Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
  6 */
  7
  8#ifndef EFX_IO_H
  9#define EFX_IO_H
 10
 11#include <linux/io.h>
 12#include <linux/spinlock.h>
 13
 14/**************************************************************************
 15 *
 16 * NIC register I/O
 17 *
 18 **************************************************************************
 19 *
 20 * The EF10 architecture exposes very few registers to the host and
 21 * most of them are only 32 bits wide.  The only exceptions are the MC
 22 * doorbell register pair, which has its own latching, and
 23 * TX_DESC_UPD.
 
 
 
 
 
 
 
 
 
 24 *
 25 * The TX_DESC_UPD DMA descriptor pointer is 128-bits but is a special
 26 * case in the BIU to avoid the need for locking in the host:
 
 27 *
 28 * - It is write-only.
 29 * - The semantics of writing to this register is such that
 
 
 
 
 30 *   replacing the low 96 bits with zero does not affect functionality.
 31 * - If the host writes to the last dword address of the register
 32 *   (i.e. the high 32 bits) the underlying register will always be
 33 *   written.  If the collector and the current write together do not
 34 *   provide values for all 128 bits of the register, the low 96 bits
 35 *   will be written as zero.
 
 
 
 
 
 
 
 
 
 
 36 */
 37
 38#if BITS_PER_LONG == 64
 39#define EFX_USE_QWORD_IO 1
 40#endif
 41
 42/* Hardware issue requires that only 64-bit naturally aligned writes
 43 * are seen by hardware. Its not strictly necessary to restrict to
 44 * x86_64 arch, but done for safety since unusual write combining behaviour
 45 * can break PIO.
 46 */
 47#ifdef CONFIG_X86_64
 48/* PIO is a win only if write-combining is possible */
 49#ifdef ioremap_wc
 50#define EFX_USE_PIO 1
 51#endif
 52#endif
 53
 54static inline u32 efx_reg(struct efx_nic *efx, unsigned int reg)
 55{
 56	return efx->reg_base + reg;
 57}
 58
 59#ifdef EFX_USE_QWORD_IO
 60static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 61				  unsigned int reg)
 62{
 63	__raw_writeq((__force u64)value, efx->membase + reg);
 64}
 65static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 66{
 67	return (__force __le64)__raw_readq(efx->membase + reg);
 68}
 69#endif
 70
 71static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 72				  unsigned int reg)
 73{
 74	__raw_writel((__force u32)value, efx->membase + reg);
 75}
 76static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 77{
 78	return (__force __le32)__raw_readl(efx->membase + reg);
 79}
 80
 81/* Write a normal 128-bit CSR, locking as appropriate. */
 82static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
 83			      unsigned int reg)
 84{
 85	unsigned long flags __attribute__ ((unused));
 86
 87	netif_vdbg(efx, hw, efx->net_dev,
 88		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
 89		   EFX_OWORD_VAL(*value));
 90
 91	spin_lock_irqsave(&efx->biu_lock, flags);
 92#ifdef EFX_USE_QWORD_IO
 93	_efx_writeq(efx, value->u64[0], reg + 0);
 94	_efx_writeq(efx, value->u64[1], reg + 8);
 95#else
 96	_efx_writed(efx, value->u32[0], reg + 0);
 97	_efx_writed(efx, value->u32[1], reg + 4);
 98	_efx_writed(efx, value->u32[2], reg + 8);
 99	_efx_writed(efx, value->u32[3], reg + 12);
100#endif
101	spin_unlock_irqrestore(&efx->biu_lock, flags);
102}
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
105static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
106			      unsigned int reg)
107{
108	netif_vdbg(efx, hw, efx->net_dev,
109		   "writing register %x with "EFX_DWORD_FMT"\n",
110		   reg, EFX_DWORD_VAL(*value));
111
112	/* No lock required */
113	_efx_writed(efx, value->u32[0], reg);
114}
115
116/* Read a 128-bit CSR, locking as appropriate. */
117static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
118			     unsigned int reg)
119{
120	unsigned long flags __attribute__ ((unused));
121
122	spin_lock_irqsave(&efx->biu_lock, flags);
123	value->u32[0] = _efx_readd(efx, reg + 0);
124	value->u32[1] = _efx_readd(efx, reg + 4);
125	value->u32[2] = _efx_readd(efx, reg + 8);
126	value->u32[3] = _efx_readd(efx, reg + 12);
127	spin_unlock_irqrestore(&efx->biu_lock, flags);
128
129	netif_vdbg(efx, hw, efx->net_dev,
130		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
131		   EFX_OWORD_VAL(*value));
132}
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134/* Read a 32-bit CSR or SRAM */
135static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
136				unsigned int reg)
137{
138	value->u32[0] = _efx_readd(efx, reg);
139	netif_vdbg(efx, hw, efx->net_dev,
140		   "read from register %x, got "EFX_DWORD_FMT"\n",
141		   reg, EFX_DWORD_VAL(*value));
142}
143
144/* Write a 128-bit CSR forming part of a table */
145static inline void
146efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
147		 unsigned int reg, unsigned int index)
148{
149	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
150}
151
152/* Read a 128-bit CSR forming part of a table */
153static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
154				     unsigned int reg, unsigned int index)
155{
156	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
157}
158
159/* default VI stride (step between per-VI registers) is 8K on EF10 and
160 * 64K on EF100
161 */
162#define EFX_DEFAULT_VI_STRIDE		0x2000
163#define EF100_DEFAULT_VI_STRIDE		0x10000
164
165/* Calculate offset to page-mapped register */
166static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
167					 unsigned int reg)
168{
169	return page * efx->vi_stride + reg;
170}
171
172/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
173static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
174				    unsigned int reg, unsigned int page)
175{
176	reg = efx_paged_reg(efx, page, reg);
177
178	netif_vdbg(efx, hw, efx->net_dev,
179		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
180		   EFX_OWORD_VAL(*value));
181
182#ifdef EFX_USE_QWORD_IO
183	_efx_writeq(efx, value->u64[0], reg + 0);
184	_efx_writeq(efx, value->u64[1], reg + 8);
185#else
186	_efx_writed(efx, value->u32[0], reg + 0);
187	_efx_writed(efx, value->u32[1], reg + 4);
188	_efx_writed(efx, value->u32[2], reg + 8);
189	_efx_writed(efx, value->u32[3], reg + 12);
190#endif
191}
192#define efx_writeo_page(efx, value, reg, page)				\
193	_efx_writeo_page(efx, value,					\
194			 reg +						\
195			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
196			 page)
197
198/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
199 * high bits of RX_DESC_UPD or TX_DESC_UPD)
200 */
201static inline void
202_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
203		 unsigned int reg, unsigned int page)
204{
205	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
206}
207#define efx_writed_page(efx, value, reg, page)				\
208	_efx_writed_page(efx, value,					\
209			 reg +						\
210			 BUILD_BUG_ON_ZERO((reg) != 0x180 &&		\
211					   (reg) != 0x200 &&		\
212					   (reg) != 0x400 &&		\
213					   (reg) != 0x420 &&		\
214					   (reg) != 0x830 &&		\
215					   (reg) != 0x83c &&		\
216					   (reg) != 0xa18 &&		\
217					   (reg) != 0xa1c),		\
218			 page)
219
220/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
221 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
222 * collector register.
223 */
224static inline void _efx_writed_page_locked(struct efx_nic *efx,
225					   const efx_dword_t *value,
226					   unsigned int reg,
227					   unsigned int page)
228{
229	unsigned long flags __attribute__ ((unused));
230
231	if (page == 0) {
232		spin_lock_irqsave(&efx->biu_lock, flags);
233		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
234		spin_unlock_irqrestore(&efx->biu_lock, flags);
235	} else {
236		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
237	}
238}
239#define efx_writed_page_locked(efx, value, reg, page)			\
240	_efx_writed_page_locked(efx, value,				\
241				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
242				page)
243
244#endif /* EFX_IO_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
  6 */
  7
  8#ifndef EFX_IO_H
  9#define EFX_IO_H
 10
 11#include <linux/io.h>
 12#include <linux/spinlock.h>
 13
 14/**************************************************************************
 15 *
 16 * NIC register I/O
 17 *
 18 **************************************************************************
 19 *
 20 * Notes on locking strategy for the Falcon architecture:
 21 *
 22 * Many CSRs are very wide and cannot be read or written atomically.
 23 * Writes from the host are buffered by the Bus Interface Unit (BIU)
 24 * up to 128 bits.  Whenever the host writes part of such a register,
 25 * the BIU collects the written value and does not write to the
 26 * underlying register until all 4 dwords have been written.  A
 27 * similar buffering scheme applies to host access to the NIC's 64-bit
 28 * SRAM.
 29 *
 30 * Writes to different CSRs and 64-bit SRAM words must be serialised,
 31 * since interleaved access can result in lost writes.  We use
 32 * efx_nic::biu_lock for this.
 33 *
 34 * We also serialise reads from 128-bit CSRs and SRAM with the same
 35 * spinlock.  This may not be necessary, but it doesn't really matter
 36 * as there are no such reads on the fast path.
 37 *
 38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
 39 * 128-bit but are special-cased in the BIU to avoid the need for
 40 * locking in the host:
 41 *
 42 * - They are write-only.
 43 * - The semantics of writing to these registers are such that
 44 *   replacing the low 96 bits with zero does not affect functionality.
 45 * - If the host writes to the last dword address of such a register
 46 *   (i.e. the high 32 bits) the underlying register will always be
 47 *   written.  If the collector and the current write together do not
 48 *   provide values for all 128 bits of the register, the low 96 bits
 49 *   will be written as zero.
 50 * - If the host writes to the address of any other part of such a
 51 *   register while the collector already holds values for some other
 52 *   register, the write is discarded and the collector maintains its
 53 *   current state.
 54 *
 55 * The EF10 architecture exposes very few registers to the host and
 56 * most of them are only 32 bits wide.  The only exceptions are the MC
 57 * doorbell register pair, which has its own latching, and
 58 * TX_DESC_UPD, which works in a similar way to the Falcon
 59 * architecture.
 60 */
 61
 62#if BITS_PER_LONG == 64
 63#define EFX_USE_QWORD_IO 1
 64#endif
 65
 66/* Hardware issue requires that only 64-bit naturally aligned writes
 67 * are seen by hardware. Its not strictly necessary to restrict to
 68 * x86_64 arch, but done for safety since unusual write combining behaviour
 69 * can break PIO.
 70 */
 71#ifdef CONFIG_X86_64
 72/* PIO is a win only if write-combining is possible */
 73#ifdef ARCH_HAS_IOREMAP_WC
 74#define EFX_USE_PIO 1
 75#endif
 76#endif
 77
 
 
 
 
 
 78#ifdef EFX_USE_QWORD_IO
 79static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 80				  unsigned int reg)
 81{
 82	__raw_writeq((__force u64)value, efx->membase + reg);
 83}
 84static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 85{
 86	return (__force __le64)__raw_readq(efx->membase + reg);
 87}
 88#endif
 89
 90static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 91				  unsigned int reg)
 92{
 93	__raw_writel((__force u32)value, efx->membase + reg);
 94}
 95static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 96{
 97	return (__force __le32)__raw_readl(efx->membase + reg);
 98}
 99
100/* Write a normal 128-bit CSR, locking as appropriate. */
101static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
102			      unsigned int reg)
103{
104	unsigned long flags __attribute__ ((unused));
105
106	netif_vdbg(efx, hw, efx->net_dev,
107		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
108		   EFX_OWORD_VAL(*value));
109
110	spin_lock_irqsave(&efx->biu_lock, flags);
111#ifdef EFX_USE_QWORD_IO
112	_efx_writeq(efx, value->u64[0], reg + 0);
113	_efx_writeq(efx, value->u64[1], reg + 8);
114#else
115	_efx_writed(efx, value->u32[0], reg + 0);
116	_efx_writed(efx, value->u32[1], reg + 4);
117	_efx_writed(efx, value->u32[2], reg + 8);
118	_efx_writed(efx, value->u32[3], reg + 12);
119#endif
120	spin_unlock_irqrestore(&efx->biu_lock, flags);
121}
122
123/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
124static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
125				   const efx_qword_t *value, unsigned int index)
126{
127	unsigned int addr = index * sizeof(*value);
128	unsigned long flags __attribute__ ((unused));
129
130	netif_vdbg(efx, hw, efx->net_dev,
131		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
132		   addr, EFX_QWORD_VAL(*value));
133
134	spin_lock_irqsave(&efx->biu_lock, flags);
135#ifdef EFX_USE_QWORD_IO
136	__raw_writeq((__force u64)value->u64[0], membase + addr);
137#else
138	__raw_writel((__force u32)value->u32[0], membase + addr);
139	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
140#endif
141	spin_unlock_irqrestore(&efx->biu_lock, flags);
142}
143
144/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
145static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
146			      unsigned int reg)
147{
148	netif_vdbg(efx, hw, efx->net_dev,
149		   "writing register %x with "EFX_DWORD_FMT"\n",
150		   reg, EFX_DWORD_VAL(*value));
151
152	/* No lock required */
153	_efx_writed(efx, value->u32[0], reg);
154}
155
156/* Read a 128-bit CSR, locking as appropriate. */
157static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
158			     unsigned int reg)
159{
160	unsigned long flags __attribute__ ((unused));
161
162	spin_lock_irqsave(&efx->biu_lock, flags);
163	value->u32[0] = _efx_readd(efx, reg + 0);
164	value->u32[1] = _efx_readd(efx, reg + 4);
165	value->u32[2] = _efx_readd(efx, reg + 8);
166	value->u32[3] = _efx_readd(efx, reg + 12);
167	spin_unlock_irqrestore(&efx->biu_lock, flags);
168
169	netif_vdbg(efx, hw, efx->net_dev,
170		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
171		   EFX_OWORD_VAL(*value));
172}
173
174/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
175static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
176				  efx_qword_t *value, unsigned int index)
177{
178	unsigned int addr = index * sizeof(*value);
179	unsigned long flags __attribute__ ((unused));
180
181	spin_lock_irqsave(&efx->biu_lock, flags);
182#ifdef EFX_USE_QWORD_IO
183	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
184#else
185	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
186	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
187#endif
188	spin_unlock_irqrestore(&efx->biu_lock, flags);
189
190	netif_vdbg(efx, hw, efx->net_dev,
191		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
192		   addr, EFX_QWORD_VAL(*value));
193}
194
195/* Read a 32-bit CSR or SRAM */
196static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
197				unsigned int reg)
198{
199	value->u32[0] = _efx_readd(efx, reg);
200	netif_vdbg(efx, hw, efx->net_dev,
201		   "read from register %x, got "EFX_DWORD_FMT"\n",
202		   reg, EFX_DWORD_VAL(*value));
203}
204
205/* Write a 128-bit CSR forming part of a table */
206static inline void
207efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
208		 unsigned int reg, unsigned int index)
209{
210	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
211}
212
213/* Read a 128-bit CSR forming part of a table */
214static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
215				     unsigned int reg, unsigned int index)
216{
217	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
218}
219
220/* default VI stride (step between per-VI registers) is 8K */
221#define EFX_DEFAULT_VI_STRIDE 0x2000
 
 
 
222
223/* Calculate offset to page-mapped register */
224static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
225					 unsigned int reg)
226{
227	return page * efx->vi_stride + reg;
228}
229
230/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
231static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
232				    unsigned int reg, unsigned int page)
233{
234	reg = efx_paged_reg(efx, page, reg);
235
236	netif_vdbg(efx, hw, efx->net_dev,
237		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
238		   EFX_OWORD_VAL(*value));
239
240#ifdef EFX_USE_QWORD_IO
241	_efx_writeq(efx, value->u64[0], reg + 0);
242	_efx_writeq(efx, value->u64[1], reg + 8);
243#else
244	_efx_writed(efx, value->u32[0], reg + 0);
245	_efx_writed(efx, value->u32[1], reg + 4);
246	_efx_writed(efx, value->u32[2], reg + 8);
247	_efx_writed(efx, value->u32[3], reg + 12);
248#endif
249}
250#define efx_writeo_page(efx, value, reg, page)				\
251	_efx_writeo_page(efx, value,					\
252			 reg +						\
253			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
254			 page)
255
256/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
257 * high bits of RX_DESC_UPD or TX_DESC_UPD)
258 */
259static inline void
260_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
261		 unsigned int reg, unsigned int page)
262{
263	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
264}
265#define efx_writed_page(efx, value, reg, page)				\
266	_efx_writed_page(efx, value,					\
267			 reg +						\
268			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
 
 
269					   (reg) != 0x420 &&		\
270					   (reg) != 0x830 &&		\
271					   (reg) != 0x83c &&		\
272					   (reg) != 0xa18 &&		\
273					   (reg) != 0xa1c),		\
274			 page)
275
276/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
277 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
278 * collector register.
279 */
280static inline void _efx_writed_page_locked(struct efx_nic *efx,
281					   const efx_dword_t *value,
282					   unsigned int reg,
283					   unsigned int page)
284{
285	unsigned long flags __attribute__ ((unused));
286
287	if (page == 0) {
288		spin_lock_irqsave(&efx->biu_lock, flags);
289		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
290		spin_unlock_irqrestore(&efx->biu_lock, flags);
291	} else {
292		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
293	}
294}
295#define efx_writed_page_locked(efx, value, reg, page)			\
296	_efx_writed_page_locked(efx, value,				\
297				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
298				page)
299
300#endif /* EFX_IO_H */