Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/bitfield.h>
7#include <linux/delay.h>
8#include <linux/ethtool.h>
9#include <linux/if_vlan.h>
10#include <linux/init.h>
11#include <linux/ipv6.h>
12#include <linux/mii.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/pagemap.h>
16#include <linux/pci.h>
17#include <linux/prefetch.h>
18#include <linux/sctp.h>
19#include <linux/slab.h>
20#include <linux/tcp.h>
21#include <linux/types.h>
22#include <linux/vmalloc.h>
23#include <net/checksum.h>
24#include <net/ip6_checksum.h>
25#include "igbvf.h"
26
27char igbvf_driver_name[] = "igbvf";
28static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34static int debug = -1;
35module_param(debug, int, 0);
36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38static int igbvf_poll(struct napi_struct *napi, int budget);
39static void igbvf_reset(struct igbvf_adapter *);
40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48};
49
50static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55};
56
57static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60};
61
62/**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66static int igbvf_desc_unused(struct igbvf_ring *ring)
67{
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72}
73
74/**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246{
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info,
277 E1000_RXDADV_HDRBUFLEN_MASK);
278 if (hlen > adapter->rx_ps_hdr_size)
279 hlen = adapter->rx_ps_hdr_size;
280
281 length = le16_to_cpu(rx_desc->wb.upper.length);
282 cleaned = true;
283 cleaned_count++;
284
285 skb = buffer_info->skb;
286 prefetch(skb->data - NET_IP_ALIGN);
287 buffer_info->skb = NULL;
288 if (!adapter->rx_ps_hdr_size) {
289 dma_unmap_single(&pdev->dev, buffer_info->dma,
290 adapter->rx_buffer_len,
291 DMA_FROM_DEVICE);
292 buffer_info->dma = 0;
293 skb_put(skb, length);
294 goto send_up;
295 }
296
297 if (!skb_shinfo(skb)->nr_frags) {
298 dma_unmap_single(&pdev->dev, buffer_info->dma,
299 adapter->rx_ps_hdr_size,
300 DMA_FROM_DEVICE);
301 buffer_info->dma = 0;
302 skb_put(skb, hlen);
303 }
304
305 if (length) {
306 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
307 PAGE_SIZE / 2,
308 DMA_FROM_DEVICE);
309 buffer_info->page_dma = 0;
310
311 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
312 buffer_info->page,
313 buffer_info->page_offset,
314 length);
315
316 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
317 (page_count(buffer_info->page) != 1))
318 buffer_info->page = NULL;
319 else
320 get_page(buffer_info->page);
321
322 skb->len += length;
323 skb->data_len += length;
324 skb->truesize += PAGE_SIZE / 2;
325 }
326send_up:
327 i++;
328 if (i == rx_ring->count)
329 i = 0;
330 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
331 prefetch(next_rxd);
332 next_buffer = &rx_ring->buffer_info[i];
333
334 if (!(staterr & E1000_RXD_STAT_EOP)) {
335 buffer_info->skb = next_buffer->skb;
336 buffer_info->dma = next_buffer->dma;
337 next_buffer->skb = skb;
338 next_buffer->dma = 0;
339 goto next_desc;
340 }
341
342 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
343 dev_kfree_skb_irq(skb);
344 goto next_desc;
345 }
346
347 total_bytes += skb->len;
348 total_packets++;
349
350 igbvf_rx_checksum_adv(adapter, staterr, skb);
351
352 skb->protocol = eth_type_trans(skb, netdev);
353
354 igbvf_receive_skb(adapter, netdev, skb, staterr,
355 rx_desc->wb.upper.vlan);
356
357next_desc:
358 rx_desc->wb.upper.status_error = 0;
359
360 /* return some buffers to hardware, one at a time is too slow */
361 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
362 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 cleaned_count = 0;
364 }
365
366 /* use prefetched values */
367 rx_desc = next_rxd;
368 buffer_info = next_buffer;
369
370 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
371 }
372
373 rx_ring->next_to_clean = i;
374 cleaned_count = igbvf_desc_unused(rx_ring);
375
376 if (cleaned_count)
377 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
378
379 adapter->total_rx_packets += total_packets;
380 adapter->total_rx_bytes += total_bytes;
381 netdev->stats.rx_bytes += total_bytes;
382 netdev->stats.rx_packets += total_packets;
383 return cleaned;
384}
385
386static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
387 struct igbvf_buffer *buffer_info)
388{
389 if (buffer_info->dma) {
390 if (buffer_info->mapped_as_page)
391 dma_unmap_page(&adapter->pdev->dev,
392 buffer_info->dma,
393 buffer_info->length,
394 DMA_TO_DEVICE);
395 else
396 dma_unmap_single(&adapter->pdev->dev,
397 buffer_info->dma,
398 buffer_info->length,
399 DMA_TO_DEVICE);
400 buffer_info->dma = 0;
401 }
402 if (buffer_info->skb) {
403 dev_kfree_skb_any(buffer_info->skb);
404 buffer_info->skb = NULL;
405 }
406 buffer_info->time_stamp = 0;
407}
408
409/**
410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411 * @adapter: board private structure
412 * @tx_ring: ring being initialized
413 *
414 * Return 0 on success, negative on failure
415 **/
416int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
417 struct igbvf_ring *tx_ring)
418{
419 struct pci_dev *pdev = adapter->pdev;
420 int size;
421
422 size = sizeof(struct igbvf_buffer) * tx_ring->count;
423 tx_ring->buffer_info = vzalloc(size);
424 if (!tx_ring->buffer_info)
425 goto err;
426
427 /* round up to nearest 4K */
428 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
429 tx_ring->size = ALIGN(tx_ring->size, 4096);
430
431 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
432 &tx_ring->dma, GFP_KERNEL);
433 if (!tx_ring->desc)
434 goto err;
435
436 tx_ring->adapter = adapter;
437 tx_ring->next_to_use = 0;
438 tx_ring->next_to_clean = 0;
439
440 return 0;
441err:
442 vfree(tx_ring->buffer_info);
443 dev_err(&adapter->pdev->dev,
444 "Unable to allocate memory for the transmit descriptor ring\n");
445 return -ENOMEM;
446}
447
448/**
449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450 * @adapter: board private structure
451 * @rx_ring: ring being initialized
452 *
453 * Returns 0 on success, negative on failure
454 **/
455int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
456 struct igbvf_ring *rx_ring)
457{
458 struct pci_dev *pdev = adapter->pdev;
459 int size, desc_len;
460
461 size = sizeof(struct igbvf_buffer) * rx_ring->count;
462 rx_ring->buffer_info = vzalloc(size);
463 if (!rx_ring->buffer_info)
464 goto err;
465
466 desc_len = sizeof(union e1000_adv_rx_desc);
467
468 /* Round up to nearest 4K */
469 rx_ring->size = rx_ring->count * desc_len;
470 rx_ring->size = ALIGN(rx_ring->size, 4096);
471
472 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
473 &rx_ring->dma, GFP_KERNEL);
474 if (!rx_ring->desc)
475 goto err;
476
477 rx_ring->next_to_clean = 0;
478 rx_ring->next_to_use = 0;
479
480 rx_ring->adapter = adapter;
481
482 return 0;
483
484err:
485 vfree(rx_ring->buffer_info);
486 rx_ring->buffer_info = NULL;
487 dev_err(&adapter->pdev->dev,
488 "Unable to allocate memory for the receive descriptor ring\n");
489 return -ENOMEM;
490}
491
492/**
493 * igbvf_clean_tx_ring - Free Tx Buffers
494 * @tx_ring: ring to be cleaned
495 **/
496static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
497{
498 struct igbvf_adapter *adapter = tx_ring->adapter;
499 struct igbvf_buffer *buffer_info;
500 unsigned long size;
501 unsigned int i;
502
503 if (!tx_ring->buffer_info)
504 return;
505
506 /* Free all the Tx ring sk_buffs */
507 for (i = 0; i < tx_ring->count; i++) {
508 buffer_info = &tx_ring->buffer_info[i];
509 igbvf_put_txbuf(adapter, buffer_info);
510 }
511
512 size = sizeof(struct igbvf_buffer) * tx_ring->count;
513 memset(tx_ring->buffer_info, 0, size);
514
515 /* Zero out the descriptor ring */
516 memset(tx_ring->desc, 0, tx_ring->size);
517
518 tx_ring->next_to_use = 0;
519 tx_ring->next_to_clean = 0;
520
521 writel(0, adapter->hw.hw_addr + tx_ring->head);
522 writel(0, adapter->hw.hw_addr + tx_ring->tail);
523}
524
525/**
526 * igbvf_free_tx_resources - Free Tx Resources per Queue
527 * @tx_ring: ring to free resources from
528 *
529 * Free all transmit software resources
530 **/
531void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
532{
533 struct pci_dev *pdev = tx_ring->adapter->pdev;
534
535 igbvf_clean_tx_ring(tx_ring);
536
537 vfree(tx_ring->buffer_info);
538 tx_ring->buffer_info = NULL;
539
540 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
541 tx_ring->dma);
542
543 tx_ring->desc = NULL;
544}
545
546/**
547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548 * @rx_ring: ring structure pointer to free buffers from
549 **/
550static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
551{
552 struct igbvf_adapter *adapter = rx_ring->adapter;
553 struct igbvf_buffer *buffer_info;
554 struct pci_dev *pdev = adapter->pdev;
555 unsigned long size;
556 unsigned int i;
557
558 if (!rx_ring->buffer_info)
559 return;
560
561 /* Free all the Rx ring sk_buffs */
562 for (i = 0; i < rx_ring->count; i++) {
563 buffer_info = &rx_ring->buffer_info[i];
564 if (buffer_info->dma) {
565 if (adapter->rx_ps_hdr_size) {
566 dma_unmap_single(&pdev->dev, buffer_info->dma,
567 adapter->rx_ps_hdr_size,
568 DMA_FROM_DEVICE);
569 } else {
570 dma_unmap_single(&pdev->dev, buffer_info->dma,
571 adapter->rx_buffer_len,
572 DMA_FROM_DEVICE);
573 }
574 buffer_info->dma = 0;
575 }
576
577 if (buffer_info->skb) {
578 dev_kfree_skb(buffer_info->skb);
579 buffer_info->skb = NULL;
580 }
581
582 if (buffer_info->page) {
583 if (buffer_info->page_dma)
584 dma_unmap_page(&pdev->dev,
585 buffer_info->page_dma,
586 PAGE_SIZE / 2,
587 DMA_FROM_DEVICE);
588 put_page(buffer_info->page);
589 buffer_info->page = NULL;
590 buffer_info->page_dma = 0;
591 buffer_info->page_offset = 0;
592 }
593 }
594
595 size = sizeof(struct igbvf_buffer) * rx_ring->count;
596 memset(rx_ring->buffer_info, 0, size);
597
598 /* Zero out the descriptor ring */
599 memset(rx_ring->desc, 0, rx_ring->size);
600
601 rx_ring->next_to_clean = 0;
602 rx_ring->next_to_use = 0;
603
604 writel(0, adapter->hw.hw_addr + rx_ring->head);
605 writel(0, adapter->hw.hw_addr + rx_ring->tail);
606}
607
608/**
609 * igbvf_free_rx_resources - Free Rx Resources
610 * @rx_ring: ring to clean the resources from
611 *
612 * Free all receive software resources
613 **/
614
615void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
616{
617 struct pci_dev *pdev = rx_ring->adapter->pdev;
618
619 igbvf_clean_rx_ring(rx_ring);
620
621 vfree(rx_ring->buffer_info);
622 rx_ring->buffer_info = NULL;
623
624 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
625 rx_ring->dma);
626 rx_ring->desc = NULL;
627}
628
629/**
630 * igbvf_update_itr - update the dynamic ITR value based on statistics
631 * @adapter: pointer to adapter
632 * @itr_setting: current adapter->itr
633 * @packets: the number of packets during this measurement interval
634 * @bytes: the number of bytes during this measurement interval
635 *
636 * Stores a new ITR value based on packets and byte counts during the last
637 * interrupt. The advantage of per interrupt computation is faster updates
638 * and more accurate ITR for the current traffic pattern. Constants in this
639 * function were computed based on theoretical maximum wire speed and thresholds
640 * were set based on testing data as well as attempting to minimize response
641 * time while increasing bulk throughput.
642 **/
643static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
644 enum latency_range itr_setting,
645 int packets, int bytes)
646{
647 enum latency_range retval = itr_setting;
648
649 if (packets == 0)
650 goto update_itr_done;
651
652 switch (itr_setting) {
653 case lowest_latency:
654 /* handle TSO and jumbo frames */
655 if (bytes/packets > 8000)
656 retval = bulk_latency;
657 else if ((packets < 5) && (bytes > 512))
658 retval = low_latency;
659 break;
660 case low_latency: /* 50 usec aka 20000 ints/s */
661 if (bytes > 10000) {
662 /* this if handles the TSO accounting */
663 if (bytes/packets > 8000)
664 retval = bulk_latency;
665 else if ((packets < 10) || ((bytes/packets) > 1200))
666 retval = bulk_latency;
667 else if ((packets > 35))
668 retval = lowest_latency;
669 } else if (bytes/packets > 2000) {
670 retval = bulk_latency;
671 } else if (packets <= 2 && bytes < 512) {
672 retval = lowest_latency;
673 }
674 break;
675 case bulk_latency: /* 250 usec aka 4000 ints/s */
676 if (bytes > 25000) {
677 if (packets > 35)
678 retval = low_latency;
679 } else if (bytes < 6000) {
680 retval = low_latency;
681 }
682 break;
683 default:
684 break;
685 }
686
687update_itr_done:
688 return retval;
689}
690
691static int igbvf_range_to_itr(enum latency_range current_range)
692{
693 int new_itr;
694
695 switch (current_range) {
696 /* counts and packets in update_itr are dependent on these numbers */
697 case lowest_latency:
698 new_itr = IGBVF_70K_ITR;
699 break;
700 case low_latency:
701 new_itr = IGBVF_20K_ITR;
702 break;
703 case bulk_latency:
704 new_itr = IGBVF_4K_ITR;
705 break;
706 default:
707 new_itr = IGBVF_START_ITR;
708 break;
709 }
710 return new_itr;
711}
712
713static void igbvf_set_itr(struct igbvf_adapter *adapter)
714{
715 u32 new_itr;
716
717 adapter->tx_ring->itr_range =
718 igbvf_update_itr(adapter,
719 adapter->tx_ring->itr_val,
720 adapter->total_tx_packets,
721 adapter->total_tx_bytes);
722
723 /* conservative mode (itr 3) eliminates the lowest_latency setting */
724 if (adapter->requested_itr == 3 &&
725 adapter->tx_ring->itr_range == lowest_latency)
726 adapter->tx_ring->itr_range = low_latency;
727
728 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
729
730 if (new_itr != adapter->tx_ring->itr_val) {
731 u32 current_itr = adapter->tx_ring->itr_val;
732 /* this attempts to bias the interrupt rate towards Bulk
733 * by adding intermediate steps when interrupt rate is
734 * increasing
735 */
736 new_itr = new_itr > current_itr ?
737 min(current_itr + (new_itr >> 2), new_itr) :
738 new_itr;
739 adapter->tx_ring->itr_val = new_itr;
740
741 adapter->tx_ring->set_itr = 1;
742 }
743
744 adapter->rx_ring->itr_range =
745 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
746 adapter->total_rx_packets,
747 adapter->total_rx_bytes);
748 if (adapter->requested_itr == 3 &&
749 adapter->rx_ring->itr_range == lowest_latency)
750 adapter->rx_ring->itr_range = low_latency;
751
752 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
753
754 if (new_itr != adapter->rx_ring->itr_val) {
755 u32 current_itr = adapter->rx_ring->itr_val;
756
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->rx_ring->itr_val = new_itr;
761
762 adapter->rx_ring->set_itr = 1;
763 }
764}
765
766/**
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @tx_ring: ring structure to clean descriptors from
769 *
770 * returns true if ring is completely cleaned
771 **/
772static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
773{
774 struct igbvf_adapter *adapter = tx_ring->adapter;
775 struct net_device *netdev = adapter->netdev;
776 struct igbvf_buffer *buffer_info;
777 struct sk_buff *skb;
778 union e1000_adv_tx_desc *tx_desc, *eop_desc;
779 unsigned int total_bytes = 0, total_packets = 0;
780 unsigned int i, count = 0;
781 bool cleaned = false;
782
783 i = tx_ring->next_to_clean;
784 buffer_info = &tx_ring->buffer_info[i];
785 eop_desc = buffer_info->next_to_watch;
786
787 do {
788 /* if next_to_watch is not set then there is no work pending */
789 if (!eop_desc)
790 break;
791
792 /* prevent any other reads prior to eop_desc */
793 smp_rmb();
794
795 /* if DD is not set pending work has not been completed */
796 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
797 break;
798
799 /* clear next_to_watch to prevent false hangs */
800 buffer_info->next_to_watch = NULL;
801
802 for (cleaned = false; !cleaned; count++) {
803 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
804 cleaned = (tx_desc == eop_desc);
805 skb = buffer_info->skb;
806
807 if (skb) {
808 unsigned int segs, bytecount;
809
810 /* gso_segs is currently only valid for tcp */
811 segs = skb_shinfo(skb)->gso_segs ?: 1;
812 /* multiply data chunks by size of headers */
813 bytecount = ((segs - 1) * skb_headlen(skb)) +
814 skb->len;
815 total_packets += segs;
816 total_bytes += bytecount;
817 }
818
819 igbvf_put_txbuf(adapter, buffer_info);
820 tx_desc->wb.status = 0;
821
822 i++;
823 if (i == tx_ring->count)
824 i = 0;
825
826 buffer_info = &tx_ring->buffer_info[i];
827 }
828
829 eop_desc = buffer_info->next_to_watch;
830 } while (count < tx_ring->count);
831
832 tx_ring->next_to_clean = i;
833
834 if (unlikely(count && netif_carrier_ok(netdev) &&
835 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
836 /* Make sure that anybody stopping the queue after this
837 * sees the new next_to_clean.
838 */
839 smp_mb();
840 if (netif_queue_stopped(netdev) &&
841 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
842 netif_wake_queue(netdev);
843 ++adapter->restart_queue;
844 }
845 }
846
847 netdev->stats.tx_bytes += total_bytes;
848 netdev->stats.tx_packets += total_packets;
849 return count < tx_ring->count;
850}
851
852static irqreturn_t igbvf_msix_other(int irq, void *data)
853{
854 struct net_device *netdev = data;
855 struct igbvf_adapter *adapter = netdev_priv(netdev);
856 struct e1000_hw *hw = &adapter->hw;
857
858 adapter->int_counter1++;
859
860 hw->mac.get_link_status = 1;
861 if (!test_bit(__IGBVF_DOWN, &adapter->state))
862 mod_timer(&adapter->watchdog_timer, jiffies + 1);
863
864 ew32(EIMS, adapter->eims_other);
865
866 return IRQ_HANDLED;
867}
868
869static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
870{
871 struct net_device *netdev = data;
872 struct igbvf_adapter *adapter = netdev_priv(netdev);
873 struct e1000_hw *hw = &adapter->hw;
874 struct igbvf_ring *tx_ring = adapter->tx_ring;
875
876 if (tx_ring->set_itr) {
877 writel(tx_ring->itr_val,
878 adapter->hw.hw_addr + tx_ring->itr_register);
879 adapter->tx_ring->set_itr = 0;
880 }
881
882 adapter->total_tx_bytes = 0;
883 adapter->total_tx_packets = 0;
884
885 /* auto mask will automatically re-enable the interrupt when we write
886 * EICS
887 */
888 if (!igbvf_clean_tx_irq(tx_ring))
889 /* Ring was not completely cleaned, so fire another interrupt */
890 ew32(EICS, tx_ring->eims_value);
891 else
892 ew32(EIMS, tx_ring->eims_value);
893
894 return IRQ_HANDLED;
895}
896
897static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
898{
899 struct net_device *netdev = data;
900 struct igbvf_adapter *adapter = netdev_priv(netdev);
901
902 adapter->int_counter0++;
903
904 /* Write the ITR value calculated at the end of the
905 * previous interrupt.
906 */
907 if (adapter->rx_ring->set_itr) {
908 writel(adapter->rx_ring->itr_val,
909 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
910 adapter->rx_ring->set_itr = 0;
911 }
912
913 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
914 adapter->total_rx_bytes = 0;
915 adapter->total_rx_packets = 0;
916 __napi_schedule(&adapter->rx_ring->napi);
917 }
918
919 return IRQ_HANDLED;
920}
921
922#define IGBVF_NO_QUEUE -1
923
924static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
925 int tx_queue, int msix_vector)
926{
927 struct e1000_hw *hw = &adapter->hw;
928 u32 ivar, index;
929
930 /* 82576 uses a table-based method for assigning vectors.
931 * Each queue has a single entry in the table to which we write
932 * a vector number along with a "valid" bit. Sadly, the layout
933 * of the table is somewhat counterintuitive.
934 */
935 if (rx_queue > IGBVF_NO_QUEUE) {
936 index = (rx_queue >> 1);
937 ivar = array_er32(IVAR0, index);
938 if (rx_queue & 0x1) {
939 /* vector goes into third byte of register */
940 ivar = ivar & 0xFF00FFFF;
941 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
942 } else {
943 /* vector goes into low byte of register */
944 ivar = ivar & 0xFFFFFF00;
945 ivar |= msix_vector | E1000_IVAR_VALID;
946 }
947 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
948 array_ew32(IVAR0, index, ivar);
949 }
950 if (tx_queue > IGBVF_NO_QUEUE) {
951 index = (tx_queue >> 1);
952 ivar = array_er32(IVAR0, index);
953 if (tx_queue & 0x1) {
954 /* vector goes into high byte of register */
955 ivar = ivar & 0x00FFFFFF;
956 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
957 } else {
958 /* vector goes into second byte of register */
959 ivar = ivar & 0xFFFF00FF;
960 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
961 }
962 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
963 array_ew32(IVAR0, index, ivar);
964 }
965}
966
967/**
968 * igbvf_configure_msix - Configure MSI-X hardware
969 * @adapter: board private structure
970 *
971 * igbvf_configure_msix sets up the hardware to properly
972 * generate MSI-X interrupts.
973 **/
974static void igbvf_configure_msix(struct igbvf_adapter *adapter)
975{
976 u32 tmp;
977 struct e1000_hw *hw = &adapter->hw;
978 struct igbvf_ring *tx_ring = adapter->tx_ring;
979 struct igbvf_ring *rx_ring = adapter->rx_ring;
980 int vector = 0;
981
982 adapter->eims_enable_mask = 0;
983
984 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
985 adapter->eims_enable_mask |= tx_ring->eims_value;
986 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
987 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
988 adapter->eims_enable_mask |= rx_ring->eims_value;
989 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
990
991 /* set vector for other causes, i.e. link changes */
992
993 tmp = (vector++ | E1000_IVAR_VALID);
994
995 ew32(IVAR_MISC, tmp);
996
997 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
998 adapter->eims_other = BIT(vector - 1);
999 e1e_flush();
1000}
1001
1002static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1003{
1004 if (adapter->msix_entries) {
1005 pci_disable_msix(adapter->pdev);
1006 kfree(adapter->msix_entries);
1007 adapter->msix_entries = NULL;
1008 }
1009}
1010
1011/**
1012 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1013 * @adapter: board private structure
1014 *
1015 * Attempt to configure interrupts using the best available
1016 * capabilities of the hardware and kernel.
1017 **/
1018static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1019{
1020 int err = -ENOMEM;
1021 int i;
1022
1023 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1024 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1025 GFP_KERNEL);
1026 if (adapter->msix_entries) {
1027 for (i = 0; i < 3; i++)
1028 adapter->msix_entries[i].entry = i;
1029
1030 err = pci_enable_msix_range(adapter->pdev,
1031 adapter->msix_entries, 3, 3);
1032 }
1033
1034 if (err < 0) {
1035 /* MSI-X failed */
1036 dev_err(&adapter->pdev->dev,
1037 "Failed to initialize MSI-X interrupts.\n");
1038 igbvf_reset_interrupt_capability(adapter);
1039 }
1040}
1041
1042/**
1043 * igbvf_request_msix - Initialize MSI-X interrupts
1044 * @adapter: board private structure
1045 *
1046 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1047 * kernel.
1048 **/
1049static int igbvf_request_msix(struct igbvf_adapter *adapter)
1050{
1051 struct net_device *netdev = adapter->netdev;
1052 int err = 0, vector = 0;
1053
1054 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1055 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1056 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1057 } else {
1058 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1059 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1060 }
1061
1062 err = request_irq(adapter->msix_entries[vector].vector,
1063 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1064 netdev);
1065 if (err)
1066 goto out;
1067
1068 adapter->tx_ring->itr_register = E1000_EITR(vector);
1069 adapter->tx_ring->itr_val = adapter->current_itr;
1070 vector++;
1071
1072 err = request_irq(adapter->msix_entries[vector].vector,
1073 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1074 netdev);
1075 if (err)
1076 goto free_irq_tx;
1077
1078 adapter->rx_ring->itr_register = E1000_EITR(vector);
1079 adapter->rx_ring->itr_val = adapter->current_itr;
1080 vector++;
1081
1082 err = request_irq(adapter->msix_entries[vector].vector,
1083 igbvf_msix_other, 0, netdev->name, netdev);
1084 if (err)
1085 goto free_irq_rx;
1086
1087 igbvf_configure_msix(adapter);
1088 return 0;
1089free_irq_rx:
1090 free_irq(adapter->msix_entries[--vector].vector, netdev);
1091free_irq_tx:
1092 free_irq(adapter->msix_entries[--vector].vector, netdev);
1093out:
1094 return err;
1095}
1096
1097/**
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1100 **/
1101static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102{
1103 struct net_device *netdev = adapter->netdev;
1104
1105 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 if (!adapter->tx_ring)
1107 return -ENOMEM;
1108
1109 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 if (!adapter->rx_ring) {
1111 kfree(adapter->tx_ring);
1112 return -ENOMEM;
1113 }
1114
1115 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1116
1117 return 0;
1118}
1119
1120/**
1121 * igbvf_request_irq - initialize interrupts
1122 * @adapter: board private structure
1123 *
1124 * Attempts to configure interrupts using the best available
1125 * capabilities of the hardware and kernel.
1126 **/
1127static int igbvf_request_irq(struct igbvf_adapter *adapter)
1128{
1129 int err = -1;
1130
1131 /* igbvf supports msi-x only */
1132 if (adapter->msix_entries)
1133 err = igbvf_request_msix(adapter);
1134
1135 if (!err)
1136 return err;
1137
1138 dev_err(&adapter->pdev->dev,
1139 "Unable to allocate interrupt, Error: %d\n", err);
1140
1141 return err;
1142}
1143
1144static void igbvf_free_irq(struct igbvf_adapter *adapter)
1145{
1146 struct net_device *netdev = adapter->netdev;
1147 int vector;
1148
1149 if (adapter->msix_entries) {
1150 for (vector = 0; vector < 3; vector++)
1151 free_irq(adapter->msix_entries[vector].vector, netdev);
1152 }
1153}
1154
1155/**
1156 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1157 * @adapter: board private structure
1158 **/
1159static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1160{
1161 struct e1000_hw *hw = &adapter->hw;
1162
1163 ew32(EIMC, ~0);
1164
1165 if (adapter->msix_entries)
1166 ew32(EIAC, 0);
1167}
1168
1169/**
1170 * igbvf_irq_enable - Enable default interrupt generation settings
1171 * @adapter: board private structure
1172 **/
1173static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1174{
1175 struct e1000_hw *hw = &adapter->hw;
1176
1177 ew32(EIAC, adapter->eims_enable_mask);
1178 ew32(EIAM, adapter->eims_enable_mask);
1179 ew32(EIMS, adapter->eims_enable_mask);
1180}
1181
1182/**
1183 * igbvf_poll - NAPI Rx polling callback
1184 * @napi: struct associated with this polling callback
1185 * @budget: amount of packets driver is allowed to process this poll
1186 **/
1187static int igbvf_poll(struct napi_struct *napi, int budget)
1188{
1189 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1190 struct igbvf_adapter *adapter = rx_ring->adapter;
1191 struct e1000_hw *hw = &adapter->hw;
1192 int work_done = 0;
1193
1194 igbvf_clean_rx_irq(adapter, &work_done, budget);
1195
1196 if (work_done == budget)
1197 return budget;
1198
1199 /* Exit the polling mode, but don't re-enable interrupts if stack might
1200 * poll us due to busy-polling
1201 */
1202 if (likely(napi_complete_done(napi, work_done))) {
1203 if (adapter->requested_itr & 3)
1204 igbvf_set_itr(adapter);
1205
1206 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1207 ew32(EIMS, adapter->rx_ring->eims_value);
1208 }
1209
1210 return work_done;
1211}
1212
1213/**
1214 * igbvf_set_rlpml - set receive large packet maximum length
1215 * @adapter: board private structure
1216 *
1217 * Configure the maximum size of packets that will be received
1218 */
1219static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1220{
1221 int max_frame_size;
1222 struct e1000_hw *hw = &adapter->hw;
1223
1224 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1225
1226 spin_lock_bh(&hw->mbx_lock);
1227
1228 e1000_rlpml_set_vf(hw, max_frame_size);
1229
1230 spin_unlock_bh(&hw->mbx_lock);
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1235{
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1238
1239 spin_lock_bh(&hw->mbx_lock);
1240
1241 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1242 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1243 spin_unlock_bh(&hw->mbx_lock);
1244 return -EINVAL;
1245 }
1246
1247 spin_unlock_bh(&hw->mbx_lock);
1248
1249 set_bit(vid, adapter->active_vlans);
1250 return 0;
1251}
1252
1253static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1254 __be16 proto, u16 vid)
1255{
1256 struct igbvf_adapter *adapter = netdev_priv(netdev);
1257 struct e1000_hw *hw = &adapter->hw;
1258
1259 spin_lock_bh(&hw->mbx_lock);
1260
1261 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262 dev_err(&adapter->pdev->dev,
1263 "Failed to remove vlan id %d\n", vid);
1264 spin_unlock_bh(&hw->mbx_lock);
1265 return -EINVAL;
1266 }
1267
1268 spin_unlock_bh(&hw->mbx_lock);
1269
1270 clear_bit(vid, adapter->active_vlans);
1271 return 0;
1272}
1273
1274static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1275{
1276 u16 vid;
1277
1278 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1279 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1280}
1281
1282/**
1283 * igbvf_configure_tx - Configure Transmit Unit after Reset
1284 * @adapter: board private structure
1285 *
1286 * Configure the Tx unit of the MAC after a reset.
1287 **/
1288static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1289{
1290 struct e1000_hw *hw = &adapter->hw;
1291 struct igbvf_ring *tx_ring = adapter->tx_ring;
1292 u64 tdba;
1293 u32 txdctl, dca_txctrl;
1294
1295 /* disable transmits */
1296 txdctl = er32(TXDCTL(0));
1297 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1298 e1e_flush();
1299 msleep(10);
1300
1301 /* Setup the HW Tx Head and Tail descriptor pointers */
1302 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1303 tdba = tx_ring->dma;
1304 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1305 ew32(TDBAH(0), (tdba >> 32));
1306 ew32(TDH(0), 0);
1307 ew32(TDT(0), 0);
1308 tx_ring->head = E1000_TDH(0);
1309 tx_ring->tail = E1000_TDT(0);
1310
1311 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1312 * MUST be delivered in order or it will completely screw up
1313 * our bookkeeping.
1314 */
1315 dca_txctrl = er32(DCA_TXCTRL(0));
1316 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1317 ew32(DCA_TXCTRL(0), dca_txctrl);
1318
1319 /* enable transmits */
1320 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1321 ew32(TXDCTL(0), txdctl);
1322
1323 /* Setup Transmit Descriptor Settings for eop descriptor */
1324 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1325
1326 /* enable Report Status bit */
1327 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1328}
1329
1330/**
1331 * igbvf_setup_srrctl - configure the receive control registers
1332 * @adapter: Board private structure
1333 **/
1334static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1335{
1336 struct e1000_hw *hw = &adapter->hw;
1337 u32 srrctl = 0;
1338
1339 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1340 E1000_SRRCTL_BSIZEHDR_MASK |
1341 E1000_SRRCTL_BSIZEPKT_MASK);
1342
1343 /* Enable queue drop to avoid head of line blocking */
1344 srrctl |= E1000_SRRCTL_DROP_EN;
1345
1346 /* Setup buffer sizes */
1347 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1348 E1000_SRRCTL_BSIZEPKT_SHIFT;
1349
1350 if (adapter->rx_buffer_len < 2048) {
1351 adapter->rx_ps_hdr_size = 0;
1352 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1353 } else {
1354 adapter->rx_ps_hdr_size = 128;
1355 srrctl |= adapter->rx_ps_hdr_size <<
1356 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1357 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1358 }
1359
1360 ew32(SRRCTL(0), srrctl);
1361}
1362
1363/**
1364 * igbvf_configure_rx - Configure Receive Unit after Reset
1365 * @adapter: board private structure
1366 *
1367 * Configure the Rx unit of the MAC after a reset.
1368 **/
1369static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1370{
1371 struct e1000_hw *hw = &adapter->hw;
1372 struct igbvf_ring *rx_ring = adapter->rx_ring;
1373 u64 rdba;
1374 u32 rxdctl;
1375
1376 /* disable receives */
1377 rxdctl = er32(RXDCTL(0));
1378 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1379 e1e_flush();
1380 msleep(10);
1381
1382 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1383 * the Base and Length of the Rx Descriptor Ring
1384 */
1385 rdba = rx_ring->dma;
1386 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1387 ew32(RDBAH(0), (rdba >> 32));
1388 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1389 rx_ring->head = E1000_RDH(0);
1390 rx_ring->tail = E1000_RDT(0);
1391 ew32(RDH(0), 0);
1392 ew32(RDT(0), 0);
1393
1394 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1395 rxdctl &= 0xFFF00000;
1396 rxdctl |= IGBVF_RX_PTHRESH;
1397 rxdctl |= IGBVF_RX_HTHRESH << 8;
1398 rxdctl |= IGBVF_RX_WTHRESH << 16;
1399
1400 igbvf_set_rlpml(adapter);
1401
1402 /* enable receives */
1403 ew32(RXDCTL(0), rxdctl);
1404}
1405
1406/**
1407 * igbvf_set_multi - Multicast and Promiscuous mode set
1408 * @netdev: network interface device structure
1409 *
1410 * The set_multi entry point is called whenever the multicast address
1411 * list or the network interface flags are updated. This routine is
1412 * responsible for configuring the hardware for proper multicast,
1413 * promiscuous mode, and all-multi behavior.
1414 **/
1415static void igbvf_set_multi(struct net_device *netdev)
1416{
1417 struct igbvf_adapter *adapter = netdev_priv(netdev);
1418 struct e1000_hw *hw = &adapter->hw;
1419 struct netdev_hw_addr *ha;
1420 u8 *mta_list = NULL;
1421 int i;
1422
1423 if (!netdev_mc_empty(netdev)) {
1424 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1425 GFP_ATOMIC);
1426 if (!mta_list)
1427 return;
1428 }
1429
1430 /* prepare a packed array of only addresses. */
1431 i = 0;
1432 netdev_for_each_mc_addr(ha, netdev)
1433 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1434
1435 spin_lock_bh(&hw->mbx_lock);
1436
1437 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1438
1439 spin_unlock_bh(&hw->mbx_lock);
1440 kfree(mta_list);
1441}
1442
1443/**
1444 * igbvf_set_uni - Configure unicast MAC filters
1445 * @netdev: network interface device structure
1446 *
1447 * This routine is responsible for configuring the hardware for proper
1448 * unicast filters.
1449 **/
1450static int igbvf_set_uni(struct net_device *netdev)
1451{
1452 struct igbvf_adapter *adapter = netdev_priv(netdev);
1453 struct e1000_hw *hw = &adapter->hw;
1454
1455 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1456 pr_err("Too many unicast filters - No Space\n");
1457 return -ENOSPC;
1458 }
1459
1460 spin_lock_bh(&hw->mbx_lock);
1461
1462 /* Clear all unicast MAC filters */
1463 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1464
1465 spin_unlock_bh(&hw->mbx_lock);
1466
1467 if (!netdev_uc_empty(netdev)) {
1468 struct netdev_hw_addr *ha;
1469
1470 /* Add MAC filters one by one */
1471 netdev_for_each_uc_addr(ha, netdev) {
1472 spin_lock_bh(&hw->mbx_lock);
1473
1474 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1475 ha->addr);
1476
1477 spin_unlock_bh(&hw->mbx_lock);
1478 udelay(200);
1479 }
1480 }
1481
1482 return 0;
1483}
1484
1485static void igbvf_set_rx_mode(struct net_device *netdev)
1486{
1487 igbvf_set_multi(netdev);
1488 igbvf_set_uni(netdev);
1489}
1490
1491/**
1492 * igbvf_configure - configure the hardware for Rx and Tx
1493 * @adapter: private board structure
1494 **/
1495static void igbvf_configure(struct igbvf_adapter *adapter)
1496{
1497 igbvf_set_rx_mode(adapter->netdev);
1498
1499 igbvf_restore_vlan(adapter);
1500
1501 igbvf_configure_tx(adapter);
1502 igbvf_setup_srrctl(adapter);
1503 igbvf_configure_rx(adapter);
1504 igbvf_alloc_rx_buffers(adapter->rx_ring,
1505 igbvf_desc_unused(adapter->rx_ring));
1506}
1507
1508/* igbvf_reset - bring the hardware into a known good state
1509 * @adapter: private board structure
1510 *
1511 * This function boots the hardware and enables some settings that
1512 * require a configuration cycle of the hardware - those cannot be
1513 * set/changed during runtime. After reset the device needs to be
1514 * properly configured for Rx, Tx etc.
1515 */
1516static void igbvf_reset(struct igbvf_adapter *adapter)
1517{
1518 struct e1000_mac_info *mac = &adapter->hw.mac;
1519 struct net_device *netdev = adapter->netdev;
1520 struct e1000_hw *hw = &adapter->hw;
1521
1522 spin_lock_bh(&hw->mbx_lock);
1523
1524 /* Allow time for pending master requests to run */
1525 if (mac->ops.reset_hw(hw))
1526 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1527
1528 mac->ops.init_hw(hw);
1529
1530 spin_unlock_bh(&hw->mbx_lock);
1531
1532 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1533 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1534 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1535 netdev->addr_len);
1536 }
1537
1538 adapter->last_reset = jiffies;
1539}
1540
1541int igbvf_up(struct igbvf_adapter *adapter)
1542{
1543 struct e1000_hw *hw = &adapter->hw;
1544
1545 /* hardware has been reset, we need to reload some things */
1546 igbvf_configure(adapter);
1547
1548 clear_bit(__IGBVF_DOWN, &adapter->state);
1549
1550 napi_enable(&adapter->rx_ring->napi);
1551 if (adapter->msix_entries)
1552 igbvf_configure_msix(adapter);
1553
1554 /* Clear any pending interrupts. */
1555 er32(EICR);
1556 igbvf_irq_enable(adapter);
1557
1558 /* start the watchdog */
1559 hw->mac.get_link_status = 1;
1560 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1561
1562 return 0;
1563}
1564
1565void igbvf_down(struct igbvf_adapter *adapter)
1566{
1567 struct net_device *netdev = adapter->netdev;
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 rxdctl, txdctl;
1570
1571 /* signal that we're down so the interrupt handler does not
1572 * reschedule our watchdog timer
1573 */
1574 set_bit(__IGBVF_DOWN, &adapter->state);
1575
1576 /* disable receives in the hardware */
1577 rxdctl = er32(RXDCTL(0));
1578 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1579
1580 netif_carrier_off(netdev);
1581 netif_stop_queue(netdev);
1582
1583 /* disable transmits in the hardware */
1584 txdctl = er32(TXDCTL(0));
1585 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1586
1587 /* flush both disables and wait for them to finish */
1588 e1e_flush();
1589 msleep(10);
1590
1591 napi_disable(&adapter->rx_ring->napi);
1592
1593 igbvf_irq_disable(adapter);
1594
1595 del_timer_sync(&adapter->watchdog_timer);
1596
1597 /* record the stats before reset*/
1598 igbvf_update_stats(adapter);
1599
1600 adapter->link_speed = 0;
1601 adapter->link_duplex = 0;
1602
1603 igbvf_reset(adapter);
1604 igbvf_clean_tx_ring(adapter->tx_ring);
1605 igbvf_clean_rx_ring(adapter->rx_ring);
1606}
1607
1608void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1609{
1610 might_sleep();
1611 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1612 usleep_range(1000, 2000);
1613 igbvf_down(adapter);
1614 igbvf_up(adapter);
1615 clear_bit(__IGBVF_RESETTING, &adapter->state);
1616}
1617
1618/**
1619 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1620 * @adapter: board private structure to initialize
1621 *
1622 * igbvf_sw_init initializes the Adapter private data structure.
1623 * Fields are initialized based on PCI device information and
1624 * OS network device settings (MTU size).
1625 **/
1626static int igbvf_sw_init(struct igbvf_adapter *adapter)
1627{
1628 struct net_device *netdev = adapter->netdev;
1629 s32 rc;
1630
1631 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1632 adapter->rx_ps_hdr_size = 0;
1633 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1634 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1635
1636 adapter->tx_int_delay = 8;
1637 adapter->tx_abs_int_delay = 32;
1638 adapter->rx_int_delay = 0;
1639 adapter->rx_abs_int_delay = 8;
1640 adapter->requested_itr = 3;
1641 adapter->current_itr = IGBVF_START_ITR;
1642
1643 /* Set various function pointers */
1644 adapter->ei->init_ops(&adapter->hw);
1645
1646 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1647 if (rc)
1648 return rc;
1649
1650 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1651 if (rc)
1652 return rc;
1653
1654 igbvf_set_interrupt_capability(adapter);
1655
1656 if (igbvf_alloc_queues(adapter))
1657 return -ENOMEM;
1658
1659 spin_lock_init(&adapter->tx_queue_lock);
1660
1661 /* Explicitly disable IRQ since the NIC can be in any state. */
1662 igbvf_irq_disable(adapter);
1663
1664 spin_lock_init(&adapter->stats_lock);
1665 spin_lock_init(&adapter->hw.mbx_lock);
1666
1667 set_bit(__IGBVF_DOWN, &adapter->state);
1668 return 0;
1669}
1670
1671static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1672{
1673 struct e1000_hw *hw = &adapter->hw;
1674
1675 adapter->stats.last_gprc = er32(VFGPRC);
1676 adapter->stats.last_gorc = er32(VFGORC);
1677 adapter->stats.last_gptc = er32(VFGPTC);
1678 adapter->stats.last_gotc = er32(VFGOTC);
1679 adapter->stats.last_mprc = er32(VFMPRC);
1680 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1681 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1682 adapter->stats.last_gorlbc = er32(VFGORLBC);
1683 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1684
1685 adapter->stats.base_gprc = er32(VFGPRC);
1686 adapter->stats.base_gorc = er32(VFGORC);
1687 adapter->stats.base_gptc = er32(VFGPTC);
1688 adapter->stats.base_gotc = er32(VFGOTC);
1689 adapter->stats.base_mprc = er32(VFMPRC);
1690 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1691 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1692 adapter->stats.base_gorlbc = er32(VFGORLBC);
1693 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1694}
1695
1696/**
1697 * igbvf_open - Called when a network interface is made active
1698 * @netdev: network interface device structure
1699 *
1700 * Returns 0 on success, negative value on failure
1701 *
1702 * The open entry point is called when a network interface is made
1703 * active by the system (IFF_UP). At this point all resources needed
1704 * for transmit and receive operations are allocated, the interrupt
1705 * handler is registered with the OS, the watchdog timer is started,
1706 * and the stack is notified that the interface is ready.
1707 **/
1708static int igbvf_open(struct net_device *netdev)
1709{
1710 struct igbvf_adapter *adapter = netdev_priv(netdev);
1711 struct e1000_hw *hw = &adapter->hw;
1712 int err;
1713
1714 /* disallow open during test */
1715 if (test_bit(__IGBVF_TESTING, &adapter->state))
1716 return -EBUSY;
1717
1718 /* allocate transmit descriptors */
1719 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1720 if (err)
1721 goto err_setup_tx;
1722
1723 /* allocate receive descriptors */
1724 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1725 if (err)
1726 goto err_setup_rx;
1727
1728 /* before we allocate an interrupt, we must be ready to handle it.
1729 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1730 * as soon as we call pci_request_irq, so we have to setup our
1731 * clean_rx handler before we do so.
1732 */
1733 igbvf_configure(adapter);
1734
1735 err = igbvf_request_irq(adapter);
1736 if (err)
1737 goto err_req_irq;
1738
1739 /* From here on the code is the same as igbvf_up() */
1740 clear_bit(__IGBVF_DOWN, &adapter->state);
1741
1742 napi_enable(&adapter->rx_ring->napi);
1743
1744 /* clear any pending interrupts */
1745 er32(EICR);
1746
1747 igbvf_irq_enable(adapter);
1748
1749 /* start the watchdog */
1750 hw->mac.get_link_status = 1;
1751 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1752
1753 return 0;
1754
1755err_req_irq:
1756 igbvf_free_rx_resources(adapter->rx_ring);
1757err_setup_rx:
1758 igbvf_free_tx_resources(adapter->tx_ring);
1759err_setup_tx:
1760 igbvf_reset(adapter);
1761
1762 return err;
1763}
1764
1765/**
1766 * igbvf_close - Disables a network interface
1767 * @netdev: network interface device structure
1768 *
1769 * Returns 0, this is not allowed to fail
1770 *
1771 * The close entry point is called when an interface is de-activated
1772 * by the OS. The hardware is still under the drivers control, but
1773 * needs to be disabled. A global MAC reset is issued to stop the
1774 * hardware, and all transmit and receive resources are freed.
1775 **/
1776static int igbvf_close(struct net_device *netdev)
1777{
1778 struct igbvf_adapter *adapter = netdev_priv(netdev);
1779
1780 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1781 igbvf_down(adapter);
1782
1783 igbvf_free_irq(adapter);
1784
1785 igbvf_free_tx_resources(adapter->tx_ring);
1786 igbvf_free_rx_resources(adapter->rx_ring);
1787
1788 return 0;
1789}
1790
1791/**
1792 * igbvf_set_mac - Change the Ethernet Address of the NIC
1793 * @netdev: network interface device structure
1794 * @p: pointer to an address structure
1795 *
1796 * Returns 0 on success, negative on failure
1797 **/
1798static int igbvf_set_mac(struct net_device *netdev, void *p)
1799{
1800 struct igbvf_adapter *adapter = netdev_priv(netdev);
1801 struct e1000_hw *hw = &adapter->hw;
1802 struct sockaddr *addr = p;
1803
1804 if (!is_valid_ether_addr(addr->sa_data))
1805 return -EADDRNOTAVAIL;
1806
1807 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1808
1809 spin_lock_bh(&hw->mbx_lock);
1810
1811 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1812
1813 spin_unlock_bh(&hw->mbx_lock);
1814
1815 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1816 return -EADDRNOTAVAIL;
1817
1818 eth_hw_addr_set(netdev, addr->sa_data);
1819
1820 return 0;
1821}
1822
1823#define UPDATE_VF_COUNTER(reg, name) \
1824{ \
1825 u32 current_counter = er32(reg); \
1826 if (current_counter < adapter->stats.last_##name) \
1827 adapter->stats.name += 0x100000000LL; \
1828 adapter->stats.last_##name = current_counter; \
1829 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1830 adapter->stats.name |= current_counter; \
1831}
1832
1833/**
1834 * igbvf_update_stats - Update the board statistics counters
1835 * @adapter: board private structure
1836**/
1837void igbvf_update_stats(struct igbvf_adapter *adapter)
1838{
1839 struct e1000_hw *hw = &adapter->hw;
1840 struct pci_dev *pdev = adapter->pdev;
1841
1842 /* Prevent stats update while adapter is being reset, link is down
1843 * or if the pci connection is down.
1844 */
1845 if (adapter->link_speed == 0)
1846 return;
1847
1848 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1849 return;
1850
1851 if (pci_channel_offline(pdev))
1852 return;
1853
1854 UPDATE_VF_COUNTER(VFGPRC, gprc);
1855 UPDATE_VF_COUNTER(VFGORC, gorc);
1856 UPDATE_VF_COUNTER(VFGPTC, gptc);
1857 UPDATE_VF_COUNTER(VFGOTC, gotc);
1858 UPDATE_VF_COUNTER(VFMPRC, mprc);
1859 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1860 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1861 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1862 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1863
1864 /* Fill out the OS statistics structure */
1865 adapter->netdev->stats.multicast = adapter->stats.mprc;
1866}
1867
1868static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1869{
1870 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1871 adapter->link_speed,
1872 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1873}
1874
1875static bool igbvf_has_link(struct igbvf_adapter *adapter)
1876{
1877 struct e1000_hw *hw = &adapter->hw;
1878 s32 ret_val = E1000_SUCCESS;
1879 bool link_active;
1880
1881 /* If interface is down, stay link down */
1882 if (test_bit(__IGBVF_DOWN, &adapter->state))
1883 return false;
1884
1885 spin_lock_bh(&hw->mbx_lock);
1886
1887 ret_val = hw->mac.ops.check_for_link(hw);
1888
1889 spin_unlock_bh(&hw->mbx_lock);
1890
1891 link_active = !hw->mac.get_link_status;
1892
1893 /* if check for link returns error we will need to reset */
1894 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1895 schedule_work(&adapter->reset_task);
1896
1897 return link_active;
1898}
1899
1900/**
1901 * igbvf_watchdog - Timer Call-back
1902 * @t: timer list pointer containing private struct
1903 **/
1904static void igbvf_watchdog(struct timer_list *t)
1905{
1906 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1907
1908 /* Do the rest outside of interrupt context */
1909 schedule_work(&adapter->watchdog_task);
1910}
1911
1912static void igbvf_watchdog_task(struct work_struct *work)
1913{
1914 struct igbvf_adapter *adapter = container_of(work,
1915 struct igbvf_adapter,
1916 watchdog_task);
1917 struct net_device *netdev = adapter->netdev;
1918 struct e1000_mac_info *mac = &adapter->hw.mac;
1919 struct igbvf_ring *tx_ring = adapter->tx_ring;
1920 struct e1000_hw *hw = &adapter->hw;
1921 u32 link;
1922 int tx_pending = 0;
1923
1924 link = igbvf_has_link(adapter);
1925
1926 if (link) {
1927 if (!netif_carrier_ok(netdev)) {
1928 mac->ops.get_link_up_info(&adapter->hw,
1929 &adapter->link_speed,
1930 &adapter->link_duplex);
1931 igbvf_print_link_info(adapter);
1932
1933 netif_carrier_on(netdev);
1934 netif_wake_queue(netdev);
1935 }
1936 } else {
1937 if (netif_carrier_ok(netdev)) {
1938 adapter->link_speed = 0;
1939 adapter->link_duplex = 0;
1940 dev_info(&adapter->pdev->dev, "Link is Down\n");
1941 netif_carrier_off(netdev);
1942 netif_stop_queue(netdev);
1943 }
1944 }
1945
1946 if (netif_carrier_ok(netdev)) {
1947 igbvf_update_stats(adapter);
1948 } else {
1949 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1950 tx_ring->count);
1951 if (tx_pending) {
1952 /* We've lost link, so the controller stops DMA,
1953 * but we've got queued Tx work that's never going
1954 * to get done, so reset controller to flush Tx.
1955 * (Do the reset outside of interrupt context).
1956 */
1957 adapter->tx_timeout_count++;
1958 schedule_work(&adapter->reset_task);
1959 }
1960 }
1961
1962 /* Cause software interrupt to ensure Rx ring is cleaned */
1963 ew32(EICS, adapter->rx_ring->eims_value);
1964
1965 /* Reset the timer */
1966 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1967 mod_timer(&adapter->watchdog_timer,
1968 round_jiffies(jiffies + (2 * HZ)));
1969}
1970
1971#define IGBVF_TX_FLAGS_CSUM 0x00000001
1972#define IGBVF_TX_FLAGS_VLAN 0x00000002
1973#define IGBVF_TX_FLAGS_TSO 0x00000004
1974#define IGBVF_TX_FLAGS_IPV4 0x00000008
1975#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1976#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1977
1978static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1979 u32 type_tucmd, u32 mss_l4len_idx)
1980{
1981 struct e1000_adv_tx_context_desc *context_desc;
1982 struct igbvf_buffer *buffer_info;
1983 u16 i = tx_ring->next_to_use;
1984
1985 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1986 buffer_info = &tx_ring->buffer_info[i];
1987
1988 i++;
1989 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1990
1991 /* set bits to identify this as an advanced context descriptor */
1992 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1993
1994 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1995 context_desc->seqnum_seed = 0;
1996 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1997 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1998
1999 buffer_info->time_stamp = jiffies;
2000 buffer_info->dma = 0;
2001}
2002
2003static int igbvf_tso(struct igbvf_ring *tx_ring,
2004 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2005{
2006 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2007 union {
2008 struct iphdr *v4;
2009 struct ipv6hdr *v6;
2010 unsigned char *hdr;
2011 } ip;
2012 union {
2013 struct tcphdr *tcp;
2014 unsigned char *hdr;
2015 } l4;
2016 u32 paylen, l4_offset;
2017 int err;
2018
2019 if (skb->ip_summed != CHECKSUM_PARTIAL)
2020 return 0;
2021
2022 if (!skb_is_gso(skb))
2023 return 0;
2024
2025 err = skb_cow_head(skb, 0);
2026 if (err < 0)
2027 return err;
2028
2029 ip.hdr = skb_network_header(skb);
2030 l4.hdr = skb_checksum_start(skb);
2031
2032 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2033 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2034
2035 /* initialize outer IP header fields */
2036 if (ip.v4->version == 4) {
2037 unsigned char *csum_start = skb_checksum_start(skb);
2038 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2039
2040 /* IP header will have to cancel out any data that
2041 * is not a part of the outer IP header
2042 */
2043 ip.v4->check = csum_fold(csum_partial(trans_start,
2044 csum_start - trans_start,
2045 0));
2046 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2047
2048 ip.v4->tot_len = 0;
2049 } else {
2050 ip.v6->payload_len = 0;
2051 }
2052
2053 /* determine offset of inner transport header */
2054 l4_offset = l4.hdr - skb->data;
2055
2056 /* compute length of segmentation header */
2057 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2058
2059 /* remove payload length from inner checksum */
2060 paylen = skb->len - l4_offset;
2061 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2062
2063 /* MSS L4LEN IDX */
2064 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2065 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2066
2067 /* VLAN MACLEN IPLEN */
2068 vlan_macip_lens = l4.hdr - ip.hdr;
2069 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2070 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2071
2072 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2073
2074 return 1;
2075}
2076
2077static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2078 u32 tx_flags, __be16 protocol)
2079{
2080 u32 vlan_macip_lens = 0;
2081 u32 type_tucmd = 0;
2082
2083 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2084csum_failed:
2085 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2086 return false;
2087 goto no_csum;
2088 }
2089
2090 switch (skb->csum_offset) {
2091 case offsetof(struct tcphdr, check):
2092 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2093 fallthrough;
2094 case offsetof(struct udphdr, check):
2095 break;
2096 case offsetof(struct sctphdr, checksum):
2097 /* validate that this is actually an SCTP request */
2098 if (skb_csum_is_sctp(skb)) {
2099 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2100 break;
2101 }
2102 fallthrough;
2103 default:
2104 skb_checksum_help(skb);
2105 goto csum_failed;
2106 }
2107
2108 vlan_macip_lens = skb_checksum_start_offset(skb) -
2109 skb_network_offset(skb);
2110no_csum:
2111 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2112 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2113
2114 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2115 return true;
2116}
2117
2118static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2119{
2120 struct igbvf_adapter *adapter = netdev_priv(netdev);
2121
2122 /* there is enough descriptors then we don't need to worry */
2123 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2124 return 0;
2125
2126 netif_stop_queue(netdev);
2127
2128 /* Herbert's original patch had:
2129 * smp_mb__after_netif_stop_queue();
2130 * but since that doesn't exist yet, just open code it.
2131 */
2132 smp_mb();
2133
2134 /* We need to check again just in case room has been made available */
2135 if (igbvf_desc_unused(adapter->tx_ring) < size)
2136 return -EBUSY;
2137
2138 netif_wake_queue(netdev);
2139
2140 ++adapter->restart_queue;
2141 return 0;
2142}
2143
2144#define IGBVF_MAX_TXD_PWR 16
2145#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2146
2147static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2148 struct igbvf_ring *tx_ring,
2149 struct sk_buff *skb)
2150{
2151 struct igbvf_buffer *buffer_info;
2152 struct pci_dev *pdev = adapter->pdev;
2153 unsigned int len = skb_headlen(skb);
2154 unsigned int count = 0, i;
2155 unsigned int f;
2156
2157 i = tx_ring->next_to_use;
2158
2159 buffer_info = &tx_ring->buffer_info[i];
2160 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2161 buffer_info->length = len;
2162 /* set time_stamp *before* dma to help avoid a possible race */
2163 buffer_info->time_stamp = jiffies;
2164 buffer_info->mapped_as_page = false;
2165 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2166 DMA_TO_DEVICE);
2167 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2168 goto dma_error;
2169
2170 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2171 const skb_frag_t *frag;
2172
2173 count++;
2174 i++;
2175 if (i == tx_ring->count)
2176 i = 0;
2177
2178 frag = &skb_shinfo(skb)->frags[f];
2179 len = skb_frag_size(frag);
2180
2181 buffer_info = &tx_ring->buffer_info[i];
2182 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2183 buffer_info->length = len;
2184 buffer_info->time_stamp = jiffies;
2185 buffer_info->mapped_as_page = true;
2186 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2187 DMA_TO_DEVICE);
2188 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2189 goto dma_error;
2190 }
2191
2192 tx_ring->buffer_info[i].skb = skb;
2193
2194 return ++count;
2195
2196dma_error:
2197 dev_err(&pdev->dev, "TX DMA map failed\n");
2198
2199 /* clear timestamp and dma mappings for failed buffer_info mapping */
2200 buffer_info->dma = 0;
2201 buffer_info->time_stamp = 0;
2202 buffer_info->length = 0;
2203 buffer_info->mapped_as_page = false;
2204 if (count)
2205 count--;
2206
2207 /* clear timestamp and dma mappings for remaining portion of packet */
2208 while (count--) {
2209 if (i == 0)
2210 i += tx_ring->count;
2211 i--;
2212 buffer_info = &tx_ring->buffer_info[i];
2213 igbvf_put_txbuf(adapter, buffer_info);
2214 }
2215
2216 return 0;
2217}
2218
2219static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2220 struct igbvf_ring *tx_ring,
2221 int tx_flags, int count,
2222 unsigned int first, u32 paylen,
2223 u8 hdr_len)
2224{
2225 union e1000_adv_tx_desc *tx_desc = NULL;
2226 struct igbvf_buffer *buffer_info;
2227 u32 olinfo_status = 0, cmd_type_len;
2228 unsigned int i;
2229
2230 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2231 E1000_ADVTXD_DCMD_DEXT);
2232
2233 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2234 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2235
2236 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2237 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2238
2239 /* insert tcp checksum */
2240 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2241
2242 /* insert ip checksum */
2243 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2244 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2245
2246 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2247 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2248 }
2249
2250 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2251
2252 i = tx_ring->next_to_use;
2253 while (count--) {
2254 buffer_info = &tx_ring->buffer_info[i];
2255 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2256 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2257 tx_desc->read.cmd_type_len =
2258 cpu_to_le32(cmd_type_len | buffer_info->length);
2259 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2260 i++;
2261 if (i == tx_ring->count)
2262 i = 0;
2263 }
2264
2265 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2266 /* Force memory writes to complete before letting h/w
2267 * know there are new descriptors to fetch. (Only
2268 * applicable for weak-ordered memory model archs,
2269 * such as IA-64).
2270 */
2271 wmb();
2272
2273 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2274 tx_ring->next_to_use = i;
2275 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2276}
2277
2278static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2279 struct net_device *netdev,
2280 struct igbvf_ring *tx_ring)
2281{
2282 struct igbvf_adapter *adapter = netdev_priv(netdev);
2283 unsigned int first, tx_flags = 0;
2284 u8 hdr_len = 0;
2285 int count = 0;
2286 int tso = 0;
2287 __be16 protocol = vlan_get_protocol(skb);
2288
2289 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2290 dev_kfree_skb_any(skb);
2291 return NETDEV_TX_OK;
2292 }
2293
2294 if (skb->len <= 0) {
2295 dev_kfree_skb_any(skb);
2296 return NETDEV_TX_OK;
2297 }
2298
2299 /* need: count + 4 desc gap to keep tail from touching
2300 * + 2 desc gap to keep tail from touching head,
2301 * + 1 desc for skb->data,
2302 * + 1 desc for context descriptor,
2303 * head, otherwise try next time
2304 */
2305 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2306 /* this is a hard error */
2307 return NETDEV_TX_BUSY;
2308 }
2309
2310 if (skb_vlan_tag_present(skb)) {
2311 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2312 tx_flags |= (skb_vlan_tag_get(skb) <<
2313 IGBVF_TX_FLAGS_VLAN_SHIFT);
2314 }
2315
2316 if (protocol == htons(ETH_P_IP))
2317 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2318
2319 first = tx_ring->next_to_use;
2320
2321 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2322 if (unlikely(tso < 0)) {
2323 dev_kfree_skb_any(skb);
2324 return NETDEV_TX_OK;
2325 }
2326
2327 if (tso)
2328 tx_flags |= IGBVF_TX_FLAGS_TSO;
2329 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2330 (skb->ip_summed == CHECKSUM_PARTIAL))
2331 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2332
2333 /* count reflects descriptors mapped, if 0 then mapping error
2334 * has occurred and we need to rewind the descriptor queue
2335 */
2336 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2337
2338 if (count) {
2339 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2340 first, skb->len, hdr_len);
2341 /* Make sure there is space in the ring for the next send. */
2342 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2343 } else {
2344 dev_kfree_skb_any(skb);
2345 tx_ring->buffer_info[first].time_stamp = 0;
2346 tx_ring->next_to_use = first;
2347 }
2348
2349 return NETDEV_TX_OK;
2350}
2351
2352static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2353 struct net_device *netdev)
2354{
2355 struct igbvf_adapter *adapter = netdev_priv(netdev);
2356 struct igbvf_ring *tx_ring;
2357
2358 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2359 dev_kfree_skb_any(skb);
2360 return NETDEV_TX_OK;
2361 }
2362
2363 tx_ring = &adapter->tx_ring[0];
2364
2365 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2366}
2367
2368/**
2369 * igbvf_tx_timeout - Respond to a Tx Hang
2370 * @netdev: network interface device structure
2371 * @txqueue: queue timing out (unused)
2372 **/
2373static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2374{
2375 struct igbvf_adapter *adapter = netdev_priv(netdev);
2376
2377 /* Do the reset outside of interrupt context */
2378 adapter->tx_timeout_count++;
2379 schedule_work(&adapter->reset_task);
2380}
2381
2382static void igbvf_reset_task(struct work_struct *work)
2383{
2384 struct igbvf_adapter *adapter;
2385
2386 adapter = container_of(work, struct igbvf_adapter, reset_task);
2387
2388 igbvf_reinit_locked(adapter);
2389}
2390
2391/**
2392 * igbvf_change_mtu - Change the Maximum Transfer Unit
2393 * @netdev: network interface device structure
2394 * @new_mtu: new value for maximum frame size
2395 *
2396 * Returns 0 on success, negative on failure
2397 **/
2398static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2399{
2400 struct igbvf_adapter *adapter = netdev_priv(netdev);
2401 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2402
2403 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2404 usleep_range(1000, 2000);
2405 /* igbvf_down has a dependency on max_frame_size */
2406 adapter->max_frame_size = max_frame;
2407 if (netif_running(netdev))
2408 igbvf_down(adapter);
2409
2410 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2411 * means we reserve 2 more, this pushes us to allocate from the next
2412 * larger slab size.
2413 * i.e. RXBUFFER_2048 --> size-4096 slab
2414 * However with the new *_jumbo_rx* routines, jumbo receives will use
2415 * fragmented skbs
2416 */
2417
2418 if (max_frame <= 1024)
2419 adapter->rx_buffer_len = 1024;
2420 else if (max_frame <= 2048)
2421 adapter->rx_buffer_len = 2048;
2422 else
2423#if (PAGE_SIZE / 2) > 16384
2424 adapter->rx_buffer_len = 16384;
2425#else
2426 adapter->rx_buffer_len = PAGE_SIZE / 2;
2427#endif
2428
2429 /* adjust allocation if LPE protects us, and we aren't using SBP */
2430 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2431 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2432 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2433 ETH_FCS_LEN;
2434
2435 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2436 netdev->mtu, new_mtu);
2437 netdev->mtu = new_mtu;
2438
2439 if (netif_running(netdev))
2440 igbvf_up(adapter);
2441 else
2442 igbvf_reset(adapter);
2443
2444 clear_bit(__IGBVF_RESETTING, &adapter->state);
2445
2446 return 0;
2447}
2448
2449static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2450{
2451 switch (cmd) {
2452 default:
2453 return -EOPNOTSUPP;
2454 }
2455}
2456
2457static int igbvf_suspend(struct device *dev_d)
2458{
2459 struct net_device *netdev = dev_get_drvdata(dev_d);
2460 struct igbvf_adapter *adapter = netdev_priv(netdev);
2461
2462 netif_device_detach(netdev);
2463
2464 if (netif_running(netdev)) {
2465 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2466 igbvf_down(adapter);
2467 igbvf_free_irq(adapter);
2468 }
2469
2470 return 0;
2471}
2472
2473static int __maybe_unused igbvf_resume(struct device *dev_d)
2474{
2475 struct pci_dev *pdev = to_pci_dev(dev_d);
2476 struct net_device *netdev = pci_get_drvdata(pdev);
2477 struct igbvf_adapter *adapter = netdev_priv(netdev);
2478 u32 err;
2479
2480 pci_set_master(pdev);
2481
2482 if (netif_running(netdev)) {
2483 err = igbvf_request_irq(adapter);
2484 if (err)
2485 return err;
2486 }
2487
2488 igbvf_reset(adapter);
2489
2490 if (netif_running(netdev))
2491 igbvf_up(adapter);
2492
2493 netif_device_attach(netdev);
2494
2495 return 0;
2496}
2497
2498static void igbvf_shutdown(struct pci_dev *pdev)
2499{
2500 igbvf_suspend(&pdev->dev);
2501}
2502
2503#ifdef CONFIG_NET_POLL_CONTROLLER
2504/* Polling 'interrupt' - used by things like netconsole to send skbs
2505 * without having to re-enable interrupts. It's not called while
2506 * the interrupt routine is executing.
2507 */
2508static void igbvf_netpoll(struct net_device *netdev)
2509{
2510 struct igbvf_adapter *adapter = netdev_priv(netdev);
2511
2512 disable_irq(adapter->pdev->irq);
2513
2514 igbvf_clean_tx_irq(adapter->tx_ring);
2515
2516 enable_irq(adapter->pdev->irq);
2517}
2518#endif
2519
2520/**
2521 * igbvf_io_error_detected - called when PCI error is detected
2522 * @pdev: Pointer to PCI device
2523 * @state: The current pci connection state
2524 *
2525 * This function is called after a PCI bus error affecting
2526 * this device has been detected.
2527 */
2528static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2529 pci_channel_state_t state)
2530{
2531 struct net_device *netdev = pci_get_drvdata(pdev);
2532 struct igbvf_adapter *adapter = netdev_priv(netdev);
2533
2534 netif_device_detach(netdev);
2535
2536 if (state == pci_channel_io_perm_failure)
2537 return PCI_ERS_RESULT_DISCONNECT;
2538
2539 if (netif_running(netdev))
2540 igbvf_down(adapter);
2541 pci_disable_device(pdev);
2542
2543 /* Request a slot reset. */
2544 return PCI_ERS_RESULT_NEED_RESET;
2545}
2546
2547/**
2548 * igbvf_io_slot_reset - called after the pci bus has been reset.
2549 * @pdev: Pointer to PCI device
2550 *
2551 * Restart the card from scratch, as if from a cold-boot. Implementation
2552 * resembles the first-half of the igbvf_resume routine.
2553 */
2554static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2555{
2556 struct net_device *netdev = pci_get_drvdata(pdev);
2557 struct igbvf_adapter *adapter = netdev_priv(netdev);
2558
2559 if (pci_enable_device_mem(pdev)) {
2560 dev_err(&pdev->dev,
2561 "Cannot re-enable PCI device after reset.\n");
2562 return PCI_ERS_RESULT_DISCONNECT;
2563 }
2564 pci_set_master(pdev);
2565
2566 igbvf_reset(adapter);
2567
2568 return PCI_ERS_RESULT_RECOVERED;
2569}
2570
2571/**
2572 * igbvf_io_resume - called when traffic can start flowing again.
2573 * @pdev: Pointer to PCI device
2574 *
2575 * This callback is called when the error recovery driver tells us that
2576 * its OK to resume normal operation. Implementation resembles the
2577 * second-half of the igbvf_resume routine.
2578 */
2579static void igbvf_io_resume(struct pci_dev *pdev)
2580{
2581 struct net_device *netdev = pci_get_drvdata(pdev);
2582 struct igbvf_adapter *adapter = netdev_priv(netdev);
2583
2584 if (netif_running(netdev)) {
2585 if (igbvf_up(adapter)) {
2586 dev_err(&pdev->dev,
2587 "can't bring device back up after reset\n");
2588 return;
2589 }
2590 }
2591
2592 netif_device_attach(netdev);
2593}
2594
2595/**
2596 * igbvf_io_prepare - prepare device driver for PCI reset
2597 * @pdev: PCI device information struct
2598 */
2599static void igbvf_io_prepare(struct pci_dev *pdev)
2600{
2601 struct net_device *netdev = pci_get_drvdata(pdev);
2602 struct igbvf_adapter *adapter = netdev_priv(netdev);
2603
2604 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2605 usleep_range(1000, 2000);
2606 igbvf_down(adapter);
2607}
2608
2609/**
2610 * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2611 * @pdev: PCI device information struct
2612 */
2613static void igbvf_io_reset_done(struct pci_dev *pdev)
2614{
2615 struct net_device *netdev = pci_get_drvdata(pdev);
2616 struct igbvf_adapter *adapter = netdev_priv(netdev);
2617
2618 igbvf_up(adapter);
2619 clear_bit(__IGBVF_RESETTING, &adapter->state);
2620}
2621
2622static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2623{
2624 struct e1000_hw *hw = &adapter->hw;
2625 struct net_device *netdev = adapter->netdev;
2626 struct pci_dev *pdev = adapter->pdev;
2627
2628 if (hw->mac.type == e1000_vfadapt_i350)
2629 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2630 else
2631 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2632 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2633}
2634
2635static int igbvf_set_features(struct net_device *netdev,
2636 netdev_features_t features)
2637{
2638 struct igbvf_adapter *adapter = netdev_priv(netdev);
2639
2640 if (features & NETIF_F_RXCSUM)
2641 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2642 else
2643 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2644
2645 return 0;
2646}
2647
2648#define IGBVF_MAX_MAC_HDR_LEN 127
2649#define IGBVF_MAX_NETWORK_HDR_LEN 511
2650
2651static netdev_features_t
2652igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2653 netdev_features_t features)
2654{
2655 unsigned int network_hdr_len, mac_hdr_len;
2656
2657 /* Make certain the headers can be described by a context descriptor */
2658 mac_hdr_len = skb_network_header(skb) - skb->data;
2659 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2660 return features & ~(NETIF_F_HW_CSUM |
2661 NETIF_F_SCTP_CRC |
2662 NETIF_F_HW_VLAN_CTAG_TX |
2663 NETIF_F_TSO |
2664 NETIF_F_TSO6);
2665
2666 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2667 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2668 return features & ~(NETIF_F_HW_CSUM |
2669 NETIF_F_SCTP_CRC |
2670 NETIF_F_TSO |
2671 NETIF_F_TSO6);
2672
2673 /* We can only support IPV4 TSO in tunnels if we can mangle the
2674 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2675 */
2676 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2677 features &= ~NETIF_F_TSO;
2678
2679 return features;
2680}
2681
2682static const struct net_device_ops igbvf_netdev_ops = {
2683 .ndo_open = igbvf_open,
2684 .ndo_stop = igbvf_close,
2685 .ndo_start_xmit = igbvf_xmit_frame,
2686 .ndo_set_rx_mode = igbvf_set_rx_mode,
2687 .ndo_set_mac_address = igbvf_set_mac,
2688 .ndo_change_mtu = igbvf_change_mtu,
2689 .ndo_eth_ioctl = igbvf_ioctl,
2690 .ndo_tx_timeout = igbvf_tx_timeout,
2691 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2692 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2693#ifdef CONFIG_NET_POLL_CONTROLLER
2694 .ndo_poll_controller = igbvf_netpoll,
2695#endif
2696 .ndo_set_features = igbvf_set_features,
2697 .ndo_features_check = igbvf_features_check,
2698};
2699
2700/**
2701 * igbvf_probe - Device Initialization Routine
2702 * @pdev: PCI device information struct
2703 * @ent: entry in igbvf_pci_tbl
2704 *
2705 * Returns 0 on success, negative on failure
2706 *
2707 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2708 * The OS initialization, configuring of the adapter private structure,
2709 * and a hardware reset occur.
2710 **/
2711static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2712{
2713 struct net_device *netdev;
2714 struct igbvf_adapter *adapter;
2715 struct e1000_hw *hw;
2716 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2717 static int cards_found;
2718 int err;
2719
2720 err = pci_enable_device_mem(pdev);
2721 if (err)
2722 return err;
2723
2724 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2725 if (err) {
2726 dev_err(&pdev->dev,
2727 "No usable DMA configuration, aborting\n");
2728 goto err_dma;
2729 }
2730
2731 err = pci_request_regions(pdev, igbvf_driver_name);
2732 if (err)
2733 goto err_pci_reg;
2734
2735 pci_set_master(pdev);
2736
2737 err = -ENOMEM;
2738 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2739 if (!netdev)
2740 goto err_alloc_etherdev;
2741
2742 SET_NETDEV_DEV(netdev, &pdev->dev);
2743
2744 pci_set_drvdata(pdev, netdev);
2745 adapter = netdev_priv(netdev);
2746 hw = &adapter->hw;
2747 adapter->netdev = netdev;
2748 adapter->pdev = pdev;
2749 adapter->ei = ei;
2750 adapter->pba = ei->pba;
2751 adapter->flags = ei->flags;
2752 adapter->hw.back = adapter;
2753 adapter->hw.mac.type = ei->mac;
2754 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2755
2756 /* PCI config space info */
2757
2758 hw->vendor_id = pdev->vendor;
2759 hw->device_id = pdev->device;
2760 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2761 hw->subsystem_device_id = pdev->subsystem_device;
2762 hw->revision_id = pdev->revision;
2763
2764 err = -EIO;
2765 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2766 pci_resource_len(pdev, 0));
2767
2768 if (!adapter->hw.hw_addr)
2769 goto err_ioremap;
2770
2771 if (ei->get_variants) {
2772 err = ei->get_variants(adapter);
2773 if (err)
2774 goto err_get_variants;
2775 }
2776
2777 /* setup adapter struct */
2778 err = igbvf_sw_init(adapter);
2779 if (err)
2780 goto err_sw_init;
2781
2782 /* construct the net_device struct */
2783 netdev->netdev_ops = &igbvf_netdev_ops;
2784
2785 igbvf_set_ethtool_ops(netdev);
2786 netdev->watchdog_timeo = 5 * HZ;
2787 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2788
2789 adapter->bd_number = cards_found++;
2790
2791 netdev->hw_features = NETIF_F_SG |
2792 NETIF_F_TSO |
2793 NETIF_F_TSO6 |
2794 NETIF_F_RXCSUM |
2795 NETIF_F_HW_CSUM |
2796 NETIF_F_SCTP_CRC;
2797
2798#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2799 NETIF_F_GSO_GRE_CSUM | \
2800 NETIF_F_GSO_IPXIP4 | \
2801 NETIF_F_GSO_IPXIP6 | \
2802 NETIF_F_GSO_UDP_TUNNEL | \
2803 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2804
2805 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2806 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2807 IGBVF_GSO_PARTIAL_FEATURES;
2808
2809 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2810
2811 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2812 netdev->mpls_features |= NETIF_F_HW_CSUM;
2813 netdev->hw_enc_features |= netdev->vlan_features;
2814
2815 /* set this bit last since it cannot be part of vlan_features */
2816 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2817 NETIF_F_HW_VLAN_CTAG_RX |
2818 NETIF_F_HW_VLAN_CTAG_TX;
2819
2820 /* MTU range: 68 - 9216 */
2821 netdev->min_mtu = ETH_MIN_MTU;
2822 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2823
2824 spin_lock_bh(&hw->mbx_lock);
2825
2826 /*reset the controller to put the device in a known good state */
2827 err = hw->mac.ops.reset_hw(hw);
2828 if (err) {
2829 dev_info(&pdev->dev,
2830 "PF still in reset state. Is the PF interface up?\n");
2831 } else {
2832 err = hw->mac.ops.read_mac_addr(hw);
2833 if (err)
2834 dev_info(&pdev->dev, "Error reading MAC address.\n");
2835 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2836 dev_info(&pdev->dev,
2837 "MAC address not assigned by administrator.\n");
2838 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2839 }
2840
2841 spin_unlock_bh(&hw->mbx_lock);
2842
2843 if (!is_valid_ether_addr(netdev->dev_addr)) {
2844 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2845 eth_hw_addr_random(netdev);
2846 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2847 netdev->addr_len);
2848 }
2849
2850 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2851
2852 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2853 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2854
2855 /* ring size defaults */
2856 adapter->rx_ring->count = 1024;
2857 adapter->tx_ring->count = 1024;
2858
2859 /* reset the hardware with the new settings */
2860 igbvf_reset(adapter);
2861
2862 /* set hardware-specific flags */
2863 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2864 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2865
2866 strcpy(netdev->name, "eth%d");
2867 err = register_netdev(netdev);
2868 if (err)
2869 goto err_hw_init;
2870
2871 /* tell the stack to leave us alone until igbvf_open() is called */
2872 netif_carrier_off(netdev);
2873 netif_stop_queue(netdev);
2874
2875 igbvf_print_device_info(adapter);
2876
2877 igbvf_initialize_last_counter_stats(adapter);
2878
2879 return 0;
2880
2881err_hw_init:
2882 netif_napi_del(&adapter->rx_ring->napi);
2883 kfree(adapter->tx_ring);
2884 kfree(adapter->rx_ring);
2885err_sw_init:
2886 igbvf_reset_interrupt_capability(adapter);
2887err_get_variants:
2888 iounmap(adapter->hw.hw_addr);
2889err_ioremap:
2890 free_netdev(netdev);
2891err_alloc_etherdev:
2892 pci_release_regions(pdev);
2893err_pci_reg:
2894err_dma:
2895 pci_disable_device(pdev);
2896 return err;
2897}
2898
2899/**
2900 * igbvf_remove - Device Removal Routine
2901 * @pdev: PCI device information struct
2902 *
2903 * igbvf_remove is called by the PCI subsystem to alert the driver
2904 * that it should release a PCI device. The could be caused by a
2905 * Hot-Plug event, or because the driver is going to be removed from
2906 * memory.
2907 **/
2908static void igbvf_remove(struct pci_dev *pdev)
2909{
2910 struct net_device *netdev = pci_get_drvdata(pdev);
2911 struct igbvf_adapter *adapter = netdev_priv(netdev);
2912 struct e1000_hw *hw = &adapter->hw;
2913
2914 /* The watchdog timer may be rescheduled, so explicitly
2915 * disable it from being rescheduled.
2916 */
2917 set_bit(__IGBVF_DOWN, &adapter->state);
2918 del_timer_sync(&adapter->watchdog_timer);
2919
2920 cancel_work_sync(&adapter->reset_task);
2921 cancel_work_sync(&adapter->watchdog_task);
2922
2923 unregister_netdev(netdev);
2924
2925 igbvf_reset_interrupt_capability(adapter);
2926
2927 /* it is important to delete the NAPI struct prior to freeing the
2928 * Rx ring so that you do not end up with null pointer refs
2929 */
2930 netif_napi_del(&adapter->rx_ring->napi);
2931 kfree(adapter->tx_ring);
2932 kfree(adapter->rx_ring);
2933
2934 iounmap(hw->hw_addr);
2935 if (hw->flash_address)
2936 iounmap(hw->flash_address);
2937 pci_release_regions(pdev);
2938
2939 free_netdev(netdev);
2940
2941 pci_disable_device(pdev);
2942}
2943
2944/* PCI Error Recovery (ERS) */
2945static const struct pci_error_handlers igbvf_err_handler = {
2946 .error_detected = igbvf_io_error_detected,
2947 .slot_reset = igbvf_io_slot_reset,
2948 .resume = igbvf_io_resume,
2949 .reset_prepare = igbvf_io_prepare,
2950 .reset_done = igbvf_io_reset_done,
2951};
2952
2953static const struct pci_device_id igbvf_pci_tbl[] = {
2954 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2956 { } /* terminate list */
2957};
2958MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2959
2960static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2961
2962/* PCI Device API Driver */
2963static struct pci_driver igbvf_driver = {
2964 .name = igbvf_driver_name,
2965 .id_table = igbvf_pci_tbl,
2966 .probe = igbvf_probe,
2967 .remove = igbvf_remove,
2968 .driver.pm = &igbvf_pm_ops,
2969 .shutdown = igbvf_shutdown,
2970 .err_handler = &igbvf_err_handler
2971};
2972
2973/**
2974 * igbvf_init_module - Driver Registration Routine
2975 *
2976 * igbvf_init_module is the first routine called when the driver is
2977 * loaded. All it does is register with the PCI subsystem.
2978 **/
2979static int __init igbvf_init_module(void)
2980{
2981 int ret;
2982
2983 pr_info("%s\n", igbvf_driver_string);
2984 pr_info("%s\n", igbvf_copyright);
2985
2986 ret = pci_register_driver(&igbvf_driver);
2987
2988 return ret;
2989}
2990module_init(igbvf_init_module);
2991
2992/**
2993 * igbvf_exit_module - Driver Exit Cleanup Routine
2994 *
2995 * igbvf_exit_module is called just before the driver is removed
2996 * from memory.
2997 **/
2998static void __exit igbvf_exit_module(void)
2999{
3000 pci_unregister_driver(&igbvf_driver);
3001}
3002module_exit(igbvf_exit_module);
3003
3004MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3005MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3006MODULE_LICENSE("GPL v2");
3007
3008/* netdev.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/tcp.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/checksum.h>
18#include <net/ip6_checksum.h>
19#include <linux/mii.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/prefetch.h>
23#include <linux/sctp.h>
24
25#include "igbvf.h"
26
27#define DRV_VERSION "2.4.0-k"
28char igbvf_driver_name[] = "igbvf";
29const char igbvf_driver_version[] = DRV_VERSION;
30static const char igbvf_driver_string[] =
31 "Intel(R) Gigabit Virtual Function Network Driver";
32static const char igbvf_copyright[] =
33 "Copyright (c) 2009 - 2012 Intel Corporation.";
34
35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36static int debug = -1;
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40static int igbvf_poll(struct napi_struct *napi, int budget);
41static void igbvf_reset(struct igbvf_adapter *);
42static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
43static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
44
45static struct igbvf_info igbvf_vf_info = {
46 .mac = e1000_vfadapt,
47 .flags = 0,
48 .pba = 10,
49 .init_ops = e1000_init_function_pointers_vf,
50};
51
52static struct igbvf_info igbvf_i350_vf_info = {
53 .mac = e1000_vfadapt_i350,
54 .flags = 0,
55 .pba = 10,
56 .init_ops = e1000_init_function_pointers_vf,
57};
58
59static const struct igbvf_info *igbvf_info_tbl[] = {
60 [board_vf] = &igbvf_vf_info,
61 [board_i350_vf] = &igbvf_i350_vf_info,
62};
63
64/**
65 * igbvf_desc_unused - calculate if we have unused descriptors
66 * @rx_ring: address of receive ring structure
67 **/
68static int igbvf_desc_unused(struct igbvf_ring *ring)
69{
70 if (ring->next_to_clean > ring->next_to_use)
71 return ring->next_to_clean - ring->next_to_use - 1;
72
73 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
74}
75
76/**
77 * igbvf_receive_skb - helper function to handle Rx indications
78 * @adapter: board private structure
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, u16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 *
239 * the return value indicates whether actual cleaning was done, there
240 * is no guarantee that everything was cleaned
241 **/
242static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
243 int *work_done, int work_to_do)
244{
245 struct igbvf_ring *rx_ring = adapter->rx_ring;
246 struct net_device *netdev = adapter->netdev;
247 struct pci_dev *pdev = adapter->pdev;
248 union e1000_adv_rx_desc *rx_desc, *next_rxd;
249 struct igbvf_buffer *buffer_info, *next_buffer;
250 struct sk_buff *skb;
251 bool cleaned = false;
252 int cleaned_count = 0;
253 unsigned int total_bytes = 0, total_packets = 0;
254 unsigned int i;
255 u32 length, hlen, staterr;
256
257 i = rx_ring->next_to_clean;
258 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
259 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
260
261 while (staterr & E1000_RXD_STAT_DD) {
262 if (*work_done >= work_to_do)
263 break;
264 (*work_done)++;
265 rmb(); /* read descriptor and rx_buffer_info after status DD */
266
267 buffer_info = &rx_ring->buffer_info[i];
268
269 /* HW will not DMA in data larger than the given buffer, even
270 * if it parses the (NFS, of course) header to be larger. In
271 * that case, it fills the header buffer and spills the rest
272 * into the page.
273 */
274 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
275 & E1000_RXDADV_HDRBUFLEN_MASK) >>
276 E1000_RXDADV_HDRBUFLEN_SHIFT;
277 if (hlen > adapter->rx_ps_hdr_size)
278 hlen = adapter->rx_ps_hdr_size;
279
280 length = le16_to_cpu(rx_desc->wb.upper.length);
281 cleaned = true;
282 cleaned_count++;
283
284 skb = buffer_info->skb;
285 prefetch(skb->data - NET_IP_ALIGN);
286 buffer_info->skb = NULL;
287 if (!adapter->rx_ps_hdr_size) {
288 dma_unmap_single(&pdev->dev, buffer_info->dma,
289 adapter->rx_buffer_len,
290 DMA_FROM_DEVICE);
291 buffer_info->dma = 0;
292 skb_put(skb, length);
293 goto send_up;
294 }
295
296 if (!skb_shinfo(skb)->nr_frags) {
297 dma_unmap_single(&pdev->dev, buffer_info->dma,
298 adapter->rx_ps_hdr_size,
299 DMA_FROM_DEVICE);
300 buffer_info->dma = 0;
301 skb_put(skb, hlen);
302 }
303
304 if (length) {
305 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
306 PAGE_SIZE / 2,
307 DMA_FROM_DEVICE);
308 buffer_info->page_dma = 0;
309
310 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
311 buffer_info->page,
312 buffer_info->page_offset,
313 length);
314
315 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
316 (page_count(buffer_info->page) != 1))
317 buffer_info->page = NULL;
318 else
319 get_page(buffer_info->page);
320
321 skb->len += length;
322 skb->data_len += length;
323 skb->truesize += PAGE_SIZE / 2;
324 }
325send_up:
326 i++;
327 if (i == rx_ring->count)
328 i = 0;
329 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
330 prefetch(next_rxd);
331 next_buffer = &rx_ring->buffer_info[i];
332
333 if (!(staterr & E1000_RXD_STAT_EOP)) {
334 buffer_info->skb = next_buffer->skb;
335 buffer_info->dma = next_buffer->dma;
336 next_buffer->skb = skb;
337 next_buffer->dma = 0;
338 goto next_desc;
339 }
340
341 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
342 dev_kfree_skb_irq(skb);
343 goto next_desc;
344 }
345
346 total_bytes += skb->len;
347 total_packets++;
348
349 igbvf_rx_checksum_adv(adapter, staterr, skb);
350
351 skb->protocol = eth_type_trans(skb, netdev);
352
353 igbvf_receive_skb(adapter, netdev, skb, staterr,
354 rx_desc->wb.upper.vlan);
355
356next_desc:
357 rx_desc->wb.upper.status_error = 0;
358
359 /* return some buffers to hardware, one at a time is too slow */
360 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
361 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
362 cleaned_count = 0;
363 }
364
365 /* use prefetched values */
366 rx_desc = next_rxd;
367 buffer_info = next_buffer;
368
369 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
370 }
371
372 rx_ring->next_to_clean = i;
373 cleaned_count = igbvf_desc_unused(rx_ring);
374
375 if (cleaned_count)
376 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
377
378 adapter->total_rx_packets += total_packets;
379 adapter->total_rx_bytes += total_bytes;
380 netdev->stats.rx_bytes += total_bytes;
381 netdev->stats.rx_packets += total_packets;
382 return cleaned;
383}
384
385static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
386 struct igbvf_buffer *buffer_info)
387{
388 if (buffer_info->dma) {
389 if (buffer_info->mapped_as_page)
390 dma_unmap_page(&adapter->pdev->dev,
391 buffer_info->dma,
392 buffer_info->length,
393 DMA_TO_DEVICE);
394 else
395 dma_unmap_single(&adapter->pdev->dev,
396 buffer_info->dma,
397 buffer_info->length,
398 DMA_TO_DEVICE);
399 buffer_info->dma = 0;
400 }
401 if (buffer_info->skb) {
402 dev_kfree_skb_any(buffer_info->skb);
403 buffer_info->skb = NULL;
404 }
405 buffer_info->time_stamp = 0;
406}
407
408/**
409 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
410 * @adapter: board private structure
411 *
412 * Return 0 on success, negative on failure
413 **/
414int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
415 struct igbvf_ring *tx_ring)
416{
417 struct pci_dev *pdev = adapter->pdev;
418 int size;
419
420 size = sizeof(struct igbvf_buffer) * tx_ring->count;
421 tx_ring->buffer_info = vzalloc(size);
422 if (!tx_ring->buffer_info)
423 goto err;
424
425 /* round up to nearest 4K */
426 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
427 tx_ring->size = ALIGN(tx_ring->size, 4096);
428
429 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
430 &tx_ring->dma, GFP_KERNEL);
431 if (!tx_ring->desc)
432 goto err;
433
434 tx_ring->adapter = adapter;
435 tx_ring->next_to_use = 0;
436 tx_ring->next_to_clean = 0;
437
438 return 0;
439err:
440 vfree(tx_ring->buffer_info);
441 dev_err(&adapter->pdev->dev,
442 "Unable to allocate memory for the transmit descriptor ring\n");
443 return -ENOMEM;
444}
445
446/**
447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448 * @adapter: board private structure
449 *
450 * Returns 0 on success, negative on failure
451 **/
452int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453 struct igbvf_ring *rx_ring)
454{
455 struct pci_dev *pdev = adapter->pdev;
456 int size, desc_len;
457
458 size = sizeof(struct igbvf_buffer) * rx_ring->count;
459 rx_ring->buffer_info = vzalloc(size);
460 if (!rx_ring->buffer_info)
461 goto err;
462
463 desc_len = sizeof(union e1000_adv_rx_desc);
464
465 /* Round up to nearest 4K */
466 rx_ring->size = rx_ring->count * desc_len;
467 rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470 &rx_ring->dma, GFP_KERNEL);
471 if (!rx_ring->desc)
472 goto err;
473
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 rx_ring->adapter = adapter;
478
479 return 0;
480
481err:
482 vfree(rx_ring->buffer_info);
483 rx_ring->buffer_info = NULL;
484 dev_err(&adapter->pdev->dev,
485 "Unable to allocate memory for the receive descriptor ring\n");
486 return -ENOMEM;
487}
488
489/**
490 * igbvf_clean_tx_ring - Free Tx Buffers
491 * @tx_ring: ring to be cleaned
492 **/
493static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
494{
495 struct igbvf_adapter *adapter = tx_ring->adapter;
496 struct igbvf_buffer *buffer_info;
497 unsigned long size;
498 unsigned int i;
499
500 if (!tx_ring->buffer_info)
501 return;
502
503 /* Free all the Tx ring sk_buffs */
504 for (i = 0; i < tx_ring->count; i++) {
505 buffer_info = &tx_ring->buffer_info[i];
506 igbvf_put_txbuf(adapter, buffer_info);
507 }
508
509 size = sizeof(struct igbvf_buffer) * tx_ring->count;
510 memset(tx_ring->buffer_info, 0, size);
511
512 /* Zero out the descriptor ring */
513 memset(tx_ring->desc, 0, tx_ring->size);
514
515 tx_ring->next_to_use = 0;
516 tx_ring->next_to_clean = 0;
517
518 writel(0, adapter->hw.hw_addr + tx_ring->head);
519 writel(0, adapter->hw.hw_addr + tx_ring->tail);
520}
521
522/**
523 * igbvf_free_tx_resources - Free Tx Resources per Queue
524 * @tx_ring: ring to free resources from
525 *
526 * Free all transmit software resources
527 **/
528void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
529{
530 struct pci_dev *pdev = tx_ring->adapter->pdev;
531
532 igbvf_clean_tx_ring(tx_ring);
533
534 vfree(tx_ring->buffer_info);
535 tx_ring->buffer_info = NULL;
536
537 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
538 tx_ring->dma);
539
540 tx_ring->desc = NULL;
541}
542
543/**
544 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
545 * @adapter: board private structure
546 **/
547static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
548{
549 struct igbvf_adapter *adapter = rx_ring->adapter;
550 struct igbvf_buffer *buffer_info;
551 struct pci_dev *pdev = adapter->pdev;
552 unsigned long size;
553 unsigned int i;
554
555 if (!rx_ring->buffer_info)
556 return;
557
558 /* Free all the Rx ring sk_buffs */
559 for (i = 0; i < rx_ring->count; i++) {
560 buffer_info = &rx_ring->buffer_info[i];
561 if (buffer_info->dma) {
562 if (adapter->rx_ps_hdr_size) {
563 dma_unmap_single(&pdev->dev, buffer_info->dma,
564 adapter->rx_ps_hdr_size,
565 DMA_FROM_DEVICE);
566 } else {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_buffer_len,
569 DMA_FROM_DEVICE);
570 }
571 buffer_info->dma = 0;
572 }
573
574 if (buffer_info->skb) {
575 dev_kfree_skb(buffer_info->skb);
576 buffer_info->skb = NULL;
577 }
578
579 if (buffer_info->page) {
580 if (buffer_info->page_dma)
581 dma_unmap_page(&pdev->dev,
582 buffer_info->page_dma,
583 PAGE_SIZE / 2,
584 DMA_FROM_DEVICE);
585 put_page(buffer_info->page);
586 buffer_info->page = NULL;
587 buffer_info->page_dma = 0;
588 buffer_info->page_offset = 0;
589 }
590 }
591
592 size = sizeof(struct igbvf_buffer) * rx_ring->count;
593 memset(rx_ring->buffer_info, 0, size);
594
595 /* Zero out the descriptor ring */
596 memset(rx_ring->desc, 0, rx_ring->size);
597
598 rx_ring->next_to_clean = 0;
599 rx_ring->next_to_use = 0;
600
601 writel(0, adapter->hw.hw_addr + rx_ring->head);
602 writel(0, adapter->hw.hw_addr + rx_ring->tail);
603}
604
605/**
606 * igbvf_free_rx_resources - Free Rx Resources
607 * @rx_ring: ring to clean the resources from
608 *
609 * Free all receive software resources
610 **/
611
612void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
613{
614 struct pci_dev *pdev = rx_ring->adapter->pdev;
615
616 igbvf_clean_rx_ring(rx_ring);
617
618 vfree(rx_ring->buffer_info);
619 rx_ring->buffer_info = NULL;
620
621 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
622 rx_ring->dma);
623 rx_ring->desc = NULL;
624}
625
626/**
627 * igbvf_update_itr - update the dynamic ITR value based on statistics
628 * @adapter: pointer to adapter
629 * @itr_setting: current adapter->itr
630 * @packets: the number of packets during this measurement interval
631 * @bytes: the number of bytes during this measurement interval
632 *
633 * Stores a new ITR value based on packets and byte counts during the last
634 * interrupt. The advantage of per interrupt computation is faster updates
635 * and more accurate ITR for the current traffic pattern. Constants in this
636 * function were computed based on theoretical maximum wire speed and thresholds
637 * were set based on testing data as well as attempting to minimize response
638 * time while increasing bulk throughput.
639 **/
640static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
641 enum latency_range itr_setting,
642 int packets, int bytes)
643{
644 enum latency_range retval = itr_setting;
645
646 if (packets == 0)
647 goto update_itr_done;
648
649 switch (itr_setting) {
650 case lowest_latency:
651 /* handle TSO and jumbo frames */
652 if (bytes/packets > 8000)
653 retval = bulk_latency;
654 else if ((packets < 5) && (bytes > 512))
655 retval = low_latency;
656 break;
657 case low_latency: /* 50 usec aka 20000 ints/s */
658 if (bytes > 10000) {
659 /* this if handles the TSO accounting */
660 if (bytes/packets > 8000)
661 retval = bulk_latency;
662 else if ((packets < 10) || ((bytes/packets) > 1200))
663 retval = bulk_latency;
664 else if ((packets > 35))
665 retval = lowest_latency;
666 } else if (bytes/packets > 2000) {
667 retval = bulk_latency;
668 } else if (packets <= 2 && bytes < 512) {
669 retval = lowest_latency;
670 }
671 break;
672 case bulk_latency: /* 250 usec aka 4000 ints/s */
673 if (bytes > 25000) {
674 if (packets > 35)
675 retval = low_latency;
676 } else if (bytes < 6000) {
677 retval = low_latency;
678 }
679 break;
680 default:
681 break;
682 }
683
684update_itr_done:
685 return retval;
686}
687
688static int igbvf_range_to_itr(enum latency_range current_range)
689{
690 int new_itr;
691
692 switch (current_range) {
693 /* counts and packets in update_itr are dependent on these numbers */
694 case lowest_latency:
695 new_itr = IGBVF_70K_ITR;
696 break;
697 case low_latency:
698 new_itr = IGBVF_20K_ITR;
699 break;
700 case bulk_latency:
701 new_itr = IGBVF_4K_ITR;
702 break;
703 default:
704 new_itr = IGBVF_START_ITR;
705 break;
706 }
707 return new_itr;
708}
709
710static void igbvf_set_itr(struct igbvf_adapter *adapter)
711{
712 u32 new_itr;
713
714 adapter->tx_ring->itr_range =
715 igbvf_update_itr(adapter,
716 adapter->tx_ring->itr_val,
717 adapter->total_tx_packets,
718 adapter->total_tx_bytes);
719
720 /* conservative mode (itr 3) eliminates the lowest_latency setting */
721 if (adapter->requested_itr == 3 &&
722 adapter->tx_ring->itr_range == lowest_latency)
723 adapter->tx_ring->itr_range = low_latency;
724
725 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
726
727 if (new_itr != adapter->tx_ring->itr_val) {
728 u32 current_itr = adapter->tx_ring->itr_val;
729 /* this attempts to bias the interrupt rate towards Bulk
730 * by adding intermediate steps when interrupt rate is
731 * increasing
732 */
733 new_itr = new_itr > current_itr ?
734 min(current_itr + (new_itr >> 2), new_itr) :
735 new_itr;
736 adapter->tx_ring->itr_val = new_itr;
737
738 adapter->tx_ring->set_itr = 1;
739 }
740
741 adapter->rx_ring->itr_range =
742 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
743 adapter->total_rx_packets,
744 adapter->total_rx_bytes);
745 if (adapter->requested_itr == 3 &&
746 adapter->rx_ring->itr_range == lowest_latency)
747 adapter->rx_ring->itr_range = low_latency;
748
749 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
750
751 if (new_itr != adapter->rx_ring->itr_val) {
752 u32 current_itr = adapter->rx_ring->itr_val;
753
754 new_itr = new_itr > current_itr ?
755 min(current_itr + (new_itr >> 2), new_itr) :
756 new_itr;
757 adapter->rx_ring->itr_val = new_itr;
758
759 adapter->rx_ring->set_itr = 1;
760 }
761}
762
763/**
764 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
765 * @adapter: board private structure
766 *
767 * returns true if ring is completely cleaned
768 **/
769static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
770{
771 struct igbvf_adapter *adapter = tx_ring->adapter;
772 struct net_device *netdev = adapter->netdev;
773 struct igbvf_buffer *buffer_info;
774 struct sk_buff *skb;
775 union e1000_adv_tx_desc *tx_desc, *eop_desc;
776 unsigned int total_bytes = 0, total_packets = 0;
777 unsigned int i, count = 0;
778 bool cleaned = false;
779
780 i = tx_ring->next_to_clean;
781 buffer_info = &tx_ring->buffer_info[i];
782 eop_desc = buffer_info->next_to_watch;
783
784 do {
785 /* if next_to_watch is not set then there is no work pending */
786 if (!eop_desc)
787 break;
788
789 /* prevent any other reads prior to eop_desc */
790 smp_rmb();
791
792 /* if DD is not set pending work has not been completed */
793 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
794 break;
795
796 /* clear next_to_watch to prevent false hangs */
797 buffer_info->next_to_watch = NULL;
798
799 for (cleaned = false; !cleaned; count++) {
800 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
801 cleaned = (tx_desc == eop_desc);
802 skb = buffer_info->skb;
803
804 if (skb) {
805 unsigned int segs, bytecount;
806
807 /* gso_segs is currently only valid for tcp */
808 segs = skb_shinfo(skb)->gso_segs ?: 1;
809 /* multiply data chunks by size of headers */
810 bytecount = ((segs - 1) * skb_headlen(skb)) +
811 skb->len;
812 total_packets += segs;
813 total_bytes += bytecount;
814 }
815
816 igbvf_put_txbuf(adapter, buffer_info);
817 tx_desc->wb.status = 0;
818
819 i++;
820 if (i == tx_ring->count)
821 i = 0;
822
823 buffer_info = &tx_ring->buffer_info[i];
824 }
825
826 eop_desc = buffer_info->next_to_watch;
827 } while (count < tx_ring->count);
828
829 tx_ring->next_to_clean = i;
830
831 if (unlikely(count && netif_carrier_ok(netdev) &&
832 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
833 /* Make sure that anybody stopping the queue after this
834 * sees the new next_to_clean.
835 */
836 smp_mb();
837 if (netif_queue_stopped(netdev) &&
838 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
839 netif_wake_queue(netdev);
840 ++adapter->restart_queue;
841 }
842 }
843
844 netdev->stats.tx_bytes += total_bytes;
845 netdev->stats.tx_packets += total_packets;
846 return count < tx_ring->count;
847}
848
849static irqreturn_t igbvf_msix_other(int irq, void *data)
850{
851 struct net_device *netdev = data;
852 struct igbvf_adapter *adapter = netdev_priv(netdev);
853 struct e1000_hw *hw = &adapter->hw;
854
855 adapter->int_counter1++;
856
857 hw->mac.get_link_status = 1;
858 if (!test_bit(__IGBVF_DOWN, &adapter->state))
859 mod_timer(&adapter->watchdog_timer, jiffies + 1);
860
861 ew32(EIMS, adapter->eims_other);
862
863 return IRQ_HANDLED;
864}
865
866static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
867{
868 struct net_device *netdev = data;
869 struct igbvf_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
871 struct igbvf_ring *tx_ring = adapter->tx_ring;
872
873 if (tx_ring->set_itr) {
874 writel(tx_ring->itr_val,
875 adapter->hw.hw_addr + tx_ring->itr_register);
876 adapter->tx_ring->set_itr = 0;
877 }
878
879 adapter->total_tx_bytes = 0;
880 adapter->total_tx_packets = 0;
881
882 /* auto mask will automatically re-enable the interrupt when we write
883 * EICS
884 */
885 if (!igbvf_clean_tx_irq(tx_ring))
886 /* Ring was not completely cleaned, so fire another interrupt */
887 ew32(EICS, tx_ring->eims_value);
888 else
889 ew32(EIMS, tx_ring->eims_value);
890
891 return IRQ_HANDLED;
892}
893
894static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
895{
896 struct net_device *netdev = data;
897 struct igbvf_adapter *adapter = netdev_priv(netdev);
898
899 adapter->int_counter0++;
900
901 /* Write the ITR value calculated at the end of the
902 * previous interrupt.
903 */
904 if (adapter->rx_ring->set_itr) {
905 writel(adapter->rx_ring->itr_val,
906 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
907 adapter->rx_ring->set_itr = 0;
908 }
909
910 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
911 adapter->total_rx_bytes = 0;
912 adapter->total_rx_packets = 0;
913 __napi_schedule(&adapter->rx_ring->napi);
914 }
915
916 return IRQ_HANDLED;
917}
918
919#define IGBVF_NO_QUEUE -1
920
921static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
922 int tx_queue, int msix_vector)
923{
924 struct e1000_hw *hw = &adapter->hw;
925 u32 ivar, index;
926
927 /* 82576 uses a table-based method for assigning vectors.
928 * Each queue has a single entry in the table to which we write
929 * a vector number along with a "valid" bit. Sadly, the layout
930 * of the table is somewhat counterintuitive.
931 */
932 if (rx_queue > IGBVF_NO_QUEUE) {
933 index = (rx_queue >> 1);
934 ivar = array_er32(IVAR0, index);
935 if (rx_queue & 0x1) {
936 /* vector goes into third byte of register */
937 ivar = ivar & 0xFF00FFFF;
938 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
939 } else {
940 /* vector goes into low byte of register */
941 ivar = ivar & 0xFFFFFF00;
942 ivar |= msix_vector | E1000_IVAR_VALID;
943 }
944 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
945 array_ew32(IVAR0, index, ivar);
946 }
947 if (tx_queue > IGBVF_NO_QUEUE) {
948 index = (tx_queue >> 1);
949 ivar = array_er32(IVAR0, index);
950 if (tx_queue & 0x1) {
951 /* vector goes into high byte of register */
952 ivar = ivar & 0x00FFFFFF;
953 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
954 } else {
955 /* vector goes into second byte of register */
956 ivar = ivar & 0xFFFF00FF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
958 }
959 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
960 array_ew32(IVAR0, index, ivar);
961 }
962}
963
964/**
965 * igbvf_configure_msix - Configure MSI-X hardware
966 * @adapter: board private structure
967 *
968 * igbvf_configure_msix sets up the hardware to properly
969 * generate MSI-X interrupts.
970 **/
971static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972{
973 u32 tmp;
974 struct e1000_hw *hw = &adapter->hw;
975 struct igbvf_ring *tx_ring = adapter->tx_ring;
976 struct igbvf_ring *rx_ring = adapter->rx_ring;
977 int vector = 0;
978
979 adapter->eims_enable_mask = 0;
980
981 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
982 adapter->eims_enable_mask |= tx_ring->eims_value;
983 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
984 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
985 adapter->eims_enable_mask |= rx_ring->eims_value;
986 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
987
988 /* set vector for other causes, i.e. link changes */
989
990 tmp = (vector++ | E1000_IVAR_VALID);
991
992 ew32(IVAR_MISC, tmp);
993
994 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
995 adapter->eims_other = BIT(vector - 1);
996 e1e_flush();
997}
998
999static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1000{
1001 if (adapter->msix_entries) {
1002 pci_disable_msix(adapter->pdev);
1003 kfree(adapter->msix_entries);
1004 adapter->msix_entries = NULL;
1005 }
1006}
1007
1008/**
1009 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1010 * @adapter: board private structure
1011 *
1012 * Attempt to configure interrupts using the best available
1013 * capabilities of the hardware and kernel.
1014 **/
1015static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1016{
1017 int err = -ENOMEM;
1018 int i;
1019
1020 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1021 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022 GFP_KERNEL);
1023 if (adapter->msix_entries) {
1024 for (i = 0; i < 3; i++)
1025 adapter->msix_entries[i].entry = i;
1026
1027 err = pci_enable_msix_range(adapter->pdev,
1028 adapter->msix_entries, 3, 3);
1029 }
1030
1031 if (err < 0) {
1032 /* MSI-X failed */
1033 dev_err(&adapter->pdev->dev,
1034 "Failed to initialize MSI-X interrupts.\n");
1035 igbvf_reset_interrupt_capability(adapter);
1036 }
1037}
1038
1039/**
1040 * igbvf_request_msix - Initialize MSI-X interrupts
1041 * @adapter: board private structure
1042 *
1043 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1044 * kernel.
1045 **/
1046static int igbvf_request_msix(struct igbvf_adapter *adapter)
1047{
1048 struct net_device *netdev = adapter->netdev;
1049 int err = 0, vector = 0;
1050
1051 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1052 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1053 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1054 } else {
1055 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1056 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057 }
1058
1059 err = request_irq(adapter->msix_entries[vector].vector,
1060 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1061 netdev);
1062 if (err)
1063 goto out;
1064
1065 adapter->tx_ring->itr_register = E1000_EITR(vector);
1066 adapter->tx_ring->itr_val = adapter->current_itr;
1067 vector++;
1068
1069 err = request_irq(adapter->msix_entries[vector].vector,
1070 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1071 netdev);
1072 if (err)
1073 goto out;
1074
1075 adapter->rx_ring->itr_register = E1000_EITR(vector);
1076 adapter->rx_ring->itr_val = adapter->current_itr;
1077 vector++;
1078
1079 err = request_irq(adapter->msix_entries[vector].vector,
1080 igbvf_msix_other, 0, netdev->name, netdev);
1081 if (err)
1082 goto out;
1083
1084 igbvf_configure_msix(adapter);
1085 return 0;
1086out:
1087 return err;
1088}
1089
1090/**
1091 * igbvf_alloc_queues - Allocate memory for all rings
1092 * @adapter: board private structure to initialize
1093 **/
1094static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1095{
1096 struct net_device *netdev = adapter->netdev;
1097
1098 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->tx_ring)
1100 return -ENOMEM;
1101
1102 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->rx_ring) {
1104 kfree(adapter->tx_ring);
1105 return -ENOMEM;
1106 }
1107
1108 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1109
1110 return 0;
1111}
1112
1113/**
1114 * igbvf_request_irq - initialize interrupts
1115 * @adapter: board private structure
1116 *
1117 * Attempts to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
1119 **/
1120static int igbvf_request_irq(struct igbvf_adapter *adapter)
1121{
1122 int err = -1;
1123
1124 /* igbvf supports msi-x only */
1125 if (adapter->msix_entries)
1126 err = igbvf_request_msix(adapter);
1127
1128 if (!err)
1129 return err;
1130
1131 dev_err(&adapter->pdev->dev,
1132 "Unable to allocate interrupt, Error: %d\n", err);
1133
1134 return err;
1135}
1136
1137static void igbvf_free_irq(struct igbvf_adapter *adapter)
1138{
1139 struct net_device *netdev = adapter->netdev;
1140 int vector;
1141
1142 if (adapter->msix_entries) {
1143 for (vector = 0; vector < 3; vector++)
1144 free_irq(adapter->msix_entries[vector].vector, netdev);
1145 }
1146}
1147
1148/**
1149 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1150 * @adapter: board private structure
1151 **/
1152static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153{
1154 struct e1000_hw *hw = &adapter->hw;
1155
1156 ew32(EIMC, ~0);
1157
1158 if (adapter->msix_entries)
1159 ew32(EIAC, 0);
1160}
1161
1162/**
1163 * igbvf_irq_enable - Enable default interrupt generation settings
1164 * @adapter: board private structure
1165 **/
1166static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1167{
1168 struct e1000_hw *hw = &adapter->hw;
1169
1170 ew32(EIAC, adapter->eims_enable_mask);
1171 ew32(EIAM, adapter->eims_enable_mask);
1172 ew32(EIMS, adapter->eims_enable_mask);
1173}
1174
1175/**
1176 * igbvf_poll - NAPI Rx polling callback
1177 * @napi: struct associated with this polling callback
1178 * @budget: amount of packets driver is allowed to process this poll
1179 **/
1180static int igbvf_poll(struct napi_struct *napi, int budget)
1181{
1182 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1183 struct igbvf_adapter *adapter = rx_ring->adapter;
1184 struct e1000_hw *hw = &adapter->hw;
1185 int work_done = 0;
1186
1187 igbvf_clean_rx_irq(adapter, &work_done, budget);
1188
1189 if (work_done == budget)
1190 return budget;
1191
1192 /* Exit the polling mode, but don't re-enable interrupts if stack might
1193 * poll us due to busy-polling
1194 */
1195 if (likely(napi_complete_done(napi, work_done))) {
1196 if (adapter->requested_itr & 3)
1197 igbvf_set_itr(adapter);
1198
1199 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1200 ew32(EIMS, adapter->rx_ring->eims_value);
1201 }
1202
1203 return work_done;
1204}
1205
1206/**
1207 * igbvf_set_rlpml - set receive large packet maximum length
1208 * @adapter: board private structure
1209 *
1210 * Configure the maximum size of packets that will be received
1211 */
1212static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1213{
1214 int max_frame_size;
1215 struct e1000_hw *hw = &adapter->hw;
1216
1217 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1218
1219 spin_lock_bh(&hw->mbx_lock);
1220
1221 e1000_rlpml_set_vf(hw, max_frame_size);
1222
1223 spin_unlock_bh(&hw->mbx_lock);
1224}
1225
1226static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1227 __be16 proto, u16 vid)
1228{
1229 struct igbvf_adapter *adapter = netdev_priv(netdev);
1230 struct e1000_hw *hw = &adapter->hw;
1231
1232 spin_lock_bh(&hw->mbx_lock);
1233
1234 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1235 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1236 spin_unlock_bh(&hw->mbx_lock);
1237 return -EINVAL;
1238 }
1239
1240 spin_unlock_bh(&hw->mbx_lock);
1241
1242 set_bit(vid, adapter->active_vlans);
1243 return 0;
1244}
1245
1246static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1247 __be16 proto, u16 vid)
1248{
1249 struct igbvf_adapter *adapter = netdev_priv(netdev);
1250 struct e1000_hw *hw = &adapter->hw;
1251
1252 spin_lock_bh(&hw->mbx_lock);
1253
1254 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1255 dev_err(&adapter->pdev->dev,
1256 "Failed to remove vlan id %d\n", vid);
1257 spin_unlock_bh(&hw->mbx_lock);
1258 return -EINVAL;
1259 }
1260
1261 spin_unlock_bh(&hw->mbx_lock);
1262
1263 clear_bit(vid, adapter->active_vlans);
1264 return 0;
1265}
1266
1267static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1268{
1269 u16 vid;
1270
1271 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1272 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1273}
1274
1275/**
1276 * igbvf_configure_tx - Configure Transmit Unit after Reset
1277 * @adapter: board private structure
1278 *
1279 * Configure the Tx unit of the MAC after a reset.
1280 **/
1281static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1282{
1283 struct e1000_hw *hw = &adapter->hw;
1284 struct igbvf_ring *tx_ring = adapter->tx_ring;
1285 u64 tdba;
1286 u32 txdctl, dca_txctrl;
1287
1288 /* disable transmits */
1289 txdctl = er32(TXDCTL(0));
1290 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1291 e1e_flush();
1292 msleep(10);
1293
1294 /* Setup the HW Tx Head and Tail descriptor pointers */
1295 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1296 tdba = tx_ring->dma;
1297 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1298 ew32(TDBAH(0), (tdba >> 32));
1299 ew32(TDH(0), 0);
1300 ew32(TDT(0), 0);
1301 tx_ring->head = E1000_TDH(0);
1302 tx_ring->tail = E1000_TDT(0);
1303
1304 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1305 * MUST be delivered in order or it will completely screw up
1306 * our bookkeeping.
1307 */
1308 dca_txctrl = er32(DCA_TXCTRL(0));
1309 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1310 ew32(DCA_TXCTRL(0), dca_txctrl);
1311
1312 /* enable transmits */
1313 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1314 ew32(TXDCTL(0), txdctl);
1315
1316 /* Setup Transmit Descriptor Settings for eop descriptor */
1317 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1318
1319 /* enable Report Status bit */
1320 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1321}
1322
1323/**
1324 * igbvf_setup_srrctl - configure the receive control registers
1325 * @adapter: Board private structure
1326 **/
1327static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1328{
1329 struct e1000_hw *hw = &adapter->hw;
1330 u32 srrctl = 0;
1331
1332 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1333 E1000_SRRCTL_BSIZEHDR_MASK |
1334 E1000_SRRCTL_BSIZEPKT_MASK);
1335
1336 /* Enable queue drop to avoid head of line blocking */
1337 srrctl |= E1000_SRRCTL_DROP_EN;
1338
1339 /* Setup buffer sizes */
1340 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1341 E1000_SRRCTL_BSIZEPKT_SHIFT;
1342
1343 if (adapter->rx_buffer_len < 2048) {
1344 adapter->rx_ps_hdr_size = 0;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1346 } else {
1347 adapter->rx_ps_hdr_size = 128;
1348 srrctl |= adapter->rx_ps_hdr_size <<
1349 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1350 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1351 }
1352
1353 ew32(SRRCTL(0), srrctl);
1354}
1355
1356/**
1357 * igbvf_configure_rx - Configure Receive Unit after Reset
1358 * @adapter: board private structure
1359 *
1360 * Configure the Rx unit of the MAC after a reset.
1361 **/
1362static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1363{
1364 struct e1000_hw *hw = &adapter->hw;
1365 struct igbvf_ring *rx_ring = adapter->rx_ring;
1366 u64 rdba;
1367 u32 rxdctl;
1368
1369 /* disable receives */
1370 rxdctl = er32(RXDCTL(0));
1371 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1372 e1e_flush();
1373 msleep(10);
1374
1375 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1376 * the Base and Length of the Rx Descriptor Ring
1377 */
1378 rdba = rx_ring->dma;
1379 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1380 ew32(RDBAH(0), (rdba >> 32));
1381 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1382 rx_ring->head = E1000_RDH(0);
1383 rx_ring->tail = E1000_RDT(0);
1384 ew32(RDH(0), 0);
1385 ew32(RDT(0), 0);
1386
1387 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1388 rxdctl &= 0xFFF00000;
1389 rxdctl |= IGBVF_RX_PTHRESH;
1390 rxdctl |= IGBVF_RX_HTHRESH << 8;
1391 rxdctl |= IGBVF_RX_WTHRESH << 16;
1392
1393 igbvf_set_rlpml(adapter);
1394
1395 /* enable receives */
1396 ew32(RXDCTL(0), rxdctl);
1397}
1398
1399/**
1400 * igbvf_set_multi - Multicast and Promiscuous mode set
1401 * @netdev: network interface device structure
1402 *
1403 * The set_multi entry point is called whenever the multicast address
1404 * list or the network interface flags are updated. This routine is
1405 * responsible for configuring the hardware for proper multicast,
1406 * promiscuous mode, and all-multi behavior.
1407 **/
1408static void igbvf_set_multi(struct net_device *netdev)
1409{
1410 struct igbvf_adapter *adapter = netdev_priv(netdev);
1411 struct e1000_hw *hw = &adapter->hw;
1412 struct netdev_hw_addr *ha;
1413 u8 *mta_list = NULL;
1414 int i;
1415
1416 if (!netdev_mc_empty(netdev)) {
1417 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1418 GFP_ATOMIC);
1419 if (!mta_list)
1420 return;
1421 }
1422
1423 /* prepare a packed array of only addresses. */
1424 i = 0;
1425 netdev_for_each_mc_addr(ha, netdev)
1426 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1427
1428 spin_lock_bh(&hw->mbx_lock);
1429
1430 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1431
1432 spin_unlock_bh(&hw->mbx_lock);
1433 kfree(mta_list);
1434}
1435
1436/**
1437 * igbvf_set_uni - Configure unicast MAC filters
1438 * @netdev: network interface device structure
1439 *
1440 * This routine is responsible for configuring the hardware for proper
1441 * unicast filters.
1442 **/
1443static int igbvf_set_uni(struct net_device *netdev)
1444{
1445 struct igbvf_adapter *adapter = netdev_priv(netdev);
1446 struct e1000_hw *hw = &adapter->hw;
1447
1448 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1449 pr_err("Too many unicast filters - No Space\n");
1450 return -ENOSPC;
1451 }
1452
1453 spin_lock_bh(&hw->mbx_lock);
1454
1455 /* Clear all unicast MAC filters */
1456 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1457
1458 spin_unlock_bh(&hw->mbx_lock);
1459
1460 if (!netdev_uc_empty(netdev)) {
1461 struct netdev_hw_addr *ha;
1462
1463 /* Add MAC filters one by one */
1464 netdev_for_each_uc_addr(ha, netdev) {
1465 spin_lock_bh(&hw->mbx_lock);
1466
1467 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1468 ha->addr);
1469
1470 spin_unlock_bh(&hw->mbx_lock);
1471 udelay(200);
1472 }
1473 }
1474
1475 return 0;
1476}
1477
1478static void igbvf_set_rx_mode(struct net_device *netdev)
1479{
1480 igbvf_set_multi(netdev);
1481 igbvf_set_uni(netdev);
1482}
1483
1484/**
1485 * igbvf_configure - configure the hardware for Rx and Tx
1486 * @adapter: private board structure
1487 **/
1488static void igbvf_configure(struct igbvf_adapter *adapter)
1489{
1490 igbvf_set_rx_mode(adapter->netdev);
1491
1492 igbvf_restore_vlan(adapter);
1493
1494 igbvf_configure_tx(adapter);
1495 igbvf_setup_srrctl(adapter);
1496 igbvf_configure_rx(adapter);
1497 igbvf_alloc_rx_buffers(adapter->rx_ring,
1498 igbvf_desc_unused(adapter->rx_ring));
1499}
1500
1501/* igbvf_reset - bring the hardware into a known good state
1502 * @adapter: private board structure
1503 *
1504 * This function boots the hardware and enables some settings that
1505 * require a configuration cycle of the hardware - those cannot be
1506 * set/changed during runtime. After reset the device needs to be
1507 * properly configured for Rx, Tx etc.
1508 */
1509static void igbvf_reset(struct igbvf_adapter *adapter)
1510{
1511 struct e1000_mac_info *mac = &adapter->hw.mac;
1512 struct net_device *netdev = adapter->netdev;
1513 struct e1000_hw *hw = &adapter->hw;
1514
1515 spin_lock_bh(&hw->mbx_lock);
1516
1517 /* Allow time for pending master requests to run */
1518 if (mac->ops.reset_hw(hw))
1519 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1520
1521 mac->ops.init_hw(hw);
1522
1523 spin_unlock_bh(&hw->mbx_lock);
1524
1525 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1526 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1527 netdev->addr_len);
1528 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1529 netdev->addr_len);
1530 }
1531
1532 adapter->last_reset = jiffies;
1533}
1534
1535int igbvf_up(struct igbvf_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538
1539 /* hardware has been reset, we need to reload some things */
1540 igbvf_configure(adapter);
1541
1542 clear_bit(__IGBVF_DOWN, &adapter->state);
1543
1544 napi_enable(&adapter->rx_ring->napi);
1545 if (adapter->msix_entries)
1546 igbvf_configure_msix(adapter);
1547
1548 /* Clear any pending interrupts. */
1549 er32(EICR);
1550 igbvf_irq_enable(adapter);
1551
1552 /* start the watchdog */
1553 hw->mac.get_link_status = 1;
1554 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1555
1556 return 0;
1557}
1558
1559void igbvf_down(struct igbvf_adapter *adapter)
1560{
1561 struct net_device *netdev = adapter->netdev;
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 rxdctl, txdctl;
1564
1565 /* signal that we're down so the interrupt handler does not
1566 * reschedule our watchdog timer
1567 */
1568 set_bit(__IGBVF_DOWN, &adapter->state);
1569
1570 /* disable receives in the hardware */
1571 rxdctl = er32(RXDCTL(0));
1572 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1573
1574 netif_carrier_off(netdev);
1575 netif_stop_queue(netdev);
1576
1577 /* disable transmits in the hardware */
1578 txdctl = er32(TXDCTL(0));
1579 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1580
1581 /* flush both disables and wait for them to finish */
1582 e1e_flush();
1583 msleep(10);
1584
1585 napi_disable(&adapter->rx_ring->napi);
1586
1587 igbvf_irq_disable(adapter);
1588
1589 del_timer_sync(&adapter->watchdog_timer);
1590
1591 /* record the stats before reset*/
1592 igbvf_update_stats(adapter);
1593
1594 adapter->link_speed = 0;
1595 adapter->link_duplex = 0;
1596
1597 igbvf_reset(adapter);
1598 igbvf_clean_tx_ring(adapter->tx_ring);
1599 igbvf_clean_rx_ring(adapter->rx_ring);
1600}
1601
1602void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1603{
1604 might_sleep();
1605 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1606 usleep_range(1000, 2000);
1607 igbvf_down(adapter);
1608 igbvf_up(adapter);
1609 clear_bit(__IGBVF_RESETTING, &adapter->state);
1610}
1611
1612/**
1613 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1614 * @adapter: board private structure to initialize
1615 *
1616 * igbvf_sw_init initializes the Adapter private data structure.
1617 * Fields are initialized based on PCI device information and
1618 * OS network device settings (MTU size).
1619 **/
1620static int igbvf_sw_init(struct igbvf_adapter *adapter)
1621{
1622 struct net_device *netdev = adapter->netdev;
1623 s32 rc;
1624
1625 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1626 adapter->rx_ps_hdr_size = 0;
1627 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1628 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1629
1630 adapter->tx_int_delay = 8;
1631 adapter->tx_abs_int_delay = 32;
1632 adapter->rx_int_delay = 0;
1633 adapter->rx_abs_int_delay = 8;
1634 adapter->requested_itr = 3;
1635 adapter->current_itr = IGBVF_START_ITR;
1636
1637 /* Set various function pointers */
1638 adapter->ei->init_ops(&adapter->hw);
1639
1640 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1641 if (rc)
1642 return rc;
1643
1644 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1645 if (rc)
1646 return rc;
1647
1648 igbvf_set_interrupt_capability(adapter);
1649
1650 if (igbvf_alloc_queues(adapter))
1651 return -ENOMEM;
1652
1653 spin_lock_init(&adapter->tx_queue_lock);
1654
1655 /* Explicitly disable IRQ since the NIC can be in any state. */
1656 igbvf_irq_disable(adapter);
1657
1658 spin_lock_init(&adapter->stats_lock);
1659 spin_lock_init(&adapter->hw.mbx_lock);
1660
1661 set_bit(__IGBVF_DOWN, &adapter->state);
1662 return 0;
1663}
1664
1665static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1666{
1667 struct e1000_hw *hw = &adapter->hw;
1668
1669 adapter->stats.last_gprc = er32(VFGPRC);
1670 adapter->stats.last_gorc = er32(VFGORC);
1671 adapter->stats.last_gptc = er32(VFGPTC);
1672 adapter->stats.last_gotc = er32(VFGOTC);
1673 adapter->stats.last_mprc = er32(VFMPRC);
1674 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1675 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1676 adapter->stats.last_gorlbc = er32(VFGORLBC);
1677 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1678
1679 adapter->stats.base_gprc = er32(VFGPRC);
1680 adapter->stats.base_gorc = er32(VFGORC);
1681 adapter->stats.base_gptc = er32(VFGPTC);
1682 adapter->stats.base_gotc = er32(VFGOTC);
1683 adapter->stats.base_mprc = er32(VFMPRC);
1684 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1685 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1686 adapter->stats.base_gorlbc = er32(VFGORLBC);
1687 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1688}
1689
1690/**
1691 * igbvf_open - Called when a network interface is made active
1692 * @netdev: network interface device structure
1693 *
1694 * Returns 0 on success, negative value on failure
1695 *
1696 * The open entry point is called when a network interface is made
1697 * active by the system (IFF_UP). At this point all resources needed
1698 * for transmit and receive operations are allocated, the interrupt
1699 * handler is registered with the OS, the watchdog timer is started,
1700 * and the stack is notified that the interface is ready.
1701 **/
1702static int igbvf_open(struct net_device *netdev)
1703{
1704 struct igbvf_adapter *adapter = netdev_priv(netdev);
1705 struct e1000_hw *hw = &adapter->hw;
1706 int err;
1707
1708 /* disallow open during test */
1709 if (test_bit(__IGBVF_TESTING, &adapter->state))
1710 return -EBUSY;
1711
1712 /* allocate transmit descriptors */
1713 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1714 if (err)
1715 goto err_setup_tx;
1716
1717 /* allocate receive descriptors */
1718 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1719 if (err)
1720 goto err_setup_rx;
1721
1722 /* before we allocate an interrupt, we must be ready to handle it.
1723 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1724 * as soon as we call pci_request_irq, so we have to setup our
1725 * clean_rx handler before we do so.
1726 */
1727 igbvf_configure(adapter);
1728
1729 err = igbvf_request_irq(adapter);
1730 if (err)
1731 goto err_req_irq;
1732
1733 /* From here on the code is the same as igbvf_up() */
1734 clear_bit(__IGBVF_DOWN, &adapter->state);
1735
1736 napi_enable(&adapter->rx_ring->napi);
1737
1738 /* clear any pending interrupts */
1739 er32(EICR);
1740
1741 igbvf_irq_enable(adapter);
1742
1743 /* start the watchdog */
1744 hw->mac.get_link_status = 1;
1745 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1746
1747 return 0;
1748
1749err_req_irq:
1750 igbvf_free_rx_resources(adapter->rx_ring);
1751err_setup_rx:
1752 igbvf_free_tx_resources(adapter->tx_ring);
1753err_setup_tx:
1754 igbvf_reset(adapter);
1755
1756 return err;
1757}
1758
1759/**
1760 * igbvf_close - Disables a network interface
1761 * @netdev: network interface device structure
1762 *
1763 * Returns 0, this is not allowed to fail
1764 *
1765 * The close entry point is called when an interface is de-activated
1766 * by the OS. The hardware is still under the drivers control, but
1767 * needs to be disabled. A global MAC reset is issued to stop the
1768 * hardware, and all transmit and receive resources are freed.
1769 **/
1770static int igbvf_close(struct net_device *netdev)
1771{
1772 struct igbvf_adapter *adapter = netdev_priv(netdev);
1773
1774 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1775 igbvf_down(adapter);
1776
1777 igbvf_free_irq(adapter);
1778
1779 igbvf_free_tx_resources(adapter->tx_ring);
1780 igbvf_free_rx_resources(adapter->rx_ring);
1781
1782 return 0;
1783}
1784
1785/**
1786 * igbvf_set_mac - Change the Ethernet Address of the NIC
1787 * @netdev: network interface device structure
1788 * @p: pointer to an address structure
1789 *
1790 * Returns 0 on success, negative on failure
1791 **/
1792static int igbvf_set_mac(struct net_device *netdev, void *p)
1793{
1794 struct igbvf_adapter *adapter = netdev_priv(netdev);
1795 struct e1000_hw *hw = &adapter->hw;
1796 struct sockaddr *addr = p;
1797
1798 if (!is_valid_ether_addr(addr->sa_data))
1799 return -EADDRNOTAVAIL;
1800
1801 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1802
1803 spin_lock_bh(&hw->mbx_lock);
1804
1805 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1806
1807 spin_unlock_bh(&hw->mbx_lock);
1808
1809 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1810 return -EADDRNOTAVAIL;
1811
1812 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1813
1814 return 0;
1815}
1816
1817#define UPDATE_VF_COUNTER(reg, name) \
1818{ \
1819 u32 current_counter = er32(reg); \
1820 if (current_counter < adapter->stats.last_##name) \
1821 adapter->stats.name += 0x100000000LL; \
1822 adapter->stats.last_##name = current_counter; \
1823 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1824 adapter->stats.name |= current_counter; \
1825}
1826
1827/**
1828 * igbvf_update_stats - Update the board statistics counters
1829 * @adapter: board private structure
1830**/
1831void igbvf_update_stats(struct igbvf_adapter *adapter)
1832{
1833 struct e1000_hw *hw = &adapter->hw;
1834 struct pci_dev *pdev = adapter->pdev;
1835
1836 /* Prevent stats update while adapter is being reset, link is down
1837 * or if the pci connection is down.
1838 */
1839 if (adapter->link_speed == 0)
1840 return;
1841
1842 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1843 return;
1844
1845 if (pci_channel_offline(pdev))
1846 return;
1847
1848 UPDATE_VF_COUNTER(VFGPRC, gprc);
1849 UPDATE_VF_COUNTER(VFGORC, gorc);
1850 UPDATE_VF_COUNTER(VFGPTC, gptc);
1851 UPDATE_VF_COUNTER(VFGOTC, gotc);
1852 UPDATE_VF_COUNTER(VFMPRC, mprc);
1853 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1854 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1855 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1856 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1857
1858 /* Fill out the OS statistics structure */
1859 adapter->netdev->stats.multicast = adapter->stats.mprc;
1860}
1861
1862static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1863{
1864 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1865 adapter->link_speed,
1866 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1867}
1868
1869static bool igbvf_has_link(struct igbvf_adapter *adapter)
1870{
1871 struct e1000_hw *hw = &adapter->hw;
1872 s32 ret_val = E1000_SUCCESS;
1873 bool link_active;
1874
1875 /* If interface is down, stay link down */
1876 if (test_bit(__IGBVF_DOWN, &adapter->state))
1877 return false;
1878
1879 spin_lock_bh(&hw->mbx_lock);
1880
1881 ret_val = hw->mac.ops.check_for_link(hw);
1882
1883 spin_unlock_bh(&hw->mbx_lock);
1884
1885 link_active = !hw->mac.get_link_status;
1886
1887 /* if check for link returns error we will need to reset */
1888 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1889 schedule_work(&adapter->reset_task);
1890
1891 return link_active;
1892}
1893
1894/**
1895 * igbvf_watchdog - Timer Call-back
1896 * @data: pointer to adapter cast into an unsigned long
1897 **/
1898static void igbvf_watchdog(struct timer_list *t)
1899{
1900 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1901
1902 /* Do the rest outside of interrupt context */
1903 schedule_work(&adapter->watchdog_task);
1904}
1905
1906static void igbvf_watchdog_task(struct work_struct *work)
1907{
1908 struct igbvf_adapter *adapter = container_of(work,
1909 struct igbvf_adapter,
1910 watchdog_task);
1911 struct net_device *netdev = adapter->netdev;
1912 struct e1000_mac_info *mac = &adapter->hw.mac;
1913 struct igbvf_ring *tx_ring = adapter->tx_ring;
1914 struct e1000_hw *hw = &adapter->hw;
1915 u32 link;
1916 int tx_pending = 0;
1917
1918 link = igbvf_has_link(adapter);
1919
1920 if (link) {
1921 if (!netif_carrier_ok(netdev)) {
1922 mac->ops.get_link_up_info(&adapter->hw,
1923 &adapter->link_speed,
1924 &adapter->link_duplex);
1925 igbvf_print_link_info(adapter);
1926
1927 netif_carrier_on(netdev);
1928 netif_wake_queue(netdev);
1929 }
1930 } else {
1931 if (netif_carrier_ok(netdev)) {
1932 adapter->link_speed = 0;
1933 adapter->link_duplex = 0;
1934 dev_info(&adapter->pdev->dev, "Link is Down\n");
1935 netif_carrier_off(netdev);
1936 netif_stop_queue(netdev);
1937 }
1938 }
1939
1940 if (netif_carrier_ok(netdev)) {
1941 igbvf_update_stats(adapter);
1942 } else {
1943 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1944 tx_ring->count);
1945 if (tx_pending) {
1946 /* We've lost link, so the controller stops DMA,
1947 * but we've got queued Tx work that's never going
1948 * to get done, so reset controller to flush Tx.
1949 * (Do the reset outside of interrupt context).
1950 */
1951 adapter->tx_timeout_count++;
1952 schedule_work(&adapter->reset_task);
1953 }
1954 }
1955
1956 /* Cause software interrupt to ensure Rx ring is cleaned */
1957 ew32(EICS, adapter->rx_ring->eims_value);
1958
1959 /* Reset the timer */
1960 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1961 mod_timer(&adapter->watchdog_timer,
1962 round_jiffies(jiffies + (2 * HZ)));
1963}
1964
1965#define IGBVF_TX_FLAGS_CSUM 0x00000001
1966#define IGBVF_TX_FLAGS_VLAN 0x00000002
1967#define IGBVF_TX_FLAGS_TSO 0x00000004
1968#define IGBVF_TX_FLAGS_IPV4 0x00000008
1969#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1970#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1971
1972static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1973 u32 type_tucmd, u32 mss_l4len_idx)
1974{
1975 struct e1000_adv_tx_context_desc *context_desc;
1976 struct igbvf_buffer *buffer_info;
1977 u16 i = tx_ring->next_to_use;
1978
1979 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1980 buffer_info = &tx_ring->buffer_info[i];
1981
1982 i++;
1983 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1984
1985 /* set bits to identify this as an advanced context descriptor */
1986 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1987
1988 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1989 context_desc->seqnum_seed = 0;
1990 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1991 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1992
1993 buffer_info->time_stamp = jiffies;
1994 buffer_info->dma = 0;
1995}
1996
1997static int igbvf_tso(struct igbvf_ring *tx_ring,
1998 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1999{
2000 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2001 union {
2002 struct iphdr *v4;
2003 struct ipv6hdr *v6;
2004 unsigned char *hdr;
2005 } ip;
2006 union {
2007 struct tcphdr *tcp;
2008 unsigned char *hdr;
2009 } l4;
2010 u32 paylen, l4_offset;
2011 int err;
2012
2013 if (skb->ip_summed != CHECKSUM_PARTIAL)
2014 return 0;
2015
2016 if (!skb_is_gso(skb))
2017 return 0;
2018
2019 err = skb_cow_head(skb, 0);
2020 if (err < 0)
2021 return err;
2022
2023 ip.hdr = skb_network_header(skb);
2024 l4.hdr = skb_checksum_start(skb);
2025
2026 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2027 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2028
2029 /* initialize outer IP header fields */
2030 if (ip.v4->version == 4) {
2031 unsigned char *csum_start = skb_checksum_start(skb);
2032 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2033
2034 /* IP header will have to cancel out any data that
2035 * is not a part of the outer IP header
2036 */
2037 ip.v4->check = csum_fold(csum_partial(trans_start,
2038 csum_start - trans_start,
2039 0));
2040 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2041
2042 ip.v4->tot_len = 0;
2043 } else {
2044 ip.v6->payload_len = 0;
2045 }
2046
2047 /* determine offset of inner transport header */
2048 l4_offset = l4.hdr - skb->data;
2049
2050 /* compute length of segmentation header */
2051 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2052
2053 /* remove payload length from inner checksum */
2054 paylen = skb->len - l4_offset;
2055 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2056
2057 /* MSS L4LEN IDX */
2058 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2059 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2060
2061 /* VLAN MACLEN IPLEN */
2062 vlan_macip_lens = l4.hdr - ip.hdr;
2063 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2064 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2065
2066 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2067
2068 return 1;
2069}
2070
2071static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2072{
2073 unsigned int offset = 0;
2074
2075 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2076
2077 return offset == skb_checksum_start_offset(skb);
2078}
2079
2080static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2081 u32 tx_flags, __be16 protocol)
2082{
2083 u32 vlan_macip_lens = 0;
2084 u32 type_tucmd = 0;
2085
2086 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2087csum_failed:
2088 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2089 return false;
2090 goto no_csum;
2091 }
2092
2093 switch (skb->csum_offset) {
2094 case offsetof(struct tcphdr, check):
2095 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2096 /* fall through */
2097 case offsetof(struct udphdr, check):
2098 break;
2099 case offsetof(struct sctphdr, checksum):
2100 /* validate that this is actually an SCTP request */
2101 if (((protocol == htons(ETH_P_IP)) &&
2102 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2103 ((protocol == htons(ETH_P_IPV6)) &&
2104 igbvf_ipv6_csum_is_sctp(skb))) {
2105 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2106 break;
2107 }
2108 /* fall through */
2109 default:
2110 skb_checksum_help(skb);
2111 goto csum_failed;
2112 }
2113
2114 vlan_macip_lens = skb_checksum_start_offset(skb) -
2115 skb_network_offset(skb);
2116no_csum:
2117 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2118 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2119
2120 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2121 return true;
2122}
2123
2124static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2125{
2126 struct igbvf_adapter *adapter = netdev_priv(netdev);
2127
2128 /* there is enough descriptors then we don't need to worry */
2129 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2130 return 0;
2131
2132 netif_stop_queue(netdev);
2133
2134 /* Herbert's original patch had:
2135 * smp_mb__after_netif_stop_queue();
2136 * but since that doesn't exist yet, just open code it.
2137 */
2138 smp_mb();
2139
2140 /* We need to check again just in case room has been made available */
2141 if (igbvf_desc_unused(adapter->tx_ring) < size)
2142 return -EBUSY;
2143
2144 netif_wake_queue(netdev);
2145
2146 ++adapter->restart_queue;
2147 return 0;
2148}
2149
2150#define IGBVF_MAX_TXD_PWR 16
2151#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2152
2153static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2154 struct igbvf_ring *tx_ring,
2155 struct sk_buff *skb)
2156{
2157 struct igbvf_buffer *buffer_info;
2158 struct pci_dev *pdev = adapter->pdev;
2159 unsigned int len = skb_headlen(skb);
2160 unsigned int count = 0, i;
2161 unsigned int f;
2162
2163 i = tx_ring->next_to_use;
2164
2165 buffer_info = &tx_ring->buffer_info[i];
2166 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2167 buffer_info->length = len;
2168 /* set time_stamp *before* dma to help avoid a possible race */
2169 buffer_info->time_stamp = jiffies;
2170 buffer_info->mapped_as_page = false;
2171 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2172 DMA_TO_DEVICE);
2173 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2174 goto dma_error;
2175
2176 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2177 const skb_frag_t *frag;
2178
2179 count++;
2180 i++;
2181 if (i == tx_ring->count)
2182 i = 0;
2183
2184 frag = &skb_shinfo(skb)->frags[f];
2185 len = skb_frag_size(frag);
2186
2187 buffer_info = &tx_ring->buffer_info[i];
2188 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2189 buffer_info->length = len;
2190 buffer_info->time_stamp = jiffies;
2191 buffer_info->mapped_as_page = true;
2192 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2193 DMA_TO_DEVICE);
2194 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2195 goto dma_error;
2196 }
2197
2198 tx_ring->buffer_info[i].skb = skb;
2199
2200 return ++count;
2201
2202dma_error:
2203 dev_err(&pdev->dev, "TX DMA map failed\n");
2204
2205 /* clear timestamp and dma mappings for failed buffer_info mapping */
2206 buffer_info->dma = 0;
2207 buffer_info->time_stamp = 0;
2208 buffer_info->length = 0;
2209 buffer_info->mapped_as_page = false;
2210 if (count)
2211 count--;
2212
2213 /* clear timestamp and dma mappings for remaining portion of packet */
2214 while (count--) {
2215 if (i == 0)
2216 i += tx_ring->count;
2217 i--;
2218 buffer_info = &tx_ring->buffer_info[i];
2219 igbvf_put_txbuf(adapter, buffer_info);
2220 }
2221
2222 return 0;
2223}
2224
2225static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2226 struct igbvf_ring *tx_ring,
2227 int tx_flags, int count,
2228 unsigned int first, u32 paylen,
2229 u8 hdr_len)
2230{
2231 union e1000_adv_tx_desc *tx_desc = NULL;
2232 struct igbvf_buffer *buffer_info;
2233 u32 olinfo_status = 0, cmd_type_len;
2234 unsigned int i;
2235
2236 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2237 E1000_ADVTXD_DCMD_DEXT);
2238
2239 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2240 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2241
2242 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2243 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2244
2245 /* insert tcp checksum */
2246 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2247
2248 /* insert ip checksum */
2249 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2250 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2251
2252 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2253 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2254 }
2255
2256 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2257
2258 i = tx_ring->next_to_use;
2259 while (count--) {
2260 buffer_info = &tx_ring->buffer_info[i];
2261 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2262 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2263 tx_desc->read.cmd_type_len =
2264 cpu_to_le32(cmd_type_len | buffer_info->length);
2265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2266 i++;
2267 if (i == tx_ring->count)
2268 i = 0;
2269 }
2270
2271 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2272 /* Force memory writes to complete before letting h/w
2273 * know there are new descriptors to fetch. (Only
2274 * applicable for weak-ordered memory model archs,
2275 * such as IA-64).
2276 */
2277 wmb();
2278
2279 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2280 tx_ring->next_to_use = i;
2281 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2282}
2283
2284static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2285 struct net_device *netdev,
2286 struct igbvf_ring *tx_ring)
2287{
2288 struct igbvf_adapter *adapter = netdev_priv(netdev);
2289 unsigned int first, tx_flags = 0;
2290 u8 hdr_len = 0;
2291 int count = 0;
2292 int tso = 0;
2293 __be16 protocol = vlan_get_protocol(skb);
2294
2295 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296 dev_kfree_skb_any(skb);
2297 return NETDEV_TX_OK;
2298 }
2299
2300 if (skb->len <= 0) {
2301 dev_kfree_skb_any(skb);
2302 return NETDEV_TX_OK;
2303 }
2304
2305 /* need: count + 4 desc gap to keep tail from touching
2306 * + 2 desc gap to keep tail from touching head,
2307 * + 1 desc for skb->data,
2308 * + 1 desc for context descriptor,
2309 * head, otherwise try next time
2310 */
2311 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2312 /* this is a hard error */
2313 return NETDEV_TX_BUSY;
2314 }
2315
2316 if (skb_vlan_tag_present(skb)) {
2317 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2318 tx_flags |= (skb_vlan_tag_get(skb) <<
2319 IGBVF_TX_FLAGS_VLAN_SHIFT);
2320 }
2321
2322 if (protocol == htons(ETH_P_IP))
2323 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2324
2325 first = tx_ring->next_to_use;
2326
2327 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2328 if (unlikely(tso < 0)) {
2329 dev_kfree_skb_any(skb);
2330 return NETDEV_TX_OK;
2331 }
2332
2333 if (tso)
2334 tx_flags |= IGBVF_TX_FLAGS_TSO;
2335 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2336 (skb->ip_summed == CHECKSUM_PARTIAL))
2337 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2338
2339 /* count reflects descriptors mapped, if 0 then mapping error
2340 * has occurred and we need to rewind the descriptor queue
2341 */
2342 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2343
2344 if (count) {
2345 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2346 first, skb->len, hdr_len);
2347 /* Make sure there is space in the ring for the next send. */
2348 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2349 } else {
2350 dev_kfree_skb_any(skb);
2351 tx_ring->buffer_info[first].time_stamp = 0;
2352 tx_ring->next_to_use = first;
2353 }
2354
2355 return NETDEV_TX_OK;
2356}
2357
2358static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2359 struct net_device *netdev)
2360{
2361 struct igbvf_adapter *adapter = netdev_priv(netdev);
2362 struct igbvf_ring *tx_ring;
2363
2364 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2365 dev_kfree_skb_any(skb);
2366 return NETDEV_TX_OK;
2367 }
2368
2369 tx_ring = &adapter->tx_ring[0];
2370
2371 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2372}
2373
2374/**
2375 * igbvf_tx_timeout - Respond to a Tx Hang
2376 * @netdev: network interface device structure
2377 **/
2378static void igbvf_tx_timeout(struct net_device *netdev)
2379{
2380 struct igbvf_adapter *adapter = netdev_priv(netdev);
2381
2382 /* Do the reset outside of interrupt context */
2383 adapter->tx_timeout_count++;
2384 schedule_work(&adapter->reset_task);
2385}
2386
2387static void igbvf_reset_task(struct work_struct *work)
2388{
2389 struct igbvf_adapter *adapter;
2390
2391 adapter = container_of(work, struct igbvf_adapter, reset_task);
2392
2393 igbvf_reinit_locked(adapter);
2394}
2395
2396/**
2397 * igbvf_change_mtu - Change the Maximum Transfer Unit
2398 * @netdev: network interface device structure
2399 * @new_mtu: new value for maximum frame size
2400 *
2401 * Returns 0 on success, negative on failure
2402 **/
2403static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2404{
2405 struct igbvf_adapter *adapter = netdev_priv(netdev);
2406 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2407
2408 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2409 usleep_range(1000, 2000);
2410 /* igbvf_down has a dependency on max_frame_size */
2411 adapter->max_frame_size = max_frame;
2412 if (netif_running(netdev))
2413 igbvf_down(adapter);
2414
2415 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2416 * means we reserve 2 more, this pushes us to allocate from the next
2417 * larger slab size.
2418 * i.e. RXBUFFER_2048 --> size-4096 slab
2419 * However with the new *_jumbo_rx* routines, jumbo receives will use
2420 * fragmented skbs
2421 */
2422
2423 if (max_frame <= 1024)
2424 adapter->rx_buffer_len = 1024;
2425 else if (max_frame <= 2048)
2426 adapter->rx_buffer_len = 2048;
2427 else
2428#if (PAGE_SIZE / 2) > 16384
2429 adapter->rx_buffer_len = 16384;
2430#else
2431 adapter->rx_buffer_len = PAGE_SIZE / 2;
2432#endif
2433
2434 /* adjust allocation if LPE protects us, and we aren't using SBP */
2435 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2436 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2437 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2438 ETH_FCS_LEN;
2439
2440 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2441 netdev->mtu, new_mtu);
2442 netdev->mtu = new_mtu;
2443
2444 if (netif_running(netdev))
2445 igbvf_up(adapter);
2446 else
2447 igbvf_reset(adapter);
2448
2449 clear_bit(__IGBVF_RESETTING, &adapter->state);
2450
2451 return 0;
2452}
2453
2454static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2455{
2456 switch (cmd) {
2457 default:
2458 return -EOPNOTSUPP;
2459 }
2460}
2461
2462static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2463{
2464 struct net_device *netdev = pci_get_drvdata(pdev);
2465 struct igbvf_adapter *adapter = netdev_priv(netdev);
2466#ifdef CONFIG_PM
2467 int retval = 0;
2468#endif
2469
2470 netif_device_detach(netdev);
2471
2472 if (netif_running(netdev)) {
2473 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2474 igbvf_down(adapter);
2475 igbvf_free_irq(adapter);
2476 }
2477
2478#ifdef CONFIG_PM
2479 retval = pci_save_state(pdev);
2480 if (retval)
2481 return retval;
2482#endif
2483
2484 pci_disable_device(pdev);
2485
2486 return 0;
2487}
2488
2489#ifdef CONFIG_PM
2490static int igbvf_resume(struct pci_dev *pdev)
2491{
2492 struct net_device *netdev = pci_get_drvdata(pdev);
2493 struct igbvf_adapter *adapter = netdev_priv(netdev);
2494 u32 err;
2495
2496 pci_restore_state(pdev);
2497 err = pci_enable_device_mem(pdev);
2498 if (err) {
2499 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2500 return err;
2501 }
2502
2503 pci_set_master(pdev);
2504
2505 if (netif_running(netdev)) {
2506 err = igbvf_request_irq(adapter);
2507 if (err)
2508 return err;
2509 }
2510
2511 igbvf_reset(adapter);
2512
2513 if (netif_running(netdev))
2514 igbvf_up(adapter);
2515
2516 netif_device_attach(netdev);
2517
2518 return 0;
2519}
2520#endif
2521
2522static void igbvf_shutdown(struct pci_dev *pdev)
2523{
2524 igbvf_suspend(pdev, PMSG_SUSPEND);
2525}
2526
2527#ifdef CONFIG_NET_POLL_CONTROLLER
2528/* Polling 'interrupt' - used by things like netconsole to send skbs
2529 * without having to re-enable interrupts. It's not called while
2530 * the interrupt routine is executing.
2531 */
2532static void igbvf_netpoll(struct net_device *netdev)
2533{
2534 struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536 disable_irq(adapter->pdev->irq);
2537
2538 igbvf_clean_tx_irq(adapter->tx_ring);
2539
2540 enable_irq(adapter->pdev->irq);
2541}
2542#endif
2543
2544/**
2545 * igbvf_io_error_detected - called when PCI error is detected
2546 * @pdev: Pointer to PCI device
2547 * @state: The current pci connection state
2548 *
2549 * This function is called after a PCI bus error affecting
2550 * this device has been detected.
2551 */
2552static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2553 pci_channel_state_t state)
2554{
2555 struct net_device *netdev = pci_get_drvdata(pdev);
2556 struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558 netif_device_detach(netdev);
2559
2560 if (state == pci_channel_io_perm_failure)
2561 return PCI_ERS_RESULT_DISCONNECT;
2562
2563 if (netif_running(netdev))
2564 igbvf_down(adapter);
2565 pci_disable_device(pdev);
2566
2567 /* Request a slot slot reset. */
2568 return PCI_ERS_RESULT_NEED_RESET;
2569}
2570
2571/**
2572 * igbvf_io_slot_reset - called after the pci bus has been reset.
2573 * @pdev: Pointer to PCI device
2574 *
2575 * Restart the card from scratch, as if from a cold-boot. Implementation
2576 * resembles the first-half of the igbvf_resume routine.
2577 */
2578static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2579{
2580 struct net_device *netdev = pci_get_drvdata(pdev);
2581 struct igbvf_adapter *adapter = netdev_priv(netdev);
2582
2583 if (pci_enable_device_mem(pdev)) {
2584 dev_err(&pdev->dev,
2585 "Cannot re-enable PCI device after reset.\n");
2586 return PCI_ERS_RESULT_DISCONNECT;
2587 }
2588 pci_set_master(pdev);
2589
2590 igbvf_reset(adapter);
2591
2592 return PCI_ERS_RESULT_RECOVERED;
2593}
2594
2595/**
2596 * igbvf_io_resume - called when traffic can start flowing again.
2597 * @pdev: Pointer to PCI device
2598 *
2599 * This callback is called when the error recovery driver tells us that
2600 * its OK to resume normal operation. Implementation resembles the
2601 * second-half of the igbvf_resume routine.
2602 */
2603static void igbvf_io_resume(struct pci_dev *pdev)
2604{
2605 struct net_device *netdev = pci_get_drvdata(pdev);
2606 struct igbvf_adapter *adapter = netdev_priv(netdev);
2607
2608 if (netif_running(netdev)) {
2609 if (igbvf_up(adapter)) {
2610 dev_err(&pdev->dev,
2611 "can't bring device back up after reset\n");
2612 return;
2613 }
2614 }
2615
2616 netif_device_attach(netdev);
2617}
2618
2619static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2620{
2621 struct e1000_hw *hw = &adapter->hw;
2622 struct net_device *netdev = adapter->netdev;
2623 struct pci_dev *pdev = adapter->pdev;
2624
2625 if (hw->mac.type == e1000_vfadapt_i350)
2626 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627 else
2628 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2630}
2631
2632static int igbvf_set_features(struct net_device *netdev,
2633 netdev_features_t features)
2634{
2635 struct igbvf_adapter *adapter = netdev_priv(netdev);
2636
2637 if (features & NETIF_F_RXCSUM)
2638 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639 else
2640 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2641
2642 return 0;
2643}
2644
2645#define IGBVF_MAX_MAC_HDR_LEN 127
2646#define IGBVF_MAX_NETWORK_HDR_LEN 511
2647
2648static netdev_features_t
2649igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650 netdev_features_t features)
2651{
2652 unsigned int network_hdr_len, mac_hdr_len;
2653
2654 /* Make certain the headers can be described by a context descriptor */
2655 mac_hdr_len = skb_network_header(skb) - skb->data;
2656 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657 return features & ~(NETIF_F_HW_CSUM |
2658 NETIF_F_SCTP_CRC |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_TSO |
2661 NETIF_F_TSO6);
2662
2663 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2665 return features & ~(NETIF_F_HW_CSUM |
2666 NETIF_F_SCTP_CRC |
2667 NETIF_F_TSO |
2668 NETIF_F_TSO6);
2669
2670 /* We can only support IPV4 TSO in tunnels if we can mangle the
2671 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2672 */
2673 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674 features &= ~NETIF_F_TSO;
2675
2676 return features;
2677}
2678
2679static const struct net_device_ops igbvf_netdev_ops = {
2680 .ndo_open = igbvf_open,
2681 .ndo_stop = igbvf_close,
2682 .ndo_start_xmit = igbvf_xmit_frame,
2683 .ndo_set_rx_mode = igbvf_set_rx_mode,
2684 .ndo_set_mac_address = igbvf_set_mac,
2685 .ndo_change_mtu = igbvf_change_mtu,
2686 .ndo_do_ioctl = igbvf_ioctl,
2687 .ndo_tx_timeout = igbvf_tx_timeout,
2688 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2689 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2690#ifdef CONFIG_NET_POLL_CONTROLLER
2691 .ndo_poll_controller = igbvf_netpoll,
2692#endif
2693 .ndo_set_features = igbvf_set_features,
2694 .ndo_features_check = igbvf_features_check,
2695};
2696
2697/**
2698 * igbvf_probe - Device Initialization Routine
2699 * @pdev: PCI device information struct
2700 * @ent: entry in igbvf_pci_tbl
2701 *
2702 * Returns 0 on success, negative on failure
2703 *
2704 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705 * The OS initialization, configuring of the adapter private structure,
2706 * and a hardware reset occur.
2707 **/
2708static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2709{
2710 struct net_device *netdev;
2711 struct igbvf_adapter *adapter;
2712 struct e1000_hw *hw;
2713 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714
2715 static int cards_found;
2716 int err, pci_using_dac;
2717
2718 err = pci_enable_device_mem(pdev);
2719 if (err)
2720 return err;
2721
2722 pci_using_dac = 0;
2723 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2724 if (!err) {
2725 pci_using_dac = 1;
2726 } else {
2727 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2728 if (err) {
2729 dev_err(&pdev->dev,
2730 "No usable DMA configuration, aborting\n");
2731 goto err_dma;
2732 }
2733 }
2734
2735 err = pci_request_regions(pdev, igbvf_driver_name);
2736 if (err)
2737 goto err_pci_reg;
2738
2739 pci_set_master(pdev);
2740
2741 err = -ENOMEM;
2742 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2743 if (!netdev)
2744 goto err_alloc_etherdev;
2745
2746 SET_NETDEV_DEV(netdev, &pdev->dev);
2747
2748 pci_set_drvdata(pdev, netdev);
2749 adapter = netdev_priv(netdev);
2750 hw = &adapter->hw;
2751 adapter->netdev = netdev;
2752 adapter->pdev = pdev;
2753 adapter->ei = ei;
2754 adapter->pba = ei->pba;
2755 adapter->flags = ei->flags;
2756 adapter->hw.back = adapter;
2757 adapter->hw.mac.type = ei->mac;
2758 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2759
2760 /* PCI config space info */
2761
2762 hw->vendor_id = pdev->vendor;
2763 hw->device_id = pdev->device;
2764 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2765 hw->subsystem_device_id = pdev->subsystem_device;
2766 hw->revision_id = pdev->revision;
2767
2768 err = -EIO;
2769 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2770 pci_resource_len(pdev, 0));
2771
2772 if (!adapter->hw.hw_addr)
2773 goto err_ioremap;
2774
2775 if (ei->get_variants) {
2776 err = ei->get_variants(adapter);
2777 if (err)
2778 goto err_get_variants;
2779 }
2780
2781 /* setup adapter struct */
2782 err = igbvf_sw_init(adapter);
2783 if (err)
2784 goto err_sw_init;
2785
2786 /* construct the net_device struct */
2787 netdev->netdev_ops = &igbvf_netdev_ops;
2788
2789 igbvf_set_ethtool_ops(netdev);
2790 netdev->watchdog_timeo = 5 * HZ;
2791 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2792
2793 adapter->bd_number = cards_found++;
2794
2795 netdev->hw_features = NETIF_F_SG |
2796 NETIF_F_TSO |
2797 NETIF_F_TSO6 |
2798 NETIF_F_RXCSUM |
2799 NETIF_F_HW_CSUM |
2800 NETIF_F_SCTP_CRC;
2801
2802#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2803 NETIF_F_GSO_GRE_CSUM | \
2804 NETIF_F_GSO_IPXIP4 | \
2805 NETIF_F_GSO_IPXIP6 | \
2806 NETIF_F_GSO_UDP_TUNNEL | \
2807 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2808
2809 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2810 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2811 IGBVF_GSO_PARTIAL_FEATURES;
2812
2813 netdev->features = netdev->hw_features;
2814
2815 if (pci_using_dac)
2816 netdev->features |= NETIF_F_HIGHDMA;
2817
2818 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2819 netdev->mpls_features |= NETIF_F_HW_CSUM;
2820 netdev->hw_enc_features |= netdev->vlan_features;
2821
2822 /* set this bit last since it cannot be part of vlan_features */
2823 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2824 NETIF_F_HW_VLAN_CTAG_RX |
2825 NETIF_F_HW_VLAN_CTAG_TX;
2826
2827 /* MTU range: 68 - 9216 */
2828 netdev->min_mtu = ETH_MIN_MTU;
2829 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2830
2831 spin_lock_bh(&hw->mbx_lock);
2832
2833 /*reset the controller to put the device in a known good state */
2834 err = hw->mac.ops.reset_hw(hw);
2835 if (err) {
2836 dev_info(&pdev->dev,
2837 "PF still in reset state. Is the PF interface up?\n");
2838 } else {
2839 err = hw->mac.ops.read_mac_addr(hw);
2840 if (err)
2841 dev_info(&pdev->dev, "Error reading MAC address.\n");
2842 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2843 dev_info(&pdev->dev,
2844 "MAC address not assigned by administrator.\n");
2845 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2846 netdev->addr_len);
2847 }
2848
2849 spin_unlock_bh(&hw->mbx_lock);
2850
2851 if (!is_valid_ether_addr(netdev->dev_addr)) {
2852 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2853 eth_hw_addr_random(netdev);
2854 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2855 netdev->addr_len);
2856 }
2857
2858 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2859
2860 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2861 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2862
2863 /* ring size defaults */
2864 adapter->rx_ring->count = 1024;
2865 adapter->tx_ring->count = 1024;
2866
2867 /* reset the hardware with the new settings */
2868 igbvf_reset(adapter);
2869
2870 /* set hardware-specific flags */
2871 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2872 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2873
2874 strcpy(netdev->name, "eth%d");
2875 err = register_netdev(netdev);
2876 if (err)
2877 goto err_hw_init;
2878
2879 /* tell the stack to leave us alone until igbvf_open() is called */
2880 netif_carrier_off(netdev);
2881 netif_stop_queue(netdev);
2882
2883 igbvf_print_device_info(adapter);
2884
2885 igbvf_initialize_last_counter_stats(adapter);
2886
2887 return 0;
2888
2889err_hw_init:
2890 kfree(adapter->tx_ring);
2891 kfree(adapter->rx_ring);
2892err_sw_init:
2893 igbvf_reset_interrupt_capability(adapter);
2894err_get_variants:
2895 iounmap(adapter->hw.hw_addr);
2896err_ioremap:
2897 free_netdev(netdev);
2898err_alloc_etherdev:
2899 pci_release_regions(pdev);
2900err_pci_reg:
2901err_dma:
2902 pci_disable_device(pdev);
2903 return err;
2904}
2905
2906/**
2907 * igbvf_remove - Device Removal Routine
2908 * @pdev: PCI device information struct
2909 *
2910 * igbvf_remove is called by the PCI subsystem to alert the driver
2911 * that it should release a PCI device. The could be caused by a
2912 * Hot-Plug event, or because the driver is going to be removed from
2913 * memory.
2914 **/
2915static void igbvf_remove(struct pci_dev *pdev)
2916{
2917 struct net_device *netdev = pci_get_drvdata(pdev);
2918 struct igbvf_adapter *adapter = netdev_priv(netdev);
2919 struct e1000_hw *hw = &adapter->hw;
2920
2921 /* The watchdog timer may be rescheduled, so explicitly
2922 * disable it from being rescheduled.
2923 */
2924 set_bit(__IGBVF_DOWN, &adapter->state);
2925 del_timer_sync(&adapter->watchdog_timer);
2926
2927 cancel_work_sync(&adapter->reset_task);
2928 cancel_work_sync(&adapter->watchdog_task);
2929
2930 unregister_netdev(netdev);
2931
2932 igbvf_reset_interrupt_capability(adapter);
2933
2934 /* it is important to delete the NAPI struct prior to freeing the
2935 * Rx ring so that you do not end up with null pointer refs
2936 */
2937 netif_napi_del(&adapter->rx_ring->napi);
2938 kfree(adapter->tx_ring);
2939 kfree(adapter->rx_ring);
2940
2941 iounmap(hw->hw_addr);
2942 if (hw->flash_address)
2943 iounmap(hw->flash_address);
2944 pci_release_regions(pdev);
2945
2946 free_netdev(netdev);
2947
2948 pci_disable_device(pdev);
2949}
2950
2951/* PCI Error Recovery (ERS) */
2952static const struct pci_error_handlers igbvf_err_handler = {
2953 .error_detected = igbvf_io_error_detected,
2954 .slot_reset = igbvf_io_slot_reset,
2955 .resume = igbvf_io_resume,
2956};
2957
2958static const struct pci_device_id igbvf_pci_tbl[] = {
2959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2961 { } /* terminate list */
2962};
2963MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2964
2965/* PCI Device API Driver */
2966static struct pci_driver igbvf_driver = {
2967 .name = igbvf_driver_name,
2968 .id_table = igbvf_pci_tbl,
2969 .probe = igbvf_probe,
2970 .remove = igbvf_remove,
2971#ifdef CONFIG_PM
2972 /* Power Management Hooks */
2973 .suspend = igbvf_suspend,
2974 .resume = igbvf_resume,
2975#endif
2976 .shutdown = igbvf_shutdown,
2977 .err_handler = &igbvf_err_handler
2978};
2979
2980/**
2981 * igbvf_init_module - Driver Registration Routine
2982 *
2983 * igbvf_init_module is the first routine called when the driver is
2984 * loaded. All it does is register with the PCI subsystem.
2985 **/
2986static int __init igbvf_init_module(void)
2987{
2988 int ret;
2989
2990 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2991 pr_info("%s\n", igbvf_copyright);
2992
2993 ret = pci_register_driver(&igbvf_driver);
2994
2995 return ret;
2996}
2997module_init(igbvf_init_module);
2998
2999/**
3000 * igbvf_exit_module - Driver Exit Cleanup Routine
3001 *
3002 * igbvf_exit_module is called just before the driver is removed
3003 * from memory.
3004 **/
3005static void __exit igbvf_exit_module(void)
3006{
3007 pci_unregister_driver(&igbvf_driver);
3008}
3009module_exit(igbvf_exit_module);
3010
3011MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3012MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3013MODULE_LICENSE("GPL v2");
3014MODULE_VERSION(DRV_VERSION);
3015
3016/* netdev.c */