Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2006, Intel Corporation.
   4 *
   5 * Copyright (C) 2006-2008 Intel Corporation
   6 * Author: Ashok Raj <ashok.raj@intel.com>
   7 * Author: Shaohua Li <shaohua.li@intel.com>
   8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * This file implements early detection/parsing of Remapping Devices
  11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  12 * tables.
  13 *
  14 * These routines are used by both DMA-remapping and Interrupt-remapping
  15 */
  16
  17#define pr_fmt(fmt)     "DMAR: " fmt
  18
  19#include <linux/pci.h>
  20#include <linux/dmar.h>
  21#include <linux/iova.h>
  22#include <linux/timer.h>
  23#include <linux/irq.h>
  24#include <linux/interrupt.h>
  25#include <linux/tboot.h>
  26#include <linux/dmi.h>
  27#include <linux/slab.h>
  28#include <linux/iommu.h>
  29#include <linux/numa.h>
  30#include <linux/limits.h>
  31#include <asm/irq_remapping.h>
  32
  33#include "iommu.h"
  34#include "../irq_remapping.h"
  35#include "perf.h"
  36#include "trace.h"
  37#include "perfmon.h"
  38
  39typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
  40struct dmar_res_callback {
  41	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
  42	void			*arg[ACPI_DMAR_TYPE_RESERVED];
  43	bool			ignore_unhandled;
  44	bool			print_entry;
  45};
  46
  47/*
  48 * Assumptions:
  49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
  50 *    before IO devices managed by that unit.
  51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
  52 *    after IO devices managed by that unit.
  53 * 3) Hotplug events are rare.
  54 *
  55 * Locking rules for DMA and interrupt remapping related global data structures:
  56 * 1) Use dmar_global_lock in process context
  57 * 2) Use RCU in interrupt context
  58 */
  59DECLARE_RWSEM(dmar_global_lock);
  60LIST_HEAD(dmar_drhd_units);
  61
  62struct acpi_table_header * __initdata dmar_tbl;
  63static int dmar_dev_scope_status = 1;
  64static DEFINE_IDA(dmar_seq_ids);
  65
  66static int alloc_iommu(struct dmar_drhd_unit *drhd);
  67static void free_iommu(struct intel_iommu *iommu);
  68
  69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  70{
  71	/*
  72	 * add INCLUDE_ALL at the tail, so scan the list will find it at
  73	 * the very end.
  74	 */
  75	if (drhd->include_all)
  76		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
  77	else
  78		list_add_rcu(&drhd->list, &dmar_drhd_units);
  79}
  80
  81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
  82{
  83	struct acpi_dmar_device_scope *scope;
  84
  85	*cnt = 0;
  86	while (start < end) {
  87		scope = start;
  88		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
  89		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  90		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  91			(*cnt)++;
  92		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
  93			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
  94			pr_warn("Unsupported device scope\n");
  95		}
  96		start += scope->length;
  97	}
  98	if (*cnt == 0)
  99		return NULL;
 100
 101	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
 102}
 103
 104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
 105{
 106	int i;
 107	struct device *tmp_dev;
 108
 109	if (*devices && *cnt) {
 110		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
 111			put_device(tmp_dev);
 112		kfree(*devices);
 113	}
 114
 115	*devices = NULL;
 116	*cnt = 0;
 117}
 118
 119/* Optimize out kzalloc()/kfree() for normal cases */
 120static char dmar_pci_notify_info_buf[64];
 121
 122static struct dmar_pci_notify_info *
 123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
 124{
 125	int level = 0;
 126	size_t size;
 127	struct pci_dev *tmp;
 128	struct dmar_pci_notify_info *info;
 129
 130	/*
 131	 * Ignore devices that have a domain number higher than what can
 132	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
 133	 */
 134	if (pci_domain_nr(dev->bus) > U16_MAX)
 135		return NULL;
 136
 137	/* Only generate path[] for device addition event */
 138	if (event == BUS_NOTIFY_ADD_DEVICE)
 139		for (tmp = dev; tmp; tmp = tmp->bus->self)
 140			level++;
 141
 142	size = struct_size(info, path, level);
 143	if (size <= sizeof(dmar_pci_notify_info_buf)) {
 144		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
 145	} else {
 146		info = kzalloc(size, GFP_KERNEL);
 147		if (!info) {
 148			if (dmar_dev_scope_status == 0)
 149				dmar_dev_scope_status = -ENOMEM;
 150			return NULL;
 151		}
 152	}
 153
 154	info->event = event;
 155	info->dev = dev;
 156	info->seg = pci_domain_nr(dev->bus);
 157	info->level = level;
 158	if (event == BUS_NOTIFY_ADD_DEVICE) {
 159		for (tmp = dev; tmp; tmp = tmp->bus->self) {
 160			level--;
 161			info->path[level].bus = tmp->bus->number;
 162			info->path[level].device = PCI_SLOT(tmp->devfn);
 163			info->path[level].function = PCI_FUNC(tmp->devfn);
 164			if (pci_is_root_bus(tmp->bus))
 165				info->bus = tmp->bus->number;
 166		}
 167	}
 168
 169	return info;
 170}
 171
 172static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
 173{
 174	if ((void *)info != dmar_pci_notify_info_buf)
 175		kfree(info);
 176}
 177
 178static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
 179				struct acpi_dmar_pci_path *path, int count)
 180{
 181	int i;
 182
 183	if (info->bus != bus)
 184		goto fallback;
 185	if (info->level != count)
 186		goto fallback;
 187
 188	for (i = 0; i < count; i++) {
 189		if (path[i].device != info->path[i].device ||
 190		    path[i].function != info->path[i].function)
 191			goto fallback;
 192	}
 193
 194	return true;
 195
 196fallback:
 197
 198	if (count != 1)
 199		return false;
 200
 201	i = info->level - 1;
 202	if (bus              == info->path[i].bus &&
 203	    path[0].device   == info->path[i].device &&
 204	    path[0].function == info->path[i].function) {
 205		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
 206			bus, path[0].device, path[0].function);
 207		return true;
 208	}
 209
 210	return false;
 211}
 212
 213/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
 214int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
 215			  void *start, void*end, u16 segment,
 216			  struct dmar_dev_scope *devices,
 217			  int devices_cnt)
 218{
 219	int i, level;
 220	struct device *tmp, *dev = &info->dev->dev;
 221	struct acpi_dmar_device_scope *scope;
 222	struct acpi_dmar_pci_path *path;
 223
 224	if (segment != info->seg)
 225		return 0;
 226
 227	for (; start < end; start += scope->length) {
 228		scope = start;
 229		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 230		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 231			continue;
 232
 233		path = (struct acpi_dmar_pci_path *)(scope + 1);
 234		level = (scope->length - sizeof(*scope)) / sizeof(*path);
 235		if (!dmar_match_pci_path(info, scope->bus, path, level))
 236			continue;
 237
 238		/*
 239		 * We expect devices with endpoint scope to have normal PCI
 240		 * headers, and devices with bridge scope to have bridge PCI
 241		 * headers.  However PCI NTB devices may be listed in the
 242		 * DMAR table with bridge scope, even though they have a
 243		 * normal PCI header.  NTB devices are identified by class
 244		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
 245		 * for this special case.
 246		 */
 247		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 248		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
 249		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
 250		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
 251		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
 252			pr_warn("Device scope type does not match for %s\n",
 253				pci_name(info->dev));
 254			return -EINVAL;
 255		}
 256
 257		for_each_dev_scope(devices, devices_cnt, i, tmp)
 258			if (tmp == NULL) {
 259				devices[i].bus = info->dev->bus->number;
 260				devices[i].devfn = info->dev->devfn;
 261				rcu_assign_pointer(devices[i].dev,
 262						   get_device(dev));
 263				return 1;
 264			}
 265		if (WARN_ON(i >= devices_cnt))
 266			return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
 273			  struct dmar_dev_scope *devices, int count)
 274{
 275	int index;
 276	struct device *tmp;
 277
 278	if (info->seg != segment)
 279		return 0;
 280
 281	for_each_active_dev_scope(devices, count, index, tmp)
 282		if (tmp == &info->dev->dev) {
 283			RCU_INIT_POINTER(devices[index].dev, NULL);
 284			synchronize_rcu();
 285			put_device(tmp);
 286			return 1;
 287		}
 288
 289	return 0;
 290}
 291
 292static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
 293{
 294	int ret = 0;
 295	struct dmar_drhd_unit *dmaru;
 296	struct acpi_dmar_hardware_unit *drhd;
 297
 298	for_each_drhd_unit(dmaru) {
 299		if (dmaru->include_all)
 300			continue;
 301
 302		drhd = container_of(dmaru->hdr,
 303				    struct acpi_dmar_hardware_unit, header);
 304		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
 305				((void *)drhd) + drhd->header.length,
 306				dmaru->segment,
 307				dmaru->devices, dmaru->devices_cnt);
 308		if (ret)
 309			break;
 310	}
 311	if (ret >= 0)
 312		ret = dmar_iommu_notify_scope_dev(info);
 313	if (ret < 0 && dmar_dev_scope_status == 0)
 314		dmar_dev_scope_status = ret;
 315
 316	if (ret >= 0)
 317		intel_irq_remap_add_device(info);
 318
 319	return ret;
 320}
 321
 322static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
 323{
 324	struct dmar_drhd_unit *dmaru;
 325
 326	for_each_drhd_unit(dmaru)
 327		if (dmar_remove_dev_scope(info, dmaru->segment,
 328			dmaru->devices, dmaru->devices_cnt))
 329			break;
 330	dmar_iommu_notify_scope_dev(info);
 331}
 332
 333static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
 334{
 335	struct pci_dev *physfn = pci_physfn(pdev);
 336
 337	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
 338}
 339
 340static int dmar_pci_bus_notifier(struct notifier_block *nb,
 341				 unsigned long action, void *data)
 342{
 343	struct pci_dev *pdev = to_pci_dev(data);
 344	struct dmar_pci_notify_info *info;
 345
 346	/* Only care about add/remove events for physical functions.
 347	 * For VFs we actually do the lookup based on the corresponding
 348	 * PF in device_to_iommu() anyway. */
 349	if (pdev->is_virtfn) {
 350		/*
 351		 * Ensure that the VF device inherits the irq domain of the
 352		 * PF device. Ideally the device would inherit the domain
 353		 * from the bus, but DMAR can have multiple units per bus
 354		 * which makes this impossible. The VF 'bus' could inherit
 355		 * from the PF device, but that's yet another x86'sism to
 356		 * inflict on everybody else.
 357		 */
 358		if (action == BUS_NOTIFY_ADD_DEVICE)
 359			vf_inherit_msi_domain(pdev);
 360		return NOTIFY_DONE;
 361	}
 362
 363	if (action != BUS_NOTIFY_ADD_DEVICE &&
 364	    action != BUS_NOTIFY_REMOVED_DEVICE)
 365		return NOTIFY_DONE;
 366
 367	info = dmar_alloc_pci_notify_info(pdev, action);
 368	if (!info)
 369		return NOTIFY_DONE;
 370
 371	down_write(&dmar_global_lock);
 372	if (action == BUS_NOTIFY_ADD_DEVICE)
 373		dmar_pci_bus_add_dev(info);
 374	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
 375		dmar_pci_bus_del_dev(info);
 376	up_write(&dmar_global_lock);
 377
 378	dmar_free_pci_notify_info(info);
 379
 380	return NOTIFY_OK;
 381}
 382
 383static struct notifier_block dmar_pci_bus_nb = {
 384	.notifier_call = dmar_pci_bus_notifier,
 385	.priority = 1,
 386};
 387
 388static struct dmar_drhd_unit *
 389dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
 390{
 391	struct dmar_drhd_unit *dmaru;
 392
 393	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
 394				dmar_rcu_check())
 395		if (dmaru->segment == drhd->segment &&
 396		    dmaru->reg_base_addr == drhd->address)
 397			return dmaru;
 398
 399	return NULL;
 400}
 401
 402/*
 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 404 * structure which uniquely represent one DMA remapping hardware unit
 405 * present in the platform
 406 */
 407static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
 408{
 409	struct acpi_dmar_hardware_unit *drhd;
 410	struct dmar_drhd_unit *dmaru;
 411	int ret;
 412
 413	drhd = (struct acpi_dmar_hardware_unit *)header;
 414	dmaru = dmar_find_dmaru(drhd);
 415	if (dmaru)
 416		goto out;
 417
 418	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
 419	if (!dmaru)
 420		return -ENOMEM;
 421
 422	/*
 423	 * If header is allocated from slab by ACPI _DSM method, we need to
 424	 * copy the content because the memory buffer will be freed on return.
 425	 */
 426	dmaru->hdr = (void *)(dmaru + 1);
 427	memcpy(dmaru->hdr, header, header->length);
 428	dmaru->reg_base_addr = drhd->address;
 429	dmaru->segment = drhd->segment;
 430	/* The size of the register set is 2 ^ N 4 KB pages. */
 431	dmaru->reg_size = 1UL << (drhd->size + 12);
 432	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 433	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
 434					      ((void *)drhd) + drhd->header.length,
 435					      &dmaru->devices_cnt);
 436	if (dmaru->devices_cnt && dmaru->devices == NULL) {
 437		kfree(dmaru);
 438		return -ENOMEM;
 439	}
 440
 441	ret = alloc_iommu(dmaru);
 442	if (ret) {
 443		dmar_free_dev_scope(&dmaru->devices,
 444				    &dmaru->devices_cnt);
 445		kfree(dmaru);
 446		return ret;
 447	}
 448	dmar_register_drhd_unit(dmaru);
 449
 450out:
 451	if (arg)
 452		(*(int *)arg)++;
 453
 454	return 0;
 455}
 456
 457static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
 458{
 459	if (dmaru->devices && dmaru->devices_cnt)
 460		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
 461	if (dmaru->iommu)
 462		free_iommu(dmaru->iommu);
 463	kfree(dmaru);
 464}
 465
 466static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
 467				      void *arg)
 468{
 469	struct acpi_dmar_andd *andd = (void *)header;
 470
 471	/* Check for NUL termination within the designated length */
 472	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
 473		pr_warn(FW_BUG
 474			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
 475			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 476			   dmi_get_system_info(DMI_BIOS_VENDOR),
 477			   dmi_get_system_info(DMI_BIOS_VERSION),
 478			   dmi_get_system_info(DMI_PRODUCT_VERSION));
 479		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 480		return -EINVAL;
 481	}
 482	pr_info("ANDD device: %x name: %s\n", andd->device_number,
 483		andd->device_name);
 484
 485	return 0;
 486}
 487
 488#ifdef CONFIG_ACPI_NUMA
 489static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
 490{
 491	struct acpi_dmar_rhsa *rhsa;
 492	struct dmar_drhd_unit *drhd;
 493
 494	rhsa = (struct acpi_dmar_rhsa *)header;
 495	for_each_drhd_unit(drhd) {
 496		if (drhd->reg_base_addr == rhsa->base_address) {
 497			int node = pxm_to_node(rhsa->proximity_domain);
 498
 499			if (node != NUMA_NO_NODE && !node_online(node))
 500				node = NUMA_NO_NODE;
 501			drhd->iommu->node = node;
 502			return 0;
 503		}
 504	}
 505	pr_warn(FW_BUG
 506		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 507		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 508		rhsa->base_address,
 509		dmi_get_system_info(DMI_BIOS_VENDOR),
 510		dmi_get_system_info(DMI_BIOS_VERSION),
 511		dmi_get_system_info(DMI_PRODUCT_VERSION));
 512	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 513
 514	return 0;
 515}
 516#else
 517#define	dmar_parse_one_rhsa		dmar_res_noop
 518#endif
 519
 520static void
 521dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 522{
 523	struct acpi_dmar_hardware_unit *drhd;
 524	struct acpi_dmar_reserved_memory *rmrr;
 525	struct acpi_dmar_atsr *atsr;
 526	struct acpi_dmar_rhsa *rhsa;
 527	struct acpi_dmar_satc *satc;
 528
 529	switch (header->type) {
 530	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 531		drhd = container_of(header, struct acpi_dmar_hardware_unit,
 532				    header);
 533		pr_info("DRHD base: %#016Lx flags: %#x\n",
 534			(unsigned long long)drhd->address, drhd->flags);
 535		break;
 536	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 537		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 538				    header);
 539		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
 540			(unsigned long long)rmrr->base_address,
 541			(unsigned long long)rmrr->end_address);
 542		break;
 543	case ACPI_DMAR_TYPE_ROOT_ATS:
 544		atsr = container_of(header, struct acpi_dmar_atsr, header);
 545		pr_info("ATSR flags: %#x\n", atsr->flags);
 546		break;
 547	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
 548		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 549		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
 550		       (unsigned long long)rhsa->base_address,
 551		       rhsa->proximity_domain);
 552		break;
 553	case ACPI_DMAR_TYPE_NAMESPACE:
 554		/* We don't print this here because we need to sanity-check
 555		   it first. So print it in dmar_parse_one_andd() instead. */
 556		break;
 557	case ACPI_DMAR_TYPE_SATC:
 558		satc = container_of(header, struct acpi_dmar_satc, header);
 559		pr_info("SATC flags: 0x%x\n", satc->flags);
 560		break;
 561	}
 562}
 563
 564/**
 565 * dmar_table_detect - checks to see if the platform supports DMAR devices
 566 */
 567static int __init dmar_table_detect(void)
 568{
 569	acpi_status status = AE_OK;
 570
 571	/* if we could find DMAR table, then there are DMAR devices */
 572	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
 573
 574	if (ACPI_SUCCESS(status) && !dmar_tbl) {
 575		pr_warn("Unable to map DMAR\n");
 576		status = AE_NOT_FOUND;
 577	}
 578
 579	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
 580}
 581
 582static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
 583				       size_t len, struct dmar_res_callback *cb)
 584{
 585	struct acpi_dmar_header *iter, *next;
 586	struct acpi_dmar_header *end = ((void *)start) + len;
 587
 588	for (iter = start; iter < end; iter = next) {
 589		next = (void *)iter + iter->length;
 590		if (iter->length == 0) {
 591			/* Avoid looping forever on bad ACPI tables */
 592			pr_debug(FW_BUG "Invalid 0-length structure\n");
 593			break;
 594		} else if (next > end) {
 595			/* Avoid passing table end */
 596			pr_warn(FW_BUG "Record passes table end\n");
 597			return -EINVAL;
 598		}
 599
 600		if (cb->print_entry)
 601			dmar_table_print_dmar_entry(iter);
 602
 603		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
 604			/* continue for forward compatibility */
 605			pr_debug("Unknown DMAR structure type %d\n",
 606				 iter->type);
 607		} else if (cb->cb[iter->type]) {
 608			int ret;
 609
 610			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
 611			if (ret)
 612				return ret;
 613		} else if (!cb->ignore_unhandled) {
 614			pr_warn("No handler for DMAR structure type %d\n",
 615				iter->type);
 616			return -EINVAL;
 617		}
 618	}
 619
 620	return 0;
 621}
 622
 623static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
 624				       struct dmar_res_callback *cb)
 625{
 626	return dmar_walk_remapping_entries((void *)(dmar + 1),
 627			dmar->header.length - sizeof(*dmar), cb);
 628}
 629
 630/**
 631 * parse_dmar_table - parses the DMA reporting table
 632 */
 633static int __init
 634parse_dmar_table(void)
 635{
 636	struct acpi_table_dmar *dmar;
 637	int drhd_count = 0;
 638	int ret;
 639	struct dmar_res_callback cb = {
 640		.print_entry = true,
 641		.ignore_unhandled = true,
 642		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
 643		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
 644		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
 645		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
 646		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
 647		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
 648		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
 649	};
 650
 651	/*
 652	 * Do it again, earlier dmar_tbl mapping could be mapped with
 653	 * fixed map.
 654	 */
 655	dmar_table_detect();
 656
 657	/*
 658	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 659	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 660	 */
 661	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 662
 663	dmar = (struct acpi_table_dmar *)dmar_tbl;
 664	if (!dmar)
 665		return -ENODEV;
 666
 667	if (dmar->width < PAGE_SHIFT - 1) {
 668		pr_warn("Invalid DMAR haw\n");
 669		return -EINVAL;
 670	}
 671
 672	pr_info("Host address width %d\n", dmar->width + 1);
 673	ret = dmar_walk_dmar_table(dmar, &cb);
 674	if (ret == 0 && drhd_count == 0)
 675		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
 676
 677	return ret;
 678}
 679
 680static int dmar_pci_device_match(struct dmar_dev_scope devices[],
 681				 int cnt, struct pci_dev *dev)
 682{
 683	int index;
 684	struct device *tmp;
 685
 686	while (dev) {
 687		for_each_active_dev_scope(devices, cnt, index, tmp)
 688			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
 689				return 1;
 690
 691		/* Check our parent */
 692		dev = dev->bus->self;
 693	}
 694
 695	return 0;
 696}
 697
 698struct dmar_drhd_unit *
 699dmar_find_matched_drhd_unit(struct pci_dev *dev)
 700{
 701	struct dmar_drhd_unit *dmaru;
 702	struct acpi_dmar_hardware_unit *drhd;
 703
 704	dev = pci_physfn(dev);
 705
 706	rcu_read_lock();
 707	for_each_drhd_unit(dmaru) {
 708		drhd = container_of(dmaru->hdr,
 709				    struct acpi_dmar_hardware_unit,
 710				    header);
 711
 712		if (dmaru->include_all &&
 713		    drhd->segment == pci_domain_nr(dev->bus))
 714			goto out;
 715
 716		if (dmar_pci_device_match(dmaru->devices,
 717					  dmaru->devices_cnt, dev))
 718			goto out;
 719	}
 720	dmaru = NULL;
 721out:
 722	rcu_read_unlock();
 723
 724	return dmaru;
 725}
 726
 727static void __init dmar_acpi_insert_dev_scope(u8 device_number,
 728					      struct acpi_device *adev)
 729{
 730	struct dmar_drhd_unit *dmaru;
 731	struct acpi_dmar_hardware_unit *drhd;
 732	struct acpi_dmar_device_scope *scope;
 733	struct device *tmp;
 734	int i;
 735	struct acpi_dmar_pci_path *path;
 736
 737	for_each_drhd_unit(dmaru) {
 738		drhd = container_of(dmaru->hdr,
 739				    struct acpi_dmar_hardware_unit,
 740				    header);
 741
 742		for (scope = (void *)(drhd + 1);
 743		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
 744		     scope = ((void *)scope) + scope->length) {
 745			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
 746				continue;
 747			if (scope->enumeration_id != device_number)
 748				continue;
 749
 750			path = (void *)(scope + 1);
 751			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
 752				dev_name(&adev->dev), dmaru->reg_base_addr,
 753				scope->bus, path->device, path->function);
 754			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
 755				if (tmp == NULL) {
 756					dmaru->devices[i].bus = scope->bus;
 757					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
 758									    path->function);
 759					rcu_assign_pointer(dmaru->devices[i].dev,
 760							   get_device(&adev->dev));
 761					return;
 762				}
 763			BUG_ON(i >= dmaru->devices_cnt);
 764		}
 765	}
 766	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
 767		device_number, dev_name(&adev->dev));
 768}
 769
 770static int __init dmar_acpi_dev_scope_init(void)
 771{
 772	struct acpi_dmar_andd *andd;
 773
 774	if (dmar_tbl == NULL)
 775		return -ENODEV;
 776
 777	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
 778	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
 779	     andd = ((void *)andd) + andd->header.length) {
 780		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
 781			acpi_handle h;
 782			struct acpi_device *adev;
 783
 784			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
 785							  andd->device_name,
 786							  &h))) {
 787				pr_err("Failed to find handle for ACPI object %s\n",
 788				       andd->device_name);
 789				continue;
 790			}
 791			adev = acpi_fetch_acpi_dev(h);
 792			if (!adev) {
 793				pr_err("Failed to get device for ACPI object %s\n",
 794				       andd->device_name);
 795				continue;
 796			}
 797			dmar_acpi_insert_dev_scope(andd->device_number, adev);
 798		}
 799	}
 800	return 0;
 801}
 802
 803int __init dmar_dev_scope_init(void)
 804{
 805	struct pci_dev *dev = NULL;
 806	struct dmar_pci_notify_info *info;
 807
 808	if (dmar_dev_scope_status != 1)
 809		return dmar_dev_scope_status;
 810
 811	if (list_empty(&dmar_drhd_units)) {
 812		dmar_dev_scope_status = -ENODEV;
 813	} else {
 814		dmar_dev_scope_status = 0;
 815
 816		dmar_acpi_dev_scope_init();
 817
 818		for_each_pci_dev(dev) {
 819			if (dev->is_virtfn)
 820				continue;
 821
 822			info = dmar_alloc_pci_notify_info(dev,
 823					BUS_NOTIFY_ADD_DEVICE);
 824			if (!info) {
 825				pci_dev_put(dev);
 826				return dmar_dev_scope_status;
 827			} else {
 828				dmar_pci_bus_add_dev(info);
 829				dmar_free_pci_notify_info(info);
 830			}
 831		}
 832	}
 833
 834	return dmar_dev_scope_status;
 835}
 836
 837void __init dmar_register_bus_notifier(void)
 838{
 839	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
 840}
 841
 842
 843int __init dmar_table_init(void)
 844{
 845	static int dmar_table_initialized;
 846	int ret;
 847
 848	if (dmar_table_initialized == 0) {
 849		ret = parse_dmar_table();
 850		if (ret < 0) {
 851			if (ret != -ENODEV)
 852				pr_info("Parse DMAR table failure.\n");
 853		} else  if (list_empty(&dmar_drhd_units)) {
 854			pr_info("No DMAR devices found\n");
 855			ret = -ENODEV;
 856		}
 857
 858		if (ret < 0)
 859			dmar_table_initialized = ret;
 860		else
 861			dmar_table_initialized = 1;
 862	}
 863
 864	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
 865}
 866
 867static void warn_invalid_dmar(u64 addr, const char *message)
 868{
 869	pr_warn_once(FW_BUG
 870		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
 871		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 872		addr, message,
 873		dmi_get_system_info(DMI_BIOS_VENDOR),
 874		dmi_get_system_info(DMI_BIOS_VERSION),
 875		dmi_get_system_info(DMI_PRODUCT_VERSION));
 876	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 877}
 878
 879static int __ref
 880dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
 881{
 882	struct acpi_dmar_hardware_unit *drhd;
 883	void __iomem *addr;
 884	u64 cap, ecap;
 885
 886	drhd = (void *)entry;
 887	if (!drhd->address) {
 888		warn_invalid_dmar(0, "");
 889		return -EINVAL;
 890	}
 891
 892	if (arg)
 893		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
 894	else
 895		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 896	if (!addr) {
 897		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
 898		return -EINVAL;
 899	}
 900
 901	cap = dmar_readq(addr + DMAR_CAP_REG);
 902	ecap = dmar_readq(addr + DMAR_ECAP_REG);
 903
 904	if (arg)
 905		iounmap(addr);
 906	else
 907		early_iounmap(addr, VTD_PAGE_SIZE);
 908
 909	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 910		warn_invalid_dmar(drhd->address, " returns all ones");
 911		return -EINVAL;
 912	}
 913
 914	return 0;
 915}
 916
 917void __init detect_intel_iommu(void)
 918{
 919	int ret;
 920	struct dmar_res_callback validate_drhd_cb = {
 921		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
 922		.ignore_unhandled = true,
 923	};
 924
 925	down_write(&dmar_global_lock);
 926	ret = dmar_table_detect();
 927	if (!ret)
 928		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
 929					   &validate_drhd_cb);
 930	if (!ret && !no_iommu && !iommu_detected &&
 931	    (!dmar_disabled || dmar_platform_optin())) {
 932		iommu_detected = 1;
 933		/* Make sure ACS will be enabled */
 934		pci_request_acs();
 935	}
 936
 937#ifdef CONFIG_X86
 938	if (!ret) {
 939		x86_init.iommu.iommu_init = intel_iommu_init;
 940		x86_platform.iommu_shutdown = intel_iommu_shutdown;
 941	}
 942
 943#endif
 944
 945	if (dmar_tbl) {
 946		acpi_put_table(dmar_tbl);
 947		dmar_tbl = NULL;
 948	}
 949	up_write(&dmar_global_lock);
 950}
 951
 952static void unmap_iommu(struct intel_iommu *iommu)
 953{
 954	iounmap(iommu->reg);
 955	release_mem_region(iommu->reg_phys, iommu->reg_size);
 956}
 957
 958/**
 959 * map_iommu: map the iommu's registers
 960 * @iommu: the iommu to map
 961 * @drhd: DMA remapping hardware definition structure
 962 *
 963 * Memory map the iommu's registers.  Start w/ a single page, and
 964 * possibly expand if that turns out to be insufficent.
 965 */
 966static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
 967{
 968	u64 phys_addr = drhd->reg_base_addr;
 969	int map_size, err=0;
 970
 971	iommu->reg_phys = phys_addr;
 972	iommu->reg_size = drhd->reg_size;
 973
 974	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
 975		pr_err("Can't reserve memory\n");
 976		err = -EBUSY;
 977		goto out;
 978	}
 979
 980	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 981	if (!iommu->reg) {
 982		pr_err("Can't map the region\n");
 983		err = -ENOMEM;
 984		goto release;
 985	}
 986
 987	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 988	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 989
 990	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 991		err = -EINVAL;
 992		warn_invalid_dmar(phys_addr, " returns all ones");
 993		goto unmap;
 994	}
 995
 996	/* the registers might be more than one page */
 997	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
 998			 cap_max_fault_reg_offset(iommu->cap));
 999	map_size = VTD_PAGE_ALIGN(map_size);
1000	if (map_size > iommu->reg_size) {
1001		iounmap(iommu->reg);
1002		release_mem_region(iommu->reg_phys, iommu->reg_size);
1003		iommu->reg_size = map_size;
1004		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1005					iommu->name)) {
1006			pr_err("Can't reserve memory\n");
1007			err = -EBUSY;
1008			goto out;
1009		}
1010		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1011		if (!iommu->reg) {
1012			pr_err("Can't map the region\n");
1013			err = -ENOMEM;
1014			goto release;
1015		}
1016	}
1017
1018	if (cap_ecmds(iommu->cap)) {
1019		int i;
1020
1021		for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1022			iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1023						       i * DMA_ECMD_REG_STEP);
1024		}
1025	}
1026
1027	err = 0;
1028	goto out;
1029
1030unmap:
1031	iounmap(iommu->reg);
1032release:
1033	release_mem_region(iommu->reg_phys, iommu->reg_size);
1034out:
1035	return err;
1036}
1037
1038static int alloc_iommu(struct dmar_drhd_unit *drhd)
1039{
1040	struct intel_iommu *iommu;
1041	u32 ver, sts;
1042	int agaw = -1;
1043	int msagaw = -1;
1044	int err;
1045
1046	if (!drhd->reg_base_addr) {
1047		warn_invalid_dmar(0, "");
1048		return -EINVAL;
1049	}
1050
1051	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1052	if (!iommu)
1053		return -ENOMEM;
1054
1055	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1056					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1057	if (iommu->seq_id < 0) {
1058		pr_err("Failed to allocate seq_id\n");
1059		err = iommu->seq_id;
1060		goto error;
1061	}
1062	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1063
1064	err = map_iommu(iommu, drhd);
1065	if (err) {
1066		pr_err("Failed to map %s\n", iommu->name);
1067		goto error_free_seq_id;
1068	}
1069
1070	err = -EINVAL;
1071	if (!cap_sagaw(iommu->cap) &&
1072	    (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074			iommu->name);
1075		drhd->ignored = 1;
1076	}
1077
1078	if (!drhd->ignored) {
1079		agaw = iommu_calculate_agaw(iommu);
1080		if (agaw < 0) {
1081			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082			       iommu->seq_id);
1083			drhd->ignored = 1;
1084		}
1085	}
1086	if (!drhd->ignored) {
1087		msagaw = iommu_calculate_max_sagaw(iommu);
1088		if (msagaw < 0) {
1089			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090			       iommu->seq_id);
1091			drhd->ignored = 1;
1092			agaw = -1;
1093		}
1094	}
1095	iommu->agaw = agaw;
1096	iommu->msagaw = msagaw;
1097	iommu->segment = drhd->segment;
1098
1099	iommu->node = NUMA_NO_NODE;
1100
1101	ver = readl(iommu->reg + DMAR_VER_REG);
1102	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1103		iommu->name,
1104		(unsigned long long)drhd->reg_base_addr,
1105		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1106		(unsigned long long)iommu->cap,
1107		(unsigned long long)iommu->ecap);
1108
1109	/* Reflect status in gcmd */
1110	sts = readl(iommu->reg + DMAR_GSTS_REG);
1111	if (sts & DMA_GSTS_IRES)
1112		iommu->gcmd |= DMA_GCMD_IRE;
1113	if (sts & DMA_GSTS_TES)
1114		iommu->gcmd |= DMA_GCMD_TE;
1115	if (sts & DMA_GSTS_QIES)
1116		iommu->gcmd |= DMA_GCMD_QIE;
1117
1118	if (alloc_iommu_pmu(iommu))
1119		pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1120
1121	raw_spin_lock_init(&iommu->register_lock);
1122
1123	/*
1124	 * A value of N in PSS field of eCap register indicates hardware
1125	 * supports PASID field of N+1 bits.
1126	 */
1127	if (pasid_supported(iommu))
1128		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1129
1130	/*
1131	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1132	 * be set yet. When intel_iommu_init() runs, it registers the units
1133	 * present at boot time, then sets intel_iommu_enabled.
1134	 */
1135	if (intel_iommu_enabled && !drhd->ignored) {
1136		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1137					     intel_iommu_groups,
1138					     "%s", iommu->name);
1139		if (err)
1140			goto err_unmap;
1141
1142		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1143		if (err)
1144			goto err_sysfs;
1145
1146		iommu_pmu_register(iommu);
1147	}
1148
1149	drhd->iommu = iommu;
1150	iommu->drhd = drhd;
1151
1152	return 0;
1153
1154err_sysfs:
1155	iommu_device_sysfs_remove(&iommu->iommu);
1156err_unmap:
1157	free_iommu_pmu(iommu);
1158	unmap_iommu(iommu);
1159error_free_seq_id:
1160	ida_free(&dmar_seq_ids, iommu->seq_id);
1161error:
1162	kfree(iommu);
1163	return err;
1164}
1165
1166static void free_iommu(struct intel_iommu *iommu)
1167{
1168	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1169		iommu_pmu_unregister(iommu);
1170		iommu_device_unregister(&iommu->iommu);
1171		iommu_device_sysfs_remove(&iommu->iommu);
1172	}
1173
1174	free_iommu_pmu(iommu);
1175
1176	if (iommu->irq) {
1177		if (iommu->pr_irq) {
1178			free_irq(iommu->pr_irq, iommu);
1179			dmar_free_hwirq(iommu->pr_irq);
1180			iommu->pr_irq = 0;
1181		}
1182		free_irq(iommu->irq, iommu);
1183		dmar_free_hwirq(iommu->irq);
1184		iommu->irq = 0;
1185	}
1186
1187	if (iommu->qi) {
1188		free_page((unsigned long)iommu->qi->desc);
1189		kfree(iommu->qi->desc_status);
1190		kfree(iommu->qi);
1191	}
1192
1193	if (iommu->reg)
1194		unmap_iommu(iommu);
1195
1196	ida_free(&dmar_seq_ids, iommu->seq_id);
1197	kfree(iommu);
1198}
1199
1200/*
1201 * Reclaim all the submitted descriptors which have completed its work.
1202 */
1203static inline void reclaim_free_desc(struct q_inval *qi)
1204{
1205	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1206	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1207		qi->desc_status[qi->free_tail] = QI_FREE;
1208		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209		qi->free_cnt++;
1210	}
1211}
1212
1213static const char *qi_type_string(u8 type)
1214{
1215	switch (type) {
1216	case QI_CC_TYPE:
1217		return "Context-cache Invalidation";
1218	case QI_IOTLB_TYPE:
1219		return "IOTLB Invalidation";
1220	case QI_DIOTLB_TYPE:
1221		return "Device-TLB Invalidation";
1222	case QI_IEC_TYPE:
1223		return "Interrupt Entry Cache Invalidation";
1224	case QI_IWD_TYPE:
1225		return "Invalidation Wait";
1226	case QI_EIOTLB_TYPE:
1227		return "PASID-based IOTLB Invalidation";
1228	case QI_PC_TYPE:
1229		return "PASID-cache Invalidation";
1230	case QI_DEIOTLB_TYPE:
1231		return "PASID-based Device-TLB Invalidation";
1232	case QI_PGRP_RESP_TYPE:
1233		return "Page Group Response";
1234	default:
1235		return "UNKNOWN";
1236	}
1237}
1238
1239static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1240{
1241	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1242	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1243	struct qi_desc *desc = iommu->qi->desc + head;
1244
1245	if (fault & DMA_FSTS_IQE)
1246		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1247		       DMAR_IQER_REG_IQEI(iqe_err));
1248	if (fault & DMA_FSTS_ITE)
1249		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1250		       DMAR_IQER_REG_ITESID(iqe_err));
1251	if (fault & DMA_FSTS_ICE)
1252		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1253		       DMAR_IQER_REG_ICESID(iqe_err));
1254
1255	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1256	       qi_type_string(desc->qw0 & 0xf),
1257	       (unsigned long long)desc->qw0,
1258	       (unsigned long long)desc->qw1);
1259
1260	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1261	head <<= qi_shift(iommu);
1262	desc = iommu->qi->desc + head;
1263
1264	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1265	       qi_type_string(desc->qw0 & 0xf),
1266	       (unsigned long long)desc->qw0,
1267	       (unsigned long long)desc->qw1);
1268}
1269
1270static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1271{
1272	u32 fault;
1273	int head, tail;
1274	struct q_inval *qi = iommu->qi;
1275	int shift = qi_shift(iommu);
1276
1277	if (qi->desc_status[wait_index] == QI_ABORT)
1278		return -EAGAIN;
1279
1280	fault = readl(iommu->reg + DMAR_FSTS_REG);
1281	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1282		qi_dump_fault(iommu, fault);
1283
1284	/*
1285	 * If IQE happens, the head points to the descriptor associated
1286	 * with the error. No new descriptors are fetched until the IQE
1287	 * is cleared.
1288	 */
1289	if (fault & DMA_FSTS_IQE) {
1290		head = readl(iommu->reg + DMAR_IQH_REG);
1291		if ((head >> shift) == index) {
1292			struct qi_desc *desc = qi->desc + head;
1293
1294			/*
1295			 * desc->qw2 and desc->qw3 are either reserved or
1296			 * used by software as private data. We won't print
1297			 * out these two qw's for security consideration.
1298			 */
1299			memcpy(desc, qi->desc + (wait_index << shift),
1300			       1 << shift);
1301			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1302			pr_info("Invalidation Queue Error (IQE) cleared\n");
1303			return -EINVAL;
1304		}
1305	}
1306
1307	/*
1308	 * If ITE happens, all pending wait_desc commands are aborted.
1309	 * No new descriptors are fetched until the ITE is cleared.
1310	 */
1311	if (fault & DMA_FSTS_ITE) {
1312		head = readl(iommu->reg + DMAR_IQH_REG);
1313		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1314		head |= 1;
1315		tail = readl(iommu->reg + DMAR_IQT_REG);
1316		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1317
1318		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1319		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1320
1321		do {
1322			if (qi->desc_status[head] == QI_IN_USE)
1323				qi->desc_status[head] = QI_ABORT;
1324			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1325		} while (head != tail);
1326
1327		if (qi->desc_status[wait_index] == QI_ABORT)
1328			return -EAGAIN;
1329	}
1330
1331	if (fault & DMA_FSTS_ICE) {
1332		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1333		pr_info("Invalidation Completion Error (ICE) cleared\n");
1334	}
1335
1336	return 0;
1337}
1338
1339/*
1340 * Function to submit invalidation descriptors of all types to the queued
1341 * invalidation interface(QI). Multiple descriptors can be submitted at a
1342 * time, a wait descriptor will be appended to each submission to ensure
1343 * hardware has completed the invalidation before return. Wait descriptors
1344 * can be part of the submission but it will not be polled for completion.
1345 */
1346int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1347		   unsigned int count, unsigned long options)
1348{
1349	struct q_inval *qi = iommu->qi;
1350	s64 devtlb_start_ktime = 0;
1351	s64 iotlb_start_ktime = 0;
1352	s64 iec_start_ktime = 0;
1353	struct qi_desc wait_desc;
1354	int wait_index, index;
1355	unsigned long flags;
1356	int offset, shift;
1357	int rc, i;
1358	u64 type;
1359
1360	if (!qi)
1361		return 0;
1362
1363	type = desc->qw0 & GENMASK_ULL(3, 0);
1364
1365	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1366	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1367		iotlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1370	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1371		devtlb_start_ktime = ktime_to_ns(ktime_get());
1372
1373	if (type == QI_IEC_TYPE &&
1374	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1375		iec_start_ktime = ktime_to_ns(ktime_get());
1376
1377restart:
1378	rc = 0;
1379
1380	raw_spin_lock_irqsave(&qi->q_lock, flags);
1381	/*
1382	 * Check if we have enough empty slots in the queue to submit,
1383	 * the calculation is based on:
1384	 * # of desc + 1 wait desc + 1 space between head and tail
1385	 */
1386	while (qi->free_cnt < count + 2) {
1387		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1388		cpu_relax();
1389		raw_spin_lock_irqsave(&qi->q_lock, flags);
1390	}
1391
1392	index = qi->free_head;
1393	wait_index = (index + count) % QI_LENGTH;
1394	shift = qi_shift(iommu);
1395
1396	for (i = 0; i < count; i++) {
1397		offset = ((index + i) % QI_LENGTH) << shift;
1398		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1399		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1400		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1401				desc[i].qw2, desc[i].qw3);
1402	}
1403	qi->desc_status[wait_index] = QI_IN_USE;
1404
1405	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1406			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1407	if (options & QI_OPT_WAIT_DRAIN)
1408		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1409	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1410	wait_desc.qw2 = 0;
1411	wait_desc.qw3 = 0;
1412
1413	offset = wait_index << shift;
1414	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1415
1416	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1417	qi->free_cnt -= count + 1;
1418
1419	/*
1420	 * update the HW tail register indicating the presence of
1421	 * new descriptors.
1422	 */
1423	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1424
1425	while (qi->desc_status[wait_index] != QI_DONE) {
1426		/*
1427		 * We will leave the interrupts disabled, to prevent interrupt
1428		 * context to queue another cmd while a cmd is already submitted
1429		 * and waiting for completion on this cpu. This is to avoid
1430		 * a deadlock where the interrupt context can wait indefinitely
1431		 * for free slots in the queue.
1432		 */
1433		rc = qi_check_fault(iommu, index, wait_index);
1434		if (rc)
1435			break;
1436
1437		raw_spin_unlock(&qi->q_lock);
1438		cpu_relax();
1439		raw_spin_lock(&qi->q_lock);
1440	}
1441
1442	for (i = 0; i < count; i++)
1443		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1444
1445	reclaim_free_desc(qi);
1446	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1447
1448	if (rc == -EAGAIN)
1449		goto restart;
1450
1451	if (iotlb_start_ktime)
1452		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1453				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1454
1455	if (devtlb_start_ktime)
1456		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1457				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1458
1459	if (iec_start_ktime)
1460		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1461				ktime_to_ns(ktime_get()) - iec_start_ktime);
1462
1463	return rc;
1464}
1465
1466/*
1467 * Flush the global interrupt entry cache.
1468 */
1469void qi_global_iec(struct intel_iommu *iommu)
1470{
1471	struct qi_desc desc;
1472
1473	desc.qw0 = QI_IEC_TYPE;
1474	desc.qw1 = 0;
1475	desc.qw2 = 0;
1476	desc.qw3 = 0;
1477
1478	/* should never fail */
1479	qi_submit_sync(iommu, &desc, 1, 0);
1480}
1481
1482void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1483		      u64 type)
1484{
1485	struct qi_desc desc;
1486
1487	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1488			| QI_CC_GRAN(type) | QI_CC_TYPE;
1489	desc.qw1 = 0;
1490	desc.qw2 = 0;
1491	desc.qw3 = 0;
1492
1493	qi_submit_sync(iommu, &desc, 1, 0);
1494}
1495
1496void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1497		    unsigned int size_order, u64 type)
1498{
1499	u8 dw = 0, dr = 0;
1500
1501	struct qi_desc desc;
1502	int ih = 0;
1503
1504	if (cap_write_drain(iommu->cap))
1505		dw = 1;
1506
1507	if (cap_read_drain(iommu->cap))
1508		dr = 1;
1509
1510	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1511		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1512	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1513		| QI_IOTLB_AM(size_order);
1514	desc.qw2 = 0;
1515	desc.qw3 = 0;
1516
1517	qi_submit_sync(iommu, &desc, 1, 0);
1518}
1519
1520void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1521			u16 qdep, u64 addr, unsigned mask)
1522{
1523	struct qi_desc desc;
1524
1525	/*
1526	 * VT-d spec, section 4.3:
1527	 *
1528	 * Software is recommended to not submit any Device-TLB invalidation
1529	 * requests while address remapping hardware is disabled.
1530	 */
1531	if (!(iommu->gcmd & DMA_GCMD_TE))
1532		return;
1533
1534	if (mask) {
1535		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1536		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1537	} else
1538		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1539
1540	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1541		qdep = 0;
1542
1543	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1544		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1545	desc.qw2 = 0;
1546	desc.qw3 = 0;
1547
1548	qi_submit_sync(iommu, &desc, 1, 0);
1549}
1550
1551/* PASID-based IOTLB invalidation */
1552void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1553		     unsigned long npages, bool ih)
1554{
1555	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1556
1557	/*
1558	 * npages == -1 means a PASID-selective invalidation, otherwise,
1559	 * a positive value for Page-selective-within-PASID invalidation.
1560	 * 0 is not a valid input.
1561	 */
1562	if (WARN_ON(!npages)) {
1563		pr_err("Invalid input npages = %ld\n", npages);
1564		return;
1565	}
1566
1567	if (npages == -1) {
1568		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1569				QI_EIOTLB_DID(did) |
1570				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1571				QI_EIOTLB_TYPE;
1572		desc.qw1 = 0;
1573	} else {
1574		int mask = ilog2(__roundup_pow_of_two(npages));
1575		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1576
1577		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1578			addr = ALIGN_DOWN(addr, align);
1579
1580		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1581				QI_EIOTLB_DID(did) |
1582				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1583				QI_EIOTLB_TYPE;
1584		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1585				QI_EIOTLB_IH(ih) |
1586				QI_EIOTLB_AM(mask);
1587	}
1588
1589	qi_submit_sync(iommu, &desc, 1, 0);
1590}
1591
1592/* PASID-based device IOTLB Invalidate */
1593void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1594			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1595{
1596	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1597	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1598
1599	/*
1600	 * VT-d spec, section 4.3:
1601	 *
1602	 * Software is recommended to not submit any Device-TLB invalidation
1603	 * requests while address remapping hardware is disabled.
1604	 */
1605	if (!(iommu->gcmd & DMA_GCMD_TE))
1606		return;
1607
1608	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1609		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1610		QI_DEV_IOTLB_PFSID(pfsid);
1611
1612	/*
1613	 * If S bit is 0, we only flush a single page. If S bit is set,
1614	 * The least significant zero bit indicates the invalidation address
1615	 * range. VT-d spec 6.5.2.6.
1616	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1617	 * size order = 0 is PAGE_SIZE 4KB
1618	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1619	 * ECAP.
1620	 */
1621	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1622		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1623				    addr, size_order);
1624
1625	/* Take page address */
1626	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1627
1628	if (size_order) {
1629		/*
1630		 * Existing 0s in address below size_order may be the least
1631		 * significant bit, we must set them to 1s to avoid having
1632		 * smaller size than desired.
1633		 */
1634		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1635					VTD_PAGE_SHIFT);
1636		/* Clear size_order bit to indicate size */
1637		desc.qw1 &= ~mask;
1638		/* Set the S bit to indicate flushing more than 1 page */
1639		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1640	}
1641
1642	qi_submit_sync(iommu, &desc, 1, 0);
1643}
1644
1645void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1646			  u64 granu, u32 pasid)
1647{
1648	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1649
1650	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1651			QI_PC_GRAN(granu) | QI_PC_TYPE;
1652	qi_submit_sync(iommu, &desc, 1, 0);
1653}
1654
1655/*
1656 * Disable Queued Invalidation interface.
1657 */
1658void dmar_disable_qi(struct intel_iommu *iommu)
1659{
1660	unsigned long flags;
1661	u32 sts;
1662	cycles_t start_time = get_cycles();
1663
1664	if (!ecap_qis(iommu->ecap))
1665		return;
1666
1667	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1668
1669	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1670	if (!(sts & DMA_GSTS_QIES))
1671		goto end;
1672
1673	/*
1674	 * Give a chance to HW to complete the pending invalidation requests.
1675	 */
1676	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1677		readl(iommu->reg + DMAR_IQH_REG)) &&
1678		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1679		cpu_relax();
1680
1681	iommu->gcmd &= ~DMA_GCMD_QIE;
1682	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1683
1684	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1685		      !(sts & DMA_GSTS_QIES), sts);
1686end:
1687	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1688}
1689
1690/*
1691 * Enable queued invalidation.
1692 */
1693static void __dmar_enable_qi(struct intel_iommu *iommu)
1694{
1695	u32 sts;
1696	unsigned long flags;
1697	struct q_inval *qi = iommu->qi;
1698	u64 val = virt_to_phys(qi->desc);
1699
1700	qi->free_head = qi->free_tail = 0;
1701	qi->free_cnt = QI_LENGTH;
1702
1703	/*
1704	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1705	 * is present.
1706	 */
1707	if (ecap_smts(iommu->ecap))
1708		val |= BIT_ULL(11) | BIT_ULL(0);
1709
1710	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1711
1712	/* write zero to the tail reg */
1713	writel(0, iommu->reg + DMAR_IQT_REG);
1714
1715	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1716
1717	iommu->gcmd |= DMA_GCMD_QIE;
1718	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1719
1720	/* Make sure hardware complete it */
1721	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1722
1723	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1724}
1725
1726/*
1727 * Enable Queued Invalidation interface. This is a must to support
1728 * interrupt-remapping. Also used by DMA-remapping, which replaces
1729 * register based IOTLB invalidation.
1730 */
1731int dmar_enable_qi(struct intel_iommu *iommu)
1732{
1733	struct q_inval *qi;
1734	struct page *desc_page;
1735
1736	if (!ecap_qis(iommu->ecap))
1737		return -ENOENT;
1738
1739	/*
1740	 * queued invalidation is already setup and enabled.
1741	 */
1742	if (iommu->qi)
1743		return 0;
1744
1745	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1746	if (!iommu->qi)
1747		return -ENOMEM;
1748
1749	qi = iommu->qi;
1750
1751	/*
1752	 * Need two pages to accommodate 256 descriptors of 256 bits each
1753	 * if the remapping hardware supports scalable mode translation.
1754	 */
1755	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1756				     !!ecap_smts(iommu->ecap));
1757	if (!desc_page) {
1758		kfree(qi);
1759		iommu->qi = NULL;
1760		return -ENOMEM;
1761	}
1762
1763	qi->desc = page_address(desc_page);
1764
1765	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1766	if (!qi->desc_status) {
1767		free_page((unsigned long) qi->desc);
1768		kfree(qi);
1769		iommu->qi = NULL;
1770		return -ENOMEM;
1771	}
1772
1773	raw_spin_lock_init(&qi->q_lock);
1774
1775	__dmar_enable_qi(iommu);
1776
1777	return 0;
1778}
1779
1780/* iommu interrupt handling. Most stuff are MSI-like. */
1781
1782enum faulttype {
1783	DMA_REMAP,
1784	INTR_REMAP,
1785	UNKNOWN,
1786};
1787
1788static const char *dma_remap_fault_reasons[] =
1789{
1790	"Software",
1791	"Present bit in root entry is clear",
1792	"Present bit in context entry is clear",
1793	"Invalid context entry",
1794	"Access beyond MGAW",
1795	"PTE Write access is not set",
1796	"PTE Read access is not set",
1797	"Next page table ptr is invalid",
1798	"Root table address invalid",
1799	"Context table ptr is invalid",
1800	"non-zero reserved fields in RTP",
1801	"non-zero reserved fields in CTP",
1802	"non-zero reserved fields in PTE",
1803	"PCE for translation request specifies blocking",
1804};
1805
1806static const char * const dma_remap_sm_fault_reasons[] = {
1807	"SM: Invalid Root Table Address",
1808	"SM: TTM 0 for request with PASID",
1809	"SM: TTM 0 for page group request",
1810	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1811	"SM: Error attempting to access Root Entry",
1812	"SM: Present bit in Root Entry is clear",
1813	"SM: Non-zero reserved field set in Root Entry",
1814	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1815	"SM: Error attempting to access Context Entry",
1816	"SM: Present bit in Context Entry is clear",
1817	"SM: Non-zero reserved field set in the Context Entry",
1818	"SM: Invalid Context Entry",
1819	"SM: DTE field in Context Entry is clear",
1820	"SM: PASID Enable field in Context Entry is clear",
1821	"SM: PASID is larger than the max in Context Entry",
1822	"SM: PRE field in Context-Entry is clear",
1823	"SM: RID_PASID field error in Context-Entry",
1824	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1825	"SM: Error attempting to access the PASID Directory Entry",
1826	"SM: Present bit in Directory Entry is clear",
1827	"SM: Non-zero reserved field set in PASID Directory Entry",
1828	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1829	"SM: Error attempting to access PASID Table Entry",
1830	"SM: Present bit in PASID Table Entry is clear",
1831	"SM: Non-zero reserved field set in PASID Table Entry",
1832	"SM: Invalid Scalable-Mode PASID Table Entry",
1833	"SM: ERE field is clear in PASID Table Entry",
1834	"SM: SRE field is clear in PASID Table Entry",
1835	"Unknown", "Unknown",/* 0x5E-0x5F */
1836	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1837	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1838	"SM: Error attempting to access first-level paging entry",
1839	"SM: Present bit in first-level paging entry is clear",
1840	"SM: Non-zero reserved field set in first-level paging entry",
1841	"SM: Error attempting to access FL-PML4 entry",
1842	"SM: First-level entry address beyond MGAW in Nested translation",
1843	"SM: Read permission error in FL-PML4 entry in Nested translation",
1844	"SM: Read permission error in first-level paging entry in Nested translation",
1845	"SM: Write permission error in first-level paging entry in Nested translation",
1846	"SM: Error attempting to access second-level paging entry",
1847	"SM: Read/Write permission error in second-level paging entry",
1848	"SM: Non-zero reserved field set in second-level paging entry",
1849	"SM: Invalid second-level page table pointer",
1850	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1851	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1852	"SM: Address in first-level translation is not canonical",
1853	"SM: U/S set 0 for first-level translation with user privilege",
1854	"SM: No execute permission for request with PASID and ER=1",
1855	"SM: Address beyond the DMA hardware max",
1856	"SM: Second-level entry address beyond the max",
1857	"SM: No write permission for Write/AtomicOp request",
1858	"SM: No read permission for Read/AtomicOp request",
1859	"SM: Invalid address-interrupt address",
1860	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1861	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1862};
1863
1864static const char *irq_remap_fault_reasons[] =
1865{
1866	"Detected reserved fields in the decoded interrupt-remapped request",
1867	"Interrupt index exceeded the interrupt-remapping table size",
1868	"Present field in the IRTE entry is clear",
1869	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1870	"Detected reserved fields in the IRTE entry",
1871	"Blocked a compatibility format interrupt request",
1872	"Blocked an interrupt request due to source-id verification failure",
1873};
1874
1875static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1876{
1877	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1878					ARRAY_SIZE(irq_remap_fault_reasons))) {
1879		*fault_type = INTR_REMAP;
1880		return irq_remap_fault_reasons[fault_reason - 0x20];
1881	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1882			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1883		*fault_type = DMA_REMAP;
1884		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1885	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1886		*fault_type = DMA_REMAP;
1887		return dma_remap_fault_reasons[fault_reason];
1888	} else {
1889		*fault_type = UNKNOWN;
1890		return "Unknown";
1891	}
1892}
1893
1894
1895static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1896{
1897	if (iommu->irq == irq)
1898		return DMAR_FECTL_REG;
1899	else if (iommu->pr_irq == irq)
1900		return DMAR_PECTL_REG;
1901	else if (iommu->perf_irq == irq)
1902		return DMAR_PERFINTRCTL_REG;
1903	else
1904		BUG();
1905}
1906
1907void dmar_msi_unmask(struct irq_data *data)
1908{
1909	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1910	int reg = dmar_msi_reg(iommu, data->irq);
1911	unsigned long flag;
1912
1913	/* unmask it */
1914	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1915	writel(0, iommu->reg + reg);
1916	/* Read a reg to force flush the post write */
1917	readl(iommu->reg + reg);
1918	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1919}
1920
1921void dmar_msi_mask(struct irq_data *data)
1922{
1923	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1924	int reg = dmar_msi_reg(iommu, data->irq);
1925	unsigned long flag;
1926
1927	/* mask it */
1928	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1929	writel(DMA_FECTL_IM, iommu->reg + reg);
1930	/* Read a reg to force flush the post write */
1931	readl(iommu->reg + reg);
1932	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1933}
1934
1935void dmar_msi_write(int irq, struct msi_msg *msg)
1936{
1937	struct intel_iommu *iommu = irq_get_handler_data(irq);
1938	int reg = dmar_msi_reg(iommu, irq);
1939	unsigned long flag;
1940
1941	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1942	writel(msg->data, iommu->reg + reg + 4);
1943	writel(msg->address_lo, iommu->reg + reg + 8);
1944	writel(msg->address_hi, iommu->reg + reg + 12);
1945	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1946}
1947
1948void dmar_msi_read(int irq, struct msi_msg *msg)
1949{
1950	struct intel_iommu *iommu = irq_get_handler_data(irq);
1951	int reg = dmar_msi_reg(iommu, irq);
1952	unsigned long flag;
1953
1954	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1955	msg->data = readl(iommu->reg + reg + 4);
1956	msg->address_lo = readl(iommu->reg + reg + 8);
1957	msg->address_hi = readl(iommu->reg + reg + 12);
1958	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1959}
1960
1961static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1962		u8 fault_reason, u32 pasid, u16 source_id,
1963		unsigned long long addr)
1964{
1965	const char *reason;
1966	int fault_type;
1967
1968	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1969
1970	if (fault_type == INTR_REMAP) {
1971		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1972		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1973		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1974		       fault_reason, reason);
1975
1976		return 0;
1977	}
1978
1979	if (pasid == IOMMU_PASID_INVALID)
1980		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1981		       type ? "DMA Read" : "DMA Write",
1982		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1983		       PCI_FUNC(source_id & 0xFF), addr,
1984		       fault_reason, reason);
1985	else
1986		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1987		       type ? "DMA Read" : "DMA Write", pasid,
1988		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1989		       PCI_FUNC(source_id & 0xFF), addr,
1990		       fault_reason, reason);
1991
1992	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1993
1994	return 0;
1995}
1996
1997#define PRIMARY_FAULT_REG_LEN (16)
1998irqreturn_t dmar_fault(int irq, void *dev_id)
1999{
2000	struct intel_iommu *iommu = dev_id;
2001	int reg, fault_index;
2002	u32 fault_status;
2003	unsigned long flag;
2004	static DEFINE_RATELIMIT_STATE(rs,
2005				      DEFAULT_RATELIMIT_INTERVAL,
2006				      DEFAULT_RATELIMIT_BURST);
2007
2008	raw_spin_lock_irqsave(&iommu->register_lock, flag);
2009	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2010	if (fault_status && __ratelimit(&rs))
2011		pr_err("DRHD: handling fault status reg %x\n", fault_status);
2012
2013	/* TBD: ignore advanced fault log currently */
2014	if (!(fault_status & DMA_FSTS_PPF))
2015		goto unlock_exit;
2016
2017	fault_index = dma_fsts_fault_record_index(fault_status);
2018	reg = cap_fault_reg_offset(iommu->cap);
2019	while (1) {
2020		/* Disable printing, simply clear the fault when ratelimited */
2021		bool ratelimited = !__ratelimit(&rs);
2022		u8 fault_reason;
2023		u16 source_id;
2024		u64 guest_addr;
2025		u32 pasid;
2026		int type;
2027		u32 data;
2028		bool pasid_present;
2029
2030		/* highest 32 bits */
2031		data = readl(iommu->reg + reg +
2032				fault_index * PRIMARY_FAULT_REG_LEN + 12);
2033		if (!(data & DMA_FRCD_F))
2034			break;
2035
2036		if (!ratelimited) {
2037			fault_reason = dma_frcd_fault_reason(data);
2038			type = dma_frcd_type(data);
2039
2040			pasid = dma_frcd_pasid_value(data);
2041			data = readl(iommu->reg + reg +
2042				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2043			source_id = dma_frcd_source_id(data);
2044
2045			pasid_present = dma_frcd_pasid_present(data);
2046			guest_addr = dmar_readq(iommu->reg + reg +
2047					fault_index * PRIMARY_FAULT_REG_LEN);
2048			guest_addr = dma_frcd_page_addr(guest_addr);
2049		}
2050
2051		/* clear the fault */
2052		writel(DMA_FRCD_F, iommu->reg + reg +
2053			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2054
2055		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2056
2057		if (!ratelimited)
2058			/* Using pasid -1 if pasid is not present */
2059			dmar_fault_do_one(iommu, type, fault_reason,
2060					  pasid_present ? pasid : IOMMU_PASID_INVALID,
2061					  source_id, guest_addr);
2062
2063		fault_index++;
2064		if (fault_index >= cap_num_fault_regs(iommu->cap))
2065			fault_index = 0;
2066		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2067	}
2068
2069	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2070	       iommu->reg + DMAR_FSTS_REG);
2071
2072unlock_exit:
2073	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2074	return IRQ_HANDLED;
2075}
2076
2077int dmar_set_interrupt(struct intel_iommu *iommu)
2078{
2079	int irq, ret;
2080
2081	/*
2082	 * Check if the fault interrupt is already initialized.
2083	 */
2084	if (iommu->irq)
2085		return 0;
2086
2087	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2088	if (irq > 0) {
2089		iommu->irq = irq;
2090	} else {
2091		pr_err("No free IRQ vectors\n");
2092		return -EINVAL;
2093	}
2094
2095	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2096	if (ret)
2097		pr_err("Can't request irq\n");
2098	return ret;
2099}
2100
2101int __init enable_drhd_fault_handling(void)
2102{
2103	struct dmar_drhd_unit *drhd;
2104	struct intel_iommu *iommu;
2105
2106	/*
2107	 * Enable fault control interrupt.
2108	 */
2109	for_each_iommu(iommu, drhd) {
2110		u32 fault_status;
2111		int ret = dmar_set_interrupt(iommu);
2112
2113		if (ret) {
2114			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2115			       (unsigned long long)drhd->reg_base_addr, ret);
2116			return -1;
2117		}
2118
2119		/*
2120		 * Clear any previous faults.
2121		 */
2122		dmar_fault(iommu->irq, iommu);
2123		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2124		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2125	}
2126
2127	return 0;
2128}
2129
2130/*
2131 * Re-enable Queued Invalidation interface.
2132 */
2133int dmar_reenable_qi(struct intel_iommu *iommu)
2134{
2135	if (!ecap_qis(iommu->ecap))
2136		return -ENOENT;
2137
2138	if (!iommu->qi)
2139		return -ENOENT;
2140
2141	/*
2142	 * First disable queued invalidation.
2143	 */
2144	dmar_disable_qi(iommu);
2145	/*
2146	 * Then enable queued invalidation again. Since there is no pending
2147	 * invalidation requests now, it's safe to re-enable queued
2148	 * invalidation.
2149	 */
2150	__dmar_enable_qi(iommu);
2151
2152	return 0;
2153}
2154
2155/*
2156 * Check interrupt remapping support in DMAR table description.
2157 */
2158int __init dmar_ir_support(void)
2159{
2160	struct acpi_table_dmar *dmar;
2161	dmar = (struct acpi_table_dmar *)dmar_tbl;
2162	if (!dmar)
2163		return 0;
2164	return dmar->flags & 0x1;
2165}
2166
2167/* Check whether DMAR units are in use */
2168static inline bool dmar_in_use(void)
2169{
2170	return irq_remapping_enabled || intel_iommu_enabled;
2171}
2172
2173static int __init dmar_free_unused_resources(void)
2174{
2175	struct dmar_drhd_unit *dmaru, *dmaru_n;
2176
2177	if (dmar_in_use())
2178		return 0;
2179
2180	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2181		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2182
2183	down_write(&dmar_global_lock);
2184	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2185		list_del(&dmaru->list);
2186		dmar_free_drhd(dmaru);
2187	}
2188	up_write(&dmar_global_lock);
2189
2190	return 0;
2191}
2192
2193late_initcall(dmar_free_unused_resources);
2194
2195/*
2196 * DMAR Hotplug Support
2197 * For more details, please refer to Intel(R) Virtualization Technology
2198 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2199 * "Remapping Hardware Unit Hot Plug".
2200 */
2201static guid_t dmar_hp_guid =
2202	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2203		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2204
2205/*
2206 * Currently there's only one revision and BIOS will not check the revision id,
2207 * so use 0 for safety.
2208 */
2209#define	DMAR_DSM_REV_ID			0
2210#define	DMAR_DSM_FUNC_DRHD		1
2211#define	DMAR_DSM_FUNC_ATSR		2
2212#define	DMAR_DSM_FUNC_RHSA		3
2213#define	DMAR_DSM_FUNC_SATC		4
2214
2215static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2216{
2217	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2218}
2219
2220static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2221				  dmar_res_handler_t handler, void *arg)
2222{
2223	int ret = -ENODEV;
2224	union acpi_object *obj;
2225	struct acpi_dmar_header *start;
2226	struct dmar_res_callback callback;
2227	static int res_type[] = {
2228		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2229		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2230		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2231		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2232	};
2233
2234	if (!dmar_detect_dsm(handle, func))
2235		return 0;
2236
2237	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2238				      func, NULL, ACPI_TYPE_BUFFER);
2239	if (!obj)
2240		return -ENODEV;
2241
2242	memset(&callback, 0, sizeof(callback));
2243	callback.cb[res_type[func]] = handler;
2244	callback.arg[res_type[func]] = arg;
2245	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2246	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2247
2248	ACPI_FREE(obj);
2249
2250	return ret;
2251}
2252
2253static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2254{
2255	int ret;
2256	struct dmar_drhd_unit *dmaru;
2257
2258	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2259	if (!dmaru)
2260		return -ENODEV;
2261
2262	ret = dmar_ir_hotplug(dmaru, true);
2263	if (ret == 0)
2264		ret = dmar_iommu_hotplug(dmaru, true);
2265
2266	return ret;
2267}
2268
2269static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2270{
2271	int i, ret;
2272	struct device *dev;
2273	struct dmar_drhd_unit *dmaru;
2274
2275	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2276	if (!dmaru)
2277		return 0;
2278
2279	/*
2280	 * All PCI devices managed by this unit should have been destroyed.
2281	 */
2282	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2283		for_each_active_dev_scope(dmaru->devices,
2284					  dmaru->devices_cnt, i, dev)
2285			return -EBUSY;
2286	}
2287
2288	ret = dmar_ir_hotplug(dmaru, false);
2289	if (ret == 0)
2290		ret = dmar_iommu_hotplug(dmaru, false);
2291
2292	return ret;
2293}
2294
2295static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2296{
2297	struct dmar_drhd_unit *dmaru;
2298
2299	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2300	if (dmaru) {
2301		list_del_rcu(&dmaru->list);
2302		synchronize_rcu();
2303		dmar_free_drhd(dmaru);
2304	}
2305
2306	return 0;
2307}
2308
2309static int dmar_hotplug_insert(acpi_handle handle)
2310{
2311	int ret;
2312	int drhd_count = 0;
2313
2314	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315				     &dmar_validate_one_drhd, (void *)1);
2316	if (ret)
2317		goto out;
2318
2319	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2320				     &dmar_parse_one_drhd, (void *)&drhd_count);
2321	if (ret == 0 && drhd_count == 0) {
2322		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2323		goto out;
2324	} else if (ret) {
2325		goto release_drhd;
2326	}
2327
2328	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2329				     &dmar_parse_one_rhsa, NULL);
2330	if (ret)
2331		goto release_drhd;
2332
2333	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2334				     &dmar_parse_one_atsr, NULL);
2335	if (ret)
2336		goto release_atsr;
2337
2338	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2339				     &dmar_hp_add_drhd, NULL);
2340	if (!ret)
2341		return 0;
2342
2343	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344			       &dmar_hp_remove_drhd, NULL);
2345release_atsr:
2346	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2347			       &dmar_release_one_atsr, NULL);
2348release_drhd:
2349	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2350			       &dmar_hp_release_drhd, NULL);
2351out:
2352	return ret;
2353}
2354
2355static int dmar_hotplug_remove(acpi_handle handle)
2356{
2357	int ret;
2358
2359	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2360				     &dmar_check_one_atsr, NULL);
2361	if (ret)
2362		return ret;
2363
2364	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2365				     &dmar_hp_remove_drhd, NULL);
2366	if (ret == 0) {
2367		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2368					       &dmar_release_one_atsr, NULL));
2369		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2370					       &dmar_hp_release_drhd, NULL));
2371	} else {
2372		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2373				       &dmar_hp_add_drhd, NULL);
2374	}
2375
2376	return ret;
2377}
2378
2379static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2380				       void *context, void **retval)
2381{
2382	acpi_handle *phdl = retval;
2383
2384	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2385		*phdl = handle;
2386		return AE_CTRL_TERMINATE;
2387	}
2388
2389	return AE_OK;
2390}
2391
2392static int dmar_device_hotplug(acpi_handle handle, bool insert)
2393{
2394	int ret;
2395	acpi_handle tmp = NULL;
2396	acpi_status status;
2397
2398	if (!dmar_in_use())
2399		return 0;
2400
2401	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2402		tmp = handle;
2403	} else {
2404		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2405					     ACPI_UINT32_MAX,
2406					     dmar_get_dsm_handle,
2407					     NULL, NULL, &tmp);
2408		if (ACPI_FAILURE(status)) {
2409			pr_warn("Failed to locate _DSM method.\n");
2410			return -ENXIO;
2411		}
2412	}
2413	if (tmp == NULL)
2414		return 0;
2415
2416	down_write(&dmar_global_lock);
2417	if (insert)
2418		ret = dmar_hotplug_insert(tmp);
2419	else
2420		ret = dmar_hotplug_remove(tmp);
2421	up_write(&dmar_global_lock);
2422
2423	return ret;
2424}
2425
2426int dmar_device_add(acpi_handle handle)
2427{
2428	return dmar_device_hotplug(handle, true);
2429}
2430
2431int dmar_device_remove(acpi_handle handle)
2432{
2433	return dmar_device_hotplug(handle, false);
2434}
2435
2436/*
2437 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2438 *
2439 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2440 * the ACPI DMAR table. This means that the platform boot firmware has made
2441 * sure no device can issue DMA outside of RMRR regions.
2442 */
2443bool dmar_platform_optin(void)
2444{
2445	struct acpi_table_dmar *dmar;
2446	acpi_status status;
2447	bool ret;
2448
2449	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2450				(struct acpi_table_header **)&dmar);
2451	if (ACPI_FAILURE(status))
2452		return false;
2453
2454	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2455	acpi_put_table((struct acpi_table_header *)dmar);
2456
2457	return ret;
2458}
2459EXPORT_SYMBOL_GPL(dmar_platform_optin);