Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
  31#include <linux/phy/phy.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/reset.h>
  34
  35#define DRIVER_NAME	"xilinx_can"
  36
  37/* CAN registers set */
  38enum xcan_reg {
  39	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  40	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  41	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  42	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  43	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  44	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  45	XCAN_SR_OFFSET		= 0x18, /* Status */
  46	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  47	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  48	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  49
  50	/* not on CAN FD cores */
  51	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  52	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  53	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  54
  55	/* only on CAN FD cores */
  56	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  57					  * Prescaler
  58					  */
  59	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  60	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  61	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  62	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  63	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  64	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  65	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  66	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  67	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  68};
  69
  70#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  71#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  72#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  73#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  74#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  75
  76#define XCAN_CANFD_FRAME_SIZE		0x48
  77#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  78					 XCAN_CANFD_FRAME_SIZE * (n))
  79#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  80					 XCAN_CANFD_FRAME_SIZE * (n))
  81#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  82					 XCAN_CANFD_FRAME_SIZE * (n))
  83
  84/* the single TX mailbox used by this driver on CAN FD HW */
  85#define XCAN_TX_MAILBOX_IDX		0
  86
  87/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  88#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  89#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  90#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  91#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  92#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  93#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
  94#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
  95#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  96#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  97#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  98#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  99#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
 100#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
 101#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 102#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 103#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 104#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 105#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 106#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 107#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 108#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 109#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 110#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 111#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 112#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 113#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 114#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 115#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 116#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 117#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 118#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 119#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 120#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 121#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 122#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 123#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 124#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 125#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 126#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 127#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 128#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 129#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 130#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 131#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 132#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 133#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 134#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 135#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 136#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 137#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 138#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 139#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 140
 141/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 142#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 143#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 144#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 145#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 146#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 147#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 148#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 149#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 150#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 151
 152/* CAN frame length constants */
 153#define XCAN_FRAME_MAX_DATA_LEN		8
 154#define XCANFD_DW_BYTES			4
 155#define XCAN_TIMEOUT			(1 * HZ)
 156
 157/* TX-FIFO-empty interrupt available */
 158#define XCAN_FLAG_TXFEMP	0x0001
 159/* RX Match Not Finished interrupt available */
 160#define XCAN_FLAG_RXMNF		0x0002
 161/* Extended acceptance filters with control at 0xE0 */
 162#define XCAN_FLAG_EXT_FILTERS	0x0004
 163/* TX mailboxes instead of TX FIFO */
 164#define XCAN_FLAG_TX_MAILBOXES	0x0008
 165/* RX FIFO with each buffer in separate registers at 0x1100
 166 * instead of the regular FIFO at 0x50
 167 */
 168#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 169#define XCAN_FLAG_CANFD_2	0x0020
 170
 171enum xcan_ip_type {
 172	XAXI_CAN = 0,
 173	XZYNQ_CANPS,
 174	XAXI_CANFD,
 175	XAXI_CANFD_2_0,
 176};
 177
 178struct xcan_devtype_data {
 179	enum xcan_ip_type cantype;
 180	unsigned int flags;
 181	const struct can_bittiming_const *bittiming_const;
 182	const char *bus_clk_name;
 183	unsigned int btr_ts2_shift;
 184	unsigned int btr_sjw_shift;
 185};
 186
 187/**
 188 * struct xcan_priv - This definition define CAN driver instance
 189 * @can:			CAN private data structure.
 190 * @tx_lock:			Lock for synchronizing TX interrupt handling
 191 * @tx_head:			Tx CAN packets ready to send on the queue
 192 * @tx_tail:			Tx CAN packets successfully sended on the queue
 193 * @tx_max:			Maximum number packets the driver can send
 194 * @napi:			NAPI structure
 195 * @read_reg:			For reading data from CAN registers
 196 * @write_reg:			For writing data to CAN registers
 197 * @dev:			Network device data structure
 198 * @reg_base:			Ioremapped address to registers
 199 * @irq_flags:			For request_irq()
 200 * @bus_clk:			Pointer to struct clk
 201 * @can_clk:			Pointer to struct clk
 202 * @devtype:			Device type specific constants
 203 * @transceiver:		Optional pointer to associated CAN transceiver
 204 * @rstc:			Pointer to reset control
 205 */
 206struct xcan_priv {
 207	struct can_priv can;
 208	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 209	unsigned int tx_head;
 210	unsigned int tx_tail;
 211	unsigned int tx_max;
 212	struct napi_struct napi;
 213	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 214	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 215			  u32 val);
 216	struct device *dev;
 217	void __iomem *reg_base;
 218	unsigned long irq_flags;
 219	struct clk *bus_clk;
 220	struct clk *can_clk;
 221	struct xcan_devtype_data devtype;
 222	struct phy *transceiver;
 223	struct reset_control *rstc;
 224};
 225
 226/* CAN Bittiming constants as per Xilinx CAN specs */
 227static const struct can_bittiming_const xcan_bittiming_const = {
 228	.name = DRIVER_NAME,
 229	.tseg1_min = 1,
 230	.tseg1_max = 16,
 231	.tseg2_min = 1,
 232	.tseg2_max = 8,
 233	.sjw_max = 4,
 234	.brp_min = 1,
 235	.brp_max = 256,
 236	.brp_inc = 1,
 237};
 238
 239/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 240static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 241	.name = DRIVER_NAME,
 242	.tseg1_min = 1,
 243	.tseg1_max = 64,
 244	.tseg2_min = 1,
 245	.tseg2_max = 16,
 246	.sjw_max = 16,
 247	.brp_min = 1,
 248	.brp_max = 256,
 249	.brp_inc = 1,
 250};
 251
 252/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 253static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 254	.name = DRIVER_NAME,
 255	.tseg1_min = 1,
 256	.tseg1_max = 16,
 257	.tseg2_min = 1,
 258	.tseg2_max = 8,
 259	.sjw_max = 8,
 260	.brp_min = 1,
 261	.brp_max = 256,
 262	.brp_inc = 1,
 263};
 264
 265/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 266static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 267	.name = DRIVER_NAME,
 268	.tseg1_min = 1,
 269	.tseg1_max = 256,
 270	.tseg2_min = 1,
 271	.tseg2_max = 128,
 272	.sjw_max = 128,
 273	.brp_min = 1,
 274	.brp_max = 256,
 275	.brp_inc = 1,
 276};
 277
 278/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 279static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 280	.name = DRIVER_NAME,
 281	.tseg1_min = 1,
 282	.tseg1_max = 32,
 283	.tseg2_min = 1,
 284	.tseg2_max = 16,
 285	.sjw_max = 16,
 286	.brp_min = 1,
 287	.brp_max = 256,
 288	.brp_inc = 1,
 289};
 290
 291/* Transmission Delay Compensation constants for CANFD 1.0 */
 292static const struct can_tdc_const xcan_tdc_const_canfd = {
 293	.tdcv_min = 0,
 294	.tdcv_max = 0, /* Manual mode not supported. */
 295	.tdco_min = 0,
 296	.tdco_max = 32,
 297	.tdcf_min = 0, /* Filter window not supported */
 298	.tdcf_max = 0,
 299};
 300
 301/* Transmission Delay Compensation constants for CANFD 2.0 */
 302static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 303	.tdcv_min = 0,
 304	.tdcv_max = 0, /* Manual mode not supported. */
 305	.tdco_min = 0,
 306	.tdco_max = 64,
 307	.tdcf_min = 0, /* Filter window not supported */
 308	.tdcf_max = 0,
 309};
 310
 311/**
 312 * xcan_write_reg_le - Write a value to the device register little endian
 313 * @priv:	Driver private data structure
 314 * @reg:	Register offset
 315 * @val:	Value to write at the Register offset
 316 *
 317 * Write data to the paricular CAN register
 318 */
 319static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 320			      u32 val)
 321{
 322	iowrite32(val, priv->reg_base + reg);
 323}
 324
 325/**
 326 * xcan_read_reg_le - Read a value from the device register little endian
 327 * @priv:	Driver private data structure
 328 * @reg:	Register offset
 329 *
 330 * Read data from the particular CAN register
 331 * Return: value read from the CAN register
 332 */
 333static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 334{
 335	return ioread32(priv->reg_base + reg);
 336}
 337
 338/**
 339 * xcan_write_reg_be - Write a value to the device register big endian
 340 * @priv:	Driver private data structure
 341 * @reg:	Register offset
 342 * @val:	Value to write at the Register offset
 343 *
 344 * Write data to the paricular CAN register
 345 */
 346static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 347			      u32 val)
 348{
 349	iowrite32be(val, priv->reg_base + reg);
 350}
 351
 352/**
 353 * xcan_read_reg_be - Read a value from the device register big endian
 354 * @priv:	Driver private data structure
 355 * @reg:	Register offset
 356 *
 357 * Read data from the particular CAN register
 358 * Return: value read from the CAN register
 359 */
 360static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 361{
 362	return ioread32be(priv->reg_base + reg);
 363}
 364
 365/**
 366 * xcan_rx_int_mask - Get the mask for the receive interrupt
 367 * @priv:	Driver private data structure
 368 *
 369 * Return: The receive interrupt mask used by the driver on this HW
 370 */
 371static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 372{
 373	/* RXNEMP is better suited for our use case as it cannot be cleared
 374	 * while the FIFO is non-empty, but CAN FD HW does not have it
 375	 */
 376	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 377		return XCAN_IXR_RXOK_MASK;
 378	else
 379		return XCAN_IXR_RXNEMP_MASK;
 380}
 381
 382/**
 383 * set_reset_mode - Resets the CAN device mode
 384 * @ndev:	Pointer to net_device structure
 385 *
 386 * This is the driver reset mode routine.The driver
 387 * enters into configuration mode.
 388 *
 389 * Return: 0 on success and failure value on error
 390 */
 391static int set_reset_mode(struct net_device *ndev)
 392{
 393	struct xcan_priv *priv = netdev_priv(ndev);
 394	unsigned long timeout;
 395
 396	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 397
 398	timeout = jiffies + XCAN_TIMEOUT;
 399	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 400		if (time_after(jiffies, timeout)) {
 401			netdev_warn(ndev, "timed out for config mode\n");
 402			return -ETIMEDOUT;
 403		}
 404		usleep_range(500, 10000);
 405	}
 406
 407	/* reset clears FIFOs */
 408	priv->tx_head = 0;
 409	priv->tx_tail = 0;
 410
 411	return 0;
 412}
 413
 414/**
 415 * xcan_set_bittiming - CAN set bit timing routine
 416 * @ndev:	Pointer to net_device structure
 417 *
 418 * This is the driver set bittiming  routine.
 419 * Return: 0 on success and failure value on error
 420 */
 421static int xcan_set_bittiming(struct net_device *ndev)
 422{
 423	struct xcan_priv *priv = netdev_priv(ndev);
 424	struct can_bittiming *bt = &priv->can.bittiming;
 425	struct can_bittiming *dbt = &priv->can.data_bittiming;
 426	u32 btr0, btr1;
 427	u32 is_config_mode;
 428
 429	/* Check whether Xilinx CAN is in configuration mode.
 430	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 431	 */
 432	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 433				XCAN_SR_CONFIG_MASK;
 434	if (!is_config_mode) {
 435		netdev_alert(ndev,
 436			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 437		return -EPERM;
 438	}
 439
 440	/* Setting Baud Rate prescaler value in BRPR Register */
 441	btr0 = (bt->brp - 1);
 442
 443	/* Setting Time Segment 1 in BTR Register */
 444	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 445
 446	/* Setting Time Segment 2 in BTR Register */
 447	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 448
 449	/* Setting Synchronous jump width in BTR Register */
 450	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 451
 452	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 453	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 454
 455	if (priv->devtype.cantype == XAXI_CANFD ||
 456	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 457		/* Setting Baud Rate prescaler value in F_BRPR Register */
 458		btr0 = dbt->brp - 1;
 459		if (can_tdc_is_enabled(&priv->can)) {
 460			if (priv->devtype.cantype == XAXI_CANFD)
 461				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 462					XCAN_BRPR_TDC_ENABLE;
 463			else
 464				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 465					XCAN_BRPR_TDC_ENABLE;
 466		}
 467
 468		/* Setting Time Segment 1 in BTR Register */
 469		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 470
 471		/* Setting Time Segment 2 in BTR Register */
 472		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 473
 474		/* Setting Synchronous jump width in BTR Register */
 475		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 476
 477		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 478		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 479	}
 480
 481	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 482		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 483		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 484
 485	return 0;
 486}
 487
 488/**
 489 * xcan_chip_start - This the drivers start routine
 490 * @ndev:	Pointer to net_device structure
 491 *
 492 * This is the drivers start routine.
 493 * Based on the State of the CAN device it puts
 494 * the CAN device into a proper mode.
 495 *
 496 * Return: 0 on success and failure value on error
 497 */
 498static int xcan_chip_start(struct net_device *ndev)
 499{
 500	struct xcan_priv *priv = netdev_priv(ndev);
 501	u32 reg_msr;
 502	int err;
 503	u32 ier;
 504
 505	/* Check if it is in reset mode */
 506	err = set_reset_mode(ndev);
 507	if (err < 0)
 508		return err;
 509
 510	err = xcan_set_bittiming(ndev);
 511	if (err < 0)
 512		return err;
 513
 514	/* Enable interrupts
 515	 *
 516	 * We enable the ERROR interrupt even with
 517	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 518	 * dedicated interrupt for a state change to
 519	 * ERROR_WARNING/ERROR_PASSIVE.
 520	 */
 521	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 522		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 523		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 524		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 525
 526	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 527		ier |= XCAN_IXR_RXMNF_MASK;
 528
 529	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 530
 531	/* Check whether it is loopback mode or normal mode  */
 532	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 533		reg_msr = XCAN_MSR_LBACK_MASK;
 534	else
 535		reg_msr = 0x0;
 
 536
 537	/* enable the first extended filter, if any, as cores with extended
 538	 * filtering default to non-receipt if all filters are disabled
 539	 */
 540	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 541		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 542
 543	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 544	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 545
 546	netdev_dbg(ndev, "status:#x%08x\n",
 547		   priv->read_reg(priv, XCAN_SR_OFFSET));
 548
 549	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 550	return 0;
 551}
 552
 553/**
 554 * xcan_do_set_mode - This sets the mode of the driver
 555 * @ndev:	Pointer to net_device structure
 556 * @mode:	Tells the mode of the driver
 557 *
 558 * This check the drivers state and calls the corresponding modes to set.
 
 559 *
 560 * Return: 0 on success and failure value on error
 561 */
 562static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 563{
 564	int ret;
 565
 566	switch (mode) {
 567	case CAN_MODE_START:
 568		ret = xcan_chip_start(ndev);
 569		if (ret < 0) {
 570			netdev_err(ndev, "xcan_chip_start failed!\n");
 571			return ret;
 572		}
 573		netif_wake_queue(ndev);
 574		break;
 575	default:
 576		ret = -EOPNOTSUPP;
 577		break;
 578	}
 579
 580	return ret;
 581}
 582
 583/**
 584 * xcan_write_frame - Write a frame to HW
 585 * @ndev:		Pointer to net_device structure
 586 * @skb:		sk_buff pointer that contains data to be Txed
 587 * @frame_offset:	Register offset to write the frame to
 588 */
 589static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 590			     int frame_offset)
 591{
 592	u32 id, dlc, data[2] = {0, 0};
 593	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 594	u32 ramoff, dwindex = 0, i;
 595	struct xcan_priv *priv = netdev_priv(ndev);
 596
 597	/* Watch carefully on the bit sequence */
 598	if (cf->can_id & CAN_EFF_FLAG) {
 599		/* Extended CAN ID format */
 600		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 601			XCAN_IDR_ID2_MASK;
 602		id |= (((cf->can_id & CAN_EFF_MASK) >>
 603			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 604			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 605
 606		/* The substibute remote TX request bit should be "1"
 607		 * for extended frames as in the Xilinx CAN datasheet
 608		 */
 609		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 610
 611		if (cf->can_id & CAN_RTR_FLAG)
 612			/* Extended frames remote TX request */
 613			id |= XCAN_IDR_RTR_MASK;
 614	} else {
 615		/* Standard CAN ID format */
 616		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 617			XCAN_IDR_ID1_MASK;
 618
 619		if (cf->can_id & CAN_RTR_FLAG)
 620			/* Standard frames remote TX request */
 621			id |= XCAN_IDR_SRR_MASK;
 622	}
 623
 624	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 625	if (can_is_canfd_skb(skb)) {
 626		if (cf->flags & CANFD_BRS)
 627			dlc |= XCAN_DLCR_BRS_MASK;
 628		dlc |= XCAN_DLCR_EDL_MASK;
 629	}
 630
 631	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 632	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 633		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 634	else
 635		can_put_echo_skb(skb, ndev, 0, 0);
 636
 637	priv->tx_head++;
 638
 639	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 640	/* If the CAN frame is RTR frame this write triggers transmission
 641	 * (not on CAN FD)
 642	 */
 643	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 644	if (priv->devtype.cantype == XAXI_CANFD ||
 645	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 646		for (i = 0; i < cf->len; i += 4) {
 647			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 648					(dwindex * XCANFD_DW_BYTES);
 649			priv->write_reg(priv, ramoff,
 650					be32_to_cpup((__be32 *)(cf->data + i)));
 651			dwindex++;
 652		}
 653	} else {
 654		if (cf->len > 0)
 655			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 656		if (cf->len > 4)
 657			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 658
 659		if (!(cf->can_id & CAN_RTR_FLAG)) {
 660			priv->write_reg(priv,
 661					XCAN_FRAME_DW1_OFFSET(frame_offset),
 662					data[0]);
 663			/* If the CAN frame is Standard/Extended frame this
 664			 * write triggers transmission (not on CAN FD)
 665			 */
 666			priv->write_reg(priv,
 667					XCAN_FRAME_DW2_OFFSET(frame_offset),
 668					data[1]);
 669		}
 670	}
 671}
 672
 673/**
 674 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 675 * @skb:	sk_buff pointer that contains data to be Txed
 676 * @ndev:	Pointer to net_device structure
 677 *
 678 * Return: 0 on success, -ENOSPC if FIFO is full.
 679 */
 680static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 681{
 682	struct xcan_priv *priv = netdev_priv(ndev);
 683	unsigned long flags;
 684
 685	/* Check if the TX buffer is full */
 686	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 687			XCAN_SR_TXFLL_MASK))
 688		return -ENOSPC;
 689
 
 
 690	spin_lock_irqsave(&priv->tx_lock, flags);
 691
 692	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 
 
 693
 694	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 695	if (priv->tx_max > 1)
 696		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 697
 698	/* Check if the TX buffer is full */
 699	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 700		netif_stop_queue(ndev);
 701
 702	spin_unlock_irqrestore(&priv->tx_lock, flags);
 703
 704	return 0;
 705}
 706
 707/**
 708 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 709 * @skb:	sk_buff pointer that contains data to be Txed
 710 * @ndev:	Pointer to net_device structure
 711 *
 712 * Return: 0 on success, -ENOSPC if there is no space
 713 */
 714static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 715{
 716	struct xcan_priv *priv = netdev_priv(ndev);
 717	unsigned long flags;
 718
 719	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 720		     BIT(XCAN_TX_MAILBOX_IDX)))
 721		return -ENOSPC;
 722
 
 
 723	spin_lock_irqsave(&priv->tx_lock, flags);
 724
 725	xcan_write_frame(ndev, skb,
 
 
 726			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 727
 728	/* Mark buffer as ready for transmit */
 729	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 730
 731	netif_stop_queue(ndev);
 732
 733	spin_unlock_irqrestore(&priv->tx_lock, flags);
 734
 735	return 0;
 736}
 737
 738/**
 739 * xcan_start_xmit - Starts the transmission
 740 * @skb:	sk_buff pointer that contains data to be Txed
 741 * @ndev:	Pointer to net_device structure
 742 *
 743 * This function is invoked from upper layers to initiate transmission.
 744 *
 745 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 746 */
 747static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 748{
 749	struct xcan_priv *priv = netdev_priv(ndev);
 750	int ret;
 751
 752	if (can_dev_dropped_skb(ndev, skb))
 753		return NETDEV_TX_OK;
 754
 755	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 756		ret = xcan_start_xmit_mailbox(skb, ndev);
 757	else
 758		ret = xcan_start_xmit_fifo(skb, ndev);
 759
 760	if (ret < 0) {
 761		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 762		netif_stop_queue(ndev);
 763		return NETDEV_TX_BUSY;
 764	}
 765
 766	return NETDEV_TX_OK;
 767}
 768
 769/**
 770 * xcan_rx -  Is called from CAN isr to complete the received
 771 *		frame  processing
 772 * @ndev:	Pointer to net_device structure
 773 * @frame_base:	Register offset to the frame to be read
 774 *
 775 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 776 * does minimal processing and invokes "netif_receive_skb" to complete further
 777 * processing.
 778 * Return: 1 on success and 0 on failure.
 779 */
 780static int xcan_rx(struct net_device *ndev, int frame_base)
 781{
 782	struct xcan_priv *priv = netdev_priv(ndev);
 783	struct net_device_stats *stats = &ndev->stats;
 784	struct can_frame *cf;
 785	struct sk_buff *skb;
 786	u32 id_xcan, dlc, data[2] = {0, 0};
 787
 788	skb = alloc_can_skb(ndev, &cf);
 789	if (unlikely(!skb)) {
 790		stats->rx_dropped++;
 791		return 0;
 792	}
 793
 794	/* Read a frame from Xilinx zynq CANPS */
 795	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 796	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 797				   XCAN_DLCR_DLC_SHIFT;
 798
 799	/* Change Xilinx CAN data length format to socketCAN data format */
 800	cf->len = can_cc_dlc2len(dlc);
 801
 802	/* Change Xilinx CAN ID format to socketCAN ID format */
 803	if (id_xcan & XCAN_IDR_IDE_MASK) {
 804		/* The received frame is an Extended format frame */
 805		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 806		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 807				XCAN_IDR_ID2_SHIFT;
 808		cf->can_id |= CAN_EFF_FLAG;
 809		if (id_xcan & XCAN_IDR_RTR_MASK)
 810			cf->can_id |= CAN_RTR_FLAG;
 811	} else {
 812		/* The received frame is a standard format frame */
 813		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 814				XCAN_IDR_ID1_SHIFT;
 815		if (id_xcan & XCAN_IDR_SRR_MASK)
 816			cf->can_id |= CAN_RTR_FLAG;
 817	}
 818
 819	/* DW1/DW2 must always be read to remove message from RXFIFO */
 820	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 821	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 822
 823	if (!(cf->can_id & CAN_RTR_FLAG)) {
 824		/* Change Xilinx CAN data format to socketCAN data format */
 825		if (cf->len > 0)
 826			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 827		if (cf->len > 4)
 828			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 829
 830		stats->rx_bytes += cf->len;
 831	}
 832	stats->rx_packets++;
 833
 
 
 834	netif_receive_skb(skb);
 835
 836	return 1;
 837}
 838
 839/**
 840 * xcanfd_rx -  Is called from CAN isr to complete the received
 841 *		frame  processing
 842 * @ndev:	Pointer to net_device structure
 843 * @frame_base:	Register offset to the frame to be read
 844 *
 845 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 846 * does minimal processing and invokes "netif_receive_skb" to complete further
 847 * processing.
 848 * Return: 1 on success and 0 on failure.
 849 */
 850static int xcanfd_rx(struct net_device *ndev, int frame_base)
 851{
 852	struct xcan_priv *priv = netdev_priv(ndev);
 853	struct net_device_stats *stats = &ndev->stats;
 854	struct canfd_frame *cf;
 855	struct sk_buff *skb;
 856	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 857
 858	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 859	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 860	if (dlc & XCAN_DLCR_EDL_MASK)
 861		skb = alloc_canfd_skb(ndev, &cf);
 862	else
 863		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 864
 865	if (unlikely(!skb)) {
 866		stats->rx_dropped++;
 867		return 0;
 868	}
 869
 870	/* Change Xilinx CANFD data length format to socketCAN data
 871	 * format
 872	 */
 873	if (dlc & XCAN_DLCR_EDL_MASK)
 874		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 875				  XCAN_DLCR_DLC_SHIFT);
 876	else
 877		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 878					  XCAN_DLCR_DLC_SHIFT);
 879
 880	/* Change Xilinx CAN ID format to socketCAN ID format */
 881	if (id_xcan & XCAN_IDR_IDE_MASK) {
 882		/* The received frame is an Extended format frame */
 883		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 884		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 885				XCAN_IDR_ID2_SHIFT;
 886		cf->can_id |= CAN_EFF_FLAG;
 887		if (id_xcan & XCAN_IDR_RTR_MASK)
 888			cf->can_id |= CAN_RTR_FLAG;
 889	} else {
 890		/* The received frame is a standard format frame */
 891		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 892				XCAN_IDR_ID1_SHIFT;
 893		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 894					XCAN_IDR_SRR_MASK))
 895			cf->can_id |= CAN_RTR_FLAG;
 896	}
 897
 898	/* Check the frame received is FD or not*/
 899	if (dlc & XCAN_DLCR_EDL_MASK) {
 900		for (i = 0; i < cf->len; i += 4) {
 901			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 902					(dwindex * XCANFD_DW_BYTES);
 903			data[0] = priv->read_reg(priv, dw_offset);
 904			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 905			dwindex++;
 906		}
 907	} else {
 908		for (i = 0; i < cf->len; i += 4) {
 909			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 910			data[0] = priv->read_reg(priv, dw_offset + i);
 911			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 912		}
 913	}
 914
 915	if (!(cf->can_id & CAN_RTR_FLAG))
 916		stats->rx_bytes += cf->len;
 917	stats->rx_packets++;
 918
 919	netif_receive_skb(skb);
 920
 921	return 1;
 922}
 923
 924/**
 925 * xcan_current_error_state - Get current error state from HW
 926 * @ndev:	Pointer to net_device structure
 927 *
 928 * Checks the current CAN error state from the HW. Note that this
 929 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 930 *
 931 * Return:
 932 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 933 * otherwise.
 934 */
 935static enum can_state xcan_current_error_state(struct net_device *ndev)
 936{
 937	struct xcan_priv *priv = netdev_priv(ndev);
 938	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 939
 940	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 941		return CAN_STATE_ERROR_PASSIVE;
 942	else if (status & XCAN_SR_ERRWRN_MASK)
 943		return CAN_STATE_ERROR_WARNING;
 944	else
 945		return CAN_STATE_ERROR_ACTIVE;
 946}
 947
 948/**
 949 * xcan_set_error_state - Set new CAN error state
 950 * @ndev:	Pointer to net_device structure
 951 * @new_state:	The new CAN state to be set
 952 * @cf:		Error frame to be populated or NULL
 953 *
 954 * Set new CAN error state for the device, updating statistics and
 955 * populating the error frame if given.
 956 */
 957static void xcan_set_error_state(struct net_device *ndev,
 958				 enum can_state new_state,
 959				 struct can_frame *cf)
 960{
 961	struct xcan_priv *priv = netdev_priv(ndev);
 962	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 963	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 964	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 965	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 966	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 967
 968	/* non-ERROR states are handled elsewhere */
 969	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 970		return;
 971
 972	can_change_state(ndev, cf, tx_state, rx_state);
 973
 974	if (cf) {
 975		cf->can_id |= CAN_ERR_CNT;
 976		cf->data[6] = txerr;
 977		cf->data[7] = rxerr;
 978	}
 979}
 980
 981/**
 982 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 983 * @ndev:	Pointer to net_device structure
 984 *
 985 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 986 * the performed RX/TX has caused it to drop to a lesser state and set
 987 * the interface state accordingly.
 988 */
 989static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 990{
 991	struct xcan_priv *priv = netdev_priv(ndev);
 992	enum can_state old_state = priv->can.state;
 993	enum can_state new_state;
 994
 995	/* changing error state due to successful frame RX/TX can only
 996	 * occur from these states
 997	 */
 998	if (old_state != CAN_STATE_ERROR_WARNING &&
 999	    old_state != CAN_STATE_ERROR_PASSIVE)
1000		return;
1001
1002	new_state = xcan_current_error_state(ndev);
1003
1004	if (new_state != old_state) {
1005		struct sk_buff *skb;
1006		struct can_frame *cf;
1007
1008		skb = alloc_can_err_skb(ndev, &cf);
1009
1010		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1011
1012		if (skb)
 
 
 
 
1013			netif_rx(skb);
 
1014	}
1015}
1016
1017/**
1018 * xcan_err_interrupt - error frame Isr
1019 * @ndev:	net_device pointer
1020 * @isr:	interrupt status register value
1021 *
1022 * This is the CAN error interrupt and it will
1023 * check the type of error and forward the error
1024 * frame to upper layers.
1025 */
1026static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1027{
1028	struct xcan_priv *priv = netdev_priv(ndev);
1029	struct net_device_stats *stats = &ndev->stats;
1030	struct can_frame cf = { };
 
1031	u32 err_status;
1032
 
 
1033	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1034	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1035
1036	if (isr & XCAN_IXR_BSOFF_MASK) {
1037		priv->can.state = CAN_STATE_BUS_OFF;
1038		priv->can.can_stats.bus_off++;
1039		/* Leave device in Config Mode in bus-off state */
1040		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1041		can_bus_off(ndev);
1042		cf.can_id |= CAN_ERR_BUSOFF;
 
1043	} else {
1044		enum can_state new_state = xcan_current_error_state(ndev);
1045
1046		if (new_state != priv->can.state)
1047			xcan_set_error_state(ndev, new_state, &cf);
1048	}
1049
1050	/* Check for Arbitration lost interrupt */
1051	if (isr & XCAN_IXR_ARBLST_MASK) {
1052		priv->can.can_stats.arbitration_lost++;
1053		cf.can_id |= CAN_ERR_LOSTARB;
1054		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
 
 
1055	}
1056
1057	/* Check for RX FIFO Overflow interrupt */
1058	if (isr & XCAN_IXR_RXOFLW_MASK) {
1059		stats->rx_over_errors++;
1060		stats->rx_errors++;
1061		cf.can_id |= CAN_ERR_CRTL;
1062		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
 
 
1063	}
1064
1065	/* Check for RX Match Not Finished interrupt */
1066	if (isr & XCAN_IXR_RXMNF_MASK) {
1067		stats->rx_dropped++;
1068		stats->rx_errors++;
1069		netdev_err(ndev, "RX match not finished, frame discarded\n");
1070		cf.can_id |= CAN_ERR_CRTL;
1071		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
 
 
1072	}
1073
1074	/* Check for error interrupt */
1075	if (isr & XCAN_IXR_ERROR_MASK) {
1076		bool berr_reporting = false;
1077
1078		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1079			berr_reporting = true;
1080			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1081		}
1082
1083		/* Check for Ack error interrupt */
1084		if (err_status & XCAN_ESR_ACKER_MASK) {
1085			stats->tx_errors++;
1086			if (berr_reporting) {
1087				cf.can_id |= CAN_ERR_ACK;
1088				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1089			}
1090		}
1091
1092		/* Check for Bit error interrupt */
1093		if (err_status & XCAN_ESR_BERR_MASK) {
1094			stats->tx_errors++;
1095			if (berr_reporting) {
1096				cf.can_id |= CAN_ERR_PROT;
1097				cf.data[2] = CAN_ERR_PROT_BIT;
1098			}
1099		}
1100
1101		/* Check for Stuff error interrupt */
1102		if (err_status & XCAN_ESR_STER_MASK) {
1103			stats->rx_errors++;
1104			if (berr_reporting) {
1105				cf.can_id |= CAN_ERR_PROT;
1106				cf.data[2] = CAN_ERR_PROT_STUFF;
1107			}
1108		}
1109
1110		/* Check for Form error interrupt */
1111		if (err_status & XCAN_ESR_FMER_MASK) {
1112			stats->rx_errors++;
1113			if (berr_reporting) {
1114				cf.can_id |= CAN_ERR_PROT;
1115				cf.data[2] = CAN_ERR_PROT_FORM;
1116			}
1117		}
1118
1119		/* Check for CRC error interrupt */
1120		if (err_status & XCAN_ESR_CRCER_MASK) {
1121			stats->rx_errors++;
1122			if (berr_reporting) {
1123				cf.can_id |= CAN_ERR_PROT;
1124				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1125			}
1126		}
1127		priv->can.can_stats.bus_error++;
1128	}
1129
1130	if (cf.can_id) {
1131		struct can_frame *skb_cf;
1132		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1133
1134		if (skb) {
1135			skb_cf->can_id |= cf.can_id;
1136			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1137			netif_rx(skb);
1138		}
1139	}
1140
1141	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1142		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1143}
1144
1145/**
1146 * xcan_state_interrupt - It will check the state of the CAN device
1147 * @ndev:	net_device pointer
1148 * @isr:	interrupt status register value
1149 *
1150 * This will checks the state of the CAN device
1151 * and puts the device into appropriate state.
1152 */
1153static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1154{
1155	struct xcan_priv *priv = netdev_priv(ndev);
1156
1157	/* Check for Sleep interrupt if set put CAN device in sleep state */
1158	if (isr & XCAN_IXR_SLP_MASK)
1159		priv->can.state = CAN_STATE_SLEEPING;
1160
1161	/* Check for Wake up interrupt if set put CAN device in Active state */
1162	if (isr & XCAN_IXR_WKUP_MASK)
1163		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1164}
1165
1166/**
1167 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1168 * @priv:	Driver private data structure
1169 *
1170 * Return: Register offset of the next frame in RX FIFO.
1171 */
1172static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1173{
1174	int offset;
1175
1176	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1177		u32 fsr, mask;
1178
1179		/* clear RXOK before the is-empty check so that any newly
1180		 * received frame will reassert it without a race
1181		 */
1182		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1183
1184		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1185
1186		/* check if RX FIFO is empty */
1187		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1188			mask = XCAN_2_FSR_FL_MASK;
1189		else
1190			mask = XCAN_FSR_FL_MASK;
1191
1192		if (!(fsr & mask))
1193			return -ENOENT;
1194
1195		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1196			offset =
1197			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1198		else
1199			offset =
1200			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1201
1202	} else {
1203		/* check if RX FIFO is empty */
1204		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1205		      XCAN_IXR_RXNEMP_MASK))
1206			return -ENOENT;
1207
1208		/* frames are read from a static offset */
1209		offset = XCAN_RXFIFO_OFFSET;
1210	}
1211
1212	return offset;
1213}
1214
1215/**
1216 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1217 * @napi:	napi structure pointer
1218 * @quota:	Max number of rx packets to be processed.
1219 *
1220 * This is the poll routine for rx part.
1221 * It will process the packets maximux quota value.
1222 *
1223 * Return: number of packets received
1224 */
1225static int xcan_rx_poll(struct napi_struct *napi, int quota)
1226{
1227	struct net_device *ndev = napi->dev;
1228	struct xcan_priv *priv = netdev_priv(ndev);
1229	u32 ier;
1230	int work_done = 0;
1231	int frame_offset;
1232
1233	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1234	       (work_done < quota)) {
1235		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1236			work_done += xcanfd_rx(ndev, frame_offset);
1237		else
1238			work_done += xcan_rx(ndev, frame_offset);
1239
1240		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1241			/* increment read index */
1242			priv->write_reg(priv, XCAN_FSR_OFFSET,
1243					XCAN_FSR_IRI_MASK);
1244		else
1245			/* clear rx-not-empty (will actually clear only if
1246			 * empty)
1247			 */
1248			priv->write_reg(priv, XCAN_ICR_OFFSET,
1249					XCAN_IXR_RXNEMP_MASK);
1250	}
1251
1252	if (work_done)
 
1253		xcan_update_error_state_after_rxtx(ndev);
 
1254
1255	if (work_done < quota) {
1256		if (napi_complete_done(napi, work_done)) {
1257			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1258			ier |= xcan_rx_int_mask(priv);
1259			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1260		}
1261	}
1262	return work_done;
1263}
1264
1265/**
1266 * xcan_tx_interrupt - Tx Done Isr
1267 * @ndev:	net_device pointer
1268 * @isr:	Interrupt status register value
1269 */
1270static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1271{
1272	struct xcan_priv *priv = netdev_priv(ndev);
1273	struct net_device_stats *stats = &ndev->stats;
1274	unsigned int frames_in_fifo;
1275	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1276	unsigned long flags;
1277	int retries = 0;
1278
1279	/* Synchronize with xmit as we need to know the exact number
1280	 * of frames in the FIFO to stay in sync due to the TXFEMP
1281	 * handling.
1282	 * This also prevents a race between netif_wake_queue() and
1283	 * netif_stop_queue().
1284	 */
1285	spin_lock_irqsave(&priv->tx_lock, flags);
1286
1287	frames_in_fifo = priv->tx_head - priv->tx_tail;
1288
1289	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1290		/* clear TXOK anyway to avoid getting back here */
1291		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1292		spin_unlock_irqrestore(&priv->tx_lock, flags);
1293		return;
1294	}
1295
1296	/* Check if 2 frames were sent (TXOK only means that at least 1
1297	 * frame was sent).
1298	 */
1299	if (frames_in_fifo > 1) {
1300		WARN_ON(frames_in_fifo > priv->tx_max);
1301
1302		/* Synchronize TXOK and isr so that after the loop:
1303		 * (1) isr variable is up-to-date at least up to TXOK clear
1304		 *     time. This avoids us clearing a TXOK of a second frame
1305		 *     but not noticing that the FIFO is now empty and thus
1306		 *     marking only a single frame as sent.
1307		 * (2) No TXOK is left. Having one could mean leaving a
1308		 *     stray TXOK as we might process the associated frame
1309		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1310		 *     clear to satisfy (1).
1311		 */
1312		while ((isr & XCAN_IXR_TXOK_MASK) &&
1313		       !WARN_ON(++retries == 100)) {
1314			priv->write_reg(priv, XCAN_ICR_OFFSET,
1315					XCAN_IXR_TXOK_MASK);
1316			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1317		}
1318
1319		if (isr & XCAN_IXR_TXFEMP_MASK) {
1320			/* nothing in FIFO anymore */
1321			frames_sent = frames_in_fifo;
1322		}
1323	} else {
1324		/* single frame in fifo, just clear TXOK */
1325		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1326	}
1327
1328	while (frames_sent--) {
1329		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1330						    priv->tx_max, NULL);
1331		priv->tx_tail++;
1332		stats->tx_packets++;
1333	}
1334
1335	netif_wake_queue(ndev);
1336
1337	spin_unlock_irqrestore(&priv->tx_lock, flags);
1338
 
1339	xcan_update_error_state_after_rxtx(ndev);
1340}
1341
1342/**
1343 * xcan_interrupt - CAN Isr
1344 * @irq:	irq number
1345 * @dev_id:	device id pointer
1346 *
1347 * This is the xilinx CAN Isr. It checks for the type of interrupt
1348 * and invokes the corresponding ISR.
1349 *
1350 * Return:
1351 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1352 */
1353static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1354{
1355	struct net_device *ndev = (struct net_device *)dev_id;
1356	struct xcan_priv *priv = netdev_priv(ndev);
1357	u32 isr, ier;
1358	u32 isr_errors;
1359	u32 rx_int_mask = xcan_rx_int_mask(priv);
1360
1361	/* Get the interrupt status from Xilinx CAN */
1362	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1363	if (!isr)
1364		return IRQ_NONE;
1365
1366	/* Check for the type of interrupt and Processing it */
1367	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1368		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1369				XCAN_IXR_WKUP_MASK));
1370		xcan_state_interrupt(ndev, isr);
1371	}
1372
1373	/* Check for Tx interrupt and Processing it */
1374	if (isr & XCAN_IXR_TXOK_MASK)
1375		xcan_tx_interrupt(ndev, isr);
1376
1377	/* Check for the type of error interrupt and Processing it */
1378	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1379			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1380			    XCAN_IXR_RXMNF_MASK);
1381	if (isr_errors) {
1382		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1383		xcan_err_interrupt(ndev, isr);
1384	}
1385
1386	/* Check for the type of receive interrupt and Processing it */
1387	if (isr & rx_int_mask) {
1388		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1389		ier &= ~rx_int_mask;
1390		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1391		napi_schedule(&priv->napi);
1392	}
1393	return IRQ_HANDLED;
1394}
1395
1396/**
1397 * xcan_chip_stop - Driver stop routine
1398 * @ndev:	Pointer to net_device structure
1399 *
1400 * This is the drivers stop routine. It will disable the
1401 * interrupts and put the device into configuration mode.
1402 */
1403static void xcan_chip_stop(struct net_device *ndev)
1404{
1405	struct xcan_priv *priv = netdev_priv(ndev);
1406	int ret;
1407
1408	/* Disable interrupts and leave the can in configuration mode */
1409	ret = set_reset_mode(ndev);
1410	if (ret < 0)
1411		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1412
1413	priv->can.state = CAN_STATE_STOPPED;
1414}
1415
1416/**
1417 * xcan_open - Driver open routine
1418 * @ndev:	Pointer to net_device structure
1419 *
1420 * This is the driver open routine.
1421 * Return: 0 on success and failure value on error
1422 */
1423static int xcan_open(struct net_device *ndev)
1424{
1425	struct xcan_priv *priv = netdev_priv(ndev);
1426	int ret;
1427
1428	ret = phy_power_on(priv->transceiver);
1429	if (ret)
1430		return ret;
1431
1432	ret = pm_runtime_get_sync(priv->dev);
1433	if (ret < 0) {
1434		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1435			   __func__, ret);
1436		goto err;
1437	}
1438
1439	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1440			  ndev->name, ndev);
1441	if (ret < 0) {
1442		netdev_err(ndev, "irq allocation for CAN failed\n");
1443		goto err;
1444	}
1445
1446	/* Set chip into reset mode */
1447	ret = set_reset_mode(ndev);
1448	if (ret < 0) {
1449		netdev_err(ndev, "mode resetting failed!\n");
1450		goto err_irq;
1451	}
1452
1453	/* Common open */
1454	ret = open_candev(ndev);
1455	if (ret)
1456		goto err_irq;
1457
1458	ret = xcan_chip_start(ndev);
1459	if (ret < 0) {
1460		netdev_err(ndev, "xcan_chip_start failed!\n");
1461		goto err_candev;
1462	}
1463
 
1464	napi_enable(&priv->napi);
1465	netif_start_queue(ndev);
1466
1467	return 0;
1468
1469err_candev:
1470	close_candev(ndev);
1471err_irq:
1472	free_irq(ndev->irq, ndev);
1473err:
1474	pm_runtime_put(priv->dev);
1475	phy_power_off(priv->transceiver);
1476
1477	return ret;
1478}
1479
1480/**
1481 * xcan_close - Driver close routine
1482 * @ndev:	Pointer to net_device structure
1483 *
1484 * Return: 0 always
1485 */
1486static int xcan_close(struct net_device *ndev)
1487{
1488	struct xcan_priv *priv = netdev_priv(ndev);
1489
1490	netif_stop_queue(ndev);
1491	napi_disable(&priv->napi);
1492	xcan_chip_stop(ndev);
1493	free_irq(ndev->irq, ndev);
1494	close_candev(ndev);
1495
 
1496	pm_runtime_put(priv->dev);
1497	phy_power_off(priv->transceiver);
1498
1499	return 0;
1500}
1501
1502/**
1503 * xcan_get_berr_counter - error counter routine
1504 * @ndev:	Pointer to net_device structure
1505 * @bec:	Pointer to can_berr_counter structure
1506 *
1507 * This is the driver error counter routine.
1508 * Return: 0 on success and failure value on error
1509 */
1510static int xcan_get_berr_counter(const struct net_device *ndev,
1511				 struct can_berr_counter *bec)
1512{
1513	struct xcan_priv *priv = netdev_priv(ndev);
1514	int ret;
1515
1516	ret = pm_runtime_get_sync(priv->dev);
1517	if (ret < 0) {
1518		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1519			   __func__, ret);
1520		pm_runtime_put(priv->dev);
1521		return ret;
1522	}
1523
1524	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1525	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1526			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1527
1528	pm_runtime_put(priv->dev);
1529
1530	return 0;
1531}
1532
1533/**
1534 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1535 * @ndev:	Pointer to net_device structure
1536 * @tdcv:	Pointer to TDCV value
1537 *
1538 * Return: 0 on success
1539 */
1540static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1541{
1542	struct xcan_priv *priv = netdev_priv(ndev);
1543
1544	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1545
1546	return 0;
1547}
1548
1549static const struct net_device_ops xcan_netdev_ops = {
1550	.ndo_open	= xcan_open,
1551	.ndo_stop	= xcan_close,
1552	.ndo_start_xmit	= xcan_start_xmit,
1553	.ndo_change_mtu	= can_change_mtu,
1554};
1555
1556static const struct ethtool_ops xcan_ethtool_ops = {
1557	.get_ts_info = ethtool_op_get_ts_info,
1558};
1559
1560/**
1561 * xcan_suspend - Suspend method for the driver
1562 * @dev:	Address of the device structure
1563 *
1564 * Put the driver into low power mode.
1565 * Return: 0 on success and failure value on error
1566 */
1567static int __maybe_unused xcan_suspend(struct device *dev)
1568{
1569	struct net_device *ndev = dev_get_drvdata(dev);
1570
1571	if (netif_running(ndev)) {
1572		netif_stop_queue(ndev);
1573		netif_device_detach(ndev);
1574		xcan_chip_stop(ndev);
1575	}
1576
1577	return pm_runtime_force_suspend(dev);
1578}
1579
1580/**
1581 * xcan_resume - Resume from suspend
1582 * @dev:	Address of the device structure
1583 *
1584 * Resume operation after suspend.
1585 * Return: 0 on success and failure value on error
1586 */
1587static int __maybe_unused xcan_resume(struct device *dev)
1588{
1589	struct net_device *ndev = dev_get_drvdata(dev);
1590	int ret;
1591
1592	ret = pm_runtime_force_resume(dev);
1593	if (ret) {
1594		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1595		return ret;
1596	}
1597
1598	if (netif_running(ndev)) {
1599		ret = xcan_chip_start(ndev);
1600		if (ret) {
1601			dev_err(dev, "xcan_chip_start failed on resume\n");
1602			return ret;
1603		}
1604
1605		netif_device_attach(ndev);
1606		netif_start_queue(ndev);
1607	}
1608
1609	return 0;
1610}
1611
1612/**
1613 * xcan_runtime_suspend - Runtime suspend method for the driver
1614 * @dev:	Address of the device structure
1615 *
1616 * Put the driver into low power mode.
1617 * Return: 0 always
1618 */
1619static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1620{
1621	struct net_device *ndev = dev_get_drvdata(dev);
1622	struct xcan_priv *priv = netdev_priv(ndev);
1623
1624	clk_disable_unprepare(priv->bus_clk);
1625	clk_disable_unprepare(priv->can_clk);
1626
1627	return 0;
1628}
1629
1630/**
1631 * xcan_runtime_resume - Runtime resume from suspend
1632 * @dev:	Address of the device structure
1633 *
1634 * Resume operation after suspend.
1635 * Return: 0 on success and failure value on error
1636 */
1637static int __maybe_unused xcan_runtime_resume(struct device *dev)
1638{
1639	struct net_device *ndev = dev_get_drvdata(dev);
1640	struct xcan_priv *priv = netdev_priv(ndev);
1641	int ret;
1642
1643	ret = clk_prepare_enable(priv->bus_clk);
1644	if (ret) {
1645		dev_err(dev, "Cannot enable clock.\n");
1646		return ret;
1647	}
1648	ret = clk_prepare_enable(priv->can_clk);
1649	if (ret) {
1650		dev_err(dev, "Cannot enable clock.\n");
1651		clk_disable_unprepare(priv->bus_clk);
1652		return ret;
1653	}
1654
1655	return 0;
1656}
1657
1658static const struct dev_pm_ops xcan_dev_pm_ops = {
1659	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1660	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1661};
1662
1663static const struct xcan_devtype_data xcan_zynq_data = {
1664	.cantype = XZYNQ_CANPS,
1665	.flags = XCAN_FLAG_TXFEMP,
1666	.bittiming_const = &xcan_bittiming_const,
1667	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1668	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1669	.bus_clk_name = "pclk",
1670};
1671
1672static const struct xcan_devtype_data xcan_axi_data = {
1673	.cantype = XAXI_CAN,
1674	.bittiming_const = &xcan_bittiming_const,
1675	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1676	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1677	.bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd_data = {
1681	.cantype = XAXI_CANFD,
1682	.flags = XCAN_FLAG_EXT_FILTERS |
1683		 XCAN_FLAG_RXMNF |
1684		 XCAN_FLAG_TX_MAILBOXES |
1685		 XCAN_FLAG_RX_FIFO_MULTI,
1686	.bittiming_const = &xcan_bittiming_const_canfd,
1687	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1688	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1689	.bus_clk_name = "s_axi_aclk",
1690};
1691
1692static const struct xcan_devtype_data xcan_canfd2_data = {
1693	.cantype = XAXI_CANFD_2_0,
1694	.flags = XCAN_FLAG_EXT_FILTERS |
1695		 XCAN_FLAG_RXMNF |
1696		 XCAN_FLAG_TX_MAILBOXES |
1697		 XCAN_FLAG_CANFD_2 |
1698		 XCAN_FLAG_RX_FIFO_MULTI,
1699	.bittiming_const = &xcan_bittiming_const_canfd2,
1700	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1701	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1702	.bus_clk_name = "s_axi_aclk",
1703};
1704
1705/* Match table for OF platform binding */
1706static const struct of_device_id xcan_of_match[] = {
1707	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1708	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1709	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1710	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1711	{ /* end of list */ },
1712};
1713MODULE_DEVICE_TABLE(of, xcan_of_match);
1714
1715/**
1716 * xcan_probe - Platform registration call
1717 * @pdev:	Handle to the platform device structure
1718 *
1719 * This function does all the memory allocation and registration for the CAN
1720 * device.
1721 *
1722 * Return: 0 on success and failure value on error
1723 */
1724static int xcan_probe(struct platform_device *pdev)
1725{
 
1726	struct net_device *ndev;
1727	struct xcan_priv *priv;
1728	struct phy *transceiver;
1729	const struct xcan_devtype_data *devtype;
1730	void __iomem *addr;
1731	int ret;
1732	int rx_max, tx_max;
1733	u32 hw_tx_max = 0, hw_rx_max = 0;
1734	const char *hw_tx_max_property;
1735
1736	/* Get the virtual base address for the device */
1737	addr = devm_platform_ioremap_resource(pdev, 0);
 
1738	if (IS_ERR(addr)) {
1739		ret = PTR_ERR(addr);
1740		goto err;
1741	}
1742
1743	devtype = device_get_match_data(&pdev->dev);
 
 
1744
1745	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1746			     "tx-mailbox-count" : "tx-fifo-depth";
1747
1748	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1749				   &hw_tx_max);
1750	if (ret < 0) {
1751		dev_err(&pdev->dev, "missing %s property\n",
1752			hw_tx_max_property);
1753		goto err;
1754	}
1755
1756	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1757				   &hw_rx_max);
1758	if (ret < 0) {
1759		dev_err(&pdev->dev,
1760			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1761		goto err;
1762	}
1763
1764	/* With TX FIFO:
1765	 *
1766	 * There is no way to directly figure out how many frames have been
1767	 * sent when the TXOK interrupt is processed. If TXFEMP
1768	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1769	 * to determine if 1 or 2 frames have been sent.
1770	 * Theoretically we should be able to use TXFWMEMP to determine up
1771	 * to 3 frames, but it seems that after putting a second frame in the
1772	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1773	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1774	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1775	 * completely synchronized with the rest of the bits?
1776	 *
1777	 * With TX mailboxes:
1778	 *
1779	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1780	 * we submit frames one at a time.
1781	 */
1782	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1783	    (devtype->flags & XCAN_FLAG_TXFEMP))
1784		tx_max = min(hw_tx_max, 2U);
1785	else
1786		tx_max = 1;
1787
1788	rx_max = hw_rx_max;
1789
1790	/* Create a CAN device instance */
1791	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1792	if (!ndev)
1793		return -ENOMEM;
1794
1795	priv = netdev_priv(ndev);
1796	priv->dev = &pdev->dev;
1797	priv->can.bittiming_const = devtype->bittiming_const;
1798	priv->can.do_set_mode = xcan_do_set_mode;
1799	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1800	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1801					CAN_CTRLMODE_BERR_REPORTING;
1802	priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1803	if (IS_ERR(priv->rstc)) {
1804		dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1805		ret = PTR_ERR(priv->rstc);
1806		goto err_free;
1807	}
1808
1809	ret = reset_control_reset(priv->rstc);
1810	if (ret)
1811		goto err_free;
1812
1813	if (devtype->cantype == XAXI_CANFD) {
1814		priv->can.data_bittiming_const =
1815			&xcan_data_bittiming_const_canfd;
1816		priv->can.tdc_const = &xcan_tdc_const_canfd;
1817	}
1818
1819	if (devtype->cantype == XAXI_CANFD_2_0) {
1820		priv->can.data_bittiming_const =
1821			&xcan_data_bittiming_const_canfd2;
1822		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1823	}
1824
1825	if (devtype->cantype == XAXI_CANFD ||
1826	    devtype->cantype == XAXI_CANFD_2_0) {
1827		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1828						CAN_CTRLMODE_TDC_AUTO;
1829		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1830	}
1831
1832	priv->reg_base = addr;
1833	priv->tx_max = tx_max;
1834	priv->devtype = *devtype;
1835	spin_lock_init(&priv->tx_lock);
1836
1837	/* Get IRQ for the device */
1838	ret = platform_get_irq(pdev, 0);
1839	if (ret < 0)
1840		goto err_reset;
1841
1842	ndev->irq = ret;
1843
1844	ndev->flags |= IFF_ECHO;	/* We support local echo */
1845
1846	platform_set_drvdata(pdev, ndev);
1847	SET_NETDEV_DEV(ndev, &pdev->dev);
1848	ndev->netdev_ops = &xcan_netdev_ops;
1849	ndev->ethtool_ops = &xcan_ethtool_ops;
1850
1851	/* Getting the CAN can_clk info */
1852	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1853	if (IS_ERR(priv->can_clk)) {
1854		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1855				    "device clock not found\n");
1856		goto err_reset;
 
1857	}
1858
1859	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1860	if (IS_ERR(priv->bus_clk)) {
1861		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1862				    "bus clock not found\n");
1863		goto err_reset;
1864	}
1865
1866	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
1867	if (IS_ERR(transceiver)) {
1868		ret = PTR_ERR(transceiver);
1869		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
1870		goto err_reset;
1871	}
1872	priv->transceiver = transceiver;
1873
1874	priv->write_reg = xcan_write_reg_le;
1875	priv->read_reg = xcan_read_reg_le;
1876
1877	pm_runtime_enable(&pdev->dev);
1878	ret = pm_runtime_get_sync(&pdev->dev);
1879	if (ret < 0) {
1880		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1881			   __func__, ret);
1882		goto err_disableclks;
1883	}
1884
1885	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1886		priv->write_reg = xcan_write_reg_be;
1887		priv->read_reg = xcan_read_reg_be;
1888	}
1889
1890	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1891
1892	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1893
1894	ret = register_candev(ndev);
1895	if (ret) {
1896		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1897		goto err_disableclks;
1898	}
1899
1900	of_can_transceiver(ndev);
1901	pm_runtime_put(&pdev->dev);
1902
1903	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1904		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1905		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1906	}
1907
1908	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1909		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1910		   hw_tx_max, priv->tx_max);
1911
1912	return 0;
1913
1914err_disableclks:
1915	pm_runtime_put(priv->dev);
 
1916	pm_runtime_disable(&pdev->dev);
1917err_reset:
1918	reset_control_assert(priv->rstc);
1919err_free:
1920	free_candev(ndev);
1921err:
1922	return ret;
1923}
1924
1925/**
1926 * xcan_remove - Unregister the device after releasing the resources
1927 * @pdev:	Handle to the platform device structure
1928 *
1929 * This function frees all the resources allocated to the device.
1930 * Return: 0 always
1931 */
1932static void xcan_remove(struct platform_device *pdev)
1933{
1934	struct net_device *ndev = platform_get_drvdata(pdev);
1935	struct xcan_priv *priv = netdev_priv(ndev);
1936
1937	unregister_candev(ndev);
1938	pm_runtime_disable(&pdev->dev);
1939	reset_control_assert(priv->rstc);
1940	free_candev(ndev);
 
 
1941}
1942
1943static struct platform_driver xcan_driver = {
1944	.probe = xcan_probe,
1945	.remove_new = xcan_remove,
1946	.driver	= {
1947		.name = DRIVER_NAME,
1948		.pm = &xcan_dev_pm_ops,
1949		.of_match_table	= xcan_of_match,
1950	},
1951};
1952
1953module_platform_driver(xcan_driver);
1954
1955MODULE_LICENSE("GPL");
1956MODULE_AUTHOR("Xilinx Inc");
1957MODULE_DESCRIPTION("Xilinx CAN interface");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
 
  12#include <linux/clk.h>
  13#include <linux/errno.h>
 
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
 
  23#include <linux/skbuff.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/types.h>
  27#include <linux/can/dev.h>
  28#include <linux/can/error.h>
  29#include <linux/can/led.h>
  30#include <linux/pm_runtime.h>
 
  31
  32#define DRIVER_NAME	"xilinx_can"
  33
  34/* CAN registers set */
  35enum xcan_reg {
  36	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  37	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  38	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  39	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  40	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  41	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  42	XCAN_SR_OFFSET		= 0x18, /* Status */
  43	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  44	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  45	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  46
  47	/* not on CAN FD cores */
  48	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  49	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  50	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  51
  52	/* only on CAN FD cores */
  53	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  54					  * Prescalar
  55					  */
  56	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  57	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  58	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  59	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  60	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  61	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  62	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
 
 
  63};
  64
  65#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  66#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  67#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  68#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  69#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  70
  71#define XCAN_CANFD_FRAME_SIZE		0x48
  72#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  73					 XCAN_CANFD_FRAME_SIZE * (n))
  74#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  75					 XCAN_CANFD_FRAME_SIZE * (n))
  76#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  77					 XCAN_CANFD_FRAME_SIZE * (n))
  78
  79/* the single TX mailbox used by this driver on CAN FD HW */
  80#define XCAN_TX_MAILBOX_IDX		0
  81
  82/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  83#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  84#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  85#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  86#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  87#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
 
 
  88#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  89#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  90#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  91#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  92#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
  93#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
  94#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
  95#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
  96#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
  97#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
  98#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
  99#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 100#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 
 101#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 102#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 103#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 104#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 105#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 106#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 107#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 108#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 109#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 110#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 111#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 112#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 113#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 114#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 115#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 116#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 117#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 118#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 119#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 120#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 121#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 122#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 123#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 124#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 125#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 126#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 127#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 128#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 129#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 130#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 131#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 132
 133/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 
 134#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 135#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 136#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 137#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 138#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 139#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 140#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 141#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 142
 143/* CAN frame length constants */
 144#define XCAN_FRAME_MAX_DATA_LEN		8
 145#define XCANFD_DW_BYTES			4
 146#define XCAN_TIMEOUT			(1 * HZ)
 147
 148/* TX-FIFO-empty interrupt available */
 149#define XCAN_FLAG_TXFEMP	0x0001
 150/* RX Match Not Finished interrupt available */
 151#define XCAN_FLAG_RXMNF		0x0002
 152/* Extended acceptance filters with control at 0xE0 */
 153#define XCAN_FLAG_EXT_FILTERS	0x0004
 154/* TX mailboxes instead of TX FIFO */
 155#define XCAN_FLAG_TX_MAILBOXES	0x0008
 156/* RX FIFO with each buffer in separate registers at 0x1100
 157 * instead of the regular FIFO at 0x50
 158 */
 159#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 160#define XCAN_FLAG_CANFD_2	0x0020
 161
 162enum xcan_ip_type {
 163	XAXI_CAN = 0,
 164	XZYNQ_CANPS,
 165	XAXI_CANFD,
 166	XAXI_CANFD_2_0,
 167};
 168
 169struct xcan_devtype_data {
 170	enum xcan_ip_type cantype;
 171	unsigned int flags;
 172	const struct can_bittiming_const *bittiming_const;
 173	const char *bus_clk_name;
 174	unsigned int btr_ts2_shift;
 175	unsigned int btr_sjw_shift;
 176};
 177
 178/**
 179 * struct xcan_priv - This definition define CAN driver instance
 180 * @can:			CAN private data structure.
 181 * @tx_lock:			Lock for synchronizing TX interrupt handling
 182 * @tx_head:			Tx CAN packets ready to send on the queue
 183 * @tx_tail:			Tx CAN packets successfully sended on the queue
 184 * @tx_max:			Maximum number packets the driver can send
 185 * @napi:			NAPI structure
 186 * @read_reg:			For reading data from CAN registers
 187 * @write_reg:			For writing data to CAN registers
 188 * @dev:			Network device data structure
 189 * @reg_base:			Ioremapped address to registers
 190 * @irq_flags:			For request_irq()
 191 * @bus_clk:			Pointer to struct clk
 192 * @can_clk:			Pointer to struct clk
 193 * @devtype:			Device type specific constants
 
 
 194 */
 195struct xcan_priv {
 196	struct can_priv can;
 197	spinlock_t tx_lock;
 198	unsigned int tx_head;
 199	unsigned int tx_tail;
 200	unsigned int tx_max;
 201	struct napi_struct napi;
 202	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 203	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 204			  u32 val);
 205	struct device *dev;
 206	void __iomem *reg_base;
 207	unsigned long irq_flags;
 208	struct clk *bus_clk;
 209	struct clk *can_clk;
 210	struct xcan_devtype_data devtype;
 
 
 211};
 212
 213/* CAN Bittiming constants as per Xilinx CAN specs */
 214static const struct can_bittiming_const xcan_bittiming_const = {
 215	.name = DRIVER_NAME,
 216	.tseg1_min = 1,
 217	.tseg1_max = 16,
 218	.tseg2_min = 1,
 219	.tseg2_max = 8,
 220	.sjw_max = 4,
 221	.brp_min = 1,
 222	.brp_max = 256,
 223	.brp_inc = 1,
 224};
 225
 226/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 227static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 228	.name = DRIVER_NAME,
 229	.tseg1_min = 1,
 230	.tseg1_max = 64,
 231	.tseg2_min = 1,
 232	.tseg2_max = 16,
 233	.sjw_max = 16,
 234	.brp_min = 1,
 235	.brp_max = 256,
 236	.brp_inc = 1,
 237};
 238
 239/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 240static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 241	.name = DRIVER_NAME,
 242	.tseg1_min = 1,
 243	.tseg1_max = 16,
 244	.tseg2_min = 1,
 245	.tseg2_max = 8,
 246	.sjw_max = 8,
 247	.brp_min = 1,
 248	.brp_max = 256,
 249	.brp_inc = 1,
 250};
 251
 252/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 253static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 254	.name = DRIVER_NAME,
 255	.tseg1_min = 1,
 256	.tseg1_max = 256,
 257	.tseg2_min = 1,
 258	.tseg2_max = 128,
 259	.sjw_max = 128,
 260	.brp_min = 1,
 261	.brp_max = 256,
 262	.brp_inc = 1,
 263};
 264
 265/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 266static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 267	.name = DRIVER_NAME,
 268	.tseg1_min = 1,
 269	.tseg1_max = 32,
 270	.tseg2_min = 1,
 271	.tseg2_max = 16,
 272	.sjw_max = 16,
 273	.brp_min = 1,
 274	.brp_max = 256,
 275	.brp_inc = 1,
 276};
 277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278/**
 279 * xcan_write_reg_le - Write a value to the device register little endian
 280 * @priv:	Driver private data structure
 281 * @reg:	Register offset
 282 * @val:	Value to write at the Register offset
 283 *
 284 * Write data to the paricular CAN register
 285 */
 286static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 287			      u32 val)
 288{
 289	iowrite32(val, priv->reg_base + reg);
 290}
 291
 292/**
 293 * xcan_read_reg_le - Read a value from the device register little endian
 294 * @priv:	Driver private data structure
 295 * @reg:	Register offset
 296 *
 297 * Read data from the particular CAN register
 298 * Return: value read from the CAN register
 299 */
 300static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 301{
 302	return ioread32(priv->reg_base + reg);
 303}
 304
 305/**
 306 * xcan_write_reg_be - Write a value to the device register big endian
 307 * @priv:	Driver private data structure
 308 * @reg:	Register offset
 309 * @val:	Value to write at the Register offset
 310 *
 311 * Write data to the paricular CAN register
 312 */
 313static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 314			      u32 val)
 315{
 316	iowrite32be(val, priv->reg_base + reg);
 317}
 318
 319/**
 320 * xcan_read_reg_be - Read a value from the device register big endian
 321 * @priv:	Driver private data structure
 322 * @reg:	Register offset
 323 *
 324 * Read data from the particular CAN register
 325 * Return: value read from the CAN register
 326 */
 327static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 328{
 329	return ioread32be(priv->reg_base + reg);
 330}
 331
 332/**
 333 * xcan_rx_int_mask - Get the mask for the receive interrupt
 334 * @priv:	Driver private data structure
 335 *
 336 * Return: The receive interrupt mask used by the driver on this HW
 337 */
 338static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 339{
 340	/* RXNEMP is better suited for our use case as it cannot be cleared
 341	 * while the FIFO is non-empty, but CAN FD HW does not have it
 342	 */
 343	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 344		return XCAN_IXR_RXOK_MASK;
 345	else
 346		return XCAN_IXR_RXNEMP_MASK;
 347}
 348
 349/**
 350 * set_reset_mode - Resets the CAN device mode
 351 * @ndev:	Pointer to net_device structure
 352 *
 353 * This is the driver reset mode routine.The driver
 354 * enters into configuration mode.
 355 *
 356 * Return: 0 on success and failure value on error
 357 */
 358static int set_reset_mode(struct net_device *ndev)
 359{
 360	struct xcan_priv *priv = netdev_priv(ndev);
 361	unsigned long timeout;
 362
 363	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 364
 365	timeout = jiffies + XCAN_TIMEOUT;
 366	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 367		if (time_after(jiffies, timeout)) {
 368			netdev_warn(ndev, "timed out for config mode\n");
 369			return -ETIMEDOUT;
 370		}
 371		usleep_range(500, 10000);
 372	}
 373
 374	/* reset clears FIFOs */
 375	priv->tx_head = 0;
 376	priv->tx_tail = 0;
 377
 378	return 0;
 379}
 380
 381/**
 382 * xcan_set_bittiming - CAN set bit timing routine
 383 * @ndev:	Pointer to net_device structure
 384 *
 385 * This is the driver set bittiming  routine.
 386 * Return: 0 on success and failure value on error
 387 */
 388static int xcan_set_bittiming(struct net_device *ndev)
 389{
 390	struct xcan_priv *priv = netdev_priv(ndev);
 391	struct can_bittiming *bt = &priv->can.bittiming;
 392	struct can_bittiming *dbt = &priv->can.data_bittiming;
 393	u32 btr0, btr1;
 394	u32 is_config_mode;
 395
 396	/* Check whether Xilinx CAN is in configuration mode.
 397	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 398	 */
 399	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 400				XCAN_SR_CONFIG_MASK;
 401	if (!is_config_mode) {
 402		netdev_alert(ndev,
 403		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 404		return -EPERM;
 405	}
 406
 407	/* Setting Baud Rate prescalar value in BRPR Register */
 408	btr0 = (bt->brp - 1);
 409
 410	/* Setting Time Segment 1 in BTR Register */
 411	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 412
 413	/* Setting Time Segment 2 in BTR Register */
 414	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 415
 416	/* Setting Synchronous jump width in BTR Register */
 417	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 418
 419	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 420	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 421
 422	if (priv->devtype.cantype == XAXI_CANFD ||
 423	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 424		/* Setting Baud Rate prescalar value in F_BRPR Register */
 425		btr0 = dbt->brp - 1;
 
 
 
 
 
 
 
 
 426
 427		/* Setting Time Segment 1 in BTR Register */
 428		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 429
 430		/* Setting Time Segment 2 in BTR Register */
 431		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 432
 433		/* Setting Synchronous jump width in BTR Register */
 434		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 435
 436		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 437		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 438	}
 439
 440	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 441		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 442		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 443
 444	return 0;
 445}
 446
 447/**
 448 * xcan_chip_start - This the drivers start routine
 449 * @ndev:	Pointer to net_device structure
 450 *
 451 * This is the drivers start routine.
 452 * Based on the State of the CAN device it puts
 453 * the CAN device into a proper mode.
 454 *
 455 * Return: 0 on success and failure value on error
 456 */
 457static int xcan_chip_start(struct net_device *ndev)
 458{
 459	struct xcan_priv *priv = netdev_priv(ndev);
 460	u32 reg_msr;
 461	int err;
 462	u32 ier;
 463
 464	/* Check if it is in reset mode */
 465	err = set_reset_mode(ndev);
 466	if (err < 0)
 467		return err;
 468
 469	err = xcan_set_bittiming(ndev);
 470	if (err < 0)
 471		return err;
 472
 473	/* Enable interrupts */
 
 
 
 
 
 
 474	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 475		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 476		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 477		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 478
 479	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 480		ier |= XCAN_IXR_RXMNF_MASK;
 481
 482	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 483
 484	/* Check whether it is loopback mode or normal mode  */
 485	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 486		reg_msr = XCAN_MSR_LBACK_MASK;
 487	} else {
 488		reg_msr = 0x0;
 489	}
 490
 491	/* enable the first extended filter, if any, as cores with extended
 492	 * filtering default to non-receipt if all filters are disabled
 493	 */
 494	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 495		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 496
 497	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 498	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 499
 500	netdev_dbg(ndev, "status:#x%08x\n",
 501		   priv->read_reg(priv, XCAN_SR_OFFSET));
 502
 503	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 504	return 0;
 505}
 506
 507/**
 508 * xcan_do_set_mode - This sets the mode of the driver
 509 * @ndev:	Pointer to net_device structure
 510 * @mode:	Tells the mode of the driver
 511 *
 512 * This check the drivers state and calls the
 513 * the corresponding modes to set.
 514 *
 515 * Return: 0 on success and failure value on error
 516 */
 517static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 518{
 519	int ret;
 520
 521	switch (mode) {
 522	case CAN_MODE_START:
 523		ret = xcan_chip_start(ndev);
 524		if (ret < 0) {
 525			netdev_err(ndev, "xcan_chip_start failed!\n");
 526			return ret;
 527		}
 528		netif_wake_queue(ndev);
 529		break;
 530	default:
 531		ret = -EOPNOTSUPP;
 532		break;
 533	}
 534
 535	return ret;
 536}
 537
 538/**
 539 * xcan_write_frame - Write a frame to HW
 540 * @priv:		Driver private data structure
 541 * @skb:		sk_buff pointer that contains data to be Txed
 542 * @frame_offset:	Register offset to write the frame to
 543 */
 544static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
 545			     int frame_offset)
 546{
 547	u32 id, dlc, data[2] = {0, 0};
 548	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 549	u32 ramoff, dwindex = 0, i;
 
 550
 551	/* Watch carefully on the bit sequence */
 552	if (cf->can_id & CAN_EFF_FLAG) {
 553		/* Extended CAN ID format */
 554		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 555			XCAN_IDR_ID2_MASK;
 556		id |= (((cf->can_id & CAN_EFF_MASK) >>
 557			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 558			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 559
 560		/* The substibute remote TX request bit should be "1"
 561		 * for extended frames as in the Xilinx CAN datasheet
 562		 */
 563		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 564
 565		if (cf->can_id & CAN_RTR_FLAG)
 566			/* Extended frames remote TX request */
 567			id |= XCAN_IDR_RTR_MASK;
 568	} else {
 569		/* Standard CAN ID format */
 570		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 571			XCAN_IDR_ID1_MASK;
 572
 573		if (cf->can_id & CAN_RTR_FLAG)
 574			/* Standard frames remote TX request */
 575			id |= XCAN_IDR_SRR_MASK;
 576	}
 577
 578	dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 579	if (can_is_canfd_skb(skb)) {
 580		if (cf->flags & CANFD_BRS)
 581			dlc |= XCAN_DLCR_BRS_MASK;
 582		dlc |= XCAN_DLCR_EDL_MASK;
 583	}
 584
 
 
 
 
 
 
 
 
 585	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 586	/* If the CAN frame is RTR frame this write triggers transmission
 587	 * (not on CAN FD)
 588	 */
 589	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 590	if (priv->devtype.cantype == XAXI_CANFD ||
 591	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 592		for (i = 0; i < cf->len; i += 4) {
 593			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 594					(dwindex * XCANFD_DW_BYTES);
 595			priv->write_reg(priv, ramoff,
 596					be32_to_cpup((__be32 *)(cf->data + i)));
 597			dwindex++;
 598		}
 599	} else {
 600		if (cf->len > 0)
 601			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 602		if (cf->len > 4)
 603			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 604
 605		if (!(cf->can_id & CAN_RTR_FLAG)) {
 606			priv->write_reg(priv,
 607					XCAN_FRAME_DW1_OFFSET(frame_offset),
 608					data[0]);
 609			/* If the CAN frame is Standard/Extended frame this
 610			 * write triggers transmission (not on CAN FD)
 611			 */
 612			priv->write_reg(priv,
 613					XCAN_FRAME_DW2_OFFSET(frame_offset),
 614					data[1]);
 615		}
 616	}
 617}
 618
 619/**
 620 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 621 * @skb:	sk_buff pointer that contains data to be Txed
 622 * @ndev:	Pointer to net_device structure
 623 *
 624 * Return: 0 on success, -ENOSPC if FIFO is full.
 625 */
 626static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 627{
 628	struct xcan_priv *priv = netdev_priv(ndev);
 629	unsigned long flags;
 630
 631	/* Check if the TX buffer is full */
 632	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 633			XCAN_SR_TXFLL_MASK))
 634		return -ENOSPC;
 635
 636	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
 637
 638	spin_lock_irqsave(&priv->tx_lock, flags);
 639
 640	priv->tx_head++;
 641
 642	xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
 643
 644	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 645	if (priv->tx_max > 1)
 646		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 647
 648	/* Check if the TX buffer is full */
 649	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 650		netif_stop_queue(ndev);
 651
 652	spin_unlock_irqrestore(&priv->tx_lock, flags);
 653
 654	return 0;
 655}
 656
 657/**
 658 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 659 * @skb:	sk_buff pointer that contains data to be Txed
 660 * @ndev:	Pointer to net_device structure
 661 *
 662 * Return: 0 on success, -ENOSPC if there is no space
 663 */
 664static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 665{
 666	struct xcan_priv *priv = netdev_priv(ndev);
 667	unsigned long flags;
 668
 669	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 670		     BIT(XCAN_TX_MAILBOX_IDX)))
 671		return -ENOSPC;
 672
 673	can_put_echo_skb(skb, ndev, 0);
 674
 675	spin_lock_irqsave(&priv->tx_lock, flags);
 676
 677	priv->tx_head++;
 678
 679	xcan_write_frame(priv, skb,
 680			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 681
 682	/* Mark buffer as ready for transmit */
 683	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 684
 685	netif_stop_queue(ndev);
 686
 687	spin_unlock_irqrestore(&priv->tx_lock, flags);
 688
 689	return 0;
 690}
 691
 692/**
 693 * xcan_start_xmit - Starts the transmission
 694 * @skb:	sk_buff pointer that contains data to be Txed
 695 * @ndev:	Pointer to net_device structure
 696 *
 697 * This function is invoked from upper layers to initiate transmission.
 698 *
 699 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 700 */
 701static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 702{
 703	struct xcan_priv *priv = netdev_priv(ndev);
 704	int ret;
 705
 706	if (can_dropped_invalid_skb(ndev, skb))
 707		return NETDEV_TX_OK;
 708
 709	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 710		ret = xcan_start_xmit_mailbox(skb, ndev);
 711	else
 712		ret = xcan_start_xmit_fifo(skb, ndev);
 713
 714	if (ret < 0) {
 715		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 716		netif_stop_queue(ndev);
 717		return NETDEV_TX_BUSY;
 718	}
 719
 720	return NETDEV_TX_OK;
 721}
 722
 723/**
 724 * xcan_rx -  Is called from CAN isr to complete the received
 725 *		frame  processing
 726 * @ndev:	Pointer to net_device structure
 727 * @frame_base:	Register offset to the frame to be read
 728 *
 729 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 730 * does minimal processing and invokes "netif_receive_skb" to complete further
 731 * processing.
 732 * Return: 1 on success and 0 on failure.
 733 */
 734static int xcan_rx(struct net_device *ndev, int frame_base)
 735{
 736	struct xcan_priv *priv = netdev_priv(ndev);
 737	struct net_device_stats *stats = &ndev->stats;
 738	struct can_frame *cf;
 739	struct sk_buff *skb;
 740	u32 id_xcan, dlc, data[2] = {0, 0};
 741
 742	skb = alloc_can_skb(ndev, &cf);
 743	if (unlikely(!skb)) {
 744		stats->rx_dropped++;
 745		return 0;
 746	}
 747
 748	/* Read a frame from Xilinx zynq CANPS */
 749	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 750	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 751				   XCAN_DLCR_DLC_SHIFT;
 752
 753	/* Change Xilinx CAN data length format to socketCAN data format */
 754	cf->can_dlc = get_can_dlc(dlc);
 755
 756	/* Change Xilinx CAN ID format to socketCAN ID format */
 757	if (id_xcan & XCAN_IDR_IDE_MASK) {
 758		/* The received frame is an Extended format frame */
 759		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 760		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 761				XCAN_IDR_ID2_SHIFT;
 762		cf->can_id |= CAN_EFF_FLAG;
 763		if (id_xcan & XCAN_IDR_RTR_MASK)
 764			cf->can_id |= CAN_RTR_FLAG;
 765	} else {
 766		/* The received frame is a standard format frame */
 767		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 768				XCAN_IDR_ID1_SHIFT;
 769		if (id_xcan & XCAN_IDR_SRR_MASK)
 770			cf->can_id |= CAN_RTR_FLAG;
 771	}
 772
 773	/* DW1/DW2 must always be read to remove message from RXFIFO */
 774	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 775	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 776
 777	if (!(cf->can_id & CAN_RTR_FLAG)) {
 778		/* Change Xilinx CAN data format to socketCAN data format */
 779		if (cf->can_dlc > 0)
 780			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 781		if (cf->can_dlc > 4)
 782			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 
 
 783	}
 
 784
 785	stats->rx_bytes += cf->can_dlc;
 786	stats->rx_packets++;
 787	netif_receive_skb(skb);
 788
 789	return 1;
 790}
 791
 792/**
 793 * xcanfd_rx -  Is called from CAN isr to complete the received
 794 *		frame  processing
 795 * @ndev:	Pointer to net_device structure
 796 * @frame_base:	Register offset to the frame to be read
 797 *
 798 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 799 * does minimal processing and invokes "netif_receive_skb" to complete further
 800 * processing.
 801 * Return: 1 on success and 0 on failure.
 802 */
 803static int xcanfd_rx(struct net_device *ndev, int frame_base)
 804{
 805	struct xcan_priv *priv = netdev_priv(ndev);
 806	struct net_device_stats *stats = &ndev->stats;
 807	struct canfd_frame *cf;
 808	struct sk_buff *skb;
 809	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 810
 811	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 812	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 813	if (dlc & XCAN_DLCR_EDL_MASK)
 814		skb = alloc_canfd_skb(ndev, &cf);
 815	else
 816		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 817
 818	if (unlikely(!skb)) {
 819		stats->rx_dropped++;
 820		return 0;
 821	}
 822
 823	/* Change Xilinx CANFD data length format to socketCAN data
 824	 * format
 825	 */
 826	if (dlc & XCAN_DLCR_EDL_MASK)
 827		cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 828				  XCAN_DLCR_DLC_SHIFT);
 829	else
 830		cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
 831					  XCAN_DLCR_DLC_SHIFT);
 832
 833	/* Change Xilinx CAN ID format to socketCAN ID format */
 834	if (id_xcan & XCAN_IDR_IDE_MASK) {
 835		/* The received frame is an Extended format frame */
 836		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 837		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 838				XCAN_IDR_ID2_SHIFT;
 839		cf->can_id |= CAN_EFF_FLAG;
 840		if (id_xcan & XCAN_IDR_RTR_MASK)
 841			cf->can_id |= CAN_RTR_FLAG;
 842	} else {
 843		/* The received frame is a standard format frame */
 844		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 845				XCAN_IDR_ID1_SHIFT;
 846		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 847					XCAN_IDR_SRR_MASK))
 848			cf->can_id |= CAN_RTR_FLAG;
 849	}
 850
 851	/* Check the frame received is FD or not*/
 852	if (dlc & XCAN_DLCR_EDL_MASK) {
 853		for (i = 0; i < cf->len; i += 4) {
 854			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 855					(dwindex * XCANFD_DW_BYTES);
 856			data[0] = priv->read_reg(priv, dw_offset);
 857			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 858			dwindex++;
 859		}
 860	} else {
 861		for (i = 0; i < cf->len; i += 4) {
 862			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 863			data[0] = priv->read_reg(priv, dw_offset + i);
 864			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 865		}
 866	}
 867	stats->rx_bytes += cf->len;
 
 
 868	stats->rx_packets++;
 
 869	netif_receive_skb(skb);
 870
 871	return 1;
 872}
 873
 874/**
 875 * xcan_current_error_state - Get current error state from HW
 876 * @ndev:	Pointer to net_device structure
 877 *
 878 * Checks the current CAN error state from the HW. Note that this
 879 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 880 *
 881 * Return:
 882 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 883 * otherwise.
 884 */
 885static enum can_state xcan_current_error_state(struct net_device *ndev)
 886{
 887	struct xcan_priv *priv = netdev_priv(ndev);
 888	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 889
 890	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 891		return CAN_STATE_ERROR_PASSIVE;
 892	else if (status & XCAN_SR_ERRWRN_MASK)
 893		return CAN_STATE_ERROR_WARNING;
 894	else
 895		return CAN_STATE_ERROR_ACTIVE;
 896}
 897
 898/**
 899 * xcan_set_error_state - Set new CAN error state
 900 * @ndev:	Pointer to net_device structure
 901 * @new_state:	The new CAN state to be set
 902 * @cf:		Error frame to be populated or NULL
 903 *
 904 * Set new CAN error state for the device, updating statistics and
 905 * populating the error frame if given.
 906 */
 907static void xcan_set_error_state(struct net_device *ndev,
 908				 enum can_state new_state,
 909				 struct can_frame *cf)
 910{
 911	struct xcan_priv *priv = netdev_priv(ndev);
 912	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 913	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 914	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 915	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 916	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 917
 918	/* non-ERROR states are handled elsewhere */
 919	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 920		return;
 921
 922	can_change_state(ndev, cf, tx_state, rx_state);
 923
 924	if (cf) {
 
 925		cf->data[6] = txerr;
 926		cf->data[7] = rxerr;
 927	}
 928}
 929
 930/**
 931 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 932 * @ndev:	Pointer to net_device structure
 933 *
 934 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 935 * the performed RX/TX has caused it to drop to a lesser state and set
 936 * the interface state accordingly.
 937 */
 938static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 939{
 940	struct xcan_priv *priv = netdev_priv(ndev);
 941	enum can_state old_state = priv->can.state;
 942	enum can_state new_state;
 943
 944	/* changing error state due to successful frame RX/TX can only
 945	 * occur from these states
 946	 */
 947	if (old_state != CAN_STATE_ERROR_WARNING &&
 948	    old_state != CAN_STATE_ERROR_PASSIVE)
 949		return;
 950
 951	new_state = xcan_current_error_state(ndev);
 952
 953	if (new_state != old_state) {
 954		struct sk_buff *skb;
 955		struct can_frame *cf;
 956
 957		skb = alloc_can_err_skb(ndev, &cf);
 958
 959		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 960
 961		if (skb) {
 962			struct net_device_stats *stats = &ndev->stats;
 963
 964			stats->rx_packets++;
 965			stats->rx_bytes += cf->can_dlc;
 966			netif_rx(skb);
 967		}
 968	}
 969}
 970
 971/**
 972 * xcan_err_interrupt - error frame Isr
 973 * @ndev:	net_device pointer
 974 * @isr:	interrupt status register value
 975 *
 976 * This is the CAN error interrupt and it will
 977 * check the the type of error and forward the error
 978 * frame to upper layers.
 979 */
 980static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
 981{
 982	struct xcan_priv *priv = netdev_priv(ndev);
 983	struct net_device_stats *stats = &ndev->stats;
 984	struct can_frame *cf;
 985	struct sk_buff *skb;
 986	u32 err_status;
 987
 988	skb = alloc_can_err_skb(ndev, &cf);
 989
 990	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
 991	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
 992
 993	if (isr & XCAN_IXR_BSOFF_MASK) {
 994		priv->can.state = CAN_STATE_BUS_OFF;
 995		priv->can.can_stats.bus_off++;
 996		/* Leave device in Config Mode in bus-off state */
 997		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 998		can_bus_off(ndev);
 999		if (skb)
1000			cf->can_id |= CAN_ERR_BUSOFF;
1001	} else {
1002		enum can_state new_state = xcan_current_error_state(ndev);
1003
1004		if (new_state != priv->can.state)
1005			xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1006	}
1007
1008	/* Check for Arbitration lost interrupt */
1009	if (isr & XCAN_IXR_ARBLST_MASK) {
1010		priv->can.can_stats.arbitration_lost++;
1011		if (skb) {
1012			cf->can_id |= CAN_ERR_LOSTARB;
1013			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
1014		}
1015	}
1016
1017	/* Check for RX FIFO Overflow interrupt */
1018	if (isr & XCAN_IXR_RXOFLW_MASK) {
1019		stats->rx_over_errors++;
1020		stats->rx_errors++;
1021		if (skb) {
1022			cf->can_id |= CAN_ERR_CRTL;
1023			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1024		}
1025	}
1026
1027	/* Check for RX Match Not Finished interrupt */
1028	if (isr & XCAN_IXR_RXMNF_MASK) {
1029		stats->rx_dropped++;
1030		stats->rx_errors++;
1031		netdev_err(ndev, "RX match not finished, frame discarded\n");
1032		if (skb) {
1033			cf->can_id |= CAN_ERR_CRTL;
1034			cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
1035		}
1036	}
1037
1038	/* Check for error interrupt */
1039	if (isr & XCAN_IXR_ERROR_MASK) {
1040		if (skb)
1041			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 
 
 
 
1042
1043		/* Check for Ack error interrupt */
1044		if (err_status & XCAN_ESR_ACKER_MASK) {
1045			stats->tx_errors++;
1046			if (skb) {
1047				cf->can_id |= CAN_ERR_ACK;
1048				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1049			}
1050		}
1051
1052		/* Check for Bit error interrupt */
1053		if (err_status & XCAN_ESR_BERR_MASK) {
1054			stats->tx_errors++;
1055			if (skb) {
1056				cf->can_id |= CAN_ERR_PROT;
1057				cf->data[2] = CAN_ERR_PROT_BIT;
1058			}
1059		}
1060
1061		/* Check for Stuff error interrupt */
1062		if (err_status & XCAN_ESR_STER_MASK) {
1063			stats->rx_errors++;
1064			if (skb) {
1065				cf->can_id |= CAN_ERR_PROT;
1066				cf->data[2] = CAN_ERR_PROT_STUFF;
1067			}
1068		}
1069
1070		/* Check for Form error interrupt */
1071		if (err_status & XCAN_ESR_FMER_MASK) {
1072			stats->rx_errors++;
1073			if (skb) {
1074				cf->can_id |= CAN_ERR_PROT;
1075				cf->data[2] = CAN_ERR_PROT_FORM;
1076			}
1077		}
1078
1079		/* Check for CRC error interrupt */
1080		if (err_status & XCAN_ESR_CRCER_MASK) {
1081			stats->rx_errors++;
1082			if (skb) {
1083				cf->can_id |= CAN_ERR_PROT;
1084				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1085			}
1086		}
1087		priv->can.can_stats.bus_error++;
1088	}
1089
1090	if (skb) {
1091		stats->rx_packets++;
1092		stats->rx_bytes += cf->can_dlc;
1093		netif_rx(skb);
 
 
 
 
 
1094	}
1095
1096	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1097		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1098}
1099
1100/**
1101 * xcan_state_interrupt - It will check the state of the CAN device
1102 * @ndev:	net_device pointer
1103 * @isr:	interrupt status register value
1104 *
1105 * This will checks the state of the CAN device
1106 * and puts the device into appropriate state.
1107 */
1108static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1109{
1110	struct xcan_priv *priv = netdev_priv(ndev);
1111
1112	/* Check for Sleep interrupt if set put CAN device in sleep state */
1113	if (isr & XCAN_IXR_SLP_MASK)
1114		priv->can.state = CAN_STATE_SLEEPING;
1115
1116	/* Check for Wake up interrupt if set put CAN device in Active state */
1117	if (isr & XCAN_IXR_WKUP_MASK)
1118		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1119}
1120
1121/**
1122 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1123 * @priv:	Driver private data structure
1124 *
1125 * Return: Register offset of the next frame in RX FIFO.
1126 */
1127static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1128{
1129	int offset;
1130
1131	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1132		u32 fsr, mask;
1133
1134		/* clear RXOK before the is-empty check so that any newly
1135		 * received frame will reassert it without a race
1136		 */
1137		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1138
1139		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1140
1141		/* check if RX FIFO is empty */
1142		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1143			mask = XCAN_2_FSR_FL_MASK;
1144		else
1145			mask = XCAN_FSR_FL_MASK;
1146
1147		if (!(fsr & mask))
1148			return -ENOENT;
1149
1150		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1151			offset =
1152			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1153		else
1154			offset =
1155			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1156
1157	} else {
1158		/* check if RX FIFO is empty */
1159		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1160		      XCAN_IXR_RXNEMP_MASK))
1161			return -ENOENT;
1162
1163		/* frames are read from a static offset */
1164		offset = XCAN_RXFIFO_OFFSET;
1165	}
1166
1167	return offset;
1168}
1169
1170/**
1171 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1172 * @napi:	napi structure pointer
1173 * @quota:	Max number of rx packets to be processed.
1174 *
1175 * This is the poll routine for rx part.
1176 * It will process the packets maximux quota value.
1177 *
1178 * Return: number of packets received
1179 */
1180static int xcan_rx_poll(struct napi_struct *napi, int quota)
1181{
1182	struct net_device *ndev = napi->dev;
1183	struct xcan_priv *priv = netdev_priv(ndev);
1184	u32 ier;
1185	int work_done = 0;
1186	int frame_offset;
1187
1188	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1189	       (work_done < quota)) {
1190		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1191			work_done += xcanfd_rx(ndev, frame_offset);
1192		else
1193			work_done += xcan_rx(ndev, frame_offset);
1194
1195		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1196			/* increment read index */
1197			priv->write_reg(priv, XCAN_FSR_OFFSET,
1198					XCAN_FSR_IRI_MASK);
1199		else
1200			/* clear rx-not-empty (will actually clear only if
1201			 * empty)
1202			 */
1203			priv->write_reg(priv, XCAN_ICR_OFFSET,
1204					XCAN_IXR_RXNEMP_MASK);
1205	}
1206
1207	if (work_done) {
1208		can_led_event(ndev, CAN_LED_EVENT_RX);
1209		xcan_update_error_state_after_rxtx(ndev);
1210	}
1211
1212	if (work_done < quota) {
1213		napi_complete_done(napi, work_done);
1214		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1215		ier |= xcan_rx_int_mask(priv);
1216		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 
1217	}
1218	return work_done;
1219}
1220
1221/**
1222 * xcan_tx_interrupt - Tx Done Isr
1223 * @ndev:	net_device pointer
1224 * @isr:	Interrupt status register value
1225 */
1226static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1227{
1228	struct xcan_priv *priv = netdev_priv(ndev);
1229	struct net_device_stats *stats = &ndev->stats;
1230	unsigned int frames_in_fifo;
1231	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1232	unsigned long flags;
1233	int retries = 0;
1234
1235	/* Synchronize with xmit as we need to know the exact number
1236	 * of frames in the FIFO to stay in sync due to the TXFEMP
1237	 * handling.
1238	 * This also prevents a race between netif_wake_queue() and
1239	 * netif_stop_queue().
1240	 */
1241	spin_lock_irqsave(&priv->tx_lock, flags);
1242
1243	frames_in_fifo = priv->tx_head - priv->tx_tail;
1244
1245	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1246		/* clear TXOK anyway to avoid getting back here */
1247		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1248		spin_unlock_irqrestore(&priv->tx_lock, flags);
1249		return;
1250	}
1251
1252	/* Check if 2 frames were sent (TXOK only means that at least 1
1253	 * frame was sent).
1254	 */
1255	if (frames_in_fifo > 1) {
1256		WARN_ON(frames_in_fifo > priv->tx_max);
1257
1258		/* Synchronize TXOK and isr so that after the loop:
1259		 * (1) isr variable is up-to-date at least up to TXOK clear
1260		 *     time. This avoids us clearing a TXOK of a second frame
1261		 *     but not noticing that the FIFO is now empty and thus
1262		 *     marking only a single frame as sent.
1263		 * (2) No TXOK is left. Having one could mean leaving a
1264		 *     stray TXOK as we might process the associated frame
1265		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1266		 *     clear to satisfy (1).
1267		 */
1268		while ((isr & XCAN_IXR_TXOK_MASK) &&
1269		       !WARN_ON(++retries == 100)) {
1270			priv->write_reg(priv, XCAN_ICR_OFFSET,
1271					XCAN_IXR_TXOK_MASK);
1272			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1273		}
1274
1275		if (isr & XCAN_IXR_TXFEMP_MASK) {
1276			/* nothing in FIFO anymore */
1277			frames_sent = frames_in_fifo;
1278		}
1279	} else {
1280		/* single frame in fifo, just clear TXOK */
1281		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1282	}
1283
1284	while (frames_sent--) {
1285		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1286						    priv->tx_max);
1287		priv->tx_tail++;
1288		stats->tx_packets++;
1289	}
1290
1291	netif_wake_queue(ndev);
1292
1293	spin_unlock_irqrestore(&priv->tx_lock, flags);
1294
1295	can_led_event(ndev, CAN_LED_EVENT_TX);
1296	xcan_update_error_state_after_rxtx(ndev);
1297}
1298
1299/**
1300 * xcan_interrupt - CAN Isr
1301 * @irq:	irq number
1302 * @dev_id:	device id poniter
1303 *
1304 * This is the xilinx CAN Isr. It checks for the type of interrupt
1305 * and invokes the corresponding ISR.
1306 *
1307 * Return:
1308 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1309 */
1310static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1311{
1312	struct net_device *ndev = (struct net_device *)dev_id;
1313	struct xcan_priv *priv = netdev_priv(ndev);
1314	u32 isr, ier;
1315	u32 isr_errors;
1316	u32 rx_int_mask = xcan_rx_int_mask(priv);
1317
1318	/* Get the interrupt status from Xilinx CAN */
1319	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1320	if (!isr)
1321		return IRQ_NONE;
1322
1323	/* Check for the type of interrupt and Processing it */
1324	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1325		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1326				XCAN_IXR_WKUP_MASK));
1327		xcan_state_interrupt(ndev, isr);
1328	}
1329
1330	/* Check for Tx interrupt and Processing it */
1331	if (isr & XCAN_IXR_TXOK_MASK)
1332		xcan_tx_interrupt(ndev, isr);
1333
1334	/* Check for the type of error interrupt and Processing it */
1335	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1336			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1337			    XCAN_IXR_RXMNF_MASK);
1338	if (isr_errors) {
1339		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1340		xcan_err_interrupt(ndev, isr);
1341	}
1342
1343	/* Check for the type of receive interrupt and Processing it */
1344	if (isr & rx_int_mask) {
1345		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1346		ier &= ~rx_int_mask;
1347		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1348		napi_schedule(&priv->napi);
1349	}
1350	return IRQ_HANDLED;
1351}
1352
1353/**
1354 * xcan_chip_stop - Driver stop routine
1355 * @ndev:	Pointer to net_device structure
1356 *
1357 * This is the drivers stop routine. It will disable the
1358 * interrupts and put the device into configuration mode.
1359 */
1360static void xcan_chip_stop(struct net_device *ndev)
1361{
1362	struct xcan_priv *priv = netdev_priv(ndev);
 
1363
1364	/* Disable interrupts and leave the can in configuration mode */
1365	set_reset_mode(ndev);
 
 
 
1366	priv->can.state = CAN_STATE_STOPPED;
1367}
1368
1369/**
1370 * xcan_open - Driver open routine
1371 * @ndev:	Pointer to net_device structure
1372 *
1373 * This is the driver open routine.
1374 * Return: 0 on success and failure value on error
1375 */
1376static int xcan_open(struct net_device *ndev)
1377{
1378	struct xcan_priv *priv = netdev_priv(ndev);
1379	int ret;
1380
 
 
 
 
1381	ret = pm_runtime_get_sync(priv->dev);
1382	if (ret < 0) {
1383		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1384			   __func__, ret);
1385		return ret;
1386	}
1387
1388	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1389			  ndev->name, ndev);
1390	if (ret < 0) {
1391		netdev_err(ndev, "irq allocation for CAN failed\n");
1392		goto err;
1393	}
1394
1395	/* Set chip into reset mode */
1396	ret = set_reset_mode(ndev);
1397	if (ret < 0) {
1398		netdev_err(ndev, "mode resetting failed!\n");
1399		goto err_irq;
1400	}
1401
1402	/* Common open */
1403	ret = open_candev(ndev);
1404	if (ret)
1405		goto err_irq;
1406
1407	ret = xcan_chip_start(ndev);
1408	if (ret < 0) {
1409		netdev_err(ndev, "xcan_chip_start failed!\n");
1410		goto err_candev;
1411	}
1412
1413	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1414	napi_enable(&priv->napi);
1415	netif_start_queue(ndev);
1416
1417	return 0;
1418
1419err_candev:
1420	close_candev(ndev);
1421err_irq:
1422	free_irq(ndev->irq, ndev);
1423err:
1424	pm_runtime_put(priv->dev);
 
1425
1426	return ret;
1427}
1428
1429/**
1430 * xcan_close - Driver close routine
1431 * @ndev:	Pointer to net_device structure
1432 *
1433 * Return: 0 always
1434 */
1435static int xcan_close(struct net_device *ndev)
1436{
1437	struct xcan_priv *priv = netdev_priv(ndev);
1438
1439	netif_stop_queue(ndev);
1440	napi_disable(&priv->napi);
1441	xcan_chip_stop(ndev);
1442	free_irq(ndev->irq, ndev);
1443	close_candev(ndev);
1444
1445	can_led_event(ndev, CAN_LED_EVENT_STOP);
1446	pm_runtime_put(priv->dev);
 
1447
1448	return 0;
1449}
1450
1451/**
1452 * xcan_get_berr_counter - error counter routine
1453 * @ndev:	Pointer to net_device structure
1454 * @bec:	Pointer to can_berr_counter structure
1455 *
1456 * This is the driver error counter routine.
1457 * Return: 0 on success and failure value on error
1458 */
1459static int xcan_get_berr_counter(const struct net_device *ndev,
1460				 struct can_berr_counter *bec)
1461{
1462	struct xcan_priv *priv = netdev_priv(ndev);
1463	int ret;
1464
1465	ret = pm_runtime_get_sync(priv->dev);
1466	if (ret < 0) {
1467		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1468			   __func__, ret);
 
1469		return ret;
1470	}
1471
1472	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1473	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1474			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1475
1476	pm_runtime_put(priv->dev);
1477
1478	return 0;
1479}
1480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481static const struct net_device_ops xcan_netdev_ops = {
1482	.ndo_open	= xcan_open,
1483	.ndo_stop	= xcan_close,
1484	.ndo_start_xmit	= xcan_start_xmit,
1485	.ndo_change_mtu	= can_change_mtu,
1486};
1487
 
 
 
 
1488/**
1489 * xcan_suspend - Suspend method for the driver
1490 * @dev:	Address of the device structure
1491 *
1492 * Put the driver into low power mode.
1493 * Return: 0 on success and failure value on error
1494 */
1495static int __maybe_unused xcan_suspend(struct device *dev)
1496{
1497	struct net_device *ndev = dev_get_drvdata(dev);
1498
1499	if (netif_running(ndev)) {
1500		netif_stop_queue(ndev);
1501		netif_device_detach(ndev);
1502		xcan_chip_stop(ndev);
1503	}
1504
1505	return pm_runtime_force_suspend(dev);
1506}
1507
1508/**
1509 * xcan_resume - Resume from suspend
1510 * @dev:	Address of the device structure
1511 *
1512 * Resume operation after suspend.
1513 * Return: 0 on success and failure value on error
1514 */
1515static int __maybe_unused xcan_resume(struct device *dev)
1516{
1517	struct net_device *ndev = dev_get_drvdata(dev);
1518	int ret;
1519
1520	ret = pm_runtime_force_resume(dev);
1521	if (ret) {
1522		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1523		return ret;
1524	}
1525
1526	if (netif_running(ndev)) {
1527		ret = xcan_chip_start(ndev);
1528		if (ret) {
1529			dev_err(dev, "xcan_chip_start failed on resume\n");
1530			return ret;
1531		}
1532
1533		netif_device_attach(ndev);
1534		netif_start_queue(ndev);
1535	}
1536
1537	return 0;
1538}
1539
1540/**
1541 * xcan_runtime_suspend - Runtime suspend method for the driver
1542 * @dev:	Address of the device structure
1543 *
1544 * Put the driver into low power mode.
1545 * Return: 0 always
1546 */
1547static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1548{
1549	struct net_device *ndev = dev_get_drvdata(dev);
1550	struct xcan_priv *priv = netdev_priv(ndev);
1551
1552	clk_disable_unprepare(priv->bus_clk);
1553	clk_disable_unprepare(priv->can_clk);
1554
1555	return 0;
1556}
1557
1558/**
1559 * xcan_runtime_resume - Runtime resume from suspend
1560 * @dev:	Address of the device structure
1561 *
1562 * Resume operation after suspend.
1563 * Return: 0 on success and failure value on error
1564 */
1565static int __maybe_unused xcan_runtime_resume(struct device *dev)
1566{
1567	struct net_device *ndev = dev_get_drvdata(dev);
1568	struct xcan_priv *priv = netdev_priv(ndev);
1569	int ret;
1570
1571	ret = clk_prepare_enable(priv->bus_clk);
1572	if (ret) {
1573		dev_err(dev, "Cannot enable clock.\n");
1574		return ret;
1575	}
1576	ret = clk_prepare_enable(priv->can_clk);
1577	if (ret) {
1578		dev_err(dev, "Cannot enable clock.\n");
1579		clk_disable_unprepare(priv->bus_clk);
1580		return ret;
1581	}
1582
1583	return 0;
1584}
1585
1586static const struct dev_pm_ops xcan_dev_pm_ops = {
1587	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1588	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1589};
1590
1591static const struct xcan_devtype_data xcan_zynq_data = {
1592	.cantype = XZYNQ_CANPS,
1593	.flags = XCAN_FLAG_TXFEMP,
1594	.bittiming_const = &xcan_bittiming_const,
1595	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1596	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1597	.bus_clk_name = "pclk",
1598};
1599
1600static const struct xcan_devtype_data xcan_axi_data = {
1601	.cantype = XAXI_CAN,
1602	.bittiming_const = &xcan_bittiming_const,
1603	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1604	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1605	.bus_clk_name = "s_axi_aclk",
1606};
1607
1608static const struct xcan_devtype_data xcan_canfd_data = {
1609	.cantype = XAXI_CANFD,
1610	.flags = XCAN_FLAG_EXT_FILTERS |
1611		 XCAN_FLAG_RXMNF |
1612		 XCAN_FLAG_TX_MAILBOXES |
1613		 XCAN_FLAG_RX_FIFO_MULTI,
1614	.bittiming_const = &xcan_bittiming_const_canfd,
1615	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1616	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1617	.bus_clk_name = "s_axi_aclk",
1618};
1619
1620static const struct xcan_devtype_data xcan_canfd2_data = {
1621	.cantype = XAXI_CANFD_2_0,
1622	.flags = XCAN_FLAG_EXT_FILTERS |
1623		 XCAN_FLAG_RXMNF |
1624		 XCAN_FLAG_TX_MAILBOXES |
1625		 XCAN_FLAG_CANFD_2 |
1626		 XCAN_FLAG_RX_FIFO_MULTI,
1627	.bittiming_const = &xcan_bittiming_const_canfd2,
1628	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1629	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1630	.bus_clk_name = "s_axi_aclk",
1631};
1632
1633/* Match table for OF platform binding */
1634static const struct of_device_id xcan_of_match[] = {
1635	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1636	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1637	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1638	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1639	{ /* end of list */ },
1640};
1641MODULE_DEVICE_TABLE(of, xcan_of_match);
1642
1643/**
1644 * xcan_probe - Platform registration call
1645 * @pdev:	Handle to the platform device structure
1646 *
1647 * This function does all the memory allocation and registration for the CAN
1648 * device.
1649 *
1650 * Return: 0 on success and failure value on error
1651 */
1652static int xcan_probe(struct platform_device *pdev)
1653{
1654	struct resource *res; /* IO mem resources */
1655	struct net_device *ndev;
1656	struct xcan_priv *priv;
1657	const struct of_device_id *of_id;
1658	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1659	void __iomem *addr;
1660	int ret;
1661	int rx_max, tx_max;
1662	int hw_tx_max, hw_rx_max;
1663	const char *hw_tx_max_property;
1664
1665	/* Get the virtual base address for the device */
1666	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1667	addr = devm_ioremap_resource(&pdev->dev, res);
1668	if (IS_ERR(addr)) {
1669		ret = PTR_ERR(addr);
1670		goto err;
1671	}
1672
1673	of_id = of_match_device(xcan_of_match, &pdev->dev);
1674	if (of_id && of_id->data)
1675		devtype = of_id->data;
1676
1677	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1678			     "tx-mailbox-count" : "tx-fifo-depth";
1679
1680	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1681				   &hw_tx_max);
1682	if (ret < 0) {
1683		dev_err(&pdev->dev, "missing %s property\n",
1684			hw_tx_max_property);
1685		goto err;
1686	}
1687
1688	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1689				   &hw_rx_max);
1690	if (ret < 0) {
1691		dev_err(&pdev->dev,
1692			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1693		goto err;
1694	}
1695
1696	/* With TX FIFO:
1697	 *
1698	 * There is no way to directly figure out how many frames have been
1699	 * sent when the TXOK interrupt is processed. If TXFEMP
1700	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1701	 * to determine if 1 or 2 frames have been sent.
1702	 * Theoretically we should be able to use TXFWMEMP to determine up
1703	 * to 3 frames, but it seems that after putting a second frame in the
1704	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1705	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1706	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1707	 * completely synchronized with the rest of the bits?
1708	 *
1709	 * With TX mailboxes:
1710	 *
1711	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1712	 * we submit frames one at a time.
1713	 */
1714	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1715	    (devtype->flags & XCAN_FLAG_TXFEMP))
1716		tx_max = min(hw_tx_max, 2);
1717	else
1718		tx_max = 1;
1719
1720	rx_max = hw_rx_max;
1721
1722	/* Create a CAN device instance */
1723	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1724	if (!ndev)
1725		return -ENOMEM;
1726
1727	priv = netdev_priv(ndev);
1728	priv->dev = &pdev->dev;
1729	priv->can.bittiming_const = devtype->bittiming_const;
1730	priv->can.do_set_mode = xcan_do_set_mode;
1731	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1732	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1733					CAN_CTRLMODE_BERR_REPORTING;
 
 
 
 
 
 
 
 
 
 
1734
1735	if (devtype->cantype == XAXI_CANFD)
1736		priv->can.data_bittiming_const =
1737			&xcan_data_bittiming_const_canfd;
 
 
1738
1739	if (devtype->cantype == XAXI_CANFD_2_0)
1740		priv->can.data_bittiming_const =
1741			&xcan_data_bittiming_const_canfd2;
 
 
1742
1743	if (devtype->cantype == XAXI_CANFD ||
1744	    devtype->cantype == XAXI_CANFD_2_0)
1745		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
 
 
 
1746
1747	priv->reg_base = addr;
1748	priv->tx_max = tx_max;
1749	priv->devtype = *devtype;
1750	spin_lock_init(&priv->tx_lock);
1751
1752	/* Get IRQ for the device */
1753	ndev->irq = platform_get_irq(pdev, 0);
 
 
 
 
 
1754	ndev->flags |= IFF_ECHO;	/* We support local echo */
1755
1756	platform_set_drvdata(pdev, ndev);
1757	SET_NETDEV_DEV(ndev, &pdev->dev);
1758	ndev->netdev_ops = &xcan_netdev_ops;
 
1759
1760	/* Getting the CAN can_clk info */
1761	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1762	if (IS_ERR(priv->can_clk)) {
1763		if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1764			dev_err(&pdev->dev, "Device clock not found.\n");
1765		ret = PTR_ERR(priv->can_clk);
1766		goto err_free;
1767	}
1768
1769	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1770	if (IS_ERR(priv->bus_clk)) {
1771		dev_err(&pdev->dev, "bus clock not found\n");
1772		ret = PTR_ERR(priv->bus_clk);
1773		goto err_free;
 
 
 
 
 
 
 
1774	}
 
1775
1776	priv->write_reg = xcan_write_reg_le;
1777	priv->read_reg = xcan_read_reg_le;
1778
1779	pm_runtime_enable(&pdev->dev);
1780	ret = pm_runtime_get_sync(&pdev->dev);
1781	if (ret < 0) {
1782		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1783			   __func__, ret);
1784		goto err_pmdisable;
1785	}
1786
1787	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1788		priv->write_reg = xcan_write_reg_be;
1789		priv->read_reg = xcan_read_reg_be;
1790	}
1791
1792	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1793
1794	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1795
1796	ret = register_candev(ndev);
1797	if (ret) {
1798		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1799		goto err_disableclks;
1800	}
1801
1802	devm_can_led_init(ndev);
 
1803
1804	pm_runtime_put(&pdev->dev);
 
 
 
1805
1806	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1807		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1808		   hw_tx_max, priv->tx_max);
1809
1810	return 0;
1811
1812err_disableclks:
1813	pm_runtime_put(priv->dev);
1814err_pmdisable:
1815	pm_runtime_disable(&pdev->dev);
 
 
1816err_free:
1817	free_candev(ndev);
1818err:
1819	return ret;
1820}
1821
1822/**
1823 * xcan_remove - Unregister the device after releasing the resources
1824 * @pdev:	Handle to the platform device structure
1825 *
1826 * This function frees all the resources allocated to the device.
1827 * Return: 0 always
1828 */
1829static int xcan_remove(struct platform_device *pdev)
1830{
1831	struct net_device *ndev = platform_get_drvdata(pdev);
1832	struct xcan_priv *priv = netdev_priv(ndev);
1833
1834	unregister_candev(ndev);
1835	pm_runtime_disable(&pdev->dev);
1836	netif_napi_del(&priv->napi);
1837	free_candev(ndev);
1838
1839	return 0;
1840}
1841
1842static struct platform_driver xcan_driver = {
1843	.probe = xcan_probe,
1844	.remove	= xcan_remove,
1845	.driver	= {
1846		.name = DRIVER_NAME,
1847		.pm = &xcan_dev_pm_ops,
1848		.of_match_table	= xcan_of_match,
1849	},
1850};
1851
1852module_platform_driver(xcan_driver);
1853
1854MODULE_LICENSE("GPL");
1855MODULE_AUTHOR("Xilinx Inc");
1856MODULE_DESCRIPTION("Xilinx CAN interface");