Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Network device driver for the BMAC ethernet controller on
   4 * Apple Powermacs.  Assumes it's under a DBDMA controller.
   5 *
   6 * Copyright (C) 1998 Randy Gobbel.
   7 *
   8 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
   9 * dynamic procfs inode.
  10 */
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/delay.h>
  17#include <linux/string.h>
  18#include <linux/timer.h>
  19#include <linux/proc_fs.h>
  20#include <linux/init.h>
  21#include <linux/spinlock.h>
  22#include <linux/crc32.h>
  23#include <linux/crc32poly.h>
  24#include <linux/bitrev.h>
  25#include <linux/ethtool.h>
  26#include <linux/slab.h>
  27#include <linux/pgtable.h>
  28#include <asm/dbdma.h>
  29#include <asm/io.h>
  30#include <asm/page.h>
 
  31#include <asm/machdep.h>
  32#include <asm/pmac_feature.h>
  33#include <asm/macio.h>
  34#include <asm/irq.h>
  35
  36#include "bmac.h"
  37
  38#define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
  39#define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
  40
  41/* switch to use multicast code lifted from sunhme driver */
  42#define SUNHME_MULTICAST
  43
  44#define N_RX_RING	64
  45#define N_TX_RING	32
  46#define MAX_TX_ACTIVE	1
  47#define ETHERCRC	4
  48#define ETHERMINPACKET	64
  49#define ETHERMTU	1500
  50#define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
  51#define TX_TIMEOUT	HZ	/* 1 second */
  52
  53/* Bits in transmit DMA status */
  54#define TX_DMA_ERR	0x80
  55
  56#define XXDEBUG(args)
  57
  58struct bmac_data {
  59	/* volatile struct bmac *bmac; */
  60	struct sk_buff_head *queue;
  61	volatile struct dbdma_regs __iomem *tx_dma;
  62	int tx_dma_intr;
  63	volatile struct dbdma_regs __iomem *rx_dma;
  64	int rx_dma_intr;
  65	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
  66	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
  67	struct macio_dev *mdev;
  68	int is_bmac_plus;
  69	struct sk_buff *rx_bufs[N_RX_RING];
  70	int rx_fill;
  71	int rx_empty;
  72	struct sk_buff *tx_bufs[N_TX_RING];
  73	int tx_fill;
  74	int tx_empty;
  75	unsigned char tx_fullup;
  76	struct timer_list tx_timeout;
  77	int timeout_active;
  78	int sleeping;
  79	int opened;
  80	unsigned short hash_use_count[64];
  81	unsigned short hash_table_mask[4];
  82	spinlock_t lock;
  83};
  84
  85#if 0 /* Move that to ethtool */
  86
  87typedef struct bmac_reg_entry {
  88	char *name;
  89	unsigned short reg_offset;
  90} bmac_reg_entry_t;
  91
  92#define N_REG_ENTRIES 31
  93
  94static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
  95	{"MEMADD", MEMADD},
  96	{"MEMDATAHI", MEMDATAHI},
  97	{"MEMDATALO", MEMDATALO},
  98	{"TXPNTR", TXPNTR},
  99	{"RXPNTR", RXPNTR},
 100	{"IPG1", IPG1},
 101	{"IPG2", IPG2},
 102	{"ALIMIT", ALIMIT},
 103	{"SLOT", SLOT},
 104	{"PALEN", PALEN},
 105	{"PAPAT", PAPAT},
 106	{"TXSFD", TXSFD},
 107	{"JAM", JAM},
 108	{"TXCFG", TXCFG},
 109	{"TXMAX", TXMAX},
 110	{"TXMIN", TXMIN},
 111	{"PAREG", PAREG},
 112	{"DCNT", DCNT},
 113	{"NCCNT", NCCNT},
 114	{"NTCNT", NTCNT},
 115	{"EXCNT", EXCNT},
 116	{"LTCNT", LTCNT},
 117	{"TXSM", TXSM},
 118	{"RXCFG", RXCFG},
 119	{"RXMAX", RXMAX},
 120	{"RXMIN", RXMIN},
 121	{"FRCNT", FRCNT},
 122	{"AECNT", AECNT},
 123	{"FECNT", FECNT},
 124	{"RXSM", RXSM},
 125	{"RXCV", RXCV}
 126};
 127
 128#endif
 129
 130static unsigned char *bmac_emergency_rxbuf;
 131
 132/*
 133 * Number of bytes of private data per BMAC: allow enough for
 134 * the rx and tx dma commands plus a branch dma command each,
 135 * and another 16 bytes to allow us to align the dma command
 136 * buffers on a 16 byte boundary.
 137 */
 138#define PRIV_BYTES	(sizeof(struct bmac_data) \
 139	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
 140	+ sizeof(struct sk_buff_head))
 141
 142static int bmac_open(struct net_device *dev);
 143static int bmac_close(struct net_device *dev);
 144static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
 145static void bmac_set_multicast(struct net_device *dev);
 146static void bmac_reset_and_enable(struct net_device *dev);
 147static void bmac_start_chip(struct net_device *dev);
 148static void bmac_init_chip(struct net_device *dev);
 149static void bmac_init_registers(struct net_device *dev);
 150static void bmac_enable_and_reset_chip(struct net_device *dev);
 151static int bmac_set_address(struct net_device *dev, void *addr);
 152static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
 153static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
 154static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
 155static void bmac_set_timeout(struct net_device *dev);
 156static void bmac_tx_timeout(struct timer_list *t);
 157static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
 158static void bmac_start(struct net_device *dev);
 159
 160#define	DBDMA_SET(x)	( ((x) | (x) << 16) )
 161#define	DBDMA_CLEAR(x)	( (x) << 16)
 162
 163static inline void
 164dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
 165{
 166	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
 167}
 168
 169static inline unsigned long
 170dbdma_ld32(volatile __u32 __iomem *a)
 171{
 172	__u32 swap;
 173	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
 174	return swap;
 175}
 176
 177static void
 178dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
 179{
 180	dbdma_st32(&dmap->control,
 181		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
 182	eieio();
 183}
 184
 185static void
 186dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
 187{
 188	dbdma_st32(&dmap->control,
 189		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
 190	eieio();
 191	while (dbdma_ld32(&dmap->status) & RUN)
 192		eieio();
 193}
 194
 195static void
 196dbdma_setcmd(volatile struct dbdma_cmd *cp,
 197	     unsigned short cmd, unsigned count, unsigned long addr,
 198	     unsigned long cmd_dep)
 199{
 200	out_le16(&cp->command, cmd);
 201	out_le16(&cp->req_count, count);
 202	out_le32(&cp->phy_addr, addr);
 203	out_le32(&cp->cmd_dep, cmd_dep);
 204	out_le16(&cp->xfer_status, 0);
 205	out_le16(&cp->res_count, 0);
 206}
 207
 208static inline
 209void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
 210{
 211	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
 212}
 213
 214
 215static inline
 216unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
 217{
 218	return in_le16((void __iomem *)dev->base_addr + reg_offset);
 219}
 220
 221static void
 222bmac_enable_and_reset_chip(struct net_device *dev)
 223{
 224	struct bmac_data *bp = netdev_priv(dev);
 225	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 226	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 227
 228	if (rd)
 229		dbdma_reset(rd);
 230	if (td)
 231		dbdma_reset(td);
 232
 233	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
 234}
 235
 236#define MIFDELAY	udelay(10)
 237
 238static unsigned int
 239bmac_mif_readbits(struct net_device *dev, int nb)
 240{
 241	unsigned int val = 0;
 242
 243	while (--nb >= 0) {
 244		bmwrite(dev, MIFCSR, 0);
 245		MIFDELAY;
 246		if (bmread(dev, MIFCSR) & 8)
 247			val |= 1 << nb;
 248		bmwrite(dev, MIFCSR, 1);
 249		MIFDELAY;
 250	}
 251	bmwrite(dev, MIFCSR, 0);
 252	MIFDELAY;
 253	bmwrite(dev, MIFCSR, 1);
 254	MIFDELAY;
 255	return val;
 256}
 257
 258static void
 259bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
 260{
 261	int b;
 262
 263	while (--nb >= 0) {
 264		b = (val & (1 << nb))? 6: 4;
 265		bmwrite(dev, MIFCSR, b);
 266		MIFDELAY;
 267		bmwrite(dev, MIFCSR, b|1);
 268		MIFDELAY;
 269	}
 270}
 271
 272static unsigned int
 273bmac_mif_read(struct net_device *dev, unsigned int addr)
 274{
 275	unsigned int val;
 276
 277	bmwrite(dev, MIFCSR, 4);
 278	MIFDELAY;
 279	bmac_mif_writebits(dev, ~0U, 32);
 280	bmac_mif_writebits(dev, 6, 4);
 281	bmac_mif_writebits(dev, addr, 10);
 282	bmwrite(dev, MIFCSR, 2);
 283	MIFDELAY;
 284	bmwrite(dev, MIFCSR, 1);
 285	MIFDELAY;
 286	val = bmac_mif_readbits(dev, 17);
 287	bmwrite(dev, MIFCSR, 4);
 288	MIFDELAY;
 289	return val;
 290}
 291
 292static void
 293bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
 294{
 295	bmwrite(dev, MIFCSR, 4);
 296	MIFDELAY;
 297	bmac_mif_writebits(dev, ~0U, 32);
 298	bmac_mif_writebits(dev, 5, 4);
 299	bmac_mif_writebits(dev, addr, 10);
 300	bmac_mif_writebits(dev, 2, 2);
 301	bmac_mif_writebits(dev, val, 16);
 302	bmac_mif_writebits(dev, 3, 2);
 303}
 304
 305static void
 306bmac_init_registers(struct net_device *dev)
 307{
 308	struct bmac_data *bp = netdev_priv(dev);
 309	volatile unsigned short regValue;
 310	const unsigned short *pWord16;
 311	int i;
 312
 313	/* XXDEBUG(("bmac: enter init_registers\n")); */
 314
 315	bmwrite(dev, RXRST, RxResetValue);
 316	bmwrite(dev, TXRST, TxResetBit);
 317
 318	i = 100;
 319	do {
 320		--i;
 321		udelay(10000);
 322		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
 323	} while ((regValue & TxResetBit) && i > 0);
 324
 325	if (!bp->is_bmac_plus) {
 326		regValue = bmread(dev, XCVRIF);
 327		regValue |= ClkBit | SerialMode | COLActiveLow;
 328		bmwrite(dev, XCVRIF, regValue);
 329		udelay(10000);
 330	}
 331
 332	bmwrite(dev, RSEED, (unsigned short)0x1968);
 333
 334	regValue = bmread(dev, XIFC);
 335	regValue |= TxOutputEnable;
 336	bmwrite(dev, XIFC, regValue);
 337
 338	bmread(dev, PAREG);
 339
 340	/* set collision counters to 0 */
 341	bmwrite(dev, NCCNT, 0);
 342	bmwrite(dev, NTCNT, 0);
 343	bmwrite(dev, EXCNT, 0);
 344	bmwrite(dev, LTCNT, 0);
 345
 346	/* set rx counters to 0 */
 347	bmwrite(dev, FRCNT, 0);
 348	bmwrite(dev, LECNT, 0);
 349	bmwrite(dev, AECNT, 0);
 350	bmwrite(dev, FECNT, 0);
 351	bmwrite(dev, RXCV, 0);
 352
 353	/* set tx fifo information */
 354	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
 355
 356	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
 357	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
 358
 359	/* set rx fifo information */
 360	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
 361	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
 362
 363	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
 364	bmread(dev, STATUS);		/* read it just to clear it */
 365
 366	/* zero out the chip Hash Filter registers */
 367	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
 368	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
 369	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
 370	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
 371	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
 372
 373	pWord16 = (const unsigned short *)dev->dev_addr;
 374	bmwrite(dev, MADD0, *pWord16++);
 375	bmwrite(dev, MADD1, *pWord16++);
 376	bmwrite(dev, MADD2, *pWord16);
 377
 378	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
 379
 380	bmwrite(dev, INTDISABLE, EnableNormal);
 381}
 382
 383#if 0
 384static void
 385bmac_disable_interrupts(struct net_device *dev)
 386{
 387	bmwrite(dev, INTDISABLE, DisableAll);
 388}
 389
 390static void
 391bmac_enable_interrupts(struct net_device *dev)
 392{
 393	bmwrite(dev, INTDISABLE, EnableNormal);
 394}
 395#endif
 396
 397
 398static void
 399bmac_start_chip(struct net_device *dev)
 400{
 401	struct bmac_data *bp = netdev_priv(dev);
 402	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 403	unsigned short	oldConfig;
 404
 405	/* enable rx dma channel */
 406	dbdma_continue(rd);
 407
 408	oldConfig = bmread(dev, TXCFG);
 409	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
 410
 411	/* turn on rx plus any other bits already on (promiscuous possibly) */
 412	oldConfig = bmread(dev, RXCFG);
 413	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
 414	udelay(20000);
 415}
 416
 417static void
 418bmac_init_phy(struct net_device *dev)
 419{
 420	unsigned int addr;
 421	struct bmac_data *bp = netdev_priv(dev);
 422
 423	printk(KERN_DEBUG "phy registers:");
 424	for (addr = 0; addr < 32; ++addr) {
 425		if ((addr & 7) == 0)
 426			printk(KERN_DEBUG);
 427		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
 428	}
 429	printk(KERN_CONT "\n");
 430
 431	if (bp->is_bmac_plus) {
 432		unsigned int capable, ctrl;
 433
 434		ctrl = bmac_mif_read(dev, 0);
 435		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
 436		if (bmac_mif_read(dev, 4) != capable ||
 437		    (ctrl & 0x1000) == 0) {
 438			bmac_mif_write(dev, 4, capable);
 439			bmac_mif_write(dev, 0, 0x1200);
 440		} else
 441			bmac_mif_write(dev, 0, 0x1000);
 442	}
 443}
 444
 445static void bmac_init_chip(struct net_device *dev)
 446{
 447	bmac_init_phy(dev);
 448	bmac_init_registers(dev);
 449}
 450
 451#ifdef CONFIG_PM
 452static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
 453{
 454	struct net_device* dev = macio_get_drvdata(mdev);
 455	struct bmac_data *bp = netdev_priv(dev);
 456	unsigned long flags;
 457	unsigned short config;
 458	int i;
 459
 460	netif_device_detach(dev);
 461	/* prolly should wait for dma to finish & turn off the chip */
 462	spin_lock_irqsave(&bp->lock, flags);
 463	if (bp->timeout_active) {
 464		del_timer(&bp->tx_timeout);
 465		bp->timeout_active = 0;
 466	}
 467	disable_irq(dev->irq);
 468	disable_irq(bp->tx_dma_intr);
 469	disable_irq(bp->rx_dma_intr);
 470	bp->sleeping = 1;
 471	spin_unlock_irqrestore(&bp->lock, flags);
 472	if (bp->opened) {
 473		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 474		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 475
 476		config = bmread(dev, RXCFG);
 477		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
 478		config = bmread(dev, TXCFG);
 479		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
 480		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
 481		/* disable rx and tx dma */
 482		rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
 483		td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
 484		/* free some skb's */
 485		for (i=0; i<N_RX_RING; i++) {
 486			if (bp->rx_bufs[i] != NULL) {
 487				dev_kfree_skb(bp->rx_bufs[i]);
 488				bp->rx_bufs[i] = NULL;
 489			}
 490		}
 491		for (i = 0; i<N_TX_RING; i++) {
 492			if (bp->tx_bufs[i] != NULL) {
 493		       		dev_kfree_skb(bp->tx_bufs[i]);
 494	       			bp->tx_bufs[i] = NULL;
 495		       	}
 496		}
 497	}
 498	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
 499	return 0;
 500}
 501
 502static int bmac_resume(struct macio_dev *mdev)
 503{
 504	struct net_device* dev = macio_get_drvdata(mdev);
 505	struct bmac_data *bp = netdev_priv(dev);
 506
 507	/* see if this is enough */
 508	if (bp->opened)
 509		bmac_reset_and_enable(dev);
 510
 511	enable_irq(dev->irq);
 512	enable_irq(bp->tx_dma_intr);
 513	enable_irq(bp->rx_dma_intr);
 514	netif_device_attach(dev);
 515
 516	return 0;
 517}
 518#endif /* CONFIG_PM */
 519
 520static int bmac_set_address(struct net_device *dev, void *addr)
 521{
 522	struct bmac_data *bp = netdev_priv(dev);
 523	const unsigned short *pWord16;
 
 524	unsigned long flags;
 
 525
 526	XXDEBUG(("bmac: enter set_address\n"));
 527	spin_lock_irqsave(&bp->lock, flags);
 528
 529	eth_hw_addr_set(dev, addr);
 530
 
 531	/* load up the hardware address */
 532	pWord16  = (const unsigned short *)dev->dev_addr;
 533	bmwrite(dev, MADD0, *pWord16++);
 534	bmwrite(dev, MADD1, *pWord16++);
 535	bmwrite(dev, MADD2, *pWord16);
 536
 537	spin_unlock_irqrestore(&bp->lock, flags);
 538	XXDEBUG(("bmac: exit set_address\n"));
 539	return 0;
 540}
 541
 542static inline void bmac_set_timeout(struct net_device *dev)
 543{
 544	struct bmac_data *bp = netdev_priv(dev);
 545	unsigned long flags;
 546
 547	spin_lock_irqsave(&bp->lock, flags);
 548	if (bp->timeout_active)
 549		del_timer(&bp->tx_timeout);
 550	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
 551	add_timer(&bp->tx_timeout);
 552	bp->timeout_active = 1;
 553	spin_unlock_irqrestore(&bp->lock, flags);
 554}
 555
 556static void
 557bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
 558{
 559	void *vaddr;
 560	unsigned long baddr;
 561	unsigned long len;
 562
 563	len = skb->len;
 564	vaddr = skb->data;
 565	baddr = virt_to_bus(vaddr);
 566
 567	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
 568}
 569
 570static void
 571bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
 572{
 573	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
 574
 575	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
 576		     virt_to_bus(addr), 0);
 577}
 578
 579static void
 580bmac_init_tx_ring(struct bmac_data *bp)
 581{
 582	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 583
 584	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
 585
 586	bp->tx_empty = 0;
 587	bp->tx_fill = 0;
 588	bp->tx_fullup = 0;
 589
 590	/* put a branch at the end of the tx command list */
 591	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
 592		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
 593
 594	/* reset tx dma */
 595	dbdma_reset(td);
 596	out_le32(&td->wait_sel, 0x00200020);
 597	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
 598}
 599
 600static int
 601bmac_init_rx_ring(struct net_device *dev)
 602{
 603	struct bmac_data *bp = netdev_priv(dev);
 604	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 605	int i;
 606	struct sk_buff *skb;
 607
 608	/* initialize list of sk_buffs for receiving and set up recv dma */
 609	memset((char *)bp->rx_cmds, 0,
 610	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
 611	for (i = 0; i < N_RX_RING; i++) {
 612		if ((skb = bp->rx_bufs[i]) == NULL) {
 613			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
 614			if (skb != NULL)
 615				skb_reserve(skb, 2);
 616		}
 617		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
 618	}
 619
 620	bp->rx_empty = 0;
 621	bp->rx_fill = i;
 622
 623	/* Put a branch back to the beginning of the receive command list */
 624	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
 625		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
 626
 627	/* start rx dma */
 628	dbdma_reset(rd);
 629	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
 630
 631	return 1;
 632}
 633
 634
 635static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
 636{
 637	struct bmac_data *bp = netdev_priv(dev);
 638	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 639	int i;
 640
 641	/* see if there's a free slot in the tx ring */
 642	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
 643	/* 	     bp->tx_empty, bp->tx_fill)); */
 644	i = bp->tx_fill + 1;
 645	if (i >= N_TX_RING)
 646		i = 0;
 647	if (i == bp->tx_empty) {
 648		netif_stop_queue(dev);
 649		bp->tx_fullup = 1;
 650		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
 651		return -1;		/* can't take it at the moment */
 652	}
 653
 654	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
 655
 656	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
 657
 658	bp->tx_bufs[bp->tx_fill] = skb;
 659	bp->tx_fill = i;
 660
 661	dev->stats.tx_bytes += skb->len;
 662
 663	dbdma_continue(td);
 664
 665	return 0;
 666}
 667
 668static int rxintcount;
 669
 670static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
 671{
 672	struct net_device *dev = (struct net_device *) dev_id;
 673	struct bmac_data *bp = netdev_priv(dev);
 674	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 675	volatile struct dbdma_cmd *cp;
 676	int i, nb, stat;
 677	struct sk_buff *skb;
 678	unsigned int residual;
 679	int last;
 680	unsigned long flags;
 681
 682	spin_lock_irqsave(&bp->lock, flags);
 683
 684	if (++rxintcount < 10) {
 685		XXDEBUG(("bmac_rxdma_intr\n"));
 686	}
 687
 688	last = -1;
 689	i = bp->rx_empty;
 690
 691	while (1) {
 692		cp = &bp->rx_cmds[i];
 693		stat = le16_to_cpu(cp->xfer_status);
 694		residual = le16_to_cpu(cp->res_count);
 695		if ((stat & ACTIVE) == 0)
 696			break;
 697		nb = RX_BUFLEN - residual - 2;
 698		if (nb < (ETHERMINPACKET - ETHERCRC)) {
 699			skb = NULL;
 700			dev->stats.rx_length_errors++;
 701			dev->stats.rx_errors++;
 702		} else {
 703			skb = bp->rx_bufs[i];
 704			bp->rx_bufs[i] = NULL;
 705		}
 706		if (skb != NULL) {
 707			nb -= ETHERCRC;
 708			skb_put(skb, nb);
 709			skb->protocol = eth_type_trans(skb, dev);
 710			netif_rx(skb);
 711			++dev->stats.rx_packets;
 712			dev->stats.rx_bytes += nb;
 713		} else {
 714			++dev->stats.rx_dropped;
 715		}
 716		if ((skb = bp->rx_bufs[i]) == NULL) {
 717			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
 718			if (skb != NULL)
 719				skb_reserve(bp->rx_bufs[i], 2);
 720		}
 721		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
 722		cp->res_count = cpu_to_le16(0);
 723		cp->xfer_status = cpu_to_le16(0);
 724		last = i;
 725		if (++i >= N_RX_RING) i = 0;
 726	}
 727
 728	if (last != -1) {
 729		bp->rx_fill = last;
 730		bp->rx_empty = i;
 731	}
 732
 733	dbdma_continue(rd);
 734	spin_unlock_irqrestore(&bp->lock, flags);
 735
 736	if (rxintcount < 10) {
 737		XXDEBUG(("bmac_rxdma_intr done\n"));
 738	}
 739	return IRQ_HANDLED;
 740}
 741
 742static int txintcount;
 743
 744static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
 745{
 746	struct net_device *dev = (struct net_device *) dev_id;
 747	struct bmac_data *bp = netdev_priv(dev);
 748	volatile struct dbdma_cmd *cp;
 749	int stat;
 750	unsigned long flags;
 751
 752	spin_lock_irqsave(&bp->lock, flags);
 753
 754	if (txintcount++ < 10) {
 755		XXDEBUG(("bmac_txdma_intr\n"));
 756	}
 757
 758	/*     del_timer(&bp->tx_timeout); */
 759	/*     bp->timeout_active = 0; */
 760
 761	while (1) {
 762		cp = &bp->tx_cmds[bp->tx_empty];
 763		stat = le16_to_cpu(cp->xfer_status);
 764		if (txintcount < 10) {
 765			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
 766		}
 767		if (!(stat & ACTIVE)) {
 768			/*
 769			 * status field might not have been filled by DBDMA
 770			 */
 771			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
 772				break;
 773		}
 774
 775		if (bp->tx_bufs[bp->tx_empty]) {
 776			++dev->stats.tx_packets;
 777			dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
 778		}
 779		bp->tx_bufs[bp->tx_empty] = NULL;
 780		bp->tx_fullup = 0;
 781		netif_wake_queue(dev);
 782		if (++bp->tx_empty >= N_TX_RING)
 783			bp->tx_empty = 0;
 784		if (bp->tx_empty == bp->tx_fill)
 785			break;
 786	}
 787
 788	spin_unlock_irqrestore(&bp->lock, flags);
 789
 790	if (txintcount < 10) {
 791		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
 792	}
 793
 794	bmac_start(dev);
 795	return IRQ_HANDLED;
 796}
 797
 798#ifndef SUNHME_MULTICAST
 799/* Real fast bit-reversal algorithm, 6-bit values */
 800static int reverse6[64] = {
 801	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
 802	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
 803	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
 804	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
 805	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
 806	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
 807	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
 808	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
 809};
 810
 811static unsigned int
 812crc416(unsigned int curval, unsigned short nxtval)
 813{
 814	unsigned int counter, cur = curval, next = nxtval;
 815	int high_crc_set, low_data_set;
 816
 817	/* Swap bytes */
 818	next = ((next & 0x00FF) << 8) | (next >> 8);
 819
 820	/* Compute bit-by-bit */
 821	for (counter = 0; counter < 16; ++counter) {
 822		/* is high CRC bit set? */
 823		if ((cur & 0x80000000) == 0) high_crc_set = 0;
 824		else high_crc_set = 1;
 825
 826		cur = cur << 1;
 827
 828		if ((next & 0x0001) == 0) low_data_set = 0;
 829		else low_data_set = 1;
 830
 831		next = next >> 1;
 832
 833		/* do the XOR */
 834		if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
 835	}
 836	return cur;
 837}
 838
 839static unsigned int
 840bmac_crc(unsigned short *address)
 841{
 842	unsigned int newcrc;
 843
 844	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
 845	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
 846	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
 847	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
 848
 849	return(newcrc);
 850}
 851
 852/*
 853 * Add requested mcast addr to BMac's hash table filter.
 854 *
 855 */
 856
 857static void
 858bmac_addhash(struct bmac_data *bp, unsigned char *addr)
 859{
 860	unsigned int	 crc;
 861	unsigned short	 mask;
 862
 863	if (!(*addr)) return;
 864	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
 865	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
 866	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
 867	mask = crc % 16;
 868	mask = (unsigned char)1 << mask;
 869	bp->hash_use_count[crc/16] |= mask;
 870}
 871
 872static void
 873bmac_removehash(struct bmac_data *bp, unsigned char *addr)
 874{
 875	unsigned int crc;
 876	unsigned char mask;
 877
 878	/* Now, delete the address from the filter copy, as indicated */
 879	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
 880	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
 881	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
 882	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
 883	mask = crc % 16;
 884	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
 885	bp->hash_table_mask[crc/16] &= mask;
 886}
 887
 888/*
 889 * Sync the adapter with the software copy of the multicast mask
 890 *  (logical address filter).
 891 */
 892
 893static void
 894bmac_rx_off(struct net_device *dev)
 895{
 896	unsigned short rx_cfg;
 897
 898	rx_cfg = bmread(dev, RXCFG);
 899	rx_cfg &= ~RxMACEnable;
 900	bmwrite(dev, RXCFG, rx_cfg);
 901	do {
 902		rx_cfg = bmread(dev, RXCFG);
 903	}  while (rx_cfg & RxMACEnable);
 904}
 905
 906unsigned short
 907bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
 908{
 909	unsigned short rx_cfg;
 910
 911	rx_cfg = bmread(dev, RXCFG);
 912	rx_cfg |= RxMACEnable;
 913	if (hash_enable) rx_cfg |= RxHashFilterEnable;
 914	else rx_cfg &= ~RxHashFilterEnable;
 915	if (promisc_enable) rx_cfg |= RxPromiscEnable;
 916	else rx_cfg &= ~RxPromiscEnable;
 917	bmwrite(dev, RXRST, RxResetValue);
 918	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
 919	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
 920	bmwrite(dev, RXCFG, rx_cfg );
 921	return rx_cfg;
 922}
 923
 924static void
 925bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
 926{
 927	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
 928	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
 929	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
 930	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
 931}
 932
 933#if 0
 934static void
 935bmac_add_multi(struct net_device *dev,
 936	       struct bmac_data *bp, unsigned char *addr)
 937{
 938	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
 939	bmac_addhash(bp, addr);
 940	bmac_rx_off(dev);
 941	bmac_update_hash_table_mask(dev, bp);
 942	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
 943	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
 944}
 945
 946static void
 947bmac_remove_multi(struct net_device *dev,
 948		  struct bmac_data *bp, unsigned char *addr)
 949{
 950	bmac_removehash(bp, addr);
 951	bmac_rx_off(dev);
 952	bmac_update_hash_table_mask(dev, bp);
 953	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
 954}
 955#endif
 956
 957/* Set or clear the multicast filter for this adaptor.
 958    num_addrs == -1	Promiscuous mode, receive all packets
 959    num_addrs == 0	Normal mode, clear multicast list
 960    num_addrs > 0	Multicast mode, receive normal and MC packets, and do
 961			best-effort filtering.
 962 */
 963static void bmac_set_multicast(struct net_device *dev)
 964{
 965	struct netdev_hw_addr *ha;
 966	struct bmac_data *bp = netdev_priv(dev);
 967	int num_addrs = netdev_mc_count(dev);
 968	unsigned short rx_cfg;
 969	int i;
 970
 971	if (bp->sleeping)
 972		return;
 973
 974	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
 975
 976	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
 977		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
 978		bmac_update_hash_table_mask(dev, bp);
 979		rx_cfg = bmac_rx_on(dev, 1, 0);
 980		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
 981	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
 982		rx_cfg = bmread(dev, RXCFG);
 983		rx_cfg |= RxPromiscEnable;
 984		bmwrite(dev, RXCFG, rx_cfg);
 985		rx_cfg = bmac_rx_on(dev, 0, 1);
 986		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
 987	} else {
 988		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
 989		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
 990		if (num_addrs == 0) {
 991			rx_cfg = bmac_rx_on(dev, 0, 0);
 992			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
 993		} else {
 994			netdev_for_each_mc_addr(ha, dev)
 995				bmac_addhash(bp, ha->addr);
 996			bmac_update_hash_table_mask(dev, bp);
 997			rx_cfg = bmac_rx_on(dev, 1, 0);
 998			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
 999		}
1000	}
1001	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1002}
1003#else /* ifdef SUNHME_MULTICAST */
1004
1005/* The version of set_multicast below was lifted from sunhme.c */
1006
1007static void bmac_set_multicast(struct net_device *dev)
1008{
1009	struct netdev_hw_addr *ha;
1010	unsigned short rx_cfg;
1011	u32 crc;
1012
1013	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1014		bmwrite(dev, BHASH0, 0xffff);
1015		bmwrite(dev, BHASH1, 0xffff);
1016		bmwrite(dev, BHASH2, 0xffff);
1017		bmwrite(dev, BHASH3, 0xffff);
1018	} else if(dev->flags & IFF_PROMISC) {
1019		rx_cfg = bmread(dev, RXCFG);
1020		rx_cfg |= RxPromiscEnable;
1021		bmwrite(dev, RXCFG, rx_cfg);
1022	} else {
1023		u16 hash_table[4] = { 0 };
1024
1025		rx_cfg = bmread(dev, RXCFG);
1026		rx_cfg &= ~RxPromiscEnable;
1027		bmwrite(dev, RXCFG, rx_cfg);
1028
1029		netdev_for_each_mc_addr(ha, dev) {
1030			crc = ether_crc_le(6, ha->addr);
1031			crc >>= 26;
1032			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1033		}
1034		bmwrite(dev, BHASH0, hash_table[0]);
1035		bmwrite(dev, BHASH1, hash_table[1]);
1036		bmwrite(dev, BHASH2, hash_table[2]);
1037		bmwrite(dev, BHASH3, hash_table[3]);
1038	}
1039}
1040#endif /* SUNHME_MULTICAST */
1041
1042static int miscintcount;
1043
1044static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1045{
1046	struct net_device *dev = (struct net_device *) dev_id;
1047	unsigned int status = bmread(dev, STATUS);
1048	if (miscintcount++ < 10) {
1049		XXDEBUG(("bmac_misc_intr\n"));
1050	}
1051	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1052	/*     bmac_txdma_intr_inner(irq, dev_id); */
1053	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1054	if (status & RxErrorMask) dev->stats.rx_errors++;
1055	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1056	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1057	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1058	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1059
1060	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1061	if (status & TxErrorMask) dev->stats.tx_errors++;
1062	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1063	if (status & TxNormalCollExp) dev->stats.collisions++;
1064	return IRQ_HANDLED;
1065}
1066
1067/*
1068 * Procedure for reading EEPROM
1069 */
1070#define SROMAddressLength	5
1071#define DataInOn		0x0008
1072#define DataInOff		0x0000
1073#define Clk			0x0002
1074#define ChipSelect		0x0001
1075#define SDIShiftCount		3
1076#define SD0ShiftCount		2
1077#define	DelayValue		1000	/* number of microseconds */
1078#define SROMStartOffset		10	/* this is in words */
1079#define SROMReadCount		3	/* number of words to read from SROM */
1080#define SROMAddressBits		6
1081#define EnetAddressOffset	20
1082
1083static unsigned char
1084bmac_clock_out_bit(struct net_device *dev)
1085{
1086	unsigned short         data;
1087	unsigned short         val;
1088
1089	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1090	udelay(DelayValue);
1091
1092	data = bmread(dev, SROMCSR);
1093	udelay(DelayValue);
1094	val = (data >> SD0ShiftCount) & 1;
1095
1096	bmwrite(dev, SROMCSR, ChipSelect);
1097	udelay(DelayValue);
1098
1099	return val;
1100}
1101
1102static void
1103bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1104{
1105	unsigned short data;
1106
1107	if (val != 0 && val != 1) return;
1108
1109	data = (val << SDIShiftCount);
1110	bmwrite(dev, SROMCSR, data | ChipSelect  );
1111	udelay(DelayValue);
1112
1113	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1114	udelay(DelayValue);
1115
1116	bmwrite(dev, SROMCSR, data | ChipSelect);
1117	udelay(DelayValue);
1118}
1119
1120static void
1121reset_and_select_srom(struct net_device *dev)
1122{
1123	/* first reset */
1124	bmwrite(dev, SROMCSR, 0);
1125	udelay(DelayValue);
1126
1127	/* send it the read command (110) */
1128	bmac_clock_in_bit(dev, 1);
1129	bmac_clock_in_bit(dev, 1);
1130	bmac_clock_in_bit(dev, 0);
1131}
1132
1133static unsigned short
1134read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1135{
1136	unsigned short data, val;
1137	int i;
1138
1139	/* send out the address we want to read from */
1140	for (i = 0; i < addr_len; i++)	{
1141		val = addr >> (addr_len-i-1);
1142		bmac_clock_in_bit(dev, val & 1);
1143	}
1144
1145	/* Now read in the 16-bit data */
1146	data = 0;
1147	for (i = 0; i < 16; i++)	{
1148		val = bmac_clock_out_bit(dev);
1149		data <<= 1;
1150		data |= val;
1151	}
1152	bmwrite(dev, SROMCSR, 0);
1153
1154	return data;
1155}
1156
1157/*
1158 * It looks like Cogent and SMC use different methods for calculating
1159 * checksums. What a pain..
1160 */
1161
1162static int
1163bmac_verify_checksum(struct net_device *dev)
1164{
1165	unsigned short data, storedCS;
1166
1167	reset_and_select_srom(dev);
1168	data = read_srom(dev, 3, SROMAddressBits);
1169	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1170
1171	return 0;
1172}
1173
1174
1175static void
1176bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1177{
1178	int i;
1179	unsigned short data;
1180
1181	for (i = 0; i < 3; i++)
1182		{
1183			reset_and_select_srom(dev);
1184			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1185			ea[2*i]   = bitrev8(data & 0x0ff);
1186			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1187		}
1188}
1189
1190static void bmac_reset_and_enable(struct net_device *dev)
1191{
1192	struct bmac_data *bp = netdev_priv(dev);
1193	unsigned long flags;
1194	struct sk_buff *skb;
1195	unsigned char *data;
1196
1197	spin_lock_irqsave(&bp->lock, flags);
1198	bmac_enable_and_reset_chip(dev);
1199	bmac_init_tx_ring(bp);
1200	bmac_init_rx_ring(dev);
1201	bmac_init_chip(dev);
1202	bmac_start_chip(dev);
1203	bmwrite(dev, INTDISABLE, EnableNormal);
1204	bp->sleeping = 0;
1205
1206	/*
1207	 * It seems that the bmac can't receive until it's transmitted
1208	 * a packet.  So we give it a dummy packet to transmit.
1209	 */
1210	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1211	if (skb != NULL) {
1212		data = skb_put_zero(skb, ETHERMINPACKET);
1213		memcpy(data, dev->dev_addr, ETH_ALEN);
1214		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1215		bmac_transmit_packet(skb, dev);
1216	}
1217	spin_unlock_irqrestore(&bp->lock, flags);
1218}
1219
1220static const struct ethtool_ops bmac_ethtool_ops = {
1221	.get_link		= ethtool_op_get_link,
1222};
1223
1224static const struct net_device_ops bmac_netdev_ops = {
1225	.ndo_open		= bmac_open,
1226	.ndo_stop		= bmac_close,
1227	.ndo_start_xmit		= bmac_output,
1228	.ndo_set_rx_mode	= bmac_set_multicast,
1229	.ndo_set_mac_address	= bmac_set_address,
1230	.ndo_validate_addr	= eth_validate_addr,
1231};
1232
1233static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1234{
1235	int j, rev, ret;
1236	struct bmac_data *bp;
1237	const unsigned char *prop_addr;
1238	unsigned char addr[6];
1239	u8 macaddr[6];
1240	struct net_device *dev;
1241	int is_bmac_plus = ((int)match->data) != 0;
1242
1243	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1244		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1245		return -ENODEV;
1246	}
1247	prop_addr = of_get_property(macio_get_of_node(mdev),
1248			"mac-address", NULL);
1249	if (prop_addr == NULL) {
1250		prop_addr = of_get_property(macio_get_of_node(mdev),
1251				"local-mac-address", NULL);
1252		if (prop_addr == NULL) {
1253			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1254			return -ENODEV;
1255		}
1256	}
1257	memcpy(addr, prop_addr, sizeof(addr));
1258
1259	dev = alloc_etherdev(PRIV_BYTES);
1260	if (!dev)
1261		return -ENOMEM;
1262
1263	bp = netdev_priv(dev);
1264	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1265	macio_set_drvdata(mdev, dev);
1266
1267	bp->mdev = mdev;
1268	spin_lock_init(&bp->lock);
1269
1270	if (macio_request_resources(mdev, "bmac")) {
1271		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1272		goto out_free;
1273	}
1274
1275	dev->base_addr = (unsigned long)
1276		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1277	if (dev->base_addr == 0)
1278		goto out_release;
1279
1280	dev->irq = macio_irq(mdev, 0);
1281
1282	bmac_enable_and_reset_chip(dev);
1283	bmwrite(dev, INTDISABLE, DisableAll);
1284
1285	rev = addr[0] == 0 && addr[1] == 0xA0;
1286	for (j = 0; j < 6; ++j)
1287		macaddr[j] = rev ? bitrev8(addr[j]): addr[j];
1288
1289	eth_hw_addr_set(dev, macaddr);
1290
1291	/* Enable chip without interrupts for now */
1292	bmac_enable_and_reset_chip(dev);
1293	bmwrite(dev, INTDISABLE, DisableAll);
1294
1295	dev->netdev_ops = &bmac_netdev_ops;
1296	dev->ethtool_ops = &bmac_ethtool_ops;
1297
1298	bmac_get_station_address(dev, addr);
1299	if (bmac_verify_checksum(dev) != 0)
1300		goto err_out_iounmap;
1301
1302	bp->is_bmac_plus = is_bmac_plus;
1303	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1304	if (!bp->tx_dma)
1305		goto err_out_iounmap;
1306	bp->tx_dma_intr = macio_irq(mdev, 1);
1307	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1308	if (!bp->rx_dma)
1309		goto err_out_iounmap_tx;
1310	bp->rx_dma_intr = macio_irq(mdev, 2);
1311
1312	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1313	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1314
1315	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1316	skb_queue_head_init(bp->queue);
1317
1318	timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1319
1320	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1321	if (ret) {
1322		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1323		goto err_out_iounmap_rx;
1324	}
1325	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1326	if (ret) {
1327		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1328		goto err_out_irq0;
1329	}
1330	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1331	if (ret) {
1332		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1333		goto err_out_irq1;
1334	}
1335
1336	/* Mask chip interrupts and disable chip, will be
1337	 * re-enabled on open()
1338	 */
1339	disable_irq(dev->irq);
1340	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1341
1342	if (register_netdev(dev) != 0) {
1343		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1344		goto err_out_irq2;
1345	}
1346
1347	printk(KERN_INFO "%s: BMAC%s at %pM",
1348	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1349	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1350	printk("\n");
1351
1352	return 0;
1353
1354err_out_irq2:
1355	free_irq(bp->rx_dma_intr, dev);
1356err_out_irq1:
1357	free_irq(bp->tx_dma_intr, dev);
1358err_out_irq0:
1359	free_irq(dev->irq, dev);
1360err_out_iounmap_rx:
1361	iounmap(bp->rx_dma);
1362err_out_iounmap_tx:
1363	iounmap(bp->tx_dma);
1364err_out_iounmap:
1365	iounmap((void __iomem *)dev->base_addr);
1366out_release:
1367	macio_release_resources(mdev);
1368out_free:
1369	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1370	free_netdev(dev);
1371
1372	return -ENODEV;
1373}
1374
1375static int bmac_open(struct net_device *dev)
1376{
1377	struct bmac_data *bp = netdev_priv(dev);
1378	/* XXDEBUG(("bmac: enter open\n")); */
1379	/* reset the chip */
1380	bp->opened = 1;
1381	bmac_reset_and_enable(dev);
1382	enable_irq(dev->irq);
1383	return 0;
1384}
1385
1386static int bmac_close(struct net_device *dev)
1387{
1388	struct bmac_data *bp = netdev_priv(dev);
1389	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1390	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1391	unsigned short config;
1392	int i;
1393
1394	bp->sleeping = 1;
1395
1396	/* disable rx and tx */
1397	config = bmread(dev, RXCFG);
1398	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1399
1400	config = bmread(dev, TXCFG);
1401	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1402
1403	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1404
1405	/* disable rx and tx dma */
1406	rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1407	td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1408
1409	/* free some skb's */
1410	XXDEBUG(("bmac: free rx bufs\n"));
1411	for (i=0; i<N_RX_RING; i++) {
1412		if (bp->rx_bufs[i] != NULL) {
1413			dev_kfree_skb(bp->rx_bufs[i]);
1414			bp->rx_bufs[i] = NULL;
1415		}
1416	}
1417	XXDEBUG(("bmac: free tx bufs\n"));
1418	for (i = 0; i<N_TX_RING; i++) {
1419		if (bp->tx_bufs[i] != NULL) {
1420			dev_kfree_skb(bp->tx_bufs[i]);
1421			bp->tx_bufs[i] = NULL;
1422		}
1423	}
1424	XXDEBUG(("bmac: all bufs freed\n"));
1425
1426	bp->opened = 0;
1427	disable_irq(dev->irq);
1428	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1429
1430	return 0;
1431}
1432
1433static void
1434bmac_start(struct net_device *dev)
1435{
1436	struct bmac_data *bp = netdev_priv(dev);
1437	int i;
1438	struct sk_buff *skb;
1439	unsigned long flags;
1440
1441	if (bp->sleeping)
1442		return;
1443
1444	spin_lock_irqsave(&bp->lock, flags);
1445	while (1) {
1446		i = bp->tx_fill + 1;
1447		if (i >= N_TX_RING)
1448			i = 0;
1449		if (i == bp->tx_empty)
1450			break;
1451		skb = skb_dequeue(bp->queue);
1452		if (skb == NULL)
1453			break;
1454		bmac_transmit_packet(skb, dev);
1455	}
1456	spin_unlock_irqrestore(&bp->lock, flags);
1457}
1458
1459static netdev_tx_t
1460bmac_output(struct sk_buff *skb, struct net_device *dev)
1461{
1462	struct bmac_data *bp = netdev_priv(dev);
1463	skb_queue_tail(bp->queue, skb);
1464	bmac_start(dev);
1465	return NETDEV_TX_OK;
1466}
1467
1468static void bmac_tx_timeout(struct timer_list *t)
1469{
1470	struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1471	struct net_device *dev = macio_get_drvdata(bp->mdev);
1472	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1473	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1474	volatile struct dbdma_cmd *cp;
1475	unsigned long flags;
1476	unsigned short config, oldConfig;
1477	int i;
1478
1479	XXDEBUG(("bmac: tx_timeout called\n"));
1480	spin_lock_irqsave(&bp->lock, flags);
1481	bp->timeout_active = 0;
1482
1483	/* update various counters */
1484/*     	bmac_handle_misc_intrs(bp, 0); */
1485
1486	cp = &bp->tx_cmds[bp->tx_empty];
1487/*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1488/* 	   le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1489/* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1490
1491	/* turn off both tx and rx and reset the chip */
1492	config = bmread(dev, RXCFG);
1493	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1494	config = bmread(dev, TXCFG);
1495	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1496	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1497	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1498	bmac_enable_and_reset_chip(dev);
1499
1500	/* restart rx dma */
1501	cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1502	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1503	out_le16(&cp->xfer_status, 0);
1504	out_le32(&rd->cmdptr, virt_to_bus(cp));
1505	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1506
1507	/* fix up the transmit side */
1508	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1509		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1510	i = bp->tx_empty;
1511	++dev->stats.tx_errors;
1512	if (i != bp->tx_fill) {
1513		dev_kfree_skb_irq(bp->tx_bufs[i]);
1514		bp->tx_bufs[i] = NULL;
1515		if (++i >= N_TX_RING) i = 0;
1516		bp->tx_empty = i;
1517	}
1518	bp->tx_fullup = 0;
1519	netif_wake_queue(dev);
1520	if (i != bp->tx_fill) {
1521		cp = &bp->tx_cmds[i];
1522		out_le16(&cp->xfer_status, 0);
1523		out_le16(&cp->command, OUTPUT_LAST);
1524		out_le32(&td->cmdptr, virt_to_bus(cp));
1525		out_le32(&td->control, DBDMA_SET(RUN));
1526		/* 	bmac_set_timeout(dev); */
1527		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1528	}
1529
1530	/* turn it back on */
1531	oldConfig = bmread(dev, RXCFG);
1532	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1533	oldConfig = bmread(dev, TXCFG);
1534	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1535
1536	spin_unlock_irqrestore(&bp->lock, flags);
1537}
1538
1539#if 0
1540static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1541{
1542	int i,*ip;
1543
1544	for (i=0;i< count;i++) {
1545		ip = (int*)(cp+i);
1546
1547		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1548		       le32_to_cpup(ip+0),
1549		       le32_to_cpup(ip+1),
1550		       le32_to_cpup(ip+2),
1551		       le32_to_cpup(ip+3));
1552	}
1553
1554}
1555#endif
1556
1557#if 0
1558static int
1559bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1560{
1561	int len = 0;
1562	off_t pos   = 0;
1563	off_t begin = 0;
1564	int i;
1565
1566	if (bmac_devs == NULL)
1567		return -ENOSYS;
1568
1569	len += sprintf(buffer, "BMAC counters & registers\n");
1570
1571	for (i = 0; i<N_REG_ENTRIES; i++) {
1572		len += sprintf(buffer + len, "%s: %#08x\n",
1573			       reg_entries[i].name,
1574			       bmread(bmac_devs, reg_entries[i].reg_offset));
1575		pos = begin + len;
1576
1577		if (pos < offset) {
1578			len = 0;
1579			begin = pos;
1580		}
1581
1582		if (pos > offset+length) break;
1583	}
1584
1585	*start = buffer + (offset - begin);
1586	len -= (offset - begin);
1587
1588	if (len > length) len = length;
1589
1590	return len;
1591}
1592#endif
1593
1594static int bmac_remove(struct macio_dev *mdev)
1595{
1596	struct net_device *dev = macio_get_drvdata(mdev);
1597	struct bmac_data *bp = netdev_priv(dev);
1598
1599	unregister_netdev(dev);
1600
1601	free_irq(dev->irq, dev);
1602	free_irq(bp->tx_dma_intr, dev);
1603	free_irq(bp->rx_dma_intr, dev);
1604
1605	iounmap((void __iomem *)dev->base_addr);
1606	iounmap(bp->tx_dma);
1607	iounmap(bp->rx_dma);
1608
1609	macio_release_resources(mdev);
1610
1611	free_netdev(dev);
1612
1613	return 0;
1614}
1615
1616static const struct of_device_id bmac_match[] =
1617{
1618	{
1619	.name 		= "bmac",
1620	.data		= (void *)0,
1621	},
1622	{
1623	.type		= "network",
1624	.compatible	= "bmac+",
1625	.data		= (void *)1,
1626	},
1627	{},
1628};
1629MODULE_DEVICE_TABLE (of, bmac_match);
1630
1631static struct macio_driver bmac_driver =
1632{
1633	.driver = {
1634		.name 		= "bmac",
1635		.owner		= THIS_MODULE,
1636		.of_match_table	= bmac_match,
1637	},
1638	.probe		= bmac_probe,
1639	.remove		= bmac_remove,
1640#ifdef CONFIG_PM
1641	.suspend	= bmac_suspend,
1642	.resume		= bmac_resume,
1643#endif
1644};
1645
1646
1647static int __init bmac_init(void)
1648{
1649	if (bmac_emergency_rxbuf == NULL) {
1650		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1651		if (bmac_emergency_rxbuf == NULL)
1652			return -ENOMEM;
1653	}
1654
1655	return macio_register_driver(&bmac_driver);
1656}
1657
1658static void __exit bmac_exit(void)
1659{
1660	macio_unregister_driver(&bmac_driver);
1661
1662	kfree(bmac_emergency_rxbuf);
1663	bmac_emergency_rxbuf = NULL;
1664}
1665
1666MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1667MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1668MODULE_LICENSE("GPL");
1669
1670module_init(bmac_init);
1671module_exit(bmac_exit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Network device driver for the BMAC ethernet controller on
   4 * Apple Powermacs.  Assumes it's under a DBDMA controller.
   5 *
   6 * Copyright (C) 1998 Randy Gobbel.
   7 *
   8 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
   9 * dynamic procfs inode.
  10 */
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/delay.h>
  17#include <linux/string.h>
  18#include <linux/timer.h>
  19#include <linux/proc_fs.h>
  20#include <linux/init.h>
  21#include <linux/spinlock.h>
  22#include <linux/crc32.h>
  23#include <linux/crc32poly.h>
  24#include <linux/bitrev.h>
  25#include <linux/ethtool.h>
  26#include <linux/slab.h>
  27#include <asm/prom.h>
  28#include <asm/dbdma.h>
  29#include <asm/io.h>
  30#include <asm/page.h>
  31#include <asm/pgtable.h>
  32#include <asm/machdep.h>
  33#include <asm/pmac_feature.h>
  34#include <asm/macio.h>
  35#include <asm/irq.h>
  36
  37#include "bmac.h"
  38
  39#define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
  40#define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
  41
  42/* switch to use multicast code lifted from sunhme driver */
  43#define SUNHME_MULTICAST
  44
  45#define N_RX_RING	64
  46#define N_TX_RING	32
  47#define MAX_TX_ACTIVE	1
  48#define ETHERCRC	4
  49#define ETHERMINPACKET	64
  50#define ETHERMTU	1500
  51#define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
  52#define TX_TIMEOUT	HZ	/* 1 second */
  53
  54/* Bits in transmit DMA status */
  55#define TX_DMA_ERR	0x80
  56
  57#define XXDEBUG(args)
  58
  59struct bmac_data {
  60	/* volatile struct bmac *bmac; */
  61	struct sk_buff_head *queue;
  62	volatile struct dbdma_regs __iomem *tx_dma;
  63	int tx_dma_intr;
  64	volatile struct dbdma_regs __iomem *rx_dma;
  65	int rx_dma_intr;
  66	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
  67	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
  68	struct macio_dev *mdev;
  69	int is_bmac_plus;
  70	struct sk_buff *rx_bufs[N_RX_RING];
  71	int rx_fill;
  72	int rx_empty;
  73	struct sk_buff *tx_bufs[N_TX_RING];
  74	int tx_fill;
  75	int tx_empty;
  76	unsigned char tx_fullup;
  77	struct timer_list tx_timeout;
  78	int timeout_active;
  79	int sleeping;
  80	int opened;
  81	unsigned short hash_use_count[64];
  82	unsigned short hash_table_mask[4];
  83	spinlock_t lock;
  84};
  85
  86#if 0 /* Move that to ethtool */
  87
  88typedef struct bmac_reg_entry {
  89	char *name;
  90	unsigned short reg_offset;
  91} bmac_reg_entry_t;
  92
  93#define N_REG_ENTRIES 31
  94
  95static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
  96	{"MEMADD", MEMADD},
  97	{"MEMDATAHI", MEMDATAHI},
  98	{"MEMDATALO", MEMDATALO},
  99	{"TXPNTR", TXPNTR},
 100	{"RXPNTR", RXPNTR},
 101	{"IPG1", IPG1},
 102	{"IPG2", IPG2},
 103	{"ALIMIT", ALIMIT},
 104	{"SLOT", SLOT},
 105	{"PALEN", PALEN},
 106	{"PAPAT", PAPAT},
 107	{"TXSFD", TXSFD},
 108	{"JAM", JAM},
 109	{"TXCFG", TXCFG},
 110	{"TXMAX", TXMAX},
 111	{"TXMIN", TXMIN},
 112	{"PAREG", PAREG},
 113	{"DCNT", DCNT},
 114	{"NCCNT", NCCNT},
 115	{"NTCNT", NTCNT},
 116	{"EXCNT", EXCNT},
 117	{"LTCNT", LTCNT},
 118	{"TXSM", TXSM},
 119	{"RXCFG", RXCFG},
 120	{"RXMAX", RXMAX},
 121	{"RXMIN", RXMIN},
 122	{"FRCNT", FRCNT},
 123	{"AECNT", AECNT},
 124	{"FECNT", FECNT},
 125	{"RXSM", RXSM},
 126	{"RXCV", RXCV}
 127};
 128
 129#endif
 130
 131static unsigned char *bmac_emergency_rxbuf;
 132
 133/*
 134 * Number of bytes of private data per BMAC: allow enough for
 135 * the rx and tx dma commands plus a branch dma command each,
 136 * and another 16 bytes to allow us to align the dma command
 137 * buffers on a 16 byte boundary.
 138 */
 139#define PRIV_BYTES	(sizeof(struct bmac_data) \
 140	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
 141	+ sizeof(struct sk_buff_head))
 142
 143static int bmac_open(struct net_device *dev);
 144static int bmac_close(struct net_device *dev);
 145static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
 146static void bmac_set_multicast(struct net_device *dev);
 147static void bmac_reset_and_enable(struct net_device *dev);
 148static void bmac_start_chip(struct net_device *dev);
 149static void bmac_init_chip(struct net_device *dev);
 150static void bmac_init_registers(struct net_device *dev);
 151static void bmac_enable_and_reset_chip(struct net_device *dev);
 152static int bmac_set_address(struct net_device *dev, void *addr);
 153static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
 154static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
 155static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
 156static void bmac_set_timeout(struct net_device *dev);
 157static void bmac_tx_timeout(struct timer_list *t);
 158static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
 159static void bmac_start(struct net_device *dev);
 160
 161#define	DBDMA_SET(x)	( ((x) | (x) << 16) )
 162#define	DBDMA_CLEAR(x)	( (x) << 16)
 163
 164static inline void
 165dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
 166{
 167	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
 168}
 169
 170static inline unsigned long
 171dbdma_ld32(volatile __u32 __iomem *a)
 172{
 173	__u32 swap;
 174	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
 175	return swap;
 176}
 177
 178static void
 179dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
 180{
 181	dbdma_st32(&dmap->control,
 182		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
 183	eieio();
 184}
 185
 186static void
 187dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
 188{
 189	dbdma_st32(&dmap->control,
 190		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
 191	eieio();
 192	while (dbdma_ld32(&dmap->status) & RUN)
 193		eieio();
 194}
 195
 196static void
 197dbdma_setcmd(volatile struct dbdma_cmd *cp,
 198	     unsigned short cmd, unsigned count, unsigned long addr,
 199	     unsigned long cmd_dep)
 200{
 201	out_le16(&cp->command, cmd);
 202	out_le16(&cp->req_count, count);
 203	out_le32(&cp->phy_addr, addr);
 204	out_le32(&cp->cmd_dep, cmd_dep);
 205	out_le16(&cp->xfer_status, 0);
 206	out_le16(&cp->res_count, 0);
 207}
 208
 209static inline
 210void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
 211{
 212	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
 213}
 214
 215
 216static inline
 217unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
 218{
 219	return in_le16((void __iomem *)dev->base_addr + reg_offset);
 220}
 221
 222static void
 223bmac_enable_and_reset_chip(struct net_device *dev)
 224{
 225	struct bmac_data *bp = netdev_priv(dev);
 226	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 227	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 228
 229	if (rd)
 230		dbdma_reset(rd);
 231	if (td)
 232		dbdma_reset(td);
 233
 234	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
 235}
 236
 237#define MIFDELAY	udelay(10)
 238
 239static unsigned int
 240bmac_mif_readbits(struct net_device *dev, int nb)
 241{
 242	unsigned int val = 0;
 243
 244	while (--nb >= 0) {
 245		bmwrite(dev, MIFCSR, 0);
 246		MIFDELAY;
 247		if (bmread(dev, MIFCSR) & 8)
 248			val |= 1 << nb;
 249		bmwrite(dev, MIFCSR, 1);
 250		MIFDELAY;
 251	}
 252	bmwrite(dev, MIFCSR, 0);
 253	MIFDELAY;
 254	bmwrite(dev, MIFCSR, 1);
 255	MIFDELAY;
 256	return val;
 257}
 258
 259static void
 260bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
 261{
 262	int b;
 263
 264	while (--nb >= 0) {
 265		b = (val & (1 << nb))? 6: 4;
 266		bmwrite(dev, MIFCSR, b);
 267		MIFDELAY;
 268		bmwrite(dev, MIFCSR, b|1);
 269		MIFDELAY;
 270	}
 271}
 272
 273static unsigned int
 274bmac_mif_read(struct net_device *dev, unsigned int addr)
 275{
 276	unsigned int val;
 277
 278	bmwrite(dev, MIFCSR, 4);
 279	MIFDELAY;
 280	bmac_mif_writebits(dev, ~0U, 32);
 281	bmac_mif_writebits(dev, 6, 4);
 282	bmac_mif_writebits(dev, addr, 10);
 283	bmwrite(dev, MIFCSR, 2);
 284	MIFDELAY;
 285	bmwrite(dev, MIFCSR, 1);
 286	MIFDELAY;
 287	val = bmac_mif_readbits(dev, 17);
 288	bmwrite(dev, MIFCSR, 4);
 289	MIFDELAY;
 290	return val;
 291}
 292
 293static void
 294bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
 295{
 296	bmwrite(dev, MIFCSR, 4);
 297	MIFDELAY;
 298	bmac_mif_writebits(dev, ~0U, 32);
 299	bmac_mif_writebits(dev, 5, 4);
 300	bmac_mif_writebits(dev, addr, 10);
 301	bmac_mif_writebits(dev, 2, 2);
 302	bmac_mif_writebits(dev, val, 16);
 303	bmac_mif_writebits(dev, 3, 2);
 304}
 305
 306static void
 307bmac_init_registers(struct net_device *dev)
 308{
 309	struct bmac_data *bp = netdev_priv(dev);
 310	volatile unsigned short regValue;
 311	unsigned short *pWord16;
 312	int i;
 313
 314	/* XXDEBUG(("bmac: enter init_registers\n")); */
 315
 316	bmwrite(dev, RXRST, RxResetValue);
 317	bmwrite(dev, TXRST, TxResetBit);
 318
 319	i = 100;
 320	do {
 321		--i;
 322		udelay(10000);
 323		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
 324	} while ((regValue & TxResetBit) && i > 0);
 325
 326	if (!bp->is_bmac_plus) {
 327		regValue = bmread(dev, XCVRIF);
 328		regValue |= ClkBit | SerialMode | COLActiveLow;
 329		bmwrite(dev, XCVRIF, regValue);
 330		udelay(10000);
 331	}
 332
 333	bmwrite(dev, RSEED, (unsigned short)0x1968);
 334
 335	regValue = bmread(dev, XIFC);
 336	regValue |= TxOutputEnable;
 337	bmwrite(dev, XIFC, regValue);
 338
 339	bmread(dev, PAREG);
 340
 341	/* set collision counters to 0 */
 342	bmwrite(dev, NCCNT, 0);
 343	bmwrite(dev, NTCNT, 0);
 344	bmwrite(dev, EXCNT, 0);
 345	bmwrite(dev, LTCNT, 0);
 346
 347	/* set rx counters to 0 */
 348	bmwrite(dev, FRCNT, 0);
 349	bmwrite(dev, LECNT, 0);
 350	bmwrite(dev, AECNT, 0);
 351	bmwrite(dev, FECNT, 0);
 352	bmwrite(dev, RXCV, 0);
 353
 354	/* set tx fifo information */
 355	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
 356
 357	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
 358	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
 359
 360	/* set rx fifo information */
 361	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
 362	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
 363
 364	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
 365	bmread(dev, STATUS);		/* read it just to clear it */
 366
 367	/* zero out the chip Hash Filter registers */
 368	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
 369	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
 370	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
 371	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
 372	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
 373
 374	pWord16 = (unsigned short *)dev->dev_addr;
 375	bmwrite(dev, MADD0, *pWord16++);
 376	bmwrite(dev, MADD1, *pWord16++);
 377	bmwrite(dev, MADD2, *pWord16);
 378
 379	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
 380
 381	bmwrite(dev, INTDISABLE, EnableNormal);
 382}
 383
 384#if 0
 385static void
 386bmac_disable_interrupts(struct net_device *dev)
 387{
 388	bmwrite(dev, INTDISABLE, DisableAll);
 389}
 390
 391static void
 392bmac_enable_interrupts(struct net_device *dev)
 393{
 394	bmwrite(dev, INTDISABLE, EnableNormal);
 395}
 396#endif
 397
 398
 399static void
 400bmac_start_chip(struct net_device *dev)
 401{
 402	struct bmac_data *bp = netdev_priv(dev);
 403	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 404	unsigned short	oldConfig;
 405
 406	/* enable rx dma channel */
 407	dbdma_continue(rd);
 408
 409	oldConfig = bmread(dev, TXCFG);
 410	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
 411
 412	/* turn on rx plus any other bits already on (promiscuous possibly) */
 413	oldConfig = bmread(dev, RXCFG);
 414	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
 415	udelay(20000);
 416}
 417
 418static void
 419bmac_init_phy(struct net_device *dev)
 420{
 421	unsigned int addr;
 422	struct bmac_data *bp = netdev_priv(dev);
 423
 424	printk(KERN_DEBUG "phy registers:");
 425	for (addr = 0; addr < 32; ++addr) {
 426		if ((addr & 7) == 0)
 427			printk(KERN_DEBUG);
 428		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
 429	}
 430	printk(KERN_CONT "\n");
 431
 432	if (bp->is_bmac_plus) {
 433		unsigned int capable, ctrl;
 434
 435		ctrl = bmac_mif_read(dev, 0);
 436		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
 437		if (bmac_mif_read(dev, 4) != capable ||
 438		    (ctrl & 0x1000) == 0) {
 439			bmac_mif_write(dev, 4, capable);
 440			bmac_mif_write(dev, 0, 0x1200);
 441		} else
 442			bmac_mif_write(dev, 0, 0x1000);
 443	}
 444}
 445
 446static void bmac_init_chip(struct net_device *dev)
 447{
 448	bmac_init_phy(dev);
 449	bmac_init_registers(dev);
 450}
 451
 452#ifdef CONFIG_PM
 453static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
 454{
 455	struct net_device* dev = macio_get_drvdata(mdev);
 456	struct bmac_data *bp = netdev_priv(dev);
 457	unsigned long flags;
 458	unsigned short config;
 459	int i;
 460
 461	netif_device_detach(dev);
 462	/* prolly should wait for dma to finish & turn off the chip */
 463	spin_lock_irqsave(&bp->lock, flags);
 464	if (bp->timeout_active) {
 465		del_timer(&bp->tx_timeout);
 466		bp->timeout_active = 0;
 467	}
 468	disable_irq(dev->irq);
 469	disable_irq(bp->tx_dma_intr);
 470	disable_irq(bp->rx_dma_intr);
 471	bp->sleeping = 1;
 472	spin_unlock_irqrestore(&bp->lock, flags);
 473	if (bp->opened) {
 474		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 475		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 476
 477		config = bmread(dev, RXCFG);
 478		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
 479		config = bmread(dev, TXCFG);
 480       		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
 481		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
 482       		/* disable rx and tx dma */
 483		rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
 484		td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
 485       		/* free some skb's */
 486       		for (i=0; i<N_RX_RING; i++) {
 487       			if (bp->rx_bufs[i] != NULL) {
 488       				dev_kfree_skb(bp->rx_bufs[i]);
 489       				bp->rx_bufs[i] = NULL;
 490       			}
 491       		}
 492       		for (i = 0; i<N_TX_RING; i++) {
 493			if (bp->tx_bufs[i] != NULL) {
 494		       		dev_kfree_skb(bp->tx_bufs[i]);
 495	       			bp->tx_bufs[i] = NULL;
 496		       	}
 497		}
 498	}
 499       	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
 500	return 0;
 501}
 502
 503static int bmac_resume(struct macio_dev *mdev)
 504{
 505	struct net_device* dev = macio_get_drvdata(mdev);
 506	struct bmac_data *bp = netdev_priv(dev);
 507
 508	/* see if this is enough */
 509	if (bp->opened)
 510		bmac_reset_and_enable(dev);
 511
 512	enable_irq(dev->irq);
 513       	enable_irq(bp->tx_dma_intr);
 514       	enable_irq(bp->rx_dma_intr);
 515       	netif_device_attach(dev);
 516
 517	return 0;
 518}
 519#endif /* CONFIG_PM */
 520
 521static int bmac_set_address(struct net_device *dev, void *addr)
 522{
 523	struct bmac_data *bp = netdev_priv(dev);
 524	unsigned char *p = addr;
 525	unsigned short *pWord16;
 526	unsigned long flags;
 527	int i;
 528
 529	XXDEBUG(("bmac: enter set_address\n"));
 530	spin_lock_irqsave(&bp->lock, flags);
 531
 532	for (i = 0; i < 6; ++i) {
 533		dev->dev_addr[i] = p[i];
 534	}
 535	/* load up the hardware address */
 536	pWord16  = (unsigned short *)dev->dev_addr;
 537	bmwrite(dev, MADD0, *pWord16++);
 538	bmwrite(dev, MADD1, *pWord16++);
 539	bmwrite(dev, MADD2, *pWord16);
 540
 541	spin_unlock_irqrestore(&bp->lock, flags);
 542	XXDEBUG(("bmac: exit set_address\n"));
 543	return 0;
 544}
 545
 546static inline void bmac_set_timeout(struct net_device *dev)
 547{
 548	struct bmac_data *bp = netdev_priv(dev);
 549	unsigned long flags;
 550
 551	spin_lock_irqsave(&bp->lock, flags);
 552	if (bp->timeout_active)
 553		del_timer(&bp->tx_timeout);
 554	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
 555	add_timer(&bp->tx_timeout);
 556	bp->timeout_active = 1;
 557	spin_unlock_irqrestore(&bp->lock, flags);
 558}
 559
 560static void
 561bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
 562{
 563	void *vaddr;
 564	unsigned long baddr;
 565	unsigned long len;
 566
 567	len = skb->len;
 568	vaddr = skb->data;
 569	baddr = virt_to_bus(vaddr);
 570
 571	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
 572}
 573
 574static void
 575bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
 576{
 577	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
 578
 579	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
 580		     virt_to_bus(addr), 0);
 581}
 582
 583static void
 584bmac_init_tx_ring(struct bmac_data *bp)
 585{
 586	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 587
 588	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
 589
 590	bp->tx_empty = 0;
 591	bp->tx_fill = 0;
 592	bp->tx_fullup = 0;
 593
 594	/* put a branch at the end of the tx command list */
 595	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
 596		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
 597
 598	/* reset tx dma */
 599	dbdma_reset(td);
 600	out_le32(&td->wait_sel, 0x00200020);
 601	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
 602}
 603
 604static int
 605bmac_init_rx_ring(struct net_device *dev)
 606{
 607	struct bmac_data *bp = netdev_priv(dev);
 608	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 609	int i;
 610	struct sk_buff *skb;
 611
 612	/* initialize list of sk_buffs for receiving and set up recv dma */
 613	memset((char *)bp->rx_cmds, 0,
 614	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
 615	for (i = 0; i < N_RX_RING; i++) {
 616		if ((skb = bp->rx_bufs[i]) == NULL) {
 617			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
 618			if (skb != NULL)
 619				skb_reserve(skb, 2);
 620		}
 621		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
 622	}
 623
 624	bp->rx_empty = 0;
 625	bp->rx_fill = i;
 626
 627	/* Put a branch back to the beginning of the receive command list */
 628	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
 629		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
 630
 631	/* start rx dma */
 632	dbdma_reset(rd);
 633	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
 634
 635	return 1;
 636}
 637
 638
 639static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
 640{
 641	struct bmac_data *bp = netdev_priv(dev);
 642	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 643	int i;
 644
 645	/* see if there's a free slot in the tx ring */
 646	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
 647	/* 	     bp->tx_empty, bp->tx_fill)); */
 648	i = bp->tx_fill + 1;
 649	if (i >= N_TX_RING)
 650		i = 0;
 651	if (i == bp->tx_empty) {
 652		netif_stop_queue(dev);
 653		bp->tx_fullup = 1;
 654		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
 655		return -1;		/* can't take it at the moment */
 656	}
 657
 658	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
 659
 660	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
 661
 662	bp->tx_bufs[bp->tx_fill] = skb;
 663	bp->tx_fill = i;
 664
 665	dev->stats.tx_bytes += skb->len;
 666
 667	dbdma_continue(td);
 668
 669	return 0;
 670}
 671
 672static int rxintcount;
 673
 674static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
 675{
 676	struct net_device *dev = (struct net_device *) dev_id;
 677	struct bmac_data *bp = netdev_priv(dev);
 678	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 679	volatile struct dbdma_cmd *cp;
 680	int i, nb, stat;
 681	struct sk_buff *skb;
 682	unsigned int residual;
 683	int last;
 684	unsigned long flags;
 685
 686	spin_lock_irqsave(&bp->lock, flags);
 687
 688	if (++rxintcount < 10) {
 689		XXDEBUG(("bmac_rxdma_intr\n"));
 690	}
 691
 692	last = -1;
 693	i = bp->rx_empty;
 694
 695	while (1) {
 696		cp = &bp->rx_cmds[i];
 697		stat = le16_to_cpu(cp->xfer_status);
 698		residual = le16_to_cpu(cp->res_count);
 699		if ((stat & ACTIVE) == 0)
 700			break;
 701		nb = RX_BUFLEN - residual - 2;
 702		if (nb < (ETHERMINPACKET - ETHERCRC)) {
 703			skb = NULL;
 704			dev->stats.rx_length_errors++;
 705			dev->stats.rx_errors++;
 706		} else {
 707			skb = bp->rx_bufs[i];
 708			bp->rx_bufs[i] = NULL;
 709		}
 710		if (skb != NULL) {
 711			nb -= ETHERCRC;
 712			skb_put(skb, nb);
 713			skb->protocol = eth_type_trans(skb, dev);
 714			netif_rx(skb);
 715			++dev->stats.rx_packets;
 716			dev->stats.rx_bytes += nb;
 717		} else {
 718			++dev->stats.rx_dropped;
 719		}
 720		if ((skb = bp->rx_bufs[i]) == NULL) {
 721			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
 722			if (skb != NULL)
 723				skb_reserve(bp->rx_bufs[i], 2);
 724		}
 725		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
 726		cp->res_count = cpu_to_le16(0);
 727		cp->xfer_status = cpu_to_le16(0);
 728		last = i;
 729		if (++i >= N_RX_RING) i = 0;
 730	}
 731
 732	if (last != -1) {
 733		bp->rx_fill = last;
 734		bp->rx_empty = i;
 735	}
 736
 737	dbdma_continue(rd);
 738	spin_unlock_irqrestore(&bp->lock, flags);
 739
 740	if (rxintcount < 10) {
 741		XXDEBUG(("bmac_rxdma_intr done\n"));
 742	}
 743	return IRQ_HANDLED;
 744}
 745
 746static int txintcount;
 747
 748static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
 749{
 750	struct net_device *dev = (struct net_device *) dev_id;
 751	struct bmac_data *bp = netdev_priv(dev);
 752	volatile struct dbdma_cmd *cp;
 753	int stat;
 754	unsigned long flags;
 755
 756	spin_lock_irqsave(&bp->lock, flags);
 757
 758	if (txintcount++ < 10) {
 759		XXDEBUG(("bmac_txdma_intr\n"));
 760	}
 761
 762	/*     del_timer(&bp->tx_timeout); */
 763	/*     bp->timeout_active = 0; */
 764
 765	while (1) {
 766		cp = &bp->tx_cmds[bp->tx_empty];
 767		stat = le16_to_cpu(cp->xfer_status);
 768		if (txintcount < 10) {
 769			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
 770		}
 771		if (!(stat & ACTIVE)) {
 772			/*
 773			 * status field might not have been filled by DBDMA
 774			 */
 775			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
 776				break;
 777		}
 778
 779		if (bp->tx_bufs[bp->tx_empty]) {
 780			++dev->stats.tx_packets;
 781			dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
 782		}
 783		bp->tx_bufs[bp->tx_empty] = NULL;
 784		bp->tx_fullup = 0;
 785		netif_wake_queue(dev);
 786		if (++bp->tx_empty >= N_TX_RING)
 787			bp->tx_empty = 0;
 788		if (bp->tx_empty == bp->tx_fill)
 789			break;
 790	}
 791
 792	spin_unlock_irqrestore(&bp->lock, flags);
 793
 794	if (txintcount < 10) {
 795		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
 796	}
 797
 798	bmac_start(dev);
 799	return IRQ_HANDLED;
 800}
 801
 802#ifndef SUNHME_MULTICAST
 803/* Real fast bit-reversal algorithm, 6-bit values */
 804static int reverse6[64] = {
 805	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
 806	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
 807	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
 808	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
 809	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
 810	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
 811	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
 812	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
 813};
 814
 815static unsigned int
 816crc416(unsigned int curval, unsigned short nxtval)
 817{
 818	unsigned int counter, cur = curval, next = nxtval;
 819	int high_crc_set, low_data_set;
 820
 821	/* Swap bytes */
 822	next = ((next & 0x00FF) << 8) | (next >> 8);
 823
 824	/* Compute bit-by-bit */
 825	for (counter = 0; counter < 16; ++counter) {
 826		/* is high CRC bit set? */
 827		if ((cur & 0x80000000) == 0) high_crc_set = 0;
 828		else high_crc_set = 1;
 829
 830		cur = cur << 1;
 831
 832		if ((next & 0x0001) == 0) low_data_set = 0;
 833		else low_data_set = 1;
 834
 835		next = next >> 1;
 836
 837		/* do the XOR */
 838		if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
 839	}
 840	return cur;
 841}
 842
 843static unsigned int
 844bmac_crc(unsigned short *address)
 845{
 846	unsigned int newcrc;
 847
 848	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
 849	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
 850	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
 851	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
 852
 853	return(newcrc);
 854}
 855
 856/*
 857 * Add requested mcast addr to BMac's hash table filter.
 858 *
 859 */
 860
 861static void
 862bmac_addhash(struct bmac_data *bp, unsigned char *addr)
 863{
 864	unsigned int	 crc;
 865	unsigned short	 mask;
 866
 867	if (!(*addr)) return;
 868	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
 869	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
 870	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
 871	mask = crc % 16;
 872	mask = (unsigned char)1 << mask;
 873	bp->hash_use_count[crc/16] |= mask;
 874}
 875
 876static void
 877bmac_removehash(struct bmac_data *bp, unsigned char *addr)
 878{
 879	unsigned int crc;
 880	unsigned char mask;
 881
 882	/* Now, delete the address from the filter copy, as indicated */
 883	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
 884	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
 885	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
 886	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
 887	mask = crc % 16;
 888	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
 889	bp->hash_table_mask[crc/16] &= mask;
 890}
 891
 892/*
 893 * Sync the adapter with the software copy of the multicast mask
 894 *  (logical address filter).
 895 */
 896
 897static void
 898bmac_rx_off(struct net_device *dev)
 899{
 900	unsigned short rx_cfg;
 901
 902	rx_cfg = bmread(dev, RXCFG);
 903	rx_cfg &= ~RxMACEnable;
 904	bmwrite(dev, RXCFG, rx_cfg);
 905	do {
 906		rx_cfg = bmread(dev, RXCFG);
 907	}  while (rx_cfg & RxMACEnable);
 908}
 909
 910unsigned short
 911bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
 912{
 913	unsigned short rx_cfg;
 914
 915	rx_cfg = bmread(dev, RXCFG);
 916	rx_cfg |= RxMACEnable;
 917	if (hash_enable) rx_cfg |= RxHashFilterEnable;
 918	else rx_cfg &= ~RxHashFilterEnable;
 919	if (promisc_enable) rx_cfg |= RxPromiscEnable;
 920	else rx_cfg &= ~RxPromiscEnable;
 921	bmwrite(dev, RXRST, RxResetValue);
 922	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
 923	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
 924	bmwrite(dev, RXCFG, rx_cfg );
 925	return rx_cfg;
 926}
 927
 928static void
 929bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
 930{
 931	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
 932	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
 933	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
 934	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
 935}
 936
 937#if 0
 938static void
 939bmac_add_multi(struct net_device *dev,
 940	       struct bmac_data *bp, unsigned char *addr)
 941{
 942	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
 943	bmac_addhash(bp, addr);
 944	bmac_rx_off(dev);
 945	bmac_update_hash_table_mask(dev, bp);
 946	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
 947	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
 948}
 949
 950static void
 951bmac_remove_multi(struct net_device *dev,
 952		  struct bmac_data *bp, unsigned char *addr)
 953{
 954	bmac_removehash(bp, addr);
 955	bmac_rx_off(dev);
 956	bmac_update_hash_table_mask(dev, bp);
 957	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
 958}
 959#endif
 960
 961/* Set or clear the multicast filter for this adaptor.
 962    num_addrs == -1	Promiscuous mode, receive all packets
 963    num_addrs == 0	Normal mode, clear multicast list
 964    num_addrs > 0	Multicast mode, receive normal and MC packets, and do
 965			best-effort filtering.
 966 */
 967static void bmac_set_multicast(struct net_device *dev)
 968{
 969	struct netdev_hw_addr *ha;
 970	struct bmac_data *bp = netdev_priv(dev);
 971	int num_addrs = netdev_mc_count(dev);
 972	unsigned short rx_cfg;
 973	int i;
 974
 975	if (bp->sleeping)
 976		return;
 977
 978	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
 979
 980	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
 981		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
 982		bmac_update_hash_table_mask(dev, bp);
 983		rx_cfg = bmac_rx_on(dev, 1, 0);
 984		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
 985	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
 986		rx_cfg = bmread(dev, RXCFG);
 987		rx_cfg |= RxPromiscEnable;
 988		bmwrite(dev, RXCFG, rx_cfg);
 989		rx_cfg = bmac_rx_on(dev, 0, 1);
 990		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
 991	} else {
 992		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
 993		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
 994		if (num_addrs == 0) {
 995			rx_cfg = bmac_rx_on(dev, 0, 0);
 996			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
 997		} else {
 998			netdev_for_each_mc_addr(ha, dev)
 999				bmac_addhash(bp, ha->addr);
1000			bmac_update_hash_table_mask(dev, bp);
1001			rx_cfg = bmac_rx_on(dev, 1, 0);
1002			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1003		}
1004	}
1005	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1006}
1007#else /* ifdef SUNHME_MULTICAST */
1008
1009/* The version of set_multicast below was lifted from sunhme.c */
1010
1011static void bmac_set_multicast(struct net_device *dev)
1012{
1013	struct netdev_hw_addr *ha;
1014	unsigned short rx_cfg;
1015	u32 crc;
1016
1017	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1018		bmwrite(dev, BHASH0, 0xffff);
1019		bmwrite(dev, BHASH1, 0xffff);
1020		bmwrite(dev, BHASH2, 0xffff);
1021		bmwrite(dev, BHASH3, 0xffff);
1022	} else if(dev->flags & IFF_PROMISC) {
1023		rx_cfg = bmread(dev, RXCFG);
1024		rx_cfg |= RxPromiscEnable;
1025		bmwrite(dev, RXCFG, rx_cfg);
1026	} else {
1027		u16 hash_table[4] = { 0 };
1028
1029		rx_cfg = bmread(dev, RXCFG);
1030		rx_cfg &= ~RxPromiscEnable;
1031		bmwrite(dev, RXCFG, rx_cfg);
1032
1033		netdev_for_each_mc_addr(ha, dev) {
1034			crc = ether_crc_le(6, ha->addr);
1035			crc >>= 26;
1036			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1037		}
1038		bmwrite(dev, BHASH0, hash_table[0]);
1039		bmwrite(dev, BHASH1, hash_table[1]);
1040		bmwrite(dev, BHASH2, hash_table[2]);
1041		bmwrite(dev, BHASH3, hash_table[3]);
1042	}
1043}
1044#endif /* SUNHME_MULTICAST */
1045
1046static int miscintcount;
1047
1048static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1049{
1050	struct net_device *dev = (struct net_device *) dev_id;
1051	unsigned int status = bmread(dev, STATUS);
1052	if (miscintcount++ < 10) {
1053		XXDEBUG(("bmac_misc_intr\n"));
1054	}
1055	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1056	/*     bmac_txdma_intr_inner(irq, dev_id); */
1057	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1058	if (status & RxErrorMask) dev->stats.rx_errors++;
1059	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1060	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1061	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1062	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1063
1064	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1065	if (status & TxErrorMask) dev->stats.tx_errors++;
1066	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1067	if (status & TxNormalCollExp) dev->stats.collisions++;
1068	return IRQ_HANDLED;
1069}
1070
1071/*
1072 * Procedure for reading EEPROM
1073 */
1074#define SROMAddressLength	5
1075#define DataInOn		0x0008
1076#define DataInOff		0x0000
1077#define Clk			0x0002
1078#define ChipSelect		0x0001
1079#define SDIShiftCount		3
1080#define SD0ShiftCount		2
1081#define	DelayValue		1000	/* number of microseconds */
1082#define SROMStartOffset		10	/* this is in words */
1083#define SROMReadCount		3	/* number of words to read from SROM */
1084#define SROMAddressBits		6
1085#define EnetAddressOffset	20
1086
1087static unsigned char
1088bmac_clock_out_bit(struct net_device *dev)
1089{
1090	unsigned short         data;
1091	unsigned short         val;
1092
1093	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1094	udelay(DelayValue);
1095
1096	data = bmread(dev, SROMCSR);
1097	udelay(DelayValue);
1098	val = (data >> SD0ShiftCount) & 1;
1099
1100	bmwrite(dev, SROMCSR, ChipSelect);
1101	udelay(DelayValue);
1102
1103	return val;
1104}
1105
1106static void
1107bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1108{
1109	unsigned short data;
1110
1111	if (val != 0 && val != 1) return;
1112
1113	data = (val << SDIShiftCount);
1114	bmwrite(dev, SROMCSR, data | ChipSelect  );
1115	udelay(DelayValue);
1116
1117	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1118	udelay(DelayValue);
1119
1120	bmwrite(dev, SROMCSR, data | ChipSelect);
1121	udelay(DelayValue);
1122}
1123
1124static void
1125reset_and_select_srom(struct net_device *dev)
1126{
1127	/* first reset */
1128	bmwrite(dev, SROMCSR, 0);
1129	udelay(DelayValue);
1130
1131	/* send it the read command (110) */
1132	bmac_clock_in_bit(dev, 1);
1133	bmac_clock_in_bit(dev, 1);
1134	bmac_clock_in_bit(dev, 0);
1135}
1136
1137static unsigned short
1138read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1139{
1140	unsigned short data, val;
1141	int i;
1142
1143	/* send out the address we want to read from */
1144	for (i = 0; i < addr_len; i++)	{
1145		val = addr >> (addr_len-i-1);
1146		bmac_clock_in_bit(dev, val & 1);
1147	}
1148
1149	/* Now read in the 16-bit data */
1150	data = 0;
1151	for (i = 0; i < 16; i++)	{
1152		val = bmac_clock_out_bit(dev);
1153		data <<= 1;
1154		data |= val;
1155	}
1156	bmwrite(dev, SROMCSR, 0);
1157
1158	return data;
1159}
1160
1161/*
1162 * It looks like Cogent and SMC use different methods for calculating
1163 * checksums. What a pain..
1164 */
1165
1166static int
1167bmac_verify_checksum(struct net_device *dev)
1168{
1169	unsigned short data, storedCS;
1170
1171	reset_and_select_srom(dev);
1172	data = read_srom(dev, 3, SROMAddressBits);
1173	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1174
1175	return 0;
1176}
1177
1178
1179static void
1180bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1181{
1182	int i;
1183	unsigned short data;
1184
1185	for (i = 0; i < 6; i++)
1186		{
1187			reset_and_select_srom(dev);
1188			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1189			ea[2*i]   = bitrev8(data & 0x0ff);
1190			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1191		}
1192}
1193
1194static void bmac_reset_and_enable(struct net_device *dev)
1195{
1196	struct bmac_data *bp = netdev_priv(dev);
1197	unsigned long flags;
1198	struct sk_buff *skb;
1199	unsigned char *data;
1200
1201	spin_lock_irqsave(&bp->lock, flags);
1202	bmac_enable_and_reset_chip(dev);
1203	bmac_init_tx_ring(bp);
1204	bmac_init_rx_ring(dev);
1205	bmac_init_chip(dev);
1206	bmac_start_chip(dev);
1207	bmwrite(dev, INTDISABLE, EnableNormal);
1208	bp->sleeping = 0;
1209
1210	/*
1211	 * It seems that the bmac can't receive until it's transmitted
1212	 * a packet.  So we give it a dummy packet to transmit.
1213	 */
1214	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1215	if (skb != NULL) {
1216		data = skb_put_zero(skb, ETHERMINPACKET);
1217		memcpy(data, dev->dev_addr, ETH_ALEN);
1218		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1219		bmac_transmit_packet(skb, dev);
1220	}
1221	spin_unlock_irqrestore(&bp->lock, flags);
1222}
1223
1224static const struct ethtool_ops bmac_ethtool_ops = {
1225	.get_link		= ethtool_op_get_link,
1226};
1227
1228static const struct net_device_ops bmac_netdev_ops = {
1229	.ndo_open		= bmac_open,
1230	.ndo_stop		= bmac_close,
1231	.ndo_start_xmit		= bmac_output,
1232	.ndo_set_rx_mode	= bmac_set_multicast,
1233	.ndo_set_mac_address	= bmac_set_address,
1234	.ndo_validate_addr	= eth_validate_addr,
1235};
1236
1237static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1238{
1239	int j, rev, ret;
1240	struct bmac_data *bp;
1241	const unsigned char *prop_addr;
1242	unsigned char addr[6];
 
1243	struct net_device *dev;
1244	int is_bmac_plus = ((int)match->data) != 0;
1245
1246	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1247		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1248		return -ENODEV;
1249	}
1250	prop_addr = of_get_property(macio_get_of_node(mdev),
1251			"mac-address", NULL);
1252	if (prop_addr == NULL) {
1253		prop_addr = of_get_property(macio_get_of_node(mdev),
1254				"local-mac-address", NULL);
1255		if (prop_addr == NULL) {
1256			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1257			return -ENODEV;
1258		}
1259	}
1260	memcpy(addr, prop_addr, sizeof(addr));
1261
1262	dev = alloc_etherdev(PRIV_BYTES);
1263	if (!dev)
1264		return -ENOMEM;
1265
1266	bp = netdev_priv(dev);
1267	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1268	macio_set_drvdata(mdev, dev);
1269
1270	bp->mdev = mdev;
1271	spin_lock_init(&bp->lock);
1272
1273	if (macio_request_resources(mdev, "bmac")) {
1274		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1275		goto out_free;
1276	}
1277
1278	dev->base_addr = (unsigned long)
1279		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1280	if (dev->base_addr == 0)
1281		goto out_release;
1282
1283	dev->irq = macio_irq(mdev, 0);
1284
1285	bmac_enable_and_reset_chip(dev);
1286	bmwrite(dev, INTDISABLE, DisableAll);
1287
1288	rev = addr[0] == 0 && addr[1] == 0xA0;
1289	for (j = 0; j < 6; ++j)
1290		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
 
 
1291
1292	/* Enable chip without interrupts for now */
1293	bmac_enable_and_reset_chip(dev);
1294	bmwrite(dev, INTDISABLE, DisableAll);
1295
1296	dev->netdev_ops = &bmac_netdev_ops;
1297	dev->ethtool_ops = &bmac_ethtool_ops;
1298
1299	bmac_get_station_address(dev, addr);
1300	if (bmac_verify_checksum(dev) != 0)
1301		goto err_out_iounmap;
1302
1303	bp->is_bmac_plus = is_bmac_plus;
1304	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1305	if (!bp->tx_dma)
1306		goto err_out_iounmap;
1307	bp->tx_dma_intr = macio_irq(mdev, 1);
1308	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1309	if (!bp->rx_dma)
1310		goto err_out_iounmap_tx;
1311	bp->rx_dma_intr = macio_irq(mdev, 2);
1312
1313	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1314	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1315
1316	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1317	skb_queue_head_init(bp->queue);
1318
1319	timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1320
1321	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1322	if (ret) {
1323		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1324		goto err_out_iounmap_rx;
1325	}
1326	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1327	if (ret) {
1328		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1329		goto err_out_irq0;
1330	}
1331	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1332	if (ret) {
1333		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1334		goto err_out_irq1;
1335	}
1336
1337	/* Mask chip interrupts and disable chip, will be
1338	 * re-enabled on open()
1339	 */
1340	disable_irq(dev->irq);
1341	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1342
1343	if (register_netdev(dev) != 0) {
1344		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1345		goto err_out_irq2;
1346	}
1347
1348	printk(KERN_INFO "%s: BMAC%s at %pM",
1349	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1350	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1351	printk("\n");
1352
1353	return 0;
1354
1355err_out_irq2:
1356	free_irq(bp->rx_dma_intr, dev);
1357err_out_irq1:
1358	free_irq(bp->tx_dma_intr, dev);
1359err_out_irq0:
1360	free_irq(dev->irq, dev);
1361err_out_iounmap_rx:
1362	iounmap(bp->rx_dma);
1363err_out_iounmap_tx:
1364	iounmap(bp->tx_dma);
1365err_out_iounmap:
1366	iounmap((void __iomem *)dev->base_addr);
1367out_release:
1368	macio_release_resources(mdev);
1369out_free:
1370	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1371	free_netdev(dev);
1372
1373	return -ENODEV;
1374}
1375
1376static int bmac_open(struct net_device *dev)
1377{
1378	struct bmac_data *bp = netdev_priv(dev);
1379	/* XXDEBUG(("bmac: enter open\n")); */
1380	/* reset the chip */
1381	bp->opened = 1;
1382	bmac_reset_and_enable(dev);
1383	enable_irq(dev->irq);
1384	return 0;
1385}
1386
1387static int bmac_close(struct net_device *dev)
1388{
1389	struct bmac_data *bp = netdev_priv(dev);
1390	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1391	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1392	unsigned short config;
1393	int i;
1394
1395	bp->sleeping = 1;
1396
1397	/* disable rx and tx */
1398	config = bmread(dev, RXCFG);
1399	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1400
1401	config = bmread(dev, TXCFG);
1402	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1403
1404	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1405
1406	/* disable rx and tx dma */
1407	rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1408	td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1409
1410	/* free some skb's */
1411	XXDEBUG(("bmac: free rx bufs\n"));
1412	for (i=0; i<N_RX_RING; i++) {
1413		if (bp->rx_bufs[i] != NULL) {
1414			dev_kfree_skb(bp->rx_bufs[i]);
1415			bp->rx_bufs[i] = NULL;
1416		}
1417	}
1418	XXDEBUG(("bmac: free tx bufs\n"));
1419	for (i = 0; i<N_TX_RING; i++) {
1420		if (bp->tx_bufs[i] != NULL) {
1421			dev_kfree_skb(bp->tx_bufs[i]);
1422			bp->tx_bufs[i] = NULL;
1423		}
1424	}
1425	XXDEBUG(("bmac: all bufs freed\n"));
1426
1427	bp->opened = 0;
1428	disable_irq(dev->irq);
1429	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1430
1431	return 0;
1432}
1433
1434static void
1435bmac_start(struct net_device *dev)
1436{
1437	struct bmac_data *bp = netdev_priv(dev);
1438	int i;
1439	struct sk_buff *skb;
1440	unsigned long flags;
1441
1442	if (bp->sleeping)
1443		return;
1444
1445	spin_lock_irqsave(&bp->lock, flags);
1446	while (1) {
1447		i = bp->tx_fill + 1;
1448		if (i >= N_TX_RING)
1449			i = 0;
1450		if (i == bp->tx_empty)
1451			break;
1452		skb = skb_dequeue(bp->queue);
1453		if (skb == NULL)
1454			break;
1455		bmac_transmit_packet(skb, dev);
1456	}
1457	spin_unlock_irqrestore(&bp->lock, flags);
1458}
1459
1460static netdev_tx_t
1461bmac_output(struct sk_buff *skb, struct net_device *dev)
1462{
1463	struct bmac_data *bp = netdev_priv(dev);
1464	skb_queue_tail(bp->queue, skb);
1465	bmac_start(dev);
1466	return NETDEV_TX_OK;
1467}
1468
1469static void bmac_tx_timeout(struct timer_list *t)
1470{
1471	struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1472	struct net_device *dev = macio_get_drvdata(bp->mdev);
1473	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1474	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1475	volatile struct dbdma_cmd *cp;
1476	unsigned long flags;
1477	unsigned short config, oldConfig;
1478	int i;
1479
1480	XXDEBUG(("bmac: tx_timeout called\n"));
1481	spin_lock_irqsave(&bp->lock, flags);
1482	bp->timeout_active = 0;
1483
1484	/* update various counters */
1485/*     	bmac_handle_misc_intrs(bp, 0); */
1486
1487	cp = &bp->tx_cmds[bp->tx_empty];
1488/*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1489/* 	   le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1490/* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1491
1492	/* turn off both tx and rx and reset the chip */
1493	config = bmread(dev, RXCFG);
1494	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1495	config = bmread(dev, TXCFG);
1496	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1497	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1498	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1499	bmac_enable_and_reset_chip(dev);
1500
1501	/* restart rx dma */
1502	cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1503	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1504	out_le16(&cp->xfer_status, 0);
1505	out_le32(&rd->cmdptr, virt_to_bus(cp));
1506	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1507
1508	/* fix up the transmit side */
1509	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1510		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1511	i = bp->tx_empty;
1512	++dev->stats.tx_errors;
1513	if (i != bp->tx_fill) {
1514		dev_kfree_skb(bp->tx_bufs[i]);
1515		bp->tx_bufs[i] = NULL;
1516		if (++i >= N_TX_RING) i = 0;
1517		bp->tx_empty = i;
1518	}
1519	bp->tx_fullup = 0;
1520	netif_wake_queue(dev);
1521	if (i != bp->tx_fill) {
1522		cp = &bp->tx_cmds[i];
1523		out_le16(&cp->xfer_status, 0);
1524		out_le16(&cp->command, OUTPUT_LAST);
1525		out_le32(&td->cmdptr, virt_to_bus(cp));
1526		out_le32(&td->control, DBDMA_SET(RUN));
1527		/* 	bmac_set_timeout(dev); */
1528		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1529	}
1530
1531	/* turn it back on */
1532	oldConfig = bmread(dev, RXCFG);
1533	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1534	oldConfig = bmread(dev, TXCFG);
1535	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1536
1537	spin_unlock_irqrestore(&bp->lock, flags);
1538}
1539
1540#if 0
1541static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1542{
1543	int i,*ip;
1544
1545	for (i=0;i< count;i++) {
1546		ip = (int*)(cp+i);
1547
1548		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1549		       le32_to_cpup(ip+0),
1550		       le32_to_cpup(ip+1),
1551		       le32_to_cpup(ip+2),
1552		       le32_to_cpup(ip+3));
1553	}
1554
1555}
1556#endif
1557
1558#if 0
1559static int
1560bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1561{
1562	int len = 0;
1563	off_t pos   = 0;
1564	off_t begin = 0;
1565	int i;
1566
1567	if (bmac_devs == NULL)
1568		return -ENOSYS;
1569
1570	len += sprintf(buffer, "BMAC counters & registers\n");
1571
1572	for (i = 0; i<N_REG_ENTRIES; i++) {
1573		len += sprintf(buffer + len, "%s: %#08x\n",
1574			       reg_entries[i].name,
1575			       bmread(bmac_devs, reg_entries[i].reg_offset));
1576		pos = begin + len;
1577
1578		if (pos < offset) {
1579			len = 0;
1580			begin = pos;
1581		}
1582
1583		if (pos > offset+length) break;
1584	}
1585
1586	*start = buffer + (offset - begin);
1587	len -= (offset - begin);
1588
1589	if (len > length) len = length;
1590
1591	return len;
1592}
1593#endif
1594
1595static int bmac_remove(struct macio_dev *mdev)
1596{
1597	struct net_device *dev = macio_get_drvdata(mdev);
1598	struct bmac_data *bp = netdev_priv(dev);
1599
1600	unregister_netdev(dev);
1601
1602       	free_irq(dev->irq, dev);
1603	free_irq(bp->tx_dma_intr, dev);
1604	free_irq(bp->rx_dma_intr, dev);
1605
1606	iounmap((void __iomem *)dev->base_addr);
1607	iounmap(bp->tx_dma);
1608	iounmap(bp->rx_dma);
1609
1610	macio_release_resources(mdev);
1611
1612	free_netdev(dev);
1613
1614	return 0;
1615}
1616
1617static const struct of_device_id bmac_match[] =
1618{
1619	{
1620	.name 		= "bmac",
1621	.data		= (void *)0,
1622	},
1623	{
1624	.type		= "network",
1625	.compatible	= "bmac+",
1626	.data		= (void *)1,
1627	},
1628	{},
1629};
1630MODULE_DEVICE_TABLE (of, bmac_match);
1631
1632static struct macio_driver bmac_driver =
1633{
1634	.driver = {
1635		.name 		= "bmac",
1636		.owner		= THIS_MODULE,
1637		.of_match_table	= bmac_match,
1638	},
1639	.probe		= bmac_probe,
1640	.remove		= bmac_remove,
1641#ifdef CONFIG_PM
1642	.suspend	= bmac_suspend,
1643	.resume		= bmac_resume,
1644#endif
1645};
1646
1647
1648static int __init bmac_init(void)
1649{
1650	if (bmac_emergency_rxbuf == NULL) {
1651		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1652		if (bmac_emergency_rxbuf == NULL)
1653			return -ENOMEM;
1654	}
1655
1656	return macio_register_driver(&bmac_driver);
1657}
1658
1659static void __exit bmac_exit(void)
1660{
1661	macio_unregister_driver(&bmac_driver);
1662
1663	kfree(bmac_emergency_rxbuf);
1664	bmac_emergency_rxbuf = NULL;
1665}
1666
1667MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1668MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1669MODULE_LICENSE("GPL");
1670
1671module_init(bmac_init);
1672module_exit(bmac_exit);