;
1151	struct sk_buff *skb;
1152	unsigned long flags;
1153	dma_addr_t dma;
1154	int ret, i;
1155	u32 stat;
1156	long t;
1157
1158	for (i = 0; i < FZA_RING_RX_SIZE; i++) {
1159		/* We have to 512-byte-align RX buffers... */
1160		skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
1161		if (skb) {
1162			fza_skb_align(skb, 512);
1163			dma = dma_map_single(fp->bdev, skb->data,
1164					     FZA_RX_BUFFER_SIZE,
1165					     DMA_FROM_DEVICE);
1166			if (dma_mapping_error(fp->bdev, dma)) {
1167				dev_kfree_skb(skb);
1168				skb = NULL;
1169			}
1170		}
1171		if (!skb) {
1172			for (--i; i >= 0; i--) {
1173				dma_unmap_single(fp->bdev, fp->rx_dma[i],
1174						 FZA_RX_BUFFER_SIZE,
1175						 DMA_FROM_DEVICE);
1176				dev_kfree_skb(fp->rx_skbuff[i]);
1177				fp->rx_dma[i] = 0;
1178				fp->rx_skbuff[i] = NULL;
1179			}
1180			return -ENOMEM;
1181		}
1182		fp->rx_skbuff[i] = skb;
1183		fp->rx_dma[i] = dma;
1184	}
1185
1186	ret = fza_init_send(dev, NULL);
1187	if (ret != 0)
1188		return ret;
1189
1190	/* Purger and Beacon multicasts need to be supplied before PARAM. */
1191	fza_set_rx_mode(dev);
1192
1193	spin_lock_irqsave(&fp->lock, flags);
1194	fp->cmd_done_flag = 0;
1195	ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1196	spin_unlock_irqrestore(&fp->lock, flags);
1197	if (!ring)
1198		return -ENOBUFS;
1199
1200	t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
1201	if (fp->cmd_done_flag == 0) {
1202		pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
1203		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1204		return -EIO;
1205	}
1206	stat = readl_u(&ring->stat);
1207	if (stat != FZA_RING_STAT_SUCCESS) {
1208		pr_err("%s: PARAM command failed!, status %02x, state %x\n",
1209		       fp->name, stat,
1210		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1211		return -EIO;
1212	}
1213	pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
1214		 (3 * HZ - t) * 1000 / HZ);
1215
1216	return 0;
1217}
1218
1219static int fza_close(struct net_device *dev)
1220{
1221	struct fza_private *fp = netdev_priv(dev);
1222	unsigned long flags;
1223	uint state;
1224	long t;
1225	int i;
1226
1227	netif_stop_queue(dev);
1228	pr_debug("%s: queue stopped\n", fp->name);
1229
1230	del_timer_sync(&fp->reset_timer);
1231	spin_lock_irqsave(&fp->lock, flags);
1232	fp->state = FZA_STATE_UNINITIALIZED;
1233	fp->state_chg_flag = 0;
1234	/* Shut the interface down. */
1235	writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
1236	readw_o(&fp->regs->control_a);			/* Synchronize. */
1237	spin_unlock_irqrestore(&fp->lock, flags);
1238
1239	/* DEC says SHUT needs up to 10 seconds to complete. */
1240	t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
1241			       15 * HZ);
1242	state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
1243	if (fp->state_chg_flag == 0) {
1244		pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
1245		return -EIO;
1246	}
1247	if (state != FZA_STATE_UNINITIALIZED) {
1248		pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
1249		return -EIO;
1250	}
1251	pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
1252		 (15 * HZ - t) * 1000 / HZ);
1253
1254	for (i = 0; i < FZA_RING_RX_SIZE; i++)
1255		if (fp->rx_skbuff[i]) {
1256			dma_unmap_single(fp->bdev, fp->rx_dma[i],
1257					 FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
1258			dev_kfree_skb(fp->rx_skbuff[i]);
1259			fp->rx_dma[i] = 0;
1260			fp->rx_skbuff[i] = NULL;
1261		}
1262
1263	return 0;
1264}
1265
1266static struct net_device_stats *fza_get_stats(struct net_device *dev)
1267{
1268	struct fza_private *fp = netdev_priv(dev);
1269
1270	return &fp->stats;
1271}
1272
1273static int fza_probe(struct device *bdev)
1274{
1275	static const struct net_device_ops netdev_ops = {
1276		.ndo_open = fza_open,
1277		.ndo_stop = fza_close,
1278		.ndo_start_xmit = fza_start_xmit,
1279		.ndo_set_rx_mode = fza_set_rx_mode,
1280		.ndo_set_mac_address = fza_set_mac_address,
1281		.ndo_get_stats = fza_get_stats,
1282	};
1283	static int version_printed;
1284	char rom_rev[4], fw_rev[4], rmc_rev[4];
1285	struct tc_dev *tdev = to_tc_dev(bdev);
1286	struct fza_cmd_init __iomem *init;
1287	resource_size_t start, len;
1288	struct net_device *dev;
1289	struct fza_private *fp;
1290	uint smt_ver, pmd_type;
1291	void __iomem *mmio;
1292	uint hw_addr[2];
1293	int ret, i;
1294
1295	if (!version_printed) {
1296		pr_info("%s", version);
1297		version_printed = 1;
1298	}
1299
1300	dev = alloc_fddidev(sizeof(*fp));
1301	if (!dev)
1302		return -ENOMEM;
1303	SET_NETDEV_DEV(dev, bdev);
1304
1305	fp = netdev_priv(dev);
1306	dev_set_drvdata(bdev, dev);
1307
1308	fp->bdev = bdev;
1309	fp->name = dev_name(bdev);
1310
1311	/* Request the I/O MEM resource. */
1312	start = tdev->resource.start;
1313	len = tdev->resource.end - start + 1;
1314	if (!request_mem_region(start, len, dev_name(bdev))) {
1315		pr_err("%s: cannot reserve MMIO region\n", fp->name);
1316		ret = -EBUSY;
1317		goto err_out_kfree;
1318	}
1319
1320	/* MMIO mapping setup. */
1321	mmio = ioremap(start, len);
1322	if (!mmio) {
1323		pr_err("%s: cannot map MMIO\n", fp->name);
1324		ret = -ENOMEM;
1325		goto err_out_resource;
1326	}
1327
1328	/* Initialize the new device structure. */
1329	switch (loopback) {
1330	case FZA_LOOP_NORMAL:
1331	case FZA_LOOP_INTERN:
1332	case FZA_LOOP_EXTERN:
1333		break;
1334	default:
1335		loopback = FZA_LOOP_NORMAL;
1336	}
1337
1338	fp->mmio = mmio;
1339	dev->irq = tdev->interrupt;
1340
1341	pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
1342		fp->name, (long long)tdev->resource.start, dev->irq);
1343	pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
1344
1345	fp->regs = mmio + FZA_REG_BASE;
1346	fp->ring_cmd = mmio + FZA_RING_CMD;
1347	fp->ring_uns = mmio + FZA_RING_UNS;
1348
1349	init_waitqueue_head(&fp->state_chg_wait);
1350	init_waitqueue_head(&fp->cmd_done_wait);
1351	spin_lock_init(&fp->lock);
1352	fp->int_mask = FZA_MASK_NORMAL;
1353
1354	timer_setup(&fp->reset_timer, fza_reset_timer, 0);
1355
1356	/* Sanitize the board. */
1357	fza_regs_dump(fp);
1358	fza_do_shutdown(fp);
1359
1360	ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
1361	if (ret != 0) {
1362		pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
1363		goto err_out_map;
1364	}
1365
1366	/* Enable the driver mode. */
1367	writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
1368
1369	/* For some reason transmit done interrupts can trigger during
1370	 * reset.  This avoids a division error in the handler.
1371	 */
1372	fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
1373
1374	ret = fza_reset(fp);
1375	if (ret != 0)
1376		goto err_out_irq;
1377
1378	ret = fza_init_send(dev, &init);
1379	if (ret != 0)
1380		goto err_out_irq;
1381
1382	fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
1383	dev_addr_set(dev, (u8 *)&hw_addr);
1384
1385	fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
1386	fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
1387	fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
1388	for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
1389		rom_rev[i] = 0;
1390	for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
1391		fw_rev[i] = 0;
1392	for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
1393		rmc_rev[i] = 0;
1394
1395	fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
1396	fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
1397	fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
1398	fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
1399	fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
1400	fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
1401	fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
1402	fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
1403
1404	fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
1405
1406	fp->t_max = readl_u(&init->def_t_max);
1407	fp->t_req = readl_u(&init->def_t_req);
1408	fp->tvx = readl_u(&init->def_tvx);
1409	fp->lem_threshold = readl_u(&init->lem_threshold);
1410	fza_reads(&init->def_station_id, &fp->station_id,
1411		  sizeof(fp->station_id));
1412	fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
1413	fp->ring_purger = readl_u(&init->ring_purger);
1414
1415	smt_ver = readl_u(&init->smt_ver);
1416	pmd_type = readl_u(&init->pmd_type);
1417
1418	pr_debug("%s: INIT parameters:\n", fp->name);
1419	pr_debug("        tx_mode: %u\n", readl_u(&init->tx_mode));
1420	pr_debug("    hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
1421	pr_debug("        rmc_rev: %.4s\n", rmc_rev);
1422	pr_debug("        rom_rev: %.4s\n", rom_rev);
1423	pr_debug("         fw_rev: %.4s\n", fw_rev);
1424	pr_debug("       mop_type: %u\n", readl_u(&init->mop_type));
1425	pr_debug("         hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
1426	pr_debug("         rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
1427	pr_debug("    rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
1428	pr_debug("         smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
1429	pr_debug("    smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
1430	pr_debug("         smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
1431	pr_debug("    smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
1432	/* TC systems are always LE, so don't bother swapping. */
1433	pr_debug("        hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1434		 (readl_u(&init->hw_addr[0]) >> 0) & 0xff,
1435		 (readl_u(&init->hw_addr[0]) >> 8) & 0xff,
1436		 (readl_u(&init->hw_addr[0]) >> 16) & 0xff,
1437		 (readl_u(&init->hw_addr[0]) >> 24) & 0xff,
1438		 (readl_u(&init->hw_addr[1]) >> 0) & 0xff,
1439		 (readl_u(&init->hw_addr[1]) >> 8) & 0xff,
1440		 (readl_u(&init->hw_addr[1]) >> 16) & 0xff,
1441		 (readl_u(&init->hw_addr[1]) >> 24) & 0xff);
1442	pr_debug("      def_t_req: %u\n", readl_u(&init->def_t_req));
1443	pr_debug("        def_tvx: %u\n", readl_u(&init->def_tvx));
1444	pr_debug("      def_t_max: %u\n", readl_u(&init->def_t_max));
1445	pr_debug("  lem_threshold: %u\n", readl_u(&init->lem_threshold));
1446	/* Don't bother swapping, see above. */
1447	pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1448		 (readl_u(&init->def_station_id[0]) >> 0) & 0xff,
1449		 (readl_u(&init->def_station_id[0]) >> 8) & 0xff,
1450		 (readl_u(&init->def_station_id[0]) >> 16) & 0xff,
1451		 (readl_u(&init->def_station_id[0]) >> 24) & 0xff,
1452		 (readl_u(&init->def_station_id[1]) >> 0) & 0xff,
1453		 (readl_u(&init->def_station_id[1]) >> 8) & 0xff,
1454		 (readl_u(&init->def_station_id[1]) >> 16) & 0xff,
1455		 (readl_u(&init->def_station_id[1]) >> 24) & 0xff);
1456	pr_debug("   pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
1457	pr_debug("        smt_ver: %u\n", readl_u(&init->smt_ver));
1458	pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
1459	pr_debug("    ring_purger: %u\n", readl_u(&init->ring_purger));
1460	pr_debug("    smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
1461	pr_debug("    smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
1462	pr_debug("       pmd_type: %u\n", readl_u(&init->pmd_type));
1463
1464	pr_info("%s: model %s, address %pMF\n",
1465		fp->name,
1466		pmd_type == FZA_PMD_TYPE_TW ?
1467			"700-C (DEFZA-CA), ThinWire PMD selected" :
1468			pmd_type == FZA_PMD_TYPE_STP ?
1469				"700-C (DEFZA-CA), STP PMD selected" :
1470				"700 (DEFZA-AA), MMF PMD",
1471		dev->dev_addr);
1472	pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
1473		"SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
1474
1475	/* Now that we fetched initial parameters just shut the interface
1476	 * until opened.
1477	 */
1478	ret = fza_close(dev);
1479	if (ret != 0)
1480		goto err_out_irq;
1481
1482	/* The FZA-specific entries in the device structure. */
1483	dev->netdev_ops = &netdev_ops;
1484
1485	ret = register_netdev(dev);
1486	if (ret != 0)
1487		goto err_out_irq;
1488
1489	pr_info("%s: registered as %s\n", fp->name, dev->name);
1490	fp->name = (const char *)dev->name;
1491
1492	get_device(bdev);
1493	return 0;
1494
1495err_out_irq:
1496	del_timer_sync(&fp->reset_timer);
1497	fza_do_shutdown(fp);
1498	free_irq(dev->irq, dev);
1499
1500err_out_map:
1501	iounmap(mmio);
1502
1503err_out_resource:
1504	release_mem_region(start, len);
1505
1506err_out_kfree:
1507	pr_err("%s: initialization failure, aborting!\n", fp->name);
1508	free_netdev(dev);
 
 
1509	return ret;
1510}
1511
1512static int fza_remove(struct device *bdev)
1513{
1514	struct net_device *dev = dev_get_drvdata(bdev);
1515	struct fza_private *fp = netdev_priv(dev);
1516	struct tc_dev *tdev = to_tc_dev(bdev);
1517	resource_size_t start, len;
1518
1519	put_device(bdev);
1520
1521	unregister_netdev(dev);
1522
1523	del_timer_sync(&fp->reset_timer);
1524	fza_do_shutdown(fp);
1525	free_irq(dev->irq, dev);
1526
1527	iounmap(fp->mmio);
1528
1529	start = tdev->resource.start;
1530	len = tdev->resource.end - start + 1;
1531	release_mem_region(start, len);
1532
1533	free_netdev(dev);
1534
1535	return 0;
1536}
1537
1538static struct tc_device_id const fza_tc_table[] = {
1539	{ "DEC     ", "PMAF-AA " },
1540	{ }
1541};
1542MODULE_DEVICE_TABLE(tc, fza_tc_table);
1543
1544static struct tc_driver fza_driver = {
1545	.id_table	= fza_tc_table,
1546	.driver		= {
1547		.name	= "defza",
1548		.bus	= &tc_bus_type,
1549		.probe	= fza_probe,
1550		.remove	= fza_remove,
1551	},
1552};
1553
1554static int fza_init(void)
1555{
1556	return tc_register_driver(&fza_driver);
1557}
1558
1559static void fza_exit(void)
1560{
1561	tc_unregister_driver(&fza_driver);
1562}
1563
1564module_init(fza_init);
1565module_exit(fza_exit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*	FDDI network adapter driver for DEC FDDIcontroller 700/700-C devices.
   3 *
   4 *	Copyright (c) 2018  Maciej W. Rozycki
   5 *
   6 *	This program is free software; you can redistribute it and/or
   7 *	modify it under the terms of the GNU General Public License
   8 *	as published by the Free Software Foundation; either version
   9 *	2 of the License, or (at your option) any later version.
  10 *
  11 *	References:
  12 *
  13 *	Dave Sawyer & Phil Weeks & Frank Itkowsky,
  14 *	"DEC FDDIcontroller 700 Port Specification",
  15 *	Revision 1.1, Digital Equipment Corporation
  16 */
  17
  18/* ------------------------------------------------------------------------- */
  19/* FZA configurable parameters.                                              */
  20
  21/* The number of transmit ring descriptors; either 0 for 512 or 1 for 1024.  */
  22#define FZA_RING_TX_MODE 0
  23
  24/* The number of receive ring descriptors; from 2 up to 256.  */
  25#define FZA_RING_RX_SIZE 256
  26
  27/* End of FZA configurable parameters.  No need to change anything below.    */
  28/* ------------------------------------------------------------------------- */
  29
  30#include <linux/delay.h>
  31#include <linux/device.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/io.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37#include <linux/ioport.h>
  38#include <linux/kernel.h>
  39#include <linux/list.h>
  40#include <linux/module.h>
  41#include <linux/netdevice.h>
  42#include <linux/fddidevice.h>
  43#include <linux/sched.h>
  44#include <linux/skbuff.h>
  45#include <linux/spinlock.h>
  46#include <linux/stat.h>
  47#include <linux/tc.h>
  48#include <linux/timer.h>
  49#include <linux/types.h>
  50#include <linux/wait.h>
  51
  52#include <asm/barrier.h>
  53
  54#include "defza.h"
  55
  56#define DRV_NAME "defza"
  57#define DRV_VERSION "v.1.1.4"
  58#define DRV_RELDATE "Oct  6 2018"
  59
  60static const char version[] =
  61	DRV_NAME ": " DRV_VERSION "  " DRV_RELDATE "  Maciej W. Rozycki\n";
  62
  63MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  64MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
  65MODULE_LICENSE("GPL");
  66
  67static int loopback;
  68module_param(loopback, int, 0644);
  69
  70/* Ring Purger Multicast */
  71static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
  72/* Directed Beacon Multicast */
  73static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
  74
  75/* Shorthands for MMIO accesses that we require to be strongly ordered
  76 * WRT preceding MMIO accesses.
  77 */
  78#define readw_o readw_relaxed
  79#define readl_o readl_relaxed
  80
  81#define writew_o writew_relaxed
  82#define writel_o writel_relaxed
  83
  84/* Shorthands for MMIO accesses that we are happy with being weakly ordered
  85 * WRT preceding MMIO accesses.
  86 */
  87#define readw_u readw_relaxed
  88#define readl_u readl_relaxed
  89#define readq_u readq_relaxed
  90
  91#define writew_u writew_relaxed
  92#define writel_u writel_relaxed
  93#define writeq_u writeq_relaxed
  94
  95static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
  96						unsigned int length)
  97{
  98	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  99}
 100
 101static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
 102					    unsigned int length)
 103{
 104	return __netdev_alloc_skb(dev, length, GFP_KERNEL);
 105}
 106
 107static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
 108{
 109	unsigned long x, y;
 110
 111	x = (unsigned long)skb->data;
 112	y = ALIGN(x, v);
 113
 114	skb_reserve(skb, y - x);
 115}
 116
 117static inline void fza_reads(const void __iomem *from, void *to,
 118			     unsigned long size)
 119{
 120	if (sizeof(unsigned long) == 8) {
 121		const u64 __iomem *src = from;
 122		const u32 __iomem *src_trail;
 123		u64 *dst = to;
 124		u32 *dst_trail;
 125
 126		for (size = (size + 3) / 4; size > 1; size -= 2)
 127			*dst++ = readq_u(src++);
 128		if (size) {
 129			src_trail = (u32 __iomem *)src;
 130			dst_trail = (u32 *)dst;
 131			*dst_trail = readl_u(src_trail);
 132		}
 133	} else {
 134		const u32 __iomem *src = from;
 135		u32 *dst = to;
 136
 137		for (size = (size + 3) / 4; size; size--)
 138			*dst++ = readl_u(src++);
 139	}
 140}
 141
 142static inline void fza_writes(const void *from, void __iomem *to,
 143			      unsigned long size)
 144{
 145	if (sizeof(unsigned long) == 8) {
 146		const u64 *src = from;
 147		const u32 *src_trail;
 148		u64 __iomem *dst = to;
 149		u32 __iomem *dst_trail;
 150
 151		for (size = (size + 3) / 4; size > 1; size -= 2)
 152			writeq_u(*src++, dst++);
 153		if (size) {
 154			src_trail = (u32 *)src;
 155			dst_trail = (u32 __iomem *)dst;
 156			writel_u(*src_trail, dst_trail);
 157		}
 158	} else {
 159		const u32 *src = from;
 160		u32 __iomem *dst = to;
 161
 162		for (size = (size + 3) / 4; size; size--)
 163			writel_u(*src++, dst++);
 164	}
 165}
 166
 167static inline void fza_moves(const void __iomem *from, void __iomem *to,
 168			     unsigned long size)
 169{
 170	if (sizeof(unsigned long) == 8) {
 171		const u64 __iomem *src = from;
 172		const u32 __iomem *src_trail;
 173		u64 __iomem *dst = to;
 174		u32 __iomem *dst_trail;
 175
 176		for (size = (size + 3) / 4; size > 1; size -= 2)
 177			writeq_u(readq_u(src++), dst++);
 178		if (size) {
 179			src_trail = (u32 __iomem *)src;
 180			dst_trail = (u32 __iomem *)dst;
 181			writel_u(readl_u(src_trail), dst_trail);
 182		}
 183	} else {
 184		const u32 __iomem *src = from;
 185		u32 __iomem *dst = to;
 186
 187		for (size = (size + 3) / 4; size; size--)
 188			writel_u(readl_u(src++), dst++);
 189	}
 190}
 191
 192static inline void fza_zeros(void __iomem *to, unsigned long size)
 193{
 194	if (sizeof(unsigned long) == 8) {
 195		u64 __iomem *dst = to;
 196		u32 __iomem *dst_trail;
 197
 198		for (size = (size + 3) / 4; size > 1; size -= 2)
 199			writeq_u(0, dst++);
 200		if (size) {
 201			dst_trail = (u32 __iomem *)dst;
 202			writel_u(0, dst_trail);
 203		}
 204	} else {
 205		u32 __iomem *dst = to;
 206
 207		for (size = (size + 3) / 4; size; size--)
 208			writel_u(0, dst++);
 209	}
 210}
 211
 212static inline void fza_regs_dump(struct fza_private *fp)
 213{
 214	pr_debug("%s: iomem registers:\n", fp->name);
 215	pr_debug(" reset:           0x%04x\n", readw_o(&fp->regs->reset));
 216	pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
 217	pr_debug(" status:          0x%04x\n", readw_u(&fp->regs->status));
 218	pr_debug(" interrupt mask:  0x%04x\n", readw_u(&fp->regs->int_mask));
 219	pr_debug(" control A:       0x%04x\n", readw_u(&fp->regs->control_a));
 220	pr_debug(" control B:       0x%04x\n", readw_u(&fp->regs->control_b));
 221}
 222
 223static inline void fza_do_reset(struct fza_private *fp)
 224{
 225	/* Reset the board. */
 226	writew_o(FZA_RESET_INIT, &fp->regs->reset);
 227	readw_o(&fp->regs->reset);	/* Synchronize. */
 228	readw_o(&fp->regs->reset);	/* Read it back for a small delay. */
 229	writew_o(FZA_RESET_CLR, &fp->regs->reset);
 230
 231	/* Enable all interrupt events we handle. */
 232	writew_o(fp->int_mask, &fp->regs->int_mask);
 233	readw_o(&fp->regs->int_mask);	/* Synchronize. */
 234}
 235
 236static inline void fza_do_shutdown(struct fza_private *fp)
 237{
 238	/* Disable the driver mode. */
 239	writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
 240
 241	/* And reset the board. */
 242	writew_o(FZA_RESET_INIT, &fp->regs->reset);
 243	readw_o(&fp->regs->reset);	/* Synchronize. */
 244	writew_o(FZA_RESET_CLR, &fp->regs->reset);
 245	readw_o(&fp->regs->reset);	/* Synchronize. */
 246}
 247
 248static int fza_reset(struct fza_private *fp)
 249{
 250	unsigned long flags;
 251	uint status, state;
 252	long t;
 253
 254	pr_info("%s: resetting the board...\n", fp->name);
 255
 256	spin_lock_irqsave(&fp->lock, flags);
 257	fp->state_chg_flag = 0;
 258	fza_do_reset(fp);
 259	spin_unlock_irqrestore(&fp->lock, flags);
 260
 261	/* DEC says RESET needs up to 30 seconds to complete.  My DEFZA-AA
 262	 * rev. C03 happily finishes in 9.7 seconds. :-)  But we need to
 263	 * be on the safe side...
 264	 */
 265	t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
 266			       45 * HZ);
 267	status = readw_u(&fp->regs->status);
 268	state = FZA_STATUS_GET_STATE(status);
 269	if (fp->state_chg_flag == 0) {
 270		pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
 271		return -EIO;
 272	}
 273	if (state != FZA_STATE_UNINITIALIZED) {
 274		pr_err("%s: RESET failed!, state %x, failure ID %x\n",
 275		       fp->name, state, FZA_STATUS_GET_TEST(status));
 276		return -EIO;
 277	}
 278	pr_info("%s: OK\n", fp->name);
 279	pr_debug("%s: RESET: %lums elapsed\n", fp->name,
 280		 (45 * HZ - t) * 1000 / HZ);
 281
 282	return 0;
 283}
 284
 285static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
 286						 int command)
 287{
 288	struct fza_private *fp = netdev_priv(dev);
 289	struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
 290	unsigned int old_mask, new_mask;
 291	union fza_cmd_buf __iomem *buf;
 292	struct netdev_hw_addr *ha;
 293	int i;
 294
 295	old_mask = fp->int_mask;
 296	new_mask = old_mask & ~FZA_MASK_STATE_CHG;
 297	writew_u(new_mask, &fp->regs->int_mask);
 298	readw_o(&fp->regs->int_mask);			/* Synchronize. */
 299	fp->int_mask = new_mask;
 300
 301	buf = fp->mmio + readl_u(&ring->buffer);
 302
 303	if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
 304	    FZA_RING_OWN_HOST) {
 305		pr_warn("%s: command buffer full, command: %u!\n", fp->name,
 306			command);
 307		return NULL;
 308	}
 309
 310	switch (command) {
 311	case FZA_RING_CMD_INIT:
 312		writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
 313		writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
 314		fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
 315		break;
 316
 317	case FZA_RING_CMD_MODCAM:
 318		i = 0;
 319		fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
 320			   sizeof(*buf->cam.hw_addr));
 321		fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
 322			   sizeof(*buf->cam.hw_addr));
 323		netdev_for_each_mc_addr(ha, dev) {
 324			if (i >= FZA_CMD_CAM_SIZE)
 325				break;
 326			fza_writes(ha->addr, &buf->cam.hw_addr[i++],
 327				   sizeof(*buf->cam.hw_addr));
 328		}
 329		while (i < FZA_CMD_CAM_SIZE)
 330			fza_zeros(&buf->cam.hw_addr[i++],
 331				  sizeof(*buf->cam.hw_addr));
 332		break;
 333
 334	case FZA_RING_CMD_PARAM:
 335		writel_u(loopback, &buf->param.loop_mode);
 336		writel_u(fp->t_max, &buf->param.t_max);
 337		writel_u(fp->t_req, &buf->param.t_req);
 338		writel_u(fp->tvx, &buf->param.tvx);
 339		writel_u(fp->lem_threshold, &buf->param.lem_threshold);
 340		fza_writes(&fp->station_id, &buf->param.station_id,
 341			   sizeof(buf->param.station_id));
 342		/* Convert to milliseconds due to buggy firmware. */
 343		writel_u(fp->rtoken_timeout / 12500,
 344			 &buf->param.rtoken_timeout);
 345		writel_u(fp->ring_purger, &buf->param.ring_purger);
 346		break;
 347
 348	case FZA_RING_CMD_MODPROM:
 349		if (dev->flags & IFF_PROMISC) {
 350			writel_u(1, &buf->modprom.llc_prom);
 351			writel_u(1, &buf->modprom.smt_prom);
 352		} else {
 353			writel_u(0, &buf->modprom.llc_prom);
 354			writel_u(0, &buf->modprom.smt_prom);
 355		}
 356		if (dev->flags & IFF_ALLMULTI ||
 357		    netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
 358			writel_u(1, &buf->modprom.llc_multi);
 359		else
 360			writel_u(0, &buf->modprom.llc_multi);
 361		writel_u(1, &buf->modprom.llc_bcast);
 362		break;
 363	}
 364
 365	/* Trigger the command. */
 366	writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
 367	writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
 368
 369	fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
 370
 371	fp->int_mask = old_mask;
 372	writew_u(fp->int_mask, &fp->regs->int_mask);
 373
 374	return ring;
 375}
 376
 377static int fza_init_send(struct net_device *dev,
 378			 struct fza_cmd_init *__iomem *init)
 379{
 380	struct fza_private *fp = netdev_priv(dev);
 381	struct fza_ring_cmd __iomem *ring;
 382	unsigned long flags;
 383	u32 stat;
 384	long t;
 385
 386	spin_lock_irqsave(&fp->lock, flags);
 387	fp->cmd_done_flag = 0;
 388	ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
 389	spin_unlock_irqrestore(&fp->lock, flags);
 390	if (!ring)
 391		/* This should never happen in the uninitialized state,
 392		 * so do not try to recover and just consider it fatal.
 393		 */
 394		return -ENOBUFS;
 395
 396	/* INIT may take quite a long time (160ms for my C03). */
 397	t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
 398	if (fp->cmd_done_flag == 0) {
 399		pr_err("%s: INIT command timed out!, state %x\n", fp->name,
 400		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
 401		return -EIO;
 402	}
 403	stat = readl_u(&ring->stat);
 404	if (stat != FZA_RING_STAT_SUCCESS) {
 405		pr_err("%s: INIT command failed!, status %02x, state %x\n",
 406		       fp->name, stat,
 407		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
 408		return -EIO;
 409	}
 410	pr_debug("%s: INIT: %lums elapsed\n", fp->name,
 411		 (3 * HZ - t) * 1000 / HZ);
 412
 413	if (init)
 414		*init = fp->mmio + readl_u(&ring->buffer);
 415	return 0;
 416}
 417
 418static void fza_rx_init(struct fza_private *fp)
 419{
 420	int i;
 421
 422	/* Fill the host receive descriptor ring. */
 423	for (i = 0; i < FZA_RING_RX_SIZE; i++) {
 424		writel_o(0, &fp->ring_hst_rx[i].rmc);
 425		writel_o((fp->rx_dma[i] + 0x1000) >> 9,
 426			 &fp->ring_hst_rx[i].buffer1);
 427		writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
 428			 &fp->ring_hst_rx[i].buf0_own);
 429	}
 430}
 431
 432static void fza_set_rx_mode(struct net_device *dev)
 433{
 434	fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
 435	fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
 436}
 437
 438union fza_buffer_txp {
 439	struct fza_buffer_tx *data_ptr;
 440	struct fza_buffer_tx __iomem *mmio_ptr;
 441};
 442
 443static int fza_do_xmit(union fza_buffer_txp ub, int len,
 444		       struct net_device *dev, int smt)
 445{
 446	struct fza_private *fp = netdev_priv(dev);
 447	struct fza_buffer_tx __iomem *rmc_tx_ptr;
 448	int i, first, frag_len, left_len;
 449	u32 own, rmc;
 450
 451	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
 452	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
 453	     FZA_TX_BUFFER_SIZE) < len)
 454		return 1;
 455
 456	first = fp->ring_rmc_tx_index;
 457
 458	left_len = len;
 459	frag_len = FZA_TX_BUFFER_SIZE;
 460	/* First descriptor is relinquished last. */
 461	own = FZA_RING_TX_OWN_HOST;
 462	/* First descriptor carries frame length; we don't use cut-through. */
 463	rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
 464	do {
 465		i = fp->ring_rmc_tx_index;
 466		rmc_tx_ptr = &fp->buffer_tx[i];
 467
 468		if (left_len < FZA_TX_BUFFER_SIZE)
 469			frag_len = left_len;
 470		left_len -= frag_len;
 471
 472		/* Length must be a multiple of 4 as only word writes are
 473		 * permitted!
 474		 */
 475		frag_len = (frag_len + 3) & ~3;
 476		if (smt)
 477			fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
 478		else
 479			fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
 480
 481		if (left_len == 0)
 482			rmc |= FZA_RING_TX_EOP;		/* Mark last frag. */
 483
 484		writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
 485		writel_o(own, &fp->ring_rmc_tx[i].own);
 486
 487		ub.data_ptr++;
 488		fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
 489					fp->ring_rmc_tx_size;
 490
 491		/* Settings for intermediate frags. */
 492		own = FZA_RING_TX_OWN_RMC;
 493		rmc = 0;
 494	} while (left_len > 0);
 495
 496	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
 497	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
 498	     FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
 499		netif_stop_queue(dev);
 500		pr_debug("%s: queue stopped\n", fp->name);
 501	}
 502
 503	writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
 504
 505	/* Go, go, go! */
 506	writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
 507
 508	return 0;
 509}
 510
 511static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
 512			   u32 rmc, struct net_device *dev)
 513{
 514	struct fza_private *fp = netdev_priv(dev);
 515	struct fza_buffer_tx __iomem *smt_rx_ptr;
 516	u32 own;
 517	int i;
 518
 519	i = fp->ring_smt_rx_index;
 520	own = readl_o(&fp->ring_smt_rx[i].own);
 521	if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 522		return 1;
 523
 524	smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
 525
 526	/* Length must be a multiple of 4 as only word writes are permitted! */
 527	fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
 528
 529	writel_o(rmc, &fp->ring_smt_rx[i].rmc);
 530	writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
 531
 532	fp->ring_smt_rx_index =
 533		(fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
 534
 535	/* Grab it! */
 536	writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
 537
 538	return 0;
 539}
 540
 541static void fza_tx(struct net_device *dev)
 542{
 543	struct fza_private *fp = netdev_priv(dev);
 544	u32 own, rmc;
 545	int i;
 546
 547	while (1) {
 548		i = fp->ring_rmc_txd_index;
 549		if (i == fp->ring_rmc_tx_index)
 550			break;
 551		own = readl_o(&fp->ring_rmc_tx[i].own);
 552		if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
 553			break;
 554
 555		rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
 556		/* Only process the first descriptor. */
 557		if ((rmc & FZA_RING_TX_SOP) != 0) {
 558			if ((rmc & FZA_RING_TX_DCC_MASK) ==
 559			    FZA_RING_TX_DCC_SUCCESS) {
 560				int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
 561								/* Omit PRH. */
 562
 563				fp->stats.tx_packets++;
 564				fp->stats.tx_bytes += pkt_len;
 565			} else {
 566				fp->stats.tx_errors++;
 567				switch (rmc & FZA_RING_TX_DCC_MASK) {
 568				case FZA_RING_TX_DCC_DTP_SOP:
 569				case FZA_RING_TX_DCC_DTP:
 570				case FZA_RING_TX_DCC_ABORT:
 571					fp->stats.tx_aborted_errors++;
 572					break;
 573				case FZA_RING_TX_DCC_UNDRRUN:
 574					fp->stats.tx_fifo_errors++;
 575					break;
 576				case FZA_RING_TX_DCC_PARITY:
 577				default:
 578					break;
 579				}
 580			}
 581		}
 582
 583		fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
 584					 fp->ring_rmc_tx_size;
 585	}
 586
 587	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
 588	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
 589	     FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
 590		if (fp->queue_active) {
 591			netif_wake_queue(dev);
 592			pr_debug("%s: queue woken\n", fp->name);
 593		}
 594	}
 595}
 596
 597static inline int fza_rx_err(struct fza_private *fp,
 598			     const u32 rmc, const u8 fc)
 599{
 600	int len, min_len, max_len;
 601
 602	len = rmc & FZA_RING_PBC_MASK;
 603
 604	if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
 605		fp->stats.rx_errors++;
 606
 607		/* Check special status codes. */
 608		if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
 609			    FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
 610		     (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
 611		      FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
 612			if (len >= 8190)
 613				fp->stats.rx_length_errors++;
 614			return 1;
 615		}
 616		if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
 617			    FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
 618		     (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
 619		      FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
 620			/* Halt the interface to trigger a reset. */
 621			writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
 622			readw_o(&fp->regs->control_a);	/* Synchronize. */
 623			return 1;
 624		}
 625
 626		/* Check the MAC status. */
 627		switch (rmc & FZA_RING_RX_RRR_MASK) {
 628		case FZA_RING_RX_RRR_OK:
 629			if ((rmc & FZA_RING_RX_CRC) != 0)
 630				fp->stats.rx_crc_errors++;
 631			else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
 632				 (rmc & FZA_RING_RX_FSB_ERR) != 0)
 633				fp->stats.rx_frame_errors++;
 634			return 1;
 635		case FZA_RING_RX_RRR_SADDR:
 636		case FZA_RING_RX_RRR_DADDR:
 637		case FZA_RING_RX_RRR_ABORT:
 638			/* Halt the interface to trigger a reset. */
 639			writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
 640			readw_o(&fp->regs->control_a);	/* Synchronize. */
 641			return 1;
 642		case FZA_RING_RX_RRR_LENGTH:
 643			fp->stats.rx_frame_errors++;
 644			return 1;
 645		default:
 646			return 1;
 647		}
 648	}
 649
 650	/* Packet received successfully; validate the length. */
 651	switch (fc & FDDI_FC_K_FORMAT_MASK) {
 652	case FDDI_FC_K_FORMAT_MANAGEMENT:
 653		if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
 654			min_len = 37;
 655		else
 656			min_len = 17;
 657		break;
 658	case FDDI_FC_K_FORMAT_LLC:
 659		min_len = 20;
 660		break;
 661	default:
 662		min_len = 17;
 663		break;
 664	}
 665	max_len = 4495;
 666	if (len < min_len || len > max_len) {
 667		fp->stats.rx_errors++;
 668		fp->stats.rx_length_errors++;
 669		return 1;
 670	}
 671
 672	return 0;
 673}
 674
 675static void fza_rx(struct net_device *dev)
 676{
 677	struct fza_private *fp = netdev_priv(dev);
 678	struct sk_buff *skb, *newskb;
 679	struct fza_fddihdr *frame;
 680	dma_addr_t dma, newdma;
 681	u32 own, rmc, buf;
 682	int i, len;
 683	u8 fc;
 684
 685	while (1) {
 686		i = fp->ring_hst_rx_index;
 687		own = readl_o(&fp->ring_hst_rx[i].buf0_own);
 688		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 689			break;
 690
 691		rmc = readl_u(&fp->ring_hst_rx[i].rmc);
 692		skb = fp->rx_skbuff[i];
 693		dma = fp->rx_dma[i];
 694
 695		/* The RMC doesn't count the preamble and the starting
 696		 * delimiter.  We fix it up here for a total of 3 octets.
 697		 */
 698		dma_rmb();
 699		len = (rmc & FZA_RING_PBC_MASK) + 3;
 700		frame = (struct fza_fddihdr *)skb->data;
 701
 702		/* We need to get at real FC. */
 703		dma_sync_single_for_cpu(fp->bdev,
 704					dma +
 705					((u8 *)&frame->hdr.fc - (u8 *)frame),
 706					sizeof(frame->hdr.fc),
 707					DMA_FROM_DEVICE);
 708		fc = frame->hdr.fc;
 709
 710		if (fza_rx_err(fp, rmc, fc))
 711			goto err_rx;
 712
 713		/* We have to 512-byte-align RX buffers... */
 714		newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
 715		if (newskb) {
 716			fza_skb_align(newskb, 512);
 717			newdma = dma_map_single(fp->bdev, newskb->data,
 718						FZA_RX_BUFFER_SIZE,
 719						DMA_FROM_DEVICE);
 720			if (dma_mapping_error(fp->bdev, newdma)) {
 721				dev_kfree_skb_irq(newskb);
 722				newskb = NULL;
 723			}
 724		}
 725		if (newskb) {
 726			int pkt_len = len - 7;	/* Omit P, SD and FCS. */
 727			int is_multi;
 728			int rx_stat;
 729
 730			dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
 731					 DMA_FROM_DEVICE);
 732
 733			/* Queue SMT frames to the SMT receive ring. */
 734			if ((fc & (FDDI_FC_K_CLASS_MASK |
 735				   FDDI_FC_K_FORMAT_MASK)) ==
 736			     (FDDI_FC_K_CLASS_ASYNC |
 737			      FDDI_FC_K_FORMAT_MANAGEMENT) &&
 738			    (rmc & FZA_RING_RX_DA_MASK) !=
 739			     FZA_RING_RX_DA_PROM) {
 740				if (fza_do_recv_smt((struct fza_buffer_tx *)
 741						    skb->data, len, rmc,
 742						    dev)) {
 743					writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
 744						 &fp->regs->control_a);
 745				}
 746			}
 747
 748			is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
 749
 750			skb_reserve(skb, 3);	/* Skip over P and SD. */
 751			skb_put(skb, pkt_len);	/* And cut off FCS. */
 752			skb->protocol = fddi_type_trans(skb, dev);
 753
 754			rx_stat = netif_rx(skb);
 755			if (rx_stat != NET_RX_DROP) {
 756				fp->stats.rx_packets++;
 757				fp->stats.rx_bytes += pkt_len;
 758				if (is_multi)
 759					fp->stats.multicast++;
 760			} else {
 761				fp->stats.rx_dropped++;
 762			}
 763
 764			skb = newskb;
 765			dma = newdma;
 766			fp->rx_skbuff[i] = skb;
 767			fp->rx_dma[i] = dma;
 768		} else {
 769			fp->stats.rx_dropped++;
 770			pr_notice("%s: memory squeeze, dropping packet\n",
 771				  fp->name);
 772		}
 773
 774err_rx:
 775		writel_o(0, &fp->ring_hst_rx[i].rmc);
 776		buf = (dma + 0x1000) >> 9;
 777		writel_o(buf, &fp->ring_hst_rx[i].buffer1);
 778		buf = dma >> 9 | FZA_RING_OWN_FZA;
 779		writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
 780		fp->ring_hst_rx_index =
 781			(fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
 782	}
 783}
 784
 785static void fza_tx_smt(struct net_device *dev)
 786{
 787	struct fza_private *fp = netdev_priv(dev);
 788	struct fza_buffer_tx __iomem *smt_tx_ptr;
 789	int i, len;
 790	u32 own;
 791
 792	while (1) {
 793		i = fp->ring_smt_tx_index;
 794		own = readl_o(&fp->ring_smt_tx[i].own);
 795		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 796			break;
 797
 798		smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
 799		len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
 800
 801		if (!netif_queue_stopped(dev)) {
 802			if (dev_nit_active(dev)) {
 803				struct fza_buffer_tx *skb_data_ptr;
 804				struct sk_buff *skb;
 805
 806				/* Length must be a multiple of 4 as only word
 807				 * reads are permitted!
 808				 */
 809				skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
 810				if (!skb)
 811					goto err_no_skb;	/* Drop. */
 812
 813				skb_data_ptr = (struct fza_buffer_tx *)
 814					       skb->data;
 815
 816				fza_reads(smt_tx_ptr, skb_data_ptr,
 817					  (len + 3) & ~3);
 818				skb->dev = dev;
 819				skb_reserve(skb, 3);	/* Skip over PRH. */
 820				skb_put(skb, len - 3);
 821				skb_reset_network_header(skb);
 822
 823				dev_queue_xmit_nit(skb, dev);
 824
 825				dev_kfree_skb_irq(skb);
 826
 827err_no_skb:
 828				;
 829			}
 830
 831			/* Queue the frame to the RMC transmit ring. */
 832			fza_do_xmit((union fza_buffer_txp)
 833				    { .mmio_ptr = smt_tx_ptr },
 834				    len, dev, 1);
 835		}
 836
 837		writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
 838		fp->ring_smt_tx_index =
 839			(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
 840	}
 841}
 842
 843static void fza_uns(struct net_device *dev)
 844{
 845	struct fza_private *fp = netdev_priv(dev);
 846	u32 own;
 847	int i;
 848
 849	while (1) {
 850		i = fp->ring_uns_index;
 851		own = readl_o(&fp->ring_uns[i].own);
 852		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
 853			break;
 854
 855		if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
 856			fp->stats.rx_errors++;
 857			fp->stats.rx_over_errors++;
 858		}
 859
 860		writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
 861		fp->ring_uns_index =
 862			(fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
 863	}
 864}
 865
 866static void fza_tx_flush(struct net_device *dev)
 867{
 868	struct fza_private *fp = netdev_priv(dev);
 869	u32 own;
 870	int i;
 871
 872	/* Clean up the SMT TX ring. */
 873	i = fp->ring_smt_tx_index;
 874	do {
 875		writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
 876		fp->ring_smt_tx_index =
 877			(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
 878
 879	} while (i != fp->ring_smt_tx_index);
 880
 881	/* Clean up the RMC TX ring. */
 882	i = fp->ring_rmc_tx_index;
 883	do {
 884		own = readl_o(&fp->ring_rmc_tx[i].own);
 885		if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
 886			u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
 887
 888			writel_u(rmc | FZA_RING_TX_DTP,
 889				 &fp->ring_rmc_tx[i].rmc);
 890		}
 891		fp->ring_rmc_tx_index =
 892			(fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
 893
 894	} while (i != fp->ring_rmc_tx_index);
 895
 896	/* Done. */
 897	writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
 898}
 899
 900static irqreturn_t fza_interrupt(int irq, void *dev_id)
 901{
 902	struct net_device *dev = dev_id;
 903	struct fza_private *fp = netdev_priv(dev);
 904	uint int_event;
 905
 906	/* Get interrupt events. */
 907	int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
 908	if (int_event == 0)
 909		return IRQ_NONE;
 910
 911	/* Clear the events. */
 912	writew_u(int_event, &fp->regs->int_event);
 913
 914	/* Now handle the events.  The order matters. */
 915
 916	/* Command finished interrupt. */
 917	if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
 918		fp->irq_count_cmd_done++;
 919
 920		spin_lock(&fp->lock);
 921		fp->cmd_done_flag = 1;
 922		wake_up(&fp->cmd_done_wait);
 923		spin_unlock(&fp->lock);
 924	}
 925
 926	/* Transmit finished interrupt. */
 927	if ((int_event & FZA_EVENT_TX_DONE) != 0) {
 928		fp->irq_count_tx_done++;
 929		fza_tx(dev);
 930	}
 931
 932	/* Host receive interrupt. */
 933	if ((int_event & FZA_EVENT_RX_POLL) != 0) {
 934		fp->irq_count_rx_poll++;
 935		fza_rx(dev);
 936	}
 937
 938	/* SMT transmit interrupt. */
 939	if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
 940		fp->irq_count_smt_tx_poll++;
 941		fza_tx_smt(dev);
 942	}
 943
 944	/* Transmit ring flush request. */
 945	if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
 946		fp->irq_count_flush_tx++;
 947		fza_tx_flush(dev);
 948	}
 949
 950	/* Link status change interrupt. */
 951	if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
 952		uint status;
 953
 954		fp->irq_count_link_st_chg++;
 955		status = readw_u(&fp->regs->status);
 956		if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
 957			netif_carrier_on(dev);
 958			pr_info("%s: link available\n", fp->name);
 959		} else {
 960			netif_carrier_off(dev);
 961			pr_info("%s: link unavailable\n", fp->name);
 962		}
 963	}
 964
 965	/* Unsolicited event interrupt. */
 966	if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
 967		fp->irq_count_uns_poll++;
 968		fza_uns(dev);
 969	}
 970
 971	/* State change interrupt. */
 972	if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
 973		uint status, state;
 974
 975		fp->irq_count_state_chg++;
 976
 977		status = readw_u(&fp->regs->status);
 978		state = FZA_STATUS_GET_STATE(status);
 979		pr_debug("%s: state change: %x\n", fp->name, state);
 980		switch (state) {
 981		case FZA_STATE_RESET:
 982			break;
 983
 984		case FZA_STATE_UNINITIALIZED:
 985			netif_carrier_off(dev);
 986			del_timer_sync(&fp->reset_timer);
 987			fp->ring_cmd_index = 0;
 988			fp->ring_uns_index = 0;
 989			fp->ring_rmc_tx_index = 0;
 990			fp->ring_rmc_txd_index = 0;
 991			fp->ring_hst_rx_index = 0;
 992			fp->ring_smt_tx_index = 0;
 993			fp->ring_smt_rx_index = 0;
 994			if (fp->state > state) {
 995				pr_info("%s: OK\n", fp->name);
 996				fza_cmd_send(dev, FZA_RING_CMD_INIT);
 997			}
 998			break;
 999
1000		case FZA_STATE_INITIALIZED:
1001			if (fp->state > state) {
1002				fza_set_rx_mode(dev);
1003				fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1004			}
1005			break;
1006
1007		case FZA_STATE_RUNNING:
1008		case FZA_STATE_MAINTENANCE:
1009			fp->state = state;
1010			fza_rx_init(fp);
1011			fp->queue_active = 1;
1012			netif_wake_queue(dev);
1013			pr_debug("%s: queue woken\n", fp->name);
1014			break;
1015
1016		case FZA_STATE_HALTED:
1017			fp->queue_active = 0;
1018			netif_stop_queue(dev);
1019			pr_debug("%s: queue stopped\n", fp->name);
1020			del_timer_sync(&fp->reset_timer);
1021			pr_warn("%s: halted, reason: %x\n", fp->name,
1022				FZA_STATUS_GET_HALT(status));
1023			fza_regs_dump(fp);
1024			pr_info("%s: resetting the board...\n", fp->name);
1025			fza_do_reset(fp);
1026			fp->timer_state = 0;
1027			fp->reset_timer.expires = jiffies + 45 * HZ;
1028			add_timer(&fp->reset_timer);
1029			break;
1030
1031		default:
1032			pr_warn("%s: undefined state: %x\n", fp->name, state);
1033			break;
1034		}
1035
1036		spin_lock(&fp->lock);
1037		fp->state_chg_flag = 1;
1038		wake_up(&fp->state_chg_wait);
1039		spin_unlock(&fp->lock);
1040	}
1041
1042	return IRQ_HANDLED;
1043}
1044
1045static void fza_reset_timer(struct timer_list *t)
1046{
1047	struct fza_private *fp = from_timer(fp, t, reset_timer);
1048
1049	if (!fp->timer_state) {
1050		pr_err("%s: RESET timed out!\n", fp->name);
1051		pr_info("%s: trying harder...\n", fp->name);
1052
1053		/* Assert the board reset. */
1054		writew_o(FZA_RESET_INIT, &fp->regs->reset);
1055		readw_o(&fp->regs->reset);		/* Synchronize. */
1056
1057		fp->timer_state = 1;
1058		fp->reset_timer.expires = jiffies + HZ;
1059	} else {
1060		/* Clear the board reset. */
1061		writew_u(FZA_RESET_CLR, &fp->regs->reset);
1062
1063		/* Enable all interrupt events we handle. */
1064		writew_o(fp->int_mask, &fp->regs->int_mask);
1065		readw_o(&fp->regs->int_mask);		/* Synchronize. */
1066
1067		fp->timer_state = 0;
1068		fp->reset_timer.expires = jiffies + 45 * HZ;
1069	}
1070	add_timer(&fp->reset_timer);
1071}
1072
1073static int fza_set_mac_address(struct net_device *dev, void *addr)
1074{
1075	return -EOPNOTSUPP;
1076}
1077
1078static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
1079{
1080	struct fza_private *fp = netdev_priv(dev);
1081	unsigned int old_mask, new_mask;
1082	int ret;
1083	u8 fc;
1084
1085	skb_push(skb, 3);			/* Make room for PRH. */
1086
1087	/* Decode FC to set PRH. */
1088	fc = skb->data[3];
1089	skb->data[0] = 0;
1090	skb->data[1] = 0;
1091	skb->data[2] = FZA_PRH2_NORMAL;
1092	if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
1093		skb->data[0] |= FZA_PRH0_FRAME_SYNC;
1094	switch (fc & FDDI_FC_K_FORMAT_MASK) {
1095	case FDDI_FC_K_FORMAT_MANAGEMENT:
1096		if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
1097			/* Token. */
1098			skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
1099			skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
1100		} else {
1101			/* SMT or MAC. */
1102			skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1103			skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
1104		}
1105		skb->data[1] |= FZA_PRH1_CRC_NORMAL;
1106		break;
1107	case FDDI_FC_K_FORMAT_LLC:
1108	case FDDI_FC_K_FORMAT_FUTURE:
1109		skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1110		skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
1111		break;
1112	case FDDI_FC_K_FORMAT_IMPLEMENTOR:
1113		skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1114		skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
1115		break;
1116	}
1117
1118	/* SMT transmit interrupts may sneak frames into the RMC
1119	 * transmit ring.  We disable them while queueing a frame
1120	 * to maintain consistency.
1121	 */
1122	old_mask = fp->int_mask;
1123	new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
1124	writew_u(new_mask, &fp->regs->int_mask);
1125	readw_o(&fp->regs->int_mask);			/* Synchronize. */
1126	fp->int_mask = new_mask;
1127	ret = fza_do_xmit((union fza_buffer_txp)
1128			  { .data_ptr = (struct fza_buffer_tx *)skb->data },
1129			  skb->len, dev, 0);
1130	fp->int_mask = old_mask;
1131	writew_u(fp->int_mask, &fp->regs->int_mask);
1132
1133	if (ret) {
1134		/* Probably an SMT packet filled the remaining space,
1135		 * so just stop the queue, but don't report it as an error.
1136		 */
1137		netif_stop_queue(dev);
1138		pr_debug("%s: queue stopped\n", fp->name);
1139		fp->stats.tx_dropped++;
1140	}
1141
1142	dev_kfree_skb(skb);
1143
1144	return ret;
1145}
1146
1147static int fza_open(struct net_device *dev)
1148{
1149	struct fza_private *fp = netdev_priv(dev);
1150	struct fza_ring_cmd __iomem *ring;
1151	struct sk_buff *skb;
1152	unsigned long flags;
1153	dma_addr_t dma;
1154	int ret, i;
1155	u32 stat;
1156	long t;
1157
1158	for (i = 0; i < FZA_RING_RX_SIZE; i++) {
1159		/* We have to 512-byte-align RX buffers... */
1160		skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
1161		if (skb) {
1162			fza_skb_align(skb, 512);
1163			dma = dma_map_single(fp->bdev, skb->data,
1164					     FZA_RX_BUFFER_SIZE,
1165					     DMA_FROM_DEVICE);
1166			if (dma_mapping_error(fp->bdev, dma)) {
1167				dev_kfree_skb(skb);
1168				skb = NULL;
1169			}
1170		}
1171		if (!skb) {
1172			for (--i; i >= 0; i--) {
1173				dma_unmap_single(fp->bdev, fp->rx_dma[i],
1174						 FZA_RX_BUFFER_SIZE,
1175						 DMA_FROM_DEVICE);
1176				dev_kfree_skb(fp->rx_skbuff[i]);
1177				fp->rx_dma[i] = 0;
1178				fp->rx_skbuff[i] = NULL;
1179			}
1180			return -ENOMEM;
1181		}
1182		fp->rx_skbuff[i] = skb;
1183		fp->rx_dma[i] = dma;
1184	}
1185
1186	ret = fza_init_send(dev, NULL);
1187	if (ret != 0)
1188		return ret;
1189
1190	/* Purger and Beacon multicasts need to be supplied before PARAM. */
1191	fza_set_rx_mode(dev);
1192
1193	spin_lock_irqsave(&fp->lock, flags);
1194	fp->cmd_done_flag = 0;
1195	ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1196	spin_unlock_irqrestore(&fp->lock, flags);
1197	if (!ring)
1198		return -ENOBUFS;
1199
1200	t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
1201	if (fp->cmd_done_flag == 0) {
1202		pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
1203		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1204		return -EIO;
1205	}
1206	stat = readl_u(&ring->stat);
1207	if (stat != FZA_RING_STAT_SUCCESS) {
1208		pr_err("%s: PARAM command failed!, status %02x, state %x\n",
1209		       fp->name, stat,
1210		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1211		return -EIO;
1212	}
1213	pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
1214		 (3 * HZ - t) * 1000 / HZ);
1215
1216	return 0;
1217}
1218
1219static int fza_close(struct net_device *dev)
1220{
1221	struct fza_private *fp = netdev_priv(dev);
1222	unsigned long flags;
1223	uint state;
1224	long t;
1225	int i;
1226
1227	netif_stop_queue(dev);
1228	pr_debug("%s: queue stopped\n", fp->name);
1229
1230	del_timer_sync(&fp->reset_timer);
1231	spin_lock_irqsave(&fp->lock, flags);
1232	fp->state = FZA_STATE_UNINITIALIZED;
1233	fp->state_chg_flag = 0;
1234	/* Shut the interface down. */
1235	writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
1236	readw_o(&fp->regs->control_a);			/* Synchronize. */
1237	spin_unlock_irqrestore(&fp->lock, flags);
1238
1239	/* DEC says SHUT needs up to 10 seconds to complete. */
1240	t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
1241			       15 * HZ);
1242	state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
1243	if (fp->state_chg_flag == 0) {
1244		pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
1245		return -EIO;
1246	}
1247	if (state != FZA_STATE_UNINITIALIZED) {
1248		pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
1249		return -EIO;
1250	}
1251	pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
1252		 (15 * HZ - t) * 1000 / HZ);
1253
1254	for (i = 0; i < FZA_RING_RX_SIZE; i++)
1255		if (fp->rx_skbuff[i]) {
1256			dma_unmap_single(fp->bdev, fp->rx_dma[i],
1257					 FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
1258			dev_kfree_skb(fp->rx_skbuff[i]);
1259			fp->rx_dma[i] = 0;
1260			fp->rx_skbuff[i] = NULL;
1261		}
1262
1263	return 0;
1264}
1265
1266static struct net_device_stats *fza_get_stats(struct net_device *dev)
1267{
1268	struct fza_private *fp = netdev_priv(dev);
1269
1270	return &fp->stats;
1271}
1272
1273static int fza_probe(struct device *bdev)
1274{
1275	static const struct net_device_ops netdev_ops = {
1276		.ndo_open = fza_open,
1277		.ndo_stop = fza_close,
1278		.ndo_start_xmit = fza_start_xmit,
1279		.ndo_set_rx_mode = fza_set_rx_mode,
1280		.ndo_set_mac_address = fza_set_mac_address,
1281		.ndo_get_stats = fza_get_stats,
1282	};
1283	static int version_printed;
1284	char rom_rev[4], fw_rev[4], rmc_rev[4];
1285	struct tc_dev *tdev = to_tc_dev(bdev);
1286	struct fza_cmd_init __iomem *init;
1287	resource_size_t start, len;
1288	struct net_device *dev;
1289	struct fza_private *fp;
1290	uint smt_ver, pmd_type;
1291	void __iomem *mmio;
1292	uint hw_addr[2];
1293	int ret, i;
1294
1295	if (!version_printed) {
1296		pr_info("%s", version);
1297		version_printed = 1;
1298	}
1299
1300	dev = alloc_fddidev(sizeof(*fp));
1301	if (!dev)
1302		return -ENOMEM;
1303	SET_NETDEV_DEV(dev, bdev);
1304
1305	fp = netdev_priv(dev);
1306	dev_set_drvdata(bdev, dev);
1307
1308	fp->bdev = bdev;
1309	fp->name = dev_name(bdev);
1310
1311	/* Request the I/O MEM resource. */
1312	start = tdev->resource.start;
1313	len = tdev->resource.end - start + 1;
1314	if (!request_mem_region(start, len, dev_name(bdev))) {
1315		pr_err("%s: cannot reserve MMIO region\n", fp->name);
1316		ret = -EBUSY;
1317		goto err_out_kfree;
1318	}
1319
1320	/* MMIO mapping setup. */
1321	mmio = ioremap_nocache(start, len);
1322	if (!mmio) {
1323		pr_err("%s: cannot map MMIO\n", fp->name);
1324		ret = -ENOMEM;
1325		goto err_out_resource;
1326	}
1327
1328	/* Initialize the new device structure. */
1329	switch (loopback) {
1330	case FZA_LOOP_NORMAL:
1331	case FZA_LOOP_INTERN:
1332	case FZA_LOOP_EXTERN:
1333		break;
1334	default:
1335		loopback = FZA_LOOP_NORMAL;
1336	}
1337
1338	fp->mmio = mmio;
1339	dev->irq = tdev->interrupt;
1340
1341	pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
1342		fp->name, (long long)tdev->resource.start, dev->irq);
1343	pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
1344
1345	fp->regs = mmio + FZA_REG_BASE;
1346	fp->ring_cmd = mmio + FZA_RING_CMD;
1347	fp->ring_uns = mmio + FZA_RING_UNS;
1348
1349	init_waitqueue_head(&fp->state_chg_wait);
1350	init_waitqueue_head(&fp->cmd_done_wait);
1351	spin_lock_init(&fp->lock);
1352	fp->int_mask = FZA_MASK_NORMAL;
1353
1354	timer_setup(&fp->reset_timer, fza_reset_timer, 0);
1355
1356	/* Sanitize the board. */
1357	fza_regs_dump(fp);
1358	fza_do_shutdown(fp);
1359
1360	ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
1361	if (ret != 0) {
1362		pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
1363		goto err_out_map;
1364	}
1365
1366	/* Enable the driver mode. */
1367	writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
1368
1369	/* For some reason transmit done interrupts can trigger during
1370	 * reset.  This avoids a division error in the handler.
1371	 */
1372	fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
1373
1374	ret = fza_reset(fp);
1375	if (ret != 0)
1376		goto err_out_irq;
1377
1378	ret = fza_init_send(dev, &init);
1379	if (ret != 0)
1380		goto err_out_irq;
1381
1382	fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
1383	memcpy(dev->dev_addr, &hw_addr, FDDI_K_ALEN);
1384
1385	fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
1386	fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
1387	fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
1388	for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
1389		rom_rev[i] = 0;
1390	for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
1391		fw_rev[i] = 0;
1392	for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
1393		rmc_rev[i] = 0;
1394
1395	fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
1396	fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
1397	fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
1398	fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
1399	fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
1400	fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
1401	fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
1402	fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
1403
1404	fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
1405
1406	fp->t_max = readl_u(&init->def_t_max);
1407	fp->t_req = readl_u(&init->def_t_req);
1408	fp->tvx = readl_u(&init->def_tvx);
1409	fp->lem_threshold = readl_u(&init->lem_threshold);
1410	fza_reads(&init->def_station_id, &fp->station_id,
1411		  sizeof(fp->station_id));
1412	fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
1413	fp->ring_purger = readl_u(&init->ring_purger);
1414
1415	smt_ver = readl_u(&init->smt_ver);
1416	pmd_type = readl_u(&init->pmd_type);
1417
1418	pr_debug("%s: INIT parameters:\n", fp->name);
1419	pr_debug("        tx_mode: %u\n", readl_u(&init->tx_mode));
1420	pr_debug("    hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
1421	pr_debug("        rmc_rev: %.4s\n", rmc_rev);
1422	pr_debug("        rom_rev: %.4s\n", rom_rev);
1423	pr_debug("         fw_rev: %.4s\n", fw_rev);
1424	pr_debug("       mop_type: %u\n", readl_u(&init->mop_type));
1425	pr_debug("         hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
1426	pr_debug("         rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
1427	pr_debug("    rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
1428	pr_debug("         smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
1429	pr_debug("    smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
1430	pr_debug("         smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
1431	pr_debug("    smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
1432	/* TC systems are always LE, so don't bother swapping. */
1433	pr_debug("        hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1434		 (readl_u(&init->hw_addr[0]) >> 0) & 0xff,
1435		 (readl_u(&init->hw_addr[0]) >> 8) & 0xff,
1436		 (readl_u(&init->hw_addr[0]) >> 16) & 0xff,
1437		 (readl_u(&init->hw_addr[0]) >> 24) & 0xff,
1438		 (readl_u(&init->hw_addr[1]) >> 0) & 0xff,
1439		 (readl_u(&init->hw_addr[1]) >> 8) & 0xff,
1440		 (readl_u(&init->hw_addr[1]) >> 16) & 0xff,
1441		 (readl_u(&init->hw_addr[1]) >> 24) & 0xff);
1442	pr_debug("      def_t_req: %u\n", readl_u(&init->def_t_req));
1443	pr_debug("        def_tvx: %u\n", readl_u(&init->def_tvx));
1444	pr_debug("      def_t_max: %u\n", readl_u(&init->def_t_max));
1445	pr_debug("  lem_threshold: %u\n", readl_u(&init->lem_threshold));
1446	/* Don't bother swapping, see above. */
1447	pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1448		 (readl_u(&init->def_station_id[0]) >> 0) & 0xff,
1449		 (readl_u(&init->def_station_id[0]) >> 8) & 0xff,
1450		 (readl_u(&init->def_station_id[0]) >> 16) & 0xff,
1451		 (readl_u(&init->def_station_id[0]) >> 24) & 0xff,
1452		 (readl_u(&init->def_station_id[1]) >> 0) & 0xff,
1453		 (readl_u(&init->def_station_id[1]) >> 8) & 0xff,
1454		 (readl_u(&init->def_station_id[1]) >> 16) & 0xff,
1455		 (readl_u(&init->def_station_id[1]) >> 24) & 0xff);
1456	pr_debug("   pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
1457	pr_debug("        smt_ver: %u\n", readl_u(&init->smt_ver));
1458	pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
1459	pr_debug("    ring_purger: %u\n", readl_u(&init->ring_purger));
1460	pr_debug("    smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
1461	pr_debug("    smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
1462	pr_debug("       pmd_type: %u\n", readl_u(&init->pmd_type));
1463
1464	pr_info("%s: model %s, address %pMF\n",
1465		fp->name,
1466		pmd_type == FZA_PMD_TYPE_TW ?
1467			"700-C (DEFZA-CA), ThinWire PMD selected" :
1468			pmd_type == FZA_PMD_TYPE_STP ?
1469				"700-C (DEFZA-CA), STP PMD selected" :
1470				"700 (DEFZA-AA), MMF PMD",
1471		dev->dev_addr);
1472	pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
1473		"SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
1474
1475	/* Now that we fetched initial parameters just shut the interface
1476	 * until opened.
1477	 */
1478	ret = fza_close(dev);
1479	if (ret != 0)
1480		goto err_out_irq;
1481
1482	/* The FZA-specific entries in the device structure. */
1483	dev->netdev_ops = &netdev_ops;
1484
1485	ret = register_netdev(dev);
1486	if (ret != 0)
1487		goto err_out_irq;
1488
1489	pr_info("%s: registered as %s\n", fp->name, dev->name);
1490	fp->name = (const char *)dev->name;
1491
1492	get_device(bdev);
1493	return 0;
1494
1495err_out_irq:
1496	del_timer_sync(&fp->reset_timer);
1497	fza_do_shutdown(fp);
1498	free_irq(dev->irq, dev);
1499
1500err_out_map:
1501	iounmap(mmio);
1502
1503err_out_resource:
1504	release_mem_region(start, len);
1505
1506err_out_kfree:
 
1507	free_netdev(dev);
1508
1509	pr_err("%s: initialization failure, aborting!\n", fp->name);
1510	return ret;
1511}
1512
1513static int fza_remove(struct device *bdev)
1514{
1515	struct net_device *dev = dev_get_drvdata(bdev);
1516	struct fza_private *fp = netdev_priv(dev);
1517	struct tc_dev *tdev = to_tc_dev(bdev);
1518	resource_size_t start, len;
1519
1520	put_device(bdev);
1521
1522	unregister_netdev(dev);
1523
1524	del_timer_sync(&fp->reset_timer);
1525	fza_do_shutdown(fp);
1526	free_irq(dev->irq, dev);
1527
1528	iounmap(fp->mmio);
1529
1530	start = tdev->resource.start;
1531	len = tdev->resource.end - start + 1;
1532	release_mem_region(start, len);
1533
1534	free_netdev(dev);
1535
1536	return 0;
1537}
1538
1539static struct tc_device_id const fza_tc_table[] = {
1540	{ "DEC     ", "PMAF-AA " },
1541	{ }
1542};
1543MODULE_DEVICE_TABLE(tc, fza_tc_table);
1544
1545static struct tc_driver fza_driver = {
1546	.id_table	= fza_tc_table,
1547	.driver		= {
1548		.name	= "defza",
1549		.bus	= &tc_bus_type,
1550		.probe	= fza_probe,
1551		.remove	= fza_remove,
1552	},
1553};
1554
1555static int fza_init(void)
1556{
1557	return tc_register_driver(&fza_driver);
1558}
1559
1560static void fza_exit(void)
1561{
1562	tc_unregister_driver(&fza_driver);
1563}
1564
1565module_init(fza_init);
1566module_exit(fza_exit);