Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright(c) 2015 - 2020 Intel Corporation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <rdma/ib_mad.h>
   7#include <rdma/ib_user_verbs.h>
   8#include <linux/io.h>
   9#include <linux/module.h>
  10#include <linux/utsname.h>
  11#include <linux/rculist.h>
  12#include <linux/mm.h>
  13#include <linux/vmalloc.h>
  14#include <rdma/opa_addr.h>
  15#include <linux/nospec.h>
  16
  17#include "hfi.h"
  18#include "common.h"
  19#include "device.h"
  20#include "trace.h"
  21#include "qp.h"
  22#include "verbs_txreq.h"
  23#include "debugfs.h"
  24#include "vnic.h"
  25#include "fault.h"
  26#include "affinity.h"
  27#include "ipoib.h"
  28
  29static unsigned int hfi1_lkey_table_size = 16;
  30module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  31		   S_IRUGO);
  32MODULE_PARM_DESC(lkey_table_size,
  33		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
  34
  35static unsigned int hfi1_max_pds = 0xFFFF;
  36module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  37MODULE_PARM_DESC(max_pds,
  38		 "Maximum number of protection domains to support");
  39
  40static unsigned int hfi1_max_ahs = 0xFFFF;
  41module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  42MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  43
  44unsigned int hfi1_max_cqes = 0x2FFFFF;
  45module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  46MODULE_PARM_DESC(max_cqes,
  47		 "Maximum number of completion queue entries to support");
  48
  49unsigned int hfi1_max_cqs = 0x1FFFF;
  50module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  51MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  52
  53unsigned int hfi1_max_qp_wrs = 0x3FFF;
  54module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  55MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  56
  57unsigned int hfi1_max_qps = 32768;
  58module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
  59MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
  60
  61unsigned int hfi1_max_sges = 0x60;
  62module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
  63MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
  64
  65unsigned int hfi1_max_mcast_grps = 16384;
  66module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
  67MODULE_PARM_DESC(max_mcast_grps,
  68		 "Maximum number of multicast groups to support");
  69
  70unsigned int hfi1_max_mcast_qp_attached = 16;
  71module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
  72		   uint, S_IRUGO);
  73MODULE_PARM_DESC(max_mcast_qp_attached,
  74		 "Maximum number of attached QPs to support");
  75
  76unsigned int hfi1_max_srqs = 1024;
  77module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
  78MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
  79
  80unsigned int hfi1_max_srq_sges = 128;
  81module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
  82MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
  83
  84unsigned int hfi1_max_srq_wrs = 0x1FFFF;
  85module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
  86MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
  87
  88unsigned short piothreshold = 256;
  89module_param(piothreshold, ushort, S_IRUGO);
  90MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
  91
  92static unsigned int sge_copy_mode;
  93module_param(sge_copy_mode, uint, S_IRUGO);
  94MODULE_PARM_DESC(sge_copy_mode,
  95		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
  96
  97static void verbs_sdma_complete(
  98	struct sdma_txreq *cookie,
  99	int status);
 100
 101static int pio_wait(struct rvt_qp *qp,
 102		    struct send_context *sc,
 103		    struct hfi1_pkt_state *ps,
 104		    u32 flag);
 105
 106/* Length of buffer to create verbs txreq cache name */
 107#define TXREQ_NAME_LEN 24
 108
 109static uint wss_threshold = 80;
 110module_param(wss_threshold, uint, S_IRUGO);
 111MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 112static uint wss_clean_period = 256;
 113module_param(wss_clean_period, uint, S_IRUGO);
 114MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 115
 116/*
 117 * Translate ib_wr_opcode into ib_wc_opcode.
 118 */
 119const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
 120	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 121	[IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 122	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
 123	[IB_WR_SEND] = IB_WC_SEND,
 124	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
 125	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
 126	[IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
 127	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
 128	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
 129	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
 130	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
 131	[IB_WR_REG_MR] = IB_WC_REG_MR
 132};
 133
 134/*
 135 * Length of header by opcode, 0 --> not supported
 136 */
 137const u8 hdr_len_by_opcode[256] = {
 138	/* RC */
 139	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 140	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 141	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 142	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 143	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 144	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 145	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 146	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 147	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 148	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 149	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 150	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 151	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 152	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 153	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 154	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 155	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 156	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 157	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
 158	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 159	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 160	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
 161	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
 162	[IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
 163	[IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
 164	[IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
 165	[IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
 166	[IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
 167	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
 168	[IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
 169	[IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
 170	/* UC */
 171	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 172	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 173	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 174	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 175	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 176	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 177	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 178	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 179	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 180	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 181	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 182	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 183	/* UD */
 184	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 185	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 186};
 187
 188static const opcode_handler opcode_handler_tbl[256] = {
 189	/* RC */
 190	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 191	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 192	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 193	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 194	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 195	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 196	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 197	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 198	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 199	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 200	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 201	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 202	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 203	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 204	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 205	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 206	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 207	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 208	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 209	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 210	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 211	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 212	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 213
 214	/* TID RDMA has separate handlers for different opcodes.*/
 215	[IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
 216	[IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
 217	[IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
 218	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
 219	[IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
 220	[IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
 221	[IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
 222	[IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
 223
 224	/* UC */
 225	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 226	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 227	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 228	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 229	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 230	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 231	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 232	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 233	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 234	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 235	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 236	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 237	/* UD */
 238	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 239	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 240	/* CNP */
 241	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
 242};
 243
 244#define OPMASK 0x1f
 245
 246static const u32 pio_opmask[BIT(3)] = {
 247	/* RC */
 248	[IB_OPCODE_RC >> 5] =
 249		BIT(RC_OP(SEND_ONLY) & OPMASK) |
 250		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 251		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 252		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
 253		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
 254		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
 255		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
 256		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
 257		BIT(RC_OP(FETCH_ADD) & OPMASK),
 258	/* UC */
 259	[IB_OPCODE_UC >> 5] =
 260		BIT(UC_OP(SEND_ONLY) & OPMASK) |
 261		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 262		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 263		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
 264};
 265
 266/*
 267 * System image GUID.
 268 */
 269__be64 ib_hfi1_sys_image_guid;
 270
 271/*
 272 * Make sure the QP is ready and able to accept the given opcode.
 273 */
 274static inline opcode_handler qp_ok(struct hfi1_packet *packet)
 275{
 276	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 277		return NULL;
 278	if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
 279	     packet->qp->allowed_ops) ||
 280	    (packet->opcode == IB_OPCODE_CNP))
 281		return opcode_handler_tbl[packet->opcode];
 282
 283	return NULL;
 284}
 285
 286static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
 287{
 288#ifdef CONFIG_FAULT_INJECTION
 289	if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
 290		/*
 291		 * In order to drop non-IB traffic we
 292		 * set PbcInsertHrc to NONE (0x2).
 293		 * The packet will still be delivered
 294		 * to the receiving node but a
 295		 * KHdrHCRCErr (KDETH packet with a bad
 296		 * HCRC) will be triggered and the
 297		 * packet will not be delivered to the
 298		 * correct context.
 299		 */
 300		pbc &= ~PBC_INSERT_HCRC_SMASK;
 301		pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
 302	} else {
 303		/*
 304		 * In order to drop regular verbs
 305		 * traffic we set the PbcTestEbp
 306		 * flag. The packet will still be
 307		 * delivered to the receiving node but
 308		 * a 'late ebp error' will be
 309		 * triggered and will be dropped.
 310		 */
 311		pbc |= PBC_TEST_EBP;
 312	}
 313#endif
 314	return pbc;
 315}
 316
 317static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
 318{
 319	if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
 320	    !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 321		return NULL;
 322	if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
 323		return opcode_handler_tbl[opcode];
 324	return NULL;
 325}
 326
 327void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
 328{
 329	struct hfi1_ctxtdata *rcd = packet->rcd;
 330	struct ib_header *hdr = packet->hdr;
 331	u32 tlen = packet->tlen;
 332	struct hfi1_pportdata *ppd = rcd->ppd;
 333	struct hfi1_ibport *ibp = &ppd->ibport_data;
 334	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 335	opcode_handler opcode_handler;
 336	unsigned long flags;
 337	u32 qp_num;
 338	int lnh;
 339	u8 opcode;
 340
 341	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
 342	if (unlikely(tlen < 15 * sizeof(u32)))
 343		goto drop;
 344
 345	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 346	if (lnh != HFI1_LRH_BTH)
 347		goto drop;
 348
 349	packet->ohdr = &hdr->u.oth;
 350	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 351
 352	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 353	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 354
 355	/* verbs_qp can be picked up from any tid_rdma header struct */
 356	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
 357		RVT_QPN_MASK;
 358
 359	rcu_read_lock();
 360	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 361	if (!packet->qp)
 362		goto drop_rcu;
 363	spin_lock_irqsave(&packet->qp->r_lock, flags);
 364	opcode_handler = tid_qp_ok(opcode, packet);
 365	if (likely(opcode_handler))
 366		opcode_handler(packet);
 367	else
 368		goto drop_unlock;
 369	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 370	rcu_read_unlock();
 371
 372	return;
 373drop_unlock:
 374	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 375drop_rcu:
 376	rcu_read_unlock();
 377drop:
 378	ibp->rvp.n_pkt_drops++;
 379}
 380
 381void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
 382{
 383	struct hfi1_ctxtdata *rcd = packet->rcd;
 384	struct ib_header *hdr = packet->hdr;
 385	u32 tlen = packet->tlen;
 386	struct hfi1_pportdata *ppd = rcd->ppd;
 387	struct hfi1_ibport *ibp = &ppd->ibport_data;
 388	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 389	opcode_handler opcode_handler;
 390	unsigned long flags;
 391	u32 qp_num;
 392	int lnh;
 393	u8 opcode;
 394
 395	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
 396	if (unlikely(tlen < 15 * sizeof(u32)))
 397		goto drop;
 398
 399	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 400	if (lnh != HFI1_LRH_BTH)
 401		goto drop;
 402
 403	packet->ohdr = &hdr->u.oth;
 404	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 405
 406	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 407	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 408
 409	/* verbs_qp can be picked up from any tid_rdma header struct */
 410	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
 411		RVT_QPN_MASK;
 412
 413	rcu_read_lock();
 414	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 415	if (!packet->qp)
 416		goto drop_rcu;
 417	spin_lock_irqsave(&packet->qp->r_lock, flags);
 418	opcode_handler = tid_qp_ok(opcode, packet);
 419	if (likely(opcode_handler))
 420		opcode_handler(packet);
 421	else
 422		goto drop_unlock;
 423	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 424	rcu_read_unlock();
 425
 426	return;
 427drop_unlock:
 428	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 429drop_rcu:
 430	rcu_read_unlock();
 431drop:
 432	ibp->rvp.n_pkt_drops++;
 433}
 434
 435static int hfi1_do_pkey_check(struct hfi1_packet *packet)
 436{
 437	struct hfi1_ctxtdata *rcd = packet->rcd;
 438	struct hfi1_pportdata *ppd = rcd->ppd;
 439	struct hfi1_16b_header *hdr = packet->hdr;
 440	u16 pkey;
 441
 442	/* Pkey check needed only for bypass packets */
 443	if (packet->etype != RHF_RCV_TYPE_BYPASS)
 444		return 0;
 445
 446	/* Perform pkey check */
 447	pkey = hfi1_16B_get_pkey(hdr);
 448	return ingress_pkey_check(ppd, pkey, packet->sc,
 449				  packet->qp->s_pkey_index,
 450				  packet->slid, true);
 451}
 452
 453static inline void hfi1_handle_packet(struct hfi1_packet *packet,
 454				      bool is_mcast)
 455{
 456	u32 qp_num;
 457	struct hfi1_ctxtdata *rcd = packet->rcd;
 458	struct hfi1_pportdata *ppd = rcd->ppd;
 459	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 460	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 461	opcode_handler packet_handler;
 462	unsigned long flags;
 463
 464	inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
 465
 466	if (unlikely(is_mcast)) {
 467		struct rvt_mcast *mcast;
 468		struct rvt_mcast_qp *p;
 469
 470		if (!packet->grh)
 471			goto drop;
 472		mcast = rvt_mcast_find(&ibp->rvp,
 473				       &packet->grh->dgid,
 474				       opa_get_lid(packet->dlid, 9B));
 475		if (!mcast)
 476			goto drop;
 477		rcu_read_lock();
 478		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 479			packet->qp = p->qp;
 480			if (hfi1_do_pkey_check(packet))
 481				goto unlock_drop;
 482			spin_lock_irqsave(&packet->qp->r_lock, flags);
 483			packet_handler = qp_ok(packet);
 484			if (likely(packet_handler))
 485				packet_handler(packet);
 486			else
 487				ibp->rvp.n_pkt_drops++;
 488			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 489		}
 490		rcu_read_unlock();
 491		/*
 492		 * Notify rvt_multicast_detach() if it is waiting for us
 493		 * to finish.
 494		 */
 495		if (atomic_dec_return(&mcast->refcount) <= 1)
 496			wake_up(&mcast->wait);
 497	} else {
 498		/* Get the destination QP number. */
 499		if (packet->etype == RHF_RCV_TYPE_BYPASS &&
 500		    hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
 501			qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
 502		else
 503			qp_num = ib_bth_get_qpn(packet->ohdr);
 504
 505		rcu_read_lock();
 506		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 507		if (!packet->qp)
 508			goto unlock_drop;
 509
 510		if (hfi1_do_pkey_check(packet))
 511			goto unlock_drop;
 512
 513		spin_lock_irqsave(&packet->qp->r_lock, flags);
 514		packet_handler = qp_ok(packet);
 515		if (likely(packet_handler))
 516			packet_handler(packet);
 517		else
 518			ibp->rvp.n_pkt_drops++;
 519		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 520		rcu_read_unlock();
 521	}
 522	return;
 523unlock_drop:
 524	rcu_read_unlock();
 525drop:
 526	ibp->rvp.n_pkt_drops++;
 527}
 528
 529/**
 530 * hfi1_ib_rcv - process an incoming packet
 531 * @packet: data packet information
 532 *
 533 * This is called to process an incoming packet at interrupt level.
 534 */
 535void hfi1_ib_rcv(struct hfi1_packet *packet)
 536{
 537	struct hfi1_ctxtdata *rcd = packet->rcd;
 538
 539	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 540	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
 541}
 542
 543void hfi1_16B_rcv(struct hfi1_packet *packet)
 544{
 545	struct hfi1_ctxtdata *rcd = packet->rcd;
 546
 547	trace_input_ibhdr(rcd->dd, packet, false);
 548	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
 549}
 550
 551/*
 552 * This is called from a timer to check for QPs
 553 * which need kernel memory in order to send a packet.
 554 */
 555static void mem_timer(struct timer_list *t)
 556{
 557	struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
 558	struct list_head *list = &dev->memwait;
 559	struct rvt_qp *qp = NULL;
 560	struct iowait *wait;
 561	unsigned long flags;
 562	struct hfi1_qp_priv *priv;
 563
 564	write_seqlock_irqsave(&dev->iowait_lock, flags);
 565	if (!list_empty(list)) {
 566		wait = list_first_entry(list, struct iowait, list);
 567		qp = iowait_to_qp(wait);
 568		priv = qp->priv;
 569		list_del_init(&priv->s_iowait.list);
 570		priv->s_iowait.lock = NULL;
 571		/* refcount held until actual wake up */
 572		if (!list_empty(list))
 573			mod_timer(&dev->mem_timer, jiffies + 1);
 574	}
 575	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 576
 577	if (qp)
 578		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 579}
 580
 581/*
 582 * This is called with progress side lock held.
 583 */
 584/* New API */
 585static void verbs_sdma_complete(
 586	struct sdma_txreq *cookie,
 587	int status)
 588{
 589	struct verbs_txreq *tx =
 590		container_of(cookie, struct verbs_txreq, txreq);
 591	struct rvt_qp *qp = tx->qp;
 592
 593	spin_lock(&qp->s_lock);
 594	if (tx->wqe) {
 595		rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 596	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
 597		struct hfi1_opa_header *hdr;
 598
 599		hdr = &tx->phdr.hdr;
 600		if (unlikely(status == SDMA_TXREQ_S_ABORTED))
 601			hfi1_rc_verbs_aborted(qp, hdr);
 602		hfi1_rc_send_complete(qp, hdr);
 603	}
 604	spin_unlock(&qp->s_lock);
 605
 606	hfi1_put_txreq(tx);
 607}
 608
 609void hfi1_wait_kmem(struct rvt_qp *qp)
 610{
 611	struct hfi1_qp_priv *priv = qp->priv;
 612	struct ib_qp *ibqp = &qp->ibqp;
 613	struct ib_device *ibdev = ibqp->device;
 614	struct hfi1_ibdev *dev = to_idev(ibdev);
 615
 616	if (list_empty(&priv->s_iowait.list)) {
 617		if (list_empty(&dev->memwait))
 618			mod_timer(&dev->mem_timer, jiffies + 1);
 619		qp->s_flags |= RVT_S_WAIT_KMEM;
 620		list_add_tail(&priv->s_iowait.list, &dev->memwait);
 621		priv->s_iowait.lock = &dev->iowait_lock;
 622		trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 623		rvt_get_qp(qp);
 624	}
 625}
 626
 627static int wait_kmem(struct hfi1_ibdev *dev,
 628		     struct rvt_qp *qp,
 629		     struct hfi1_pkt_state *ps)
 630{
 631	unsigned long flags;
 632	int ret = 0;
 633
 634	spin_lock_irqsave(&qp->s_lock, flags);
 635	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 636		write_seqlock(&dev->iowait_lock);
 637		list_add_tail(&ps->s_txreq->txreq.list,
 638			      &ps->wait->tx_head);
 639		hfi1_wait_kmem(qp);
 640		write_sequnlock(&dev->iowait_lock);
 641		hfi1_qp_unbusy(qp, ps->wait);
 642		ret = -EBUSY;
 643	}
 644	spin_unlock_irqrestore(&qp->s_lock, flags);
 645
 646	return ret;
 647}
 648
 649/*
 650 * This routine calls txadds for each sg entry.
 651 *
 652 * Add failures will revert the sge cursor
 653 */
 654static noinline int build_verbs_ulp_payload(
 655	struct sdma_engine *sde,
 656	u32 length,
 657	struct verbs_txreq *tx)
 658{
 659	struct rvt_sge_state *ss = tx->ss;
 660	struct rvt_sge *sg_list = ss->sg_list;
 661	struct rvt_sge sge = ss->sge;
 662	u8 num_sge = ss->num_sge;
 663	u32 len;
 664	int ret = 0;
 665
 666	while (length) {
 667		len = rvt_get_sge_length(&ss->sge, length);
 668		WARN_ON_ONCE(len == 0);
 669		ret = sdma_txadd_kvaddr(
 670			sde->dd,
 671			&tx->txreq,
 672			ss->sge.vaddr,
 673			len);
 674		if (ret)
 675			goto bail_txadd;
 676		rvt_update_sge(ss, len, false);
 677		length -= len;
 678	}
 679	return ret;
 680bail_txadd:
 681	/* unwind cursor */
 682	ss->sge = sge;
 683	ss->num_sge = num_sge;
 684	ss->sg_list = sg_list;
 685	return ret;
 686}
 687
 688/**
 689 * update_tx_opstats - record stats by opcode
 690 * @qp: the qp
 691 * @ps: transmit packet state
 692 * @plen: the plen in dwords
 693 *
 694 * This is a routine to record the tx opstats after a
 695 * packet has been presented to the egress mechanism.
 696 */
 697static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 698			      u32 plen)
 699{
 700#ifdef CONFIG_DEBUG_FS
 701	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
 702	struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
 703
 704	inc_opstats(plen * 4, &s->stats[ps->opcode]);
 705	put_cpu_ptr(s);
 706#endif
 707}
 708
 709/*
 710 * Build the number of DMA descriptors needed to send length bytes of data.
 711 *
 712 * NOTE: DMA mapping is held in the tx until completed in the ring or
 713 *       the tx desc is freed without having been submitted to the ring
 714 *
 715 * This routine ensures all the helper routine calls succeed.
 716 */
 717/* New API */
 718static int build_verbs_tx_desc(
 719	struct sdma_engine *sde,
 720	u32 length,
 721	struct verbs_txreq *tx,
 722	struct hfi1_ahg_info *ahg_info,
 723	u64 pbc)
 724{
 725	int ret = 0;
 726	struct hfi1_sdma_header *phdr = &tx->phdr;
 727	u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
 728	u8 extra_bytes = 0;
 729
 730	if (tx->phdr.hdr.hdr_type) {
 731		/*
 732		 * hdrbytes accounts for PBC. Need to subtract 8 bytes
 733		 * before calculating padding.
 734		 */
 735		extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
 736			      (SIZE_OF_CRC << 2) + SIZE_OF_LT;
 737	}
 738	if (!ahg_info->ahgcount) {
 739		ret = sdma_txinit_ahg(
 740			&tx->txreq,
 741			ahg_info->tx_flags,
 742			hdrbytes + length +
 743			extra_bytes,
 744			ahg_info->ahgidx,
 745			0,
 746			NULL,
 747			0,
 748			verbs_sdma_complete);
 749		if (ret)
 750			goto bail_txadd;
 751		phdr->pbc = cpu_to_le64(pbc);
 752		ret = sdma_txadd_kvaddr(
 753			sde->dd,
 754			&tx->txreq,
 755			phdr,
 756			hdrbytes);
 757		if (ret)
 758			goto bail_txadd;
 759	} else {
 760		ret = sdma_txinit_ahg(
 761			&tx->txreq,
 762			ahg_info->tx_flags,
 763			length,
 764			ahg_info->ahgidx,
 765			ahg_info->ahgcount,
 766			ahg_info->ahgdesc,
 767			hdrbytes,
 768			verbs_sdma_complete);
 769		if (ret)
 770			goto bail_txadd;
 771	}
 772	/* add the ulp payload - if any. tx->ss can be NULL for acks */
 773	if (tx->ss) {
 774		ret = build_verbs_ulp_payload(sde, length, tx);
 775		if (ret)
 776			goto bail_txadd;
 777	}
 778
 779	/* add icrc, lt byte, and padding to flit */
 780	if (extra_bytes)
 781		ret = sdma_txadd_daddr(sde->dd, &tx->txreq, sde->dd->sdma_pad_phys,
 782				       extra_bytes);
 783
 784bail_txadd:
 785	return ret;
 786}
 787
 788static u64 update_hcrc(u8 opcode, u64 pbc)
 789{
 790	if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
 791		pbc &= ~PBC_INSERT_HCRC_SMASK;
 792		pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
 793	}
 794	return pbc;
 795}
 796
 797int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 798			u64 pbc)
 799{
 800	struct hfi1_qp_priv *priv = qp->priv;
 801	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
 802	u32 hdrwords = ps->s_txreq->hdr_dwords;
 803	u32 len = ps->s_txreq->s_cur_size;
 804	u32 plen;
 805	struct hfi1_ibdev *dev = ps->dev;
 806	struct hfi1_pportdata *ppd = ps->ppd;
 807	struct verbs_txreq *tx;
 808	u8 sc5 = priv->s_sc;
 809	int ret;
 810	u32 dwords;
 811
 812	if (ps->s_txreq->phdr.hdr.hdr_type) {
 813		u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
 814
 815		dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
 816			  SIZE_OF_LT) >> 2;
 817	} else {
 818		dwords = (len + 3) >> 2;
 819	}
 820	plen = hdrwords + dwords + sizeof(pbc) / 4;
 821
 822	tx = ps->s_txreq;
 823	if (!sdma_txreq_built(&tx->txreq)) {
 824		if (likely(pbc == 0)) {
 825			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 826
 827			/* No vl15 here */
 828			/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
 829			if (ps->s_txreq->phdr.hdr.hdr_type)
 830				pbc |= PBC_PACKET_BYPASS |
 831				       PBC_INSERT_BYPASS_ICRC;
 832			else
 833				pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
 834
 835			pbc = create_pbc(ppd,
 836					 pbc,
 837					 qp->srate_mbps,
 838					 vl,
 839					 plen);
 840
 841			if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
 842				pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
 843			else
 844				/* Update HCRC based on packet opcode */
 845				pbc = update_hcrc(ps->opcode, pbc);
 846		}
 847		tx->wqe = qp->s_wqe;
 848		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
 849		if (unlikely(ret))
 850			goto bail_build;
 851	}
 852	ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
 853	if (unlikely(ret < 0)) {
 854		if (ret == -ECOMM)
 855			goto bail_ecomm;
 856		return ret;
 857	}
 858
 859	update_tx_opstats(qp, ps, plen);
 860	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 861				&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
 862	return ret;
 863
 864bail_ecomm:
 865	/* The current one got "sent" */
 866	return 0;
 867bail_build:
 868	ret = wait_kmem(dev, qp, ps);
 869	if (!ret) {
 870		/* free txreq - bad state */
 871		hfi1_put_txreq(ps->s_txreq);
 872		ps->s_txreq = NULL;
 873	}
 874	return ret;
 875}
 876
 877/*
 878 * If we are now in the error state, return zero to flush the
 879 * send work request.
 880 */
 881static int pio_wait(struct rvt_qp *qp,
 882		    struct send_context *sc,
 883		    struct hfi1_pkt_state *ps,
 884		    u32 flag)
 885{
 886	struct hfi1_qp_priv *priv = qp->priv;
 887	struct hfi1_devdata *dd = sc->dd;
 888	unsigned long flags;
 889	int ret = 0;
 890
 891	/*
 892	 * Note that as soon as want_buffer() is called and
 893	 * possibly before it returns, sc_piobufavail()
 894	 * could be called. Therefore, put QP on the I/O wait list before
 895	 * enabling the PIO avail interrupt.
 896	 */
 897	spin_lock_irqsave(&qp->s_lock, flags);
 898	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 899		write_seqlock(&sc->waitlock);
 900		list_add_tail(&ps->s_txreq->txreq.list,
 901			      &ps->wait->tx_head);
 902		if (list_empty(&priv->s_iowait.list)) {
 903			struct hfi1_ibdev *dev = &dd->verbs_dev;
 904			int was_empty;
 905
 906			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 907			dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
 908			qp->s_flags |= flag;
 909			was_empty = list_empty(&sc->piowait);
 910			iowait_get_priority(&priv->s_iowait);
 911			iowait_queue(ps->pkts_sent, &priv->s_iowait,
 912				     &sc->piowait);
 913			priv->s_iowait.lock = &sc->waitlock;
 914			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 915			rvt_get_qp(qp);
 916			/* counting: only call wantpiobuf_intr if first user */
 917			if (was_empty)
 918				hfi1_sc_wantpiobuf_intr(sc, 1);
 919		}
 920		write_sequnlock(&sc->waitlock);
 921		hfi1_qp_unbusy(qp, ps->wait);
 922		ret = -EBUSY;
 923	}
 924	spin_unlock_irqrestore(&qp->s_lock, flags);
 925	return ret;
 926}
 927
 928static void verbs_pio_complete(void *arg, int code)
 929{
 930	struct rvt_qp *qp = (struct rvt_qp *)arg;
 931	struct hfi1_qp_priv *priv = qp->priv;
 932
 933	if (iowait_pio_dec(&priv->s_iowait))
 934		iowait_drain_wakeup(&priv->s_iowait);
 935}
 936
 937int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 938			u64 pbc)
 939{
 940	struct hfi1_qp_priv *priv = qp->priv;
 941	u32 hdrwords = ps->s_txreq->hdr_dwords;
 942	struct rvt_sge_state *ss = ps->s_txreq->ss;
 943	u32 len = ps->s_txreq->s_cur_size;
 944	u32 dwords;
 945	u32 plen;
 946	struct hfi1_pportdata *ppd = ps->ppd;
 947	u32 *hdr;
 948	u8 sc5;
 949	unsigned long flags = 0;
 950	struct send_context *sc;
 951	struct pio_buf *pbuf;
 952	int wc_status = IB_WC_SUCCESS;
 953	int ret = 0;
 954	pio_release_cb cb = NULL;
 955	u8 extra_bytes = 0;
 956
 957	if (ps->s_txreq->phdr.hdr.hdr_type) {
 958		u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
 959
 960		extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
 961		dwords = (len + extra_bytes) >> 2;
 962		hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
 963	} else {
 964		dwords = (len + 3) >> 2;
 965		hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
 966	}
 967	plen = hdrwords + dwords + sizeof(pbc) / 4;
 968
 969	/* only RC/UC use complete */
 970	switch (qp->ibqp.qp_type) {
 971	case IB_QPT_RC:
 972	case IB_QPT_UC:
 973		cb = verbs_pio_complete;
 974		break;
 975	default:
 976		break;
 977	}
 978
 979	/* vl15 special case taken care of in ud.c */
 980	sc5 = priv->s_sc;
 981	sc = ps->s_txreq->psc;
 982
 983	if (likely(pbc == 0)) {
 984		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 985
 986		/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
 987		if (ps->s_txreq->phdr.hdr.hdr_type)
 988			pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
 989		else
 990			pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
 991
 992		pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
 993		if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
 994			pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
 995		else
 996			/* Update HCRC based on packet opcode */
 997			pbc = update_hcrc(ps->opcode, pbc);
 998	}
 999	if (cb)
1000		iowait_pio_inc(&priv->s_iowait);
1001	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1002	if (IS_ERR_OR_NULL(pbuf)) {
1003		if (cb)
1004			verbs_pio_complete(qp, 0);
1005		if (IS_ERR(pbuf)) {
1006			/*
1007			 * If we have filled the PIO buffers to capacity and are
1008			 * not in an active state this request is not going to
1009			 * go out to so just complete it with an error or else a
1010			 * ULP or the core may be stuck waiting.
1011			 */
1012			hfi1_cdbg(
1013				PIO,
1014				"alloc failed. state not active, completing");
1015			wc_status = IB_WC_GENERAL_ERR;
1016			goto pio_bail;
1017		} else {
1018			/*
1019			 * This is a normal occurrence. The PIO buffs are full
1020			 * up but we are still happily sending, well we could be
1021			 * so lets continue to queue the request.
1022			 */
1023			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1024			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1025			if (!ret)
1026				/* txreq not queued - free */
1027				goto bail;
1028			/* tx consumed in wait */
1029			return ret;
1030		}
1031	}
1032
1033	if (dwords == 0) {
1034		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1035	} else {
1036		seg_pio_copy_start(pbuf, pbc,
1037				   hdr, hdrwords * 4);
1038		if (ss) {
1039			while (len) {
1040				void *addr = ss->sge.vaddr;
1041				u32 slen = rvt_get_sge_length(&ss->sge, len);
1042
1043				rvt_update_sge(ss, slen, false);
1044				seg_pio_copy_mid(pbuf, addr, slen);
1045				len -= slen;
1046			}
1047		}
1048		/* add icrc, lt byte, and padding to flit */
1049		if (extra_bytes)
1050			seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1051					 extra_bytes);
1052
1053		seg_pio_copy_end(pbuf);
1054	}
1055
1056	update_tx_opstats(qp, ps, plen);
1057	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1058			       &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1059
1060pio_bail:
1061	spin_lock_irqsave(&qp->s_lock, flags);
1062	if (qp->s_wqe) {
1063		rvt_send_complete(qp, qp->s_wqe, wc_status);
1064	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1065		if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1066			hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1067		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1068	}
1069	spin_unlock_irqrestore(&qp->s_lock, flags);
1070
1071	ret = 0;
1072
1073bail:
1074	hfi1_put_txreq(ps->s_txreq);
1075	return ret;
1076}
1077
1078/*
1079 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1080 * being an entry from the partition key table), return 0
1081 * otherwise. Use the matching criteria for egress partition keys
1082 * specified in the OPAv1 spec., section 9.1l.7.
1083 */
1084static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1085{
1086	u16 mkey = pkey & PKEY_LOW_15_MASK;
1087	u16 mentry = ent & PKEY_LOW_15_MASK;
1088
1089	if (mkey == mentry) {
1090		/*
1091		 * If pkey[15] is set (full partition member),
1092		 * is bit 15 in the corresponding table element
1093		 * clear (limited member)?
1094		 */
1095		if (pkey & PKEY_MEMBER_MASK)
1096			return !!(ent & PKEY_MEMBER_MASK);
1097		return 1;
1098	}
1099	return 0;
1100}
1101
1102/**
1103 * egress_pkey_check - check P_KEY of a packet
1104 * @ppd:  Physical IB port data
1105 * @slid: SLID for packet
1106 * @pkey: PKEY for header
1107 * @sc5:  SC for packet
1108 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1109 * only. If it is negative value, then it means user contexts is calling this
1110 * function.
1111 *
1112 * It checks if hdr's pkey is valid.
1113 *
1114 * Return: 0 on success, otherwise, 1
1115 */
1116int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1117		      u8 sc5, int8_t s_pkey_index)
1118{
1119	struct hfi1_devdata *dd;
1120	int i;
1121	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1122
1123	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1124		return 0;
1125
1126	/* If SC15, pkey[0:14] must be 0x7fff */
1127	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1128		goto bad;
1129
1130	/* Is the pkey = 0x0, or 0x8000? */
1131	if ((pkey & PKEY_LOW_15_MASK) == 0)
1132		goto bad;
1133
1134	/*
1135	 * For the kernel contexts only, if a qp is passed into the function,
1136	 * the most likely matching pkey has index qp->s_pkey_index
1137	 */
1138	if (!is_user_ctxt_mechanism &&
1139	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1140		return 0;
1141	}
1142
1143	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1144		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1145			return 0;
1146	}
1147bad:
1148	/*
1149	 * For the user-context mechanism, the P_KEY check would only happen
1150	 * once per SDMA request, not once per packet.  Therefore, there's no
1151	 * need to increment the counter for the user-context mechanism.
1152	 */
1153	if (!is_user_ctxt_mechanism) {
1154		incr_cntr64(&ppd->port_xmit_constraint_errors);
1155		dd = ppd->dd;
1156		if (!(dd->err_info_xmit_constraint.status &
1157		      OPA_EI_STATUS_SMASK)) {
1158			dd->err_info_xmit_constraint.status |=
1159				OPA_EI_STATUS_SMASK;
1160			dd->err_info_xmit_constraint.slid = slid;
1161			dd->err_info_xmit_constraint.pkey = pkey;
1162		}
1163	}
1164	return 1;
1165}
1166
1167/*
1168 * get_send_routine - choose an egress routine
1169 *
1170 * Choose an egress routine based on QP type
1171 * and size
1172 */
1173static inline send_routine get_send_routine(struct rvt_qp *qp,
1174					    struct hfi1_pkt_state *ps)
1175{
1176	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1177	struct hfi1_qp_priv *priv = qp->priv;
1178	struct verbs_txreq *tx = ps->s_txreq;
1179
1180	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1181		return dd->process_pio_send;
1182	switch (qp->ibqp.qp_type) {
1183	case IB_QPT_SMI:
1184		return dd->process_pio_send;
1185	case IB_QPT_GSI:
1186	case IB_QPT_UD:
1187		break;
1188	case IB_QPT_UC:
1189	case IB_QPT_RC:
1190		priv->s_running_pkt_size =
1191			(tx->s_cur_size + priv->s_running_pkt_size) / 2;
1192		if (piothreshold &&
1193		    priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1194		    (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1195		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1196		    !sdma_txreq_built(&tx->txreq))
1197			return dd->process_pio_send;
1198		break;
1199	default:
1200		break;
1201	}
1202	return dd->process_dma_send;
1203}
1204
1205/**
1206 * hfi1_verbs_send - send a packet
1207 * @qp: the QP to send on
1208 * @ps: the state of the packet to send
1209 *
1210 * Return zero if packet is sent or queued OK.
1211 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1212 */
1213int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1214{
1215	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1216	struct hfi1_qp_priv *priv = qp->priv;
1217	struct ib_other_headers *ohdr = NULL;
1218	send_routine sr;
1219	int ret;
1220	u16 pkey;
1221	u32 slid;
1222	u8 l4 = 0;
1223
1224	/* locate the pkey within the headers */
1225	if (ps->s_txreq->phdr.hdr.hdr_type) {
1226		struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1227
1228		l4 = hfi1_16B_get_l4(hdr);
1229		if (l4 == OPA_16B_L4_IB_LOCAL)
1230			ohdr = &hdr->u.oth;
1231		else if (l4 == OPA_16B_L4_IB_GLOBAL)
1232			ohdr = &hdr->u.l.oth;
1233
1234		slid = hfi1_16B_get_slid(hdr);
1235		pkey = hfi1_16B_get_pkey(hdr);
1236	} else {
1237		struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1238		u8 lnh = ib_get_lnh(hdr);
1239
1240		if (lnh == HFI1_LRH_GRH)
1241			ohdr = &hdr->u.l.oth;
1242		else
1243			ohdr = &hdr->u.oth;
1244		slid = ib_get_slid(hdr);
1245		pkey = ib_bth_get_pkey(ohdr);
1246	}
1247
1248	if (likely(l4 != OPA_16B_L4_FM))
1249		ps->opcode = ib_bth_get_opcode(ohdr);
1250	else
1251		ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1252
1253	sr = get_send_routine(qp, ps);
1254	ret = egress_pkey_check(dd->pport, slid, pkey,
1255				priv->s_sc, qp->s_pkey_index);
1256	if (unlikely(ret)) {
1257		/*
1258		 * The value we are returning here does not get propagated to
1259		 * the verbs caller. Thus we need to complete the request with
1260		 * error otherwise the caller could be sitting waiting on the
1261		 * completion event. Only do this for PIO. SDMA has its own
1262		 * mechanism for handling the errors. So for SDMA we can just
1263		 * return.
1264		 */
1265		if (sr == dd->process_pio_send) {
1266			unsigned long flags;
1267
1268			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1269				  __func__);
1270			spin_lock_irqsave(&qp->s_lock, flags);
1271			rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1272			spin_unlock_irqrestore(&qp->s_lock, flags);
1273		}
1274		return -EINVAL;
1275	}
1276	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1277		return pio_wait(qp,
1278				ps->s_txreq->psc,
1279				ps,
1280				HFI1_S_WAIT_PIO_DRAIN);
1281	return sr(qp, ps, 0);
1282}
1283
1284/**
1285 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1286 * @dd: the device data structure
1287 */
1288static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1289{
1290	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1291	u32 ver = dd->dc8051_ver;
1292
1293	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1294
1295	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1296		((u64)(dc8051_ver_min(ver)) << 16) |
1297		(u64)dc8051_ver_patch(ver);
1298
1299	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1300			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1301			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1302			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1303			IB_DEVICE_MEM_MGT_EXTENSIONS;
1304	rdi->dparms.props.kernel_cap_flags = IBK_RDMA_NETDEV_OPA;
1305	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1306	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1307	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1308	rdi->dparms.props.hw_ver = dd->minrev;
1309	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1310	rdi->dparms.props.max_mr_size = U64_MAX;
1311	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1312	rdi->dparms.props.max_qp = hfi1_max_qps;
1313	rdi->dparms.props.max_qp_wr =
1314		(hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1315		 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1316	rdi->dparms.props.max_send_sge = hfi1_max_sges;
1317	rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1318	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1319	rdi->dparms.props.max_cq = hfi1_max_cqs;
1320	rdi->dparms.props.max_ah = hfi1_max_ahs;
1321	rdi->dparms.props.max_cqe = hfi1_max_cqes;
 
1322	rdi->dparms.props.max_pd = hfi1_max_pds;
1323	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1324	rdi->dparms.props.max_qp_init_rd_atom = 255;
1325	rdi->dparms.props.max_srq = hfi1_max_srqs;
1326	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1327	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1328	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1329	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1330	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1331	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1332	rdi->dparms.props.max_total_mcast_qp_attach =
1333					rdi->dparms.props.max_mcast_qp_attach *
1334					rdi->dparms.props.max_mcast_grp;
1335}
1336
1337static inline u16 opa_speed_to_ib(u16 in)
1338{
1339	u16 out = 0;
1340
1341	if (in & OPA_LINK_SPEED_25G)
1342		out |= IB_SPEED_EDR;
1343	if (in & OPA_LINK_SPEED_12_5G)
1344		out |= IB_SPEED_FDR;
1345
1346	return out;
1347}
1348
1349/*
1350 * Convert a single OPA link width (no multiple flags) to an IB value.
1351 * A zero OPA link width means link down, which means the IB width value
1352 * is a don't care.
1353 */
1354static inline u16 opa_width_to_ib(u16 in)
1355{
1356	switch (in) {
1357	case OPA_LINK_WIDTH_1X:
1358	/* map 2x and 3x to 1x as they don't exist in IB */
1359	case OPA_LINK_WIDTH_2X:
1360	case OPA_LINK_WIDTH_3X:
1361		return IB_WIDTH_1X;
1362	default: /* link down or unknown, return our largest width */
1363	case OPA_LINK_WIDTH_4X:
1364		return IB_WIDTH_4X;
1365	}
1366}
1367
1368static int query_port(struct rvt_dev_info *rdi, u32 port_num,
1369		      struct ib_port_attr *props)
1370{
1371	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1372	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1373	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1374	u32 lid = ppd->lid;
1375
1376	/* props being zeroed by the caller, avoid zeroing it here */
1377	props->lid = lid ? lid : 0;
1378	props->lmc = ppd->lmc;
1379	/* OPA logical states match IB logical states */
1380	props->state = driver_lstate(ppd);
1381	props->phys_state = driver_pstate(ppd);
1382	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1383	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1384	/* see rate_show() in ib core/sysfs.c */
1385	props->active_speed = opa_speed_to_ib(ppd->link_speed_active);
1386	props->max_vl_num = ppd->vls_supported;
1387
1388	/* Once we are a "first class" citizen and have added the OPA MTUs to
1389	 * the core we can advertise the larger MTU enum to the ULPs, for now
1390	 * advertise only 4K.
1391	 *
1392	 * Those applications which are either OPA aware or pass the MTU enum
1393	 * from the Path Records to us will get the new 8k MTU.  Those that
1394	 * attempt to process the MTU enum may fail in various ways.
1395	 */
1396	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1397				      4096 : hfi1_max_mtu), IB_MTU_4096);
1398	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1399		mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1400	props->phys_mtu = hfi1_max_mtu;
1401
1402	return 0;
1403}
1404
1405static int modify_device(struct ib_device *device,
1406			 int device_modify_mask,
1407			 struct ib_device_modify *device_modify)
1408{
1409	struct hfi1_devdata *dd = dd_from_ibdev(device);
1410	unsigned i;
1411	int ret;
1412
1413	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1414				   IB_DEVICE_MODIFY_NODE_DESC)) {
1415		ret = -EOPNOTSUPP;
1416		goto bail;
1417	}
1418
1419	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1420		memcpy(device->node_desc, device_modify->node_desc,
1421		       IB_DEVICE_NODE_DESC_MAX);
1422		for (i = 0; i < dd->num_pports; i++) {
1423			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1424
1425			hfi1_node_desc_chg(ibp);
1426		}
1427	}
1428
1429	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1430		ib_hfi1_sys_image_guid =
1431			cpu_to_be64(device_modify->sys_image_guid);
1432		for (i = 0; i < dd->num_pports; i++) {
1433			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1434
1435			hfi1_sys_guid_chg(ibp);
1436		}
1437	}
1438
1439	ret = 0;
1440
1441bail:
1442	return ret;
1443}
1444
1445static int shut_down_port(struct rvt_dev_info *rdi, u32 port_num)
1446{
1447	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1448	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1449	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
 
1450
1451	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1452			     OPA_LINKDOWN_REASON_UNKNOWN);
1453	return set_link_state(ppd, HLS_DN_DOWNDEF);
 
1454}
1455
1456static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1457			    int guid_index, __be64 *guid)
1458{
1459	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1460
1461	if (guid_index >= HFI1_GUIDS_PER_PORT)
1462		return -EINVAL;
1463
1464	*guid = get_sguid(ibp, guid_index);
1465	return 0;
1466}
1467
1468/*
1469 * convert ah port,sl to sc
1470 */
1471u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1472{
1473	struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1474
1475	return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1476}
1477
1478static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1479{
1480	struct hfi1_ibport *ibp;
1481	struct hfi1_pportdata *ppd;
1482	struct hfi1_devdata *dd;
1483	u8 sc5;
1484	u8 sl;
1485
1486	if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1487	    !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1488		return -EINVAL;
1489
1490	/* test the mapping for validity */
1491	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1492	ppd = ppd_from_ibp(ibp);
1493	dd = dd_from_ppd(ppd);
1494
1495	sl = rdma_ah_get_sl(ah_attr);
1496	if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1497		return -EINVAL;
1498	sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1499
1500	sc5 = ibp->sl_to_sc[sl];
1501	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1502		return -EINVAL;
1503	return 0;
1504}
1505
1506static void hfi1_notify_new_ah(struct ib_device *ibdev,
1507			       struct rdma_ah_attr *ah_attr,
1508			       struct rvt_ah *ah)
1509{
1510	struct hfi1_ibport *ibp;
1511	struct hfi1_pportdata *ppd;
1512	struct hfi1_devdata *dd;
1513	u8 sc5;
1514	struct rdma_ah_attr *attr = &ah->attr;
1515
1516	/*
1517	 * Do not trust reading anything from rvt_ah at this point as it is not
1518	 * done being setup. We can however modify things which we need to set.
1519	 */
1520
1521	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1522	ppd = ppd_from_ibp(ibp);
1523	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1524	hfi1_update_ah_attr(ibdev, attr);
1525	hfi1_make_opa_lid(attr);
1526	dd = dd_from_ppd(ppd);
1527	ah->vl = sc_to_vlt(dd, sc5);
1528	if (ah->vl < num_vls || ah->vl == 15)
1529		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1530}
1531
1532/**
1533 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1534 * @dd: the hfi1_ib device
1535 */
1536unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1537{
1538	return ARRAY_SIZE(dd->pport[0].pkeys);
1539}
1540
1541static void init_ibport(struct hfi1_pportdata *ppd)
1542{
1543	struct hfi1_ibport *ibp = &ppd->ibport_data;
1544	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1545	int i;
1546
1547	for (i = 0; i < sz; i++) {
1548		ibp->sl_to_sc[i] = i;
1549		ibp->sc_to_sl[i] = i;
1550	}
1551
1552	for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1553		INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1554	timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1555
1556	spin_lock_init(&ibp->rvp.lock);
1557	/* Set the prefix to the default value (see ch. 4.1.1) */
1558	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1559	ibp->rvp.sm_lid = 0;
1560	/*
1561	 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1562	 * and PortInfo.CapabilityMask3
1563	 */
1564	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1565		IB_PORT_CAP_MASK_NOTICE_SUP;
1566	ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1567	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1568	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1569	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1570	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1571	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1572
1573	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1574	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1575}
1576
1577static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1578{
1579	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1580	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1581	u32 ver = dd_from_dev(dev)->dc8051_ver;
1582
1583	snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1584		 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1585}
1586
1587static const char * const driver_cntr_names[] = {
1588	/* must be element 0*/
1589	"DRIVER_KernIntr",
1590	"DRIVER_ErrorIntr",
1591	"DRIVER_Tx_Errs",
1592	"DRIVER_Rcv_Errs",
1593	"DRIVER_HW_Errs",
1594	"DRIVER_NoPIOBufs",
1595	"DRIVER_CtxtsOpen",
1596	"DRIVER_RcvLen_Errs",
1597	"DRIVER_EgrBufFull",
1598	"DRIVER_EgrHdrFull"
1599};
1600
1601static struct rdma_stat_desc *dev_cntr_descs;
1602static struct rdma_stat_desc *port_cntr_descs;
 
1603int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1604static int num_dev_cntrs;
1605static int num_port_cntrs;
 
1606
1607/*
1608 * Convert a list of names separated by '\n' into an array of NULL terminated
1609 * strings. Optionally some entries can be reserved in the array to hold extra
1610 * external strings.
1611 */
1612static int init_cntr_names(const char *names_in, const size_t names_len,
1613			   int num_extra_names, int *num_cntrs,
1614			   struct rdma_stat_desc **cntr_descs)
 
 
1615{
1616	struct rdma_stat_desc *names_out;
1617	char *p;
1618	int i, n;
1619
1620	n = 0;
1621	for (i = 0; i < names_len; i++)
1622		if (names_in[i] == '\n')
1623			n++;
1624
1625	names_out = kzalloc((n + num_extra_names) * sizeof(*names_out)
1626				+ names_len,
1627			    GFP_KERNEL);
1628	if (!names_out) {
1629		*num_cntrs = 0;
1630		*cntr_descs = NULL;
1631		return -ENOMEM;
1632	}
1633
1634	p = (char *)&names_out[n + num_extra_names];
1635	memcpy(p, names_in, names_len);
1636
 
1637	for (i = 0; i < n; i++) {
1638		names_out[i].name = p;
1639		p = strchr(p, '\n');
1640		*p++ = '\0';
1641	}
1642
1643	*num_cntrs = n;
1644	*cntr_descs = names_out;
1645	return 0;
1646}
1647
1648static struct rdma_hw_stats *hfi1_alloc_hw_device_stats(struct ib_device *ibdev)
 
1649{
1650	if (!dev_cntr_descs) {
 
 
 
1651		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1652		int i, err;
1653
1654		err = init_cntr_names(dd->cntrnames, dd->cntrnameslen,
 
1655				      num_driver_cntrs,
1656				      &num_dev_cntrs, &dev_cntr_descs);
1657		if (err)
 
 
1658			return NULL;
 
1659
1660		for (i = 0; i < num_driver_cntrs; i++)
1661			dev_cntr_descs[num_dev_cntrs + i].name =
1662							driver_cntr_names[i];
1663	}
1664	return rdma_alloc_hw_stats_struct(dev_cntr_descs,
1665					  num_dev_cntrs + num_driver_cntrs,
1666					  RDMA_HW_STATS_DEFAULT_LIFESPAN);
1667}
1668
1669static struct rdma_hw_stats *hfi_alloc_hw_port_stats(struct ib_device *ibdev,
1670						     u32 port_num)
1671{
1672	if (!port_cntr_descs) {
1673		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1674		int err;
1675
1676		err = init_cntr_names(dd->portcntrnames, dd->portcntrnameslen,
1677				      0,
1678				      &num_port_cntrs, &port_cntr_descs);
1679		if (err)
 
 
 
 
1680			return NULL;
 
 
1681	}
1682	return rdma_alloc_hw_stats_struct(port_cntr_descs, num_port_cntrs,
1683					  RDMA_HW_STATS_DEFAULT_LIFESPAN);
 
 
 
 
 
 
 
 
 
 
1684}
1685
1686static u64 hfi1_sps_ints(void)
1687{
1688	unsigned long index, flags;
1689	struct hfi1_devdata *dd;
1690	u64 sps_ints = 0;
1691
1692	xa_lock_irqsave(&hfi1_dev_table, flags);
1693	xa_for_each(&hfi1_dev_table, index, dd) {
1694		sps_ints += get_all_cpu_total(dd->int_counter);
1695	}
1696	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1697	return sps_ints;
1698}
1699
1700static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1701			u32 port, int index)
1702{
1703	u64 *values;
1704	int count;
1705
1706	if (!port) {
1707		u64 *stats = (u64 *)&hfi1_stats;
1708		int i;
1709
1710		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1711		values[num_dev_cntrs] = hfi1_sps_ints();
1712		for (i = 1; i < num_driver_cntrs; i++)
1713			values[num_dev_cntrs + i] = stats[i];
1714		count = num_dev_cntrs + num_driver_cntrs;
1715	} else {
1716		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1717
1718		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1719		count = num_port_cntrs;
1720	}
1721
1722	memcpy(stats->value, values, count * sizeof(u64));
1723	return count;
1724}
1725
1726static const struct ib_device_ops hfi1_dev_ops = {
1727	.owner = THIS_MODULE,
1728	.driver_id = RDMA_DRIVER_HFI1,
1729
1730	.alloc_hw_device_stats = hfi1_alloc_hw_device_stats,
1731	.alloc_hw_port_stats = hfi_alloc_hw_port_stats,
1732	.alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1733	.device_group = &ib_hfi1_attr_group,
1734	.get_dev_fw_str = hfi1_get_dev_fw_str,
1735	.get_hw_stats = get_hw_stats,
 
1736	.modify_device = modify_device,
1737	.port_groups = hfi1_attr_port_groups,
1738	/* keep process mad in the driver */
1739	.process_mad = hfi1_process_mad,
1740	.rdma_netdev_get_params = hfi1_ipoib_rn_get_params,
1741};
1742
1743/**
1744 * hfi1_register_ib_device - register our device with the infiniband core
1745 * @dd: the device data structure
1746 * Return 0 if successful, errno if unsuccessful.
1747 */
1748int hfi1_register_ib_device(struct hfi1_devdata *dd)
1749{
1750	struct hfi1_ibdev *dev = &dd->verbs_dev;
1751	struct ib_device *ibdev = &dev->rdi.ibdev;
1752	struct hfi1_pportdata *ppd = dd->pport;
1753	struct hfi1_ibport *ibp = &ppd->ibport_data;
1754	unsigned i;
1755	int ret;
1756
1757	for (i = 0; i < dd->num_pports; i++)
1758		init_ibport(ppd + i);
1759
1760	/* Only need to initialize non-zero fields. */
1761
1762	timer_setup(&dev->mem_timer, mem_timer, 0);
1763
1764	seqlock_init(&dev->iowait_lock);
1765	seqlock_init(&dev->txwait_lock);
1766	INIT_LIST_HEAD(&dev->txwait);
1767	INIT_LIST_HEAD(&dev->memwait);
1768
1769	ret = verbs_txreq_init(dev);
1770	if (ret)
1771		goto err_verbs_txreq;
1772
1773	/* Use first-port GUID as node guid */
1774	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1775
1776	/*
1777	 * The system image GUID is supposed to be the same for all
1778	 * HFIs in a single system but since there can be other
1779	 * device types in the system, we can't be sure this is unique.
1780	 */
1781	if (!ib_hfi1_sys_image_guid)
1782		ib_hfi1_sys_image_guid = ibdev->node_guid;
1783	ibdev->phys_port_cnt = dd->num_pports;
1784	ibdev->dev.parent = &dd->pcidev->dev;
1785
1786	ib_set_device_ops(ibdev, &hfi1_dev_ops);
1787
1788	strscpy(ibdev->node_desc, init_utsname()->nodename,
1789		sizeof(ibdev->node_desc));
1790
1791	/*
1792	 * Fill in rvt info object.
1793	 */
1794	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1795	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1796	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1797	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1798	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1799	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1800	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1801	/*
1802	 * Fill in rvt info device attributes.
1803	 */
1804	hfi1_fill_device_attr(dd);
1805
1806	/* queue pair */
1807	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1808	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1809	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1810	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1811	dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE;
1812	dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX;
 
1813	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1814	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1815	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1816	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1817	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1818						RDMA_CORE_CAP_OPA_AH;
1819	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1820
1821	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1822	dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1823	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1824	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1825	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1826	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1827	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1828	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1829	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1830	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1831	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1832	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1833	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1834	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1835	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1836	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1837	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1838	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1839	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1840	dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1841	dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1842						hfi1_comp_vect_mappings_lookup;
1843
1844	/* completeion queue */
1845	dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1846	dd->verbs_dev.rdi.dparms.node = dd->node;
1847
1848	/* misc settings */
1849	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1850	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1851	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1852	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1853	dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1854	dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1855	dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1856	dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1857	dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1858
1859	/* post send table */
1860	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1861
1862	/* opcode translation table */
1863	dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1864
1865	ppd = dd->pport;
1866	for (i = 0; i < dd->num_pports; i++, ppd++)
1867		rvt_init_port(&dd->verbs_dev.rdi,
1868			      &ppd->ibport_data.rvp,
1869			      i,
1870			      ppd->pkeys);
1871
 
 
 
1872	ret = rvt_register_device(&dd->verbs_dev.rdi);
1873	if (ret)
1874		goto err_verbs_txreq;
1875
1876	ret = hfi1_verbs_register_sysfs(dd);
1877	if (ret)
1878		goto err_class;
1879
1880	return ret;
1881
1882err_class:
1883	rvt_unregister_device(&dd->verbs_dev.rdi);
1884err_verbs_txreq:
1885	verbs_txreq_exit(dev);
1886	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1887	return ret;
1888}
1889
1890void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1891{
1892	struct hfi1_ibdev *dev = &dd->verbs_dev;
1893
1894	hfi1_verbs_unregister_sysfs(dd);
1895
1896	rvt_unregister_device(&dd->verbs_dev.rdi);
1897
1898	if (!list_empty(&dev->txwait))
1899		dd_dev_err(dd, "txwait list not empty!\n");
1900	if (!list_empty(&dev->memwait))
1901		dd_dev_err(dd, "memwait list not empty!\n");
1902
1903	del_timer_sync(&dev->mem_timer);
1904	verbs_txreq_exit(dev);
1905
1906	kfree(dev_cntr_descs);
1907	kfree(port_cntr_descs);
1908	dev_cntr_descs = NULL;
1909	port_cntr_descs = NULL;
 
 
 
1910}
1911
1912void hfi1_cnp_rcv(struct hfi1_packet *packet)
1913{
1914	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1915	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1916	struct ib_header *hdr = packet->hdr;
1917	struct rvt_qp *qp = packet->qp;
1918	u32 lqpn, rqpn = 0;
1919	u16 rlid = 0;
1920	u8 sl, sc5, svc_type;
1921
1922	switch (packet->qp->ibqp.qp_type) {
1923	case IB_QPT_UC:
1924		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1925		rqpn = qp->remote_qpn;
1926		svc_type = IB_CC_SVCTYPE_UC;
1927		break;
1928	case IB_QPT_RC:
1929		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1930		rqpn = qp->remote_qpn;
1931		svc_type = IB_CC_SVCTYPE_RC;
1932		break;
1933	case IB_QPT_SMI:
1934	case IB_QPT_GSI:
1935	case IB_QPT_UD:
1936		svc_type = IB_CC_SVCTYPE_UD;
1937		break;
1938	default:
1939		ibp->rvp.n_pkt_drops++;
1940		return;
1941	}
1942
1943	sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1944	sl = ibp->sc_to_sl[sc5];
1945	lqpn = qp->ibqp.qp_num;
1946
1947	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1948}
v5.4
 
   1/*
   2 * Copyright(c) 2015 - 2018 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <rdma/ib_mad.h>
  49#include <rdma/ib_user_verbs.h>
  50#include <linux/io.h>
  51#include <linux/module.h>
  52#include <linux/utsname.h>
  53#include <linux/rculist.h>
  54#include <linux/mm.h>
  55#include <linux/vmalloc.h>
  56#include <rdma/opa_addr.h>
  57#include <linux/nospec.h>
  58
  59#include "hfi.h"
  60#include "common.h"
  61#include "device.h"
  62#include "trace.h"
  63#include "qp.h"
  64#include "verbs_txreq.h"
  65#include "debugfs.h"
  66#include "vnic.h"
  67#include "fault.h"
  68#include "affinity.h"
 
  69
  70static unsigned int hfi1_lkey_table_size = 16;
  71module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  72		   S_IRUGO);
  73MODULE_PARM_DESC(lkey_table_size,
  74		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
  75
  76static unsigned int hfi1_max_pds = 0xFFFF;
  77module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  78MODULE_PARM_DESC(max_pds,
  79		 "Maximum number of protection domains to support");
  80
  81static unsigned int hfi1_max_ahs = 0xFFFF;
  82module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  83MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  84
  85unsigned int hfi1_max_cqes = 0x2FFFFF;
  86module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  87MODULE_PARM_DESC(max_cqes,
  88		 "Maximum number of completion queue entries to support");
  89
  90unsigned int hfi1_max_cqs = 0x1FFFF;
  91module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  92MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  93
  94unsigned int hfi1_max_qp_wrs = 0x3FFF;
  95module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  96MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  97
  98unsigned int hfi1_max_qps = 32768;
  99module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
 100MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
 101
 102unsigned int hfi1_max_sges = 0x60;
 103module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
 104MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
 105
 106unsigned int hfi1_max_mcast_grps = 16384;
 107module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
 108MODULE_PARM_DESC(max_mcast_grps,
 109		 "Maximum number of multicast groups to support");
 110
 111unsigned int hfi1_max_mcast_qp_attached = 16;
 112module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
 113		   uint, S_IRUGO);
 114MODULE_PARM_DESC(max_mcast_qp_attached,
 115		 "Maximum number of attached QPs to support");
 116
 117unsigned int hfi1_max_srqs = 1024;
 118module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
 119MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
 120
 121unsigned int hfi1_max_srq_sges = 128;
 122module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
 123MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
 124
 125unsigned int hfi1_max_srq_wrs = 0x1FFFF;
 126module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
 127MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
 128
 129unsigned short piothreshold = 256;
 130module_param(piothreshold, ushort, S_IRUGO);
 131MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
 132
 133static unsigned int sge_copy_mode;
 134module_param(sge_copy_mode, uint, S_IRUGO);
 135MODULE_PARM_DESC(sge_copy_mode,
 136		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
 137
 138static void verbs_sdma_complete(
 139	struct sdma_txreq *cookie,
 140	int status);
 141
 142static int pio_wait(struct rvt_qp *qp,
 143		    struct send_context *sc,
 144		    struct hfi1_pkt_state *ps,
 145		    u32 flag);
 146
 147/* Length of buffer to create verbs txreq cache name */
 148#define TXREQ_NAME_LEN 24
 149
 150static uint wss_threshold = 80;
 151module_param(wss_threshold, uint, S_IRUGO);
 152MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 153static uint wss_clean_period = 256;
 154module_param(wss_clean_period, uint, S_IRUGO);
 155MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 156
 157/*
 158 * Translate ib_wr_opcode into ib_wc_opcode.
 159 */
 160const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
 161	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 162	[IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 163	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
 164	[IB_WR_SEND] = IB_WC_SEND,
 165	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
 166	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
 167	[IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
 168	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
 169	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
 170	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
 171	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
 172	[IB_WR_REG_MR] = IB_WC_REG_MR
 173};
 174
 175/*
 176 * Length of header by opcode, 0 --> not supported
 177 */
 178const u8 hdr_len_by_opcode[256] = {
 179	/* RC */
 180	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 181	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 182	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 183	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 184	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 185	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 186	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 187	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 188	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 189	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 190	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 191	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 192	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 193	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 194	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 195	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 196	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 197	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 198	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
 199	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 200	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 201	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
 202	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
 203	[IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
 204	[IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
 205	[IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
 206	[IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
 207	[IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
 208	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
 209	[IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
 210	[IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
 211	/* UC */
 212	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 213	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 214	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 215	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 216	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 217	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 218	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 219	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 220	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 221	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 222	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 223	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 224	/* UD */
 225	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 226	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 227};
 228
 229static const opcode_handler opcode_handler_tbl[256] = {
 230	/* RC */
 231	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 232	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 233	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 234	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 235	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 236	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 237	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 238	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 239	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 240	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 241	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 242	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 243	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 244	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 245	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 246	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 247	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 248	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 249	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 250	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 251	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 252	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 253	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 254
 255	/* TID RDMA has separate handlers for different opcodes.*/
 256	[IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
 257	[IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
 258	[IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
 259	[IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
 260	[IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
 261	[IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
 262	[IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
 263	[IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
 264
 265	/* UC */
 266	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 267	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 268	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 269	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 270	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 271	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 272	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 273	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 274	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 275	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 276	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 277	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 278	/* UD */
 279	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 280	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 281	/* CNP */
 282	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
 283};
 284
 285#define OPMASK 0x1f
 286
 287static const u32 pio_opmask[BIT(3)] = {
 288	/* RC */
 289	[IB_OPCODE_RC >> 5] =
 290		BIT(RC_OP(SEND_ONLY) & OPMASK) |
 291		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 292		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 293		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
 294		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
 295		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
 296		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
 297		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
 298		BIT(RC_OP(FETCH_ADD) & OPMASK),
 299	/* UC */
 300	[IB_OPCODE_UC >> 5] =
 301		BIT(UC_OP(SEND_ONLY) & OPMASK) |
 302		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 303		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 304		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
 305};
 306
 307/*
 308 * System image GUID.
 309 */
 310__be64 ib_hfi1_sys_image_guid;
 311
 312/*
 313 * Make sure the QP is ready and able to accept the given opcode.
 314 */
 315static inline opcode_handler qp_ok(struct hfi1_packet *packet)
 316{
 317	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 318		return NULL;
 319	if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
 320	     packet->qp->allowed_ops) ||
 321	    (packet->opcode == IB_OPCODE_CNP))
 322		return opcode_handler_tbl[packet->opcode];
 323
 324	return NULL;
 325}
 326
 327static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
 328{
 329#ifdef CONFIG_FAULT_INJECTION
 330	if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
 331		/*
 332		 * In order to drop non-IB traffic we
 333		 * set PbcInsertHrc to NONE (0x2).
 334		 * The packet will still be delivered
 335		 * to the receiving node but a
 336		 * KHdrHCRCErr (KDETH packet with a bad
 337		 * HCRC) will be triggered and the
 338		 * packet will not be delivered to the
 339		 * correct context.
 340		 */
 341		pbc &= ~PBC_INSERT_HCRC_SMASK;
 342		pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
 343	} else {
 344		/*
 345		 * In order to drop regular verbs
 346		 * traffic we set the PbcTestEbp
 347		 * flag. The packet will still be
 348		 * delivered to the receiving node but
 349		 * a 'late ebp error' will be
 350		 * triggered and will be dropped.
 351		 */
 352		pbc |= PBC_TEST_EBP;
 353	}
 354#endif
 355	return pbc;
 356}
 357
 358static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
 359{
 360	if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
 361	    !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 362		return NULL;
 363	if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
 364		return opcode_handler_tbl[opcode];
 365	return NULL;
 366}
 367
 368void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
 369{
 370	struct hfi1_ctxtdata *rcd = packet->rcd;
 371	struct ib_header *hdr = packet->hdr;
 372	u32 tlen = packet->tlen;
 373	struct hfi1_pportdata *ppd = rcd->ppd;
 374	struct hfi1_ibport *ibp = &ppd->ibport_data;
 375	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 376	opcode_handler opcode_handler;
 377	unsigned long flags;
 378	u32 qp_num;
 379	int lnh;
 380	u8 opcode;
 381
 382	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
 383	if (unlikely(tlen < 15 * sizeof(u32)))
 384		goto drop;
 385
 386	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 387	if (lnh != HFI1_LRH_BTH)
 388		goto drop;
 389
 390	packet->ohdr = &hdr->u.oth;
 391	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 392
 393	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 394	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 395
 396	/* verbs_qp can be picked up from any tid_rdma header struct */
 397	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
 398		RVT_QPN_MASK;
 399
 400	rcu_read_lock();
 401	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 402	if (!packet->qp)
 403		goto drop_rcu;
 404	spin_lock_irqsave(&packet->qp->r_lock, flags);
 405	opcode_handler = tid_qp_ok(opcode, packet);
 406	if (likely(opcode_handler))
 407		opcode_handler(packet);
 408	else
 409		goto drop_unlock;
 410	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 411	rcu_read_unlock();
 412
 413	return;
 414drop_unlock:
 415	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 416drop_rcu:
 417	rcu_read_unlock();
 418drop:
 419	ibp->rvp.n_pkt_drops++;
 420}
 421
 422void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
 423{
 424	struct hfi1_ctxtdata *rcd = packet->rcd;
 425	struct ib_header *hdr = packet->hdr;
 426	u32 tlen = packet->tlen;
 427	struct hfi1_pportdata *ppd = rcd->ppd;
 428	struct hfi1_ibport *ibp = &ppd->ibport_data;
 429	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 430	opcode_handler opcode_handler;
 431	unsigned long flags;
 432	u32 qp_num;
 433	int lnh;
 434	u8 opcode;
 435
 436	/* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
 437	if (unlikely(tlen < 15 * sizeof(u32)))
 438		goto drop;
 439
 440	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 441	if (lnh != HFI1_LRH_BTH)
 442		goto drop;
 443
 444	packet->ohdr = &hdr->u.oth;
 445	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 446
 447	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 448	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 449
 450	/* verbs_qp can be picked up from any tid_rdma header struct */
 451	qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
 452		RVT_QPN_MASK;
 453
 454	rcu_read_lock();
 455	packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 456	if (!packet->qp)
 457		goto drop_rcu;
 458	spin_lock_irqsave(&packet->qp->r_lock, flags);
 459	opcode_handler = tid_qp_ok(opcode, packet);
 460	if (likely(opcode_handler))
 461		opcode_handler(packet);
 462	else
 463		goto drop_unlock;
 464	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 465	rcu_read_unlock();
 466
 467	return;
 468drop_unlock:
 469	spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 470drop_rcu:
 471	rcu_read_unlock();
 472drop:
 473	ibp->rvp.n_pkt_drops++;
 474}
 475
 476static int hfi1_do_pkey_check(struct hfi1_packet *packet)
 477{
 478	struct hfi1_ctxtdata *rcd = packet->rcd;
 479	struct hfi1_pportdata *ppd = rcd->ppd;
 480	struct hfi1_16b_header *hdr = packet->hdr;
 481	u16 pkey;
 482
 483	/* Pkey check needed only for bypass packets */
 484	if (packet->etype != RHF_RCV_TYPE_BYPASS)
 485		return 0;
 486
 487	/* Perform pkey check */
 488	pkey = hfi1_16B_get_pkey(hdr);
 489	return ingress_pkey_check(ppd, pkey, packet->sc,
 490				  packet->qp->s_pkey_index,
 491				  packet->slid, true);
 492}
 493
 494static inline void hfi1_handle_packet(struct hfi1_packet *packet,
 495				      bool is_mcast)
 496{
 497	u32 qp_num;
 498	struct hfi1_ctxtdata *rcd = packet->rcd;
 499	struct hfi1_pportdata *ppd = rcd->ppd;
 500	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 501	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 502	opcode_handler packet_handler;
 503	unsigned long flags;
 504
 505	inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
 506
 507	if (unlikely(is_mcast)) {
 508		struct rvt_mcast *mcast;
 509		struct rvt_mcast_qp *p;
 510
 511		if (!packet->grh)
 512			goto drop;
 513		mcast = rvt_mcast_find(&ibp->rvp,
 514				       &packet->grh->dgid,
 515				       opa_get_lid(packet->dlid, 9B));
 516		if (!mcast)
 517			goto drop;
 
 518		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 519			packet->qp = p->qp;
 520			if (hfi1_do_pkey_check(packet))
 521				goto drop;
 522			spin_lock_irqsave(&packet->qp->r_lock, flags);
 523			packet_handler = qp_ok(packet);
 524			if (likely(packet_handler))
 525				packet_handler(packet);
 526			else
 527				ibp->rvp.n_pkt_drops++;
 528			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 529		}
 
 530		/*
 531		 * Notify rvt_multicast_detach() if it is waiting for us
 532		 * to finish.
 533		 */
 534		if (atomic_dec_return(&mcast->refcount) <= 1)
 535			wake_up(&mcast->wait);
 536	} else {
 537		/* Get the destination QP number. */
 538		if (packet->etype == RHF_RCV_TYPE_BYPASS &&
 539		    hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
 540			qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
 541		else
 542			qp_num = ib_bth_get_qpn(packet->ohdr);
 543
 544		rcu_read_lock();
 545		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 546		if (!packet->qp)
 547			goto unlock_drop;
 548
 549		if (hfi1_do_pkey_check(packet))
 550			goto unlock_drop;
 551
 552		spin_lock_irqsave(&packet->qp->r_lock, flags);
 553		packet_handler = qp_ok(packet);
 554		if (likely(packet_handler))
 555			packet_handler(packet);
 556		else
 557			ibp->rvp.n_pkt_drops++;
 558		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 559		rcu_read_unlock();
 560	}
 561	return;
 562unlock_drop:
 563	rcu_read_unlock();
 564drop:
 565	ibp->rvp.n_pkt_drops++;
 566}
 567
 568/**
 569 * hfi1_ib_rcv - process an incoming packet
 570 * @packet: data packet information
 571 *
 572 * This is called to process an incoming packet at interrupt level.
 573 */
 574void hfi1_ib_rcv(struct hfi1_packet *packet)
 575{
 576	struct hfi1_ctxtdata *rcd = packet->rcd;
 577
 578	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
 579	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
 580}
 581
 582void hfi1_16B_rcv(struct hfi1_packet *packet)
 583{
 584	struct hfi1_ctxtdata *rcd = packet->rcd;
 585
 586	trace_input_ibhdr(rcd->dd, packet, false);
 587	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
 588}
 589
 590/*
 591 * This is called from a timer to check for QPs
 592 * which need kernel memory in order to send a packet.
 593 */
 594static void mem_timer(struct timer_list *t)
 595{
 596	struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
 597	struct list_head *list = &dev->memwait;
 598	struct rvt_qp *qp = NULL;
 599	struct iowait *wait;
 600	unsigned long flags;
 601	struct hfi1_qp_priv *priv;
 602
 603	write_seqlock_irqsave(&dev->iowait_lock, flags);
 604	if (!list_empty(list)) {
 605		wait = list_first_entry(list, struct iowait, list);
 606		qp = iowait_to_qp(wait);
 607		priv = qp->priv;
 608		list_del_init(&priv->s_iowait.list);
 609		priv->s_iowait.lock = NULL;
 610		/* refcount held until actual wake up */
 611		if (!list_empty(list))
 612			mod_timer(&dev->mem_timer, jiffies + 1);
 613	}
 614	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 615
 616	if (qp)
 617		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 618}
 619
 620/*
 621 * This is called with progress side lock held.
 622 */
 623/* New API */
 624static void verbs_sdma_complete(
 625	struct sdma_txreq *cookie,
 626	int status)
 627{
 628	struct verbs_txreq *tx =
 629		container_of(cookie, struct verbs_txreq, txreq);
 630	struct rvt_qp *qp = tx->qp;
 631
 632	spin_lock(&qp->s_lock);
 633	if (tx->wqe) {
 634		rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 635	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
 636		struct hfi1_opa_header *hdr;
 637
 638		hdr = &tx->phdr.hdr;
 639		if (unlikely(status == SDMA_TXREQ_S_ABORTED))
 640			hfi1_rc_verbs_aborted(qp, hdr);
 641		hfi1_rc_send_complete(qp, hdr);
 642	}
 643	spin_unlock(&qp->s_lock);
 644
 645	hfi1_put_txreq(tx);
 646}
 647
 648void hfi1_wait_kmem(struct rvt_qp *qp)
 649{
 650	struct hfi1_qp_priv *priv = qp->priv;
 651	struct ib_qp *ibqp = &qp->ibqp;
 652	struct ib_device *ibdev = ibqp->device;
 653	struct hfi1_ibdev *dev = to_idev(ibdev);
 654
 655	if (list_empty(&priv->s_iowait.list)) {
 656		if (list_empty(&dev->memwait))
 657			mod_timer(&dev->mem_timer, jiffies + 1);
 658		qp->s_flags |= RVT_S_WAIT_KMEM;
 659		list_add_tail(&priv->s_iowait.list, &dev->memwait);
 660		priv->s_iowait.lock = &dev->iowait_lock;
 661		trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 662		rvt_get_qp(qp);
 663	}
 664}
 665
 666static int wait_kmem(struct hfi1_ibdev *dev,
 667		     struct rvt_qp *qp,
 668		     struct hfi1_pkt_state *ps)
 669{
 670	unsigned long flags;
 671	int ret = 0;
 672
 673	spin_lock_irqsave(&qp->s_lock, flags);
 674	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 675		write_seqlock(&dev->iowait_lock);
 676		list_add_tail(&ps->s_txreq->txreq.list,
 677			      &ps->wait->tx_head);
 678		hfi1_wait_kmem(qp);
 679		write_sequnlock(&dev->iowait_lock);
 680		hfi1_qp_unbusy(qp, ps->wait);
 681		ret = -EBUSY;
 682	}
 683	spin_unlock_irqrestore(&qp->s_lock, flags);
 684
 685	return ret;
 686}
 687
 688/*
 689 * This routine calls txadds for each sg entry.
 690 *
 691 * Add failures will revert the sge cursor
 692 */
 693static noinline int build_verbs_ulp_payload(
 694	struct sdma_engine *sde,
 695	u32 length,
 696	struct verbs_txreq *tx)
 697{
 698	struct rvt_sge_state *ss = tx->ss;
 699	struct rvt_sge *sg_list = ss->sg_list;
 700	struct rvt_sge sge = ss->sge;
 701	u8 num_sge = ss->num_sge;
 702	u32 len;
 703	int ret = 0;
 704
 705	while (length) {
 706		len = rvt_get_sge_length(&ss->sge, length);
 707		WARN_ON_ONCE(len == 0);
 708		ret = sdma_txadd_kvaddr(
 709			sde->dd,
 710			&tx->txreq,
 711			ss->sge.vaddr,
 712			len);
 713		if (ret)
 714			goto bail_txadd;
 715		rvt_update_sge(ss, len, false);
 716		length -= len;
 717	}
 718	return ret;
 719bail_txadd:
 720	/* unwind cursor */
 721	ss->sge = sge;
 722	ss->num_sge = num_sge;
 723	ss->sg_list = sg_list;
 724	return ret;
 725}
 726
 727/**
 728 * update_tx_opstats - record stats by opcode
 729 * @qp; the qp
 730 * @ps: transmit packet state
 731 * @plen: the plen in dwords
 732 *
 733 * This is a routine to record the tx opstats after a
 734 * packet has been presented to the egress mechanism.
 735 */
 736static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 737			      u32 plen)
 738{
 739#ifdef CONFIG_DEBUG_FS
 740	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
 741	struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
 742
 743	inc_opstats(plen * 4, &s->stats[ps->opcode]);
 744	put_cpu_ptr(s);
 745#endif
 746}
 747
 748/*
 749 * Build the number of DMA descriptors needed to send length bytes of data.
 750 *
 751 * NOTE: DMA mapping is held in the tx until completed in the ring or
 752 *       the tx desc is freed without having been submitted to the ring
 753 *
 754 * This routine ensures all the helper routine calls succeed.
 755 */
 756/* New API */
 757static int build_verbs_tx_desc(
 758	struct sdma_engine *sde,
 759	u32 length,
 760	struct verbs_txreq *tx,
 761	struct hfi1_ahg_info *ahg_info,
 762	u64 pbc)
 763{
 764	int ret = 0;
 765	struct hfi1_sdma_header *phdr = &tx->phdr;
 766	u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
 767	u8 extra_bytes = 0;
 768
 769	if (tx->phdr.hdr.hdr_type) {
 770		/*
 771		 * hdrbytes accounts for PBC. Need to subtract 8 bytes
 772		 * before calculating padding.
 773		 */
 774		extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
 775			      (SIZE_OF_CRC << 2) + SIZE_OF_LT;
 776	}
 777	if (!ahg_info->ahgcount) {
 778		ret = sdma_txinit_ahg(
 779			&tx->txreq,
 780			ahg_info->tx_flags,
 781			hdrbytes + length +
 782			extra_bytes,
 783			ahg_info->ahgidx,
 784			0,
 785			NULL,
 786			0,
 787			verbs_sdma_complete);
 788		if (ret)
 789			goto bail_txadd;
 790		phdr->pbc = cpu_to_le64(pbc);
 791		ret = sdma_txadd_kvaddr(
 792			sde->dd,
 793			&tx->txreq,
 794			phdr,
 795			hdrbytes);
 796		if (ret)
 797			goto bail_txadd;
 798	} else {
 799		ret = sdma_txinit_ahg(
 800			&tx->txreq,
 801			ahg_info->tx_flags,
 802			length,
 803			ahg_info->ahgidx,
 804			ahg_info->ahgcount,
 805			ahg_info->ahgdesc,
 806			hdrbytes,
 807			verbs_sdma_complete);
 808		if (ret)
 809			goto bail_txadd;
 810	}
 811	/* add the ulp payload - if any. tx->ss can be NULL for acks */
 812	if (tx->ss) {
 813		ret = build_verbs_ulp_payload(sde, length, tx);
 814		if (ret)
 815			goto bail_txadd;
 816	}
 817
 818	/* add icrc, lt byte, and padding to flit */
 819	if (extra_bytes)
 820		ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
 821				       sde->dd->sdma_pad_phys, extra_bytes);
 822
 823bail_txadd:
 824	return ret;
 825}
 826
 827static u64 update_hcrc(u8 opcode, u64 pbc)
 828{
 829	if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
 830		pbc &= ~PBC_INSERT_HCRC_SMASK;
 831		pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
 832	}
 833	return pbc;
 834}
 835
 836int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 837			u64 pbc)
 838{
 839	struct hfi1_qp_priv *priv = qp->priv;
 840	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
 841	u32 hdrwords = ps->s_txreq->hdr_dwords;
 842	u32 len = ps->s_txreq->s_cur_size;
 843	u32 plen;
 844	struct hfi1_ibdev *dev = ps->dev;
 845	struct hfi1_pportdata *ppd = ps->ppd;
 846	struct verbs_txreq *tx;
 847	u8 sc5 = priv->s_sc;
 848	int ret;
 849	u32 dwords;
 850
 851	if (ps->s_txreq->phdr.hdr.hdr_type) {
 852		u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
 853
 854		dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
 855			  SIZE_OF_LT) >> 2;
 856	} else {
 857		dwords = (len + 3) >> 2;
 858	}
 859	plen = hdrwords + dwords + sizeof(pbc) / 4;
 860
 861	tx = ps->s_txreq;
 862	if (!sdma_txreq_built(&tx->txreq)) {
 863		if (likely(pbc == 0)) {
 864			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 865
 866			/* No vl15 here */
 867			/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
 868			if (ps->s_txreq->phdr.hdr.hdr_type)
 869				pbc |= PBC_PACKET_BYPASS |
 870				       PBC_INSERT_BYPASS_ICRC;
 871			else
 872				pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
 873
 874			pbc = create_pbc(ppd,
 875					 pbc,
 876					 qp->srate_mbps,
 877					 vl,
 878					 plen);
 879
 880			if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
 881				pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
 882			else
 883				/* Update HCRC based on packet opcode */
 884				pbc = update_hcrc(ps->opcode, pbc);
 885		}
 886		tx->wqe = qp->s_wqe;
 887		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
 888		if (unlikely(ret))
 889			goto bail_build;
 890	}
 891	ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
 892	if (unlikely(ret < 0)) {
 893		if (ret == -ECOMM)
 894			goto bail_ecomm;
 895		return ret;
 896	}
 897
 898	update_tx_opstats(qp, ps, plen);
 899	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 900				&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
 901	return ret;
 902
 903bail_ecomm:
 904	/* The current one got "sent" */
 905	return 0;
 906bail_build:
 907	ret = wait_kmem(dev, qp, ps);
 908	if (!ret) {
 909		/* free txreq - bad state */
 910		hfi1_put_txreq(ps->s_txreq);
 911		ps->s_txreq = NULL;
 912	}
 913	return ret;
 914}
 915
 916/*
 917 * If we are now in the error state, return zero to flush the
 918 * send work request.
 919 */
 920static int pio_wait(struct rvt_qp *qp,
 921		    struct send_context *sc,
 922		    struct hfi1_pkt_state *ps,
 923		    u32 flag)
 924{
 925	struct hfi1_qp_priv *priv = qp->priv;
 926	struct hfi1_devdata *dd = sc->dd;
 927	unsigned long flags;
 928	int ret = 0;
 929
 930	/*
 931	 * Note that as soon as want_buffer() is called and
 932	 * possibly before it returns, sc_piobufavail()
 933	 * could be called. Therefore, put QP on the I/O wait list before
 934	 * enabling the PIO avail interrupt.
 935	 */
 936	spin_lock_irqsave(&qp->s_lock, flags);
 937	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 938		write_seqlock(&sc->waitlock);
 939		list_add_tail(&ps->s_txreq->txreq.list,
 940			      &ps->wait->tx_head);
 941		if (list_empty(&priv->s_iowait.list)) {
 942			struct hfi1_ibdev *dev = &dd->verbs_dev;
 943			int was_empty;
 944
 945			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 946			dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
 947			qp->s_flags |= flag;
 948			was_empty = list_empty(&sc->piowait);
 949			iowait_get_priority(&priv->s_iowait);
 950			iowait_queue(ps->pkts_sent, &priv->s_iowait,
 951				     &sc->piowait);
 952			priv->s_iowait.lock = &sc->waitlock;
 953			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 954			rvt_get_qp(qp);
 955			/* counting: only call wantpiobuf_intr if first user */
 956			if (was_empty)
 957				hfi1_sc_wantpiobuf_intr(sc, 1);
 958		}
 959		write_sequnlock(&sc->waitlock);
 960		hfi1_qp_unbusy(qp, ps->wait);
 961		ret = -EBUSY;
 962	}
 963	spin_unlock_irqrestore(&qp->s_lock, flags);
 964	return ret;
 965}
 966
 967static void verbs_pio_complete(void *arg, int code)
 968{
 969	struct rvt_qp *qp = (struct rvt_qp *)arg;
 970	struct hfi1_qp_priv *priv = qp->priv;
 971
 972	if (iowait_pio_dec(&priv->s_iowait))
 973		iowait_drain_wakeup(&priv->s_iowait);
 974}
 975
 976int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 977			u64 pbc)
 978{
 979	struct hfi1_qp_priv *priv = qp->priv;
 980	u32 hdrwords = ps->s_txreq->hdr_dwords;
 981	struct rvt_sge_state *ss = ps->s_txreq->ss;
 982	u32 len = ps->s_txreq->s_cur_size;
 983	u32 dwords;
 984	u32 plen;
 985	struct hfi1_pportdata *ppd = ps->ppd;
 986	u32 *hdr;
 987	u8 sc5;
 988	unsigned long flags = 0;
 989	struct send_context *sc;
 990	struct pio_buf *pbuf;
 991	int wc_status = IB_WC_SUCCESS;
 992	int ret = 0;
 993	pio_release_cb cb = NULL;
 994	u8 extra_bytes = 0;
 995
 996	if (ps->s_txreq->phdr.hdr.hdr_type) {
 997		u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
 998
 999		extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1000		dwords = (len + extra_bytes) >> 2;
1001		hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1002	} else {
1003		dwords = (len + 3) >> 2;
1004		hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1005	}
1006	plen = hdrwords + dwords + sizeof(pbc) / 4;
1007
1008	/* only RC/UC use complete */
1009	switch (qp->ibqp.qp_type) {
1010	case IB_QPT_RC:
1011	case IB_QPT_UC:
1012		cb = verbs_pio_complete;
1013		break;
1014	default:
1015		break;
1016	}
1017
1018	/* vl15 special case taken care of in ud.c */
1019	sc5 = priv->s_sc;
1020	sc = ps->s_txreq->psc;
1021
1022	if (likely(pbc == 0)) {
1023		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1024
1025		/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1026		if (ps->s_txreq->phdr.hdr.hdr_type)
1027			pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1028		else
1029			pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1030
1031		pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1032		if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1033			pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1034		else
1035			/* Update HCRC based on packet opcode */
1036			pbc = update_hcrc(ps->opcode, pbc);
1037	}
1038	if (cb)
1039		iowait_pio_inc(&priv->s_iowait);
1040	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1041	if (IS_ERR_OR_NULL(pbuf)) {
1042		if (cb)
1043			verbs_pio_complete(qp, 0);
1044		if (IS_ERR(pbuf)) {
1045			/*
1046			 * If we have filled the PIO buffers to capacity and are
1047			 * not in an active state this request is not going to
1048			 * go out to so just complete it with an error or else a
1049			 * ULP or the core may be stuck waiting.
1050			 */
1051			hfi1_cdbg(
1052				PIO,
1053				"alloc failed. state not active, completing");
1054			wc_status = IB_WC_GENERAL_ERR;
1055			goto pio_bail;
1056		} else {
1057			/*
1058			 * This is a normal occurrence. The PIO buffs are full
1059			 * up but we are still happily sending, well we could be
1060			 * so lets continue to queue the request.
1061			 */
1062			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1063			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1064			if (!ret)
1065				/* txreq not queued - free */
1066				goto bail;
1067			/* tx consumed in wait */
1068			return ret;
1069		}
1070	}
1071
1072	if (dwords == 0) {
1073		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1074	} else {
1075		seg_pio_copy_start(pbuf, pbc,
1076				   hdr, hdrwords * 4);
1077		if (ss) {
1078			while (len) {
1079				void *addr = ss->sge.vaddr;
1080				u32 slen = rvt_get_sge_length(&ss->sge, len);
1081
1082				rvt_update_sge(ss, slen, false);
1083				seg_pio_copy_mid(pbuf, addr, slen);
1084				len -= slen;
1085			}
1086		}
1087		/* add icrc, lt byte, and padding to flit */
1088		if (extra_bytes)
1089			seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1090					 extra_bytes);
1091
1092		seg_pio_copy_end(pbuf);
1093	}
1094
1095	update_tx_opstats(qp, ps, plen);
1096	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1097			       &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1098
1099pio_bail:
1100	spin_lock_irqsave(&qp->s_lock, flags);
1101	if (qp->s_wqe) {
1102		rvt_send_complete(qp, qp->s_wqe, wc_status);
1103	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1104		if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1105			hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1106		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1107	}
1108	spin_unlock_irqrestore(&qp->s_lock, flags);
1109
1110	ret = 0;
1111
1112bail:
1113	hfi1_put_txreq(ps->s_txreq);
1114	return ret;
1115}
1116
1117/*
1118 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1119 * being an entry from the partition key table), return 0
1120 * otherwise. Use the matching criteria for egress partition keys
1121 * specified in the OPAv1 spec., section 9.1l.7.
1122 */
1123static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1124{
1125	u16 mkey = pkey & PKEY_LOW_15_MASK;
1126	u16 mentry = ent & PKEY_LOW_15_MASK;
1127
1128	if (mkey == mentry) {
1129		/*
1130		 * If pkey[15] is set (full partition member),
1131		 * is bit 15 in the corresponding table element
1132		 * clear (limited member)?
1133		 */
1134		if (pkey & PKEY_MEMBER_MASK)
1135			return !!(ent & PKEY_MEMBER_MASK);
1136		return 1;
1137	}
1138	return 0;
1139}
1140
1141/**
1142 * egress_pkey_check - check P_KEY of a packet
1143 * @ppd:  Physical IB port data
1144 * @slid: SLID for packet
1145 * @bkey: PKEY for header
1146 * @sc5:  SC for packet
1147 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1148 * only. If it is negative value, then it means user contexts is calling this
1149 * function.
1150 *
1151 * It checks if hdr's pkey is valid.
1152 *
1153 * Return: 0 on success, otherwise, 1
1154 */
1155int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1156		      u8 sc5, int8_t s_pkey_index)
1157{
1158	struct hfi1_devdata *dd;
1159	int i;
1160	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1161
1162	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1163		return 0;
1164
1165	/* If SC15, pkey[0:14] must be 0x7fff */
1166	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1167		goto bad;
1168
1169	/* Is the pkey = 0x0, or 0x8000? */
1170	if ((pkey & PKEY_LOW_15_MASK) == 0)
1171		goto bad;
1172
1173	/*
1174	 * For the kernel contexts only, if a qp is passed into the function,
1175	 * the most likely matching pkey has index qp->s_pkey_index
1176	 */
1177	if (!is_user_ctxt_mechanism &&
1178	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1179		return 0;
1180	}
1181
1182	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1183		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1184			return 0;
1185	}
1186bad:
1187	/*
1188	 * For the user-context mechanism, the P_KEY check would only happen
1189	 * once per SDMA request, not once per packet.  Therefore, there's no
1190	 * need to increment the counter for the user-context mechanism.
1191	 */
1192	if (!is_user_ctxt_mechanism) {
1193		incr_cntr64(&ppd->port_xmit_constraint_errors);
1194		dd = ppd->dd;
1195		if (!(dd->err_info_xmit_constraint.status &
1196		      OPA_EI_STATUS_SMASK)) {
1197			dd->err_info_xmit_constraint.status |=
1198				OPA_EI_STATUS_SMASK;
1199			dd->err_info_xmit_constraint.slid = slid;
1200			dd->err_info_xmit_constraint.pkey = pkey;
1201		}
1202	}
1203	return 1;
1204}
1205
1206/**
1207 * get_send_routine - choose an egress routine
1208 *
1209 * Choose an egress routine based on QP type
1210 * and size
1211 */
1212static inline send_routine get_send_routine(struct rvt_qp *qp,
1213					    struct hfi1_pkt_state *ps)
1214{
1215	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1216	struct hfi1_qp_priv *priv = qp->priv;
1217	struct verbs_txreq *tx = ps->s_txreq;
1218
1219	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1220		return dd->process_pio_send;
1221	switch (qp->ibqp.qp_type) {
1222	case IB_QPT_SMI:
1223		return dd->process_pio_send;
1224	case IB_QPT_GSI:
1225	case IB_QPT_UD:
1226		break;
1227	case IB_QPT_UC:
1228	case IB_QPT_RC:
1229		priv->s_running_pkt_size =
1230			(tx->s_cur_size + priv->s_running_pkt_size) / 2;
1231		if (piothreshold &&
1232		    priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1233		    (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1234		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1235		    !sdma_txreq_built(&tx->txreq))
1236			return dd->process_pio_send;
1237		break;
1238	default:
1239		break;
1240	}
1241	return dd->process_dma_send;
1242}
1243
1244/**
1245 * hfi1_verbs_send - send a packet
1246 * @qp: the QP to send on
1247 * @ps: the state of the packet to send
1248 *
1249 * Return zero if packet is sent or queued OK.
1250 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1251 */
1252int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1253{
1254	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1255	struct hfi1_qp_priv *priv = qp->priv;
1256	struct ib_other_headers *ohdr = NULL;
1257	send_routine sr;
1258	int ret;
1259	u16 pkey;
1260	u32 slid;
1261	u8 l4 = 0;
1262
1263	/* locate the pkey within the headers */
1264	if (ps->s_txreq->phdr.hdr.hdr_type) {
1265		struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1266
1267		l4 = hfi1_16B_get_l4(hdr);
1268		if (l4 == OPA_16B_L4_IB_LOCAL)
1269			ohdr = &hdr->u.oth;
1270		else if (l4 == OPA_16B_L4_IB_GLOBAL)
1271			ohdr = &hdr->u.l.oth;
1272
1273		slid = hfi1_16B_get_slid(hdr);
1274		pkey = hfi1_16B_get_pkey(hdr);
1275	} else {
1276		struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1277		u8 lnh = ib_get_lnh(hdr);
1278
1279		if (lnh == HFI1_LRH_GRH)
1280			ohdr = &hdr->u.l.oth;
1281		else
1282			ohdr = &hdr->u.oth;
1283		slid = ib_get_slid(hdr);
1284		pkey = ib_bth_get_pkey(ohdr);
1285	}
1286
1287	if (likely(l4 != OPA_16B_L4_FM))
1288		ps->opcode = ib_bth_get_opcode(ohdr);
1289	else
1290		ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1291
1292	sr = get_send_routine(qp, ps);
1293	ret = egress_pkey_check(dd->pport, slid, pkey,
1294				priv->s_sc, qp->s_pkey_index);
1295	if (unlikely(ret)) {
1296		/*
1297		 * The value we are returning here does not get propagated to
1298		 * the verbs caller. Thus we need to complete the request with
1299		 * error otherwise the caller could be sitting waiting on the
1300		 * completion event. Only do this for PIO. SDMA has its own
1301		 * mechanism for handling the errors. So for SDMA we can just
1302		 * return.
1303		 */
1304		if (sr == dd->process_pio_send) {
1305			unsigned long flags;
1306
1307			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1308				  __func__);
1309			spin_lock_irqsave(&qp->s_lock, flags);
1310			rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1311			spin_unlock_irqrestore(&qp->s_lock, flags);
1312		}
1313		return -EINVAL;
1314	}
1315	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1316		return pio_wait(qp,
1317				ps->s_txreq->psc,
1318				ps,
1319				HFI1_S_WAIT_PIO_DRAIN);
1320	return sr(qp, ps, 0);
1321}
1322
1323/**
1324 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1325 * @dd: the device data structure
1326 */
1327static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1328{
1329	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1330	u32 ver = dd->dc8051_ver;
1331
1332	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1333
1334	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1335		((u64)(dc8051_ver_min(ver)) << 16) |
1336		(u64)dc8051_ver_patch(ver);
1337
1338	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1339			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1340			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1341			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1342			IB_DEVICE_MEM_MGT_EXTENSIONS |
1343			IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1344	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1345	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1346	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1347	rdi->dparms.props.hw_ver = dd->minrev;
1348	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1349	rdi->dparms.props.max_mr_size = U64_MAX;
1350	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1351	rdi->dparms.props.max_qp = hfi1_max_qps;
1352	rdi->dparms.props.max_qp_wr =
1353		(hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1354		 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1355	rdi->dparms.props.max_send_sge = hfi1_max_sges;
1356	rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1357	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1358	rdi->dparms.props.max_cq = hfi1_max_cqs;
1359	rdi->dparms.props.max_ah = hfi1_max_ahs;
1360	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1361	rdi->dparms.props.max_map_per_fmr = 32767;
1362	rdi->dparms.props.max_pd = hfi1_max_pds;
1363	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1364	rdi->dparms.props.max_qp_init_rd_atom = 255;
1365	rdi->dparms.props.max_srq = hfi1_max_srqs;
1366	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1367	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1368	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1369	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1370	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1371	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1372	rdi->dparms.props.max_total_mcast_qp_attach =
1373					rdi->dparms.props.max_mcast_qp_attach *
1374					rdi->dparms.props.max_mcast_grp;
1375}
1376
1377static inline u16 opa_speed_to_ib(u16 in)
1378{
1379	u16 out = 0;
1380
1381	if (in & OPA_LINK_SPEED_25G)
1382		out |= IB_SPEED_EDR;
1383	if (in & OPA_LINK_SPEED_12_5G)
1384		out |= IB_SPEED_FDR;
1385
1386	return out;
1387}
1388
1389/*
1390 * Convert a single OPA link width (no multiple flags) to an IB value.
1391 * A zero OPA link width means link down, which means the IB width value
1392 * is a don't care.
1393 */
1394static inline u16 opa_width_to_ib(u16 in)
1395{
1396	switch (in) {
1397	case OPA_LINK_WIDTH_1X:
1398	/* map 2x and 3x to 1x as they don't exist in IB */
1399	case OPA_LINK_WIDTH_2X:
1400	case OPA_LINK_WIDTH_3X:
1401		return IB_WIDTH_1X;
1402	default: /* link down or unknown, return our largest width */
1403	case OPA_LINK_WIDTH_4X:
1404		return IB_WIDTH_4X;
1405	}
1406}
1407
1408static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1409		      struct ib_port_attr *props)
1410{
1411	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1412	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1413	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1414	u32 lid = ppd->lid;
1415
1416	/* props being zeroed by the caller, avoid zeroing it here */
1417	props->lid = lid ? lid : 0;
1418	props->lmc = ppd->lmc;
1419	/* OPA logical states match IB logical states */
1420	props->state = driver_lstate(ppd);
1421	props->phys_state = driver_pstate(ppd);
1422	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1423	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1424	/* see rate_show() in ib core/sysfs.c */
1425	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1426	props->max_vl_num = ppd->vls_supported;
1427
1428	/* Once we are a "first class" citizen and have added the OPA MTUs to
1429	 * the core we can advertise the larger MTU enum to the ULPs, for now
1430	 * advertise only 4K.
1431	 *
1432	 * Those applications which are either OPA aware or pass the MTU enum
1433	 * from the Path Records to us will get the new 8k MTU.  Those that
1434	 * attempt to process the MTU enum may fail in various ways.
1435	 */
1436	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1437				      4096 : hfi1_max_mtu), IB_MTU_4096);
1438	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1439		mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
 
1440
1441	return 0;
1442}
1443
1444static int modify_device(struct ib_device *device,
1445			 int device_modify_mask,
1446			 struct ib_device_modify *device_modify)
1447{
1448	struct hfi1_devdata *dd = dd_from_ibdev(device);
1449	unsigned i;
1450	int ret;
1451
1452	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1453				   IB_DEVICE_MODIFY_NODE_DESC)) {
1454		ret = -EOPNOTSUPP;
1455		goto bail;
1456	}
1457
1458	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1459		memcpy(device->node_desc, device_modify->node_desc,
1460		       IB_DEVICE_NODE_DESC_MAX);
1461		for (i = 0; i < dd->num_pports; i++) {
1462			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1463
1464			hfi1_node_desc_chg(ibp);
1465		}
1466	}
1467
1468	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1469		ib_hfi1_sys_image_guid =
1470			cpu_to_be64(device_modify->sys_image_guid);
1471		for (i = 0; i < dd->num_pports; i++) {
1472			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1473
1474			hfi1_sys_guid_chg(ibp);
1475		}
1476	}
1477
1478	ret = 0;
1479
1480bail:
1481	return ret;
1482}
1483
1484static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1485{
1486	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1487	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1488	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1489	int ret;
1490
1491	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1492			     OPA_LINKDOWN_REASON_UNKNOWN);
1493	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1494	return ret;
1495}
1496
1497static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1498			    int guid_index, __be64 *guid)
1499{
1500	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1501
1502	if (guid_index >= HFI1_GUIDS_PER_PORT)
1503		return -EINVAL;
1504
1505	*guid = get_sguid(ibp, guid_index);
1506	return 0;
1507}
1508
1509/*
1510 * convert ah port,sl to sc
1511 */
1512u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1513{
1514	struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1515
1516	return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1517}
1518
1519static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1520{
1521	struct hfi1_ibport *ibp;
1522	struct hfi1_pportdata *ppd;
1523	struct hfi1_devdata *dd;
1524	u8 sc5;
1525	u8 sl;
1526
1527	if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1528	    !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1529		return -EINVAL;
1530
1531	/* test the mapping for validity */
1532	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1533	ppd = ppd_from_ibp(ibp);
1534	dd = dd_from_ppd(ppd);
1535
1536	sl = rdma_ah_get_sl(ah_attr);
1537	if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1538		return -EINVAL;
1539	sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1540
1541	sc5 = ibp->sl_to_sc[sl];
1542	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1543		return -EINVAL;
1544	return 0;
1545}
1546
1547static void hfi1_notify_new_ah(struct ib_device *ibdev,
1548			       struct rdma_ah_attr *ah_attr,
1549			       struct rvt_ah *ah)
1550{
1551	struct hfi1_ibport *ibp;
1552	struct hfi1_pportdata *ppd;
1553	struct hfi1_devdata *dd;
1554	u8 sc5;
1555	struct rdma_ah_attr *attr = &ah->attr;
1556
1557	/*
1558	 * Do not trust reading anything from rvt_ah at this point as it is not
1559	 * done being setup. We can however modify things which we need to set.
1560	 */
1561
1562	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1563	ppd = ppd_from_ibp(ibp);
1564	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1565	hfi1_update_ah_attr(ibdev, attr);
1566	hfi1_make_opa_lid(attr);
1567	dd = dd_from_ppd(ppd);
1568	ah->vl = sc_to_vlt(dd, sc5);
1569	if (ah->vl < num_vls || ah->vl == 15)
1570		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1571}
1572
1573/**
1574 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1575 * @dd: the hfi1_ib device
1576 */
1577unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1578{
1579	return ARRAY_SIZE(dd->pport[0].pkeys);
1580}
1581
1582static void init_ibport(struct hfi1_pportdata *ppd)
1583{
1584	struct hfi1_ibport *ibp = &ppd->ibport_data;
1585	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1586	int i;
1587
1588	for (i = 0; i < sz; i++) {
1589		ibp->sl_to_sc[i] = i;
1590		ibp->sc_to_sl[i] = i;
1591	}
1592
1593	for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1594		INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1595	timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1596
1597	spin_lock_init(&ibp->rvp.lock);
1598	/* Set the prefix to the default value (see ch. 4.1.1) */
1599	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1600	ibp->rvp.sm_lid = 0;
1601	/*
1602	 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1603	 * and PortInfo.CapabilityMask3
1604	 */
1605	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1606		IB_PORT_CAP_MASK_NOTICE_SUP;
1607	ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1608	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1609	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1610	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1611	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1612	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1613
1614	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1615	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1616}
1617
1618static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1619{
1620	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1621	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1622	u32 ver = dd_from_dev(dev)->dc8051_ver;
1623
1624	snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1625		 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1626}
1627
1628static const char * const driver_cntr_names[] = {
1629	/* must be element 0*/
1630	"DRIVER_KernIntr",
1631	"DRIVER_ErrorIntr",
1632	"DRIVER_Tx_Errs",
1633	"DRIVER_Rcv_Errs",
1634	"DRIVER_HW_Errs",
1635	"DRIVER_NoPIOBufs",
1636	"DRIVER_CtxtsOpen",
1637	"DRIVER_RcvLen_Errs",
1638	"DRIVER_EgrBufFull",
1639	"DRIVER_EgrHdrFull"
1640};
1641
1642static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1643static const char **dev_cntr_names;
1644static const char **port_cntr_names;
1645int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1646static int num_dev_cntrs;
1647static int num_port_cntrs;
1648static int cntr_names_initialized;
1649
1650/*
1651 * Convert a list of names separated by '\n' into an array of NULL terminated
1652 * strings. Optionally some entries can be reserved in the array to hold extra
1653 * external strings.
1654 */
1655static int init_cntr_names(const char *names_in,
1656			   const size_t names_len,
1657			   int num_extra_names,
1658			   int *num_cntrs,
1659			   const char ***cntr_names)
1660{
1661	char *names_out, *p, **q;
 
1662	int i, n;
1663
1664	n = 0;
1665	for (i = 0; i < names_len; i++)
1666		if (names_in[i] == '\n')
1667			n++;
1668
1669	names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
 
1670			    GFP_KERNEL);
1671	if (!names_out) {
1672		*num_cntrs = 0;
1673		*cntr_names = NULL;
1674		return -ENOMEM;
1675	}
1676
1677	p = names_out + (n + num_extra_names) * sizeof(char *);
1678	memcpy(p, names_in, names_len);
1679
1680	q = (char **)names_out;
1681	for (i = 0; i < n; i++) {
1682		q[i] = p;
1683		p = strchr(p, '\n');
1684		*p++ = '\0';
1685	}
1686
1687	*num_cntrs = n;
1688	*cntr_names = (const char **)names_out;
1689	return 0;
1690}
1691
1692static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1693					    u8 port_num)
1694{
1695	int i, err;
1696
1697	mutex_lock(&cntr_names_lock);
1698	if (!cntr_names_initialized) {
1699		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
 
1700
1701		err = init_cntr_names(dd->cntrnames,
1702				      dd->cntrnameslen,
1703				      num_driver_cntrs,
1704				      &num_dev_cntrs,
1705				      &dev_cntr_names);
1706		if (err) {
1707			mutex_unlock(&cntr_names_lock);
1708			return NULL;
1709		}
1710
1711		for (i = 0; i < num_driver_cntrs; i++)
1712			dev_cntr_names[num_dev_cntrs + i] =
1713				driver_cntr_names[i];
 
 
 
 
 
1714
1715		err = init_cntr_names(dd->portcntrnames,
1716				      dd->portcntrnameslen,
 
 
 
 
 
 
1717				      0,
1718				      &num_port_cntrs,
1719				      &port_cntr_names);
1720		if (err) {
1721			kfree(dev_cntr_names);
1722			dev_cntr_names = NULL;
1723			mutex_unlock(&cntr_names_lock);
1724			return NULL;
1725		}
1726		cntr_names_initialized = 1;
1727	}
1728	mutex_unlock(&cntr_names_lock);
1729
1730	if (!port_num)
1731		return rdma_alloc_hw_stats_struct(
1732				dev_cntr_names,
1733				num_dev_cntrs + num_driver_cntrs,
1734				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1735	else
1736		return rdma_alloc_hw_stats_struct(
1737				port_cntr_names,
1738				num_port_cntrs,
1739				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1740}
1741
1742static u64 hfi1_sps_ints(void)
1743{
1744	unsigned long index, flags;
1745	struct hfi1_devdata *dd;
1746	u64 sps_ints = 0;
1747
1748	xa_lock_irqsave(&hfi1_dev_table, flags);
1749	xa_for_each(&hfi1_dev_table, index, dd) {
1750		sps_ints += get_all_cpu_total(dd->int_counter);
1751	}
1752	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1753	return sps_ints;
1754}
1755
1756static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1757			u8 port, int index)
1758{
1759	u64 *values;
1760	int count;
1761
1762	if (!port) {
1763		u64 *stats = (u64 *)&hfi1_stats;
1764		int i;
1765
1766		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1767		values[num_dev_cntrs] = hfi1_sps_ints();
1768		for (i = 1; i < num_driver_cntrs; i++)
1769			values[num_dev_cntrs + i] = stats[i];
1770		count = num_dev_cntrs + num_driver_cntrs;
1771	} else {
1772		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1773
1774		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1775		count = num_port_cntrs;
1776	}
1777
1778	memcpy(stats->value, values, count * sizeof(u64));
1779	return count;
1780}
1781
1782static const struct ib_device_ops hfi1_dev_ops = {
1783	.owner = THIS_MODULE,
1784	.driver_id = RDMA_DRIVER_HFI1,
1785
1786	.alloc_hw_stats = alloc_hw_stats,
 
1787	.alloc_rdma_netdev = hfi1_vnic_alloc_rn,
 
1788	.get_dev_fw_str = hfi1_get_dev_fw_str,
1789	.get_hw_stats = get_hw_stats,
1790	.init_port = hfi1_create_port_files,
1791	.modify_device = modify_device,
 
1792	/* keep process mad in the driver */
1793	.process_mad = hfi1_process_mad,
 
1794};
1795
1796/**
1797 * hfi1_register_ib_device - register our device with the infiniband core
1798 * @dd: the device data structure
1799 * Return 0 if successful, errno if unsuccessful.
1800 */
1801int hfi1_register_ib_device(struct hfi1_devdata *dd)
1802{
1803	struct hfi1_ibdev *dev = &dd->verbs_dev;
1804	struct ib_device *ibdev = &dev->rdi.ibdev;
1805	struct hfi1_pportdata *ppd = dd->pport;
1806	struct hfi1_ibport *ibp = &ppd->ibport_data;
1807	unsigned i;
1808	int ret;
1809
1810	for (i = 0; i < dd->num_pports; i++)
1811		init_ibport(ppd + i);
1812
1813	/* Only need to initialize non-zero fields. */
1814
1815	timer_setup(&dev->mem_timer, mem_timer, 0);
1816
1817	seqlock_init(&dev->iowait_lock);
1818	seqlock_init(&dev->txwait_lock);
1819	INIT_LIST_HEAD(&dev->txwait);
1820	INIT_LIST_HEAD(&dev->memwait);
1821
1822	ret = verbs_txreq_init(dev);
1823	if (ret)
1824		goto err_verbs_txreq;
1825
1826	/* Use first-port GUID as node guid */
1827	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1828
1829	/*
1830	 * The system image GUID is supposed to be the same for all
1831	 * HFIs in a single system but since there can be other
1832	 * device types in the system, we can't be sure this is unique.
1833	 */
1834	if (!ib_hfi1_sys_image_guid)
1835		ib_hfi1_sys_image_guid = ibdev->node_guid;
1836	ibdev->phys_port_cnt = dd->num_pports;
1837	ibdev->dev.parent = &dd->pcidev->dev;
1838
1839	ib_set_device_ops(ibdev, &hfi1_dev_ops);
1840
1841	strlcpy(ibdev->node_desc, init_utsname()->nodename,
1842		sizeof(ibdev->node_desc));
1843
1844	/*
1845	 * Fill in rvt info object.
1846	 */
1847	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1848	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1849	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1850	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1851	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1852	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1853	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1854	/*
1855	 * Fill in rvt info device attributes.
1856	 */
1857	hfi1_fill_device_attr(dd);
1858
1859	/* queue pair */
1860	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1861	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1862	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1863	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1864	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1865	dd->verbs_dev.rdi.dparms.qpn_res_end =
1866	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1867	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1868	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1869	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1870	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1871	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1872						RDMA_CORE_CAP_OPA_AH;
1873	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1874
1875	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1876	dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1877	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1878	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1879	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1880	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1881	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1882	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1883	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1884	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1885	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1886	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1887	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1888	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1889	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1890	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1891	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1892	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1893	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1894	dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1895	dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1896						hfi1_comp_vect_mappings_lookup;
1897
1898	/* completeion queue */
1899	dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1900	dd->verbs_dev.rdi.dparms.node = dd->node;
1901
1902	/* misc settings */
1903	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1904	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1905	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1906	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1907	dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1908	dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1909	dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1910	dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1911	dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1912
1913	/* post send table */
1914	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1915
1916	/* opcode translation table */
1917	dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1918
1919	ppd = dd->pport;
1920	for (i = 0; i < dd->num_pports; i++, ppd++)
1921		rvt_init_port(&dd->verbs_dev.rdi,
1922			      &ppd->ibport_data.rvp,
1923			      i,
1924			      ppd->pkeys);
1925
1926	rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1927				    &ib_hfi1_attr_group);
1928
1929	ret = rvt_register_device(&dd->verbs_dev.rdi);
1930	if (ret)
1931		goto err_verbs_txreq;
1932
1933	ret = hfi1_verbs_register_sysfs(dd);
1934	if (ret)
1935		goto err_class;
1936
1937	return ret;
1938
1939err_class:
1940	rvt_unregister_device(&dd->verbs_dev.rdi);
1941err_verbs_txreq:
1942	verbs_txreq_exit(dev);
1943	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1944	return ret;
1945}
1946
1947void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1948{
1949	struct hfi1_ibdev *dev = &dd->verbs_dev;
1950
1951	hfi1_verbs_unregister_sysfs(dd);
1952
1953	rvt_unregister_device(&dd->verbs_dev.rdi);
1954
1955	if (!list_empty(&dev->txwait))
1956		dd_dev_err(dd, "txwait list not empty!\n");
1957	if (!list_empty(&dev->memwait))
1958		dd_dev_err(dd, "memwait list not empty!\n");
1959
1960	del_timer_sync(&dev->mem_timer);
1961	verbs_txreq_exit(dev);
1962
1963	mutex_lock(&cntr_names_lock);
1964	kfree(dev_cntr_names);
1965	kfree(port_cntr_names);
1966	dev_cntr_names = NULL;
1967	port_cntr_names = NULL;
1968	cntr_names_initialized = 0;
1969	mutex_unlock(&cntr_names_lock);
1970}
1971
1972void hfi1_cnp_rcv(struct hfi1_packet *packet)
1973{
1974	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1975	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1976	struct ib_header *hdr = packet->hdr;
1977	struct rvt_qp *qp = packet->qp;
1978	u32 lqpn, rqpn = 0;
1979	u16 rlid = 0;
1980	u8 sl, sc5, svc_type;
1981
1982	switch (packet->qp->ibqp.qp_type) {
1983	case IB_QPT_UC:
1984		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1985		rqpn = qp->remote_qpn;
1986		svc_type = IB_CC_SVCTYPE_UC;
1987		break;
1988	case IB_QPT_RC:
1989		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1990		rqpn = qp->remote_qpn;
1991		svc_type = IB_CC_SVCTYPE_RC;
1992		break;
1993	case IB_QPT_SMI:
1994	case IB_QPT_GSI:
1995	case IB_QPT_UD:
1996		svc_type = IB_CC_SVCTYPE_UD;
1997		break;
1998	default:
1999		ibp->rvp.n_pkt_drops++;
2000		return;
2001	}
2002
2003	sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2004	sl = ibp->sc_to_sl[sc5];
2005	lqpn = qp->ibqp.qp_num;
2006
2007	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2008}