Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * drivers/net/ethernet/micrel/ks8851_mll.c
   4 * Copyright (c) 2009 Micrel Inc.
   5 */
   6
   7/* Supports:
   8 * KS8851 16bit MLL chip from Micrel Inc.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/interrupt.h>
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/cache.h>
  20#include <linux/crc32.h>
  21#include <linux/crc32poly.h>
  22#include <linux/mii.h>
  23#include <linux/platform_device.h>
  24#include <linux/delay.h>
  25#include <linux/slab.h>
  26#include <linux/ks8851_mll.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/of_net.h>
  30
  31#include "ks8851.h"
  32
  33#define	DRV_NAME	"ks8851_mll"
  34
  35static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
  36#define MAX_RECV_FRAMES			255
  37#define MAX_BUF_SIZE			2048
  38#define TX_BUF_SIZE			2000
  39#define RX_BUF_SIZE			2000
  40
  41#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
  42					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
  43#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)
  44
  45#define	ENUM_BUS_NONE			0
  46#define	ENUM_BUS_8BIT			1
  47#define	ENUM_BUS_16BIT			2
  48#define	ENUM_BUS_32BIT			3
  49
  50#define MAX_MCAST_LST			32
  51#define HW_MCAST_SIZE			8
  52
  53/**
  54 * union ks_tx_hdr - tx header data
  55 * @txb: The header as bytes
  56 * @txw: The header as 16bit, little-endian words
  57 *
  58 * A dual representation of the tx header data to allow
  59 * access to individual bytes, and to allow 16bit accesses
  60 * with 16bit alignment.
  61 */
  62union ks_tx_hdr {
  63	u8      txb[4];
  64	__le16  txw[2];
  65};
  66
  67/**
  68 * struct ks_net - KS8851 driver private data
  69 * @net_device 	: The network device we're bound to
  70 * @hw_addr	: start address of data register.
  71 * @hw_addr_cmd	: start address of command register.
  72 * @txh    	: temporaly buffer to save status/length.
  73 * @lock	: Lock to ensure that the device is not accessed when busy.
  74 * @pdev	: Pointer to platform device.
  75 * @mii		: The MII state information for the mii calls.
  76 * @frame_head_info   	: frame header information for multi-pkt rx.
  77 * @statelock	: Lock on this structure for tx list.
  78 * @msg_enable	: The message flags controlling driver output (see ethtool).
  79 * @frame_cnt  	: number of frames received.
  80 * @bus_width  	: i/o bus width.
  81 * @rc_rxqcr	: Cached copy of KS_RXQCR.
  82 * @rc_txcr	: Cached copy of KS_TXCR.
  83 * @rc_ier	: Cached copy of KS_IER.
  84 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
  85 * @cmd_reg_cache	: command register cached.
  86 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
  87 * @promiscuous	: promiscuous mode indicator.
  88 * @all_mcast  	: mutlicast indicator.
  89 * @mcast_lst_size   	: size of multicast list.
  90 * @mcast_lst    	: multicast list.
  91 * @mcast_bits    	: multicast enabed.
  92 * @mac_addr   		: MAC address assigned to this device.
  93 * @fid    		: frame id.
  94 * @extra_byte    	: number of extra byte prepended rx pkt.
  95 * @enabled    		: indicator this device works.
  96 *
  97 * The @lock ensures that the chip is protected when certain operations are
  98 * in progress. When the read or write packet transfer is in progress, most
  99 * of the chip registers are not accessible until the transfer is finished and
 100 * the DMA has been de-asserted.
 101 *
 102 * The @statelock is used to protect information in the structure which may
 103 * need to be accessed via several sources, such as the network driver layer
 104 * or one of the work queues.
 105 *
 106 */
 107
 108/* Receive multiplex framer header info */
 109struct type_frame_head {
 110	u16	sts;         /* Frame status */
 111	u16	len;         /* Byte count */
 112};
 113
 114struct ks_net {
 115	struct net_device	*netdev;
 116	void __iomem    	*hw_addr;
 117	void __iomem    	*hw_addr_cmd;
 118	union ks_tx_hdr		txh ____cacheline_aligned;
 119	struct mutex      	lock; /* spinlock to be interrupt safe */
 120	struct platform_device *pdev;
 121	struct mii_if_info	mii;
 122	struct type_frame_head	*frame_head_info;
 123	spinlock_t		statelock;
 124	u32			msg_enable;
 125	u32			frame_cnt;
 126	int			bus_width;
 127
 128	u16			rc_rxqcr;
 129	u16			rc_txcr;
 130	u16			rc_ier;
 131	u16			sharedbus;
 132	u16			cmd_reg_cache;
 133	u16			cmd_reg_cache_int;
 134	u16			promiscuous;
 135	u16			all_mcast;
 136	u16			mcast_lst_size;
 137	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
 138	u8			mcast_bits[HW_MCAST_SIZE];
 139	u8			mac_addr[6];
 140	u8                      fid;
 141	u8			extra_byte;
 142	u8			enabled;
 143};
 144
 145static int msg_enable;
 146
 147#define BE3             0x8000      /* Byte Enable 3 */
 148#define BE2             0x4000      /* Byte Enable 2 */
 149#define BE1             0x2000      /* Byte Enable 1 */
 150#define BE0             0x1000      /* Byte Enable 0 */
 151
 152/* register read/write calls.
 153 *
 154 * All these calls issue transactions to access the chip's registers. They
 155 * all require that the necessary lock is held to prevent accesses when the
 156 * chip is busy transferring packet data (RX/TX FIFO accesses).
 157 */
 158
 159/**
 160 * ks_rdreg8 - read 8 bit register from device
 161 * @ks	  : The chip information
 162 * @offset: The register address
 163 *
 164 * Read a 8bit register from the chip, returning the result
 165 */
 166static u8 ks_rdreg8(struct ks_net *ks, int offset)
 167{
 168	u16 data;
 169	u8 shift_bit = offset & 0x03;
 170	u8 shift_data = (offset & 1) << 3;
 171	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
 172	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 173	data  = ioread16(ks->hw_addr);
 174	return (u8)(data >> shift_data);
 175}
 176
 177/**
 178 * ks_rdreg16 - read 16 bit register from device
 179 * @ks	  : The chip information
 180 * @offset: The register address
 181 *
 182 * Read a 16bit register from the chip, returning the result
 183 */
 184
 185static u16 ks_rdreg16(struct ks_net *ks, int offset)
 186{
 187	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 188	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 189	return ioread16(ks->hw_addr);
 190}
 191
 192/**
 193 * ks_wrreg8 - write 8bit register value to chip
 194 * @ks: The chip information
 195 * @offset: The register address
 196 * @value: The value to write
 197 *
 198 */
 199static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
 200{
 201	u8  shift_bit = (offset & 0x03);
 202	u16 value_write = (u16)(value << ((offset & 1) << 3));
 203	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
 204	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 205	iowrite16(value_write, ks->hw_addr);
 206}
 207
 208/**
 209 * ks_wrreg16 - write 16bit register value to chip
 210 * @ks: The chip information
 211 * @offset: The register address
 212 * @value: The value to write
 213 *
 214 */
 215
 216static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
 217{
 218	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
 219	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 220	iowrite16(value, ks->hw_addr);
 221}
 222
 223/**
 224 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
 225 * @ks: The chip state
 226 * @wptr: buffer address to save data
 227 * @len: length in byte to read
 228 *
 229 */
 230static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
 231{
 232	len >>= 1;
 233	while (len--)
 234		*wptr++ = (u16)ioread16(ks->hw_addr);
 235}
 236
 237/**
 238 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
 239 * @ks: The chip information
 240 * @wptr: buffer address
 241 * @len: length in byte to write
 242 *
 243 */
 244static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
 245{
 246	len >>= 1;
 247	while (len--)
 248		iowrite16(*wptr++, ks->hw_addr);
 249}
 250
 251static void ks_disable_int(struct ks_net *ks)
 252{
 253	ks_wrreg16(ks, KS_IER, 0x0000);
 254}  /* ks_disable_int */
 255
 256static void ks_enable_int(struct ks_net *ks)
 257{
 258	ks_wrreg16(ks, KS_IER, ks->rc_ier);
 259}  /* ks_enable_int */
 260
 261/**
 262 * ks_tx_fifo_space - return the available hardware buffer size.
 263 * @ks: The chip information
 264 *
 265 */
 266static inline u16 ks_tx_fifo_space(struct ks_net *ks)
 267{
 268	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
 269}
 270
 271/**
 272 * ks_save_cmd_reg - save the command register from the cache.
 273 * @ks: The chip information
 274 *
 275 */
 276static inline void ks_save_cmd_reg(struct ks_net *ks)
 277{
 278	/*ks8851 MLL has a bug to read back the command register.
 279	* So rely on software to save the content of command register.
 280	*/
 281	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
 282}
 283
 284/**
 285 * ks_restore_cmd_reg - restore the command register from the cache and
 286 * 	write to hardware register.
 287 * @ks: The chip information
 288 *
 289 */
 290static inline void ks_restore_cmd_reg(struct ks_net *ks)
 291{
 292	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
 293	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
 294}
 295
 296/**
 297 * ks_set_powermode - set power mode of the device
 298 * @ks: The chip information
 299 * @pwrmode: The power mode value to write to KS_PMECR.
 300 *
 301 * Change the power mode of the chip.
 302 */
 303static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
 304{
 305	unsigned pmecr;
 306
 307	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 308
 309	ks_rdreg16(ks, KS_GRR);
 310	pmecr = ks_rdreg16(ks, KS_PMECR);
 311	pmecr &= ~PMECR_PM_MASK;
 312	pmecr |= pwrmode;
 313
 314	ks_wrreg16(ks, KS_PMECR, pmecr);
 315}
 316
 317/**
 318 * ks_read_config - read chip configuration of bus width.
 319 * @ks: The chip information
 320 *
 321 */
 322static void ks_read_config(struct ks_net *ks)
 323{
 324	u16 reg_data = 0;
 325
 326	/* Regardless of bus width, 8 bit read should always work.*/
 327	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
 328	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
 329
 330	/* addr/data bus are multiplexed */
 331	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
 332
 333	/* There are garbage data when reading data from QMU,
 334	depending on bus-width.
 335	*/
 336
 337	if (reg_data & CCR_8BIT) {
 338		ks->bus_width = ENUM_BUS_8BIT;
 339		ks->extra_byte = 1;
 340	} else if (reg_data & CCR_16BIT) {
 341		ks->bus_width = ENUM_BUS_16BIT;
 342		ks->extra_byte = 2;
 343	} else {
 344		ks->bus_width = ENUM_BUS_32BIT;
 345		ks->extra_byte = 4;
 346	}
 347}
 348
 349/**
 350 * ks_soft_reset - issue one of the soft reset to the device
 351 * @ks: The device state.
 352 * @op: The bit(s) to set in the GRR
 353 *
 354 * Issue the relevant soft-reset command to the device's GRR register
 355 * specified by @op.
 356 *
 357 * Note, the delays are in there as a caution to ensure that the reset
 358 * has time to take effect and then complete. Since the datasheet does
 359 * not currently specify the exact sequence, we have chosen something
 360 * that seems to work with our device.
 361 */
 362static void ks_soft_reset(struct ks_net *ks, unsigned op)
 363{
 364	/* Disable interrupt first */
 365	ks_wrreg16(ks, KS_IER, 0x0000);
 366	ks_wrreg16(ks, KS_GRR, op);
 367	mdelay(10);	/* wait a short time to effect reset */
 368	ks_wrreg16(ks, KS_GRR, 0);
 369	mdelay(1);	/* wait for condition to clear */
 370}
 371
 372
 373static void ks_enable_qmu(struct ks_net *ks)
 374{
 375	u16 w;
 376
 377	w = ks_rdreg16(ks, KS_TXCR);
 378	/* Enables QMU Transmit (TXCR). */
 379	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
 380
 381	/*
 382	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
 383	 * Enable
 384	 */
 385
 386	w = ks_rdreg16(ks, KS_RXQCR);
 387	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
 388
 389	/* Enables QMU Receive (RXCR1). */
 390	w = ks_rdreg16(ks, KS_RXCR1);
 391	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
 392	ks->enabled = true;
 393}  /* ks_enable_qmu */
 394
 395static void ks_disable_qmu(struct ks_net *ks)
 396{
 397	u16	w;
 398
 399	w = ks_rdreg16(ks, KS_TXCR);
 400
 401	/* Disables QMU Transmit (TXCR). */
 402	w  &= ~TXCR_TXE;
 403	ks_wrreg16(ks, KS_TXCR, w);
 404
 405	/* Disables QMU Receive (RXCR1). */
 406	w = ks_rdreg16(ks, KS_RXCR1);
 407	w &= ~RXCR1_RXE ;
 408	ks_wrreg16(ks, KS_RXCR1, w);
 409
 410	ks->enabled = false;
 411
 412}  /* ks_disable_qmu */
 413
 414/**
 415 * ks_read_qmu - read 1 pkt data from the QMU.
 416 * @ks: The chip information
 417 * @buf: buffer address to save 1 pkt
 418 * @len: Pkt length
 419 * Here is the sequence to read 1 pkt:
 420 *	1. set sudo DMA mode
 421 *	2. read prepend data
 422 *	3. read pkt data
 423 *	4. reset sudo DMA Mode
 424 */
 425static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
 426{
 427	u32 r =  ks->extra_byte & 0x1 ;
 428	u32 w = ks->extra_byte - r;
 429
 430	/* 1. set sudo DMA mode */
 431	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
 432	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 433
 434	/* 2. read prepend data */
 435	/**
 436	 * read 4 + extra bytes and discard them.
 437	 * extra bytes for dummy, 2 for status, 2 for len
 438	 */
 439
 440	/* use likely(r) for 8 bit access for performance */
 441	if (unlikely(r))
 442		ioread8(ks->hw_addr);
 443	ks_inblk(ks, buf, w + 2 + 2);
 444
 445	/* 3. read pkt data */
 446	ks_inblk(ks, buf, ALIGN(len, 4));
 447
 448	/* 4. reset sudo DMA Mode */
 449	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 450}
 451
 452/**
 453 * ks_rcv - read multiple pkts data from the QMU.
 454 * @ks: The chip information
 455 * @netdev: The network device being opened.
 456 *
 457 * Read all of header information before reading pkt content.
 458 * It is not allowed only port of pkts in QMU after issuing
 459 * interrupt ack.
 460 */
 461static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
 462{
 463	u32	i;
 464	struct type_frame_head *frame_hdr = ks->frame_head_info;
 465	struct sk_buff *skb;
 466
 467	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
 468
 469	/* read all header information */
 470	for (i = 0; i < ks->frame_cnt; i++) {
 471		/* Checking Received packet status */
 472		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
 473		/* Get packet len from hardware */
 474		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
 475		frame_hdr++;
 476	}
 477
 478	frame_hdr = ks->frame_head_info;
 479	while (ks->frame_cnt--) {
 480		if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
 481			     frame_hdr->len >= RX_BUF_SIZE ||
 482			     frame_hdr->len <= 0)) {
 483
 484			/* discard an invalid packet */
 485			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 486			netdev->stats.rx_dropped++;
 487			if (!(frame_hdr->sts & RXFSHR_RXFV))
 488				netdev->stats.rx_frame_errors++;
 489			else
 490				netdev->stats.rx_length_errors++;
 491			frame_hdr++;
 492			continue;
 493		}
 494
 495		skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
 496		if (likely(skb)) {
 497			skb_reserve(skb, 2);
 498			/* read data block including CRC 4 bytes */
 499			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
 500			skb_put(skb, frame_hdr->len - 4);
 501			skb->protocol = eth_type_trans(skb, netdev);
 502			netif_rx(skb);
 503			/* exclude CRC size */
 504			netdev->stats.rx_bytes += frame_hdr->len - 4;
 505			netdev->stats.rx_packets++;
 506		} else {
 507			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
 508			netdev->stats.rx_dropped++;
 509		}
 510		frame_hdr++;
 511	}
 512}
 513
 514/**
 515 * ks_update_link_status - link status update.
 516 * @netdev: The network device being opened.
 517 * @ks: The chip information
 518 *
 519 */
 520
 521static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
 522{
 523	/* check the status of the link */
 524	u32 link_up_status;
 525	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
 526		netif_carrier_on(netdev);
 527		link_up_status = true;
 528	} else {
 529		netif_carrier_off(netdev);
 530		link_up_status = false;
 531	}
 532	netif_dbg(ks, link, ks->netdev,
 533		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
 534}
 535
 536/**
 537 * ks_irq - device interrupt handler
 538 * @irq: Interrupt number passed from the IRQ handler.
 539 * @pw: The private word passed to register_irq(), our struct ks_net.
 540 *
 541 * This is the handler invoked to find out what happened
 542 *
 543 * Read the interrupt status, work out what needs to be done and then clear
 544 * any of the interrupts that are not needed.
 545 */
 546
 547static irqreturn_t ks_irq(int irq, void *pw)
 548{
 549	struct net_device *netdev = pw;
 550	struct ks_net *ks = netdev_priv(netdev);
 551	u16 status;
 552
 553	/*this should be the first in IRQ handler */
 554	ks_save_cmd_reg(ks);
 555
 556	status = ks_rdreg16(ks, KS_ISR);
 557	if (unlikely(!status)) {
 558		ks_restore_cmd_reg(ks);
 559		return IRQ_NONE;
 560	}
 561
 562	ks_wrreg16(ks, KS_ISR, status);
 563
 564	if (likely(status & IRQ_RXI))
 565		ks_rcv(ks, netdev);
 566
 567	if (unlikely(status & IRQ_LCI))
 568		ks_update_link_status(netdev, ks);
 569
 570	if (unlikely(status & IRQ_TXI))
 571		netif_wake_queue(netdev);
 572
 573	if (unlikely(status & IRQ_LDI)) {
 574
 575		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
 576		pmecr &= ~PMECR_WKEVT_MASK;
 577		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 578	}
 579
 580	if (unlikely(status & IRQ_RXOI))
 581		ks->netdev->stats.rx_over_errors++;
 582	/* this should be the last in IRQ handler*/
 583	ks_restore_cmd_reg(ks);
 584	return IRQ_HANDLED;
 585}
 586
 587
 588/**
 589 * ks_net_open - open network device
 590 * @netdev: The network device being opened.
 591 *
 592 * Called when the network device is marked active, such as a user executing
 593 * 'ifconfig up' on the device.
 594 */
 595static int ks_net_open(struct net_device *netdev)
 596{
 597	struct ks_net *ks = netdev_priv(netdev);
 598	int err;
 599
 600#define	KS_INT_FLAGS	IRQF_TRIGGER_LOW
 601	/* lock the card, even if we may not actually do anything
 602	 * else at the moment.
 603	 */
 604
 605	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
 606
 607	/* reset the HW */
 608	err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
 609
 610	if (err) {
 611		pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
 612		return err;
 613	}
 614
 615	/* wake up powermode to normal mode */
 616	ks_set_powermode(ks, PMECR_PM_NORMAL);
 617	mdelay(1);	/* wait for normal mode to take effect */
 618
 619	ks_wrreg16(ks, KS_ISR, 0xffff);
 620	ks_enable_int(ks);
 621	ks_enable_qmu(ks);
 622	netif_start_queue(ks->netdev);
 623
 624	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 625
 626	return 0;
 627}
 628
 629/**
 630 * ks_net_stop - close network device
 631 * @netdev: The device being closed.
 632 *
 633 * Called to close down a network device which has been active. Cancell any
 634 * work, shutdown the RX and TX process and then place the chip into a low
 635 * power state whilst it is not being used.
 636 */
 637static int ks_net_stop(struct net_device *netdev)
 638{
 639	struct ks_net *ks = netdev_priv(netdev);
 640
 641	netif_info(ks, ifdown, netdev, "shutting down\n");
 642
 643	netif_stop_queue(netdev);
 644
 645	mutex_lock(&ks->lock);
 646
 647	/* turn off the IRQs and ack any outstanding */
 648	ks_wrreg16(ks, KS_IER, 0x0000);
 649	ks_wrreg16(ks, KS_ISR, 0xffff);
 650
 651	/* shutdown RX/TX QMU */
 652	ks_disable_qmu(ks);
 653
 654	/* set powermode to soft power down to save power */
 655	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
 656	free_irq(netdev->irq, netdev);
 657	mutex_unlock(&ks->lock);
 658	return 0;
 659}
 660
 661
 662/**
 663 * ks_write_qmu - write 1 pkt data to the QMU.
 664 * @ks: The chip information
 665 * @pdata: buffer address to save 1 pkt
 666 * @len: Pkt length in byte
 667 * Here is the sequence to write 1 pkt:
 668 *	1. set sudo DMA mode
 669 *	2. write status/length
 670 *	3. write pkt data
 671 *	4. reset sudo DMA Mode
 672 *	5. reset sudo DMA mode
 673 *	6. Wait until pkt is out
 674 */
 675static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
 676{
 677	/* start header at txb[0] to align txw entries */
 678	ks->txh.txw[0] = 0;
 679	ks->txh.txw[1] = cpu_to_le16(len);
 680
 681	/* 1. set sudo-DMA mode */
 682	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
 683	/* 2. write status/lenth info */
 684	ks_outblk(ks, ks->txh.txw, 4);
 685	/* 3. write pkt data */
 686	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
 687	/* 4. reset sudo-DMA mode */
 688	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
 689	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
 690	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 691	/* 6. wait until TXQCR_METFE is auto-cleared */
 692	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
 693		;
 694}
 695
 696/**
 697 * ks_start_xmit - transmit packet
 698 * @skb		: The buffer to transmit
 699 * @netdev	: The device used to transmit the packet.
 700 *
 701 * Called by the network layer to transmit the @skb.
 702 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
 703 * So while tx is in-progress, prevent IRQ interrupt from happenning.
 704 */
 705static netdev_tx_t ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
 706{
 707	netdev_tx_t retv = NETDEV_TX_OK;
 708	struct ks_net *ks = netdev_priv(netdev);
 709
 710	disable_irq(netdev->irq);
 711	ks_disable_int(ks);
 712	spin_lock(&ks->statelock);
 713
 714	/* Extra space are required:
 715	*  4 byte for alignment, 4 for status/length, 4 for CRC
 716	*/
 717
 718	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
 719		ks_write_qmu(ks, skb->data, skb->len);
 720		/* add tx statistics */
 721		netdev->stats.tx_bytes += skb->len;
 722		netdev->stats.tx_packets++;
 723		dev_kfree_skb(skb);
 724	} else
 725		retv = NETDEV_TX_BUSY;
 726	spin_unlock(&ks->statelock);
 727	ks_enable_int(ks);
 728	enable_irq(netdev->irq);
 729	return retv;
 730}
 731
 732/**
 733 * ks_start_rx - ready to serve pkts
 734 * @ks		: The chip information
 735 *
 736 */
 737static void ks_start_rx(struct ks_net *ks)
 738{
 739	u16 cntl;
 740
 741	/* Enables QMU Receive (RXCR1). */
 742	cntl = ks_rdreg16(ks, KS_RXCR1);
 743	cntl |= RXCR1_RXE ;
 744	ks_wrreg16(ks, KS_RXCR1, cntl);
 745}  /* ks_start_rx */
 746
 747/**
 748 * ks_stop_rx - stop to serve pkts
 749 * @ks		: The chip information
 750 *
 751 */
 752static void ks_stop_rx(struct ks_net *ks)
 753{
 754	u16 cntl;
 755
 756	/* Disables QMU Receive (RXCR1). */
 757	cntl = ks_rdreg16(ks, KS_RXCR1);
 758	cntl &= ~RXCR1_RXE ;
 759	ks_wrreg16(ks, KS_RXCR1, cntl);
 760
 761}  /* ks_stop_rx */
 762
 763static unsigned long const ethernet_polynomial = CRC32_POLY_BE;
 764
 765static unsigned long ether_gen_crc(int length, u8 *data)
 766{
 767	long crc = -1;
 768	while (--length >= 0) {
 769		u8 current_octet = *data++;
 770		int bit;
 771
 772		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
 773			crc = (crc << 1) ^
 774				((crc < 0) ^ (current_octet & 1) ?
 775			ethernet_polynomial : 0);
 776		}
 777	}
 778	return (unsigned long)crc;
 779}  /* ether_gen_crc */
 780
 781/**
 782* ks_set_grpaddr - set multicast information
 783* @ks : The chip information
 784*/
 785
 786static void ks_set_grpaddr(struct ks_net *ks)
 787{
 788	u8	i;
 789	u32	index, position, value;
 790
 791	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
 792
 793	for (i = 0; i < ks->mcast_lst_size; i++) {
 794		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
 795		index = position >> 3;
 796		value = 1 << (position & 7);
 797		ks->mcast_bits[index] |= (u8)value;
 798	}
 799
 800	for (i  = 0; i < HW_MCAST_SIZE; i++) {
 801		if (i & 1) {
 802			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
 803				(ks->mcast_bits[i] << 8) |
 804				ks->mcast_bits[i - 1]);
 805		}
 806	}
 807}  /* ks_set_grpaddr */
 808
 809/**
 810* ks_clear_mcast - clear multicast information
 811*
 812* @ks : The chip information
 813* This routine removes all mcast addresses set in the hardware.
 814*/
 815
 816static void ks_clear_mcast(struct ks_net *ks)
 817{
 818	u16	i, mcast_size;
 819	for (i = 0; i < HW_MCAST_SIZE; i++)
 820		ks->mcast_bits[i] = 0;
 821
 822	mcast_size = HW_MCAST_SIZE >> 2;
 823	for (i = 0; i < mcast_size; i++)
 824		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
 825}
 826
 827static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
 828{
 829	u16		cntl;
 830	ks->promiscuous = promiscuous_mode;
 831	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
 832	cntl = ks_rdreg16(ks, KS_RXCR1);
 833
 834	cntl &= ~RXCR1_FILTER_MASK;
 835	if (promiscuous_mode)
 836		/* Enable Promiscuous mode */
 837		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
 838	else
 839		/* Disable Promiscuous mode (default normal mode) */
 840		cntl |= RXCR1_RXPAFMA;
 841
 842	ks_wrreg16(ks, KS_RXCR1, cntl);
 843
 844	if (ks->enabled)
 845		ks_start_rx(ks);
 846
 847}  /* ks_set_promis */
 848
 849static void ks_set_mcast(struct ks_net *ks, u16 mcast)
 850{
 851	u16	cntl;
 852
 853	ks->all_mcast = mcast;
 854	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
 855	cntl = ks_rdreg16(ks, KS_RXCR1);
 856	cntl &= ~RXCR1_FILTER_MASK;
 857	if (mcast)
 858		/* Enable "Perfect with Multicast address passed mode" */
 859		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
 860	else
 861		/**
 862		 * Disable "Perfect with Multicast address passed
 863		 * mode" (normal mode).
 864		 */
 865		cntl |= RXCR1_RXPAFMA;
 866
 867	ks_wrreg16(ks, KS_RXCR1, cntl);
 868
 869	if (ks->enabled)
 870		ks_start_rx(ks);
 871}  /* ks_set_mcast */
 872
 873static void ks_set_rx_mode(struct net_device *netdev)
 874{
 875	struct ks_net *ks = netdev_priv(netdev);
 876	struct netdev_hw_addr *ha;
 877
 878	/* Turn on/off promiscuous mode. */
 879	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
 880		ks_set_promis(ks,
 881			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
 882	/* Turn on/off all mcast mode. */
 883	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
 884		ks_set_mcast(ks,
 885			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
 886	else
 887		ks_set_promis(ks, false);
 888
 889	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
 890		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
 891			int i = 0;
 892
 893			netdev_for_each_mc_addr(ha, netdev) {
 894				if (i >= MAX_MCAST_LST)
 895					break;
 896				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
 897			}
 898			ks->mcast_lst_size = (u8)i;
 899			ks_set_grpaddr(ks);
 900		} else {
 901			/**
 902			 * List too big to support so
 903			 * turn on all mcast mode.
 904			 */
 905			ks->mcast_lst_size = MAX_MCAST_LST;
 906			ks_set_mcast(ks, true);
 907		}
 908	} else {
 909		ks->mcast_lst_size = 0;
 910		ks_clear_mcast(ks);
 911	}
 912} /* ks_set_rx_mode */
 913
 914static void ks_set_mac(struct ks_net *ks, u8 *data)
 915{
 916	u16 *pw = (u16 *)data;
 917	u16 w, u;
 918
 919	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
 920
 921	u = *pw++;
 922	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
 923	ks_wrreg16(ks, KS_MARH, w);
 924
 925	u = *pw++;
 926	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
 927	ks_wrreg16(ks, KS_MARM, w);
 928
 929	u = *pw;
 930	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
 931	ks_wrreg16(ks, KS_MARL, w);
 932
 933	memcpy(ks->mac_addr, data, ETH_ALEN);
 934
 935	if (ks->enabled)
 936		ks_start_rx(ks);
 937}
 938
 939static int ks_set_mac_address(struct net_device *netdev, void *paddr)
 940{
 941	struct ks_net *ks = netdev_priv(netdev);
 942	struct sockaddr *addr = paddr;
 943	u8 *da;
 944
 945	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 946
 947	da = (u8 *)netdev->dev_addr;
 948
 949	ks_set_mac(ks, da);
 950	return 0;
 951}
 952
 953static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
 954{
 955	struct ks_net *ks = netdev_priv(netdev);
 956
 957	if (!netif_running(netdev))
 958		return -EINVAL;
 959
 960	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
 961}
 962
 963static const struct net_device_ops ks_netdev_ops = {
 964	.ndo_open		= ks_net_open,
 965	.ndo_stop		= ks_net_stop,
 966	.ndo_do_ioctl		= ks_net_ioctl,
 967	.ndo_start_xmit		= ks_start_xmit,
 968	.ndo_set_mac_address	= ks_set_mac_address,
 969	.ndo_set_rx_mode	= ks_set_rx_mode,
 970	.ndo_validate_addr	= eth_validate_addr,
 971};
 972
 973/* ethtool support */
 974
 975static void ks_get_drvinfo(struct net_device *netdev,
 976			       struct ethtool_drvinfo *di)
 977{
 978	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
 979	strlcpy(di->version, "1.00", sizeof(di->version));
 980	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
 981		sizeof(di->bus_info));
 982}
 983
 984static u32 ks_get_msglevel(struct net_device *netdev)
 985{
 986	struct ks_net *ks = netdev_priv(netdev);
 987	return ks->msg_enable;
 988}
 989
 990static void ks_set_msglevel(struct net_device *netdev, u32 to)
 991{
 992	struct ks_net *ks = netdev_priv(netdev);
 993	ks->msg_enable = to;
 994}
 995
 996static int ks_get_link_ksettings(struct net_device *netdev,
 997				 struct ethtool_link_ksettings *cmd)
 998{
 999	struct ks_net *ks = netdev_priv(netdev);
1000
1001	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1002
1003	return 0;
1004}
1005
1006static int ks_set_link_ksettings(struct net_device *netdev,
1007				 const struct ethtool_link_ksettings *cmd)
1008{
1009	struct ks_net *ks = netdev_priv(netdev);
1010	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1011}
1012
1013static u32 ks_get_link(struct net_device *netdev)
1014{
1015	struct ks_net *ks = netdev_priv(netdev);
1016	return mii_link_ok(&ks->mii);
1017}
1018
1019static int ks_nway_reset(struct net_device *netdev)
1020{
1021	struct ks_net *ks = netdev_priv(netdev);
1022	return mii_nway_restart(&ks->mii);
1023}
1024
1025static const struct ethtool_ops ks_ethtool_ops = {
1026	.get_drvinfo	= ks_get_drvinfo,
1027	.get_msglevel	= ks_get_msglevel,
1028	.set_msglevel	= ks_set_msglevel,
1029	.get_link	= ks_get_link,
1030	.nway_reset	= ks_nway_reset,
1031	.get_link_ksettings = ks_get_link_ksettings,
1032	.set_link_ksettings = ks_set_link_ksettings,
1033};
1034
1035/* MII interface controls */
1036
1037/**
1038 * ks_phy_reg - convert MII register into a KS8851 register
1039 * @reg: MII register number.
1040 *
1041 * Return the KS8851 register number for the corresponding MII PHY register
1042 * if possible. Return zero if the MII register has no direct mapping to the
1043 * KS8851 register set.
1044 */
1045static int ks_phy_reg(int reg)
1046{
1047	switch (reg) {
1048	case MII_BMCR:
1049		return KS_P1MBCR;
1050	case MII_BMSR:
1051		return KS_P1MBSR;
1052	case MII_PHYSID1:
1053		return KS_PHY1ILR;
1054	case MII_PHYSID2:
1055		return KS_PHY1IHR;
1056	case MII_ADVERTISE:
1057		return KS_P1ANAR;
1058	case MII_LPA:
1059		return KS_P1ANLPR;
1060	}
1061
1062	return 0x0;
1063}
1064
1065/**
1066 * ks_phy_read - MII interface PHY register read.
1067 * @netdev: The network device the PHY is on.
1068 * @phy_addr: Address of PHY (ignored as we only have one)
1069 * @reg: The register to read.
1070 *
1071 * This call reads data from the PHY register specified in @reg. Since the
1072 * device does not support all the MII registers, the non-existent values
1073 * are always returned as zero.
1074 *
1075 * We return zero for unsupported registers as the MII code does not check
1076 * the value returned for any error status, and simply returns it to the
1077 * caller. The mii-tool that the driver was tested with takes any -ve error
1078 * as real PHY capabilities, thus displaying incorrect data to the user.
1079 */
1080static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1081{
1082	struct ks_net *ks = netdev_priv(netdev);
1083	int ksreg;
1084	int result;
1085
1086	ksreg = ks_phy_reg(reg);
1087	if (!ksreg)
1088		return 0x0;	/* no error return allowed, so use zero */
1089
1090	mutex_lock(&ks->lock);
1091	result = ks_rdreg16(ks, ksreg);
1092	mutex_unlock(&ks->lock);
1093
1094	return result;
1095}
1096
1097static void ks_phy_write(struct net_device *netdev,
1098			     int phy, int reg, int value)
1099{
1100	struct ks_net *ks = netdev_priv(netdev);
1101	int ksreg;
1102
1103	ksreg = ks_phy_reg(reg);
1104	if (ksreg) {
1105		mutex_lock(&ks->lock);
1106		ks_wrreg16(ks, ksreg, value);
1107		mutex_unlock(&ks->lock);
1108	}
1109}
1110
1111/**
1112 * ks_read_selftest - read the selftest memory info.
1113 * @ks: The device state
1114 *
1115 * Read and check the TX/RX memory selftest information.
1116 */
1117static int ks_read_selftest(struct ks_net *ks)
1118{
1119	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1120	int ret = 0;
1121	unsigned rd;
1122
1123	rd = ks_rdreg16(ks, KS_MBIR);
1124
1125	if ((rd & both_done) != both_done) {
1126		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1127		return 0;
1128	}
1129
1130	if (rd & MBIR_TXMBFA) {
1131		netdev_err(ks->netdev, "TX memory selftest fails\n");
1132		ret |= 1;
1133	}
1134
1135	if (rd & MBIR_RXMBFA) {
1136		netdev_err(ks->netdev, "RX memory selftest fails\n");
1137		ret |= 2;
1138	}
1139
1140	netdev_info(ks->netdev, "the selftest passes\n");
1141	return ret;
1142}
1143
1144static void ks_setup(struct ks_net *ks)
1145{
1146	u16	w;
1147
1148	/**
1149	 * Configure QMU Transmit
1150	 */
1151
1152	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1153	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1154
1155	/* Setup Receive Frame Data Pointer Auto-Increment */
1156	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1157
1158	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1159	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_RXFCT_MASK);
1160
1161	/* Setup RxQ Command Control (RXQCR) */
1162	ks->rc_rxqcr = RXQCR_CMD_CNTL;
1163	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1164
1165	/**
1166	 * set the force mode to half duplex, default is full duplex
1167	 *  because if the auto-negotiation fails, most switch uses
1168	 *  half-duplex.
1169	 */
1170
1171	w = ks_rdreg16(ks, KS_P1MBCR);
1172	w &= ~BMCR_FULLDPLX;
1173	ks_wrreg16(ks, KS_P1MBCR, w);
1174
1175	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1176	ks_wrreg16(ks, KS_TXCR, w);
1177
1178	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1179
1180	if (ks->promiscuous)         /* bPromiscuous */
1181		w |= (RXCR1_RXAE | RXCR1_RXINVF);
1182	else if (ks->all_mcast) /* Multicast address passed mode */
1183		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1184	else                                   /* Normal mode */
1185		w |= RXCR1_RXPAFMA;
1186
1187	ks_wrreg16(ks, KS_RXCR1, w);
1188}  /*ks_setup */
1189
1190
1191static void ks_setup_int(struct ks_net *ks)
1192{
1193	ks->rc_ier = 0x00;
1194	/* Clear the interrupts status of the hardware. */
1195	ks_wrreg16(ks, KS_ISR, 0xffff);
1196
1197	/* Enables the interrupts of the hardware. */
1198	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1199}  /* ks_setup_int */
1200
1201static int ks_hw_init(struct ks_net *ks)
1202{
1203#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1204	ks->promiscuous = 0;
1205	ks->all_mcast = 0;
1206	ks->mcast_lst_size = 0;
1207
1208	ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1209					   GFP_KERNEL);
1210	if (!ks->frame_head_info)
1211		return false;
1212
1213	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1214	return true;
1215}
1216
1217#if defined(CONFIG_OF)
1218static const struct of_device_id ks8851_ml_dt_ids[] = {
1219	{ .compatible = "micrel,ks8851-mll" },
1220	{ /* sentinel */ }
1221};
1222MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1223#endif
1224
1225static int ks8851_probe(struct platform_device *pdev)
1226{
1227	int err;
1228	struct net_device *netdev;
1229	struct ks_net *ks;
1230	u16 id, data;
1231	const char *mac;
1232
1233	netdev = alloc_etherdev(sizeof(struct ks_net));
1234	if (!netdev)
1235		return -ENOMEM;
1236
1237	SET_NETDEV_DEV(netdev, &pdev->dev);
1238
1239	ks = netdev_priv(netdev);
1240	ks->netdev = netdev;
1241
1242	ks->hw_addr = devm_platform_ioremap_resource(pdev, 0);
1243	if (IS_ERR(ks->hw_addr)) {
1244		err = PTR_ERR(ks->hw_addr);
1245		goto err_free;
1246	}
1247
1248	ks->hw_addr_cmd = devm_platform_ioremap_resource(pdev, 1);
1249	if (IS_ERR(ks->hw_addr_cmd)) {
1250		err = PTR_ERR(ks->hw_addr_cmd);
1251		goto err_free;
1252	}
1253
1254	netdev->irq = platform_get_irq(pdev, 0);
1255
1256	if ((int)netdev->irq < 0) {
1257		err = netdev->irq;
1258		goto err_free;
1259	}
1260
1261	ks->pdev = pdev;
1262
1263	mutex_init(&ks->lock);
1264	spin_lock_init(&ks->statelock);
1265
1266	netdev->netdev_ops = &ks_netdev_ops;
1267	netdev->ethtool_ops = &ks_ethtool_ops;
1268
1269	/* setup mii state */
1270	ks->mii.dev             = netdev;
1271	ks->mii.phy_id          = 1,
1272	ks->mii.phy_id_mask     = 1;
1273	ks->mii.reg_num_mask    = 0xf;
1274	ks->mii.mdio_read       = ks_phy_read;
1275	ks->mii.mdio_write      = ks_phy_write;
1276
1277	netdev_info(netdev, "message enable is %d\n", msg_enable);
1278	/* set the default message enable */
1279	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1280						     NETIF_MSG_PROBE |
1281						     NETIF_MSG_LINK));
1282	ks_read_config(ks);
1283
1284	/* simple check for a valid chip being connected to the bus */
1285	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1286		netdev_err(netdev, "failed to read device ID\n");
1287		err = -ENODEV;
1288		goto err_free;
1289	}
1290
1291	if (ks_read_selftest(ks)) {
1292		netdev_err(netdev, "failed to read device ID\n");
1293		err = -ENODEV;
1294		goto err_free;
1295	}
1296
1297	err = register_netdev(netdev);
1298	if (err)
1299		goto err_free;
1300
1301	platform_set_drvdata(pdev, netdev);
1302
1303	ks_soft_reset(ks, GRR_GSR);
1304	ks_hw_init(ks);
1305	ks_disable_qmu(ks);
1306	ks_setup(ks);
1307	ks_setup_int(ks);
1308
1309	data = ks_rdreg16(ks, KS_OBCR);
1310	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16mA);
1311
1312	/* overwriting the default MAC address */
1313	if (pdev->dev.of_node) {
1314		mac = of_get_mac_address(pdev->dev.of_node);
1315		if (!IS_ERR(mac))
1316			ether_addr_copy(ks->mac_addr, mac);
1317	} else {
1318		struct ks8851_mll_platform_data *pdata;
1319
1320		pdata = dev_get_platdata(&pdev->dev);
1321		if (!pdata) {
1322			netdev_err(netdev, "No platform data\n");
1323			err = -ENODEV;
1324			goto err_pdata;
1325		}
1326		memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1327	}
1328	if (!is_valid_ether_addr(ks->mac_addr)) {
1329		/* Use random MAC address if none passed */
1330		eth_random_addr(ks->mac_addr);
1331		netdev_info(netdev, "Using random mac address\n");
1332	}
1333	netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1334
1335	memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1336
1337	ks_set_mac(ks, netdev->dev_addr);
1338
1339	id = ks_rdreg16(ks, KS_CIDER);
1340
1341	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1342		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1343	return 0;
1344
1345err_pdata:
1346	unregister_netdev(netdev);
1347err_free:
1348	free_netdev(netdev);
1349	return err;
1350}
1351
1352static int ks8851_remove(struct platform_device *pdev)
1353{
1354	struct net_device *netdev = platform_get_drvdata(pdev);
1355
1356	unregister_netdev(netdev);
1357	free_netdev(netdev);
1358	return 0;
1359
1360}
1361
1362static struct platform_driver ks8851_platform_driver = {
1363	.driver = {
1364		.name = DRV_NAME,
1365		.of_match_table	= of_match_ptr(ks8851_ml_dt_ids),
1366	},
1367	.probe = ks8851_probe,
1368	.remove = ks8851_remove,
1369};
1370
1371module_platform_driver(ks8851_platform_driver);
1372
1373MODULE_DESCRIPTION("KS8851 MLL Network driver");
1374MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1375MODULE_LICENSE("GPL");
1376module_param_named(message, msg_enable, int, 0);
1377MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1378