Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
 
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
 
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS(DMA_BUF);
 
 
 
 
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
 
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 105		placement->num_busy_placement = 0;
 106		return;
 107	}
 108
 109	/* Object isn't an AMDGPU object so ignore */
 110	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 111		placement->placement = &placements;
 112		placement->busy_placement = &placements;
 113		placement->num_placement = 1;
 114		placement->num_busy_placement = 1;
 115		return;
 116	}
 117
 118	abo = ttm_to_amdgpu_bo(bo);
 119	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 120		placement->num_placement = 0;
 121		placement->num_busy_placement = 0;
 122		return;
 123	}
 124
 125	switch (bo->resource->mem_type) {
 126	case AMDGPU_PL_GDS:
 127	case AMDGPU_PL_GWS:
 128	case AMDGPU_PL_OA:
 129	case AMDGPU_PL_DOORBELL:
 130		placement->num_placement = 0;
 131		placement->num_busy_placement = 0;
 132		return;
 133
 134	case TTM_PL_VRAM:
 135		if (!adev->mman.buffer_funcs_enabled) {
 136			/* Move to system memory */
 137			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 138		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 139			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 140			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 141
 142			/* Try evicting to the CPU inaccessible part of VRAM
 143			 * first, but only set GTT as busy placement, so this
 144			 * BO will be evicted to GTT rather than causing other
 145			 * BOs to be evicted from VRAM
 146			 */
 147			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 148							AMDGPU_GEM_DOMAIN_GTT |
 149							AMDGPU_GEM_DOMAIN_CPU);
 150			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 151			abo->placements[0].lpfn = 0;
 152			abo->placement.busy_placement = &abo->placements[1];
 153			abo->placement.num_busy_placement = 1;
 154		} else {
 155			/* Move to GTT memory */
 156			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 157							AMDGPU_GEM_DOMAIN_CPU);
 158		}
 159		break;
 160	case TTM_PL_TT:
 161	case AMDGPU_PL_PREEMPT:
 162	default:
 163		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 164		break;
 165	}
 166	*placement = abo->placement;
 167}
 168
 169/**
 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 171 * @bo: buffer object to map
 172 * @mem: memory object to map
 173 * @mm_cur: range to map
 174 * @window: which GART window to use
 175 * @ring: DMA ring to use for the copy
 176 * @tmz: if we should setup a TMZ enabled mapping
 177 * @size: in number of bytes to map, out number of bytes mapped
 178 * @addr: resulting address inside the MC address space
 179 *
 180 * Setup one of the GART windows to access a specific piece of memory or return
 181 * the physical address for local memory.
 182 */
 183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 184				 struct ttm_resource *mem,
 185				 struct amdgpu_res_cursor *mm_cur,
 186				 unsigned int window, struct amdgpu_ring *ring,
 187				 bool tmz, uint64_t *size, uint64_t *addr)
 188{
 189	struct amdgpu_device *adev = ring->adev;
 190	unsigned int offset, num_pages, num_dw, num_bytes;
 191	uint64_t src_addr, dst_addr;
 192	struct amdgpu_job *job;
 193	void *cpu_addr;
 194	uint64_t flags;
 195	unsigned int i;
 196	int r;
 197
 198	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 199	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 200
 201	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 202		return -EINVAL;
 203
 204	/* Map only what can't be accessed directly */
 205	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 206		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 207			mm_cur->start;
 208		return 0;
 209	}
 210
 211
 212	/*
 213	 * If start begins at an offset inside the page, then adjust the size
 214	 * and addr accordingly
 215	 */
 216	offset = mm_cur->start & ~PAGE_MASK;
 217
 218	num_pages = PFN_UP(*size + offset);
 219	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 220
 221	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 222
 223	*addr = adev->gmc.gart_start;
 224	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 225		AMDGPU_GPU_PAGE_SIZE;
 226	*addr += offset;
 227
 228	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 229	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 230
 231	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 232				     AMDGPU_FENCE_OWNER_UNDEFINED,
 233				     num_dw * 4 + num_bytes,
 234				     AMDGPU_IB_POOL_DELAYED, &job);
 235	if (r)
 236		return r;
 237
 238	src_addr = num_dw * 4;
 239	src_addr += job->ibs[0].gpu_addr;
 240
 241	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 242	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 243	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 244				dst_addr, num_bytes, false);
 245
 246	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 247	WARN_ON(job->ibs[0].length_dw > num_dw);
 
 
 
 248
 249	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 250	if (tmz)
 251		flags |= AMDGPU_PTE_TMZ;
 
 
 
 
 
 
 
 
 
 252
 253	cpu_addr = &job->ibs[0].ptr[num_dw];
 
 
 
 254
 255	if (mem->mem_type == TTM_PL_TT) {
 256		dma_addr_t *dma_addr;
 
 
 
 
 
 
 
 
 
 
 
 257
 258		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 259		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 260	} else {
 261		dma_addr_t dma_address;
 
 
 262
 263		dma_address = mm_cur->start;
 264		dma_address += adev->vm_manager.vram_base_offset;
 
 
 
 
 
 
 
 
 
 
 265
 266		for (i = 0; i < num_pages; ++i) {
 267			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 268					flags, cpu_addr);
 269			dma_address += PAGE_SIZE;
 270		}
 271	}
 272
 273	dma_fence_put(amdgpu_job_submit(job));
 274	return 0;
 275}
 276
 277/**
 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 279 * @adev: amdgpu device
 280 * @src: buffer/address where to read from
 281 * @dst: buffer/address where to write to
 282 * @size: number of bytes to copy
 283 * @tmz: if a secure copy should be used
 284 * @resv: resv object to sync to
 285 * @f: Returns the last fence if multiple jobs are submitted.
 286 *
 287 * The function copies @size bytes from {src->mem + src->offset} to
 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 289 * move and different for a BO to BO copy.
 290 *
 
 291 */
 292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 293			       const struct amdgpu_copy_mem *src,
 294			       const struct amdgpu_copy_mem *dst,
 295			       uint64_t size, bool tmz,
 296			       struct dma_resv *resv,
 297			       struct dma_fence **f)
 298{
 299	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 300	struct amdgpu_res_cursor src_mm, dst_mm;
 
 
 301	struct dma_fence *fence = NULL;
 302	int r = 0;
 
 
 303
 304	if (!adev->mman.buffer_funcs_enabled) {
 305		DRM_ERROR("Trying to move memory with ring turned off.\n");
 306		return -EINVAL;
 307	}
 308
 309	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 310	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 
 
 
 
 
 
 
 
 
 311
 312	mutex_lock(&adev->mman.gtt_window_lock);
 313	while (src_mm.remaining) {
 314		uint64_t from, to, cur_size;
 
 
 315		struct dma_fence *next;
 316
 317		/* Never copy more than 256MiB at once to avoid a timeout */
 318		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 
 
 
 
 
 
 319
 320		/* Map src to window 0 and dst to window 1. */
 321		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 322					  0, ring, tmz, &cur_size, &from);
 323		if (r)
 324			goto error;
 
 
 
 
 
 
 
 
 
 
 325
 326		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 327					  1, ring, tmz, &cur_size, &to);
 328		if (r)
 329			goto error;
 
 
 
 
 
 330
 331		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 332				       resv, &next, false, true, tmz);
 333		if (r)
 334			goto error;
 335
 336		dma_fence_put(fence);
 337		fence = next;
 338
 339		amdgpu_res_next(&src_mm, cur_size);
 340		amdgpu_res_next(&dst_mm, cur_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341	}
 342error:
 343	mutex_unlock(&adev->mman.gtt_window_lock);
 344	if (f)
 345		*f = dma_fence_get(fence);
 346	dma_fence_put(fence);
 347	return r;
 348}
 349
 350/*
 351 * amdgpu_move_blit - Copy an entire buffer to another buffer
 352 *
 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 354 * help move buffers to and from VRAM.
 355 */
 356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 357			    bool evict,
 358			    struct ttm_resource *new_mem,
 359			    struct ttm_resource *old_mem)
 360{
 361	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 362	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 363	struct amdgpu_copy_mem src, dst;
 364	struct dma_fence *fence = NULL;
 365	int r;
 366
 367	src.bo = bo;
 368	dst.bo = bo;
 369	src.mem = old_mem;
 370	dst.mem = new_mem;
 371	src.offset = 0;
 372	dst.offset = 0;
 373
 374	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 375				       new_mem->size,
 376				       amdgpu_bo_encrypted(abo),
 377				       bo->base.resv, &fence);
 378	if (r)
 379		goto error;
 380
 381	/* clear the space being freed */
 382	if (old_mem->mem_type == TTM_PL_VRAM &&
 383	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 
 384		struct dma_fence *wipe_fence = NULL;
 385
 386		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
 387					false);
 388		if (r) {
 389			goto error;
 390		} else if (wipe_fence) {
 391			dma_fence_put(fence);
 392			fence = wipe_fence;
 393		}
 394	}
 395
 396	/* Always block for VM page tables before committing the new location */
 397	if (bo->type == ttm_bo_type_kernel)
 398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 399	else
 400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 401	dma_fence_put(fence);
 402	return r;
 403
 404error:
 405	if (fence)
 406		dma_fence_wait(fence, false);
 407	dma_fence_put(fence);
 408	return r;
 409}
 410
 411/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 413 *
 414 * Called by amdgpu_bo_move()
 415 */
 416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 417			       struct ttm_resource *mem)
 418{
 419	u64 mem_size = (u64)mem->size;
 420	struct amdgpu_res_cursor cursor;
 421	u64 end;
 422
 423	if (mem->mem_type == TTM_PL_SYSTEM ||
 424	    mem->mem_type == TTM_PL_TT)
 425		return true;
 426	if (mem->mem_type != TTM_PL_VRAM)
 427		return false;
 428
 429	amdgpu_res_first(mem, 0, mem_size, &cursor);
 430	end = cursor.start + cursor.size;
 431	while (cursor.remaining) {
 432		amdgpu_res_next(&cursor, cursor.size);
 433
 434		if (!cursor.remaining)
 435			break;
 436
 437		/* ttm_resource_ioremap only supports contiguous memory */
 438		if (end != cursor.start)
 439			return false;
 440
 441		end = cursor.start + cursor.size;
 442	}
 443
 444	return end <= adev->gmc.visible_vram_size;
 
 445}
 446
 447/*
 448 * amdgpu_bo_move - Move a buffer object to a new memory location
 449 *
 450 * Called by ttm_bo_handle_move_mem()
 451 */
 452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 453			  struct ttm_operation_ctx *ctx,
 454			  struct ttm_resource *new_mem,
 455			  struct ttm_place *hop)
 456{
 457	struct amdgpu_device *adev;
 458	struct amdgpu_bo *abo;
 459	struct ttm_resource *old_mem = bo->resource;
 460	int r;
 461
 462	if (new_mem->mem_type == TTM_PL_TT ||
 463	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 464		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 465		if (r)
 466			return r;
 467	}
 468
 469	abo = ttm_to_amdgpu_bo(bo);
 
 
 
 470	adev = amdgpu_ttm_adev(bo->bdev);
 471
 472	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 473			 bo->ttm == NULL)) {
 474		ttm_bo_move_null(bo, new_mem);
 475		goto out;
 476	}
 477	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 478	    (new_mem->mem_type == TTM_PL_TT ||
 479	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 480		ttm_bo_move_null(bo, new_mem);
 481		goto out;
 482	}
 483	if ((old_mem->mem_type == TTM_PL_TT ||
 484	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 485	    new_mem->mem_type == TTM_PL_SYSTEM) {
 486		r = ttm_bo_wait_ctx(bo, ctx);
 487		if (r)
 488			return r;
 489
 490		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 491		ttm_resource_free(bo, &bo->resource);
 492		ttm_bo_assign_mem(bo, new_mem);
 493		goto out;
 494	}
 495
 496	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 497	    old_mem->mem_type == AMDGPU_PL_GWS ||
 498	    old_mem->mem_type == AMDGPU_PL_OA ||
 499	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 500	    new_mem->mem_type == AMDGPU_PL_GDS ||
 501	    new_mem->mem_type == AMDGPU_PL_GWS ||
 502	    new_mem->mem_type == AMDGPU_PL_OA ||
 503	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 504		/* Nothing to save here */
 505		ttm_bo_move_null(bo, new_mem);
 506		goto out;
 507	}
 508
 509	if (bo->type == ttm_bo_type_device &&
 510	    new_mem->mem_type == TTM_PL_VRAM &&
 511	    old_mem->mem_type != TTM_PL_VRAM) {
 512		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 513		 * accesses the BO after it's moved.
 514		 */
 515		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 516	}
 517
 518	if (adev->mman.buffer_funcs_enabled) {
 519		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 520		      new_mem->mem_type == TTM_PL_VRAM) ||
 521		     (old_mem->mem_type == TTM_PL_VRAM &&
 522		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 523			hop->fpfn = 0;
 524			hop->lpfn = 0;
 525			hop->mem_type = TTM_PL_TT;
 526			hop->flags = TTM_PL_FLAG_TEMPORARY;
 527			return -EMULTIHOP;
 528		}
 529
 530		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 531	} else {
 532		r = -ENODEV;
 
 533	}
 534
 535	if (r) {
 
 536		/* Check that all memory is CPU accessible */
 537		if (!amdgpu_mem_visible(adev, old_mem) ||
 538		    !amdgpu_mem_visible(adev, new_mem)) {
 539			pr_err("Move buffer fallback to memcpy unavailable\n");
 540			return r;
 541		}
 542
 543		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 544		if (r)
 545			return r;
 546	}
 547
 548	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
 549out:
 
 
 
 
 
 
 
 550	/* update statistics */
 551	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 552	amdgpu_bo_move_notify(bo, evict);
 553	return 0;
 554}
 555
 556/*
 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 558 *
 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 560 */
 561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 562				     struct ttm_resource *mem)
 563{
 
 564	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 565	size_t bus_size = (size_t)mem->size;
 566
 
 
 
 
 
 
 
 567	switch (mem->mem_type) {
 568	case TTM_PL_SYSTEM:
 569		/* system memory */
 570		return 0;
 571	case TTM_PL_TT:
 572	case AMDGPU_PL_PREEMPT:
 573		break;
 574	case TTM_PL_VRAM:
 575		mem->bus.offset = mem->start << PAGE_SHIFT;
 576		/* check if it's visible */
 577		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 578			return -EINVAL;
 579
 
 
 
 580		if (adev->mman.aper_base_kaddr &&
 581		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 582			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 583					mem->bus.offset;
 584
 585		mem->bus.offset += adev->gmc.aper_base;
 586		mem->bus.is_iomem = true;
 587		break;
 588	case AMDGPU_PL_DOORBELL:
 589		mem->bus.offset = mem->start << PAGE_SHIFT;
 590		mem->bus.offset += adev->doorbell.base;
 591		mem->bus.is_iomem = true;
 592		mem->bus.caching = ttm_uncached;
 593		break;
 594	default:
 595		return -EINVAL;
 596	}
 597	return 0;
 598}
 599
 600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 601					   unsigned long page_offset)
 602{
 603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 604	struct amdgpu_res_cursor cursor;
 605
 606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 607			 &cursor);
 608
 609	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 610		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 611
 612	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 613}
 614
 615/**
 616 * amdgpu_ttm_domain_start - Returns GPU start address
 617 * @adev: amdgpu device object
 618 * @type: type of the memory
 619 *
 620 * Returns:
 621 * GPU start address of a memory domain
 622 */
 623
 624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 625{
 626	switch (type) {
 627	case TTM_PL_TT:
 628		return adev->gmc.gart_start;
 629	case TTM_PL_VRAM:
 630		return adev->gmc.vram_start;
 631	}
 632
 633	return 0;
 
 
 634}
 635
 636/*
 637 * TTM backend functions.
 638 */
 639struct amdgpu_ttm_tt {
 640	struct ttm_tt	ttm;
 641	struct drm_gem_object	*gobj;
 642	u64			offset;
 643	uint64_t		userptr;
 644	struct task_struct	*usertask;
 645	uint32_t		userflags;
 646	bool			bound;
 647	int32_t			pool_id;
 
 648};
 649
 650#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 651
 652#ifdef CONFIG_DRM_AMDGPU_USERPTR
 653/*
 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 655 * memory and start HMM tracking CPU page table update
 656 *
 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 658 * once afterwards to stop HMM tracking
 659 */
 660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 661				 struct hmm_range **range)
 
 
 
 662{
 
 663	struct ttm_tt *ttm = bo->tbo.ttm;
 664	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 665	unsigned long start = gtt->userptr;
 666	struct vm_area_struct *vma;
 667	struct mm_struct *mm;
 668	bool readonly;
 
 669	int r = 0;
 670
 671	/* Make sure get_user_pages_done() can cleanup gracefully */
 672	*range = NULL;
 673
 674	mm = bo->notifier.mm;
 675	if (unlikely(!mm)) {
 676		DRM_DEBUG_DRIVER("BO is not registered?\n");
 677		return -EFAULT;
 678	}
 679
 680	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 681		return -ESRCH;
 682
 683	mmap_read_lock(mm);
 684	vma = vma_lookup(mm, start);
 685	if (unlikely(!vma)) {
 686		r = -EFAULT;
 687		goto out_unlock;
 688	}
 689	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 690		vma->vm_file)) {
 691		r = -EPERM;
 692		goto out_unlock;
 693	}
 694
 695	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 696	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 697				       readonly, NULL, pages, range);
 698out_unlock:
 699	mmap_read_unlock(mm);
 700	if (r)
 701		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 702
 703	mmput(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 704
 705	return r;
 706}
 707
 708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 709 */
 710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 711				      struct hmm_range *range)
 712{
 713	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714
 715	if (gtt && gtt->userptr && range)
 716		amdgpu_hmm_range_get_pages_done(range);
 
 
 
 
 
 717}
 718
 719/*
 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 721 * Check if the pages backing this ttm range have been invalidated
 722 *
 723 * Returns: true if pages are still valid
 724 */
 725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 726				       struct hmm_range *range)
 727{
 728	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 729
 730	if (!gtt || !gtt->userptr || !range)
 731		return false;
 732
 733	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 734		gtt->userptr, ttm->num_pages);
 735
 736	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 
 
 
 
 
 
 
 
 
 
 737
 738	return !amdgpu_hmm_range_get_pages_done(range);
 739}
 740#endif
 741
 742/*
 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 744 *
 745 * Called by amdgpu_cs_list_validate(). This creates the page list
 746 * that backs user memory and will ultimately be mapped into the device
 747 * address space.
 748 */
 749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 750{
 751	unsigned long i;
 752
 753	for (i = 0; i < ttm->num_pages; ++i)
 754		ttm->pages[i] = pages ? pages[i] : NULL;
 755}
 756
 757/*
 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 759 *
 760 * Called by amdgpu_ttm_backend_bind()
 761 **/
 762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 763				     struct ttm_tt *ttm)
 764{
 765	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 766	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 
 
 767	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 768	enum dma_data_direction direction = write ?
 769		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 770	int r;
 771
 772	/* Allocate an SG array and squash pages into it */
 773	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 774				      (u64)ttm->num_pages << PAGE_SHIFT,
 775				      GFP_KERNEL);
 776	if (r)
 777		goto release_sg;
 778
 779	/* Map SG to device */
 780	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 781	if (r)
 
 782		goto release_sg;
 783
 784	/* convert SG to linear array of pages and dma addresses */
 785	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 786				       ttm->num_pages);
 787
 788	return 0;
 789
 790release_sg:
 791	kfree(ttm->sg);
 792	ttm->sg = NULL;
 793	return r;
 794}
 795
 796/*
 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 798 */
 799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 800					struct ttm_tt *ttm)
 801{
 802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 805	enum dma_data_direction direction = write ?
 806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 807
 808	/* double check that we don't free the table twice */
 809	if (!ttm->sg || !ttm->sg->sgl)
 810		return;
 811
 812	/* unmap the pages mapped to the device */
 813	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 814	sg_free_table(ttm->sg);
 815}
 816
 817/*
 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 821 * and uses memory type default, UC. The rest of pages_per_xcc are
 822 * Ctrl stack and modify their memory type to NC.
 823 */
 824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 825				struct ttm_tt *ttm, uint64_t flags)
 826{
 827	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 828	uint64_t total_pages = ttm->num_pages;
 829	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 830	uint64_t page_idx, pages_per_xcc;
 831	int i;
 832	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
 833			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 834
 835	pages_per_xcc = total_pages;
 836	do_div(pages_per_xcc, num_xcc);
 837
 838	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 839		/* MQD page: use default flags */
 840		amdgpu_gart_bind(adev,
 841				gtt->offset + (page_idx << PAGE_SHIFT),
 842				1, &gtt->ttm.dma_address[page_idx], flags);
 843		/*
 844		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 845		 * the second page of the BO onward.
 846		 */
 847		amdgpu_gart_bind(adev,
 848				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 849				pages_per_xcc - 1,
 850				&gtt->ttm.dma_address[page_idx + 1],
 851				ctrl_flags);
 852	}
 853}
 854
 855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 856				 struct ttm_buffer_object *tbo,
 857				 uint64_t flags)
 858{
 859	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 860	struct ttm_tt *ttm = tbo->ttm;
 861	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 862
 863	if (amdgpu_bo_encrypted(abo))
 864		flags |= AMDGPU_PTE_TMZ;
 865
 866	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 867		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 868	} else {
 869		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 870				 gtt->ttm.dma_address, flags);
 871	}
 
 
 
 
 
 
 
 872}
 873
 874/*
 875 * amdgpu_ttm_backend_bind - Bind GTT memory
 876 *
 877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 878 * This handles binding GTT memory to the device address space.
 879 */
 880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 881				   struct ttm_tt *ttm,
 882				   struct ttm_resource *bo_mem)
 883{
 884	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 885	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 886	uint64_t flags;
 887	int r;
 888
 889	if (!bo_mem)
 890		return -EINVAL;
 891
 892	if (gtt->bound)
 893		return 0;
 894
 895	if (gtt->userptr) {
 896		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 897		if (r) {
 898			DRM_ERROR("failed to pin userptr\n");
 899			return r;
 900		}
 901	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 902		if (!ttm->sg) {
 903			struct dma_buf_attachment *attach;
 904			struct sg_table *sgt;
 905
 906			attach = gtt->gobj->import_attach;
 907			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 908			if (IS_ERR(sgt))
 909				return PTR_ERR(sgt);
 910
 911			ttm->sg = sgt;
 912		}
 913
 914		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 915					       ttm->num_pages);
 916	}
 917
 918	if (!ttm->num_pages) {
 919		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 920		     ttm->num_pages, bo_mem, ttm);
 921	}
 922
 923	if (bo_mem->mem_type != TTM_PL_TT ||
 924	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 
 
 
 
 925		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 926		return 0;
 927	}
 928
 929	/* compute PTE flags relevant to this BO memory */
 930	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 931
 932	/* bind pages into GART page tables */
 933	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 934	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 935			 gtt->ttm.dma_address, flags);
 936	gtt->bound = true;
 937	return 0;
 
 
 
 938}
 939
 940/*
 941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 942 * through AGP or GART aperture.
 943 *
 944 * If bo is accessible through AGP aperture, then use AGP aperture
 945 * to access bo; otherwise allocate logical space in GART aperture
 946 * and map bo to GART aperture.
 947 */
 948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 949{
 950	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 951	struct ttm_operation_ctx ctx = { false, false };
 952	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 
 953	struct ttm_placement placement;
 954	struct ttm_place placements;
 955	struct ttm_resource *tmp;
 956	uint64_t addr, flags;
 957	int r;
 958
 959	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 960		return 0;
 961
 962	addr = amdgpu_gmc_agp_addr(bo);
 963	if (addr != AMDGPU_BO_INVALID_OFFSET)
 964		return 0;
 
 965
 966	/* allocate GART space */
 967	placement.num_placement = 1;
 968	placement.placement = &placements;
 969	placement.num_busy_placement = 1;
 970	placement.busy_placement = &placements;
 971	placements.fpfn = 0;
 972	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 973	placements.mem_type = TTM_PL_TT;
 974	placements.flags = bo->resource->placement;
 
 
 975
 976	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 977	if (unlikely(r))
 978		return r;
 979
 980	/* compute PTE flags for this buffer object */
 981	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 982
 983	/* Bind pages */
 984	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 985	amdgpu_ttm_gart_bind(adev, bo, flags);
 986	amdgpu_gart_invalidate_tlb(adev);
 987	ttm_resource_free(bo, &bo->resource);
 988	ttm_bo_assign_mem(bo, tmp);
 
 
 
 
 
 
 
 
 989
 990	return 0;
 991}
 992
 993/*
 994 * amdgpu_ttm_recover_gart - Rebind GTT pages
 995 *
 996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
 997 * rebind GTT pages during a GPU reset.
 998 */
 999void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000{
1001	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002	uint64_t flags;
 
1003
1004	if (!tbo->ttm)
1005		return;
1006
1007	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008	amdgpu_ttm_gart_bind(adev, tbo, flags);
 
 
1009}
1010
1011/*
1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013 *
1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015 * ttm_tt_destroy().
1016 */
1017static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018				      struct ttm_tt *ttm)
1019{
1020	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
1022
1023	/* if the pages have userptr pinning then clear that first */
1024	if (gtt->userptr) {
1025		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026	} else if (ttm->sg && gtt->gobj->import_attach) {
1027		struct dma_buf_attachment *attach;
1028
1029		attach = gtt->gobj->import_attach;
1030		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031		ttm->sg = NULL;
1032	}
1033
1034	if (!gtt->bound)
1035		return;
1036
1037	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038		return;
1039
1040	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042	gtt->bound = false;
 
 
 
1043}
1044
1045static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046				       struct ttm_tt *ttm)
1047{
1048	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
1050	if (gtt->usertask)
1051		put_task_struct(gtt->usertask);
1052
1053	ttm_tt_fini(&gtt->ttm);
1054	kfree(gtt);
1055}
1056
 
 
 
 
 
 
1057/**
1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059 *
1060 * @bo: The buffer object to create a GTT ttm_tt object around
1061 * @page_flags: Page flags to be added to the ttm_tt object
1062 *
1063 * Called by ttm_tt_create().
1064 */
1065static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066					   uint32_t page_flags)
1067{
1068	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070	struct amdgpu_ttm_tt *gtt;
1071	enum ttm_caching caching;
 
1072
1073	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074	if (!gtt)
1075		return NULL;
1076
1077	gtt->gobj = &bo->base;
1078	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080	else
1081		gtt->pool_id = abo->xcp_id;
1082
1083	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084		caching = ttm_write_combined;
1085	else
1086		caching = ttm_cached;
1087
1088	/* allocate space for the uninitialized page entries */
1089	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1090		kfree(gtt);
1091		return NULL;
1092	}
1093	return &gtt->ttm;
1094}
1095
1096/*
1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098 *
1099 * Map the pages of a ttm_tt object to an address space visible
1100 * to the underlying device.
1101 */
1102static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103				  struct ttm_tt *ttm,
1104				  struct ttm_operation_ctx *ctx)
1105{
1106	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108	struct ttm_pool *pool;
1109	pgoff_t i;
1110	int ret;
1111
1112	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113	if (gtt->userptr) {
1114		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115		if (!ttm->sg)
1116			return -ENOMEM;
 
 
 
1117		return 0;
1118	}
1119
1120	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
 
 
 
 
1121		return 0;
 
1122
1123	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124		pool = &adev->mman.ttm_pools[gtt->pool_id];
1125	else
1126		pool = &adev->mman.bdev.pool;
1127	ret = ttm_pool_alloc(pool, ttm, ctx);
1128	if (ret)
1129		return ret;
1130
1131	for (i = 0; i < ttm->num_pages; ++i)
1132		ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134	return 0;
 
 
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144				     struct ttm_tt *ttm)
1145{
1146	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147	struct amdgpu_device *adev;
1148	struct ttm_pool *pool;
1149	pgoff_t i;
1150
1151	amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153	if (gtt->userptr) {
1154		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155		kfree(ttm->sg);
1156		ttm->sg = NULL;
1157		return;
1158	}
1159
1160	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161		return;
1162
1163	for (i = 0; i < ttm->num_pages; ++i)
1164		ttm->pages[i]->mapping = NULL;
1165
1166	adev = amdgpu_ttm_adev(bdev);
1167
1168	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169		pool = &adev->mman.ttm_pools[gtt->pool_id];
1170	else
1171		pool = &adev->mman.bdev.pool;
1172
1173	return ttm_pool_free(pool, ttm);
1174}
1175
1176/**
1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178 * task
1179 *
1180 * @tbo: The ttm_buffer_object that contains the userptr
1181 * @user_addr:  The returned value
1182 */
1183int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184			      uint64_t *user_addr)
1185{
1186	struct amdgpu_ttm_tt *gtt;
1187
1188	if (!tbo->ttm)
1189		return -EINVAL;
1190
1191	gtt = (void *)tbo->ttm;
1192	*user_addr = gtt->userptr;
1193	return 0;
1194}
1195
1196/**
1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @bo: The ttm_buffer_object to bind this userptr to
1201 * @addr:  The address in the current tasks VM space to use
1202 * @flags: Requirements of userptr object.
1203 *
1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206 * initialize GPU VM for a KFD process.
1207 */
1208int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209			      uint64_t addr, uint32_t flags)
1210{
1211	struct amdgpu_ttm_tt *gtt;
1212
1213	if (!bo->ttm) {
1214		/* TODO: We want a separate TTM object type for userptrs */
1215		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216		if (bo->ttm == NULL)
1217			return -ENOMEM;
1218	}
1219
1220	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224	gtt->userptr = addr;
1225	gtt->userflags = flags;
1226
1227	if (gtt->usertask)
1228		put_task_struct(gtt->usertask);
1229	gtt->usertask = current->group_leader;
1230	get_task_struct(gtt->usertask);
1231
1232	return 0;
1233}
1234
1235/*
1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237 */
1238struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239{
1240	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242	if (gtt == NULL)
1243		return NULL;
1244
1245	if (gtt->usertask == NULL)
1246		return NULL;
1247
1248	return gtt->usertask->mm;
1249}
1250
1251/*
1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253 * address range for the current task.
1254 *
1255 */
1256bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257				  unsigned long end, unsigned long *userptr)
1258{
1259	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260	unsigned long size;
1261
1262	if (gtt == NULL || !gtt->userptr)
1263		return false;
1264
1265	/* Return false if no part of the ttm_tt object lies within
1266	 * the range
1267	 */
1268	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269	if (gtt->userptr > end || gtt->userptr + size <= start)
1270		return false;
1271
1272	if (userptr)
1273		*userptr = gtt->userptr;
1274	return true;
1275}
1276
1277/*
1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279 */
1280bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281{
1282	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284	if (gtt == NULL || !gtt->userptr)
1285		return false;
1286
1287	return true;
1288}
1289
1290/*
1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292 */
1293bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294{
1295	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297	if (gtt == NULL)
1298		return false;
1299
1300	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301}
1302
1303/**
1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305 *
1306 * @ttm: The ttm_tt object to compute the flags for
1307 * @mem: The memory registry backing this ttm_tt object
1308 *
1309 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310 */
1311uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312{
1313	uint64_t flags = 0;
1314
1315	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316		flags |= AMDGPU_PTE_VALID;
1317
1318	if (mem && (mem->mem_type == TTM_PL_TT ||
1319		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1320		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321		flags |= AMDGPU_PTE_SYSTEM;
1322
1323		if (ttm->caching == ttm_cached)
1324			flags |= AMDGPU_PTE_SNOOPED;
1325	}
1326
1327	if (mem && mem->mem_type == TTM_PL_VRAM &&
1328			mem->bus.caching == ttm_cached)
1329		flags |= AMDGPU_PTE_SNOOPED;
1330
1331	return flags;
1332}
1333
1334/**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @adev: amdgpu_device pointer
1338 * @ttm: The ttm_tt object to compute the flags for
1339 * @mem: The memory registry backing this ttm_tt object
1340 *
1341 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 */
1343uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344				 struct ttm_resource *mem)
1345{
1346	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348	flags |= adev->gart.gart_pte_flags;
1349	flags |= AMDGPU_PTE_READABLE;
1350
1351	if (!amdgpu_ttm_tt_is_readonly(ttm))
1352		flags |= AMDGPU_PTE_WRITEABLE;
1353
1354	return flags;
1355}
1356
1357/*
1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359 * object.
1360 *
1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364 * used to clean out a memory space.
1365 */
1366static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367					    const struct ttm_place *place)
1368{
1369	struct dma_resv_iter resv_cursor;
 
 
1370	struct dma_fence *f;
 
1371
1372	if (!amdgpu_bo_is_amdgpu_bo(bo))
1373		return ttm_bo_eviction_valuable(bo, place);
1374
1375	/* Swapout? */
1376	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377		return true;
1378
1379	if (bo->type == ttm_bo_type_kernel &&
1380	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381		return false;
1382
1383	/* If bo is a KFD BO, check if the bo belongs to the current process.
1384	 * If true, then return false as any KFD process needs all its BOs to
1385	 * be resident to run successfully
1386	 */
1387	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388				DMA_RESV_USAGE_BOOKKEEP, f) {
1389		if (amdkfd_fence_check_mm(f, current->mm))
1390			return false;
 
 
 
 
1391	}
1392
1393	/* Preemptible BOs don't own system resources managed by the
1394	 * driver (pages, VRAM, GART space). They point to resources
1395	 * owned by someone else (e.g. pageable memory in user mode
1396	 * or a DMABuf). They are used in a preemptible context so we
1397	 * can guarantee no deadlocks and good QoS in case of MMU
1398	 * notifiers or DMABuf move notifiers from the resource owner.
1399	 */
1400	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401		return false;
1402
1403	if (bo->resource->mem_type == TTM_PL_TT &&
1404	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405		return false;
1406
1407	return ttm_bo_eviction_valuable(bo, place);
1408}
1409
1410static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411				      void *buf, size_t size, bool write)
1412{
1413	while (size) {
1414		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415		uint64_t bytes = 4 - (pos & 0x3);
1416		uint32_t shift = (pos & 0x3) * 8;
1417		uint32_t mask = 0xffffffff << shift;
1418		uint32_t value = 0;
1419
1420		if (size < bytes) {
1421			mask &= 0xffffffff >> (bytes - size) * 8;
1422			bytes = size;
1423		}
1424
1425		if (mask != 0xffffffff) {
1426			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427			if (write) {
1428				value &= ~mask;
1429				value |= (*(uint32_t *)buf << shift) & mask;
1430				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431			} else {
1432				value = (value & mask) >> shift;
1433				memcpy(buf, &value, bytes);
1434			}
1435		} else {
1436			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437		}
 
1438
1439		pos += bytes;
1440		buf += bytes;
1441		size -= bytes;
1442	}
1443}
1444
1445static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446					unsigned long offset, void *buf,
1447					int len, int write)
1448{
1449	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451	struct amdgpu_res_cursor src_mm;
1452	struct amdgpu_job *job;
1453	struct dma_fence *fence;
1454	uint64_t src_addr, dst_addr;
1455	unsigned int num_dw;
1456	int r, idx;
1457
1458	if (len != PAGE_SIZE)
1459		return -EINVAL;
1460
1461	if (!adev->mman.sdma_access_ptr)
1462		return -EACCES;
1463
1464	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465		return -ENODEV;
1466
1467	if (write)
1468		memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472				     AMDGPU_FENCE_OWNER_UNDEFINED,
1473				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474				     &job);
1475	if (r)
1476		goto out;
1477
1478	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480		src_mm.start;
1481	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482	if (write)
1483		swap(src_addr, dst_addr);
1484
1485	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486				PAGE_SIZE, false);
1487
1488	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489	WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491	fence = amdgpu_job_submit(job);
1492
1493	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494		r = -ETIMEDOUT;
1495	dma_fence_put(fence);
1496
1497	if (!(r || write))
1498		memcpy(buf, adev->mman.sdma_access_ptr, len);
1499out:
1500	drm_dev_exit(idx);
1501	return r;
1502}
1503
1504/**
1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506 *
1507 * @bo:  The buffer object to read/write
1508 * @offset:  Offset into buffer object
1509 * @buf:  Secondary buffer to write/read from
1510 * @len: Length in bytes of access
1511 * @write:  true if writing
1512 *
1513 * This is used to access VRAM that backs a buffer object via MMIO
1514 * access for debugging purposes.
1515 */
1516static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517				    unsigned long offset, void *buf, int len,
1518				    int write)
1519{
1520	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522	struct amdgpu_res_cursor cursor;
 
1523	int ret = 0;
 
 
1524
1525	if (bo->resource->mem_type != TTM_PL_VRAM)
1526		return -EIO;
1527
1528	if (amdgpu_device_has_timeouts_enabled(adev) &&
1529			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530		return len;
1531
1532	amdgpu_res_first(bo->resource, offset, len, &cursor);
1533	while (cursor.remaining) {
1534		size_t count, size = cursor.size;
1535		loff_t pos = cursor.start;
1536
1537		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538		size -= count;
1539		if (size) {
1540			/* using MM to access rest vram and handle un-aligned address */
1541			pos += count;
1542			buf += count;
1543			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544		}
1545
1546		ret += cursor.size;
1547		buf += cursor.size;
1548		amdgpu_res_next(&cursor, cursor.size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	}
1550
1551	return ret;
1552}
1553
1554static void
1555amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556{
1557	amdgpu_bo_move_notify(bo, false);
1558}
1559
1560static struct ttm_device_funcs amdgpu_bo_driver = {
1561	.ttm_tt_create = &amdgpu_ttm_tt_create,
1562	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
 
1565	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566	.evict_flags = &amdgpu_evict_flags,
1567	.move = &amdgpu_bo_move,
1568	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
 
1569	.release_notify = &amdgpu_bo_release_notify,
 
1570	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
 
1571	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572	.access_memory = &amdgpu_ttm_access_memory,
 
1573};
1574
1575/*
1576 * Firmware Reservation functions
1577 */
1578/**
1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580 *
1581 * @adev: amdgpu_device pointer
1582 *
1583 * free fw reserved vram if it has been reserved.
1584 */
1585static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586{
1587	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588		NULL, &adev->mman.fw_vram_usage_va);
1589}
1590
1591/*
1592 * Driver Reservation functions
1593 */
1594/**
1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596 *
1597 * @adev: amdgpu_device pointer
1598 *
1599 * free drv reserved vram if it has been reserved.
1600 */
1601static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602{
1603	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604						  NULL,
1605						  &adev->mman.drv_vram_usage_va);
1606}
1607
1608/**
1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610 *
1611 * @adev: amdgpu_device pointer
1612 *
1613 * create bo vram reservation from fw.
1614 */
1615static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616{
1617	uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619	adev->mman.fw_vram_usage_va = NULL;
1620	adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622	if (adev->mman.fw_vram_usage_size == 0 ||
1623	    adev->mman.fw_vram_usage_size > vram_size)
1624		return 0;
1625
1626	return amdgpu_bo_create_kernel_at(adev,
1627					  adev->mman.fw_vram_usage_start_offset,
1628					  adev->mman.fw_vram_usage_size,
1629					  &adev->mman.fw_vram_usage_reserved_bo,
1630					  &adev->mman.fw_vram_usage_va);
1631}
1632
1633/**
1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from drv.
1639 */
1640static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641{
1642	u64 vram_size = adev->gmc.visible_vram_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643
1644	adev->mman.drv_vram_usage_va = NULL;
1645	adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647	if (adev->mman.drv_vram_usage_size == 0 ||
1648	    adev->mman.drv_vram_usage_size > vram_size)
1649		return 0;
1650
1651	return amdgpu_bo_create_kernel_at(adev,
1652					  adev->mman.drv_vram_usage_start_offset,
1653					  adev->mman.drv_vram_usage_size,
1654					  &adev->mman.drv_vram_usage_reserved_bo,
1655					  &adev->mman.drv_vram_usage_va);
1656}
1657
1658/*
1659 * Memoy training reservation functions
1660 */
1661
1662/**
1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * free memory training reserved vram if it has been reserved.
1668 */
1669static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670{
1671	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675	ctx->c2p_bo = NULL;
1676
1677	return 0;
1678}
1679
1680static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681						uint32_t reserve_size)
1682{
1683	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685	memset(ctx, 0, sizeof(*ctx));
1686
1687	ctx->c2p_train_data_offset =
1688		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689	ctx->p2c_train_data_offset =
1690		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691	ctx->train_data_size =
1692		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695			ctx->train_data_size,
1696			ctx->p2c_train_data_offset,
1697			ctx->c2p_train_data_offset);
1698}
1699
1700/*
1701 * reserve TMR memory at the top of VRAM which holds
1702 * IP Discovery data and is protected by PSP.
1703 */
1704static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705{
1706	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707	bool mem_train_support = false;
1708	uint32_t reserve_size = 0;
1709	int ret;
1710
1711	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712		if (amdgpu_atomfirmware_mem_training_supported(adev))
1713			mem_train_support = true;
1714		else
1715			DRM_DEBUG("memory training does not support!\n");
1716	}
1717
1718	/*
1719	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721	 *
1722	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723	 * discovery data and G6 memory training data respectively
1724	 */
1725	if (adev->bios)
1726		reserve_size =
1727			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729	if (!adev->bios &&
1730	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732	else if (!reserve_size)
1733		reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735	if (mem_train_support) {
1736		/* reserve vram for mem train according to TMR location */
1737		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738		ret = amdgpu_bo_create_kernel_at(adev,
1739						 ctx->c2p_train_data_offset,
1740						 ctx->train_data_size,
1741						 &ctx->c2p_bo,
1742						 NULL);
1743		if (ret) {
1744			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745			amdgpu_ttm_training_reserve_vram_fini(adev);
1746			return ret;
1747		}
1748		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749	}
1750
1751	if (!adev->gmc.is_app_apu) {
1752		ret = amdgpu_bo_create_kernel_at(
1753			adev, adev->gmc.real_vram_size - reserve_size,
1754			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755		if (ret) {
1756			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758					      NULL, NULL);
1759			return ret;
1760		}
1761	} else {
1762		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763	}
1764
1765	return 0;
1766}
1767
1768static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769{
1770	int i;
 
 
1771
1772	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773		return 0;
 
 
 
 
 
 
 
 
 
1774
1775	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776				       sizeof(*adev->mman.ttm_pools),
1777				       GFP_KERNEL);
1778	if (!adev->mman.ttm_pools)
1779		return -ENOMEM;
1780
1781	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783			      adev->gmc.mem_partitions[i].numa.node,
1784			      false, false);
1785	}
1786	return 0;
1787}
1788
1789static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790{
1791	int i;
1792
1793	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794		return;
1795
1796	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799	kfree(adev->mman.ttm_pools);
1800	adev->mman.ttm_pools = NULL;
 
 
 
 
 
 
 
 
1801}
1802
1803/*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
1812int amdgpu_ttm_init(struct amdgpu_device *adev)
1813{
1814	uint64_t gtt_size;
1815	int r;
 
 
1816
1817	mutex_init(&adev->mman.gtt_window_lock);
1818
1819	/* No others user of address space so set it to 0 */
1820	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821			       adev_to_drm(adev)->anon_inode->i_mapping,
1822			       adev_to_drm(adev)->vma_offset_manager,
1823			       adev->need_swiotlb,
1824			       dma_addressing_limited(adev->dev));
1825	if (r) {
1826		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827		return r;
1828	}
1829
1830	r = amdgpu_ttm_pools_init(adev);
1831	if (r) {
1832		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833		return r;
1834	}
1835	adev->mman.initialized = true;
1836
 
 
 
1837	/* Initialize VRAM pool with all of VRAM divided into pages */
1838	r = amdgpu_vram_mgr_init(adev);
 
1839	if (r) {
1840		DRM_ERROR("Failed initializing VRAM heap.\n");
1841		return r;
1842	}
1843
 
 
 
 
 
 
1844	/* Change the size here instead of the init above so only lpfn is affected */
1845	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846#ifdef CONFIG_64BIT
1847#ifdef CONFIG_X86
1848	if (adev->gmc.xgmi.connected_to_cpu)
1849		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850				adev->gmc.visible_vram_size);
1851
1852	else if (adev->gmc.is_app_apu)
1853		DRM_DEBUG_DRIVER(
1854			"No need to ioremap when real vram size is 0\n");
1855	else
1856#endif
1857		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858				adev->gmc.visible_vram_size);
1859#endif
1860
1861	/*
1862	 *The reserved vram for firmware must be pinned to the specified
1863	 *place on the VRAM, so reserve it early.
1864	 */
1865	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866	if (r)
1867		return r;
1868
1869	/*
1870	 *The reserved vram for driver must be pinned to the specified
1871	 *place on the VRAM, so reserve it early.
1872	 */
1873	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874	if (r)
1875		return r;
1876
1877	/*
1878	 * only NAVI10 and onwards ASIC support for IP discovery.
1879	 * If IP discovery enabled, a block of memory should be
1880	 * reserved for IP discovey.
1881	 */
1882	if (adev->mman.discovery_bin) {
1883		r = amdgpu_ttm_reserve_tmr(adev);
1884		if (r)
1885			return r;
1886	}
1887
1888	/* allocate memory as required for VGA
1889	 * This is used for VGA emulation and pre-OS scanout buffers to
1890	 * avoid display artifacts while transitioning between pre-OS
1891	 * and driver.
1892	 */
1893	if (!adev->gmc.is_app_apu) {
1894		r = amdgpu_bo_create_kernel_at(adev, 0,
1895					       adev->mman.stolen_vga_size,
1896					       &adev->mman.stolen_vga_memory,
1897					       NULL);
1898		if (r)
1899			return r;
1900
1901		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902					       adev->mman.stolen_extended_size,
1903					       &adev->mman.stolen_extended_memory,
1904					       NULL);
1905
1906		if (r)
1907			return r;
1908
1909		r = amdgpu_bo_create_kernel_at(adev,
1910					       adev->mman.stolen_reserved_offset,
1911					       adev->mman.stolen_reserved_size,
1912					       &adev->mman.stolen_reserved_memory,
1913					       NULL);
1914		if (r)
1915			return r;
1916	} else {
1917		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918	}
1919
1920	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923	/* Compute GTT size, either based on TTM limit
1924	 * or whatever the user passed on module init.
1925	 */
1926	if (amdgpu_gtt_size == -1)
1927		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
 
 
 
 
 
1928	else
1929		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931	/* Initialize GTT memory pool */
1932	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933	if (r) {
1934		DRM_ERROR("Failed initializing GTT heap.\n");
1935		return r;
1936	}
1937	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938		 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940	/* Initiailize doorbell pool on PCI BAR */
1941	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942	if (r) {
1943		DRM_ERROR("Failed initializing doorbell heap.\n");
1944		return r;
1945	}
1946
1947	/* Create a boorbell page for kernel usages */
1948	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949	if (r) {
1950		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951		return r;
1952	}
1953
1954	/* Initialize preemptible memory pool */
1955	r = amdgpu_preempt_mgr_init(adev);
1956	if (r) {
1957		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958		return r;
1959	}
1960
1961	/* Initialize various on-chip memory pools */
1962	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
 
1963	if (r) {
1964		DRM_ERROR("Failed initializing GDS heap.\n");
1965		return r;
1966	}
1967
1968	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
 
1969	if (r) {
1970		DRM_ERROR("Failed initializing gws heap.\n");
1971		return r;
1972	}
1973
1974	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
 
1975	if (r) {
1976		DRM_ERROR("Failed initializing oa heap.\n");
1977		return r;
1978	}
1979	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980				AMDGPU_GEM_DOMAIN_GTT,
1981				&adev->mman.sdma_access_bo, NULL,
1982				&adev->mman.sdma_access_ptr))
1983		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
 
 
 
 
 
 
1985	return 0;
1986}
1987
1988/*
 
 
 
 
 
 
 
 
 
 
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
1991void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992{
1993	int idx;
1994
1995	if (!adev->mman.initialized)
1996		return;
1997
1998	amdgpu_ttm_pools_fini(adev);
1999
2000	amdgpu_ttm_training_reserve_vram_fini(adev);
2001	/* return the stolen vga memory back to VRAM */
2002	if (!adev->gmc.is_app_apu) {
2003		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005		/* return the FW reserved memory back to VRAM */
2006		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007				      NULL);
2008		if (adev->mman.stolen_reserved_size)
2009			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010					      NULL, NULL);
2011	}
2012	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013					&adev->mman.sdma_access_ptr);
2014	amdgpu_ttm_fw_reserve_vram_fini(adev);
2015	amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019		if (adev->mman.aper_base_kaddr)
2020			iounmap(adev->mman.aper_base_kaddr);
2021		adev->mman.aper_base_kaddr = NULL;
2022
2023		drm_dev_exit(idx);
2024	}
2025
2026	amdgpu_vram_mgr_fini(adev);
2027	amdgpu_gtt_mgr_fini(adev);
2028	amdgpu_preempt_mgr_fini(adev);
2029	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032	ttm_device_fini(&adev->mman.bdev);
2033	adev->mman.initialized = false;
2034	DRM_INFO("amdgpu: ttm finalized\n");
2035}
2036
2037/**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
2046void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047{
2048	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049	uint64_t size;
2050	int r;
2051
2052	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054		return;
2055
2056	if (enable) {
2057		struct amdgpu_ring *ring;
2058		struct drm_gpu_scheduler *sched;
2059
2060		ring = adev->mman.buffer_funcs_ring;
2061		sched = &ring->sched;
2062		r = drm_sched_entity_init(&adev->mman.high_pr,
2063					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064					  1, NULL);
2065		if (r) {
2066			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067				  r);
2068			return;
2069		}
2070
2071		r = drm_sched_entity_init(&adev->mman.low_pr,
2072					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2073					  1, NULL);
2074		if (r) {
2075			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076				  r);
2077			goto error_free_entity;
2078		}
2079	} else {
2080		drm_sched_entity_destroy(&adev->mman.high_pr);
2081		drm_sched_entity_destroy(&adev->mman.low_pr);
2082		dma_fence_put(man->move);
2083		man->move = NULL;
2084	}
2085
2086	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087	if (enable)
2088		size = adev->gmc.real_vram_size;
2089	else
2090		size = adev->gmc.visible_vram_size;
2091	man->size = size;
2092	adev->mman.buffer_funcs_enabled = enable;
 
 
 
 
 
 
2093
2094	return;
 
2095
2096error_free_entity:
2097	drm_sched_entity_destroy(&adev->mman.high_pr);
2098}
2099
2100static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101				  bool direct_submit,
2102				  unsigned int num_dw,
2103				  struct dma_resv *resv,
2104				  bool vm_needs_flush,
2105				  struct amdgpu_job **job,
2106				  bool delayed)
2107{
2108	enum amdgpu_ib_pool_type pool = direct_submit ?
2109		AMDGPU_IB_POOL_DIRECT :
2110		AMDGPU_IB_POOL_DELAYED;
 
 
 
 
2111	int r;
2112	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113						    &adev->mman.high_pr;
2114	r = amdgpu_job_alloc_with_ib(adev, entity,
2115				     AMDGPU_FENCE_OWNER_UNDEFINED,
2116				     num_dw * 4, pool, job);
 
 
 
 
 
 
 
 
 
 
2117	if (r)
2118		return r;
2119
2120	if (vm_needs_flush) {
2121		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122							adev->gmc.pdb0_bo :
2123							adev->gart.bo);
2124		(*job)->vm_needs_flush = true;
2125	}
2126	if (!resv)
2127		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130						   DMA_RESV_USAGE_BOOKKEEP);
 
 
 
2131}
2132
2133int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134		       uint64_t dst_offset, uint32_t byte_count,
2135		       struct dma_resv *resv,
2136		       struct dma_fence **fence, bool direct_submit,
2137		       bool vm_needs_flush, bool tmz)
2138{
2139	struct amdgpu_device *adev = ring->adev;
2140	unsigned int num_loops, num_dw;
2141	struct amdgpu_job *job;
 
2142	uint32_t max_bytes;
2143	unsigned int i;
 
2144	int r;
2145
2146	if (!direct_submit && !ring->sched.ready) {
2147		DRM_ERROR("Trying to move memory with ring turned off.\n");
2148		return -EINVAL;
2149	}
2150
2151	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155				   resv, vm_needs_flush, &job, false);
 
 
 
 
2156	if (r)
2157		return r;
2158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159	for (i = 0; i < num_loops; i++) {
2160		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163					dst_offset, cur_size_in_bytes, tmz);
2164
2165		src_offset += cur_size_in_bytes;
2166		dst_offset += cur_size_in_bytes;
2167		byte_count -= cur_size_in_bytes;
2168	}
2169
2170	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171	WARN_ON(job->ibs[0].length_dw > num_dw);
2172	if (direct_submit)
2173		r = amdgpu_job_submit_direct(job, ring, fence);
2174	else
2175		*fence = amdgpu_job_submit(job);
 
2176	if (r)
2177		goto error_free;
2178
2179	return r;
2180
2181error_free:
2182	amdgpu_job_free(job);
2183	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184	return r;
2185}
2186
2187static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188			       uint64_t dst_addr, uint32_t byte_count,
2189			       struct dma_resv *resv,
2190			       struct dma_fence **fence,
2191			       bool vm_needs_flush, bool delayed)
2192{
2193	struct amdgpu_device *adev = ring->adev;
2194	unsigned int num_loops, num_dw;
2195	struct amdgpu_job *job;
2196	uint32_t max_bytes;
2197	unsigned int i;
2198	int r;
2199
2200	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204				   &job, delayed);
2205	if (r)
2206		return r;
2207
2208	for (i = 0; i < num_loops; i++) {
2209		uint32_t cur_size = min(byte_count, max_bytes);
2210
2211		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212					cur_size);
2213
2214		dst_addr += cur_size;
2215		byte_count -= cur_size;
2216	}
2217
2218	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219	WARN_ON(job->ibs[0].length_dw > num_dw);
2220	*fence = amdgpu_job_submit(job);
2221	return 0;
2222}
2223
2224int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225			uint32_t src_data,
2226			struct dma_resv *resv,
2227			struct dma_fence **f,
2228			bool delayed)
2229{
2230	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
 
2231	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232	struct dma_fence *fence = NULL;
2233	struct amdgpu_res_cursor dst;
 
 
 
 
2234	int r;
2235
2236	if (!adev->mman.buffer_funcs_enabled) {
2237		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238		return -EINVAL;
2239	}
2240
2241	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
 
 
 
 
2242
2243	mutex_lock(&adev->mman.gtt_window_lock);
2244	while (dst.remaining) {
2245		struct dma_fence *next;
2246		uint64_t cur_size, to;
 
 
 
 
 
 
 
2247
2248		/* Never fill more than 256MiB at once to avoid timeouts */
2249		cur_size = min(dst.size, 256ULL << 20);
2250
2251		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252					  1, ring, false, &cur_size, &to);
2253		if (r)
2254			goto error;
2255
2256		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257					&next, true, delayed);
2258		if (r)
2259			goto error;
 
 
 
 
2260
2261		dma_fence_put(fence);
2262		fence = next;
2263
2264		amdgpu_res_next(&dst, cur_size);
2265	}
2266error:
2267	mutex_unlock(&adev->mman.gtt_window_lock);
2268	if (f)
2269		*f = dma_fence_get(fence);
2270	dma_fence_put(fence);
2271	return r;
2272}
2273
2274/**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
2284int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285{
2286	struct ttm_resource_manager *man;
2287
2288	switch (mem_type) {
2289	case TTM_PL_VRAM:
2290	case TTM_PL_TT:
2291	case AMDGPU_PL_GWS:
2292	case AMDGPU_PL_GDS:
2293	case AMDGPU_PL_OA:
2294		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295		break;
2296	default:
2297		DRM_ERROR("Trying to evict invalid memory type\n");
2298		return -EINVAL;
2299	}
2300
2301	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
 
 
 
 
 
 
 
 
 
 
 
2302}
2303
2304#if defined(CONFIG_DEBUG_FS)
2305
2306static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307{
2308	struct amdgpu_device *adev = m->private;
 
 
 
 
 
2309
2310	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
 
2311}
2312
2313DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
 
 
 
 
 
 
 
 
 
 
2314
2315/*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
2320static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321				    size_t size, loff_t *pos)
2322{
2323	struct amdgpu_device *adev = file_inode(f)->i_private;
2324	ssize_t result = 0;
 
2325
2326	if (size & 0x3 || *pos & 0x3)
2327		return -EINVAL;
2328
2329	if (*pos >= adev->gmc.mc_vram_size)
2330		return -ENXIO;
2331
2332	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333	while (size) {
2334		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338		if (copy_to_user(buf, value, bytes))
2339			return -EFAULT;
2340
2341		result += bytes;
2342		buf += bytes;
2343		*pos += bytes;
2344		size -= bytes;
 
 
 
 
 
 
 
 
 
 
2345	}
2346
2347	return result;
2348}
2349
2350/*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
2355static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356				    size_t size, loff_t *pos)
2357{
2358	struct amdgpu_device *adev = file_inode(f)->i_private;
2359	ssize_t result = 0;
2360	int r;
2361
2362	if (size & 0x3 || *pos & 0x3)
2363		return -EINVAL;
2364
2365	if (*pos >= adev->gmc.mc_vram_size)
2366		return -ENXIO;
2367
2368	while (size) {
 
2369		uint32_t value;
2370
2371		if (*pos >= adev->gmc.mc_vram_size)
2372			return result;
2373
2374		r = get_user(value, (uint32_t *)buf);
2375		if (r)
2376			return r;
2377
2378		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
 
 
 
 
2379
2380		result += 4;
2381		buf += 4;
2382		*pos += 4;
2383		size -= 4;
2384	}
2385
2386	return result;
2387}
2388
2389static const struct file_operations amdgpu_ttm_vram_fops = {
2390	.owner = THIS_MODULE,
2391	.read = amdgpu_ttm_vram_read,
2392	.write = amdgpu_ttm_vram_write,
2393	.llseek = default_llseek,
2394};
2395
2396/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
2403static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404				 size_t size, loff_t *pos)
2405{
2406	struct amdgpu_device *adev = file_inode(f)->i_private;
2407	struct iommu_domain *dom;
2408	ssize_t result = 0;
2409	int r;
2410
2411	/* retrieve the IOMMU domain if any for this device */
2412	dom = iommu_get_domain_for_dev(adev->dev);
2413
2414	while (size) {
2415		phys_addr_t addr = *pos & PAGE_MASK;
2416		loff_t off = *pos & ~PAGE_MASK;
2417		size_t bytes = PAGE_SIZE - off;
2418		unsigned long pfn;
2419		struct page *p;
2420		void *ptr;
2421
2422		bytes = min(bytes, size);
2423
2424		/* Translate the bus address to a physical address.  If
2425		 * the domain is NULL it means there is no IOMMU active
2426		 * and the address translation is the identity
2427		 */
2428		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430		pfn = addr >> PAGE_SHIFT;
2431		if (!pfn_valid(pfn))
2432			return -EPERM;
2433
2434		p = pfn_to_page(pfn);
2435		if (p->mapping != adev->mman.bdev.dev_mapping)
2436			return -EPERM;
2437
2438		ptr = kmap_local_page(p);
2439		r = copy_to_user(buf, ptr + off, bytes);
2440		kunmap_local(ptr);
2441		if (r)
2442			return -EFAULT;
2443
2444		size -= bytes;
2445		*pos += bytes;
2446		result += bytes;
2447	}
2448
2449	return result;
2450}
2451
2452/*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
2459static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460				 size_t size, loff_t *pos)
2461{
2462	struct amdgpu_device *adev = file_inode(f)->i_private;
2463	struct iommu_domain *dom;
2464	ssize_t result = 0;
2465	int r;
2466
2467	dom = iommu_get_domain_for_dev(adev->dev);
2468
2469	while (size) {
2470		phys_addr_t addr = *pos & PAGE_MASK;
2471		loff_t off = *pos & ~PAGE_MASK;
2472		size_t bytes = PAGE_SIZE - off;
2473		unsigned long pfn;
2474		struct page *p;
2475		void *ptr;
2476
2477		bytes = min(bytes, size);
2478
2479		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481		pfn = addr >> PAGE_SHIFT;
2482		if (!pfn_valid(pfn))
2483			return -EPERM;
2484
2485		p = pfn_to_page(pfn);
2486		if (p->mapping != adev->mman.bdev.dev_mapping)
2487			return -EPERM;
2488
2489		ptr = kmap_local_page(p);
2490		r = copy_from_user(ptr + off, buf, bytes);
2491		kunmap_local(ptr);
2492		if (r)
2493			return -EFAULT;
2494
2495		size -= bytes;
2496		*pos += bytes;
2497		result += bytes;
2498	}
2499
2500	return result;
2501}
2502
2503static const struct file_operations amdgpu_ttm_iomem_fops = {
2504	.owner = THIS_MODULE,
2505	.read = amdgpu_iomem_read,
2506	.write = amdgpu_iomem_write,
2507	.llseek = default_llseek
2508};
2509
 
 
 
 
 
 
 
 
 
 
 
 
2510#endif
2511
2512void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513{
2514#if defined(CONFIG_DEBUG_FS)
2515	struct drm_minor *minor = adev_to_drm(adev)->primary;
2516	struct dentry *root = minor->debugfs_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517
2518	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521			    &amdgpu_ttm_iomem_fops);
2522	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523			    &amdgpu_ttm_page_pool_fops);
2524	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525							     TTM_PL_VRAM),
2526					    root, "amdgpu_vram_mm");
2527	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528							     TTM_PL_TT),
2529					    root, "amdgpu_gtt_mm");
2530	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531							     AMDGPU_PL_GDS),
2532					    root, "amdgpu_gds_mm");
2533	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534							     AMDGPU_PL_GWS),
2535					    root, "amdgpu_gws_mm");
2536	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537							     AMDGPU_PL_OA),
2538					    root, "amdgpu_oa_mm");
2539
 
 
2540#endif
2541}
v5.4
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/hmm.h>
  36#include <linux/pagemap.h>
  37#include <linux/sched/task.h>
 
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/swiotlb.h>
 
 
  42
  43#include <drm/ttm/ttm_bo_api.h>
  44#include <drm/ttm/ttm_bo_driver.h>
  45#include <drm/ttm/ttm_placement.h>
  46#include <drm/ttm/ttm_module.h>
  47#include <drm/ttm/ttm_page_alloc.h>
  48
  49#include <drm/drm_debugfs.h>
  50#include <drm/amdgpu_drm.h>
  51
  52#include "amdgpu.h"
  53#include "amdgpu_object.h"
  54#include "amdgpu_trace.h"
  55#include "amdgpu_amdkfd.h"
  56#include "amdgpu_sdma.h"
 
 
 
 
  57#include "bif/bif_4_1_d.h"
  58
  59static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
  60			     struct ttm_mem_reg *mem, unsigned num_pages,
  61			     uint64_t offset, unsigned window,
  62			     struct amdgpu_ring *ring,
  63			     uint64_t *addr);
  64
  65static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
  66static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
  67
  68static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
 
 
 
 
 
 
 
 
  69{
  70	return 0;
  71}
  72
  73/**
  74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
  75 * memory request.
  76 *
  77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
  78 * @type: The type of memory requested
  79 * @man: The memory type manager for each domain
  80 *
  81 * This is called by ttm_bo_init_mm() when a buffer object is being
  82 * initialized.
  83 */
  84static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
  85				struct ttm_mem_type_manager *man)
  86{
  87	struct amdgpu_device *adev;
  88
  89	adev = amdgpu_ttm_adev(bdev);
  90
  91	switch (type) {
  92	case TTM_PL_SYSTEM:
  93		/* System memory */
  94		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
  95		man->available_caching = TTM_PL_MASK_CACHING;
  96		man->default_caching = TTM_PL_FLAG_CACHED;
  97		break;
  98	case TTM_PL_TT:
  99		/* GTT memory  */
 100		man->func = &amdgpu_gtt_mgr_func;
 101		man->gpu_offset = adev->gmc.gart_start;
 102		man->available_caching = TTM_PL_MASK_CACHING;
 103		man->default_caching = TTM_PL_FLAG_CACHED;
 104		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
 105		break;
 106	case TTM_PL_VRAM:
 107		/* "On-card" video ram */
 108		man->func = &amdgpu_vram_mgr_func;
 109		man->gpu_offset = adev->gmc.vram_start;
 110		man->flags = TTM_MEMTYPE_FLAG_FIXED |
 111			     TTM_MEMTYPE_FLAG_MAPPABLE;
 112		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
 113		man->default_caching = TTM_PL_FLAG_WC;
 114		break;
 115	case AMDGPU_PL_GDS:
 116	case AMDGPU_PL_GWS:
 117	case AMDGPU_PL_OA:
 118		/* On-chip GDS memory*/
 119		man->func = &ttm_bo_manager_func;
 120		man->gpu_offset = 0;
 121		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
 122		man->available_caching = TTM_PL_FLAG_UNCACHED;
 123		man->default_caching = TTM_PL_FLAG_UNCACHED;
 124		break;
 125	default:
 126		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
 127		return -EINVAL;
 128	}
 129	return 0;
 130}
 131
 132/**
 133 * amdgpu_evict_flags - Compute placement flags
 134 *
 135 * @bo: The buffer object to evict
 136 * @placement: Possible destination(s) for evicted BO
 137 *
 138 * Fill in placement data when ttm_bo_evict() is called
 139 */
 140static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
 141				struct ttm_placement *placement)
 142{
 143	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 144	struct amdgpu_bo *abo;
 145	static const struct ttm_place placements = {
 146		.fpfn = 0,
 147		.lpfn = 0,
 148		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
 
 149	};
 150
 151	/* Don't handle scatter gather BOs */
 152	if (bo->type == ttm_bo_type_sg) {
 153		placement->num_placement = 0;
 154		placement->num_busy_placement = 0;
 155		return;
 156	}
 157
 158	/* Object isn't an AMDGPU object so ignore */
 159	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 160		placement->placement = &placements;
 161		placement->busy_placement = &placements;
 162		placement->num_placement = 1;
 163		placement->num_busy_placement = 1;
 164		return;
 165	}
 166
 167	abo = ttm_to_amdgpu_bo(bo);
 168	switch (bo->mem.mem_type) {
 
 
 
 
 
 
 169	case AMDGPU_PL_GDS:
 170	case AMDGPU_PL_GWS:
 171	case AMDGPU_PL_OA:
 
 172		placement->num_placement = 0;
 173		placement->num_busy_placement = 0;
 174		return;
 175
 176	case TTM_PL_VRAM:
 177		if (!adev->mman.buffer_funcs_enabled) {
 178			/* Move to system memory */
 179			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 180		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 181			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 182			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 183
 184			/* Try evicting to the CPU inaccessible part of VRAM
 185			 * first, but only set GTT as busy placement, so this
 186			 * BO will be evicted to GTT rather than causing other
 187			 * BOs to be evicted from VRAM
 188			 */
 189			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 190							 AMDGPU_GEM_DOMAIN_GTT);
 
 191			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 192			abo->placements[0].lpfn = 0;
 193			abo->placement.busy_placement = &abo->placements[1];
 194			abo->placement.num_busy_placement = 1;
 195		} else {
 196			/* Move to GTT memory */
 197			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
 
 198		}
 199		break;
 200	case TTM_PL_TT:
 
 201	default:
 202		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 203		break;
 204	}
 205	*placement = abo->placement;
 206}
 207
 208/**
 209 * amdgpu_verify_access - Verify access for a mmap call
 210 *
 211 * @bo:	The buffer object to map
 212 * @filp: The file pointer from the process performing the mmap
 213 *
 214 * This is called by ttm_bo_mmap() to verify whether a process
 215 * has the right to mmap a BO to their process space.
 216 */
 217static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
 
 
 
 
 
 
 
 
 
 218{
 219	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220
 221	/*
 222	 * Don't verify access for KFD BOs. They don't have a GEM
 223	 * object associated with them.
 224	 */
 225	if (abo->kfd_bo)
 226		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
 229		return -EPERM;
 230	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
 231					  filp->private_data);
 232}
 233
 234/**
 235 * amdgpu_move_null - Register memory for a buffer object
 236 *
 237 * @bo: The bo to assign the memory to
 238 * @new_mem: The memory to be assigned.
 239 *
 240 * Assign the memory from new_mem to the memory of the buffer object bo.
 241 */
 242static void amdgpu_move_null(struct ttm_buffer_object *bo,
 243			     struct ttm_mem_reg *new_mem)
 244{
 245	struct ttm_mem_reg *old_mem = &bo->mem;
 246
 247	BUG_ON(old_mem->mm_node != NULL);
 248	*old_mem = *new_mem;
 249	new_mem->mm_node = NULL;
 250}
 251
 252/**
 253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
 254 *
 255 * @bo: The bo to assign the memory to.
 256 * @mm_node: Memory manager node for drm allocator.
 257 * @mem: The region where the bo resides.
 258 *
 259 */
 260static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
 261				    struct drm_mm_node *mm_node,
 262				    struct ttm_mem_reg *mem)
 263{
 264	uint64_t addr = 0;
 265
 266	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
 267		addr = mm_node->start << PAGE_SHIFT;
 268		addr += bo->bdev->man[mem->mem_type].gpu_offset;
 269	}
 270	return addr;
 271}
 272
 273/**
 274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
 275 * @offset. It also modifies the offset to be within the drm_mm_node returned
 276 *
 277 * @mem: The region where the bo resides.
 278 * @offset: The offset that drm_mm_node is used for finding.
 279 *
 280 */
 281static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
 282					       unsigned long *offset)
 283{
 284	struct drm_mm_node *mm_node = mem->mm_node;
 285
 286	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
 287		*offset -= (mm_node->size << PAGE_SHIFT);
 288		++mm_node;
 
 
 289	}
 290	return mm_node;
 
 
 291}
 292
 293/**
 294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
 
 
 
 
 
 
 
 295 *
 296 * The function copies @size bytes from {src->mem + src->offset} to
 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 298 * move and different for a BO to BO copy.
 299 *
 300 * @f: Returns the last fence if multiple jobs are submitted.
 301 */
 302int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 303			       struct amdgpu_copy_mem *src,
 304			       struct amdgpu_copy_mem *dst,
 305			       uint64_t size,
 306			       struct dma_resv *resv,
 307			       struct dma_fence **f)
 308{
 309	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 310	struct drm_mm_node *src_mm, *dst_mm;
 311	uint64_t src_node_start, dst_node_start, src_node_size,
 312		 dst_node_size, src_page_offset, dst_page_offset;
 313	struct dma_fence *fence = NULL;
 314	int r = 0;
 315	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
 316					AMDGPU_GPU_PAGE_SIZE);
 317
 318	if (!adev->mman.buffer_funcs_enabled) {
 319		DRM_ERROR("Trying to move memory with ring turned off.\n");
 320		return -EINVAL;
 321	}
 322
 323	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
 324	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
 325					     src->offset;
 326	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
 327	src_page_offset = src_node_start & (PAGE_SIZE - 1);
 328
 329	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
 330	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
 331					     dst->offset;
 332	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
 333	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
 334
 335	mutex_lock(&adev->mman.gtt_window_lock);
 336
 337	while (size) {
 338		unsigned long cur_size;
 339		uint64_t from = src_node_start, to = dst_node_start;
 340		struct dma_fence *next;
 341
 342		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
 343		 * begins at an offset, then adjust the size accordingly
 344		 */
 345		cur_size = min3(min(src_node_size, dst_node_size), size,
 346				GTT_MAX_BYTES);
 347		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
 348		    cur_size + dst_page_offset > GTT_MAX_BYTES)
 349			cur_size -= max(src_page_offset, dst_page_offset);
 350
 351		/* Map only what needs to be accessed. Map src to window 0 and
 352		 * dst to window 1
 353		 */
 354		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
 355			r = amdgpu_map_buffer(src->bo, src->mem,
 356					PFN_UP(cur_size + src_page_offset),
 357					src_node_start, 0, ring,
 358					&from);
 359			if (r)
 360				goto error;
 361			/* Adjust the offset because amdgpu_map_buffer returns
 362			 * start of mapped page
 363			 */
 364			from += src_page_offset;
 365		}
 366
 367		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
 368			r = amdgpu_map_buffer(dst->bo, dst->mem,
 369					PFN_UP(cur_size + dst_page_offset),
 370					dst_node_start, 1, ring,
 371					&to);
 372			if (r)
 373				goto error;
 374			to += dst_page_offset;
 375		}
 376
 377		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 378				       resv, &next, false, true);
 379		if (r)
 380			goto error;
 381
 382		dma_fence_put(fence);
 383		fence = next;
 384
 385		size -= cur_size;
 386		if (!size)
 387			break;
 388
 389		src_node_size -= cur_size;
 390		if (!src_node_size) {
 391			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
 392							     src->mem);
 393			src_node_size = (src_mm->size << PAGE_SHIFT);
 394			src_page_offset = 0;
 395		} else {
 396			src_node_start += cur_size;
 397			src_page_offset = src_node_start & (PAGE_SIZE - 1);
 398		}
 399		dst_node_size -= cur_size;
 400		if (!dst_node_size) {
 401			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
 402							     dst->mem);
 403			dst_node_size = (dst_mm->size << PAGE_SHIFT);
 404			dst_page_offset = 0;
 405		} else {
 406			dst_node_start += cur_size;
 407			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
 408		}
 409	}
 410error:
 411	mutex_unlock(&adev->mman.gtt_window_lock);
 412	if (f)
 413		*f = dma_fence_get(fence);
 414	dma_fence_put(fence);
 415	return r;
 416}
 417
 418/**
 419 * amdgpu_move_blit - Copy an entire buffer to another buffer
 420 *
 421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 422 * help move buffers to and from VRAM.
 423 */
 424static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 425			    bool evict, bool no_wait_gpu,
 426			    struct ttm_mem_reg *new_mem,
 427			    struct ttm_mem_reg *old_mem)
 428{
 429	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 
 430	struct amdgpu_copy_mem src, dst;
 431	struct dma_fence *fence = NULL;
 432	int r;
 433
 434	src.bo = bo;
 435	dst.bo = bo;
 436	src.mem = old_mem;
 437	dst.mem = new_mem;
 438	src.offset = 0;
 439	dst.offset = 0;
 440
 441	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 442				       new_mem->num_pages << PAGE_SHIFT,
 
 443				       bo->base.resv, &fence);
 444	if (r)
 445		goto error;
 446
 447	/* clear the space being freed */
 448	if (old_mem->mem_type == TTM_PL_VRAM &&
 449	    (ttm_to_amdgpu_bo(bo)->flags &
 450	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 451		struct dma_fence *wipe_fence = NULL;
 452
 453		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
 454				       NULL, &wipe_fence);
 455		if (r) {
 456			goto error;
 457		} else if (wipe_fence) {
 458			dma_fence_put(fence);
 459			fence = wipe_fence;
 460		}
 461	}
 462
 463	/* Always block for VM page tables before committing the new location */
 464	if (bo->type == ttm_bo_type_kernel)
 465		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
 466	else
 467		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
 468	dma_fence_put(fence);
 469	return r;
 470
 471error:
 472	if (fence)
 473		dma_fence_wait(fence, false);
 474	dma_fence_put(fence);
 475	return r;
 476}
 477
 478/**
 479 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
 480 *
 481 * Called by amdgpu_bo_move().
 482 */
 483static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
 484				struct ttm_operation_ctx *ctx,
 485				struct ttm_mem_reg *new_mem)
 486{
 487	struct amdgpu_device *adev;
 488	struct ttm_mem_reg *old_mem = &bo->mem;
 489	struct ttm_mem_reg tmp_mem;
 490	struct ttm_place placements;
 491	struct ttm_placement placement;
 492	int r;
 493
 494	adev = amdgpu_ttm_adev(bo->bdev);
 495
 496	/* create space/pages for new_mem in GTT space */
 497	tmp_mem = *new_mem;
 498	tmp_mem.mm_node = NULL;
 499	placement.num_placement = 1;
 500	placement.placement = &placements;
 501	placement.num_busy_placement = 1;
 502	placement.busy_placement = &placements;
 503	placements.fpfn = 0;
 504	placements.lpfn = 0;
 505	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
 506	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 507	if (unlikely(r)) {
 508		pr_err("Failed to find GTT space for blit from VRAM\n");
 509		return r;
 510	}
 511
 512	/* set caching flags */
 513	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
 514	if (unlikely(r)) {
 515		goto out_cleanup;
 516	}
 517
 518	/* Bind the memory to the GTT space */
 519	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
 520	if (unlikely(r)) {
 521		goto out_cleanup;
 522	}
 523
 524	/* blit VRAM to GTT */
 525	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
 526	if (unlikely(r)) {
 527		goto out_cleanup;
 528	}
 529
 530	/* move BO (in tmp_mem) to new_mem */
 531	r = ttm_bo_move_ttm(bo, ctx, new_mem);
 532out_cleanup:
 533	ttm_bo_mem_put(bo, &tmp_mem);
 534	return r;
 535}
 536
 537/**
 538 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
 539 *
 540 * Called by amdgpu_bo_move().
 541 */
 542static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
 543				struct ttm_operation_ctx *ctx,
 544				struct ttm_mem_reg *new_mem)
 545{
 546	struct amdgpu_device *adev;
 547	struct ttm_mem_reg *old_mem = &bo->mem;
 548	struct ttm_mem_reg tmp_mem;
 549	struct ttm_placement placement;
 550	struct ttm_place placements;
 551	int r;
 552
 553	adev = amdgpu_ttm_adev(bo->bdev);
 554
 555	/* make space in GTT for old_mem buffer */
 556	tmp_mem = *new_mem;
 557	tmp_mem.mm_node = NULL;
 558	placement.num_placement = 1;
 559	placement.placement = &placements;
 560	placement.num_busy_placement = 1;
 561	placement.busy_placement = &placements;
 562	placements.fpfn = 0;
 563	placements.lpfn = 0;
 564	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
 565	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 566	if (unlikely(r)) {
 567		pr_err("Failed to find GTT space for blit to VRAM\n");
 568		return r;
 569	}
 570
 571	/* move/bind old memory to GTT space */
 572	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
 573	if (unlikely(r)) {
 574		goto out_cleanup;
 575	}
 576
 577	/* copy to VRAM */
 578	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
 579	if (unlikely(r)) {
 580		goto out_cleanup;
 581	}
 582out_cleanup:
 583	ttm_bo_mem_put(bo, &tmp_mem);
 584	return r;
 585}
 586
 587/**
 588 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 589 *
 590 * Called by amdgpu_bo_move()
 591 */
 592static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 593			       struct ttm_mem_reg *mem)
 594{
 595	struct drm_mm_node *nodes = mem->mm_node;
 
 
 596
 597	if (mem->mem_type == TTM_PL_SYSTEM ||
 598	    mem->mem_type == TTM_PL_TT)
 599		return true;
 600	if (mem->mem_type != TTM_PL_VRAM)
 601		return false;
 602
 603	/* ttm_mem_reg_ioremap only supports contiguous memory */
 604	if (nodes->size != mem->num_pages)
 605		return false;
 
 
 
 
 
 
 
 
 
 
 
 606
 607	return ((nodes->start + nodes->size) << PAGE_SHIFT)
 608		<= adev->gmc.visible_vram_size;
 609}
 610
 611/**
 612 * amdgpu_bo_move - Move a buffer object to a new memory location
 613 *
 614 * Called by ttm_bo_handle_move_mem()
 615 */
 616static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 617			  struct ttm_operation_ctx *ctx,
 618			  struct ttm_mem_reg *new_mem)
 
 619{
 620	struct amdgpu_device *adev;
 621	struct amdgpu_bo *abo;
 622	struct ttm_mem_reg *old_mem = &bo->mem;
 623	int r;
 624
 625	/* Can't move a pinned BO */
 
 
 
 
 
 
 626	abo = ttm_to_amdgpu_bo(bo);
 627	if (WARN_ON_ONCE(abo->pin_count > 0))
 628		return -EINVAL;
 629
 630	adev = amdgpu_ttm_adev(bo->bdev);
 631
 632	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
 633		amdgpu_move_null(bo, new_mem);
 634		return 0;
 
 
 
 
 
 
 
 635	}
 636	if ((old_mem->mem_type == TTM_PL_TT &&
 637	     new_mem->mem_type == TTM_PL_SYSTEM) ||
 638	    (old_mem->mem_type == TTM_PL_SYSTEM &&
 639	     new_mem->mem_type == TTM_PL_TT)) {
 640		/* bind is enough */
 641		amdgpu_move_null(bo, new_mem);
 642		return 0;
 
 
 
 
 643	}
 
 644	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 645	    old_mem->mem_type == AMDGPU_PL_GWS ||
 646	    old_mem->mem_type == AMDGPU_PL_OA ||
 
 647	    new_mem->mem_type == AMDGPU_PL_GDS ||
 648	    new_mem->mem_type == AMDGPU_PL_GWS ||
 649	    new_mem->mem_type == AMDGPU_PL_OA) {
 
 650		/* Nothing to save here */
 651		amdgpu_move_null(bo, new_mem);
 652		return 0;
 653	}
 654
 655	if (!adev->mman.buffer_funcs_enabled) {
 656		r = -ENODEV;
 657		goto memcpy;
 
 
 
 
 658	}
 659
 660	if (old_mem->mem_type == TTM_PL_VRAM &&
 661	    new_mem->mem_type == TTM_PL_SYSTEM) {
 662		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
 663	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
 664		   new_mem->mem_type == TTM_PL_VRAM) {
 665		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
 
 
 
 
 
 
 
 666	} else {
 667		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
 668				     new_mem, old_mem);
 669	}
 670
 671	if (r) {
 672memcpy:
 673		/* Check that all memory is CPU accessible */
 674		if (!amdgpu_mem_visible(adev, old_mem) ||
 675		    !amdgpu_mem_visible(adev, new_mem)) {
 676			pr_err("Move buffer fallback to memcpy unavailable\n");
 677			return r;
 678		}
 679
 680		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 681		if (r)
 682			return r;
 683	}
 684
 685	if (bo->type == ttm_bo_type_device &&
 686	    new_mem->mem_type == TTM_PL_VRAM &&
 687	    old_mem->mem_type != TTM_PL_VRAM) {
 688		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 689		 * accesses the BO after it's moved.
 690		 */
 691		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 692	}
 693
 694	/* update statistics */
 695	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
 
 696	return 0;
 697}
 698
 699/**
 700 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 701 *
 702 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 703 */
 704static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 
 705{
 706	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 707	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 708	struct drm_mm_node *mm_node = mem->mm_node;
 709
 710	mem->bus.addr = NULL;
 711	mem->bus.offset = 0;
 712	mem->bus.size = mem->num_pages << PAGE_SHIFT;
 713	mem->bus.base = 0;
 714	mem->bus.is_iomem = false;
 715	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
 716		return -EINVAL;
 717	switch (mem->mem_type) {
 718	case TTM_PL_SYSTEM:
 719		/* system memory */
 720		return 0;
 721	case TTM_PL_TT:
 
 722		break;
 723	case TTM_PL_VRAM:
 724		mem->bus.offset = mem->start << PAGE_SHIFT;
 725		/* check if it's visible */
 726		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
 727			return -EINVAL;
 728		/* Only physically contiguous buffers apply. In a contiguous
 729		 * buffer, size of the first mm_node would match the number of
 730		 * pages in ttm_mem_reg.
 731		 */
 732		if (adev->mman.aper_base_kaddr &&
 733		    (mm_node->size == mem->num_pages))
 734			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 735					mem->bus.offset;
 736
 737		mem->bus.base = adev->gmc.aper_base;
 738		mem->bus.is_iomem = true;
 739		break;
 
 
 
 
 
 
 740	default:
 741		return -EINVAL;
 742	}
 743	return 0;
 744}
 745
 746static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 
 747{
 
 
 
 
 
 
 
 
 
 
 748}
 749
 750static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 751					   unsigned long page_offset)
 
 
 
 
 
 
 
 
 752{
 753	struct drm_mm_node *mm;
 754	unsigned long offset = (page_offset << PAGE_SHIFT);
 
 
 
 
 755
 756	mm = amdgpu_find_mm_node(&bo->mem, &offset);
 757	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
 758		(offset >> PAGE_SHIFT);
 759}
 760
 761/*
 762 * TTM backend functions.
 763 */
 764struct amdgpu_ttm_tt {
 765	struct ttm_dma_tt	ttm;
 
 766	u64			offset;
 767	uint64_t		userptr;
 768	struct task_struct	*usertask;
 769	uint32_t		userflags;
 770#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 771	struct hmm_range	*range;
 772#endif
 773};
 774
 775/**
 
 
 
 776 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 777 * memory and start HMM tracking CPU page table update
 778 *
 779 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 780 * once afterwards to stop HMM tracking
 781 */
 782#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 783
 784#define MAX_RETRY_HMM_RANGE_FAULT	16
 785
 786int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
 787{
 788	struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
 789	struct ttm_tt *ttm = bo->tbo.ttm;
 790	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 791	struct mm_struct *mm = gtt->usertask->mm;
 792	unsigned long start = gtt->userptr;
 793	struct vm_area_struct *vma;
 794	struct hmm_range *range;
 795	unsigned long i;
 796	uint64_t *pfns;
 797	int r = 0;
 798
 799	if (!mm) /* Happens during process shutdown */
 800		return -ESRCH;
 801
 802	if (unlikely(!mirror)) {
 803		DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
 804		r = -EFAULT;
 805		goto out;
 806	}
 807
 808	vma = find_vma(mm, start);
 809	if (unlikely(!vma || start < vma->vm_start)) {
 
 
 
 
 810		r = -EFAULT;
 811		goto out;
 812	}
 813	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 814		vma->vm_file)) {
 815		r = -EPERM;
 816		goto out;
 817	}
 818
 819	range = kzalloc(sizeof(*range), GFP_KERNEL);
 820	if (unlikely(!range)) {
 821		r = -ENOMEM;
 822		goto out;
 823	}
 
 
 824
 825	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
 826	if (unlikely(!pfns)) {
 827		r = -ENOMEM;
 828		goto out_free_ranges;
 829	}
 830
 831	amdgpu_hmm_init_range(range);
 832	range->default_flags = range->flags[HMM_PFN_VALID];
 833	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
 834				0 : range->flags[HMM_PFN_WRITE];
 835	range->pfn_flags_mask = 0;
 836	range->pfns = pfns;
 837	range->start = start;
 838	range->end = start + ttm->num_pages * PAGE_SIZE;
 839
 840	hmm_range_register(range, mirror);
 
 841
 842	/*
 843	 * Just wait for range to be valid, safe to ignore return value as we
 844	 * will use the return value of hmm_range_fault() below under the
 845	 * mmap_sem to ascertain the validity of the range.
 846	 */
 847	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
 848
 849	down_read(&mm->mmap_sem);
 850	r = hmm_range_fault(range, 0);
 851	up_read(&mm->mmap_sem);
 852
 853	if (unlikely(r < 0))
 854		goto out_free_pfns;
 855
 856	for (i = 0; i < ttm->num_pages; i++) {
 857		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
 858		if (unlikely(!pages[i])) {
 859			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
 860			       i, pfns[i]);
 861			r = -ENOMEM;
 862
 863			goto out_free_pfns;
 864		}
 865	}
 866
 867	gtt->range = range;
 868
 869	return 0;
 870
 871out_free_pfns:
 872	hmm_range_unregister(range);
 873	kvfree(pfns);
 874out_free_ranges:
 875	kfree(range);
 876out:
 877	return r;
 878}
 879
 880/**
 881 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
 882 * Check if the pages backing this ttm range have been invalidated
 883 *
 884 * Returns: true if pages are still valid
 885 */
 886bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
 
 887{
 888	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 889	bool r = false;
 890
 891	if (!gtt || !gtt->userptr)
 892		return false;
 893
 894	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
 895		gtt->userptr, ttm->num_pages);
 896
 897	WARN_ONCE(!gtt->range || !gtt->range->pfns,
 898		"No user pages to check\n");
 899
 900	if (gtt->range) {
 901		r = hmm_range_valid(gtt->range);
 902		hmm_range_unregister(gtt->range);
 903
 904		kvfree(gtt->range->pfns);
 905		kfree(gtt->range);
 906		gtt->range = NULL;
 907	}
 908
 909	return r;
 910}
 911#endif
 912
 913/**
 914 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 915 *
 916 * Called by amdgpu_cs_list_validate(). This creates the page list
 917 * that backs user memory and will ultimately be mapped into the device
 918 * address space.
 919 */
 920void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 921{
 922	unsigned long i;
 923
 924	for (i = 0; i < ttm->num_pages; ++i)
 925		ttm->pages[i] = pages ? pages[i] : NULL;
 926}
 927
 928/**
 929 * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
 930 *
 931 * Called by amdgpu_ttm_backend_bind()
 932 **/
 933static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
 
 934{
 935	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
 936	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 937	unsigned nents;
 938	int r;
 939
 940	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 941	enum dma_data_direction direction = write ?
 942		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 
 943
 944	/* Allocate an SG array and squash pages into it */
 945	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 946				      ttm->num_pages << PAGE_SHIFT,
 947				      GFP_KERNEL);
 948	if (r)
 949		goto release_sg;
 950
 951	/* Map SG to device */
 952	r = -ENOMEM;
 953	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
 954	if (nents != ttm->sg->nents)
 955		goto release_sg;
 956
 957	/* convert SG to linear array of pages and dma addresses */
 958	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
 959					 gtt->ttm.dma_address, ttm->num_pages);
 960
 961	return 0;
 962
 963release_sg:
 964	kfree(ttm->sg);
 
 965	return r;
 966}
 967
 968/**
 969 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 970 */
 971static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
 
 972{
 973	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
 974	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 975
 976	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 977	enum dma_data_direction direction = write ?
 978		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 979
 980	/* double check that we don't free the table twice */
 981	if (!ttm->sg->sgl)
 982		return;
 983
 984	/* unmap the pages mapped to the device */
 985	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987	sg_free_table(ttm->sg);
 
 988
 989#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 990	if (gtt->range &&
 991	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
 992						      gtt->range->pfns[0]))
 993		WARN_ONCE(1, "Missing get_user_page_done\n");
 994#endif
 
 
 
 
 
 
 
 
 
 995}
 996
 997int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 998				struct ttm_buffer_object *tbo,
 999				uint64_t flags)
1000{
1001	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1002	struct ttm_tt *ttm = tbo->ttm;
1003	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1004	int r;
1005
1006	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1007		uint64_t page_idx = 1;
1008
1009		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1010				ttm->pages, gtt->ttm.dma_address, flags);
1011		if (r)
1012			goto gart_bind_fail;
1013
1014		/* Patch mtype of the second part BO */
1015		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1016		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1017
1018		r = amdgpu_gart_bind(adev,
1019				gtt->offset + (page_idx << PAGE_SHIFT),
1020				ttm->num_pages - page_idx,
1021				&ttm->pages[page_idx],
1022				&(gtt->ttm.dma_address[page_idx]), flags);
1023	} else {
1024		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1025				     ttm->pages, gtt->ttm.dma_address, flags);
1026	}
1027
1028gart_bind_fail:
1029	if (r)
1030		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1031			  ttm->num_pages, gtt->offset);
1032
1033	return r;
1034}
1035
1036/**
1037 * amdgpu_ttm_backend_bind - Bind GTT memory
1038 *
1039 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1040 * This handles binding GTT memory to the device address space.
1041 */
1042static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1043				   struct ttm_mem_reg *bo_mem)
 
1044{
1045	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1046	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1047	uint64_t flags;
1048	int r = 0;
 
 
 
 
 
 
1049
1050	if (gtt->userptr) {
1051		r = amdgpu_ttm_tt_pin_userptr(ttm);
1052		if (r) {
1053			DRM_ERROR("failed to pin userptr\n");
1054			return r;
1055		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056	}
 
1057	if (!ttm->num_pages) {
1058		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1059		     ttm->num_pages, bo_mem, ttm);
1060	}
1061
1062	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1063	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1064	    bo_mem->mem_type == AMDGPU_PL_OA)
1065		return -EINVAL;
1066
1067	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1068		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1069		return 0;
1070	}
1071
1072	/* compute PTE flags relevant to this BO memory */
1073	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1074
1075	/* bind pages into GART page tables */
1076	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1077	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078		ttm->pages, gtt->ttm.dma_address, flags);
1079
1080	if (r)
1081		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1082			  ttm->num_pages, gtt->offset);
1083	return r;
1084}
1085
1086/**
1087 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
 
 
 
 
 
1088 */
1089int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1090{
1091	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1092	struct ttm_operation_ctx ctx = { false, false };
1093	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1094	struct ttm_mem_reg tmp;
1095	struct ttm_placement placement;
1096	struct ttm_place placements;
 
1097	uint64_t addr, flags;
1098	int r;
1099
1100	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1101		return 0;
1102
1103	addr = amdgpu_gmc_agp_addr(bo);
1104	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1105		bo->mem.start = addr >> PAGE_SHIFT;
1106	} else {
1107
1108		/* allocate GART space */
1109		tmp = bo->mem;
1110		tmp.mm_node = NULL;
1111		placement.num_placement = 1;
1112		placement.placement = &placements;
1113		placement.num_busy_placement = 1;
1114		placement.busy_placement = &placements;
1115		placements.fpfn = 0;
1116		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1117		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1118			TTM_PL_FLAG_TT;
1119
1120		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1121		if (unlikely(r))
1122			return r;
1123
1124		/* compute PTE flags for this buffer object */
1125		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1126
1127		/* Bind pages */
1128		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1129		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1130		if (unlikely(r)) {
1131			ttm_bo_mem_put(bo, &tmp);
1132			return r;
1133		}
1134
1135		ttm_bo_mem_put(bo, &bo->mem);
1136		bo->mem = tmp;
1137	}
1138
1139	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1140		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1141
1142	return 0;
1143}
1144
1145/**
1146 * amdgpu_ttm_recover_gart - Rebind GTT pages
1147 *
1148 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1149 * rebind GTT pages during a GPU reset.
1150 */
1151int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1152{
1153	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1154	uint64_t flags;
1155	int r;
1156
1157	if (!tbo->ttm)
1158		return 0;
1159
1160	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1161	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1162
1163	return r;
1164}
1165
1166/**
1167 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1168 *
1169 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1170 * ttm_tt_destroy().
1171 */
1172static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
 
1173{
1174	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1175	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1176	int r;
1177
1178	/* if the pages have userptr pinning then clear that first */
1179	if (gtt->userptr)
1180		amdgpu_ttm_tt_unpin_userptr(ttm);
 
 
 
 
 
 
 
 
 
 
1181
1182	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1183		return 0;
1184
1185	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1186	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1187	if (r)
1188		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1189			  gtt->ttm.ttm.num_pages, gtt->offset);
1190	return r;
1191}
1192
1193static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
 
1194{
1195	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1196
1197	if (gtt->usertask)
1198		put_task_struct(gtt->usertask);
1199
1200	ttm_dma_tt_fini(&gtt->ttm);
1201	kfree(gtt);
1202}
1203
1204static struct ttm_backend_func amdgpu_backend_func = {
1205	.bind = &amdgpu_ttm_backend_bind,
1206	.unbind = &amdgpu_ttm_backend_unbind,
1207	.destroy = &amdgpu_ttm_backend_destroy,
1208};
1209
1210/**
1211 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1212 *
1213 * @bo: The buffer object to create a GTT ttm_tt object around
 
1214 *
1215 * Called by ttm_tt_create().
1216 */
1217static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1218					   uint32_t page_flags)
1219{
1220	struct amdgpu_device *adev;
 
1221	struct amdgpu_ttm_tt *gtt;
1222
1223	adev = amdgpu_ttm_adev(bo->bdev);
1224
1225	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1226	if (gtt == NULL) {
1227		return NULL;
1228	}
1229	gtt->ttm.ttm.func = &amdgpu_backend_func;
 
 
 
 
 
 
 
 
 
1230
1231	/* allocate space for the uninitialized page entries */
1232	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1233		kfree(gtt);
1234		return NULL;
1235	}
1236	return &gtt->ttm.ttm;
1237}
1238
1239/**
1240 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1241 *
1242 * Map the pages of a ttm_tt object to an address space visible
1243 * to the underlying device.
1244 */
1245static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1246			struct ttm_operation_ctx *ctx)
 
1247{
1248	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1249	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1250	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
 
 
1251
1252	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1253	if (gtt && gtt->userptr) {
1254		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1255		if (!ttm->sg)
1256			return -ENOMEM;
1257
1258		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1259		ttm->state = tt_unbound;
1260		return 0;
1261	}
1262
1263	if (slave && ttm->sg) {
1264		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1265						 gtt->ttm.dma_address,
1266						 ttm->num_pages);
1267		ttm->state = tt_unbound;
1268		return 0;
1269	}
1270
1271#ifdef CONFIG_SWIOTLB
1272	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1273		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1274	}
1275#endif
 
 
 
 
 
1276
1277	/* fall back to generic helper to populate the page array
1278	 * and map them to the device */
1279	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1280}
1281
1282/**
1283 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1284 *
1285 * Unmaps pages of a ttm_tt object from the device address space and
1286 * unpopulates the page array backing it.
1287 */
1288static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
 
1289{
 
1290	struct amdgpu_device *adev;
1291	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1292	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
 
 
1293
1294	if (gtt && gtt->userptr) {
1295		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1296		kfree(ttm->sg);
1297		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1298		return;
1299	}
1300
1301	if (slave)
1302		return;
1303
1304	adev = amdgpu_ttm_adev(ttm->bdev);
 
 
 
 
 
 
 
 
 
 
 
1305
1306#ifdef CONFIG_SWIOTLB
1307	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1308		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1309		return;
1310	}
1311#endif
 
 
 
 
 
 
 
 
1312
1313	/* fall back to generic helper to unmap and unpopulate array */
1314	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
 
1315}
1316
1317/**
1318 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1319 * task
1320 *
1321 * @ttm: The ttm_tt object to bind this userptr object to
1322 * @addr:  The address in the current tasks VM space to use
1323 * @flags: Requirements of userptr object.
1324 *
1325 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1326 * to current task
 
1327 */
1328int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1329			      uint32_t flags)
1330{
1331	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 
 
 
 
 
 
 
1332
1333	if (gtt == NULL)
1334		return -EINVAL;
1335
 
1336	gtt->userptr = addr;
1337	gtt->userflags = flags;
1338
1339	if (gtt->usertask)
1340		put_task_struct(gtt->usertask);
1341	gtt->usertask = current->group_leader;
1342	get_task_struct(gtt->usertask);
1343
1344	return 0;
1345}
1346
1347/**
1348 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349 */
1350struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351{
1352	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353
1354	if (gtt == NULL)
1355		return NULL;
1356
1357	if (gtt->usertask == NULL)
1358		return NULL;
1359
1360	return gtt->usertask->mm;
1361}
1362
1363/**
1364 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1365 * address range for the current task.
1366 *
1367 */
1368bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1369				  unsigned long end)
1370{
1371	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372	unsigned long size;
1373
1374	if (gtt == NULL || !gtt->userptr)
1375		return false;
1376
1377	/* Return false if no part of the ttm_tt object lies within
1378	 * the range
1379	 */
1380	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1381	if (gtt->userptr > end || gtt->userptr + size <= start)
1382		return false;
1383
 
 
1384	return true;
1385}
1386
1387/**
1388 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1389 */
1390bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1391{
1392	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1393
1394	if (gtt == NULL || !gtt->userptr)
1395		return false;
1396
1397	return true;
1398}
1399
1400/**
1401 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1402 */
1403bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1404{
1405	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1406
1407	if (gtt == NULL)
1408		return false;
1409
1410	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1411}
1412
1413/**
1414 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1415 *
1416 * @ttm: The ttm_tt object to compute the flags for
1417 * @mem: The memory registry backing this ttm_tt object
1418 *
1419 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1420 */
1421uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1422{
1423	uint64_t flags = 0;
1424
1425	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1426		flags |= AMDGPU_PTE_VALID;
1427
1428	if (mem && mem->mem_type == TTM_PL_TT) {
 
 
1429		flags |= AMDGPU_PTE_SYSTEM;
1430
1431		if (ttm->caching_state == tt_cached)
1432			flags |= AMDGPU_PTE_SNOOPED;
1433	}
1434
 
 
 
 
1435	return flags;
1436}
1437
1438/**
1439 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1440 *
 
1441 * @ttm: The ttm_tt object to compute the flags for
1442 * @mem: The memory registry backing this ttm_tt object
1443
1444 * Figure out the flags to use for a VM PTE (Page Table Entry).
1445 */
1446uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1447				 struct ttm_mem_reg *mem)
1448{
1449	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450
1451	flags |= adev->gart.gart_pte_flags;
1452	flags |= AMDGPU_PTE_READABLE;
1453
1454	if (!amdgpu_ttm_tt_is_readonly(ttm))
1455		flags |= AMDGPU_PTE_WRITEABLE;
1456
1457	return flags;
1458}
1459
1460/**
1461 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462 * object.
1463 *
1464 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467 * used to clean out a memory space.
1468 */
1469static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470					    const struct ttm_place *place)
1471{
1472	unsigned long num_pages = bo->mem.num_pages;
1473	struct drm_mm_node *node = bo->mem.mm_node;
1474	struct dma_resv_list *flist;
1475	struct dma_fence *f;
1476	int i;
1477
1478	/* Don't evict VM page tables while they are busy, otherwise we can't
1479	 * cleanly handle page faults.
1480	 */
 
 
 
 
1481	if (bo->type == ttm_bo_type_kernel &&
1482	    !dma_resv_test_signaled_rcu(bo->base.resv, true))
1483		return false;
1484
1485	/* If bo is a KFD BO, check if the bo belongs to the current process.
1486	 * If true, then return false as any KFD process needs all its BOs to
1487	 * be resident to run successfully
1488	 */
1489	flist = dma_resv_get_list(bo->base.resv);
1490	if (flist) {
1491		for (i = 0; i < flist->shared_count; ++i) {
1492			f = rcu_dereference_protected(flist->shared[i],
1493				dma_resv_held(bo->base.resv));
1494			if (amdkfd_fence_check_mm(f, current->mm))
1495				return false;
1496		}
1497	}
1498
1499	switch (bo->mem.mem_type) {
1500	case TTM_PL_TT:
1501		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
1502
1503	case TTM_PL_VRAM:
1504		/* Check each drm MM node individually */
1505		while (num_pages) {
1506			if (place->fpfn < (node->start + node->size) &&
1507			    !(place->lpfn && place->lpfn <= node->start))
1508				return true;
 
 
 
1509
1510			num_pages -= node->size;
1511			++node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512		}
1513		return false;
1514
1515	default:
1516		break;
 
1517	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518
1519	return ttm_bo_eviction_valuable(bo, place);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520}
1521
1522/**
1523 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1524 *
1525 * @bo:  The buffer object to read/write
1526 * @offset:  Offset into buffer object
1527 * @buf:  Secondary buffer to write/read from
1528 * @len: Length in bytes of access
1529 * @write:  true if writing
1530 *
1531 * This is used to access VRAM that backs a buffer object via MMIO
1532 * access for debugging purposes.
1533 */
1534static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1535				    unsigned long offset,
1536				    void *buf, int len, int write)
1537{
1538	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1539	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1540	struct drm_mm_node *nodes;
1541	uint32_t value = 0;
1542	int ret = 0;
1543	uint64_t pos;
1544	unsigned long flags;
1545
1546	if (bo->mem.mem_type != TTM_PL_VRAM)
1547		return -EIO;
1548
1549	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1550	pos = (nodes->start << PAGE_SHIFT) + offset;
1551
1552	while (len && pos < adev->gmc.mc_vram_size) {
1553		uint64_t aligned_pos = pos & ~(uint64_t)3;
1554		uint32_t bytes = 4 - (pos & 3);
1555		uint32_t shift = (pos & 3) * 8;
1556		uint32_t mask = 0xffffffff << shift;
1557
1558		if (len < bytes) {
1559			mask &= 0xffffffff >> (bytes - len) * 8;
1560			bytes = len;
1561		}
1562
1563		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1564		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1565		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1566		if (!write || mask != 0xffffffff)
1567			value = RREG32_NO_KIQ(mmMM_DATA);
1568		if (write) {
1569			value &= ~mask;
1570			value |= (*(uint32_t *)buf << shift) & mask;
1571			WREG32_NO_KIQ(mmMM_DATA, value);
1572		}
1573		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1574		if (!write) {
1575			value = (value & mask) >> shift;
1576			memcpy(buf, &value, bytes);
1577		}
1578
1579		ret += bytes;
1580		buf = (uint8_t *)buf + bytes;
1581		pos += bytes;
1582		len -= bytes;
1583		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1584			++nodes;
1585			pos = (nodes->start << PAGE_SHIFT);
1586		}
1587	}
1588
1589	return ret;
1590}
1591
1592static struct ttm_bo_driver amdgpu_bo_driver = {
 
 
 
 
 
 
1593	.ttm_tt_create = &amdgpu_ttm_tt_create,
1594	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596	.invalidate_caches = &amdgpu_invalidate_caches,
1597	.init_mem_type = &amdgpu_init_mem_type,
1598	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1599	.evict_flags = &amdgpu_evict_flags,
1600	.move = &amdgpu_bo_move,
1601	.verify_access = &amdgpu_verify_access,
1602	.move_notify = &amdgpu_bo_move_notify,
1603	.release_notify = &amdgpu_bo_release_notify,
1604	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1605	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1606	.io_mem_free = &amdgpu_ttm_io_mem_free,
1607	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1608	.access_memory = &amdgpu_ttm_access_memory,
1609	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1610};
1611
1612/*
1613 * Firmware Reservation functions
1614 */
1615/**
1616 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1617 *
1618 * @adev: amdgpu_device pointer
1619 *
1620 * free fw reserved vram if it has been reserved.
1621 */
1622static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1623{
1624	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1625		NULL, &adev->fw_vram_usage.va);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626}
1627
1628/**
1629 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630 *
1631 * @adev: amdgpu_device pointer
1632 *
1633 * create bo vram reservation from fw.
1634 */
1635static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636{
1637	struct ttm_operation_ctx ctx = { false, false };
1638	struct amdgpu_bo_param bp;
1639	int r = 0;
1640	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641	u64 vram_size = adev->gmc.visible_vram_size;
1642	u64 offset = adev->fw_vram_usage.start_offset;
1643	u64 size = adev->fw_vram_usage.size;
1644	struct amdgpu_bo *bo;
1645
1646	memset(&bp, 0, sizeof(bp));
1647	bp.size = adev->fw_vram_usage.size;
1648	bp.byte_align = PAGE_SIZE;
1649	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1650	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1651		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1652	bp.type = ttm_bo_type_kernel;
1653	bp.resv = NULL;
1654	adev->fw_vram_usage.va = NULL;
1655	adev->fw_vram_usage.reserved_bo = NULL;
1656
1657	if (adev->fw_vram_usage.size > 0 &&
1658		adev->fw_vram_usage.size <= vram_size) {
1659
1660		r = amdgpu_bo_create(adev, &bp,
1661				     &adev->fw_vram_usage.reserved_bo);
1662		if (r)
1663			goto error_create;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
1665		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1666		if (r)
1667			goto error_reserve;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668
1669		/* remove the original mem node and create a new one at the
1670		 * request position
1671		 */
1672		bo = adev->fw_vram_usage.reserved_bo;
1673		offset = ALIGN(offset, PAGE_SIZE);
1674		for (i = 0; i < bo->placement.num_placement; ++i) {
1675			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1676			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677		}
 
 
 
 
 
 
1678
1679		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1680		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1681				     &bo->tbo.mem, &ctx);
1682		if (r)
1683			goto error_pin;
1684
1685		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1686			AMDGPU_GEM_DOMAIN_VRAM,
1687			adev->fw_vram_usage.start_offset,
1688			(adev->fw_vram_usage.start_offset +
1689			adev->fw_vram_usage.size));
1690		if (r)
1691			goto error_pin;
1692		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1693			&adev->fw_vram_usage.va);
1694		if (r)
1695			goto error_kmap;
1696
1697		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
 
 
 
 
 
 
 
 
 
1698	}
1699	return r;
 
 
 
 
 
 
 
 
 
 
 
1700
1701error_kmap:
1702	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1703error_pin:
1704	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1705error_reserve:
1706	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1707error_create:
1708	adev->fw_vram_usage.va = NULL;
1709	adev->fw_vram_usage.reserved_bo = NULL;
1710	return r;
1711}
1712/**
 
1713 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1714 * gtt/vram related fields.
1715 *
1716 * This initializes all of the memory space pools that the TTM layer
1717 * will need such as the GTT space (system memory mapped to the device),
1718 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1719 * can be mapped per VMID.
1720 */
1721int amdgpu_ttm_init(struct amdgpu_device *adev)
1722{
1723	uint64_t gtt_size;
1724	int r;
1725	u64 vis_vram_limit;
1726	void *stolen_vga_buf;
1727
1728	mutex_init(&adev->mman.gtt_window_lock);
1729
1730	/* No others user of address space so set it to 0 */
1731	r = ttm_bo_device_init(&adev->mman.bdev,
1732			       &amdgpu_bo_driver,
1733			       adev->ddev->anon_inode->i_mapping,
 
1734			       dma_addressing_limited(adev->dev));
1735	if (r) {
1736		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1737		return r;
1738	}
 
 
 
 
 
 
1739	adev->mman.initialized = true;
1740
1741	/* We opt to avoid OOM on system pages allocations */
1742	adev->mman.bdev.no_retry = true;
1743
1744	/* Initialize VRAM pool with all of VRAM divided into pages */
1745	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1746				adev->gmc.real_vram_size >> PAGE_SHIFT);
1747	if (r) {
1748		DRM_ERROR("Failed initializing VRAM heap.\n");
1749		return r;
1750	}
1751
1752	/* Reduce size of CPU-visible VRAM if requested */
1753	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1754	if (amdgpu_vis_vram_limit > 0 &&
1755	    vis_vram_limit <= adev->gmc.visible_vram_size)
1756		adev->gmc.visible_vram_size = vis_vram_limit;
1757
1758	/* Change the size here instead of the init above so only lpfn is affected */
1759	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1760#ifdef CONFIG_64BIT
1761	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1762						adev->gmc.visible_vram_size);
 
 
 
 
 
 
 
 
 
 
1763#endif
1764
1765	/*
1766	 *The reserved vram for firmware must be pinned to the specified
1767	 *place on the VRAM, so reserve it early.
1768	 */
1769	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1770	if (r) {
 
 
 
 
 
 
 
 
1771		return r;
 
 
 
 
 
 
 
 
 
 
1772	}
1773
1774	/* allocate memory as required for VGA
1775	 * This is used for VGA emulation and pre-OS scanout buffers to
1776	 * avoid display artifacts while transitioning between pre-OS
1777	 * and driver.  */
1778	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1779				    AMDGPU_GEM_DOMAIN_VRAM,
1780				    &adev->stolen_vga_memory,
1781				    NULL, &stolen_vga_buf);
1782	if (r)
1783		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1785		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1786
1787	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1788	 * or whatever the user passed on module init */
1789	if (amdgpu_gtt_size == -1) {
1790		struct sysinfo si;
1791
1792		si_meminfo(&si);
1793		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1794			       adev->gmc.mc_vram_size),
1795			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1796	}
1797	else
1798		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1799
1800	/* Initialize GTT memory pool */
1801	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1802	if (r) {
1803		DRM_ERROR("Failed initializing GTT heap.\n");
1804		return r;
1805	}
1806	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1807		 (unsigned)(gtt_size / (1024 * 1024)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
1809	/* Initialize various on-chip memory pools */
1810	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1811			   adev->gds.gds_size);
1812	if (r) {
1813		DRM_ERROR("Failed initializing GDS heap.\n");
1814		return r;
1815	}
1816
1817	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1818			   adev->gds.gws_size);
1819	if (r) {
1820		DRM_ERROR("Failed initializing gws heap.\n");
1821		return r;
1822	}
1823
1824	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1825			   adev->gds.oa_size);
1826	if (r) {
1827		DRM_ERROR("Failed initializing oa heap.\n");
1828		return r;
1829	}
 
 
 
 
 
1830
1831	/* Register debugfs entries for amdgpu_ttm */
1832	r = amdgpu_ttm_debugfs_init(adev);
1833	if (r) {
1834		DRM_ERROR("Failed to init debugfs\n");
1835		return r;
1836	}
1837	return 0;
1838}
1839
1840/**
1841 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1842 */
1843void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1844{
1845	void *stolen_vga_buf;
1846	/* return the VGA stolen memory (if any) back to VRAM */
1847	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1848}
1849
1850/**
1851 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1852 */
1853void amdgpu_ttm_fini(struct amdgpu_device *adev)
1854{
 
 
1855	if (!adev->mman.initialized)
1856		return;
1857
1858	amdgpu_ttm_debugfs_fini(adev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	amdgpu_ttm_fw_reserve_vram_fini(adev);
1860	if (adev->mman.aper_base_kaddr)
1861		iounmap(adev->mman.aper_base_kaddr);
1862	adev->mman.aper_base_kaddr = NULL;
1863
1864	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1865	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1866	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1867	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1868	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1869	ttm_bo_device_release(&adev->mman.bdev);
 
 
 
 
 
 
 
 
1870	adev->mman.initialized = false;
1871	DRM_INFO("amdgpu: ttm finalized\n");
1872}
1873
1874/**
1875 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1876 *
1877 * @adev: amdgpu_device pointer
1878 * @enable: true when we can use buffer functions.
1879 *
1880 * Enable/disable use of buffer functions during suspend/resume. This should
1881 * only be called at bootup or when userspace isn't running.
1882 */
1883void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1884{
1885	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1886	uint64_t size;
1887	int r;
1888
1889	if (!adev->mman.initialized || adev->in_gpu_reset ||
1890	    adev->mman.buffer_funcs_enabled == enable)
1891		return;
1892
1893	if (enable) {
1894		struct amdgpu_ring *ring;
1895		struct drm_sched_rq *rq;
1896
1897		ring = adev->mman.buffer_funcs_ring;
1898		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1899		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
 
 
1900		if (r) {
1901			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1902				  r);
1903			return;
1904		}
 
 
 
 
 
 
 
 
 
1905	} else {
1906		drm_sched_entity_destroy(&adev->mman.entity);
 
1907		dma_fence_put(man->move);
1908		man->move = NULL;
1909	}
1910
1911	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1912	if (enable)
1913		size = adev->gmc.real_vram_size;
1914	else
1915		size = adev->gmc.visible_vram_size;
1916	man->size = size >> PAGE_SHIFT;
1917	adev->mman.buffer_funcs_enabled = enable;
1918}
1919
1920int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1921{
1922	struct drm_file *file_priv = filp->private_data;
1923	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1924
1925	if (adev == NULL)
1926		return -EINVAL;
1927
1928	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
 
1929}
1930
1931static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1932			     struct ttm_mem_reg *mem, unsigned num_pages,
1933			     uint64_t offset, unsigned window,
1934			     struct amdgpu_ring *ring,
1935			     uint64_t *addr)
1936{
1937	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1938	struct amdgpu_device *adev = ring->adev;
1939	struct ttm_tt *ttm = bo->ttm;
1940	struct amdgpu_job *job;
1941	unsigned num_dw, num_bytes;
1942	dma_addr_t *dma_address;
1943	struct dma_fence *fence;
1944	uint64_t src_addr, dst_addr;
1945	uint64_t flags;
1946	int r;
1947
1948	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1949	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1950
1951	*addr = adev->gmc.gart_start;
1952	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1953		AMDGPU_GPU_PAGE_SIZE;
1954
1955	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1956	while (num_dw & 0x7)
1957		num_dw++;
1958
1959	num_bytes = num_pages * 8;
1960
1961	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1962	if (r)
1963		return r;
1964
1965	src_addr = num_dw * 4;
1966	src_addr += job->ibs[0].gpu_addr;
1967
1968	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1969	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1970	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1971				dst_addr, num_bytes);
1972
1973	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1974	WARN_ON(job->ibs[0].length_dw > num_dw);
1975
1976	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1977	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1978	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1979			    &job->ibs[0].ptr[num_dw]);
1980	if (r)
1981		goto error_free;
1982
1983	r = amdgpu_job_submit(job, &adev->mman.entity,
1984			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1985	if (r)
1986		goto error_free;
1987
1988	dma_fence_put(fence);
1989
1990	return r;
1991
1992error_free:
1993	amdgpu_job_free(job);
1994	return r;
1995}
1996
1997int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1998		       uint64_t dst_offset, uint32_t byte_count,
1999		       struct dma_resv *resv,
2000		       struct dma_fence **fence, bool direct_submit,
2001		       bool vm_needs_flush)
2002{
2003	struct amdgpu_device *adev = ring->adev;
 
2004	struct amdgpu_job *job;
2005
2006	uint32_t max_bytes;
2007	unsigned num_loops, num_dw;
2008	unsigned i;
2009	int r;
2010
2011	if (direct_submit && !ring->sched.ready) {
2012		DRM_ERROR("Trying to move memory with ring turned off.\n");
2013		return -EINVAL;
2014	}
2015
2016	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2017	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2018	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2019
2020	/* for IB padding */
2021	while (num_dw & 0x7)
2022		num_dw++;
2023
2024	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2025	if (r)
2026		return r;
2027
2028	if (vm_needs_flush) {
2029		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2030		job->vm_needs_flush = true;
2031	}
2032	if (resv) {
2033		r = amdgpu_sync_resv(adev, &job->sync, resv,
2034				     AMDGPU_FENCE_OWNER_UNDEFINED,
2035				     false);
2036		if (r) {
2037			DRM_ERROR("sync failed (%d).\n", r);
2038			goto error_free;
2039		}
2040	}
2041
2042	for (i = 0; i < num_loops; i++) {
2043		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2044
2045		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2046					dst_offset, cur_size_in_bytes);
2047
2048		src_offset += cur_size_in_bytes;
2049		dst_offset += cur_size_in_bytes;
2050		byte_count -= cur_size_in_bytes;
2051	}
2052
2053	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2054	WARN_ON(job->ibs[0].length_dw > num_dw);
2055	if (direct_submit)
2056		r = amdgpu_job_submit_direct(job, ring, fence);
2057	else
2058		r = amdgpu_job_submit(job, &adev->mman.entity,
2059				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2060	if (r)
2061		goto error_free;
2062
2063	return r;
2064
2065error_free:
2066	amdgpu_job_free(job);
2067	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2068	return r;
2069}
2070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2072		       uint32_t src_data,
2073		       struct dma_resv *resv,
2074		       struct dma_fence **fence)
 
2075{
2076	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2077	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2078	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2079
2080	struct drm_mm_node *mm_node;
2081	unsigned long num_pages;
2082	unsigned int num_loops, num_dw;
2083
2084	struct amdgpu_job *job;
2085	int r;
2086
2087	if (!adev->mman.buffer_funcs_enabled) {
2088		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2089		return -EINVAL;
2090	}
2091
2092	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2093		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2094		if (r)
2095			return r;
2096	}
2097
2098	num_pages = bo->tbo.num_pages;
2099	mm_node = bo->tbo.mem.mm_node;
2100	num_loops = 0;
2101	while (num_pages) {
2102		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2103
2104		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2105		num_pages -= mm_node->size;
2106		++mm_node;
2107	}
2108	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2109
2110	/* for IB padding */
2111	num_dw += 64;
2112
2113	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2114	if (r)
2115		return r;
 
2116
2117	if (resv) {
2118		r = amdgpu_sync_resv(adev, &job->sync, resv,
2119				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2120		if (r) {
2121			DRM_ERROR("sync failed (%d).\n", r);
2122			goto error_free;
2123		}
2124	}
2125
2126	num_pages = bo->tbo.num_pages;
2127	mm_node = bo->tbo.mem.mm_node;
2128
2129	while (num_pages) {
2130		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2131		uint64_t dst_addr;
2132
2133		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2134		while (byte_count) {
2135			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2136							   max_bytes);
 
2137
2138			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2139						dst_addr, cur_size_in_bytes);
 
 
 
 
 
 
 
 
 
 
 
2140
2141			dst_addr += cur_size_in_bytes;
2142			byte_count -= cur_size_in_bytes;
2143		}
2144
2145		num_pages -= mm_node->size;
2146		++mm_node;
 
 
 
 
 
2147	}
2148
2149	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2150	WARN_ON(job->ibs[0].length_dw > num_dw);
2151	r = amdgpu_job_submit(job, &adev->mman.entity,
2152			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2153	if (r)
2154		goto error_free;
2155
2156	return 0;
2157
2158error_free:
2159	amdgpu_job_free(job);
2160	return r;
2161}
2162
2163#if defined(CONFIG_DEBUG_FS)
2164
2165static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2166{
2167	struct drm_info_node *node = (struct drm_info_node *)m->private;
2168	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2169	struct drm_device *dev = node->minor->dev;
2170	struct amdgpu_device *adev = dev->dev_private;
2171	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2172	struct drm_printer p = drm_seq_file_printer(m);
2173
2174	man->func->debug(man, &p);
2175	return 0;
2176}
2177
2178static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2179	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2180	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2181	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2182	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2183	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2184	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2185#ifdef CONFIG_SWIOTLB
2186	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2187#endif
2188};
2189
2190/**
2191 * amdgpu_ttm_vram_read - Linear read access to VRAM
2192 *
2193 * Accesses VRAM via MMIO for debugging purposes.
2194 */
2195static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2196				    size_t size, loff_t *pos)
2197{
2198	struct amdgpu_device *adev = file_inode(f)->i_private;
2199	ssize_t result = 0;
2200	int r;
2201
2202	if (size & 0x3 || *pos & 0x3)
2203		return -EINVAL;
2204
2205	if (*pos >= adev->gmc.mc_vram_size)
2206		return -ENXIO;
2207
 
2208	while (size) {
2209		unsigned long flags;
2210		uint32_t value;
2211
2212		if (*pos >= adev->gmc.mc_vram_size)
2213			return result;
 
2214
2215		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2216		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2217		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2218		value = RREG32_NO_KIQ(mmMM_DATA);
2219		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2220
2221		r = put_user(value, (uint32_t *)buf);
2222		if (r)
2223			return r;
2224
2225		result += 4;
2226		buf += 4;
2227		*pos += 4;
2228		size -= 4;
2229	}
2230
2231	return result;
2232}
2233
2234/**
2235 * amdgpu_ttm_vram_write - Linear write access to VRAM
2236 *
2237 * Accesses VRAM via MMIO for debugging purposes.
2238 */
2239static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2240				    size_t size, loff_t *pos)
2241{
2242	struct amdgpu_device *adev = file_inode(f)->i_private;
2243	ssize_t result = 0;
2244	int r;
2245
2246	if (size & 0x3 || *pos & 0x3)
2247		return -EINVAL;
2248
2249	if (*pos >= adev->gmc.mc_vram_size)
2250		return -ENXIO;
2251
2252	while (size) {
2253		unsigned long flags;
2254		uint32_t value;
2255
2256		if (*pos >= adev->gmc.mc_vram_size)
2257			return result;
2258
2259		r = get_user(value, (uint32_t *)buf);
2260		if (r)
2261			return r;
2262
2263		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2264		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2265		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2266		WREG32_NO_KIQ(mmMM_DATA, value);
2267		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2268
2269		result += 4;
2270		buf += 4;
2271		*pos += 4;
2272		size -= 4;
2273	}
2274
2275	return result;
2276}
2277
2278static const struct file_operations amdgpu_ttm_vram_fops = {
2279	.owner = THIS_MODULE,
2280	.read = amdgpu_ttm_vram_read,
2281	.write = amdgpu_ttm_vram_write,
2282	.llseek = default_llseek,
2283};
2284
2285#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2286
2287/**
2288 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2289 */
2290static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2291				   size_t size, loff_t *pos)
2292{
2293	struct amdgpu_device *adev = file_inode(f)->i_private;
2294	ssize_t result = 0;
2295	int r;
2296
2297	while (size) {
2298		loff_t p = *pos / PAGE_SIZE;
2299		unsigned off = *pos & ~PAGE_MASK;
2300		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2301		struct page *page;
2302		void *ptr;
2303
2304		if (p >= adev->gart.num_cpu_pages)
2305			return result;
2306
2307		page = adev->gart.pages[p];
2308		if (page) {
2309			ptr = kmap(page);
2310			ptr += off;
2311
2312			r = copy_to_user(buf, ptr, cur_size);
2313			kunmap(adev->gart.pages[p]);
2314		} else
2315			r = clear_user(buf, cur_size);
2316
2317		if (r)
2318			return -EFAULT;
2319
2320		result += cur_size;
2321		buf += cur_size;
2322		*pos += cur_size;
2323		size -= cur_size;
2324	}
2325
2326	return result;
2327}
2328
2329static const struct file_operations amdgpu_ttm_gtt_fops = {
2330	.owner = THIS_MODULE,
2331	.read = amdgpu_ttm_gtt_read,
2332	.llseek = default_llseek
2333};
2334
2335#endif
2336
2337/**
2338 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2339 *
2340 * This function is used to read memory that has been mapped to the
2341 * GPU and the known addresses are not physical addresses but instead
2342 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2343 */
2344static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2345				 size_t size, loff_t *pos)
2346{
2347	struct amdgpu_device *adev = file_inode(f)->i_private;
2348	struct iommu_domain *dom;
2349	ssize_t result = 0;
2350	int r;
2351
2352	/* retrieve the IOMMU domain if any for this device */
2353	dom = iommu_get_domain_for_dev(adev->dev);
2354
2355	while (size) {
2356		phys_addr_t addr = *pos & PAGE_MASK;
2357		loff_t off = *pos & ~PAGE_MASK;
2358		size_t bytes = PAGE_SIZE - off;
2359		unsigned long pfn;
2360		struct page *p;
2361		void *ptr;
2362
2363		bytes = bytes < size ? bytes : size;
2364
2365		/* Translate the bus address to a physical address.  If
2366		 * the domain is NULL it means there is no IOMMU active
2367		 * and the address translation is the identity
2368		 */
2369		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2370
2371		pfn = addr >> PAGE_SHIFT;
2372		if (!pfn_valid(pfn))
2373			return -EPERM;
2374
2375		p = pfn_to_page(pfn);
2376		if (p->mapping != adev->mman.bdev.dev_mapping)
2377			return -EPERM;
2378
2379		ptr = kmap(p);
2380		r = copy_to_user(buf, ptr + off, bytes);
2381		kunmap(p);
2382		if (r)
2383			return -EFAULT;
2384
2385		size -= bytes;
2386		*pos += bytes;
2387		result += bytes;
2388	}
2389
2390	return result;
2391}
2392
2393/**
2394 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2395 *
2396 * This function is used to write memory that has been mapped to the
2397 * GPU and the known addresses are not physical addresses but instead
2398 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2399 */
2400static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2401				 size_t size, loff_t *pos)
2402{
2403	struct amdgpu_device *adev = file_inode(f)->i_private;
2404	struct iommu_domain *dom;
2405	ssize_t result = 0;
2406	int r;
2407
2408	dom = iommu_get_domain_for_dev(adev->dev);
2409
2410	while (size) {
2411		phys_addr_t addr = *pos & PAGE_MASK;
2412		loff_t off = *pos & ~PAGE_MASK;
2413		size_t bytes = PAGE_SIZE - off;
2414		unsigned long pfn;
2415		struct page *p;
2416		void *ptr;
2417
2418		bytes = bytes < size ? bytes : size;
2419
2420		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2421
2422		pfn = addr >> PAGE_SHIFT;
2423		if (!pfn_valid(pfn))
2424			return -EPERM;
2425
2426		p = pfn_to_page(pfn);
2427		if (p->mapping != adev->mman.bdev.dev_mapping)
2428			return -EPERM;
2429
2430		ptr = kmap(p);
2431		r = copy_from_user(ptr + off, buf, bytes);
2432		kunmap(p);
2433		if (r)
2434			return -EFAULT;
2435
2436		size -= bytes;
2437		*pos += bytes;
2438		result += bytes;
2439	}
2440
2441	return result;
2442}
2443
2444static const struct file_operations amdgpu_ttm_iomem_fops = {
2445	.owner = THIS_MODULE,
2446	.read = amdgpu_iomem_read,
2447	.write = amdgpu_iomem_write,
2448	.llseek = default_llseek
2449};
2450
2451static const struct {
2452	char *name;
2453	const struct file_operations *fops;
2454	int domain;
2455} ttm_debugfs_entries[] = {
2456	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2457#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2458	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2459#endif
2460	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2461};
2462
2463#endif
2464
2465static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2466{
2467#if defined(CONFIG_DEBUG_FS)
2468	unsigned count;
2469
2470	struct drm_minor *minor = adev->ddev->primary;
2471	struct dentry *ent, *root = minor->debugfs_root;
2472
2473	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2474		ent = debugfs_create_file(
2475				ttm_debugfs_entries[count].name,
2476				S_IFREG | S_IRUGO, root,
2477				adev,
2478				ttm_debugfs_entries[count].fops);
2479		if (IS_ERR(ent))
2480			return PTR_ERR(ent);
2481		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2482			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2483		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2484			i_size_write(ent->d_inode, adev->gmc.gart_size);
2485		adev->mman.debugfs_entries[count] = ent;
2486	}
2487
2488	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2489
2490#ifdef CONFIG_SWIOTLB
2491	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2492		--count;
2493#endif
2494
2495	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2496#else
2497	return 0;
2498#endif
2499}
2500
2501static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2502{
2503#if defined(CONFIG_DEBUG_FS)
2504	unsigned i;
 
 
 
 
 
 
 
 
 
 
 
2505
2506	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2507		debugfs_remove(adev->mman.debugfs_entries[i]);
2508#endif
2509}