Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <net/ip.h>
28#include <net/ncsi.h>
29
30#include "ftgmac100.h"
31
32#define DRV_NAME "ftgmac100"
33
34/* Arbitrary values, I am not sure the HW has limits */
35#define MAX_RX_QUEUE_ENTRIES 1024
36#define MAX_TX_QUEUE_ENTRIES 1024
37#define MIN_RX_QUEUE_ENTRIES 32
38#define MIN_TX_QUEUE_ENTRIES 32
39
40/* Defaults */
41#define DEF_RX_QUEUE_ENTRIES 128
42#define DEF_TX_QUEUE_ENTRIES 128
43
44#define MAX_PKT_SIZE 1536
45#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
46
47/* Min number of tx ring entries before stopping queue */
48#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
49
50#define FTGMAC_100MHZ 100000000
51#define FTGMAC_25MHZ 25000000
52
53struct ftgmac100 {
54 /* Registers */
55 struct resource *res;
56 void __iomem *base;
57
58 /* Rx ring */
59 unsigned int rx_q_entries;
60 struct ftgmac100_rxdes *rxdes;
61 dma_addr_t rxdes_dma;
62 struct sk_buff **rx_skbs;
63 unsigned int rx_pointer;
64 u32 rxdes0_edorr_mask;
65
66 /* Tx ring */
67 unsigned int tx_q_entries;
68 struct ftgmac100_txdes *txdes;
69 dma_addr_t txdes_dma;
70 struct sk_buff **tx_skbs;
71 unsigned int tx_clean_pointer;
72 unsigned int tx_pointer;
73 u32 txdes0_edotr_mask;
74
75 /* Used to signal the reset task of ring change request */
76 unsigned int new_rx_q_entries;
77 unsigned int new_tx_q_entries;
78
79 /* Scratch page to use when rx skb alloc fails */
80 void *rx_scratch;
81 dma_addr_t rx_scratch_dma;
82
83 /* Component structures */
84 struct net_device *netdev;
85 struct device *dev;
86 struct ncsi_dev *ndev;
87 struct napi_struct napi;
88 struct work_struct reset_task;
89 struct mii_bus *mii_bus;
90 struct clk *clk;
91
92 /* AST2500/AST2600 RMII ref clock gate */
93 struct clk *rclk;
94
95 /* Link management */
96 int cur_speed;
97 int cur_duplex;
98 bool use_ncsi;
99
100 /* Multicast filter settings */
101 u32 maht0;
102 u32 maht1;
103
104 /* Flow control settings */
105 bool tx_pause;
106 bool rx_pause;
107 bool aneg_pause;
108
109 /* Misc */
110 bool need_mac_restart;
111 bool is_aspeed;
112};
113
114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
115{
116 struct net_device *netdev = priv->netdev;
117 int i;
118
119 /* NOTE: reset clears all registers */
120 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122 priv->base + FTGMAC100_OFFSET_MACCR);
123 for (i = 0; i < 200; i++) {
124 unsigned int maccr;
125
126 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127 if (!(maccr & FTGMAC100_MACCR_SW_RST))
128 return 0;
129
130 udelay(1);
131 }
132
133 netdev_err(netdev, "Hardware reset failed\n");
134 return -EIO;
135}
136
137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
138{
139 u32 maccr = 0;
140
141 switch (priv->cur_speed) {
142 case SPEED_10:
143 case 0: /* no link */
144 break;
145
146 case SPEED_100:
147 maccr |= FTGMAC100_MACCR_FAST_MODE;
148 break;
149
150 case SPEED_1000:
151 maccr |= FTGMAC100_MACCR_GIGA_MODE;
152 break;
153 default:
154 netdev_err(priv->netdev, "Unknown speed %d !\n",
155 priv->cur_speed);
156 break;
157 }
158
159 /* (Re)initialize the queue pointers */
160 priv->rx_pointer = 0;
161 priv->tx_clean_pointer = 0;
162 priv->tx_pointer = 0;
163
164 /* The doc says reset twice with 10us interval */
165 if (ftgmac100_reset_mac(priv, maccr))
166 return -EIO;
167 usleep_range(10, 1000);
168 return ftgmac100_reset_mac(priv, maccr);
169}
170
171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
172{
173 unsigned int maddr = mac[0] << 8 | mac[1];
174 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
175
176 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
178}
179
180static int ftgmac100_initial_mac(struct ftgmac100 *priv)
181{
182 u8 mac[ETH_ALEN];
183 unsigned int m;
184 unsigned int l;
185 int err;
186
187 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
188 if (err == -EPROBE_DEFER)
189 return err;
190 if (!err) {
191 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
192 priv->netdev->dev_addr);
193 return 0;
194 }
195
196 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
197 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
198
199 mac[0] = (m >> 8) & 0xff;
200 mac[1] = m & 0xff;
201 mac[2] = (l >> 24) & 0xff;
202 mac[3] = (l >> 16) & 0xff;
203 mac[4] = (l >> 8) & 0xff;
204 mac[5] = l & 0xff;
205
206 if (is_valid_ether_addr(mac)) {
207 eth_hw_addr_set(priv->netdev, mac);
208 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
209 } else {
210 eth_hw_addr_random(priv->netdev);
211 dev_info(priv->dev, "Generated random MAC address %pM\n",
212 priv->netdev->dev_addr);
213 }
214
215 return 0;
216}
217
218static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
219{
220 int ret;
221
222 ret = eth_prepare_mac_addr_change(dev, p);
223 if (ret < 0)
224 return ret;
225
226 eth_commit_mac_addr_change(dev, p);
227 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
228
229 return 0;
230}
231
232static void ftgmac100_config_pause(struct ftgmac100 *priv)
233{
234 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
235
236 /* Throttle tx queue when receiving pause frames */
237 if (priv->rx_pause)
238 fcr |= FTGMAC100_FCR_FC_EN;
239
240 /* Enables sending pause frames when the RX queue is past a
241 * certain threshold.
242 */
243 if (priv->tx_pause)
244 fcr |= FTGMAC100_FCR_FCTHR_EN;
245
246 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
247}
248
249static void ftgmac100_init_hw(struct ftgmac100 *priv)
250{
251 u32 reg, rfifo_sz, tfifo_sz;
252
253 /* Clear stale interrupts */
254 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
255 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
256
257 /* Setup RX ring buffer base */
258 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
259
260 /* Setup TX ring buffer base */
261 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
262
263 /* Configure RX buffer size */
264 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
265 priv->base + FTGMAC100_OFFSET_RBSR);
266
267 /* Set RX descriptor autopoll */
268 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
269 priv->base + FTGMAC100_OFFSET_APTC);
270
271 /* Write MAC address */
272 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
273
274 /* Write multicast filter */
275 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
276 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
277
278 /* Configure descriptor sizes and increase burst sizes according
279 * to values in Aspeed SDK. The FIFO arbitration is enabled and
280 * the thresholds set based on the recommended values in the
281 * AST2400 specification.
282 */
283 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
284 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
285 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
286 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
287 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
288 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
289 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
290 priv->base + FTGMAC100_OFFSET_DBLAC);
291
292 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
293 * mitigation doesn't seem to provide any benefit with NAPI so leave
294 * it at that.
295 */
296 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
297 FTGMAC100_ITC_TXINT_THR(1),
298 priv->base + FTGMAC100_OFFSET_ITC);
299
300 /* Configure FIFO sizes in the TPAFCR register */
301 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
302 rfifo_sz = reg & 0x00000007;
303 tfifo_sz = (reg >> 3) & 0x00000007;
304 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
305 reg &= ~0x3f000000;
306 reg |= (tfifo_sz << 27);
307 reg |= (rfifo_sz << 24);
308 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
309}
310
311static void ftgmac100_start_hw(struct ftgmac100 *priv)
312{
313 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
314
315 /* Keep the original GMAC and FAST bits */
316 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
317
318 /* Add all the main enable bits */
319 maccr |= FTGMAC100_MACCR_TXDMA_EN |
320 FTGMAC100_MACCR_RXDMA_EN |
321 FTGMAC100_MACCR_TXMAC_EN |
322 FTGMAC100_MACCR_RXMAC_EN |
323 FTGMAC100_MACCR_CRC_APD |
324 FTGMAC100_MACCR_PHY_LINK_LEVEL |
325 FTGMAC100_MACCR_RX_RUNT |
326 FTGMAC100_MACCR_RX_BROADPKT;
327
328 /* Add other bits as needed */
329 if (priv->cur_duplex == DUPLEX_FULL)
330 maccr |= FTGMAC100_MACCR_FULLDUP;
331 if (priv->netdev->flags & IFF_PROMISC)
332 maccr |= FTGMAC100_MACCR_RX_ALL;
333 if (priv->netdev->flags & IFF_ALLMULTI)
334 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
335 else if (netdev_mc_count(priv->netdev))
336 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
337
338 /* Vlan filtering enabled */
339 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
340 maccr |= FTGMAC100_MACCR_RM_VLAN;
341
342 /* Hit the HW */
343 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
344}
345
346static void ftgmac100_stop_hw(struct ftgmac100 *priv)
347{
348 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
349}
350
351static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
352{
353 struct netdev_hw_addr *ha;
354
355 priv->maht1 = 0;
356 priv->maht0 = 0;
357 netdev_for_each_mc_addr(ha, priv->netdev) {
358 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
359
360 crc_val = (~(crc_val >> 2)) & 0x3f;
361 if (crc_val >= 32)
362 priv->maht1 |= 1ul << (crc_val - 32);
363 else
364 priv->maht0 |= 1ul << (crc_val);
365 }
366}
367
368static void ftgmac100_set_rx_mode(struct net_device *netdev)
369{
370 struct ftgmac100 *priv = netdev_priv(netdev);
371
372 /* Setup the hash filter */
373 ftgmac100_calc_mc_hash(priv);
374
375 /* Interface down ? that's all there is to do */
376 if (!netif_running(netdev))
377 return;
378
379 /* Update the HW */
380 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
381 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
382
383 /* Reconfigure MACCR */
384 ftgmac100_start_hw(priv);
385}
386
387static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
388 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
389{
390 struct net_device *netdev = priv->netdev;
391 struct sk_buff *skb;
392 dma_addr_t map;
393 int err = 0;
394
395 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
396 if (unlikely(!skb)) {
397 if (net_ratelimit())
398 netdev_warn(netdev, "failed to allocate rx skb\n");
399 err = -ENOMEM;
400 map = priv->rx_scratch_dma;
401 } else {
402 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
403 DMA_FROM_DEVICE);
404 if (unlikely(dma_mapping_error(priv->dev, map))) {
405 if (net_ratelimit())
406 netdev_err(netdev, "failed to map rx page\n");
407 dev_kfree_skb_any(skb);
408 map = priv->rx_scratch_dma;
409 skb = NULL;
410 err = -ENOMEM;
411 }
412 }
413
414 /* Store skb */
415 priv->rx_skbs[entry] = skb;
416
417 /* Store DMA address into RX desc */
418 rxdes->rxdes3 = cpu_to_le32(map);
419
420 /* Ensure the above is ordered vs clearing the OWN bit */
421 dma_wmb();
422
423 /* Clean status (which resets own bit) */
424 if (entry == (priv->rx_q_entries - 1))
425 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
426 else
427 rxdes->rxdes0 = 0;
428
429 return err;
430}
431
432static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
433 unsigned int pointer)
434{
435 return (pointer + 1) & (priv->rx_q_entries - 1);
436}
437
438static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
439{
440 struct net_device *netdev = priv->netdev;
441
442 if (status & FTGMAC100_RXDES0_RX_ERR)
443 netdev->stats.rx_errors++;
444
445 if (status & FTGMAC100_RXDES0_CRC_ERR)
446 netdev->stats.rx_crc_errors++;
447
448 if (status & (FTGMAC100_RXDES0_FTL |
449 FTGMAC100_RXDES0_RUNT |
450 FTGMAC100_RXDES0_RX_ODD_NB))
451 netdev->stats.rx_length_errors++;
452}
453
454static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
455{
456 struct net_device *netdev = priv->netdev;
457 struct ftgmac100_rxdes *rxdes;
458 struct sk_buff *skb;
459 unsigned int pointer, size;
460 u32 status, csum_vlan;
461 dma_addr_t map;
462
463 /* Grab next RX descriptor */
464 pointer = priv->rx_pointer;
465 rxdes = &priv->rxdes[pointer];
466
467 /* Grab descriptor status */
468 status = le32_to_cpu(rxdes->rxdes0);
469
470 /* Do we have a packet ? */
471 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
472 return false;
473
474 /* Order subsequent reads with the test for the ready bit */
475 dma_rmb();
476
477 /* We don't cope with fragmented RX packets */
478 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
479 !(status & FTGMAC100_RXDES0_LRS)))
480 goto drop;
481
482 /* Grab received size and csum vlan field in the descriptor */
483 size = status & FTGMAC100_RXDES0_VDBC;
484 csum_vlan = le32_to_cpu(rxdes->rxdes1);
485
486 /* Any error (other than csum offload) flagged ? */
487 if (unlikely(status & RXDES0_ANY_ERROR)) {
488 /* Correct for incorrect flagging of runt packets
489 * with vlan tags... Just accept a runt packet that
490 * has been flagged as vlan and whose size is at
491 * least 60 bytes.
492 */
493 if ((status & FTGMAC100_RXDES0_RUNT) &&
494 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
495 (size >= 60))
496 status &= ~FTGMAC100_RXDES0_RUNT;
497
498 /* Any error still in there ? */
499 if (status & RXDES0_ANY_ERROR) {
500 ftgmac100_rx_packet_error(priv, status);
501 goto drop;
502 }
503 }
504
505 /* If the packet had no skb (failed to allocate earlier)
506 * then try to allocate one and skip
507 */
508 skb = priv->rx_skbs[pointer];
509 if (!unlikely(skb)) {
510 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
511 goto drop;
512 }
513
514 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
515 netdev->stats.multicast++;
516
517 /* If the HW found checksum errors, bounce it to software.
518 *
519 * If we didn't, we need to see if the packet was recognized
520 * by HW as one of the supported checksummed protocols before
521 * we accept the HW test results.
522 */
523 if (netdev->features & NETIF_F_RXCSUM) {
524 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
525 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
526 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
527 if ((csum_vlan & err_bits) ||
528 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
529 skb->ip_summed = CHECKSUM_NONE;
530 else
531 skb->ip_summed = CHECKSUM_UNNECESSARY;
532 }
533
534 /* Transfer received size to skb */
535 skb_put(skb, size);
536
537 /* Extract vlan tag */
538 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
539 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
540 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
541 csum_vlan & 0xffff);
542
543 /* Tear down DMA mapping, do necessary cache management */
544 map = le32_to_cpu(rxdes->rxdes3);
545
546#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
547 /* When we don't have an iommu, we can save cycles by not
548 * invalidating the cache for the part of the packet that
549 * wasn't received.
550 */
551 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
552#else
553 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
554#endif
555
556
557 /* Resplenish rx ring */
558 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
559 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
560
561 skb->protocol = eth_type_trans(skb, netdev);
562
563 netdev->stats.rx_packets++;
564 netdev->stats.rx_bytes += size;
565
566 /* push packet to protocol stack */
567 if (skb->ip_summed == CHECKSUM_NONE)
568 netif_receive_skb(skb);
569 else
570 napi_gro_receive(&priv->napi, skb);
571
572 (*processed)++;
573 return true;
574
575 drop:
576 /* Clean rxdes0 (which resets own bit) */
577 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
578 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
579 netdev->stats.rx_dropped++;
580 return true;
581}
582
583static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
584 unsigned int index)
585{
586 if (index == (priv->tx_q_entries - 1))
587 return priv->txdes0_edotr_mask;
588 else
589 return 0;
590}
591
592static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
593 unsigned int pointer)
594{
595 return (pointer + 1) & (priv->tx_q_entries - 1);
596}
597
598static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
599{
600 /* Returns the number of available slots in the TX queue
601 *
602 * This always leaves one free slot so we don't have to
603 * worry about empty vs. full, and this simplifies the
604 * test for ftgmac100_tx_buf_cleanable() below
605 */
606 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
607 (priv->tx_q_entries - 1);
608}
609
610static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
611{
612 return priv->tx_pointer != priv->tx_clean_pointer;
613}
614
615static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
616 unsigned int pointer,
617 struct sk_buff *skb,
618 struct ftgmac100_txdes *txdes,
619 u32 ctl_stat)
620{
621 dma_addr_t map = le32_to_cpu(txdes->txdes3);
622 size_t len;
623
624 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
625 len = skb_headlen(skb);
626 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
627 } else {
628 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
629 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
630 }
631
632 /* Free SKB on last segment */
633 if (ctl_stat & FTGMAC100_TXDES0_LTS)
634 dev_kfree_skb(skb);
635 priv->tx_skbs[pointer] = NULL;
636}
637
638static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
639{
640 struct net_device *netdev = priv->netdev;
641 struct ftgmac100_txdes *txdes;
642 struct sk_buff *skb;
643 unsigned int pointer;
644 u32 ctl_stat;
645
646 pointer = priv->tx_clean_pointer;
647 txdes = &priv->txdes[pointer];
648
649 ctl_stat = le32_to_cpu(txdes->txdes0);
650 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
651 return false;
652
653 skb = priv->tx_skbs[pointer];
654 netdev->stats.tx_packets++;
655 netdev->stats.tx_bytes += skb->len;
656 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
657 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
658
659 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
660
661 return true;
662}
663
664static void ftgmac100_tx_complete(struct ftgmac100 *priv)
665{
666 struct net_device *netdev = priv->netdev;
667
668 /* Process all completed packets */
669 while (ftgmac100_tx_buf_cleanable(priv) &&
670 ftgmac100_tx_complete_packet(priv))
671 ;
672
673 /* Restart queue if needed */
674 smp_mb();
675 if (unlikely(netif_queue_stopped(netdev) &&
676 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
677 struct netdev_queue *txq;
678
679 txq = netdev_get_tx_queue(netdev, 0);
680 __netif_tx_lock(txq, smp_processor_id());
681 if (netif_queue_stopped(netdev) &&
682 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
683 netif_wake_queue(netdev);
684 __netif_tx_unlock(txq);
685 }
686}
687
688static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
689{
690 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
691 u8 ip_proto = ip_hdr(skb)->protocol;
692
693 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
694 switch(ip_proto) {
695 case IPPROTO_TCP:
696 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
697 return true;
698 case IPPROTO_UDP:
699 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
700 return true;
701 case IPPROTO_IP:
702 return true;
703 }
704 }
705 return skb_checksum_help(skb) == 0;
706}
707
708static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
709 struct net_device *netdev)
710{
711 struct ftgmac100 *priv = netdev_priv(netdev);
712 struct ftgmac100_txdes *txdes, *first;
713 unsigned int pointer, nfrags, len, i, j;
714 u32 f_ctl_stat, ctl_stat, csum_vlan;
715 dma_addr_t map;
716
717 /* The HW doesn't pad small frames */
718 if (eth_skb_pad(skb)) {
719 netdev->stats.tx_dropped++;
720 return NETDEV_TX_OK;
721 }
722
723 /* Reject oversize packets */
724 if (unlikely(skb->len > MAX_PKT_SIZE)) {
725 if (net_ratelimit())
726 netdev_dbg(netdev, "tx packet too big\n");
727 goto drop;
728 }
729
730 /* Do we have a limit on #fragments ? I yet have to get a reply
731 * from Aspeed. If there's one I haven't hit it.
732 */
733 nfrags = skb_shinfo(skb)->nr_frags;
734
735 /* Setup HW checksumming */
736 csum_vlan = 0;
737 if (skb->ip_summed == CHECKSUM_PARTIAL &&
738 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
739 goto drop;
740
741 /* Add VLAN tag */
742 if (skb_vlan_tag_present(skb)) {
743 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
744 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
745 }
746
747 /* Get header len */
748 len = skb_headlen(skb);
749
750 /* Map the packet head */
751 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
752 if (dma_mapping_error(priv->dev, map)) {
753 if (net_ratelimit())
754 netdev_err(netdev, "map tx packet head failed\n");
755 goto drop;
756 }
757
758 /* Grab the next free tx descriptor */
759 pointer = priv->tx_pointer;
760 txdes = first = &priv->txdes[pointer];
761
762 /* Setup it up with the packet head. Don't write the head to the
763 * ring just yet
764 */
765 priv->tx_skbs[pointer] = skb;
766 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
767 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
768 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
769 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
770 if (nfrags == 0)
771 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
772 txdes->txdes3 = cpu_to_le32(map);
773 txdes->txdes1 = cpu_to_le32(csum_vlan);
774
775 /* Next descriptor */
776 pointer = ftgmac100_next_tx_pointer(priv, pointer);
777
778 /* Add the fragments */
779 for (i = 0; i < nfrags; i++) {
780 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
781
782 len = skb_frag_size(frag);
783
784 /* Map it */
785 map = skb_frag_dma_map(priv->dev, frag, 0, len,
786 DMA_TO_DEVICE);
787 if (dma_mapping_error(priv->dev, map))
788 goto dma_err;
789
790 /* Setup descriptor */
791 priv->tx_skbs[pointer] = skb;
792 txdes = &priv->txdes[pointer];
793 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
794 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
795 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
796 if (i == (nfrags - 1))
797 ctl_stat |= FTGMAC100_TXDES0_LTS;
798 txdes->txdes0 = cpu_to_le32(ctl_stat);
799 txdes->txdes1 = 0;
800 txdes->txdes3 = cpu_to_le32(map);
801
802 /* Next one */
803 pointer = ftgmac100_next_tx_pointer(priv, pointer);
804 }
805
806 /* Order the previous packet and descriptor udpates
807 * before setting the OWN bit on the first descriptor.
808 */
809 dma_wmb();
810 first->txdes0 = cpu_to_le32(f_ctl_stat);
811
812 /* Update next TX pointer */
813 priv->tx_pointer = pointer;
814
815 /* If there isn't enough room for all the fragments of a new packet
816 * in the TX ring, stop the queue. The sequence below is race free
817 * vs. a concurrent restart in ftgmac100_poll()
818 */
819 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
820 netif_stop_queue(netdev);
821 /* Order the queue stop with the test below */
822 smp_mb();
823 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
824 netif_wake_queue(netdev);
825 }
826
827 /* Poke transmitter to read the updated TX descriptors */
828 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
829
830 return NETDEV_TX_OK;
831
832 dma_err:
833 if (net_ratelimit())
834 netdev_err(netdev, "map tx fragment failed\n");
835
836 /* Free head */
837 pointer = priv->tx_pointer;
838 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
839 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
840
841 /* Then all fragments */
842 for (j = 0; j < i; j++) {
843 pointer = ftgmac100_next_tx_pointer(priv, pointer);
844 txdes = &priv->txdes[pointer];
845 ctl_stat = le32_to_cpu(txdes->txdes0);
846 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
847 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
848 }
849
850 /* This cannot be reached if we successfully mapped the
851 * last fragment, so we know ftgmac100_free_tx_packet()
852 * hasn't freed the skb yet.
853 */
854 drop:
855 /* Drop the packet */
856 dev_kfree_skb_any(skb);
857 netdev->stats.tx_dropped++;
858
859 return NETDEV_TX_OK;
860}
861
862static void ftgmac100_free_buffers(struct ftgmac100 *priv)
863{
864 int i;
865
866 /* Free all RX buffers */
867 for (i = 0; i < priv->rx_q_entries; i++) {
868 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
869 struct sk_buff *skb = priv->rx_skbs[i];
870 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
871
872 if (!skb)
873 continue;
874
875 priv->rx_skbs[i] = NULL;
876 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
877 dev_kfree_skb_any(skb);
878 }
879
880 /* Free all TX buffers */
881 for (i = 0; i < priv->tx_q_entries; i++) {
882 struct ftgmac100_txdes *txdes = &priv->txdes[i];
883 struct sk_buff *skb = priv->tx_skbs[i];
884
885 if (!skb)
886 continue;
887 ftgmac100_free_tx_packet(priv, i, skb, txdes,
888 le32_to_cpu(txdes->txdes0));
889 }
890}
891
892static void ftgmac100_free_rings(struct ftgmac100 *priv)
893{
894 /* Free skb arrays */
895 kfree(priv->rx_skbs);
896 kfree(priv->tx_skbs);
897
898 /* Free descriptors */
899 if (priv->rxdes)
900 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
901 sizeof(struct ftgmac100_rxdes),
902 priv->rxdes, priv->rxdes_dma);
903 priv->rxdes = NULL;
904
905 if (priv->txdes)
906 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
907 sizeof(struct ftgmac100_txdes),
908 priv->txdes, priv->txdes_dma);
909 priv->txdes = NULL;
910
911 /* Free scratch packet buffer */
912 if (priv->rx_scratch)
913 dma_free_coherent(priv->dev, RX_BUF_SIZE,
914 priv->rx_scratch, priv->rx_scratch_dma);
915}
916
917static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
918{
919 /* Allocate skb arrays */
920 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
921 GFP_KERNEL);
922 if (!priv->rx_skbs)
923 return -ENOMEM;
924 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
925 GFP_KERNEL);
926 if (!priv->tx_skbs)
927 return -ENOMEM;
928
929 /* Allocate descriptors */
930 priv->rxdes = dma_alloc_coherent(priv->dev,
931 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
932 &priv->rxdes_dma, GFP_KERNEL);
933 if (!priv->rxdes)
934 return -ENOMEM;
935 priv->txdes = dma_alloc_coherent(priv->dev,
936 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
937 &priv->txdes_dma, GFP_KERNEL);
938 if (!priv->txdes)
939 return -ENOMEM;
940
941 /* Allocate scratch packet buffer */
942 priv->rx_scratch = dma_alloc_coherent(priv->dev,
943 RX_BUF_SIZE,
944 &priv->rx_scratch_dma,
945 GFP_KERNEL);
946 if (!priv->rx_scratch)
947 return -ENOMEM;
948
949 return 0;
950}
951
952static void ftgmac100_init_rings(struct ftgmac100 *priv)
953{
954 struct ftgmac100_rxdes *rxdes = NULL;
955 struct ftgmac100_txdes *txdes = NULL;
956 int i;
957
958 /* Update entries counts */
959 priv->rx_q_entries = priv->new_rx_q_entries;
960 priv->tx_q_entries = priv->new_tx_q_entries;
961
962 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
963 return;
964
965 /* Initialize RX ring */
966 for (i = 0; i < priv->rx_q_entries; i++) {
967 rxdes = &priv->rxdes[i];
968 rxdes->rxdes0 = 0;
969 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
970 }
971 /* Mark the end of the ring */
972 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
973
974 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
975 return;
976
977 /* Initialize TX ring */
978 for (i = 0; i < priv->tx_q_entries; i++) {
979 txdes = &priv->txdes[i];
980 txdes->txdes0 = 0;
981 }
982 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
983}
984
985static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
986{
987 int i;
988
989 for (i = 0; i < priv->rx_q_entries; i++) {
990 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
991
992 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
993 return -ENOMEM;
994 }
995 return 0;
996}
997
998static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
999{
1000 struct net_device *netdev = bus->priv;
1001 struct ftgmac100 *priv = netdev_priv(netdev);
1002 unsigned int phycr;
1003 int i;
1004
1005 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1006
1007 /* preserve MDC cycle threshold */
1008 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1009
1010 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1011 FTGMAC100_PHYCR_REGAD(regnum) |
1012 FTGMAC100_PHYCR_MIIRD;
1013
1014 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1015
1016 for (i = 0; i < 10; i++) {
1017 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1018
1019 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1020 int data;
1021
1022 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1023 return FTGMAC100_PHYDATA_MIIRDATA(data);
1024 }
1025
1026 udelay(100);
1027 }
1028
1029 netdev_err(netdev, "mdio read timed out\n");
1030 return -EIO;
1031}
1032
1033static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1034 int regnum, u16 value)
1035{
1036 struct net_device *netdev = bus->priv;
1037 struct ftgmac100 *priv = netdev_priv(netdev);
1038 unsigned int phycr;
1039 int data;
1040 int i;
1041
1042 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1043
1044 /* preserve MDC cycle threshold */
1045 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1046
1047 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1048 FTGMAC100_PHYCR_REGAD(regnum) |
1049 FTGMAC100_PHYCR_MIIWR;
1050
1051 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1052
1053 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1054 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1055
1056 for (i = 0; i < 10; i++) {
1057 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1058
1059 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1060 return 0;
1061
1062 udelay(100);
1063 }
1064
1065 netdev_err(netdev, "mdio write timed out\n");
1066 return -EIO;
1067}
1068
1069static void ftgmac100_get_drvinfo(struct net_device *netdev,
1070 struct ethtool_drvinfo *info)
1071{
1072 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1073 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1074}
1075
1076static void
1077ftgmac100_get_ringparam(struct net_device *netdev,
1078 struct ethtool_ringparam *ering,
1079 struct kernel_ethtool_ringparam *kernel_ering,
1080 struct netlink_ext_ack *extack)
1081{
1082 struct ftgmac100 *priv = netdev_priv(netdev);
1083
1084 memset(ering, 0, sizeof(*ering));
1085 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1086 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1087 ering->rx_pending = priv->rx_q_entries;
1088 ering->tx_pending = priv->tx_q_entries;
1089}
1090
1091static int
1092ftgmac100_set_ringparam(struct net_device *netdev,
1093 struct ethtool_ringparam *ering,
1094 struct kernel_ethtool_ringparam *kernel_ering,
1095 struct netlink_ext_ack *extack)
1096{
1097 struct ftgmac100 *priv = netdev_priv(netdev);
1098
1099 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1100 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1101 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1102 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1103 !is_power_of_2(ering->rx_pending) ||
1104 !is_power_of_2(ering->tx_pending))
1105 return -EINVAL;
1106
1107 priv->new_rx_q_entries = ering->rx_pending;
1108 priv->new_tx_q_entries = ering->tx_pending;
1109 if (netif_running(netdev))
1110 schedule_work(&priv->reset_task);
1111
1112 return 0;
1113}
1114
1115static void ftgmac100_get_pauseparam(struct net_device *netdev,
1116 struct ethtool_pauseparam *pause)
1117{
1118 struct ftgmac100 *priv = netdev_priv(netdev);
1119
1120 pause->autoneg = priv->aneg_pause;
1121 pause->tx_pause = priv->tx_pause;
1122 pause->rx_pause = priv->rx_pause;
1123}
1124
1125static int ftgmac100_set_pauseparam(struct net_device *netdev,
1126 struct ethtool_pauseparam *pause)
1127{
1128 struct ftgmac100 *priv = netdev_priv(netdev);
1129 struct phy_device *phydev = netdev->phydev;
1130
1131 priv->aneg_pause = pause->autoneg;
1132 priv->tx_pause = pause->tx_pause;
1133 priv->rx_pause = pause->rx_pause;
1134
1135 if (phydev)
1136 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1137
1138 if (netif_running(netdev)) {
1139 if (!(phydev && priv->aneg_pause))
1140 ftgmac100_config_pause(priv);
1141 }
1142
1143 return 0;
1144}
1145
1146static const struct ethtool_ops ftgmac100_ethtool_ops = {
1147 .get_drvinfo = ftgmac100_get_drvinfo,
1148 .get_link = ethtool_op_get_link,
1149 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1150 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1151 .nway_reset = phy_ethtool_nway_reset,
1152 .get_ringparam = ftgmac100_get_ringparam,
1153 .set_ringparam = ftgmac100_set_ringparam,
1154 .get_pauseparam = ftgmac100_get_pauseparam,
1155 .set_pauseparam = ftgmac100_set_pauseparam,
1156};
1157
1158static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1159{
1160 struct net_device *netdev = dev_id;
1161 struct ftgmac100 *priv = netdev_priv(netdev);
1162 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1163
1164 /* Fetch and clear interrupt bits, process abnormal ones */
1165 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1166 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1167 if (unlikely(status & FTGMAC100_INT_BAD)) {
1168
1169 /* RX buffer unavailable */
1170 if (status & FTGMAC100_INT_NO_RXBUF)
1171 netdev->stats.rx_over_errors++;
1172
1173 /* received packet lost due to RX FIFO full */
1174 if (status & FTGMAC100_INT_RPKT_LOST)
1175 netdev->stats.rx_fifo_errors++;
1176
1177 /* sent packet lost due to excessive TX collision */
1178 if (status & FTGMAC100_INT_XPKT_LOST)
1179 netdev->stats.tx_fifo_errors++;
1180
1181 /* AHB error -> Reset the chip */
1182 if (status & FTGMAC100_INT_AHB_ERR) {
1183 if (net_ratelimit())
1184 netdev_warn(netdev,
1185 "AHB bus error ! Resetting chip.\n");
1186 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1187 schedule_work(&priv->reset_task);
1188 return IRQ_HANDLED;
1189 }
1190
1191 /* We may need to restart the MAC after such errors, delay
1192 * this until after we have freed some Rx buffers though
1193 */
1194 priv->need_mac_restart = true;
1195
1196 /* Disable those errors until we restart */
1197 new_mask &= ~status;
1198 }
1199
1200 /* Only enable "bad" interrupts while NAPI is on */
1201 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1202
1203 /* Schedule NAPI bh */
1204 napi_schedule_irqoff(&priv->napi);
1205
1206 return IRQ_HANDLED;
1207}
1208
1209static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1210{
1211 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1212
1213 /* Do we have a packet ? */
1214 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1215}
1216
1217static int ftgmac100_poll(struct napi_struct *napi, int budget)
1218{
1219 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1220 int work_done = 0;
1221 bool more;
1222
1223 /* Handle TX completions */
1224 if (ftgmac100_tx_buf_cleanable(priv))
1225 ftgmac100_tx_complete(priv);
1226
1227 /* Handle RX packets */
1228 do {
1229 more = ftgmac100_rx_packet(priv, &work_done);
1230 } while (more && work_done < budget);
1231
1232
1233 /* The interrupt is telling us to kick the MAC back to life
1234 * after an RX overflow
1235 */
1236 if (unlikely(priv->need_mac_restart)) {
1237 ftgmac100_start_hw(priv);
1238 priv->need_mac_restart = false;
1239
1240 /* Re-enable "bad" interrupts */
1241 iowrite32(FTGMAC100_INT_BAD,
1242 priv->base + FTGMAC100_OFFSET_IER);
1243 }
1244
1245 /* As long as we are waiting for transmit packets to be
1246 * completed we keep NAPI going
1247 */
1248 if (ftgmac100_tx_buf_cleanable(priv))
1249 work_done = budget;
1250
1251 if (work_done < budget) {
1252 /* We are about to re-enable all interrupts. However
1253 * the HW has been latching RX/TX packet interrupts while
1254 * they were masked. So we clear them first, then we need
1255 * to re-check if there's something to process
1256 */
1257 iowrite32(FTGMAC100_INT_RXTX,
1258 priv->base + FTGMAC100_OFFSET_ISR);
1259
1260 /* Push the above (and provides a barrier vs. subsequent
1261 * reads of the descriptor).
1262 */
1263 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1264
1265 /* Check RX and TX descriptors for more work to do */
1266 if (ftgmac100_check_rx(priv) ||
1267 ftgmac100_tx_buf_cleanable(priv))
1268 return budget;
1269
1270 /* deschedule NAPI */
1271 napi_complete(napi);
1272
1273 /* enable all interrupts */
1274 iowrite32(FTGMAC100_INT_ALL,
1275 priv->base + FTGMAC100_OFFSET_IER);
1276 }
1277
1278 return work_done;
1279}
1280
1281static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1282{
1283 int err = 0;
1284
1285 /* Re-init descriptors (adjust queue sizes) */
1286 ftgmac100_init_rings(priv);
1287
1288 /* Realloc rx descriptors */
1289 err = ftgmac100_alloc_rx_buffers(priv);
1290 if (err && !ignore_alloc_err)
1291 return err;
1292
1293 /* Reinit and restart HW */
1294 ftgmac100_init_hw(priv);
1295 ftgmac100_config_pause(priv);
1296 ftgmac100_start_hw(priv);
1297
1298 /* Re-enable the device */
1299 napi_enable(&priv->napi);
1300 netif_start_queue(priv->netdev);
1301
1302 /* Enable all interrupts */
1303 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1304
1305 return err;
1306}
1307
1308static void ftgmac100_reset(struct ftgmac100 *priv)
1309{
1310 struct net_device *netdev = priv->netdev;
1311 int err;
1312
1313 netdev_dbg(netdev, "Resetting NIC...\n");
1314
1315 /* Lock the world */
1316 rtnl_lock();
1317 if (netdev->phydev)
1318 mutex_lock(&netdev->phydev->lock);
1319 if (priv->mii_bus)
1320 mutex_lock(&priv->mii_bus->mdio_lock);
1321
1322
1323 /* Check if the interface is still up */
1324 if (!netif_running(netdev))
1325 goto bail;
1326
1327 /* Stop the network stack */
1328 netif_trans_update(netdev);
1329 napi_disable(&priv->napi);
1330 netif_tx_disable(netdev);
1331
1332 /* Stop and reset the MAC */
1333 ftgmac100_stop_hw(priv);
1334 err = ftgmac100_reset_and_config_mac(priv);
1335 if (err) {
1336 /* Not much we can do ... it might come back... */
1337 netdev_err(netdev, "attempting to continue...\n");
1338 }
1339
1340 /* Free all rx and tx buffers */
1341 ftgmac100_free_buffers(priv);
1342
1343 /* Setup everything again and restart chip */
1344 ftgmac100_init_all(priv, true);
1345
1346 netdev_dbg(netdev, "Reset done !\n");
1347 bail:
1348 if (priv->mii_bus)
1349 mutex_unlock(&priv->mii_bus->mdio_lock);
1350 if (netdev->phydev)
1351 mutex_unlock(&netdev->phydev->lock);
1352 rtnl_unlock();
1353}
1354
1355static void ftgmac100_reset_task(struct work_struct *work)
1356{
1357 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1358 reset_task);
1359
1360 ftgmac100_reset(priv);
1361}
1362
1363static void ftgmac100_adjust_link(struct net_device *netdev)
1364{
1365 struct ftgmac100 *priv = netdev_priv(netdev);
1366 struct phy_device *phydev = netdev->phydev;
1367 bool tx_pause, rx_pause;
1368 int new_speed;
1369
1370 /* We store "no link" as speed 0 */
1371 if (!phydev->link)
1372 new_speed = 0;
1373 else
1374 new_speed = phydev->speed;
1375
1376 /* Grab pause settings from PHY if configured to do so */
1377 if (priv->aneg_pause) {
1378 rx_pause = tx_pause = phydev->pause;
1379 if (phydev->asym_pause)
1380 tx_pause = !rx_pause;
1381 } else {
1382 rx_pause = priv->rx_pause;
1383 tx_pause = priv->tx_pause;
1384 }
1385
1386 /* Link hasn't changed, do nothing */
1387 if (phydev->speed == priv->cur_speed &&
1388 phydev->duplex == priv->cur_duplex &&
1389 rx_pause == priv->rx_pause &&
1390 tx_pause == priv->tx_pause)
1391 return;
1392
1393 /* Print status if we have a link or we had one and just lost it,
1394 * don't print otherwise.
1395 */
1396 if (new_speed || priv->cur_speed)
1397 phy_print_status(phydev);
1398
1399 priv->cur_speed = new_speed;
1400 priv->cur_duplex = phydev->duplex;
1401 priv->rx_pause = rx_pause;
1402 priv->tx_pause = tx_pause;
1403
1404 /* Link is down, do nothing else */
1405 if (!new_speed)
1406 return;
1407
1408 /* Disable all interrupts */
1409 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1410
1411 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1412 * order consistent to prevent dead lock.
1413 */
1414 if (netdev->phydev)
1415 mutex_unlock(&netdev->phydev->lock);
1416
1417 ftgmac100_reset(priv);
1418
1419 if (netdev->phydev)
1420 mutex_lock(&netdev->phydev->lock);
1421
1422}
1423
1424static int ftgmac100_mii_probe(struct net_device *netdev)
1425{
1426 struct ftgmac100 *priv = netdev_priv(netdev);
1427 struct platform_device *pdev = to_platform_device(priv->dev);
1428 struct device_node *np = pdev->dev.of_node;
1429 struct phy_device *phydev;
1430 phy_interface_t phy_intf;
1431 int err;
1432
1433 /* Default to RGMII. It's a gigabit part after all */
1434 err = of_get_phy_mode(np, &phy_intf);
1435 if (err)
1436 phy_intf = PHY_INTERFACE_MODE_RGMII;
1437
1438 /* Aspeed only supports these. I don't know about other IP
1439 * block vendors so I'm going to just let them through for
1440 * now. Note that this is only a warning if for some obscure
1441 * reason the DT really means to lie about it or it's a newer
1442 * part we don't know about.
1443 *
1444 * On the Aspeed SoC there are additionally straps and SCU
1445 * control bits that could tell us what the interface is
1446 * (or allow us to configure it while the IP block is held
1447 * in reset). For now I chose to keep this driver away from
1448 * those SoC specific bits and assume the device-tree is
1449 * right and the SCU has been configured properly by pinmux
1450 * or the firmware.
1451 */
1452 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1453 netdev_warn(netdev,
1454 "Unsupported PHY mode %s !\n",
1455 phy_modes(phy_intf));
1456 }
1457
1458 phydev = phy_find_first(priv->mii_bus);
1459 if (!phydev) {
1460 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1461 return -ENODEV;
1462 }
1463
1464 phydev = phy_connect(netdev, phydev_name(phydev),
1465 &ftgmac100_adjust_link, phy_intf);
1466
1467 if (IS_ERR(phydev)) {
1468 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1469 return PTR_ERR(phydev);
1470 }
1471
1472 /* Indicate that we support PAUSE frames (see comment in
1473 * Documentation/networking/phy.rst)
1474 */
1475 phy_support_asym_pause(phydev);
1476
1477 /* Display what we found */
1478 phy_attached_info(phydev);
1479
1480 return 0;
1481}
1482
1483static int ftgmac100_open(struct net_device *netdev)
1484{
1485 struct ftgmac100 *priv = netdev_priv(netdev);
1486 int err;
1487
1488 /* Allocate ring buffers */
1489 err = ftgmac100_alloc_rings(priv);
1490 if (err) {
1491 netdev_err(netdev, "Failed to allocate descriptors\n");
1492 return err;
1493 }
1494
1495 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1496 *
1497 * Otherwise we leave it set to 0 (no link), the link
1498 * message from the PHY layer will handle setting it up to
1499 * something else if needed.
1500 */
1501 if (priv->use_ncsi) {
1502 priv->cur_duplex = DUPLEX_FULL;
1503 priv->cur_speed = SPEED_100;
1504 } else {
1505 priv->cur_duplex = 0;
1506 priv->cur_speed = 0;
1507 }
1508
1509 /* Reset the hardware */
1510 err = ftgmac100_reset_and_config_mac(priv);
1511 if (err)
1512 goto err_hw;
1513
1514 /* Initialize NAPI */
1515 netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1516
1517 /* Grab our interrupt */
1518 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1519 if (err) {
1520 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1521 goto err_irq;
1522 }
1523
1524 /* Start things up */
1525 err = ftgmac100_init_all(priv, false);
1526 if (err) {
1527 netdev_err(netdev, "Failed to allocate packet buffers\n");
1528 goto err_alloc;
1529 }
1530
1531 if (netdev->phydev) {
1532 /* If we have a PHY, start polling */
1533 phy_start(netdev->phydev);
1534 } else if (priv->use_ncsi) {
1535 /* If using NC-SI, set our carrier on and start the stack */
1536 netif_carrier_on(netdev);
1537
1538 /* Start the NCSI device */
1539 err = ncsi_start_dev(priv->ndev);
1540 if (err)
1541 goto err_ncsi;
1542 }
1543
1544 return 0;
1545
1546 err_ncsi:
1547 napi_disable(&priv->napi);
1548 netif_stop_queue(netdev);
1549 err_alloc:
1550 ftgmac100_free_buffers(priv);
1551 free_irq(netdev->irq, netdev);
1552 err_irq:
1553 netif_napi_del(&priv->napi);
1554 err_hw:
1555 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1556 ftgmac100_free_rings(priv);
1557 return err;
1558}
1559
1560static int ftgmac100_stop(struct net_device *netdev)
1561{
1562 struct ftgmac100 *priv = netdev_priv(netdev);
1563
1564 /* Note about the reset task: We are called with the rtnl lock
1565 * held, so we are synchronized against the core of the reset
1566 * task. We must not try to synchronously cancel it otherwise
1567 * we can deadlock. But since it will test for netif_running()
1568 * which has already been cleared by the net core, we don't
1569 * anything special to do.
1570 */
1571
1572 /* disable all interrupts */
1573 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1574
1575 netif_stop_queue(netdev);
1576 napi_disable(&priv->napi);
1577 netif_napi_del(&priv->napi);
1578 if (netdev->phydev)
1579 phy_stop(netdev->phydev);
1580 else if (priv->use_ncsi)
1581 ncsi_stop_dev(priv->ndev);
1582
1583 ftgmac100_stop_hw(priv);
1584 free_irq(netdev->irq, netdev);
1585 ftgmac100_free_buffers(priv);
1586 ftgmac100_free_rings(priv);
1587
1588 return 0;
1589}
1590
1591static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1592{
1593 struct ftgmac100 *priv = netdev_priv(netdev);
1594
1595 /* Disable all interrupts */
1596 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1597
1598 /* Do the reset outside of interrupt context */
1599 schedule_work(&priv->reset_task);
1600}
1601
1602static int ftgmac100_set_features(struct net_device *netdev,
1603 netdev_features_t features)
1604{
1605 struct ftgmac100 *priv = netdev_priv(netdev);
1606 netdev_features_t changed = netdev->features ^ features;
1607
1608 if (!netif_running(netdev))
1609 return 0;
1610
1611 /* Update the vlan filtering bit */
1612 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1613 u32 maccr;
1614
1615 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1616 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1617 maccr |= FTGMAC100_MACCR_RM_VLAN;
1618 else
1619 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1620 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1621 }
1622
1623 return 0;
1624}
1625
1626#ifdef CONFIG_NET_POLL_CONTROLLER
1627static void ftgmac100_poll_controller(struct net_device *netdev)
1628{
1629 unsigned long flags;
1630
1631 local_irq_save(flags);
1632 ftgmac100_interrupt(netdev->irq, netdev);
1633 local_irq_restore(flags);
1634}
1635#endif
1636
1637static const struct net_device_ops ftgmac100_netdev_ops = {
1638 .ndo_open = ftgmac100_open,
1639 .ndo_stop = ftgmac100_stop,
1640 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1641 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1642 .ndo_validate_addr = eth_validate_addr,
1643 .ndo_eth_ioctl = phy_do_ioctl,
1644 .ndo_tx_timeout = ftgmac100_tx_timeout,
1645 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1646 .ndo_set_features = ftgmac100_set_features,
1647#ifdef CONFIG_NET_POLL_CONTROLLER
1648 .ndo_poll_controller = ftgmac100_poll_controller,
1649#endif
1650 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1651 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1652};
1653
1654static int ftgmac100_setup_mdio(struct net_device *netdev)
1655{
1656 struct ftgmac100 *priv = netdev_priv(netdev);
1657 struct platform_device *pdev = to_platform_device(priv->dev);
1658 struct device_node *np = pdev->dev.of_node;
1659 struct device_node *mdio_np;
1660 int i, err = 0;
1661 u32 reg;
1662
1663 /* initialize mdio bus */
1664 priv->mii_bus = mdiobus_alloc();
1665 if (!priv->mii_bus)
1666 return -EIO;
1667
1668 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1669 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1670 /* The AST2600 has a separate MDIO controller */
1671
1672 /* For the AST2400 and AST2500 this driver only supports the
1673 * old MDIO interface
1674 */
1675 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1676 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1677 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1678 }
1679
1680 priv->mii_bus->name = "ftgmac100_mdio";
1681 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1682 pdev->name, pdev->id);
1683 priv->mii_bus->parent = priv->dev;
1684 priv->mii_bus->priv = priv->netdev;
1685 priv->mii_bus->read = ftgmac100_mdiobus_read;
1686 priv->mii_bus->write = ftgmac100_mdiobus_write;
1687
1688 for (i = 0; i < PHY_MAX_ADDR; i++)
1689 priv->mii_bus->irq[i] = PHY_POLL;
1690
1691 mdio_np = of_get_child_by_name(np, "mdio");
1692
1693 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1694 if (err) {
1695 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1696 goto err_register_mdiobus;
1697 }
1698
1699 of_node_put(mdio_np);
1700
1701 return 0;
1702
1703err_register_mdiobus:
1704 mdiobus_free(priv->mii_bus);
1705 return err;
1706}
1707
1708static void ftgmac100_phy_disconnect(struct net_device *netdev)
1709{
1710 struct ftgmac100 *priv = netdev_priv(netdev);
1711
1712 if (!netdev->phydev)
1713 return;
1714
1715 phy_disconnect(netdev->phydev);
1716 if (of_phy_is_fixed_link(priv->dev->of_node))
1717 of_phy_deregister_fixed_link(priv->dev->of_node);
1718}
1719
1720static void ftgmac100_destroy_mdio(struct net_device *netdev)
1721{
1722 struct ftgmac100 *priv = netdev_priv(netdev);
1723
1724 if (!priv->mii_bus)
1725 return;
1726
1727 mdiobus_unregister(priv->mii_bus);
1728 mdiobus_free(priv->mii_bus);
1729}
1730
1731static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1732{
1733 if (unlikely(nd->state != ncsi_dev_state_functional))
1734 return;
1735
1736 netdev_dbg(nd->dev, "NCSI interface %s\n",
1737 nd->link_up ? "up" : "down");
1738}
1739
1740static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1741{
1742 struct clk *clk;
1743 int rc;
1744
1745 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1746 if (IS_ERR(clk))
1747 return PTR_ERR(clk);
1748 priv->clk = clk;
1749 rc = clk_prepare_enable(priv->clk);
1750 if (rc)
1751 return rc;
1752
1753 /* Aspeed specifies a 100MHz clock is required for up to
1754 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1755 * is sufficient
1756 */
1757 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1758 FTGMAC_100MHZ);
1759 if (rc)
1760 goto cleanup_clk;
1761
1762 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1763 * necessary if it's the AST2400 MAC, or the MAC is configured for
1764 * RGMII, or the controller is not an ASPEED-based controller.
1765 */
1766 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1767 rc = clk_prepare_enable(priv->rclk);
1768 if (!rc)
1769 return 0;
1770
1771cleanup_clk:
1772 clk_disable_unprepare(priv->clk);
1773
1774 return rc;
1775}
1776
1777static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1778{
1779 struct device_node *child_np = of_get_child_by_name(np, name);
1780 bool ret = false;
1781
1782 if (child_np) {
1783 ret = true;
1784 of_node_put(child_np);
1785 }
1786
1787 return ret;
1788}
1789
1790static int ftgmac100_probe(struct platform_device *pdev)
1791{
1792 struct resource *res;
1793 int irq;
1794 struct net_device *netdev;
1795 struct ftgmac100 *priv;
1796 struct device_node *np;
1797 int err = 0;
1798
1799 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1800 if (!res)
1801 return -ENXIO;
1802
1803 irq = platform_get_irq(pdev, 0);
1804 if (irq < 0)
1805 return irq;
1806
1807 /* setup net_device */
1808 netdev = alloc_etherdev(sizeof(*priv));
1809 if (!netdev) {
1810 err = -ENOMEM;
1811 goto err_alloc_etherdev;
1812 }
1813
1814 SET_NETDEV_DEV(netdev, &pdev->dev);
1815
1816 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1817 netdev->netdev_ops = &ftgmac100_netdev_ops;
1818 netdev->watchdog_timeo = 5 * HZ;
1819
1820 platform_set_drvdata(pdev, netdev);
1821
1822 /* setup private data */
1823 priv = netdev_priv(netdev);
1824 priv->netdev = netdev;
1825 priv->dev = &pdev->dev;
1826 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1827
1828 /* map io memory */
1829 priv->res = request_mem_region(res->start, resource_size(res),
1830 dev_name(&pdev->dev));
1831 if (!priv->res) {
1832 dev_err(&pdev->dev, "Could not reserve memory region\n");
1833 err = -ENOMEM;
1834 goto err_req_mem;
1835 }
1836
1837 priv->base = ioremap(res->start, resource_size(res));
1838 if (!priv->base) {
1839 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1840 err = -EIO;
1841 goto err_ioremap;
1842 }
1843
1844 netdev->irq = irq;
1845
1846 /* Enable pause */
1847 priv->tx_pause = true;
1848 priv->rx_pause = true;
1849 priv->aneg_pause = true;
1850
1851 /* MAC address from chip or random one */
1852 err = ftgmac100_initial_mac(priv);
1853 if (err)
1854 goto err_phy_connect;
1855
1856 np = pdev->dev.of_node;
1857 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1858 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1859 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1860 priv->rxdes0_edorr_mask = BIT(30);
1861 priv->txdes0_edotr_mask = BIT(30);
1862 priv->is_aspeed = true;
1863 } else {
1864 priv->rxdes0_edorr_mask = BIT(15);
1865 priv->txdes0_edotr_mask = BIT(15);
1866 }
1867
1868 if (np && of_get_property(np, "use-ncsi", NULL)) {
1869 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1870 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1871 err = -EINVAL;
1872 goto err_phy_connect;
1873 }
1874
1875 dev_info(&pdev->dev, "Using NCSI interface\n");
1876 priv->use_ncsi = true;
1877 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1878 if (!priv->ndev) {
1879 err = -EINVAL;
1880 goto err_phy_connect;
1881 }
1882 } else if (np && of_phy_is_fixed_link(np)) {
1883 struct phy_device *phy;
1884
1885 err = of_phy_register_fixed_link(np);
1886 if (err) {
1887 dev_err(&pdev->dev, "Failed to register fixed PHY\n");
1888 goto err_phy_connect;
1889 }
1890
1891 phy = of_phy_get_and_connect(priv->netdev, np,
1892 &ftgmac100_adjust_link);
1893 if (!phy) {
1894 dev_err(&pdev->dev, "Failed to connect to fixed PHY\n");
1895 of_phy_deregister_fixed_link(np);
1896 err = -EINVAL;
1897 goto err_phy_connect;
1898 }
1899
1900 /* Display what we found */
1901 phy_attached_info(phy);
1902 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1903 struct phy_device *phy;
1904
1905 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1906 * an embedded MDIO controller. Automatically scan the DTS for
1907 * available PHYs and register them.
1908 */
1909 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1910 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1911 err = ftgmac100_setup_mdio(netdev);
1912 if (err)
1913 goto err_setup_mdio;
1914 }
1915
1916 phy = of_phy_get_and_connect(priv->netdev, np,
1917 &ftgmac100_adjust_link);
1918 if (!phy) {
1919 dev_err(&pdev->dev, "Failed to connect to phy\n");
1920 err = -EINVAL;
1921 goto err_phy_connect;
1922 }
1923
1924 /* Indicate that we support PAUSE frames (see comment in
1925 * Documentation/networking/phy.rst)
1926 */
1927 phy_support_asym_pause(phy);
1928
1929 /* Display what we found */
1930 phy_attached_info(phy);
1931 } else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1932 /* Support legacy ASPEED devicetree descriptions that decribe a
1933 * MAC with an embedded MDIO controller but have no "mdio"
1934 * child node. Automatically scan the MDIO bus for available
1935 * PHYs.
1936 */
1937 priv->use_ncsi = false;
1938 err = ftgmac100_setup_mdio(netdev);
1939 if (err)
1940 goto err_setup_mdio;
1941
1942 err = ftgmac100_mii_probe(netdev);
1943 if (err) {
1944 dev_err(priv->dev, "MII probe failed!\n");
1945 goto err_ncsi_dev;
1946 }
1947
1948 }
1949
1950 if (priv->is_aspeed) {
1951 err = ftgmac100_setup_clk(priv);
1952 if (err)
1953 goto err_phy_connect;
1954
1955 /* Disable ast2600 problematic HW arbitration */
1956 if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1957 iowrite32(FTGMAC100_TM_DEFAULT,
1958 priv->base + FTGMAC100_OFFSET_TM);
1959 }
1960
1961 /* Default ring sizes */
1962 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1963 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1964
1965 /* Base feature set */
1966 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1967 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1968 NETIF_F_HW_VLAN_CTAG_TX;
1969
1970 if (priv->use_ncsi)
1971 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1972
1973 /* AST2400 doesn't have working HW checksum generation */
1974 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1975 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1976
1977 /* AST2600 tx checksum with NCSI is broken */
1978 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
1979 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1980
1981 if (np && of_get_property(np, "no-hw-checksum", NULL))
1982 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1983 netdev->features |= netdev->hw_features;
1984
1985 /* register network device */
1986 err = register_netdev(netdev);
1987 if (err) {
1988 dev_err(&pdev->dev, "Failed to register netdev\n");
1989 goto err_register_netdev;
1990 }
1991
1992 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1993
1994 return 0;
1995
1996err_register_netdev:
1997 clk_disable_unprepare(priv->rclk);
1998 clk_disable_unprepare(priv->clk);
1999err_phy_connect:
2000 ftgmac100_phy_disconnect(netdev);
2001err_ncsi_dev:
2002 if (priv->ndev)
2003 ncsi_unregister_dev(priv->ndev);
2004 ftgmac100_destroy_mdio(netdev);
2005err_setup_mdio:
2006 iounmap(priv->base);
2007err_ioremap:
2008 release_resource(priv->res);
2009err_req_mem:
2010 free_netdev(netdev);
2011err_alloc_etherdev:
2012 return err;
2013}
2014
2015static void ftgmac100_remove(struct platform_device *pdev)
2016{
2017 struct net_device *netdev;
2018 struct ftgmac100 *priv;
2019
2020 netdev = platform_get_drvdata(pdev);
2021 priv = netdev_priv(netdev);
2022
2023 if (priv->ndev)
2024 ncsi_unregister_dev(priv->ndev);
2025 unregister_netdev(netdev);
2026
2027 clk_disable_unprepare(priv->rclk);
2028 clk_disable_unprepare(priv->clk);
2029
2030 /* There's a small chance the reset task will have been re-queued,
2031 * during stop, make sure it's gone before we free the structure.
2032 */
2033 cancel_work_sync(&priv->reset_task);
2034
2035 ftgmac100_phy_disconnect(netdev);
2036 ftgmac100_destroy_mdio(netdev);
2037
2038 iounmap(priv->base);
2039 release_resource(priv->res);
2040
2041 netif_napi_del(&priv->napi);
2042 free_netdev(netdev);
2043}
2044
2045static const struct of_device_id ftgmac100_of_match[] = {
2046 { .compatible = "faraday,ftgmac100" },
2047 { }
2048};
2049MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2050
2051static struct platform_driver ftgmac100_driver = {
2052 .probe = ftgmac100_probe,
2053 .remove_new = ftgmac100_remove,
2054 .driver = {
2055 .name = DRV_NAME,
2056 .of_match_table = ftgmac100_of_match,
2057 },
2058};
2059module_platform_driver(ftgmac100_driver);
2060
2061MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2062MODULE_DESCRIPTION("FTGMAC100 driver");
2063MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <net/ip.h>
28#include <net/ncsi.h>
29
30#include "ftgmac100.h"
31
32#define DRV_NAME "ftgmac100"
33#define DRV_VERSION "0.7"
34
35/* Arbitrary values, I am not sure the HW has limits */
36#define MAX_RX_QUEUE_ENTRIES 1024
37#define MAX_TX_QUEUE_ENTRIES 1024
38#define MIN_RX_QUEUE_ENTRIES 32
39#define MIN_TX_QUEUE_ENTRIES 32
40
41/* Defaults */
42#define DEF_RX_QUEUE_ENTRIES 128
43#define DEF_TX_QUEUE_ENTRIES 128
44
45#define MAX_PKT_SIZE 1536
46#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
47
48/* Min number of tx ring entries before stopping queue */
49#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
50
51#define FTGMAC_100MHZ 100000000
52#define FTGMAC_25MHZ 25000000
53
54struct ftgmac100 {
55 /* Registers */
56 struct resource *res;
57 void __iomem *base;
58
59 /* Rx ring */
60 unsigned int rx_q_entries;
61 struct ftgmac100_rxdes *rxdes;
62 dma_addr_t rxdes_dma;
63 struct sk_buff **rx_skbs;
64 unsigned int rx_pointer;
65 u32 rxdes0_edorr_mask;
66
67 /* Tx ring */
68 unsigned int tx_q_entries;
69 struct ftgmac100_txdes *txdes;
70 dma_addr_t txdes_dma;
71 struct sk_buff **tx_skbs;
72 unsigned int tx_clean_pointer;
73 unsigned int tx_pointer;
74 u32 txdes0_edotr_mask;
75
76 /* Used to signal the reset task of ring change request */
77 unsigned int new_rx_q_entries;
78 unsigned int new_tx_q_entries;
79
80 /* Scratch page to use when rx skb alloc fails */
81 void *rx_scratch;
82 dma_addr_t rx_scratch_dma;
83
84 /* Component structures */
85 struct net_device *netdev;
86 struct device *dev;
87 struct ncsi_dev *ndev;
88 struct napi_struct napi;
89 struct work_struct reset_task;
90 struct mii_bus *mii_bus;
91 struct clk *clk;
92
93 /* Link management */
94 int cur_speed;
95 int cur_duplex;
96 bool use_ncsi;
97
98 /* Multicast filter settings */
99 u32 maht0;
100 u32 maht1;
101
102 /* Flow control settings */
103 bool tx_pause;
104 bool rx_pause;
105 bool aneg_pause;
106
107 /* Misc */
108 bool need_mac_restart;
109 bool is_aspeed;
110};
111
112static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
113{
114 struct net_device *netdev = priv->netdev;
115 int i;
116
117 /* NOTE: reset clears all registers */
118 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
119 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
120 priv->base + FTGMAC100_OFFSET_MACCR);
121 for (i = 0; i < 200; i++) {
122 unsigned int maccr;
123
124 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
125 if (!(maccr & FTGMAC100_MACCR_SW_RST))
126 return 0;
127
128 udelay(1);
129 }
130
131 netdev_err(netdev, "Hardware reset failed\n");
132 return -EIO;
133}
134
135static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
136{
137 u32 maccr = 0;
138
139 switch (priv->cur_speed) {
140 case SPEED_10:
141 case 0: /* no link */
142 break;
143
144 case SPEED_100:
145 maccr |= FTGMAC100_MACCR_FAST_MODE;
146 break;
147
148 case SPEED_1000:
149 maccr |= FTGMAC100_MACCR_GIGA_MODE;
150 break;
151 default:
152 netdev_err(priv->netdev, "Unknown speed %d !\n",
153 priv->cur_speed);
154 break;
155 }
156
157 /* (Re)initialize the queue pointers */
158 priv->rx_pointer = 0;
159 priv->tx_clean_pointer = 0;
160 priv->tx_pointer = 0;
161
162 /* The doc says reset twice with 10us interval */
163 if (ftgmac100_reset_mac(priv, maccr))
164 return -EIO;
165 usleep_range(10, 1000);
166 return ftgmac100_reset_mac(priv, maccr);
167}
168
169static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
170{
171 unsigned int maddr = mac[0] << 8 | mac[1];
172 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
173
174 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
175 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
176}
177
178static void ftgmac100_initial_mac(struct ftgmac100 *priv)
179{
180 u8 mac[ETH_ALEN];
181 unsigned int m;
182 unsigned int l;
183 void *addr;
184
185 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
186 if (addr) {
187 ether_addr_copy(priv->netdev->dev_addr, mac);
188 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
189 mac);
190 return;
191 }
192
193 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
194 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
195
196 mac[0] = (m >> 8) & 0xff;
197 mac[1] = m & 0xff;
198 mac[2] = (l >> 24) & 0xff;
199 mac[3] = (l >> 16) & 0xff;
200 mac[4] = (l >> 8) & 0xff;
201 mac[5] = l & 0xff;
202
203 if (is_valid_ether_addr(mac)) {
204 ether_addr_copy(priv->netdev->dev_addr, mac);
205 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
206 } else {
207 eth_hw_addr_random(priv->netdev);
208 dev_info(priv->dev, "Generated random MAC address %pM\n",
209 priv->netdev->dev_addr);
210 }
211}
212
213static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
214{
215 int ret;
216
217 ret = eth_prepare_mac_addr_change(dev, p);
218 if (ret < 0)
219 return ret;
220
221 eth_commit_mac_addr_change(dev, p);
222 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
223
224 return 0;
225}
226
227static void ftgmac100_config_pause(struct ftgmac100 *priv)
228{
229 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
230
231 /* Throttle tx queue when receiving pause frames */
232 if (priv->rx_pause)
233 fcr |= FTGMAC100_FCR_FC_EN;
234
235 /* Enables sending pause frames when the RX queue is past a
236 * certain threshold.
237 */
238 if (priv->tx_pause)
239 fcr |= FTGMAC100_FCR_FCTHR_EN;
240
241 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
242}
243
244static void ftgmac100_init_hw(struct ftgmac100 *priv)
245{
246 u32 reg, rfifo_sz, tfifo_sz;
247
248 /* Clear stale interrupts */
249 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
250 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
251
252 /* Setup RX ring buffer base */
253 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
254
255 /* Setup TX ring buffer base */
256 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
257
258 /* Configure RX buffer size */
259 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
260 priv->base + FTGMAC100_OFFSET_RBSR);
261
262 /* Set RX descriptor autopoll */
263 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
264 priv->base + FTGMAC100_OFFSET_APTC);
265
266 /* Write MAC address */
267 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
268
269 /* Write multicast filter */
270 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
271 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
272
273 /* Configure descriptor sizes and increase burst sizes according
274 * to values in Aspeed SDK. The FIFO arbitration is enabled and
275 * the thresholds set based on the recommended values in the
276 * AST2400 specification.
277 */
278 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
279 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
280 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
281 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
282 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
283 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
284 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
285 priv->base + FTGMAC100_OFFSET_DBLAC);
286
287 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
288 * mitigation doesn't seem to provide any benefit with NAPI so leave
289 * it at that.
290 */
291 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
292 FTGMAC100_ITC_TXINT_THR(1),
293 priv->base + FTGMAC100_OFFSET_ITC);
294
295 /* Configure FIFO sizes in the TPAFCR register */
296 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
297 rfifo_sz = reg & 0x00000007;
298 tfifo_sz = (reg >> 3) & 0x00000007;
299 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
300 reg &= ~0x3f000000;
301 reg |= (tfifo_sz << 27);
302 reg |= (rfifo_sz << 24);
303 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
304}
305
306static void ftgmac100_start_hw(struct ftgmac100 *priv)
307{
308 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
309
310 /* Keep the original GMAC and FAST bits */
311 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
312
313 /* Add all the main enable bits */
314 maccr |= FTGMAC100_MACCR_TXDMA_EN |
315 FTGMAC100_MACCR_RXDMA_EN |
316 FTGMAC100_MACCR_TXMAC_EN |
317 FTGMAC100_MACCR_RXMAC_EN |
318 FTGMAC100_MACCR_CRC_APD |
319 FTGMAC100_MACCR_PHY_LINK_LEVEL |
320 FTGMAC100_MACCR_RX_RUNT |
321 FTGMAC100_MACCR_RX_BROADPKT;
322
323 /* Add other bits as needed */
324 if (priv->cur_duplex == DUPLEX_FULL)
325 maccr |= FTGMAC100_MACCR_FULLDUP;
326 if (priv->netdev->flags & IFF_PROMISC)
327 maccr |= FTGMAC100_MACCR_RX_ALL;
328 if (priv->netdev->flags & IFF_ALLMULTI)
329 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
330 else if (netdev_mc_count(priv->netdev))
331 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
332
333 /* Vlan filtering enabled */
334 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
335 maccr |= FTGMAC100_MACCR_RM_VLAN;
336
337 /* Hit the HW */
338 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
339}
340
341static void ftgmac100_stop_hw(struct ftgmac100 *priv)
342{
343 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
344}
345
346static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
347{
348 struct netdev_hw_addr *ha;
349
350 priv->maht1 = 0;
351 priv->maht0 = 0;
352 netdev_for_each_mc_addr(ha, priv->netdev) {
353 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
354
355 crc_val = (~(crc_val >> 2)) & 0x3f;
356 if (crc_val >= 32)
357 priv->maht1 |= 1ul << (crc_val - 32);
358 else
359 priv->maht0 |= 1ul << (crc_val);
360 }
361}
362
363static void ftgmac100_set_rx_mode(struct net_device *netdev)
364{
365 struct ftgmac100 *priv = netdev_priv(netdev);
366
367 /* Setup the hash filter */
368 ftgmac100_calc_mc_hash(priv);
369
370 /* Interface down ? that's all there is to do */
371 if (!netif_running(netdev))
372 return;
373
374 /* Update the HW */
375 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
376 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
377
378 /* Reconfigure MACCR */
379 ftgmac100_start_hw(priv);
380}
381
382static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
383 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
384{
385 struct net_device *netdev = priv->netdev;
386 struct sk_buff *skb;
387 dma_addr_t map;
388 int err = 0;
389
390 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
391 if (unlikely(!skb)) {
392 if (net_ratelimit())
393 netdev_warn(netdev, "failed to allocate rx skb\n");
394 err = -ENOMEM;
395 map = priv->rx_scratch_dma;
396 } else {
397 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
398 DMA_FROM_DEVICE);
399 if (unlikely(dma_mapping_error(priv->dev, map))) {
400 if (net_ratelimit())
401 netdev_err(netdev, "failed to map rx page\n");
402 dev_kfree_skb_any(skb);
403 map = priv->rx_scratch_dma;
404 skb = NULL;
405 err = -ENOMEM;
406 }
407 }
408
409 /* Store skb */
410 priv->rx_skbs[entry] = skb;
411
412 /* Store DMA address into RX desc */
413 rxdes->rxdes3 = cpu_to_le32(map);
414
415 /* Ensure the above is ordered vs clearing the OWN bit */
416 dma_wmb();
417
418 /* Clean status (which resets own bit) */
419 if (entry == (priv->rx_q_entries - 1))
420 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
421 else
422 rxdes->rxdes0 = 0;
423
424 return err;
425}
426
427static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
428 unsigned int pointer)
429{
430 return (pointer + 1) & (priv->rx_q_entries - 1);
431}
432
433static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
434{
435 struct net_device *netdev = priv->netdev;
436
437 if (status & FTGMAC100_RXDES0_RX_ERR)
438 netdev->stats.rx_errors++;
439
440 if (status & FTGMAC100_RXDES0_CRC_ERR)
441 netdev->stats.rx_crc_errors++;
442
443 if (status & (FTGMAC100_RXDES0_FTL |
444 FTGMAC100_RXDES0_RUNT |
445 FTGMAC100_RXDES0_RX_ODD_NB))
446 netdev->stats.rx_length_errors++;
447}
448
449static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
450{
451 struct net_device *netdev = priv->netdev;
452 struct ftgmac100_rxdes *rxdes;
453 struct sk_buff *skb;
454 unsigned int pointer, size;
455 u32 status, csum_vlan;
456 dma_addr_t map;
457
458 /* Grab next RX descriptor */
459 pointer = priv->rx_pointer;
460 rxdes = &priv->rxdes[pointer];
461
462 /* Grab descriptor status */
463 status = le32_to_cpu(rxdes->rxdes0);
464
465 /* Do we have a packet ? */
466 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
467 return false;
468
469 /* Order subsequent reads with the test for the ready bit */
470 dma_rmb();
471
472 /* We don't cope with fragmented RX packets */
473 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
474 !(status & FTGMAC100_RXDES0_LRS)))
475 goto drop;
476
477 /* Grab received size and csum vlan field in the descriptor */
478 size = status & FTGMAC100_RXDES0_VDBC;
479 csum_vlan = le32_to_cpu(rxdes->rxdes1);
480
481 /* Any error (other than csum offload) flagged ? */
482 if (unlikely(status & RXDES0_ANY_ERROR)) {
483 /* Correct for incorrect flagging of runt packets
484 * with vlan tags... Just accept a runt packet that
485 * has been flagged as vlan and whose size is at
486 * least 60 bytes.
487 */
488 if ((status & FTGMAC100_RXDES0_RUNT) &&
489 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
490 (size >= 60))
491 status &= ~FTGMAC100_RXDES0_RUNT;
492
493 /* Any error still in there ? */
494 if (status & RXDES0_ANY_ERROR) {
495 ftgmac100_rx_packet_error(priv, status);
496 goto drop;
497 }
498 }
499
500 /* If the packet had no skb (failed to allocate earlier)
501 * then try to allocate one and skip
502 */
503 skb = priv->rx_skbs[pointer];
504 if (!unlikely(skb)) {
505 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
506 goto drop;
507 }
508
509 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
510 netdev->stats.multicast++;
511
512 /* If the HW found checksum errors, bounce it to software.
513 *
514 * If we didn't, we need to see if the packet was recognized
515 * by HW as one of the supported checksummed protocols before
516 * we accept the HW test results.
517 */
518 if (netdev->features & NETIF_F_RXCSUM) {
519 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
520 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
521 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
522 if ((csum_vlan & err_bits) ||
523 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
524 skb->ip_summed = CHECKSUM_NONE;
525 else
526 skb->ip_summed = CHECKSUM_UNNECESSARY;
527 }
528
529 /* Transfer received size to skb */
530 skb_put(skb, size);
531
532 /* Extract vlan tag */
533 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
534 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
535 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
536 csum_vlan & 0xffff);
537
538 /* Tear down DMA mapping, do necessary cache management */
539 map = le32_to_cpu(rxdes->rxdes3);
540
541#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
542 /* When we don't have an iommu, we can save cycles by not
543 * invalidating the cache for the part of the packet that
544 * wasn't received.
545 */
546 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
547#else
548 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
549#endif
550
551
552 /* Resplenish rx ring */
553 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
554 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
555
556 skb->protocol = eth_type_trans(skb, netdev);
557
558 netdev->stats.rx_packets++;
559 netdev->stats.rx_bytes += size;
560
561 /* push packet to protocol stack */
562 if (skb->ip_summed == CHECKSUM_NONE)
563 netif_receive_skb(skb);
564 else
565 napi_gro_receive(&priv->napi, skb);
566
567 (*processed)++;
568 return true;
569
570 drop:
571 /* Clean rxdes0 (which resets own bit) */
572 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
573 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
574 netdev->stats.rx_dropped++;
575 return true;
576}
577
578static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
579 unsigned int index)
580{
581 if (index == (priv->tx_q_entries - 1))
582 return priv->txdes0_edotr_mask;
583 else
584 return 0;
585}
586
587static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
588 unsigned int pointer)
589{
590 return (pointer + 1) & (priv->tx_q_entries - 1);
591}
592
593static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
594{
595 /* Returns the number of available slots in the TX queue
596 *
597 * This always leaves one free slot so we don't have to
598 * worry about empty vs. full, and this simplifies the
599 * test for ftgmac100_tx_buf_cleanable() below
600 */
601 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
602 (priv->tx_q_entries - 1);
603}
604
605static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
606{
607 return priv->tx_pointer != priv->tx_clean_pointer;
608}
609
610static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
611 unsigned int pointer,
612 struct sk_buff *skb,
613 struct ftgmac100_txdes *txdes,
614 u32 ctl_stat)
615{
616 dma_addr_t map = le32_to_cpu(txdes->txdes3);
617 size_t len;
618
619 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
620 len = skb_headlen(skb);
621 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
622 } else {
623 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
624 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
625 }
626
627 /* Free SKB on last segment */
628 if (ctl_stat & FTGMAC100_TXDES0_LTS)
629 dev_kfree_skb(skb);
630 priv->tx_skbs[pointer] = NULL;
631}
632
633static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
634{
635 struct net_device *netdev = priv->netdev;
636 struct ftgmac100_txdes *txdes;
637 struct sk_buff *skb;
638 unsigned int pointer;
639 u32 ctl_stat;
640
641 pointer = priv->tx_clean_pointer;
642 txdes = &priv->txdes[pointer];
643
644 ctl_stat = le32_to_cpu(txdes->txdes0);
645 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
646 return false;
647
648 skb = priv->tx_skbs[pointer];
649 netdev->stats.tx_packets++;
650 netdev->stats.tx_bytes += skb->len;
651 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
652 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
653
654 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
655
656 return true;
657}
658
659static void ftgmac100_tx_complete(struct ftgmac100 *priv)
660{
661 struct net_device *netdev = priv->netdev;
662
663 /* Process all completed packets */
664 while (ftgmac100_tx_buf_cleanable(priv) &&
665 ftgmac100_tx_complete_packet(priv))
666 ;
667
668 /* Restart queue if needed */
669 smp_mb();
670 if (unlikely(netif_queue_stopped(netdev) &&
671 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
672 struct netdev_queue *txq;
673
674 txq = netdev_get_tx_queue(netdev, 0);
675 __netif_tx_lock(txq, smp_processor_id());
676 if (netif_queue_stopped(netdev) &&
677 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
678 netif_wake_queue(netdev);
679 __netif_tx_unlock(txq);
680 }
681}
682
683static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
684{
685 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
686 u8 ip_proto = ip_hdr(skb)->protocol;
687
688 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
689 switch(ip_proto) {
690 case IPPROTO_TCP:
691 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
692 return true;
693 case IPPROTO_UDP:
694 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
695 return true;
696 case IPPROTO_IP:
697 return true;
698 }
699 }
700 return skb_checksum_help(skb) == 0;
701}
702
703static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
704 struct net_device *netdev)
705{
706 struct ftgmac100 *priv = netdev_priv(netdev);
707 struct ftgmac100_txdes *txdes, *first;
708 unsigned int pointer, nfrags, len, i, j;
709 u32 f_ctl_stat, ctl_stat, csum_vlan;
710 dma_addr_t map;
711
712 /* The HW doesn't pad small frames */
713 if (eth_skb_pad(skb)) {
714 netdev->stats.tx_dropped++;
715 return NETDEV_TX_OK;
716 }
717
718 /* Reject oversize packets */
719 if (unlikely(skb->len > MAX_PKT_SIZE)) {
720 if (net_ratelimit())
721 netdev_dbg(netdev, "tx packet too big\n");
722 goto drop;
723 }
724
725 /* Do we have a limit on #fragments ? I yet have to get a reply
726 * from Aspeed. If there's one I haven't hit it.
727 */
728 nfrags = skb_shinfo(skb)->nr_frags;
729
730 /* Setup HW checksumming */
731 csum_vlan = 0;
732 if (skb->ip_summed == CHECKSUM_PARTIAL &&
733 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
734 goto drop;
735
736 /* Add VLAN tag */
737 if (skb_vlan_tag_present(skb)) {
738 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
739 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
740 }
741
742 /* Get header len */
743 len = skb_headlen(skb);
744
745 /* Map the packet head */
746 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 if (dma_mapping_error(priv->dev, map)) {
748 if (net_ratelimit())
749 netdev_err(netdev, "map tx packet head failed\n");
750 goto drop;
751 }
752
753 /* Grab the next free tx descriptor */
754 pointer = priv->tx_pointer;
755 txdes = first = &priv->txdes[pointer];
756
757 /* Setup it up with the packet head. Don't write the head to the
758 * ring just yet
759 */
760 priv->tx_skbs[pointer] = skb;
761 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 if (nfrags == 0)
766 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 txdes->txdes3 = cpu_to_le32(map);
768 txdes->txdes1 = cpu_to_le32(csum_vlan);
769
770 /* Next descriptor */
771 pointer = ftgmac100_next_tx_pointer(priv, pointer);
772
773 /* Add the fragments */
774 for (i = 0; i < nfrags; i++) {
775 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
776
777 len = skb_frag_size(frag);
778
779 /* Map it */
780 map = skb_frag_dma_map(priv->dev, frag, 0, len,
781 DMA_TO_DEVICE);
782 if (dma_mapping_error(priv->dev, map))
783 goto dma_err;
784
785 /* Setup descriptor */
786 priv->tx_skbs[pointer] = skb;
787 txdes = &priv->txdes[pointer];
788 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
789 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
790 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
791 if (i == (nfrags - 1))
792 ctl_stat |= FTGMAC100_TXDES0_LTS;
793 txdes->txdes0 = cpu_to_le32(ctl_stat);
794 txdes->txdes1 = 0;
795 txdes->txdes3 = cpu_to_le32(map);
796
797 /* Next one */
798 pointer = ftgmac100_next_tx_pointer(priv, pointer);
799 }
800
801 /* Order the previous packet and descriptor udpates
802 * before setting the OWN bit on the first descriptor.
803 */
804 dma_wmb();
805 first->txdes0 = cpu_to_le32(f_ctl_stat);
806
807 /* Update next TX pointer */
808 priv->tx_pointer = pointer;
809
810 /* If there isn't enough room for all the fragments of a new packet
811 * in the TX ring, stop the queue. The sequence below is race free
812 * vs. a concurrent restart in ftgmac100_poll()
813 */
814 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
815 netif_stop_queue(netdev);
816 /* Order the queue stop with the test below */
817 smp_mb();
818 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
819 netif_wake_queue(netdev);
820 }
821
822 /* Poke transmitter to read the updated TX descriptors */
823 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
824
825 return NETDEV_TX_OK;
826
827 dma_err:
828 if (net_ratelimit())
829 netdev_err(netdev, "map tx fragment failed\n");
830
831 /* Free head */
832 pointer = priv->tx_pointer;
833 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
834 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
835
836 /* Then all fragments */
837 for (j = 0; j < i; j++) {
838 pointer = ftgmac100_next_tx_pointer(priv, pointer);
839 txdes = &priv->txdes[pointer];
840 ctl_stat = le32_to_cpu(txdes->txdes0);
841 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
842 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
843 }
844
845 /* This cannot be reached if we successfully mapped the
846 * last fragment, so we know ftgmac100_free_tx_packet()
847 * hasn't freed the skb yet.
848 */
849 drop:
850 /* Drop the packet */
851 dev_kfree_skb_any(skb);
852 netdev->stats.tx_dropped++;
853
854 return NETDEV_TX_OK;
855}
856
857static void ftgmac100_free_buffers(struct ftgmac100 *priv)
858{
859 int i;
860
861 /* Free all RX buffers */
862 for (i = 0; i < priv->rx_q_entries; i++) {
863 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
864 struct sk_buff *skb = priv->rx_skbs[i];
865 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
866
867 if (!skb)
868 continue;
869
870 priv->rx_skbs[i] = NULL;
871 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
872 dev_kfree_skb_any(skb);
873 }
874
875 /* Free all TX buffers */
876 for (i = 0; i < priv->tx_q_entries; i++) {
877 struct ftgmac100_txdes *txdes = &priv->txdes[i];
878 struct sk_buff *skb = priv->tx_skbs[i];
879
880 if (!skb)
881 continue;
882 ftgmac100_free_tx_packet(priv, i, skb, txdes,
883 le32_to_cpu(txdes->txdes0));
884 }
885}
886
887static void ftgmac100_free_rings(struct ftgmac100 *priv)
888{
889 /* Free skb arrays */
890 kfree(priv->rx_skbs);
891 kfree(priv->tx_skbs);
892
893 /* Free descriptors */
894 if (priv->rxdes)
895 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
896 sizeof(struct ftgmac100_rxdes),
897 priv->rxdes, priv->rxdes_dma);
898 priv->rxdes = NULL;
899
900 if (priv->txdes)
901 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
902 sizeof(struct ftgmac100_txdes),
903 priv->txdes, priv->txdes_dma);
904 priv->txdes = NULL;
905
906 /* Free scratch packet buffer */
907 if (priv->rx_scratch)
908 dma_free_coherent(priv->dev, RX_BUF_SIZE,
909 priv->rx_scratch, priv->rx_scratch_dma);
910}
911
912static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
913{
914 /* Allocate skb arrays */
915 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
916 GFP_KERNEL);
917 if (!priv->rx_skbs)
918 return -ENOMEM;
919 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
920 GFP_KERNEL);
921 if (!priv->tx_skbs)
922 return -ENOMEM;
923
924 /* Allocate descriptors */
925 priv->rxdes = dma_alloc_coherent(priv->dev,
926 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
927 &priv->rxdes_dma, GFP_KERNEL);
928 if (!priv->rxdes)
929 return -ENOMEM;
930 priv->txdes = dma_alloc_coherent(priv->dev,
931 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
932 &priv->txdes_dma, GFP_KERNEL);
933 if (!priv->txdes)
934 return -ENOMEM;
935
936 /* Allocate scratch packet buffer */
937 priv->rx_scratch = dma_alloc_coherent(priv->dev,
938 RX_BUF_SIZE,
939 &priv->rx_scratch_dma,
940 GFP_KERNEL);
941 if (!priv->rx_scratch)
942 return -ENOMEM;
943
944 return 0;
945}
946
947static void ftgmac100_init_rings(struct ftgmac100 *priv)
948{
949 struct ftgmac100_rxdes *rxdes = NULL;
950 struct ftgmac100_txdes *txdes = NULL;
951 int i;
952
953 /* Update entries counts */
954 priv->rx_q_entries = priv->new_rx_q_entries;
955 priv->tx_q_entries = priv->new_tx_q_entries;
956
957 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
958 return;
959
960 /* Initialize RX ring */
961 for (i = 0; i < priv->rx_q_entries; i++) {
962 rxdes = &priv->rxdes[i];
963 rxdes->rxdes0 = 0;
964 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
965 }
966 /* Mark the end of the ring */
967 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
968
969 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
970 return;
971
972 /* Initialize TX ring */
973 for (i = 0; i < priv->tx_q_entries; i++) {
974 txdes = &priv->txdes[i];
975 txdes->txdes0 = 0;
976 }
977 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
978}
979
980static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
981{
982 int i;
983
984 for (i = 0; i < priv->rx_q_entries; i++) {
985 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
986
987 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
988 return -ENOMEM;
989 }
990 return 0;
991}
992
993static void ftgmac100_adjust_link(struct net_device *netdev)
994{
995 struct ftgmac100 *priv = netdev_priv(netdev);
996 struct phy_device *phydev = netdev->phydev;
997 bool tx_pause, rx_pause;
998 int new_speed;
999
1000 /* We store "no link" as speed 0 */
1001 if (!phydev->link)
1002 new_speed = 0;
1003 else
1004 new_speed = phydev->speed;
1005
1006 /* Grab pause settings from PHY if configured to do so */
1007 if (priv->aneg_pause) {
1008 rx_pause = tx_pause = phydev->pause;
1009 if (phydev->asym_pause)
1010 tx_pause = !rx_pause;
1011 } else {
1012 rx_pause = priv->rx_pause;
1013 tx_pause = priv->tx_pause;
1014 }
1015
1016 /* Link hasn't changed, do nothing */
1017 if (phydev->speed == priv->cur_speed &&
1018 phydev->duplex == priv->cur_duplex &&
1019 rx_pause == priv->rx_pause &&
1020 tx_pause == priv->tx_pause)
1021 return;
1022
1023 /* Print status if we have a link or we had one and just lost it,
1024 * don't print otherwise.
1025 */
1026 if (new_speed || priv->cur_speed)
1027 phy_print_status(phydev);
1028
1029 priv->cur_speed = new_speed;
1030 priv->cur_duplex = phydev->duplex;
1031 priv->rx_pause = rx_pause;
1032 priv->tx_pause = tx_pause;
1033
1034 /* Link is down, do nothing else */
1035 if (!new_speed)
1036 return;
1037
1038 /* Disable all interrupts */
1039 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1040
1041 /* Reset the adapter asynchronously */
1042 schedule_work(&priv->reset_task);
1043}
1044
1045static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1046{
1047 struct net_device *netdev = priv->netdev;
1048 struct phy_device *phydev;
1049
1050 phydev = phy_find_first(priv->mii_bus);
1051 if (!phydev) {
1052 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1053 return -ENODEV;
1054 }
1055
1056 phydev = phy_connect(netdev, phydev_name(phydev),
1057 &ftgmac100_adjust_link, intf);
1058
1059 if (IS_ERR(phydev)) {
1060 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1061 return PTR_ERR(phydev);
1062 }
1063
1064 /* Indicate that we support PAUSE frames (see comment in
1065 * Documentation/networking/phy.rst)
1066 */
1067 phy_support_asym_pause(phydev);
1068
1069 /* Display what we found */
1070 phy_attached_info(phydev);
1071
1072 return 0;
1073}
1074
1075static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1076{
1077 struct net_device *netdev = bus->priv;
1078 struct ftgmac100 *priv = netdev_priv(netdev);
1079 unsigned int phycr;
1080 int i;
1081
1082 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1083
1084 /* preserve MDC cycle threshold */
1085 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1086
1087 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1088 FTGMAC100_PHYCR_REGAD(regnum) |
1089 FTGMAC100_PHYCR_MIIRD;
1090
1091 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1092
1093 for (i = 0; i < 10; i++) {
1094 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1095
1096 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1097 int data;
1098
1099 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1100 return FTGMAC100_PHYDATA_MIIRDATA(data);
1101 }
1102
1103 udelay(100);
1104 }
1105
1106 netdev_err(netdev, "mdio read timed out\n");
1107 return -EIO;
1108}
1109
1110static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1111 int regnum, u16 value)
1112{
1113 struct net_device *netdev = bus->priv;
1114 struct ftgmac100 *priv = netdev_priv(netdev);
1115 unsigned int phycr;
1116 int data;
1117 int i;
1118
1119 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1120
1121 /* preserve MDC cycle threshold */
1122 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1123
1124 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1125 FTGMAC100_PHYCR_REGAD(regnum) |
1126 FTGMAC100_PHYCR_MIIWR;
1127
1128 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1129
1130 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1131 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1132
1133 for (i = 0; i < 10; i++) {
1134 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1135
1136 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1137 return 0;
1138
1139 udelay(100);
1140 }
1141
1142 netdev_err(netdev, "mdio write timed out\n");
1143 return -EIO;
1144}
1145
1146static void ftgmac100_get_drvinfo(struct net_device *netdev,
1147 struct ethtool_drvinfo *info)
1148{
1149 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1150 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1151 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1152}
1153
1154static void ftgmac100_get_ringparam(struct net_device *netdev,
1155 struct ethtool_ringparam *ering)
1156{
1157 struct ftgmac100 *priv = netdev_priv(netdev);
1158
1159 memset(ering, 0, sizeof(*ering));
1160 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1161 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1162 ering->rx_pending = priv->rx_q_entries;
1163 ering->tx_pending = priv->tx_q_entries;
1164}
1165
1166static int ftgmac100_set_ringparam(struct net_device *netdev,
1167 struct ethtool_ringparam *ering)
1168{
1169 struct ftgmac100 *priv = netdev_priv(netdev);
1170
1171 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1172 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1173 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1174 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1175 !is_power_of_2(ering->rx_pending) ||
1176 !is_power_of_2(ering->tx_pending))
1177 return -EINVAL;
1178
1179 priv->new_rx_q_entries = ering->rx_pending;
1180 priv->new_tx_q_entries = ering->tx_pending;
1181 if (netif_running(netdev))
1182 schedule_work(&priv->reset_task);
1183
1184 return 0;
1185}
1186
1187static void ftgmac100_get_pauseparam(struct net_device *netdev,
1188 struct ethtool_pauseparam *pause)
1189{
1190 struct ftgmac100 *priv = netdev_priv(netdev);
1191
1192 pause->autoneg = priv->aneg_pause;
1193 pause->tx_pause = priv->tx_pause;
1194 pause->rx_pause = priv->rx_pause;
1195}
1196
1197static int ftgmac100_set_pauseparam(struct net_device *netdev,
1198 struct ethtool_pauseparam *pause)
1199{
1200 struct ftgmac100 *priv = netdev_priv(netdev);
1201 struct phy_device *phydev = netdev->phydev;
1202
1203 priv->aneg_pause = pause->autoneg;
1204 priv->tx_pause = pause->tx_pause;
1205 priv->rx_pause = pause->rx_pause;
1206
1207 if (phydev)
1208 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1209
1210 if (netif_running(netdev)) {
1211 if (!(phydev && priv->aneg_pause))
1212 ftgmac100_config_pause(priv);
1213 }
1214
1215 return 0;
1216}
1217
1218static const struct ethtool_ops ftgmac100_ethtool_ops = {
1219 .get_drvinfo = ftgmac100_get_drvinfo,
1220 .get_link = ethtool_op_get_link,
1221 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1222 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1223 .nway_reset = phy_ethtool_nway_reset,
1224 .get_ringparam = ftgmac100_get_ringparam,
1225 .set_ringparam = ftgmac100_set_ringparam,
1226 .get_pauseparam = ftgmac100_get_pauseparam,
1227 .set_pauseparam = ftgmac100_set_pauseparam,
1228};
1229
1230static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1231{
1232 struct net_device *netdev = dev_id;
1233 struct ftgmac100 *priv = netdev_priv(netdev);
1234 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1235
1236 /* Fetch and clear interrupt bits, process abnormal ones */
1237 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1238 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1239 if (unlikely(status & FTGMAC100_INT_BAD)) {
1240
1241 /* RX buffer unavailable */
1242 if (status & FTGMAC100_INT_NO_RXBUF)
1243 netdev->stats.rx_over_errors++;
1244
1245 /* received packet lost due to RX FIFO full */
1246 if (status & FTGMAC100_INT_RPKT_LOST)
1247 netdev->stats.rx_fifo_errors++;
1248
1249 /* sent packet lost due to excessive TX collision */
1250 if (status & FTGMAC100_INT_XPKT_LOST)
1251 netdev->stats.tx_fifo_errors++;
1252
1253 /* AHB error -> Reset the chip */
1254 if (status & FTGMAC100_INT_AHB_ERR) {
1255 if (net_ratelimit())
1256 netdev_warn(netdev,
1257 "AHB bus error ! Resetting chip.\n");
1258 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1259 schedule_work(&priv->reset_task);
1260 return IRQ_HANDLED;
1261 }
1262
1263 /* We may need to restart the MAC after such errors, delay
1264 * this until after we have freed some Rx buffers though
1265 */
1266 priv->need_mac_restart = true;
1267
1268 /* Disable those errors until we restart */
1269 new_mask &= ~status;
1270 }
1271
1272 /* Only enable "bad" interrupts while NAPI is on */
1273 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1274
1275 /* Schedule NAPI bh */
1276 napi_schedule_irqoff(&priv->napi);
1277
1278 return IRQ_HANDLED;
1279}
1280
1281static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1282{
1283 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1284
1285 /* Do we have a packet ? */
1286 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1287}
1288
1289static int ftgmac100_poll(struct napi_struct *napi, int budget)
1290{
1291 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1292 int work_done = 0;
1293 bool more;
1294
1295 /* Handle TX completions */
1296 if (ftgmac100_tx_buf_cleanable(priv))
1297 ftgmac100_tx_complete(priv);
1298
1299 /* Handle RX packets */
1300 do {
1301 more = ftgmac100_rx_packet(priv, &work_done);
1302 } while (more && work_done < budget);
1303
1304
1305 /* The interrupt is telling us to kick the MAC back to life
1306 * after an RX overflow
1307 */
1308 if (unlikely(priv->need_mac_restart)) {
1309 ftgmac100_start_hw(priv);
1310
1311 /* Re-enable "bad" interrupts */
1312 iowrite32(FTGMAC100_INT_BAD,
1313 priv->base + FTGMAC100_OFFSET_IER);
1314 }
1315
1316 /* As long as we are waiting for transmit packets to be
1317 * completed we keep NAPI going
1318 */
1319 if (ftgmac100_tx_buf_cleanable(priv))
1320 work_done = budget;
1321
1322 if (work_done < budget) {
1323 /* We are about to re-enable all interrupts. However
1324 * the HW has been latching RX/TX packet interrupts while
1325 * they were masked. So we clear them first, then we need
1326 * to re-check if there's something to process
1327 */
1328 iowrite32(FTGMAC100_INT_RXTX,
1329 priv->base + FTGMAC100_OFFSET_ISR);
1330
1331 /* Push the above (and provides a barrier vs. subsequent
1332 * reads of the descriptor).
1333 */
1334 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1335
1336 /* Check RX and TX descriptors for more work to do */
1337 if (ftgmac100_check_rx(priv) ||
1338 ftgmac100_tx_buf_cleanable(priv))
1339 return budget;
1340
1341 /* deschedule NAPI */
1342 napi_complete(napi);
1343
1344 /* enable all interrupts */
1345 iowrite32(FTGMAC100_INT_ALL,
1346 priv->base + FTGMAC100_OFFSET_IER);
1347 }
1348
1349 return work_done;
1350}
1351
1352static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1353{
1354 int err = 0;
1355
1356 /* Re-init descriptors (adjust queue sizes) */
1357 ftgmac100_init_rings(priv);
1358
1359 /* Realloc rx descriptors */
1360 err = ftgmac100_alloc_rx_buffers(priv);
1361 if (err && !ignore_alloc_err)
1362 return err;
1363
1364 /* Reinit and restart HW */
1365 ftgmac100_init_hw(priv);
1366 ftgmac100_config_pause(priv);
1367 ftgmac100_start_hw(priv);
1368
1369 /* Re-enable the device */
1370 napi_enable(&priv->napi);
1371 netif_start_queue(priv->netdev);
1372
1373 /* Enable all interrupts */
1374 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1375
1376 return err;
1377}
1378
1379static void ftgmac100_reset_task(struct work_struct *work)
1380{
1381 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1382 reset_task);
1383 struct net_device *netdev = priv->netdev;
1384 int err;
1385
1386 netdev_dbg(netdev, "Resetting NIC...\n");
1387
1388 /* Lock the world */
1389 rtnl_lock();
1390 if (netdev->phydev)
1391 mutex_lock(&netdev->phydev->lock);
1392 if (priv->mii_bus)
1393 mutex_lock(&priv->mii_bus->mdio_lock);
1394
1395
1396 /* Check if the interface is still up */
1397 if (!netif_running(netdev))
1398 goto bail;
1399
1400 /* Stop the network stack */
1401 netif_trans_update(netdev);
1402 napi_disable(&priv->napi);
1403 netif_tx_disable(netdev);
1404
1405 /* Stop and reset the MAC */
1406 ftgmac100_stop_hw(priv);
1407 err = ftgmac100_reset_and_config_mac(priv);
1408 if (err) {
1409 /* Not much we can do ... it might come back... */
1410 netdev_err(netdev, "attempting to continue...\n");
1411 }
1412
1413 /* Free all rx and tx buffers */
1414 ftgmac100_free_buffers(priv);
1415
1416 /* Setup everything again and restart chip */
1417 ftgmac100_init_all(priv, true);
1418
1419 netdev_dbg(netdev, "Reset done !\n");
1420 bail:
1421 if (priv->mii_bus)
1422 mutex_unlock(&priv->mii_bus->mdio_lock);
1423 if (netdev->phydev)
1424 mutex_unlock(&netdev->phydev->lock);
1425 rtnl_unlock();
1426}
1427
1428static int ftgmac100_open(struct net_device *netdev)
1429{
1430 struct ftgmac100 *priv = netdev_priv(netdev);
1431 int err;
1432
1433 /* Allocate ring buffers */
1434 err = ftgmac100_alloc_rings(priv);
1435 if (err) {
1436 netdev_err(netdev, "Failed to allocate descriptors\n");
1437 return err;
1438 }
1439
1440 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1441 *
1442 * Otherwise we leave it set to 0 (no link), the link
1443 * message from the PHY layer will handle setting it up to
1444 * something else if needed.
1445 */
1446 if (priv->use_ncsi) {
1447 priv->cur_duplex = DUPLEX_FULL;
1448 priv->cur_speed = SPEED_100;
1449 } else {
1450 priv->cur_duplex = 0;
1451 priv->cur_speed = 0;
1452 }
1453
1454 /* Reset the hardware */
1455 err = ftgmac100_reset_and_config_mac(priv);
1456 if (err)
1457 goto err_hw;
1458
1459 /* Initialize NAPI */
1460 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1461
1462 /* Grab our interrupt */
1463 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1464 if (err) {
1465 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1466 goto err_irq;
1467 }
1468
1469 /* Start things up */
1470 err = ftgmac100_init_all(priv, false);
1471 if (err) {
1472 netdev_err(netdev, "Failed to allocate packet buffers\n");
1473 goto err_alloc;
1474 }
1475
1476 if (netdev->phydev) {
1477 /* If we have a PHY, start polling */
1478 phy_start(netdev->phydev);
1479 } else if (priv->use_ncsi) {
1480 /* If using NC-SI, set our carrier on and start the stack */
1481 netif_carrier_on(netdev);
1482
1483 /* Start the NCSI device */
1484 err = ncsi_start_dev(priv->ndev);
1485 if (err)
1486 goto err_ncsi;
1487 }
1488
1489 return 0;
1490
1491 err_ncsi:
1492 napi_disable(&priv->napi);
1493 netif_stop_queue(netdev);
1494 err_alloc:
1495 ftgmac100_free_buffers(priv);
1496 free_irq(netdev->irq, netdev);
1497 err_irq:
1498 netif_napi_del(&priv->napi);
1499 err_hw:
1500 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1501 ftgmac100_free_rings(priv);
1502 return err;
1503}
1504
1505static int ftgmac100_stop(struct net_device *netdev)
1506{
1507 struct ftgmac100 *priv = netdev_priv(netdev);
1508
1509 /* Note about the reset task: We are called with the rtnl lock
1510 * held, so we are synchronized against the core of the reset
1511 * task. We must not try to synchronously cancel it otherwise
1512 * we can deadlock. But since it will test for netif_running()
1513 * which has already been cleared by the net core, we don't
1514 * anything special to do.
1515 */
1516
1517 /* disable all interrupts */
1518 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1519
1520 netif_stop_queue(netdev);
1521 napi_disable(&priv->napi);
1522 netif_napi_del(&priv->napi);
1523 if (netdev->phydev)
1524 phy_stop(netdev->phydev);
1525 else if (priv->use_ncsi)
1526 ncsi_stop_dev(priv->ndev);
1527
1528 ftgmac100_stop_hw(priv);
1529 free_irq(netdev->irq, netdev);
1530 ftgmac100_free_buffers(priv);
1531 ftgmac100_free_rings(priv);
1532
1533 return 0;
1534}
1535
1536/* optional */
1537static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1538{
1539 if (!netdev->phydev)
1540 return -ENXIO;
1541
1542 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1543}
1544
1545static void ftgmac100_tx_timeout(struct net_device *netdev)
1546{
1547 struct ftgmac100 *priv = netdev_priv(netdev);
1548
1549 /* Disable all interrupts */
1550 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1551
1552 /* Do the reset outside of interrupt context */
1553 schedule_work(&priv->reset_task);
1554}
1555
1556static int ftgmac100_set_features(struct net_device *netdev,
1557 netdev_features_t features)
1558{
1559 struct ftgmac100 *priv = netdev_priv(netdev);
1560 netdev_features_t changed = netdev->features ^ features;
1561
1562 if (!netif_running(netdev))
1563 return 0;
1564
1565 /* Update the vlan filtering bit */
1566 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1567 u32 maccr;
1568
1569 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1570 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1571 maccr |= FTGMAC100_MACCR_RM_VLAN;
1572 else
1573 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1574 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1575 }
1576
1577 return 0;
1578}
1579
1580#ifdef CONFIG_NET_POLL_CONTROLLER
1581static void ftgmac100_poll_controller(struct net_device *netdev)
1582{
1583 unsigned long flags;
1584
1585 local_irq_save(flags);
1586 ftgmac100_interrupt(netdev->irq, netdev);
1587 local_irq_restore(flags);
1588}
1589#endif
1590
1591static const struct net_device_ops ftgmac100_netdev_ops = {
1592 .ndo_open = ftgmac100_open,
1593 .ndo_stop = ftgmac100_stop,
1594 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1595 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1596 .ndo_validate_addr = eth_validate_addr,
1597 .ndo_do_ioctl = ftgmac100_do_ioctl,
1598 .ndo_tx_timeout = ftgmac100_tx_timeout,
1599 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1600 .ndo_set_features = ftgmac100_set_features,
1601#ifdef CONFIG_NET_POLL_CONTROLLER
1602 .ndo_poll_controller = ftgmac100_poll_controller,
1603#endif
1604 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1605 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1606};
1607
1608static int ftgmac100_setup_mdio(struct net_device *netdev)
1609{
1610 struct ftgmac100 *priv = netdev_priv(netdev);
1611 struct platform_device *pdev = to_platform_device(priv->dev);
1612 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1613 struct device_node *np = pdev->dev.of_node;
1614 int i, err = 0;
1615 u32 reg;
1616
1617 /* initialize mdio bus */
1618 priv->mii_bus = mdiobus_alloc();
1619 if (!priv->mii_bus)
1620 return -EIO;
1621
1622 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1623 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1624 /* The AST2600 has a separate MDIO controller */
1625
1626 /* For the AST2400 and AST2500 this driver only supports the
1627 * old MDIO interface
1628 */
1629 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1630 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1631 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1632 }
1633
1634 /* Get PHY mode from device-tree */
1635 if (np) {
1636 /* Default to RGMII. It's a gigabit part after all */
1637 phy_intf = of_get_phy_mode(np);
1638 if (phy_intf < 0)
1639 phy_intf = PHY_INTERFACE_MODE_RGMII;
1640
1641 /* Aspeed only supports these. I don't know about other IP
1642 * block vendors so I'm going to just let them through for
1643 * now. Note that this is only a warning if for some obscure
1644 * reason the DT really means to lie about it or it's a newer
1645 * part we don't know about.
1646 *
1647 * On the Aspeed SoC there are additionally straps and SCU
1648 * control bits that could tell us what the interface is
1649 * (or allow us to configure it while the IP block is held
1650 * in reset). For now I chose to keep this driver away from
1651 * those SoC specific bits and assume the device-tree is
1652 * right and the SCU has been configured properly by pinmux
1653 * or the firmware.
1654 */
1655 if (priv->is_aspeed &&
1656 phy_intf != PHY_INTERFACE_MODE_RMII &&
1657 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1658 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1659 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1660 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1661 netdev_warn(netdev,
1662 "Unsupported PHY mode %s !\n",
1663 phy_modes(phy_intf));
1664 }
1665 }
1666
1667 priv->mii_bus->name = "ftgmac100_mdio";
1668 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1669 pdev->name, pdev->id);
1670 priv->mii_bus->parent = priv->dev;
1671 priv->mii_bus->priv = priv->netdev;
1672 priv->mii_bus->read = ftgmac100_mdiobus_read;
1673 priv->mii_bus->write = ftgmac100_mdiobus_write;
1674
1675 for (i = 0; i < PHY_MAX_ADDR; i++)
1676 priv->mii_bus->irq[i] = PHY_POLL;
1677
1678 err = mdiobus_register(priv->mii_bus);
1679 if (err) {
1680 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1681 goto err_register_mdiobus;
1682 }
1683
1684 err = ftgmac100_mii_probe(priv, phy_intf);
1685 if (err) {
1686 dev_err(priv->dev, "MII Probe failed!\n");
1687 goto err_mii_probe;
1688 }
1689
1690 return 0;
1691
1692err_mii_probe:
1693 mdiobus_unregister(priv->mii_bus);
1694err_register_mdiobus:
1695 mdiobus_free(priv->mii_bus);
1696 return err;
1697}
1698
1699static void ftgmac100_destroy_mdio(struct net_device *netdev)
1700{
1701 struct ftgmac100 *priv = netdev_priv(netdev);
1702
1703 if (!netdev->phydev)
1704 return;
1705
1706 phy_disconnect(netdev->phydev);
1707 mdiobus_unregister(priv->mii_bus);
1708 mdiobus_free(priv->mii_bus);
1709}
1710
1711static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1712{
1713 if (unlikely(nd->state != ncsi_dev_state_functional))
1714 return;
1715
1716 netdev_dbg(nd->dev, "NCSI interface %s\n",
1717 nd->link_up ? "up" : "down");
1718}
1719
1720static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1721{
1722 priv->clk = devm_clk_get(priv->dev, NULL);
1723 if (IS_ERR(priv->clk))
1724 return;
1725
1726 clk_prepare_enable(priv->clk);
1727
1728 /* Aspeed specifies a 100MHz clock is required for up to
1729 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1730 * is sufficient
1731 */
1732 clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1733 FTGMAC_100MHZ);
1734}
1735
1736static int ftgmac100_probe(struct platform_device *pdev)
1737{
1738 struct resource *res;
1739 int irq;
1740 struct net_device *netdev;
1741 struct ftgmac100 *priv;
1742 struct device_node *np;
1743 int err = 0;
1744
1745 if (!pdev)
1746 return -ENODEV;
1747
1748 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1749 if (!res)
1750 return -ENXIO;
1751
1752 irq = platform_get_irq(pdev, 0);
1753 if (irq < 0)
1754 return irq;
1755
1756 /* setup net_device */
1757 netdev = alloc_etherdev(sizeof(*priv));
1758 if (!netdev) {
1759 err = -ENOMEM;
1760 goto err_alloc_etherdev;
1761 }
1762
1763 SET_NETDEV_DEV(netdev, &pdev->dev);
1764
1765 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1766 netdev->netdev_ops = &ftgmac100_netdev_ops;
1767 netdev->watchdog_timeo = 5 * HZ;
1768
1769 platform_set_drvdata(pdev, netdev);
1770
1771 /* setup private data */
1772 priv = netdev_priv(netdev);
1773 priv->netdev = netdev;
1774 priv->dev = &pdev->dev;
1775 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1776
1777 /* map io memory */
1778 priv->res = request_mem_region(res->start, resource_size(res),
1779 dev_name(&pdev->dev));
1780 if (!priv->res) {
1781 dev_err(&pdev->dev, "Could not reserve memory region\n");
1782 err = -ENOMEM;
1783 goto err_req_mem;
1784 }
1785
1786 priv->base = ioremap(res->start, resource_size(res));
1787 if (!priv->base) {
1788 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1789 err = -EIO;
1790 goto err_ioremap;
1791 }
1792
1793 netdev->irq = irq;
1794
1795 /* Enable pause */
1796 priv->tx_pause = true;
1797 priv->rx_pause = true;
1798 priv->aneg_pause = true;
1799
1800 /* MAC address from chip or random one */
1801 ftgmac100_initial_mac(priv);
1802
1803 np = pdev->dev.of_node;
1804 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1805 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1806 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1807 priv->rxdes0_edorr_mask = BIT(30);
1808 priv->txdes0_edotr_mask = BIT(30);
1809 priv->is_aspeed = true;
1810 } else {
1811 priv->rxdes0_edorr_mask = BIT(15);
1812 priv->txdes0_edotr_mask = BIT(15);
1813 }
1814
1815 if (np && of_get_property(np, "use-ncsi", NULL)) {
1816 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1817 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1818 goto err_ncsi_dev;
1819 }
1820
1821 dev_info(&pdev->dev, "Using NCSI interface\n");
1822 priv->use_ncsi = true;
1823 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1824 if (!priv->ndev)
1825 goto err_ncsi_dev;
1826 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1827 struct phy_device *phy;
1828
1829 phy = of_phy_get_and_connect(priv->netdev, np,
1830 &ftgmac100_adjust_link);
1831 if (!phy) {
1832 dev_err(&pdev->dev, "Failed to connect to phy\n");
1833 goto err_setup_mdio;
1834 }
1835
1836 /* Indicate that we support PAUSE frames (see comment in
1837 * Documentation/networking/phy.txt)
1838 */
1839 phy_support_asym_pause(phy);
1840
1841 /* Display what we found */
1842 phy_attached_info(phy);
1843 } else if (np && !of_get_child_by_name(np, "mdio")) {
1844 /* Support legacy ASPEED devicetree descriptions that decribe a
1845 * MAC with an embedded MDIO controller but have no "mdio"
1846 * child node. Automatically scan the MDIO bus for available
1847 * PHYs.
1848 */
1849 priv->use_ncsi = false;
1850 err = ftgmac100_setup_mdio(netdev);
1851 if (err)
1852 goto err_setup_mdio;
1853 }
1854
1855 if (priv->is_aspeed)
1856 ftgmac100_setup_clk(priv);
1857
1858 /* Default ring sizes */
1859 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1860 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1861
1862 /* Base feature set */
1863 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1864 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1865 NETIF_F_HW_VLAN_CTAG_TX;
1866
1867 if (priv->use_ncsi)
1868 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1869
1870 /* AST2400 doesn't have working HW checksum generation */
1871 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1872 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1873 if (np && of_get_property(np, "no-hw-checksum", NULL))
1874 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1875 netdev->features |= netdev->hw_features;
1876
1877 /* register network device */
1878 err = register_netdev(netdev);
1879 if (err) {
1880 dev_err(&pdev->dev, "Failed to register netdev\n");
1881 goto err_register_netdev;
1882 }
1883
1884 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1885
1886 return 0;
1887
1888err_ncsi_dev:
1889err_register_netdev:
1890 ftgmac100_destroy_mdio(netdev);
1891err_setup_mdio:
1892 iounmap(priv->base);
1893err_ioremap:
1894 release_resource(priv->res);
1895err_req_mem:
1896 free_netdev(netdev);
1897err_alloc_etherdev:
1898 return err;
1899}
1900
1901static int ftgmac100_remove(struct platform_device *pdev)
1902{
1903 struct net_device *netdev;
1904 struct ftgmac100 *priv;
1905
1906 netdev = platform_get_drvdata(pdev);
1907 priv = netdev_priv(netdev);
1908
1909 unregister_netdev(netdev);
1910
1911 clk_disable_unprepare(priv->clk);
1912
1913 /* There's a small chance the reset task will have been re-queued,
1914 * during stop, make sure it's gone before we free the structure.
1915 */
1916 cancel_work_sync(&priv->reset_task);
1917
1918 ftgmac100_destroy_mdio(netdev);
1919
1920 iounmap(priv->base);
1921 release_resource(priv->res);
1922
1923 netif_napi_del(&priv->napi);
1924 free_netdev(netdev);
1925 return 0;
1926}
1927
1928static const struct of_device_id ftgmac100_of_match[] = {
1929 { .compatible = "faraday,ftgmac100" },
1930 { }
1931};
1932MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1933
1934static struct platform_driver ftgmac100_driver = {
1935 .probe = ftgmac100_probe,
1936 .remove = ftgmac100_remove,
1937 .driver = {
1938 .name = DRV_NAME,
1939 .of_match_table = ftgmac100_of_match,
1940 },
1941};
1942module_platform_driver(ftgmac100_driver);
1943
1944MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1945MODULE_DESCRIPTION("FTGMAC100 driver");
1946MODULE_LICENSE("GPL");