Loading...
1/*
2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33#include <linux/types.h>
34#include <linux/sched.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/task.h>
37#include <linux/pid.h>
38#include <linux/slab.h>
39#include <linux/export.h>
40#include <linux/vmalloc.h>
41#include <linux/hugetlb.h>
42#include <linux/interval_tree.h>
43#include <linux/hmm.h>
44#include <linux/pagemap.h>
45
46#include <rdma/ib_umem_odp.h>
47
48#include "uverbs.h"
49
50static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp,
51 const struct mmu_interval_notifier_ops *ops)
52{
53 int ret;
54
55 umem_odp->umem.is_odp = 1;
56 mutex_init(&umem_odp->umem_mutex);
57
58 if (!umem_odp->is_implicit_odp) {
59 size_t page_size = 1UL << umem_odp->page_shift;
60 unsigned long start;
61 unsigned long end;
62 size_t ndmas, npfns;
63
64 start = ALIGN_DOWN(umem_odp->umem.address, page_size);
65 if (check_add_overflow(umem_odp->umem.address,
66 (unsigned long)umem_odp->umem.length,
67 &end))
68 return -EOVERFLOW;
69 end = ALIGN(end, page_size);
70 if (unlikely(end < page_size))
71 return -EOVERFLOW;
72
73 ndmas = (end - start) >> umem_odp->page_shift;
74 if (!ndmas)
75 return -EINVAL;
76
77 npfns = (end - start) >> PAGE_SHIFT;
78 umem_odp->pfn_list = kvcalloc(
79 npfns, sizeof(*umem_odp->pfn_list), GFP_KERNEL);
80 if (!umem_odp->pfn_list)
81 return -ENOMEM;
82
83 umem_odp->dma_list = kvcalloc(
84 ndmas, sizeof(*umem_odp->dma_list), GFP_KERNEL);
85 if (!umem_odp->dma_list) {
86 ret = -ENOMEM;
87 goto out_pfn_list;
88 }
89
90 ret = mmu_interval_notifier_insert(&umem_odp->notifier,
91 umem_odp->umem.owning_mm,
92 start, end - start, ops);
93 if (ret)
94 goto out_dma_list;
95 }
96
97 return 0;
98
99out_dma_list:
100 kvfree(umem_odp->dma_list);
101out_pfn_list:
102 kvfree(umem_odp->pfn_list);
103 return ret;
104}
105
106/**
107 * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem
108 *
109 * Implicit ODP umems do not have a VA range and do not have any page lists.
110 * They exist only to hold the per_mm reference to help the driver create
111 * children umems.
112 *
113 * @device: IB device to create UMEM
114 * @access: ib_reg_mr access flags
115 */
116struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_device *device,
117 int access)
118{
119 struct ib_umem *umem;
120 struct ib_umem_odp *umem_odp;
121 int ret;
122
123 if (access & IB_ACCESS_HUGETLB)
124 return ERR_PTR(-EINVAL);
125
126 umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL);
127 if (!umem_odp)
128 return ERR_PTR(-ENOMEM);
129 umem = &umem_odp->umem;
130 umem->ibdev = device;
131 umem->writable = ib_access_writable(access);
132 umem->owning_mm = current->mm;
133 umem_odp->is_implicit_odp = 1;
134 umem_odp->page_shift = PAGE_SHIFT;
135
136 umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
137 ret = ib_init_umem_odp(umem_odp, NULL);
138 if (ret) {
139 put_pid(umem_odp->tgid);
140 kfree(umem_odp);
141 return ERR_PTR(ret);
142 }
143 return umem_odp;
144}
145EXPORT_SYMBOL(ib_umem_odp_alloc_implicit);
146
147/**
148 * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit
149 * parent ODP umem
150 *
151 * @root: The parent umem enclosing the child. This must be allocated using
152 * ib_alloc_implicit_odp_umem()
153 * @addr: The starting userspace VA
154 * @size: The length of the userspace VA
155 * @ops: MMU interval ops, currently only @invalidate
156 */
157struct ib_umem_odp *
158ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr,
159 size_t size,
160 const struct mmu_interval_notifier_ops *ops)
161{
162 /*
163 * Caller must ensure that root cannot be freed during the call to
164 * ib_alloc_odp_umem.
165 */
166 struct ib_umem_odp *odp_data;
167 struct ib_umem *umem;
168 int ret;
169
170 if (WARN_ON(!root->is_implicit_odp))
171 return ERR_PTR(-EINVAL);
172
173 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
174 if (!odp_data)
175 return ERR_PTR(-ENOMEM);
176 umem = &odp_data->umem;
177 umem->ibdev = root->umem.ibdev;
178 umem->length = size;
179 umem->address = addr;
180 umem->writable = root->umem.writable;
181 umem->owning_mm = root->umem.owning_mm;
182 odp_data->page_shift = PAGE_SHIFT;
183 odp_data->notifier.ops = ops;
184
185 /*
186 * A mmget must be held when registering a notifier, the owming_mm only
187 * has a mm_grab at this point.
188 */
189 if (!mmget_not_zero(umem->owning_mm)) {
190 ret = -EFAULT;
191 goto out_free;
192 }
193
194 odp_data->tgid = get_pid(root->tgid);
195 ret = ib_init_umem_odp(odp_data, ops);
196 if (ret)
197 goto out_tgid;
198 mmput(umem->owning_mm);
199 return odp_data;
200
201out_tgid:
202 put_pid(odp_data->tgid);
203 mmput(umem->owning_mm);
204out_free:
205 kfree(odp_data);
206 return ERR_PTR(ret);
207}
208EXPORT_SYMBOL(ib_umem_odp_alloc_child);
209
210/**
211 * ib_umem_odp_get - Create a umem_odp for a userspace va
212 *
213 * @device: IB device struct to get UMEM
214 * @addr: userspace virtual address to start at
215 * @size: length of region to pin
216 * @access: IB_ACCESS_xxx flags for memory being pinned
217 * @ops: MMU interval ops, currently only @invalidate
218 *
219 * The driver should use when the access flags indicate ODP memory. It avoids
220 * pinning, instead, stores the mm for future page fault handling in
221 * conjunction with MMU notifiers.
222 */
223struct ib_umem_odp *ib_umem_odp_get(struct ib_device *device,
224 unsigned long addr, size_t size, int access,
225 const struct mmu_interval_notifier_ops *ops)
226{
227 struct ib_umem_odp *umem_odp;
228 int ret;
229
230 if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND)))
231 return ERR_PTR(-EINVAL);
232
233 umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL);
234 if (!umem_odp)
235 return ERR_PTR(-ENOMEM);
236
237 umem_odp->umem.ibdev = device;
238 umem_odp->umem.length = size;
239 umem_odp->umem.address = addr;
240 umem_odp->umem.writable = ib_access_writable(access);
241 umem_odp->umem.owning_mm = current->mm;
242 umem_odp->notifier.ops = ops;
243
244 umem_odp->page_shift = PAGE_SHIFT;
245#ifdef CONFIG_HUGETLB_PAGE
246 if (access & IB_ACCESS_HUGETLB)
247 umem_odp->page_shift = HPAGE_SHIFT;
248#endif
249
250 umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
251 ret = ib_init_umem_odp(umem_odp, ops);
252 if (ret)
253 goto err_put_pid;
254 return umem_odp;
255
256err_put_pid:
257 put_pid(umem_odp->tgid);
258 kfree(umem_odp);
259 return ERR_PTR(ret);
260}
261EXPORT_SYMBOL(ib_umem_odp_get);
262
263void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
264{
265 /*
266 * Ensure that no more pages are mapped in the umem.
267 *
268 * It is the driver's responsibility to ensure, before calling us,
269 * that the hardware will not attempt to access the MR any more.
270 */
271 if (!umem_odp->is_implicit_odp) {
272 mutex_lock(&umem_odp->umem_mutex);
273 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
274 ib_umem_end(umem_odp));
275 mutex_unlock(&umem_odp->umem_mutex);
276 mmu_interval_notifier_remove(&umem_odp->notifier);
277 kvfree(umem_odp->dma_list);
278 kvfree(umem_odp->pfn_list);
279 }
280 put_pid(umem_odp->tgid);
281 kfree(umem_odp);
282}
283EXPORT_SYMBOL(ib_umem_odp_release);
284
285/*
286 * Map for DMA and insert a single page into the on-demand paging page tables.
287 *
288 * @umem: the umem to insert the page to.
289 * @dma_index: index in the umem to add the dma to.
290 * @page: the page struct to map and add.
291 * @access_mask: access permissions needed for this page.
292 *
293 * The function returns -EFAULT if the DMA mapping operation fails.
294 *
295 */
296static int ib_umem_odp_map_dma_single_page(
297 struct ib_umem_odp *umem_odp,
298 unsigned int dma_index,
299 struct page *page,
300 u64 access_mask)
301{
302 struct ib_device *dev = umem_odp->umem.ibdev;
303 dma_addr_t *dma_addr = &umem_odp->dma_list[dma_index];
304
305 if (*dma_addr) {
306 /*
307 * If the page is already dma mapped it means it went through
308 * a non-invalidating trasition, like read-only to writable.
309 * Resync the flags.
310 */
311 *dma_addr = (*dma_addr & ODP_DMA_ADDR_MASK) | access_mask;
312 return 0;
313 }
314
315 *dma_addr = ib_dma_map_page(dev, page, 0, 1 << umem_odp->page_shift,
316 DMA_BIDIRECTIONAL);
317 if (ib_dma_mapping_error(dev, *dma_addr)) {
318 *dma_addr = 0;
319 return -EFAULT;
320 }
321 umem_odp->npages++;
322 *dma_addr |= access_mask;
323 return 0;
324}
325
326/**
327 * ib_umem_odp_map_dma_and_lock - DMA map userspace memory in an ODP MR and lock it.
328 *
329 * Maps the range passed in the argument to DMA addresses.
330 * The DMA addresses of the mapped pages is updated in umem_odp->dma_list.
331 * Upon success the ODP MR will be locked to let caller complete its device
332 * page table update.
333 *
334 * Returns the number of pages mapped in success, negative error code
335 * for failure.
336 * @umem_odp: the umem to map and pin
337 * @user_virt: the address from which we need to map.
338 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
339 * bigger due to alignment, and may also be smaller in case of an error
340 * pinning or mapping a page. The actual pages mapped is returned in
341 * the return value.
342 * @access_mask: bit mask of the requested access permissions for the given
343 * range.
344 * @fault: is faulting required for the given range
345 */
346int ib_umem_odp_map_dma_and_lock(struct ib_umem_odp *umem_odp, u64 user_virt,
347 u64 bcnt, u64 access_mask, bool fault)
348 __acquires(&umem_odp->umem_mutex)
349{
350 struct task_struct *owning_process = NULL;
351 struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
352 int pfn_index, dma_index, ret = 0, start_idx;
353 unsigned int page_shift, hmm_order, pfn_start_idx;
354 unsigned long num_pfns, current_seq;
355 struct hmm_range range = {};
356 unsigned long timeout;
357
358 if (access_mask == 0)
359 return -EINVAL;
360
361 if (user_virt < ib_umem_start(umem_odp) ||
362 user_virt + bcnt > ib_umem_end(umem_odp))
363 return -EFAULT;
364
365 page_shift = umem_odp->page_shift;
366
367 /*
368 * owning_process is allowed to be NULL, this means somehow the mm is
369 * existing beyond the lifetime of the originating process.. Presumably
370 * mmget_not_zero will fail in this case.
371 */
372 owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID);
373 if (!owning_process || !mmget_not_zero(owning_mm)) {
374 ret = -EINVAL;
375 goto out_put_task;
376 }
377
378 range.notifier = &umem_odp->notifier;
379 range.start = ALIGN_DOWN(user_virt, 1UL << page_shift);
380 range.end = ALIGN(user_virt + bcnt, 1UL << page_shift);
381 pfn_start_idx = (range.start - ib_umem_start(umem_odp)) >> PAGE_SHIFT;
382 num_pfns = (range.end - range.start) >> PAGE_SHIFT;
383 if (fault) {
384 range.default_flags = HMM_PFN_REQ_FAULT;
385
386 if (access_mask & ODP_WRITE_ALLOWED_BIT)
387 range.default_flags |= HMM_PFN_REQ_WRITE;
388 }
389
390 range.hmm_pfns = &(umem_odp->pfn_list[pfn_start_idx]);
391 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
392
393retry:
394 current_seq = range.notifier_seq =
395 mmu_interval_read_begin(&umem_odp->notifier);
396
397 mmap_read_lock(owning_mm);
398 ret = hmm_range_fault(&range);
399 mmap_read_unlock(owning_mm);
400 if (unlikely(ret)) {
401 if (ret == -EBUSY && !time_after(jiffies, timeout))
402 goto retry;
403 goto out_put_mm;
404 }
405
406 start_idx = (range.start - ib_umem_start(umem_odp)) >> page_shift;
407 dma_index = start_idx;
408
409 mutex_lock(&umem_odp->umem_mutex);
410 if (mmu_interval_read_retry(&umem_odp->notifier, current_seq)) {
411 mutex_unlock(&umem_odp->umem_mutex);
412 goto retry;
413 }
414
415 for (pfn_index = 0; pfn_index < num_pfns;
416 pfn_index += 1 << (page_shift - PAGE_SHIFT), dma_index++) {
417
418 if (fault) {
419 /*
420 * Since we asked for hmm_range_fault() to populate
421 * pages it shouldn't return an error entry on success.
422 */
423 WARN_ON(range.hmm_pfns[pfn_index] & HMM_PFN_ERROR);
424 WARN_ON(!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID));
425 } else {
426 if (!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)) {
427 WARN_ON(umem_odp->dma_list[dma_index]);
428 continue;
429 }
430 access_mask = ODP_READ_ALLOWED_BIT;
431 if (range.hmm_pfns[pfn_index] & HMM_PFN_WRITE)
432 access_mask |= ODP_WRITE_ALLOWED_BIT;
433 }
434
435 hmm_order = hmm_pfn_to_map_order(range.hmm_pfns[pfn_index]);
436 /* If a hugepage was detected and ODP wasn't set for, the umem
437 * page_shift will be used, the opposite case is an error.
438 */
439 if (hmm_order + PAGE_SHIFT < page_shift) {
440 ret = -EINVAL;
441 ibdev_dbg(umem_odp->umem.ibdev,
442 "%s: un-expected hmm_order %u, page_shift %u\n",
443 __func__, hmm_order, page_shift);
444 break;
445 }
446
447 ret = ib_umem_odp_map_dma_single_page(
448 umem_odp, dma_index, hmm_pfn_to_page(range.hmm_pfns[pfn_index]),
449 access_mask);
450 if (ret < 0) {
451 ibdev_dbg(umem_odp->umem.ibdev,
452 "ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
453 break;
454 }
455 }
456 /* upon success lock should stay on hold for the callee */
457 if (!ret)
458 ret = dma_index - start_idx;
459 else
460 mutex_unlock(&umem_odp->umem_mutex);
461
462out_put_mm:
463 mmput_async(owning_mm);
464out_put_task:
465 if (owning_process)
466 put_task_struct(owning_process);
467 return ret;
468}
469EXPORT_SYMBOL(ib_umem_odp_map_dma_and_lock);
470
471void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
472 u64 bound)
473{
474 dma_addr_t dma_addr;
475 dma_addr_t dma;
476 int idx;
477 u64 addr;
478 struct ib_device *dev = umem_odp->umem.ibdev;
479
480 lockdep_assert_held(&umem_odp->umem_mutex);
481
482 virt = max_t(u64, virt, ib_umem_start(umem_odp));
483 bound = min_t(u64, bound, ib_umem_end(umem_odp));
484 for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) {
485 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
486 dma = umem_odp->dma_list[idx];
487
488 /* The access flags guaranteed a valid DMA address in case was NULL */
489 if (dma) {
490 unsigned long pfn_idx = (addr - ib_umem_start(umem_odp)) >> PAGE_SHIFT;
491 struct page *page = hmm_pfn_to_page(umem_odp->pfn_list[pfn_idx]);
492
493 dma_addr = dma & ODP_DMA_ADDR_MASK;
494 ib_dma_unmap_page(dev, dma_addr,
495 BIT(umem_odp->page_shift),
496 DMA_BIDIRECTIONAL);
497 if (dma & ODP_WRITE_ALLOWED_BIT) {
498 struct page *head_page = compound_head(page);
499 /*
500 * set_page_dirty prefers being called with
501 * the page lock. However, MMU notifiers are
502 * called sometimes with and sometimes without
503 * the lock. We rely on the umem_mutex instead
504 * to prevent other mmu notifiers from
505 * continuing and allowing the page mapping to
506 * be removed.
507 */
508 set_page_dirty(head_page);
509 }
510 umem_odp->dma_list[idx] = 0;
511 umem_odp->npages--;
512 }
513 }
514}
515EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
1/*
2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33#include <linux/types.h>
34#include <linux/sched.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/task.h>
37#include <linux/pid.h>
38#include <linux/slab.h>
39#include <linux/export.h>
40#include <linux/vmalloc.h>
41#include <linux/hugetlb.h>
42#include <linux/interval_tree.h>
43#include <linux/pagemap.h>
44
45#include <rdma/ib_verbs.h>
46#include <rdma/ib_umem.h>
47#include <rdma/ib_umem_odp.h>
48
49#include "uverbs.h"
50
51static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp)
52{
53 mutex_lock(&umem_odp->umem_mutex);
54 if (umem_odp->notifiers_count++ == 0)
55 /*
56 * Initialize the completion object for waiting on
57 * notifiers. Since notifier_count is zero, no one should be
58 * waiting right now.
59 */
60 reinit_completion(&umem_odp->notifier_completion);
61 mutex_unlock(&umem_odp->umem_mutex);
62}
63
64static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp)
65{
66 mutex_lock(&umem_odp->umem_mutex);
67 /*
68 * This sequence increase will notify the QP page fault that the page
69 * that is going to be mapped in the spte could have been freed.
70 */
71 ++umem_odp->notifiers_seq;
72 if (--umem_odp->notifiers_count == 0)
73 complete_all(&umem_odp->notifier_completion);
74 mutex_unlock(&umem_odp->umem_mutex);
75}
76
77static void ib_umem_notifier_release(struct mmu_notifier *mn,
78 struct mm_struct *mm)
79{
80 struct ib_ucontext_per_mm *per_mm =
81 container_of(mn, struct ib_ucontext_per_mm, mn);
82 struct rb_node *node;
83
84 down_read(&per_mm->umem_rwsem);
85 if (!per_mm->mn.users)
86 goto out;
87
88 for (node = rb_first_cached(&per_mm->umem_tree); node;
89 node = rb_next(node)) {
90 struct ib_umem_odp *umem_odp =
91 rb_entry(node, struct ib_umem_odp, interval_tree.rb);
92
93 /*
94 * Increase the number of notifiers running, to prevent any
95 * further fault handling on this MR.
96 */
97 ib_umem_notifier_start_account(umem_odp);
98 complete_all(&umem_odp->notifier_completion);
99 umem_odp->umem.ibdev->ops.invalidate_range(
100 umem_odp, ib_umem_start(umem_odp),
101 ib_umem_end(umem_odp));
102 }
103
104out:
105 up_read(&per_mm->umem_rwsem);
106}
107
108static int invalidate_range_start_trampoline(struct ib_umem_odp *item,
109 u64 start, u64 end, void *cookie)
110{
111 ib_umem_notifier_start_account(item);
112 item->umem.ibdev->ops.invalidate_range(item, start, end);
113 return 0;
114}
115
116static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
117 const struct mmu_notifier_range *range)
118{
119 struct ib_ucontext_per_mm *per_mm =
120 container_of(mn, struct ib_ucontext_per_mm, mn);
121 int rc;
122
123 if (mmu_notifier_range_blockable(range))
124 down_read(&per_mm->umem_rwsem);
125 else if (!down_read_trylock(&per_mm->umem_rwsem))
126 return -EAGAIN;
127
128 if (!per_mm->mn.users) {
129 up_read(&per_mm->umem_rwsem);
130 /*
131 * At this point users is permanently zero and visible to this
132 * CPU without a lock, that fact is relied on to skip the unlock
133 * in range_end.
134 */
135 return 0;
136 }
137
138 rc = rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
139 range->end,
140 invalidate_range_start_trampoline,
141 mmu_notifier_range_blockable(range),
142 NULL);
143 if (rc)
144 up_read(&per_mm->umem_rwsem);
145 return rc;
146}
147
148static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start,
149 u64 end, void *cookie)
150{
151 ib_umem_notifier_end_account(item);
152 return 0;
153}
154
155static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
156 const struct mmu_notifier_range *range)
157{
158 struct ib_ucontext_per_mm *per_mm =
159 container_of(mn, struct ib_ucontext_per_mm, mn);
160
161 if (unlikely(!per_mm->mn.users))
162 return;
163
164 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
165 range->end,
166 invalidate_range_end_trampoline, true, NULL);
167 up_read(&per_mm->umem_rwsem);
168}
169
170static struct mmu_notifier *ib_umem_alloc_notifier(struct mm_struct *mm)
171{
172 struct ib_ucontext_per_mm *per_mm;
173
174 per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL);
175 if (!per_mm)
176 return ERR_PTR(-ENOMEM);
177
178 per_mm->umem_tree = RB_ROOT_CACHED;
179 init_rwsem(&per_mm->umem_rwsem);
180
181 WARN_ON(mm != current->mm);
182 rcu_read_lock();
183 per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
184 rcu_read_unlock();
185 return &per_mm->mn;
186}
187
188static void ib_umem_free_notifier(struct mmu_notifier *mn)
189{
190 struct ib_ucontext_per_mm *per_mm =
191 container_of(mn, struct ib_ucontext_per_mm, mn);
192
193 WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root));
194
195 put_pid(per_mm->tgid);
196 kfree(per_mm);
197}
198
199static const struct mmu_notifier_ops ib_umem_notifiers = {
200 .release = ib_umem_notifier_release,
201 .invalidate_range_start = ib_umem_notifier_invalidate_range_start,
202 .invalidate_range_end = ib_umem_notifier_invalidate_range_end,
203 .alloc_notifier = ib_umem_alloc_notifier,
204 .free_notifier = ib_umem_free_notifier,
205};
206
207static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp)
208{
209 struct ib_ucontext_per_mm *per_mm;
210 struct mmu_notifier *mn;
211 int ret;
212
213 umem_odp->umem.is_odp = 1;
214 if (!umem_odp->is_implicit_odp) {
215 size_t page_size = 1UL << umem_odp->page_shift;
216 size_t pages;
217
218 umem_odp->interval_tree.start =
219 ALIGN_DOWN(umem_odp->umem.address, page_size);
220 if (check_add_overflow(umem_odp->umem.address,
221 (unsigned long)umem_odp->umem.length,
222 &umem_odp->interval_tree.last))
223 return -EOVERFLOW;
224 umem_odp->interval_tree.last =
225 ALIGN(umem_odp->interval_tree.last, page_size);
226 if (unlikely(umem_odp->interval_tree.last < page_size))
227 return -EOVERFLOW;
228
229 pages = (umem_odp->interval_tree.last -
230 umem_odp->interval_tree.start) >>
231 umem_odp->page_shift;
232 if (!pages)
233 return -EINVAL;
234
235 /*
236 * Note that the representation of the intervals in the
237 * interval tree considers the ending point as contained in
238 * the interval.
239 */
240 umem_odp->interval_tree.last--;
241
242 umem_odp->page_list = kvcalloc(
243 pages, sizeof(*umem_odp->page_list), GFP_KERNEL);
244 if (!umem_odp->page_list)
245 return -ENOMEM;
246
247 umem_odp->dma_list = kvcalloc(
248 pages, sizeof(*umem_odp->dma_list), GFP_KERNEL);
249 if (!umem_odp->dma_list) {
250 ret = -ENOMEM;
251 goto out_page_list;
252 }
253 }
254
255 mn = mmu_notifier_get(&ib_umem_notifiers, umem_odp->umem.owning_mm);
256 if (IS_ERR(mn)) {
257 ret = PTR_ERR(mn);
258 goto out_dma_list;
259 }
260 umem_odp->per_mm = per_mm =
261 container_of(mn, struct ib_ucontext_per_mm, mn);
262
263 mutex_init(&umem_odp->umem_mutex);
264 init_completion(&umem_odp->notifier_completion);
265
266 if (!umem_odp->is_implicit_odp) {
267 down_write(&per_mm->umem_rwsem);
268 interval_tree_insert(&umem_odp->interval_tree,
269 &per_mm->umem_tree);
270 up_write(&per_mm->umem_rwsem);
271 }
272 mmgrab(umem_odp->umem.owning_mm);
273
274 return 0;
275
276out_dma_list:
277 kvfree(umem_odp->dma_list);
278out_page_list:
279 kvfree(umem_odp->page_list);
280 return ret;
281}
282
283/**
284 * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem
285 *
286 * Implicit ODP umems do not have a VA range and do not have any page lists.
287 * They exist only to hold the per_mm reference to help the driver create
288 * children umems.
289 *
290 * @udata: udata from the syscall being used to create the umem
291 * @access: ib_reg_mr access flags
292 */
293struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_udata *udata,
294 int access)
295{
296 struct ib_ucontext *context =
297 container_of(udata, struct uverbs_attr_bundle, driver_udata)
298 ->context;
299 struct ib_umem *umem;
300 struct ib_umem_odp *umem_odp;
301 int ret;
302
303 if (access & IB_ACCESS_HUGETLB)
304 return ERR_PTR(-EINVAL);
305
306 if (!context)
307 return ERR_PTR(-EIO);
308 if (WARN_ON_ONCE(!context->device->ops.invalidate_range))
309 return ERR_PTR(-EINVAL);
310
311 umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL);
312 if (!umem_odp)
313 return ERR_PTR(-ENOMEM);
314 umem = &umem_odp->umem;
315 umem->ibdev = context->device;
316 umem->writable = ib_access_writable(access);
317 umem->owning_mm = current->mm;
318 umem_odp->is_implicit_odp = 1;
319 umem_odp->page_shift = PAGE_SHIFT;
320
321 ret = ib_init_umem_odp(umem_odp);
322 if (ret) {
323 kfree(umem_odp);
324 return ERR_PTR(ret);
325 }
326 return umem_odp;
327}
328EXPORT_SYMBOL(ib_umem_odp_alloc_implicit);
329
330/**
331 * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit
332 * parent ODP umem
333 *
334 * @root: The parent umem enclosing the child. This must be allocated using
335 * ib_alloc_implicit_odp_umem()
336 * @addr: The starting userspace VA
337 * @size: The length of the userspace VA
338 */
339struct ib_umem_odp *ib_umem_odp_alloc_child(struct ib_umem_odp *root,
340 unsigned long addr, size_t size)
341{
342 /*
343 * Caller must ensure that root cannot be freed during the call to
344 * ib_alloc_odp_umem.
345 */
346 struct ib_umem_odp *odp_data;
347 struct ib_umem *umem;
348 int ret;
349
350 if (WARN_ON(!root->is_implicit_odp))
351 return ERR_PTR(-EINVAL);
352
353 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
354 if (!odp_data)
355 return ERR_PTR(-ENOMEM);
356 umem = &odp_data->umem;
357 umem->ibdev = root->umem.ibdev;
358 umem->length = size;
359 umem->address = addr;
360 umem->writable = root->umem.writable;
361 umem->owning_mm = root->umem.owning_mm;
362 odp_data->page_shift = PAGE_SHIFT;
363
364 ret = ib_init_umem_odp(odp_data);
365 if (ret) {
366 kfree(odp_data);
367 return ERR_PTR(ret);
368 }
369 return odp_data;
370}
371EXPORT_SYMBOL(ib_umem_odp_alloc_child);
372
373/**
374 * ib_umem_odp_get - Create a umem_odp for a userspace va
375 *
376 * @udata: userspace context to pin memory for
377 * @addr: userspace virtual address to start at
378 * @size: length of region to pin
379 * @access: IB_ACCESS_xxx flags for memory being pinned
380 *
381 * The driver should use when the access flags indicate ODP memory. It avoids
382 * pinning, instead, stores the mm for future page fault handling in
383 * conjunction with MMU notifiers.
384 */
385struct ib_umem_odp *ib_umem_odp_get(struct ib_udata *udata, unsigned long addr,
386 size_t size, int access)
387{
388 struct ib_umem_odp *umem_odp;
389 struct ib_ucontext *context;
390 struct mm_struct *mm;
391 int ret;
392
393 if (!udata)
394 return ERR_PTR(-EIO);
395
396 context = container_of(udata, struct uverbs_attr_bundle, driver_udata)
397 ->context;
398 if (!context)
399 return ERR_PTR(-EIO);
400
401 if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND)) ||
402 WARN_ON_ONCE(!context->device->ops.invalidate_range))
403 return ERR_PTR(-EINVAL);
404
405 umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL);
406 if (!umem_odp)
407 return ERR_PTR(-ENOMEM);
408
409 umem_odp->umem.ibdev = context->device;
410 umem_odp->umem.length = size;
411 umem_odp->umem.address = addr;
412 umem_odp->umem.writable = ib_access_writable(access);
413 umem_odp->umem.owning_mm = mm = current->mm;
414
415 umem_odp->page_shift = PAGE_SHIFT;
416 if (access & IB_ACCESS_HUGETLB) {
417 struct vm_area_struct *vma;
418 struct hstate *h;
419
420 down_read(&mm->mmap_sem);
421 vma = find_vma(mm, ib_umem_start(umem_odp));
422 if (!vma || !is_vm_hugetlb_page(vma)) {
423 up_read(&mm->mmap_sem);
424 ret = -EINVAL;
425 goto err_free;
426 }
427 h = hstate_vma(vma);
428 umem_odp->page_shift = huge_page_shift(h);
429 up_read(&mm->mmap_sem);
430 }
431
432 ret = ib_init_umem_odp(umem_odp);
433 if (ret)
434 goto err_free;
435 return umem_odp;
436
437err_free:
438 kfree(umem_odp);
439 return ERR_PTR(ret);
440}
441EXPORT_SYMBOL(ib_umem_odp_get);
442
443void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
444{
445 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
446
447 /*
448 * Ensure that no more pages are mapped in the umem.
449 *
450 * It is the driver's responsibility to ensure, before calling us,
451 * that the hardware will not attempt to access the MR any more.
452 */
453 if (!umem_odp->is_implicit_odp) {
454 mutex_lock(&umem_odp->umem_mutex);
455 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
456 ib_umem_end(umem_odp));
457 mutex_unlock(&umem_odp->umem_mutex);
458 kvfree(umem_odp->dma_list);
459 kvfree(umem_odp->page_list);
460 }
461
462 down_write(&per_mm->umem_rwsem);
463 if (!umem_odp->is_implicit_odp) {
464 interval_tree_remove(&umem_odp->interval_tree,
465 &per_mm->umem_tree);
466 complete_all(&umem_odp->notifier_completion);
467 }
468 /*
469 * NOTE! mmu_notifier_unregister() can happen between a start/end
470 * callback, resulting in a missing end, and thus an unbalanced
471 * lock. This doesn't really matter to us since we are about to kfree
472 * the memory that holds the lock, however LOCKDEP doesn't like this.
473 * Thus we call the mmu_notifier_put under the rwsem and test the
474 * internal users count to reliably see if we are past this point.
475 */
476 mmu_notifier_put(&per_mm->mn);
477 up_write(&per_mm->umem_rwsem);
478
479 mmdrop(umem_odp->umem.owning_mm);
480 kfree(umem_odp);
481}
482EXPORT_SYMBOL(ib_umem_odp_release);
483
484/*
485 * Map for DMA and insert a single page into the on-demand paging page tables.
486 *
487 * @umem: the umem to insert the page to.
488 * @page_index: index in the umem to add the page to.
489 * @page: the page struct to map and add.
490 * @access_mask: access permissions needed for this page.
491 * @current_seq: sequence number for synchronization with invalidations.
492 * the sequence number is taken from
493 * umem_odp->notifiers_seq.
494 *
495 * The function returns -EFAULT if the DMA mapping operation fails. It returns
496 * -EAGAIN if a concurrent invalidation prevents us from updating the page.
497 *
498 * The page is released via put_user_page even if the operation failed. For
499 * on-demand pinning, the page is released whenever it isn't stored in the
500 * umem.
501 */
502static int ib_umem_odp_map_dma_single_page(
503 struct ib_umem_odp *umem_odp,
504 int page_index,
505 struct page *page,
506 u64 access_mask,
507 unsigned long current_seq)
508{
509 struct ib_device *dev = umem_odp->umem.ibdev;
510 dma_addr_t dma_addr;
511 int remove_existing_mapping = 0;
512 int ret = 0;
513
514 /*
515 * Note: we avoid writing if seq is different from the initial seq, to
516 * handle case of a racing notifier. This check also allows us to bail
517 * early if we have a notifier running in parallel with us.
518 */
519 if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) {
520 ret = -EAGAIN;
521 goto out;
522 }
523 if (!(umem_odp->dma_list[page_index])) {
524 dma_addr =
525 ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift),
526 DMA_BIDIRECTIONAL);
527 if (ib_dma_mapping_error(dev, dma_addr)) {
528 ret = -EFAULT;
529 goto out;
530 }
531 umem_odp->dma_list[page_index] = dma_addr | access_mask;
532 umem_odp->page_list[page_index] = page;
533 umem_odp->npages++;
534 } else if (umem_odp->page_list[page_index] == page) {
535 umem_odp->dma_list[page_index] |= access_mask;
536 } else {
537 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
538 umem_odp->page_list[page_index], page);
539 /* Better remove the mapping now, to prevent any further
540 * damage. */
541 remove_existing_mapping = 1;
542 }
543
544out:
545 put_user_page(page);
546
547 if (remove_existing_mapping) {
548 ib_umem_notifier_start_account(umem_odp);
549 dev->ops.invalidate_range(
550 umem_odp,
551 ib_umem_start(umem_odp) +
552 (page_index << umem_odp->page_shift),
553 ib_umem_start(umem_odp) +
554 ((page_index + 1) << umem_odp->page_shift));
555 ib_umem_notifier_end_account(umem_odp);
556 ret = -EAGAIN;
557 }
558
559 return ret;
560}
561
562/**
563 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
564 *
565 * Pins the range of pages passed in the argument, and maps them to
566 * DMA addresses. The DMA addresses of the mapped pages is updated in
567 * umem_odp->dma_list.
568 *
569 * Returns the number of pages mapped in success, negative error code
570 * for failure.
571 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
572 * the function from completing its task.
573 * An -ENOENT error code indicates that userspace process is being terminated
574 * and mm was already destroyed.
575 * @umem_odp: the umem to map and pin
576 * @user_virt: the address from which we need to map.
577 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
578 * bigger due to alignment, and may also be smaller in case of an error
579 * pinning or mapping a page. The actual pages mapped is returned in
580 * the return value.
581 * @access_mask: bit mask of the requested access permissions for the given
582 * range.
583 * @current_seq: the MMU notifiers sequance value for synchronization with
584 * invalidations. the sequance number is read from
585 * umem_odp->notifiers_seq before calling this function
586 */
587int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
588 u64 bcnt, u64 access_mask,
589 unsigned long current_seq)
590{
591 struct task_struct *owning_process = NULL;
592 struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
593 struct page **local_page_list = NULL;
594 u64 page_mask, off;
595 int j, k, ret = 0, start_idx, npages = 0;
596 unsigned int flags = 0, page_shift;
597 phys_addr_t p = 0;
598
599 if (access_mask == 0)
600 return -EINVAL;
601
602 if (user_virt < ib_umem_start(umem_odp) ||
603 user_virt + bcnt > ib_umem_end(umem_odp))
604 return -EFAULT;
605
606 local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
607 if (!local_page_list)
608 return -ENOMEM;
609
610 page_shift = umem_odp->page_shift;
611 page_mask = ~(BIT(page_shift) - 1);
612 off = user_virt & (~page_mask);
613 user_virt = user_virt & page_mask;
614 bcnt += off; /* Charge for the first page offset as well. */
615
616 /*
617 * owning_process is allowed to be NULL, this means somehow the mm is
618 * existing beyond the lifetime of the originating process.. Presumably
619 * mmget_not_zero will fail in this case.
620 */
621 owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID);
622 if (!owning_process || !mmget_not_zero(owning_mm)) {
623 ret = -EINVAL;
624 goto out_put_task;
625 }
626
627 if (access_mask & ODP_WRITE_ALLOWED_BIT)
628 flags |= FOLL_WRITE;
629
630 start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift;
631 k = start_idx;
632
633 while (bcnt > 0) {
634 const size_t gup_num_pages = min_t(size_t,
635 (bcnt + BIT(page_shift) - 1) >> page_shift,
636 PAGE_SIZE / sizeof(struct page *));
637
638 down_read(&owning_mm->mmap_sem);
639 /*
640 * Note: this might result in redundent page getting. We can
641 * avoid this by checking dma_list to be 0 before calling
642 * get_user_pages. However, this make the code much more
643 * complex (and doesn't gain us much performance in most use
644 * cases).
645 */
646 npages = get_user_pages_remote(owning_process, owning_mm,
647 user_virt, gup_num_pages,
648 flags, local_page_list, NULL, NULL);
649 up_read(&owning_mm->mmap_sem);
650
651 if (npages < 0) {
652 if (npages != -EAGAIN)
653 pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
654 else
655 pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
656 break;
657 }
658
659 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
660 mutex_lock(&umem_odp->umem_mutex);
661 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
662 if (user_virt & ~page_mask) {
663 p += PAGE_SIZE;
664 if (page_to_phys(local_page_list[j]) != p) {
665 ret = -EFAULT;
666 break;
667 }
668 put_user_page(local_page_list[j]);
669 continue;
670 }
671
672 ret = ib_umem_odp_map_dma_single_page(
673 umem_odp, k, local_page_list[j],
674 access_mask, current_seq);
675 if (ret < 0) {
676 if (ret != -EAGAIN)
677 pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
678 else
679 pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
680 break;
681 }
682
683 p = page_to_phys(local_page_list[j]);
684 k++;
685 }
686 mutex_unlock(&umem_odp->umem_mutex);
687
688 if (ret < 0) {
689 /*
690 * Release pages, remembering that the first page
691 * to hit an error was already released by
692 * ib_umem_odp_map_dma_single_page().
693 */
694 if (npages - (j + 1) > 0)
695 put_user_pages(&local_page_list[j+1],
696 npages - (j + 1));
697 break;
698 }
699 }
700
701 if (ret >= 0) {
702 if (npages < 0 && k == start_idx)
703 ret = npages;
704 else
705 ret = k - start_idx;
706 }
707
708 mmput(owning_mm);
709out_put_task:
710 if (owning_process)
711 put_task_struct(owning_process);
712 free_page((unsigned long)local_page_list);
713 return ret;
714}
715EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
716
717void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
718 u64 bound)
719{
720 int idx;
721 u64 addr;
722 struct ib_device *dev = umem_odp->umem.ibdev;
723
724 lockdep_assert_held(&umem_odp->umem_mutex);
725
726 virt = max_t(u64, virt, ib_umem_start(umem_odp));
727 bound = min_t(u64, bound, ib_umem_end(umem_odp));
728 /* Note that during the run of this function, the
729 * notifiers_count of the MR is > 0, preventing any racing
730 * faults from completion. We might be racing with other
731 * invalidations, so we must make sure we free each page only
732 * once. */
733 for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) {
734 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
735 if (umem_odp->page_list[idx]) {
736 struct page *page = umem_odp->page_list[idx];
737 dma_addr_t dma = umem_odp->dma_list[idx];
738 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
739
740 WARN_ON(!dma_addr);
741
742 ib_dma_unmap_page(dev, dma_addr,
743 BIT(umem_odp->page_shift),
744 DMA_BIDIRECTIONAL);
745 if (dma & ODP_WRITE_ALLOWED_BIT) {
746 struct page *head_page = compound_head(page);
747 /*
748 * set_page_dirty prefers being called with
749 * the page lock. However, MMU notifiers are
750 * called sometimes with and sometimes without
751 * the lock. We rely on the umem_mutex instead
752 * to prevent other mmu notifiers from
753 * continuing and allowing the page mapping to
754 * be removed.
755 */
756 set_page_dirty(head_page);
757 }
758 umem_odp->page_list[idx] = NULL;
759 umem_odp->dma_list[idx] = 0;
760 umem_odp->npages--;
761 }
762 }
763}
764EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
765
766/* @last is not a part of the interval. See comment for function
767 * node_last.
768 */
769int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
770 u64 start, u64 last,
771 umem_call_back cb,
772 bool blockable,
773 void *cookie)
774{
775 int ret_val = 0;
776 struct interval_tree_node *node, *next;
777 struct ib_umem_odp *umem;
778
779 if (unlikely(start == last))
780 return ret_val;
781
782 for (node = interval_tree_iter_first(root, start, last - 1);
783 node; node = next) {
784 /* TODO move the blockable decision up to the callback */
785 if (!blockable)
786 return -EAGAIN;
787 next = interval_tree_iter_next(node, start, last - 1);
788 umem = container_of(node, struct ib_umem_odp, interval_tree);
789 ret_val = cb(umem, start, last, cookie) || ret_val;
790 }
791
792 return ret_val;
793}