Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2016 Broadcom
   4 */
   5
   6#include <linux/err.h>
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/errno.h>
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/platform_device.h>
  13#include <linux/scatterlist.h>
  14#include <linux/crypto.h>
  15#include <linux/kthread.h>
  16#include <linux/rtnetlink.h>
  17#include <linux/sched.h>
  18#include <linux/of.h>
 
  19#include <linux/io.h>
  20#include <linux/bitops.h>
  21
  22#include <crypto/algapi.h>
  23#include <crypto/aead.h>
  24#include <crypto/internal/aead.h>
  25#include <crypto/aes.h>
  26#include <crypto/internal/des.h>
  27#include <crypto/hmac.h>
 
  28#include <crypto/md5.h>
  29#include <crypto/authenc.h>
  30#include <crypto/skcipher.h>
  31#include <crypto/hash.h>
  32#include <crypto/sha1.h>
  33#include <crypto/sha2.h>
  34#include <crypto/sha3.h>
  35
  36#include "util.h"
  37#include "cipher.h"
  38#include "spu.h"
  39#include "spum.h"
  40#include "spu2.h"
  41
  42/* ================= Device Structure ================== */
  43
  44struct bcm_device_private iproc_priv;
  45
  46/* ==================== Parameters ===================== */
  47
  48int flow_debug_logging;
  49module_param(flow_debug_logging, int, 0644);
  50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
  51
  52int packet_debug_logging;
  53module_param(packet_debug_logging, int, 0644);
  54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
  55
  56int debug_logging_sleep;
  57module_param(debug_logging_sleep, int, 0644);
  58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
  59
  60/*
  61 * The value of these module parameters is used to set the priority for each
  62 * algo type when this driver registers algos with the kernel crypto API.
  63 * To use a priority other than the default, set the priority in the insmod or
  64 * modprobe. Changing the module priority after init time has no effect.
  65 *
  66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
  67 * algos, but more preferred than generic software algos.
  68 */
  69static int cipher_pri = 150;
  70module_param(cipher_pri, int, 0644);
  71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
  72
  73static int hash_pri = 100;
  74module_param(hash_pri, int, 0644);
  75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
  76
  77static int aead_pri = 150;
  78module_param(aead_pri, int, 0644);
  79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
  80
  81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
  82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
  83 * 0x60 - ring 0
  84 * 0x68 - ring 1
  85 * 0x70 - ring 2
  86 * 0x78 - ring 3
  87 */
  88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
  89/*
  90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
  91 * is set dynamically after reading SPU type from device tree.
  92 */
  93#define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
  94
  95/* min and max time to sleep before retrying when mbox queue is full. usec */
  96#define MBOX_SLEEP_MIN  800
  97#define MBOX_SLEEP_MAX 1000
  98
  99/**
 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
 101 * channel in round robin order.
 102 *
 103 * Return:  channel index
 104 */
 105static u8 select_channel(void)
 106{
 107	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
 108
 109	return chan_idx % iproc_priv.spu.num_chan;
 110}
 111
 112/**
 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
 114 * receive a SPU response message for an skcipher request. Includes buffers to
 115 * catch SPU message headers and the response data.
 116 * @mssg:	mailbox message containing the receive sg
 117 * @rctx:	crypto request context
 118 * @rx_frag_num: number of scatterlist elements required to hold the
 119 *		SPU response message
 120 * @chunksize:	Number of bytes of response data expected
 121 * @stat_pad_len: Number of bytes required to pad the STAT field to
 122 *		a 4-byte boundary
 123 *
 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 125 * when the request completes, whether the request is handled successfully or
 126 * there is an error.
 127 *
 128 * Returns:
 129 *   0 if successful
 130 *   < 0 if an error
 131 */
 132static int
 133spu_skcipher_rx_sg_create(struct brcm_message *mssg,
 134			    struct iproc_reqctx_s *rctx,
 135			    u8 rx_frag_num,
 136			    unsigned int chunksize, u32 stat_pad_len)
 137{
 138	struct spu_hw *spu = &iproc_priv.spu;
 139	struct scatterlist *sg;	/* used to build sgs in mbox message */
 140	struct iproc_ctx_s *ctx = rctx->ctx;
 141	u32 datalen;		/* Number of bytes of response data expected */
 142
 143	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 144				rctx->gfp);
 145	if (!mssg->spu.dst)
 146		return -ENOMEM;
 147
 148	sg = mssg->spu.dst;
 149	sg_init_table(sg, rx_frag_num);
 150	/* Space for SPU message header */
 151	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 152
 153	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
 154	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 155	    spu->spu_xts_tweak_in_payload())
 156		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
 157			   SPU_XTS_TWEAK_SIZE);
 158
 159	/* Copy in each dst sg entry from request, up to chunksize */
 160	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
 161				 rctx->dst_nents, chunksize);
 162	if (datalen < chunksize) {
 163		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
 164		       __func__, chunksize, datalen);
 165		return -EFAULT;
 166	}
 167
 
 
 
 
 168	if (stat_pad_len)
 169		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 170
 171	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 172	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 173
 174	return 0;
 175}
 176
 177/**
 178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
 179 * send a SPU request message for an skcipher request. Includes SPU message
 180 * headers and the request data.
 181 * @mssg:	mailbox message containing the transmit sg
 182 * @rctx:	crypto request context
 183 * @tx_frag_num: number of scatterlist elements required to construct the
 184 *		SPU request message
 185 * @chunksize:	Number of bytes of request data
 186 * @pad_len:	Number of pad bytes
 187 *
 188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 189 * when the request completes, whether the request is handled successfully or
 190 * there is an error.
 191 *
 192 * Returns:
 193 *   0 if successful
 194 *   < 0 if an error
 195 */
 196static int
 197spu_skcipher_tx_sg_create(struct brcm_message *mssg,
 198			    struct iproc_reqctx_s *rctx,
 199			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
 200{
 201	struct spu_hw *spu = &iproc_priv.spu;
 202	struct scatterlist *sg;	/* used to build sgs in mbox message */
 203	struct iproc_ctx_s *ctx = rctx->ctx;
 204	u32 datalen;		/* Number of bytes of response data expected */
 205	u32 stat_len;
 206
 207	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 208				rctx->gfp);
 209	if (unlikely(!mssg->spu.src))
 210		return -ENOMEM;
 211
 212	sg = mssg->spu.src;
 213	sg_init_table(sg, tx_frag_num);
 214
 215	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 216		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
 217
 218	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
 219	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 220	    spu->spu_xts_tweak_in_payload())
 221		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
 222
 223	/* Copy in each src sg entry from request, up to chunksize */
 224	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 225				 rctx->src_nents, chunksize);
 226	if (unlikely(datalen < chunksize)) {
 227		pr_err("%s(): failed to copy src sg to mbox msg",
 228		       __func__);
 229		return -EFAULT;
 230	}
 231
 232	if (pad_len)
 233		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 234
 235	stat_len = spu->spu_tx_status_len();
 236	if (stat_len) {
 237		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 238		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 239	}
 240	return 0;
 241}
 242
 243static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
 244				u8 chan_idx)
 245{
 246	int err;
 247	int retry_cnt = 0;
 248	struct device *dev = &(iproc_priv.pdev->dev);
 249
 250	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
 251	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
 252		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
 253			/*
 254			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
 255			 * not in atomic context and we can wait and try again.
 256			 */
 257			retry_cnt++;
 258			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
 259			err = mbox_send_message(iproc_priv.mbox[chan_idx],
 260						mssg);
 261			atomic_inc(&iproc_priv.mb_no_spc);
 262		}
 263	}
 264	if (err < 0) {
 265		atomic_inc(&iproc_priv.mb_send_fail);
 266		return err;
 267	}
 268
 269	/* Check error returned by mailbox controller */
 270	err = mssg->error;
 271	if (unlikely(err < 0)) {
 272		dev_err(dev, "message error %d", err);
 273		/* Signal txdone for mailbox channel */
 274	}
 275
 276	/* Signal txdone for mailbox channel */
 277	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
 278	return err;
 279}
 280
 281/**
 282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
 283 * a single SPU request message, starting at the current position in the request
 284 * data.
 285 * @rctx:	Crypto request context
 286 *
 287 * This may be called on the crypto API thread, or, when a request is so large
 288 * it must be broken into multiple SPU messages, on the thread used to invoke
 289 * the response callback. When requests are broken into multiple SPU
 290 * messages, we assume subsequent messages depend on previous results, and
 291 * thus always wait for previous results before submitting the next message.
 292 * Because requests are submitted in lock step like this, there is no need
 293 * to synchronize access to request data structures.
 294 *
 295 * Return: -EINPROGRESS: request has been accepted and result will be returned
 296 *			 asynchronously
 297 *         Any other value indicates an error
 298 */
 299static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
 300{
 301	struct spu_hw *spu = &iproc_priv.spu;
 302	struct crypto_async_request *areq = rctx->parent;
 303	struct skcipher_request *req =
 304	    container_of(areq, struct skcipher_request, base);
 305	struct iproc_ctx_s *ctx = rctx->ctx;
 306	struct spu_cipher_parms cipher_parms;
 307	int err;
 308	unsigned int chunksize;	/* Num bytes of request to submit */
 309	int remaining;	/* Bytes of request still to process */
 310	int chunk_start;	/* Beginning of data for current SPU msg */
 311
 312	/* IV or ctr value to use in this SPU msg */
 313	u8 local_iv_ctr[MAX_IV_SIZE];
 314	u32 stat_pad_len;	/* num bytes to align status field */
 315	u32 pad_len;		/* total length of all padding */
 
 316	struct brcm_message *mssg;	/* mailbox message */
 317
 318	/* number of entries in src and dst sg in mailbox message. */
 319	u8 rx_frag_num = 2;	/* response header and STATUS */
 320	u8 tx_frag_num = 1;	/* request header */
 321
 322	flow_log("%s\n", __func__);
 323
 324	cipher_parms.alg = ctx->cipher.alg;
 325	cipher_parms.mode = ctx->cipher.mode;
 326	cipher_parms.type = ctx->cipher_type;
 327	cipher_parms.key_len = ctx->enckeylen;
 328	cipher_parms.key_buf = ctx->enckey;
 329	cipher_parms.iv_buf = local_iv_ctr;
 330	cipher_parms.iv_len = rctx->iv_ctr_len;
 331
 332	mssg = &rctx->mb_mssg;
 333	chunk_start = rctx->src_sent;
 334	remaining = rctx->total_todo - chunk_start;
 335
 336	/* determine the chunk we are breaking off and update the indexes */
 337	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 338	    (remaining > ctx->max_payload))
 339		chunksize = ctx->max_payload;
 340	else
 341		chunksize = remaining;
 342
 343	rctx->src_sent += chunksize;
 344	rctx->total_sent = rctx->src_sent;
 345
 346	/* Count number of sg entries to be included in this request */
 347	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
 348	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
 349
 350	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 351	    rctx->is_encrypt && chunk_start)
 352		/*
 353		 * Encrypting non-first first chunk. Copy last block of
 354		 * previous result to IV for this chunk.
 355		 */
 356		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
 357				    rctx->iv_ctr_len,
 358				    chunk_start - rctx->iv_ctr_len);
 359
 360	if (rctx->iv_ctr_len) {
 361		/* get our local copy of the iv */
 362		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
 363				 rctx->iv_ctr_len);
 364
 365		/* generate the next IV if possible */
 366		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 367		    !rctx->is_encrypt) {
 368			/*
 369			 * CBC Decrypt: next IV is the last ciphertext block in
 370			 * this chunk
 371			 */
 372			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
 373					    rctx->iv_ctr_len,
 374					    rctx->src_sent - rctx->iv_ctr_len);
 375		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
 376			/*
 377			 * The SPU hardware increments the counter once for
 378			 * each AES block of 16 bytes. So update the counter
 379			 * for the next chunk, if there is one. Note that for
 380			 * this chunk, the counter has already been copied to
 381			 * local_iv_ctr. We can assume a block size of 16,
 382			 * because we only support CTR mode for AES, not for
 383			 * any other cipher alg.
 384			 */
 385			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
 386		}
 387	}
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 390		flow_log("max_payload infinite\n");
 391	else
 392		flow_log("max_payload %u\n", ctx->max_payload);
 393
 394	flow_log("sent:%u start:%u remains:%u size:%u\n",
 395		 rctx->src_sent, chunk_start, remaining, chunksize);
 396
 397	/* Copy SPU header template created at setkey time */
 398	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
 399	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
 400
 
 
 
 
 
 401	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 402				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
 403				   &cipher_parms, chunksize);
 404
 405	atomic64_add(chunksize, &iproc_priv.bytes_out);
 406
 407	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
 408	if (stat_pad_len)
 409		rx_frag_num++;
 410	pad_len = stat_pad_len;
 411	if (pad_len) {
 412		tx_frag_num++;
 413		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
 414				     0, ctx->auth.alg, ctx->auth.mode,
 415				     rctx->total_sent, stat_pad_len);
 416	}
 417
 418	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 419			      ctx->spu_req_hdr_len);
 420	packet_log("payload:\n");
 421	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
 422	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 423
 424	/*
 425	 * Build mailbox message containing SPU request msg and rx buffers
 426	 * to catch response message
 427	 */
 428	memset(mssg, 0, sizeof(*mssg));
 429	mssg->type = BRCM_MESSAGE_SPU;
 430	mssg->ctx = rctx;	/* Will be returned in response */
 431
 432	/* Create rx scatterlist to catch result */
 433	rx_frag_num += rctx->dst_nents;
 434
 435	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 436	    spu->spu_xts_tweak_in_payload())
 437		rx_frag_num++;	/* extra sg to insert tweak */
 438
 439	err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
 440					  stat_pad_len);
 441	if (err)
 442		return err;
 443
 444	/* Create tx scatterlist containing SPU request message */
 445	tx_frag_num += rctx->src_nents;
 446	if (spu->spu_tx_status_len())
 447		tx_frag_num++;
 448
 449	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 450	    spu->spu_xts_tweak_in_payload())
 451		tx_frag_num++;	/* extra sg to insert tweak */
 452
 453	err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
 454					  pad_len);
 455	if (err)
 456		return err;
 457
 458	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 459	if (unlikely(err < 0))
 460		return err;
 461
 462	return -EINPROGRESS;
 463}
 464
 465/**
 466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
 467 * total received count for the request and updates global stats.
 468 * @rctx:	Crypto request context
 469 */
 470static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
 471{
 472	struct spu_hw *spu = &iproc_priv.spu;
 
 473	struct crypto_async_request *areq = rctx->parent;
 474	struct skcipher_request *req = skcipher_request_cast(areq);
 
 475	struct iproc_ctx_s *ctx = rctx->ctx;
 476	u32 payload_len;
 477
 478	/* See how much data was returned */
 479	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
 480
 481	/*
 482	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
 483	 * encrypted tweak ("i") value; we don't count those.
 484	 */
 485	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 486	    spu->spu_xts_tweak_in_payload() &&
 487	    (payload_len >= SPU_XTS_TWEAK_SIZE))
 488		payload_len -= SPU_XTS_TWEAK_SIZE;
 489
 490	atomic64_add(payload_len, &iproc_priv.bytes_in);
 491
 492	flow_log("%s() offset: %u, bd_len: %u BD:\n",
 493		 __func__, rctx->total_received, payload_len);
 494
 495	dump_sg(req->dst, rctx->total_received, payload_len);
 
 
 
 496
 497	rctx->total_received += payload_len;
 498	if (rctx->total_received == rctx->total_todo) {
 499		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
 500		atomic_inc(
 501		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
 502	}
 503}
 504
 505/**
 506 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
 507 * receive a SPU response message for an ahash request.
 508 * @mssg:	mailbox message containing the receive sg
 509 * @rctx:	crypto request context
 510 * @rx_frag_num: number of scatterlist elements required to hold the
 511 *		SPU response message
 512 * @digestsize: length of hash digest, in bytes
 513 * @stat_pad_len: Number of bytes required to pad the STAT field to
 514 *		a 4-byte boundary
 515 *
 516 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 517 * when the request completes, whether the request is handled successfully or
 518 * there is an error.
 519 *
 520 * Return:
 521 *   0 if successful
 522 *   < 0 if an error
 523 */
 524static int
 525spu_ahash_rx_sg_create(struct brcm_message *mssg,
 526		       struct iproc_reqctx_s *rctx,
 527		       u8 rx_frag_num, unsigned int digestsize,
 528		       u32 stat_pad_len)
 529{
 530	struct spu_hw *spu = &iproc_priv.spu;
 531	struct scatterlist *sg;	/* used to build sgs in mbox message */
 532	struct iproc_ctx_s *ctx = rctx->ctx;
 533
 534	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 535				rctx->gfp);
 536	if (!mssg->spu.dst)
 537		return -ENOMEM;
 538
 539	sg = mssg->spu.dst;
 540	sg_init_table(sg, rx_frag_num);
 541	/* Space for SPU message header */
 542	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 543
 544	/* Space for digest */
 545	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
 546
 547	if (stat_pad_len)
 548		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 549
 550	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 551	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 552	return 0;
 553}
 554
 555/**
 556 * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
 557 * a SPU request message for an ahash request. Includes SPU message headers and
 558 * the request data.
 559 * @mssg:	mailbox message containing the transmit sg
 560 * @rctx:	crypto request context
 561 * @tx_frag_num: number of scatterlist elements required to construct the
 562 *		SPU request message
 563 * @spu_hdr_len: length in bytes of SPU message header
 564 * @hash_carry_len: Number of bytes of data carried over from previous req
 565 * @new_data_len: Number of bytes of new request data
 566 * @pad_len:	Number of pad bytes
 567 *
 568 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 569 * when the request completes, whether the request is handled successfully or
 570 * there is an error.
 571 *
 572 * Return:
 573 *   0 if successful
 574 *   < 0 if an error
 575 */
 576static int
 577spu_ahash_tx_sg_create(struct brcm_message *mssg,
 578		       struct iproc_reqctx_s *rctx,
 579		       u8 tx_frag_num,
 580		       u32 spu_hdr_len,
 581		       unsigned int hash_carry_len,
 582		       unsigned int new_data_len, u32 pad_len)
 583{
 584	struct spu_hw *spu = &iproc_priv.spu;
 585	struct scatterlist *sg;	/* used to build sgs in mbox message */
 586	u32 datalen;		/* Number of bytes of response data expected */
 587	u32 stat_len;
 588
 589	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 590				rctx->gfp);
 591	if (!mssg->spu.src)
 592		return -ENOMEM;
 593
 594	sg = mssg->spu.src;
 595	sg_init_table(sg, tx_frag_num);
 596
 597	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 598		   BCM_HDR_LEN + spu_hdr_len);
 599
 600	if (hash_carry_len)
 601		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
 602
 603	if (new_data_len) {
 604		/* Copy in each src sg entry from request, up to chunksize */
 605		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 606					 rctx->src_nents, new_data_len);
 607		if (datalen < new_data_len) {
 608			pr_err("%s(): failed to copy src sg to mbox msg",
 609			       __func__);
 610			return -EFAULT;
 611		}
 612	}
 613
 614	if (pad_len)
 615		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 616
 617	stat_len = spu->spu_tx_status_len();
 618	if (stat_len) {
 619		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 620		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 621	}
 622
 623	return 0;
 624}
 625
 626/**
 627 * handle_ahash_req() - Process an asynchronous hash request from the crypto
 628 * API.
 629 * @rctx:  Crypto request context
 630 *
 631 * Builds a SPU request message embedded in a mailbox message and submits the
 632 * mailbox message on a selected mailbox channel. The SPU request message is
 633 * constructed as a scatterlist, including entries from the crypto API's
 634 * src scatterlist to avoid copying the data to be hashed. This function is
 635 * called either on the thread from the crypto API, or, in the case that the
 636 * crypto API request is too large to fit in a single SPU request message,
 637 * on the thread that invokes the receive callback with a response message.
 638 * Because some operations require the response from one chunk before the next
 639 * chunk can be submitted, we always wait for the response for the previous
 640 * chunk before submitting the next chunk. Because requests are submitted in
 641 * lock step like this, there is no need to synchronize access to request data
 642 * structures.
 643 *
 644 * Return:
 645 *   -EINPROGRESS: request has been submitted to SPU and response will be
 646 *		   returned asynchronously
 647 *   -EAGAIN:      non-final request included a small amount of data, which for
 648 *		   efficiency we did not submit to the SPU, but instead stored
 649 *		   to be submitted to the SPU with the next part of the request
 650 *   other:        an error code
 651 */
 652static int handle_ahash_req(struct iproc_reqctx_s *rctx)
 653{
 654	struct spu_hw *spu = &iproc_priv.spu;
 655	struct crypto_async_request *areq = rctx->parent;
 656	struct ahash_request *req = ahash_request_cast(areq);
 657	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 658	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
 659	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
 660	struct iproc_ctx_s *ctx = rctx->ctx;
 661
 662	/* number of bytes still to be hashed in this req */
 663	unsigned int nbytes_to_hash = 0;
 664	int err;
 665	unsigned int chunksize = 0;	/* length of hash carry + new data */
 666	/*
 667	 * length of new data, not from hash carry, to be submitted in
 668	 * this hw request
 669	 */
 670	unsigned int new_data_len;
 671
 672	unsigned int __maybe_unused chunk_start = 0;
 673	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
 674	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
 675	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
 676	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
 677	struct brcm_message *mssg;	/* mailbox message */
 678	struct spu_request_opts req_opts;
 679	struct spu_cipher_parms cipher_parms;
 680	struct spu_hash_parms hash_parms;
 681	struct spu_aead_parms aead_parms;
 682	unsigned int local_nbuf;
 683	u32 spu_hdr_len;
 684	unsigned int digestsize;
 685	u16 rem = 0;
 686
 687	/*
 688	 * number of entries in src and dst sg. Always includes SPU msg header.
 689	 * rx always includes a buffer to catch digest and STATUS.
 690	 */
 691	u8 rx_frag_num = 3;
 692	u8 tx_frag_num = 1;
 693
 694	flow_log("total_todo %u, total_sent %u\n",
 695		 rctx->total_todo, rctx->total_sent);
 696
 697	memset(&req_opts, 0, sizeof(req_opts));
 698	memset(&cipher_parms, 0, sizeof(cipher_parms));
 699	memset(&hash_parms, 0, sizeof(hash_parms));
 700	memset(&aead_parms, 0, sizeof(aead_parms));
 701
 702	req_opts.bd_suppress = true;
 703	hash_parms.alg = ctx->auth.alg;
 704	hash_parms.mode = ctx->auth.mode;
 705	hash_parms.type = HASH_TYPE_NONE;
 706	hash_parms.key_buf = (u8 *)ctx->authkey;
 707	hash_parms.key_len = ctx->authkeylen;
 708
 709	/*
 710	 * For hash algorithms below assignment looks bit odd but
 711	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
 712	 * to differentiate between 128, 192, 256 bit key values.
 713	 * Based on the key values, hash algorithm is selected.
 714	 * For example for 128 bit key, hash algorithm is AES-128.
 715	 */
 716	cipher_parms.type = ctx->cipher_type;
 717
 718	mssg = &rctx->mb_mssg;
 719	chunk_start = rctx->src_sent;
 720
 721	/*
 722	 * Compute the amount remaining to hash. This may include data
 723	 * carried over from previous requests.
 724	 */
 725	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
 726	chunksize = nbytes_to_hash;
 727	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 728	    (chunksize > ctx->max_payload))
 729		chunksize = ctx->max_payload;
 730
 731	/*
 732	 * If this is not a final request and the request data is not a multiple
 733	 * of a full block, then simply park the extra data and prefix it to the
 734	 * data for the next request.
 735	 */
 736	if (!rctx->is_final) {
 737		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
 738		u16 new_len;  /* len of data to add to hash carry */
 739
 740		rem = chunksize % blocksize;   /* remainder */
 741		if (rem) {
 742			/* chunksize not a multiple of blocksize */
 743			chunksize -= rem;
 744			if (chunksize == 0) {
 745				/* Don't have a full block to submit to hw */
 746				new_len = rem - rctx->hash_carry_len;
 747				sg_copy_part_to_buf(req->src, dest, new_len,
 748						    rctx->src_sent);
 749				rctx->hash_carry_len = rem;
 750				flow_log("Exiting with hash carry len: %u\n",
 751					 rctx->hash_carry_len);
 752				packet_dump("  buf: ",
 753					    rctx->hash_carry,
 754					    rctx->hash_carry_len);
 755				return -EAGAIN;
 756			}
 757		}
 758	}
 759
 760	/* if we have hash carry, then prefix it to the data in this request */
 761	local_nbuf = rctx->hash_carry_len;
 762	rctx->hash_carry_len = 0;
 763	if (local_nbuf)
 764		tx_frag_num++;
 765	new_data_len = chunksize - local_nbuf;
 766
 767	/* Count number of sg entries to be used in this request */
 768	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
 769				       new_data_len);
 770
 771	/* AES hashing keeps key size in type field, so need to copy it here */
 772	if (hash_parms.alg == HASH_ALG_AES)
 773		hash_parms.type = (enum hash_type)cipher_parms.type;
 774	else
 775		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
 776
 777	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
 778					  hash_parms.type);
 779	hash_parms.digestsize =	digestsize;
 780
 781	/* update the indexes */
 782	rctx->total_sent += chunksize;
 783	/* if you sent a prebuf then that wasn't from this req->src */
 784	rctx->src_sent += new_data_len;
 785
 786	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
 787		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
 788							   hash_parms.mode,
 789							   chunksize,
 790							   blocksize);
 791
 792	/*
 793	 * If a non-first chunk, then include the digest returned from the
 794	 * previous chunk so that hw can add to it (except for AES types).
 795	 */
 796	if ((hash_parms.type == HASH_TYPE_UPDT) &&
 797	    (hash_parms.alg != HASH_ALG_AES)) {
 798		hash_parms.key_buf = rctx->incr_hash;
 799		hash_parms.key_len = digestsize;
 800	}
 801
 802	atomic64_add(chunksize, &iproc_priv.bytes_out);
 803
 804	flow_log("%s() final: %u nbuf: %u ",
 805		 __func__, rctx->is_final, local_nbuf);
 806
 807	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 808		flow_log("max_payload infinite\n");
 809	else
 810		flow_log("max_payload %u\n", ctx->max_payload);
 811
 812	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
 813
 814	/* Prepend SPU header with type 3 BCM header */
 815	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
 816
 817	hash_parms.prebuf_len = local_nbuf;
 818	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
 819					      BCM_HDR_LEN,
 820					      &req_opts, &cipher_parms,
 821					      &hash_parms, &aead_parms,
 822					      new_data_len);
 823
 824	if (spu_hdr_len == 0) {
 825		pr_err("Failed to create SPU request header\n");
 826		return -EFAULT;
 827	}
 828
 829	/*
 830	 * Determine total length of padding required. Put all padding in one
 831	 * buffer.
 832	 */
 833	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
 834	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
 835				   0, 0, hash_parms.pad_len);
 836	if (spu->spu_tx_status_len())
 837		stat_pad_len = spu->spu_wordalign_padlen(db_size);
 838	if (stat_pad_len)
 839		rx_frag_num++;
 840	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
 841	if (pad_len) {
 842		tx_frag_num++;
 843		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
 844				     hash_parms.pad_len, ctx->auth.alg,
 845				     ctx->auth.mode, rctx->total_sent,
 846				     stat_pad_len);
 847	}
 848
 849	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 850			      spu_hdr_len);
 851	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
 852	flow_log("Data:\n");
 853	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
 854	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 855
 856	/*
 857	 * Build mailbox message containing SPU request msg and rx buffers
 858	 * to catch response message
 859	 */
 860	memset(mssg, 0, sizeof(*mssg));
 861	mssg->type = BRCM_MESSAGE_SPU;
 862	mssg->ctx = rctx;	/* Will be returned in response */
 863
 864	/* Create rx scatterlist to catch result */
 865	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
 866				     stat_pad_len);
 867	if (err)
 868		return err;
 869
 870	/* Create tx scatterlist containing SPU request message */
 871	tx_frag_num += rctx->src_nents;
 872	if (spu->spu_tx_status_len())
 873		tx_frag_num++;
 874	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
 875				     local_nbuf, new_data_len, pad_len);
 876	if (err)
 877		return err;
 878
 879	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 880	if (unlikely(err < 0))
 881		return err;
 882
 883	return -EINPROGRESS;
 884}
 885
 886/**
 887 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
 888 * for an HMAC request.
 889 * @req:  The HMAC request from the crypto API
 890 * @ctx:  The session context
 891 *
 892 * Return: 0 if synchronous hash operation successful
 893 *         -EINVAL if the hash algo is unrecognized
 894 *         any other value indicates an error
 895 */
 896static int spu_hmac_outer_hash(struct ahash_request *req,
 897			       struct iproc_ctx_s *ctx)
 898{
 899	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 900	unsigned int blocksize =
 901		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 902	int rc;
 903
 904	switch (ctx->auth.alg) {
 905	case HASH_ALG_MD5:
 906		rc = do_shash("md5", req->result, ctx->opad, blocksize,
 907			      req->result, ctx->digestsize, NULL, 0);
 908		break;
 909	case HASH_ALG_SHA1:
 910		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
 911			      req->result, ctx->digestsize, NULL, 0);
 912		break;
 913	case HASH_ALG_SHA224:
 914		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
 915			      req->result, ctx->digestsize, NULL, 0);
 916		break;
 917	case HASH_ALG_SHA256:
 918		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
 919			      req->result, ctx->digestsize, NULL, 0);
 920		break;
 921	case HASH_ALG_SHA384:
 922		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
 923			      req->result, ctx->digestsize, NULL, 0);
 924		break;
 925	case HASH_ALG_SHA512:
 926		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
 927			      req->result, ctx->digestsize, NULL, 0);
 928		break;
 929	default:
 930		pr_err("%s() Error : unknown hmac type\n", __func__);
 931		rc = -EINVAL;
 932	}
 933	return rc;
 934}
 935
 936/**
 937 * ahash_req_done() - Process a hash result from the SPU hardware.
 938 * @rctx: Crypto request context
 939 *
 940 * Return: 0 if successful
 941 *         < 0 if an error
 942 */
 943static int ahash_req_done(struct iproc_reqctx_s *rctx)
 944{
 945	struct spu_hw *spu = &iproc_priv.spu;
 946	struct crypto_async_request *areq = rctx->parent;
 947	struct ahash_request *req = ahash_request_cast(areq);
 948	struct iproc_ctx_s *ctx = rctx->ctx;
 949	int err;
 950
 951	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
 952
 953	if (spu->spu_type == SPU_TYPE_SPUM) {
 954		/* byte swap the output from the UPDT function to network byte
 955		 * order
 956		 */
 957		if (ctx->auth.alg == HASH_ALG_MD5) {
 958			__swab32s((u32 *)req->result);
 959			__swab32s(((u32 *)req->result) + 1);
 960			__swab32s(((u32 *)req->result) + 2);
 961			__swab32s(((u32 *)req->result) + 3);
 962			__swab32s(((u32 *)req->result) + 4);
 963		}
 964	}
 965
 966	flow_dump("  digest ", req->result, ctx->digestsize);
 967
 968	/* if this an HMAC then do the outer hash */
 969	if (rctx->is_sw_hmac) {
 970		err = spu_hmac_outer_hash(req, ctx);
 971		if (err < 0)
 972			return err;
 973		flow_dump("  hmac: ", req->result, ctx->digestsize);
 974	}
 975
 976	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
 977		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
 978		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
 979	} else {
 980		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
 981		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
 982	}
 983
 984	return 0;
 985}
 986
 987/**
 988 * handle_ahash_resp() - Process a SPU response message for a hash request.
 989 * Checks if the entire crypto API request has been processed, and if so,
 990 * invokes post processing on the result.
 991 * @rctx: Crypto request context
 992 */
 993static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
 994{
 995	struct iproc_ctx_s *ctx = rctx->ctx;
 
 996	struct crypto_async_request *areq = rctx->parent;
 997	struct ahash_request *req = ahash_request_cast(areq);
 998	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 999	unsigned int blocksize =
1000		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 
1001	/*
1002	 * Save hash to use as input to next op if incremental. Might be copying
1003	 * too much, but that's easier than figuring out actual digest size here
1004	 */
1005	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1006
1007	flow_log("%s() blocksize:%u digestsize:%u\n",
1008		 __func__, blocksize, ctx->digestsize);
1009
1010	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1011
1012	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1013		ahash_req_done(rctx);
1014}
1015
1016/**
1017 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1018 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1019 * message headers and the response data.
1020 * @mssg:	mailbox message containing the receive sg
1021 * @req:	Crypto API request
1022 * @rctx:	crypto request context
1023 * @rx_frag_num: number of scatterlist elements required to hold the
1024 *		SPU response message
1025 * @assoc_len:	Length of associated data included in the crypto request
1026 * @ret_iv_len: Length of IV returned in response
1027 * @resp_len:	Number of bytes of response data expected to be written to
1028 *              dst buffer from crypto API
1029 * @digestsize: Length of hash digest, in bytes
1030 * @stat_pad_len: Number of bytes required to pad the STAT field to
1031 *		a 4-byte boundary
1032 *
1033 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1034 * when the request completes, whether the request is handled successfully or
1035 * there is an error.
1036 *
1037 * Returns:
1038 *   0 if successful
1039 *   < 0 if an error
1040 */
1041static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1042				 struct aead_request *req,
1043				 struct iproc_reqctx_s *rctx,
1044				 u8 rx_frag_num,
1045				 unsigned int assoc_len,
1046				 u32 ret_iv_len, unsigned int resp_len,
1047				 unsigned int digestsize, u32 stat_pad_len)
1048{
1049	struct spu_hw *spu = &iproc_priv.spu;
1050	struct scatterlist *sg;	/* used to build sgs in mbox message */
1051	struct iproc_ctx_s *ctx = rctx->ctx;
1052	u32 datalen;		/* Number of bytes of response data expected */
1053	u32 assoc_buf_len;
1054	u8 data_padlen = 0;
1055
1056	if (ctx->is_rfc4543) {
1057		/* RFC4543: only pad after data, not after AAD */
1058		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1059							  assoc_len + resp_len);
1060		assoc_buf_len = assoc_len;
1061	} else {
1062		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1063							  resp_len);
1064		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1065						assoc_len, ret_iv_len,
1066						rctx->is_encrypt);
1067	}
1068
1069	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1070		/* ICV (after data) must be in the next 32-bit word for CCM */
1071		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1072							 resp_len +
1073							 data_padlen);
1074
1075	if (data_padlen)
1076		/* have to catch gcm pad in separate buffer */
1077		rx_frag_num++;
1078
1079	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1080				rctx->gfp);
1081	if (!mssg->spu.dst)
1082		return -ENOMEM;
1083
1084	sg = mssg->spu.dst;
1085	sg_init_table(sg, rx_frag_num);
1086
1087	/* Space for SPU message header */
1088	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1089
1090	if (assoc_buf_len) {
1091		/*
1092		 * Don't write directly to req->dst, because SPU may pad the
1093		 * assoc data in the response
1094		 */
1095		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1096		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1097	}
1098
1099	if (resp_len) {
1100		/*
1101		 * Copy in each dst sg entry from request, up to chunksize.
1102		 * dst sg catches just the data. digest caught in separate buf.
1103		 */
1104		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1105					 rctx->dst_nents, resp_len);
1106		if (datalen < (resp_len)) {
1107			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1108			       __func__, resp_len, datalen);
1109			return -EFAULT;
1110		}
1111	}
1112
1113	/* If GCM/CCM data is padded, catch padding in separate buffer */
1114	if (data_padlen) {
1115		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1116		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1117	}
1118
1119	/* Always catch ICV in separate buffer */
1120	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1121
1122	flow_log("stat_pad_len %u\n", stat_pad_len);
1123	if (stat_pad_len) {
1124		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1125		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1126	}
1127
1128	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1129	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1130
1131	return 0;
1132}
1133
1134/**
1135 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1136 * SPU request message for an AEAD request. Includes SPU message headers and the
1137 * request data.
1138 * @mssg:	mailbox message containing the transmit sg
1139 * @rctx:	crypto request context
1140 * @tx_frag_num: number of scatterlist elements required to construct the
1141 *		SPU request message
1142 * @spu_hdr_len: length of SPU message header in bytes
1143 * @assoc:	crypto API associated data scatterlist
1144 * @assoc_len:	length of associated data
1145 * @assoc_nents: number of scatterlist entries containing assoc data
1146 * @aead_iv_len: length of AEAD IV, if included
1147 * @chunksize:	Number of bytes of request data
1148 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1149 * @pad_len:	Number of pad bytes
1150 * @incl_icv:	If true, write separate ICV buffer after data and
1151 *              any padding
1152 *
1153 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1154 * when the request completes, whether the request is handled successfully or
1155 * there is an error.
1156 *
1157 * Return:
1158 *   0 if successful
1159 *   < 0 if an error
1160 */
1161static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1162				 struct iproc_reqctx_s *rctx,
1163				 u8 tx_frag_num,
1164				 u32 spu_hdr_len,
1165				 struct scatterlist *assoc,
1166				 unsigned int assoc_len,
1167				 int assoc_nents,
1168				 unsigned int aead_iv_len,
1169				 unsigned int chunksize,
1170				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1171{
1172	struct spu_hw *spu = &iproc_priv.spu;
1173	struct scatterlist *sg;	/* used to build sgs in mbox message */
1174	struct scatterlist *assoc_sg = assoc;
1175	struct iproc_ctx_s *ctx = rctx->ctx;
1176	u32 datalen;		/* Number of bytes of data to write */
1177	u32 written;		/* Number of bytes of data written */
1178	u32 assoc_offset = 0;
1179	u32 stat_len;
1180
1181	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1182				rctx->gfp);
1183	if (!mssg->spu.src)
1184		return -ENOMEM;
1185
1186	sg = mssg->spu.src;
1187	sg_init_table(sg, tx_frag_num);
1188
1189	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1190		   BCM_HDR_LEN + spu_hdr_len);
1191
1192	if (assoc_len) {
1193		/* Copy in each associated data sg entry from request */
1194		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1195					 assoc_nents, assoc_len);
1196		if (written < assoc_len) {
1197			pr_err("%s(): failed to copy assoc sg to mbox msg",
1198			       __func__);
1199			return -EFAULT;
1200		}
1201	}
1202
1203	if (aead_iv_len)
1204		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1205
1206	if (aad_pad_len) {
1207		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1208		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1209	}
1210
1211	datalen = chunksize;
1212	if ((chunksize > ctx->digestsize) && incl_icv)
1213		datalen -= ctx->digestsize;
1214	if (datalen) {
1215		/* For aead, a single msg should consume the entire src sg */
1216		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1217					 rctx->src_nents, datalen);
1218		if (written < datalen) {
1219			pr_err("%s(): failed to copy src sg to mbox msg",
1220			       __func__);
1221			return -EFAULT;
1222		}
1223	}
1224
1225	if (pad_len) {
1226		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1227		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1228	}
1229
1230	if (incl_icv)
1231		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1232
1233	stat_len = spu->spu_tx_status_len();
1234	if (stat_len) {
1235		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1236		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1237	}
1238	return 0;
1239}
1240
1241/**
1242 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1243 * current AEAD request.
1244 * @rctx:  Crypto request context
1245 *
1246 * Unlike other operation types, we assume the length of the request fits in
1247 * a single SPU request message. aead_enqueue() makes sure this is true.
1248 * Comments for other op types regarding threads applies here as well.
1249 *
1250 * Unlike incremental hash ops, where the spu returns the entire hash for
1251 * truncated algs like sha-224, the SPU returns just the truncated hash in
1252 * response to aead requests. So digestsize is always ctx->digestsize here.
1253 *
1254 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1255 *			 returned asynchronously
1256 *         Any other value indicates an error
1257 */
1258static int handle_aead_req(struct iproc_reqctx_s *rctx)
1259{
1260	struct spu_hw *spu = &iproc_priv.spu;
1261	struct crypto_async_request *areq = rctx->parent;
1262	struct aead_request *req = container_of(areq,
1263						struct aead_request, base);
1264	struct iproc_ctx_s *ctx = rctx->ctx;
1265	int err;
1266	unsigned int chunksize;
1267	unsigned int resp_len;
1268	u32 spu_hdr_len;
1269	u32 db_size;
1270	u32 stat_pad_len;
1271	u32 pad_len;
1272	struct brcm_message *mssg;	/* mailbox message */
1273	struct spu_request_opts req_opts;
1274	struct spu_cipher_parms cipher_parms;
1275	struct spu_hash_parms hash_parms;
1276	struct spu_aead_parms aead_parms;
1277	int assoc_nents = 0;
1278	bool incl_icv = false;
1279	unsigned int digestsize = ctx->digestsize;
1280
1281	/* number of entries in src and dst sg. Always includes SPU msg header.
1282	 */
1283	u8 rx_frag_num = 2;	/* and STATUS */
1284	u8 tx_frag_num = 1;
1285
1286	/* doing the whole thing at once */
1287	chunksize = rctx->total_todo;
1288
1289	flow_log("%s: chunksize %u\n", __func__, chunksize);
1290
1291	memset(&req_opts, 0, sizeof(req_opts));
1292	memset(&hash_parms, 0, sizeof(hash_parms));
1293	memset(&aead_parms, 0, sizeof(aead_parms));
1294
1295	req_opts.is_inbound = !(rctx->is_encrypt);
1296	req_opts.auth_first = ctx->auth_first;
1297	req_opts.is_aead = true;
1298	req_opts.is_esp = ctx->is_esp;
1299
1300	cipher_parms.alg = ctx->cipher.alg;
1301	cipher_parms.mode = ctx->cipher.mode;
1302	cipher_parms.type = ctx->cipher_type;
1303	cipher_parms.key_buf = ctx->enckey;
1304	cipher_parms.key_len = ctx->enckeylen;
1305	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1306	cipher_parms.iv_len = rctx->iv_ctr_len;
1307
1308	hash_parms.alg = ctx->auth.alg;
1309	hash_parms.mode = ctx->auth.mode;
1310	hash_parms.type = HASH_TYPE_NONE;
1311	hash_parms.key_buf = (u8 *)ctx->authkey;
1312	hash_parms.key_len = ctx->authkeylen;
1313	hash_parms.digestsize = digestsize;
1314
1315	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1316	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1317		hash_parms.key_len = SHA224_DIGEST_SIZE;
1318
1319	aead_parms.assoc_size = req->assoclen;
1320	if (ctx->is_esp && !ctx->is_rfc4543) {
1321		/*
1322		 * 8-byte IV is included assoc data in request. SPU2
1323		 * expects AAD to include just SPI and seqno. So
1324		 * subtract off the IV len.
1325		 */
1326		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1327
1328		if (rctx->is_encrypt) {
1329			aead_parms.return_iv = true;
1330			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1331			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1332		}
1333	} else {
1334		aead_parms.ret_iv_len = 0;
1335	}
1336
1337	/*
1338	 * Count number of sg entries from the crypto API request that are to
1339	 * be included in this mailbox message. For dst sg, don't count space
1340	 * for digest. Digest gets caught in a separate buffer and copied back
1341	 * to dst sg when processing response.
1342	 */
1343	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1344	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1345	if (aead_parms.assoc_size)
1346		assoc_nents = spu_sg_count(rctx->assoc, 0,
1347					   aead_parms.assoc_size);
1348
1349	mssg = &rctx->mb_mssg;
1350
1351	rctx->total_sent = chunksize;
1352	rctx->src_sent = chunksize;
1353	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1354				    aead_parms.assoc_size,
1355				    aead_parms.ret_iv_len,
1356				    rctx->is_encrypt))
1357		rx_frag_num++;
1358
1359	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1360						rctx->iv_ctr_len);
1361
1362	if (ctx->auth.alg == HASH_ALG_AES)
1363		hash_parms.type = (enum hash_type)ctx->cipher_type;
1364
1365	/* General case AAD padding (CCM and RFC4543 special cases below) */
1366	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1367						 aead_parms.assoc_size);
1368
1369	/* General case data padding (CCM decrypt special case below) */
1370	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1371							   chunksize);
1372
1373	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1374		/*
1375		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1376		 * 128-bit aligned
1377		 */
1378		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1379					 ctx->cipher.mode,
1380					 aead_parms.assoc_size + 2);
1381
1382		/*
1383		 * And when decrypting CCM, need to pad without including
1384		 * size of ICV which is tacked on to end of chunk
1385		 */
1386		if (!rctx->is_encrypt)
1387			aead_parms.data_pad_len =
1388				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1389							chunksize - digestsize);
1390
1391		/* CCM also requires software to rewrite portions of IV: */
1392		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1393				       chunksize, rctx->is_encrypt,
1394				       ctx->is_esp);
1395	}
1396
1397	if (ctx->is_rfc4543) {
1398		/*
1399		 * RFC4543: data is included in AAD, so don't pad after AAD
1400		 * and pad data based on both AAD + data size
1401		 */
1402		aead_parms.aad_pad_len = 0;
1403		if (!rctx->is_encrypt)
1404			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1405					ctx->cipher.mode,
1406					aead_parms.assoc_size + chunksize -
1407					digestsize);
1408		else
1409			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1410					ctx->cipher.mode,
1411					aead_parms.assoc_size + chunksize);
1412
1413		req_opts.is_rfc4543 = true;
1414	}
1415
1416	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1417		incl_icv = true;
1418		tx_frag_num++;
1419		/* Copy ICV from end of src scatterlist to digest buf */
1420		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1421				    req->assoclen + rctx->total_sent -
1422				    digestsize);
1423	}
1424
1425	atomic64_add(chunksize, &iproc_priv.bytes_out);
1426
1427	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1428
1429	/* Prepend SPU header with type 3 BCM header */
1430	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1431
1432	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1433					      BCM_HDR_LEN, &req_opts,
1434					      &cipher_parms, &hash_parms,
1435					      &aead_parms, chunksize);
1436
1437	/* Determine total length of padding. Put all padding in one buffer. */
1438	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1439				   chunksize, aead_parms.aad_pad_len,
1440				   aead_parms.data_pad_len, 0);
1441
1442	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1443
1444	if (stat_pad_len)
1445		rx_frag_num++;
1446	pad_len = aead_parms.data_pad_len + stat_pad_len;
1447	if (pad_len) {
1448		tx_frag_num++;
1449		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1450				     aead_parms.data_pad_len, 0,
1451				     ctx->auth.alg, ctx->auth.mode,
1452				     rctx->total_sent, stat_pad_len);
1453	}
1454
1455	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1456			      spu_hdr_len);
1457	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1458	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1459	packet_log("BD:\n");
1460	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1461	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1462
1463	/*
1464	 * Build mailbox message containing SPU request msg and rx buffers
1465	 * to catch response message
1466	 */
1467	memset(mssg, 0, sizeof(*mssg));
1468	mssg->type = BRCM_MESSAGE_SPU;
1469	mssg->ctx = rctx;	/* Will be returned in response */
1470
1471	/* Create rx scatterlist to catch result */
1472	rx_frag_num += rctx->dst_nents;
1473	resp_len = chunksize;
1474
1475	/*
1476	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1477	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1478	 * sends entire digest back.
1479	 */
1480	rx_frag_num++;
1481
1482	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1483	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1484		/*
1485		 * Input is ciphertxt plus ICV, but ICV not incl
1486		 * in output.
1487		 */
1488		resp_len -= ctx->digestsize;
1489		if (resp_len == 0)
1490			/* no rx frags to catch output data */
1491			rx_frag_num -= rctx->dst_nents;
1492	}
1493
1494	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1495				    aead_parms.assoc_size,
1496				    aead_parms.ret_iv_len, resp_len, digestsize,
1497				    stat_pad_len);
1498	if (err)
1499		return err;
1500
1501	/* Create tx scatterlist containing SPU request message */
1502	tx_frag_num += rctx->src_nents;
1503	tx_frag_num += assoc_nents;
1504	if (aead_parms.aad_pad_len)
1505		tx_frag_num++;
1506	if (aead_parms.iv_len)
1507		tx_frag_num++;
1508	if (spu->spu_tx_status_len())
1509		tx_frag_num++;
1510	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1511				    rctx->assoc, aead_parms.assoc_size,
1512				    assoc_nents, aead_parms.iv_len, chunksize,
1513				    aead_parms.aad_pad_len, pad_len, incl_icv);
1514	if (err)
1515		return err;
1516
1517	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1518	if (unlikely(err < 0))
1519		return err;
1520
1521	return -EINPROGRESS;
1522}
1523
1524/**
1525 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1526 * @rctx:  Crypto request context
1527 */
1528static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1529{
1530	struct spu_hw *spu = &iproc_priv.spu;
1531	struct crypto_async_request *areq = rctx->parent;
1532	struct aead_request *req = container_of(areq,
1533						struct aead_request, base);
1534	struct iproc_ctx_s *ctx = rctx->ctx;
1535	u32 payload_len;
1536	unsigned int icv_offset;
1537	u32 result_len;
1538
1539	/* See how much data was returned */
1540	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1541	flow_log("payload_len %u\n", payload_len);
1542
1543	/* only count payload */
1544	atomic64_add(payload_len, &iproc_priv.bytes_in);
1545
1546	if (req->assoclen)
1547		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1548			    req->assoclen);
1549
1550	/*
1551	 * Copy the ICV back to the destination
1552	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1553	 * API doesn't expect ICV in dst buffer.
1554	 */
1555	result_len = req->cryptlen;
1556	if (rctx->is_encrypt) {
1557		icv_offset = req->assoclen + rctx->total_sent;
1558		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1559		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1560		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1561				      ctx->digestsize, icv_offset);
1562		result_len += ctx->digestsize;
1563	}
1564
1565	packet_log("response data:  ");
1566	dump_sg(req->dst, req->assoclen, result_len);
1567
1568	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1569	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1570		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1571			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1572		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1573			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1574		else
1575			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1576	} else {
1577		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1578	}
1579}
1580
1581/**
1582 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1583 * @rctx:  request context
1584 *
1585 * Mailbox scatterlists are allocated for each chunk. So free them after
1586 * processing each chunk.
1587 */
1588static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1589{
1590	/* mailbox message used to tx request */
1591	struct brcm_message *mssg = &rctx->mb_mssg;
1592
1593	kfree(mssg->spu.src);
1594	kfree(mssg->spu.dst);
1595	memset(mssg, 0, sizeof(struct brcm_message));
1596}
1597
1598/**
1599 * finish_req() - Used to invoke the complete callback from the requester when
1600 * a request has been handled asynchronously.
1601 * @rctx:  Request context
1602 * @err:   Indicates whether the request was successful or not
1603 *
1604 * Ensures that cleanup has been done for request
1605 */
1606static void finish_req(struct iproc_reqctx_s *rctx, int err)
1607{
1608	struct crypto_async_request *areq = rctx->parent;
1609
1610	flow_log("%s() err:%d\n\n", __func__, err);
1611
1612	/* No harm done if already called */
1613	spu_chunk_cleanup(rctx);
1614
1615	if (areq)
1616		crypto_request_complete(areq, err);
1617}
1618
1619/**
1620 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1621 * @cl:		mailbox client structure for SPU driver
1622 * @msg:	mailbox message containing SPU response
1623 */
1624static void spu_rx_callback(struct mbox_client *cl, void *msg)
1625{
1626	struct spu_hw *spu = &iproc_priv.spu;
1627	struct brcm_message *mssg = msg;
1628	struct iproc_reqctx_s *rctx;
1629	int err;
1630
1631	rctx = mssg->ctx;
1632	if (unlikely(!rctx)) {
1633		/* This is fatal */
1634		pr_err("%s(): no request context", __func__);
1635		err = -EFAULT;
1636		goto cb_finish;
1637	}
1638
1639	/* process the SPU status */
1640	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1641	if (err != 0) {
1642		if (err == SPU_INVALID_ICV)
1643			atomic_inc(&iproc_priv.bad_icv);
1644		err = -EBADMSG;
1645		goto cb_finish;
1646	}
1647
1648	/* Process the SPU response message */
1649	switch (rctx->ctx->alg->type) {
1650	case CRYPTO_ALG_TYPE_SKCIPHER:
1651		handle_skcipher_resp(rctx);
1652		break;
1653	case CRYPTO_ALG_TYPE_AHASH:
1654		handle_ahash_resp(rctx);
1655		break;
1656	case CRYPTO_ALG_TYPE_AEAD:
1657		handle_aead_resp(rctx);
1658		break;
1659	default:
1660		err = -EINVAL;
1661		goto cb_finish;
1662	}
1663
1664	/*
1665	 * If this response does not complete the request, then send the next
1666	 * request chunk.
1667	 */
1668	if (rctx->total_sent < rctx->total_todo) {
1669		/* Deallocate anything specific to previous chunk */
1670		spu_chunk_cleanup(rctx);
1671
1672		switch (rctx->ctx->alg->type) {
1673		case CRYPTO_ALG_TYPE_SKCIPHER:
1674			err = handle_skcipher_req(rctx);
1675			break;
1676		case CRYPTO_ALG_TYPE_AHASH:
1677			err = handle_ahash_req(rctx);
1678			if (err == -EAGAIN)
1679				/*
1680				 * we saved data in hash carry, but tell crypto
1681				 * API we successfully completed request.
1682				 */
1683				err = 0;
1684			break;
1685		case CRYPTO_ALG_TYPE_AEAD:
1686			err = handle_aead_req(rctx);
1687			break;
1688		default:
1689			err = -EINVAL;
1690		}
1691
1692		if (err == -EINPROGRESS)
1693			/* Successfully submitted request for next chunk */
1694			return;
1695	}
1696
1697cb_finish:
1698	finish_req(rctx, err);
1699}
1700
1701/* ==================== Kernel Cryptographic API ==================== */
1702
1703/**
1704 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1705 * @req:	Crypto API request
1706 * @encrypt:	true if encrypting; false if decrypting
1707 *
1708 * Return: -EINPROGRESS if request accepted and result will be returned
1709 *			asynchronously
1710 *	   < 0 if an error
1711 */
1712static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1713{
1714	struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1715	struct iproc_ctx_s *ctx =
1716	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1717	int err;
1718
1719	flow_log("%s() enc:%u\n", __func__, encrypt);
1720
1721	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1722		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1723	rctx->parent = &req->base;
1724	rctx->is_encrypt = encrypt;
1725	rctx->bd_suppress = false;
1726	rctx->total_todo = req->cryptlen;
1727	rctx->src_sent = 0;
1728	rctx->total_sent = 0;
1729	rctx->total_received = 0;
1730	rctx->ctx = ctx;
1731
1732	/* Initialize current position in src and dst scatterlists */
1733	rctx->src_sg = req->src;
1734	rctx->src_nents = 0;
1735	rctx->src_skip = 0;
1736	rctx->dst_sg = req->dst;
1737	rctx->dst_nents = 0;
1738	rctx->dst_skip = 0;
1739
1740	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1741	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1742	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1743	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1744	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1745	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1746		rctx->iv_ctr_len =
1747		    crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1748		memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1749	} else {
1750		rctx->iv_ctr_len = 0;
1751	}
1752
1753	/* Choose a SPU to process this request */
1754	rctx->chan_idx = select_channel();
1755	err = handle_skcipher_req(rctx);
1756	if (err != -EINPROGRESS)
1757		/* synchronous result */
1758		spu_chunk_cleanup(rctx);
1759
1760	return err;
1761}
1762
1763static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1764		      unsigned int keylen)
1765{
1766	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1767	int err;
1768
1769	err = verify_skcipher_des_key(cipher, key);
1770	if (err)
1771		return err;
1772
1773	ctx->cipher_type = CIPHER_TYPE_DES;
1774	return 0;
1775}
1776
1777static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1778			   unsigned int keylen)
1779{
1780	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1781	int err;
1782
1783	err = verify_skcipher_des3_key(cipher, key);
1784	if (err)
1785		return err;
1786
1787	ctx->cipher_type = CIPHER_TYPE_3DES;
1788	return 0;
1789}
1790
1791static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1792		      unsigned int keylen)
1793{
1794	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1795
1796	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1797		/* XTS includes two keys of equal length */
1798		keylen = keylen / 2;
1799
1800	switch (keylen) {
1801	case AES_KEYSIZE_128:
1802		ctx->cipher_type = CIPHER_TYPE_AES128;
1803		break;
1804	case AES_KEYSIZE_192:
1805		ctx->cipher_type = CIPHER_TYPE_AES192;
1806		break;
1807	case AES_KEYSIZE_256:
1808		ctx->cipher_type = CIPHER_TYPE_AES256;
1809		break;
1810	default:
 
1811		return -EINVAL;
1812	}
1813	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1814		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1815	return 0;
1816}
1817
1818static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819			     unsigned int keylen)
1820{
1821	struct spu_hw *spu = &iproc_priv.spu;
1822	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1823	struct spu_cipher_parms cipher_parms;
1824	u32 alloc_len = 0;
1825	int err;
1826
1827	flow_log("skcipher_setkey() keylen: %d\n", keylen);
1828	flow_dump("  key: ", key, keylen);
1829
1830	switch (ctx->cipher.alg) {
1831	case CIPHER_ALG_DES:
1832		err = des_setkey(cipher, key, keylen);
1833		break;
1834	case CIPHER_ALG_3DES:
1835		err = threedes_setkey(cipher, key, keylen);
1836		break;
1837	case CIPHER_ALG_AES:
1838		err = aes_setkey(cipher, key, keylen);
1839		break;
 
 
 
1840	default:
1841		pr_err("%s() Error: unknown cipher alg\n", __func__);
1842		err = -EINVAL;
1843	}
1844	if (err)
1845		return err;
1846
1847	memcpy(ctx->enckey, key, keylen);
1848	ctx->enckeylen = keylen;
1849
 
 
1850	/* SPU needs XTS keys in the reverse order the crypto API presents */
1851	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1852	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1853		unsigned int xts_keylen = keylen / 2;
1854
1855		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1856		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1857	}
1858
1859	if (spu->spu_type == SPU_TYPE_SPUM)
1860		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1861	else if (spu->spu_type == SPU_TYPE_SPU2)
1862		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1863	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1864	cipher_parms.iv_buf = NULL;
1865	cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1866	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1867
1868	cipher_parms.alg = ctx->cipher.alg;
1869	cipher_parms.mode = ctx->cipher.mode;
1870	cipher_parms.type = ctx->cipher_type;
1871	cipher_parms.key_buf = ctx->enckey;
1872	cipher_parms.key_len = ctx->enckeylen;
1873
1874	/* Prepend SPU request message with BCM header */
1875	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1876	ctx->spu_req_hdr_len =
1877	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1878				     &cipher_parms);
1879
1880	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1881							  ctx->enckeylen,
1882							  false);
1883
1884	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1885
1886	return 0;
1887}
1888
1889static int skcipher_encrypt(struct skcipher_request *req)
1890{
1891	flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1892
1893	return skcipher_enqueue(req, true);
1894}
1895
1896static int skcipher_decrypt(struct skcipher_request *req)
1897{
1898	flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1899	return skcipher_enqueue(req, false);
1900}
1901
1902static int ahash_enqueue(struct ahash_request *req)
1903{
1904	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1905	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1906	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1907	int err;
1908	const char *alg_name;
1909
1910	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1911
1912	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1913		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1914	rctx->parent = &req->base;
1915	rctx->ctx = ctx;
1916	rctx->bd_suppress = true;
1917	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1918
1919	/* Initialize position in src scatterlist */
1920	rctx->src_sg = req->src;
1921	rctx->src_skip = 0;
1922	rctx->src_nents = 0;
1923	rctx->dst_sg = NULL;
1924	rctx->dst_skip = 0;
1925	rctx->dst_nents = 0;
1926
1927	/* SPU2 hardware does not compute hash of zero length data */
1928	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1929	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1930		alg_name = crypto_ahash_alg_name(tfm);
1931		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1932			 rctx->is_final ? "" : "non-", alg_name);
1933		err = do_shash((unsigned char *)alg_name, req->result,
1934			       NULL, 0, NULL, 0, ctx->authkey,
1935			       ctx->authkeylen);
1936		if (err < 0)
1937			flow_log("Hash request failed with error %d\n", err);
1938		return err;
1939	}
1940	/* Choose a SPU to process this request */
1941	rctx->chan_idx = select_channel();
1942
1943	err = handle_ahash_req(rctx);
1944	if (err != -EINPROGRESS)
1945		/* synchronous result */
1946		spu_chunk_cleanup(rctx);
1947
1948	if (err == -EAGAIN)
1949		/*
1950		 * we saved data in hash carry, but tell crypto API
1951		 * we successfully completed request.
1952		 */
1953		err = 0;
1954
1955	return err;
1956}
1957
1958static int __ahash_init(struct ahash_request *req)
1959{
1960	struct spu_hw *spu = &iproc_priv.spu;
1961	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1962	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1963	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1964
1965	flow_log("%s()\n", __func__);
1966
1967	/* Initialize the context */
1968	rctx->hash_carry_len = 0;
1969	rctx->is_final = 0;
1970
1971	rctx->total_todo = 0;
1972	rctx->src_sent = 0;
1973	rctx->total_sent = 0;
1974	rctx->total_received = 0;
1975
1976	ctx->digestsize = crypto_ahash_digestsize(tfm);
1977	/* If we add a hash whose digest is larger, catch it here. */
1978	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1979
1980	rctx->is_sw_hmac = false;
1981
1982	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1983							  true);
1984
1985	return 0;
1986}
1987
1988/**
1989 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1990 * @ctx:  Crypto session context
1991 *
1992 * SPU-2 does not support incremental hashing (we'll have to revisit and
1993 * condition based on chip revision or device tree entry if future versions do
1994 * support incremental hash)
1995 *
1996 * SPU-M also doesn't support incremental hashing of AES-XCBC
1997 *
1998 * Return: true if incremental hashing is not supported
1999 *         false otherwise
2000 */
2001static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2002{
2003	struct spu_hw *spu = &iproc_priv.spu;
2004
2005	if (spu->spu_type == SPU_TYPE_SPU2)
2006		return true;
2007
2008	if ((ctx->auth.alg == HASH_ALG_AES) &&
2009	    (ctx->auth.mode == HASH_MODE_XCBC))
2010		return true;
2011
2012	/* Otherwise, incremental hashing is supported */
2013	return false;
2014}
2015
2016static int ahash_init(struct ahash_request *req)
2017{
2018	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2019	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2020	const char *alg_name;
2021	struct crypto_shash *hash;
2022	int ret;
2023	gfp_t gfp;
2024
2025	if (spu_no_incr_hash(ctx)) {
2026		/*
2027		 * If we get an incremental hashing request and it's not
2028		 * supported by the hardware, we need to handle it in software
2029		 * by calling synchronous hash functions.
2030		 */
2031		alg_name = crypto_ahash_alg_name(tfm);
2032		hash = crypto_alloc_shash(alg_name, 0, 0);
2033		if (IS_ERR(hash)) {
2034			ret = PTR_ERR(hash);
2035			goto err;
2036		}
2037
2038		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2039		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2040		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2041				     crypto_shash_descsize(hash), gfp);
2042		if (!ctx->shash) {
2043			ret = -ENOMEM;
2044			goto err_hash;
2045		}
2046		ctx->shash->tfm = hash;
2047
2048		/* Set the key using data we already have from setkey */
2049		if (ctx->authkeylen > 0) {
2050			ret = crypto_shash_setkey(hash, ctx->authkey,
2051						  ctx->authkeylen);
2052			if (ret)
2053				goto err_shash;
2054		}
2055
2056		/* Initialize hash w/ this key and other params */
2057		ret = crypto_shash_init(ctx->shash);
2058		if (ret)
2059			goto err_shash;
2060	} else {
2061		/* Otherwise call the internal function which uses SPU hw */
2062		ret = __ahash_init(req);
2063	}
2064
2065	return ret;
2066
2067err_shash:
2068	kfree(ctx->shash);
2069err_hash:
2070	crypto_free_shash(hash);
2071err:
2072	return ret;
2073}
2074
2075static int __ahash_update(struct ahash_request *req)
2076{
2077	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2078
2079	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2080
2081	if (!req->nbytes)
2082		return 0;
2083	rctx->total_todo += req->nbytes;
2084	rctx->src_sent = 0;
2085
2086	return ahash_enqueue(req);
2087}
2088
2089static int ahash_update(struct ahash_request *req)
2090{
2091	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2092	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2093	u8 *tmpbuf;
2094	int ret;
2095	int nents;
2096	gfp_t gfp;
2097
2098	if (spu_no_incr_hash(ctx)) {
2099		/*
2100		 * If we get an incremental hashing request and it's not
2101		 * supported by the hardware, we need to handle it in software
2102		 * by calling synchronous hash functions.
2103		 */
2104		if (req->src)
2105			nents = sg_nents(req->src);
2106		else
2107			return -EINVAL;
2108
2109		/* Copy data from req scatterlist to tmp buffer */
2110		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2111		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2112		tmpbuf = kmalloc(req->nbytes, gfp);
2113		if (!tmpbuf)
2114			return -ENOMEM;
2115
2116		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2117				req->nbytes) {
2118			kfree(tmpbuf);
2119			return -EINVAL;
2120		}
2121
2122		/* Call synchronous update */
2123		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2124		kfree(tmpbuf);
2125	} else {
2126		/* Otherwise call the internal function which uses SPU hw */
2127		ret = __ahash_update(req);
2128	}
2129
2130	return ret;
2131}
2132
2133static int __ahash_final(struct ahash_request *req)
2134{
2135	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2136
2137	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2138
2139	rctx->is_final = 1;
2140
2141	return ahash_enqueue(req);
2142}
2143
2144static int ahash_final(struct ahash_request *req)
2145{
2146	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2147	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2148	int ret;
2149
2150	if (spu_no_incr_hash(ctx)) {
2151		/*
2152		 * If we get an incremental hashing request and it's not
2153		 * supported by the hardware, we need to handle it in software
2154		 * by calling synchronous hash functions.
2155		 */
2156		ret = crypto_shash_final(ctx->shash, req->result);
2157
2158		/* Done with hash, can deallocate it now */
2159		crypto_free_shash(ctx->shash->tfm);
2160		kfree(ctx->shash);
2161
2162	} else {
2163		/* Otherwise call the internal function which uses SPU hw */
2164		ret = __ahash_final(req);
2165	}
2166
2167	return ret;
2168}
2169
2170static int __ahash_finup(struct ahash_request *req)
2171{
2172	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2173
2174	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2175
2176	rctx->total_todo += req->nbytes;
2177	rctx->src_sent = 0;
2178	rctx->is_final = 1;
2179
2180	return ahash_enqueue(req);
2181}
2182
2183static int ahash_finup(struct ahash_request *req)
2184{
2185	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2186	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2187	u8 *tmpbuf;
2188	int ret;
2189	int nents;
2190	gfp_t gfp;
2191
2192	if (spu_no_incr_hash(ctx)) {
2193		/*
2194		 * If we get an incremental hashing request and it's not
2195		 * supported by the hardware, we need to handle it in software
2196		 * by calling synchronous hash functions.
2197		 */
2198		if (req->src) {
2199			nents = sg_nents(req->src);
2200		} else {
2201			ret = -EINVAL;
2202			goto ahash_finup_exit;
2203		}
2204
2205		/* Copy data from req scatterlist to tmp buffer */
2206		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2207		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2208		tmpbuf = kmalloc(req->nbytes, gfp);
2209		if (!tmpbuf) {
2210			ret = -ENOMEM;
2211			goto ahash_finup_exit;
2212		}
2213
2214		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2215				req->nbytes) {
2216			ret = -EINVAL;
2217			goto ahash_finup_free;
2218		}
2219
2220		/* Call synchronous update */
2221		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2222					 req->result);
2223	} else {
2224		/* Otherwise call the internal function which uses SPU hw */
2225		return __ahash_finup(req);
2226	}
2227ahash_finup_free:
2228	kfree(tmpbuf);
2229
2230ahash_finup_exit:
2231	/* Done with hash, can deallocate it now */
2232	crypto_free_shash(ctx->shash->tfm);
2233	kfree(ctx->shash);
2234	return ret;
2235}
2236
2237static int ahash_digest(struct ahash_request *req)
2238{
2239	int err;
2240
2241	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2242
2243	/* whole thing at once */
2244	err = __ahash_init(req);
2245	if (!err)
2246		err = __ahash_finup(req);
2247
2248	return err;
2249}
2250
2251static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2252			unsigned int keylen)
2253{
2254	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2255
2256	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2257		 __func__, ahash, key, keylen);
2258	flow_dump("  key: ", key, keylen);
2259
2260	if (ctx->auth.alg == HASH_ALG_AES) {
2261		switch (keylen) {
2262		case AES_KEYSIZE_128:
2263			ctx->cipher_type = CIPHER_TYPE_AES128;
2264			break;
2265		case AES_KEYSIZE_192:
2266			ctx->cipher_type = CIPHER_TYPE_AES192;
2267			break;
2268		case AES_KEYSIZE_256:
2269			ctx->cipher_type = CIPHER_TYPE_AES256;
2270			break;
2271		default:
2272			pr_err("%s() Error: Invalid key length\n", __func__);
2273			return -EINVAL;
2274		}
2275	} else {
2276		pr_err("%s() Error: unknown hash alg\n", __func__);
2277		return -EINVAL;
2278	}
2279	memcpy(ctx->authkey, key, keylen);
2280	ctx->authkeylen = keylen;
2281
2282	return 0;
2283}
2284
2285static int ahash_export(struct ahash_request *req, void *out)
2286{
2287	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2288	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2289
2290	spu_exp->total_todo = rctx->total_todo;
2291	spu_exp->total_sent = rctx->total_sent;
2292	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2293	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2294	spu_exp->hash_carry_len = rctx->hash_carry_len;
2295	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2296
2297	return 0;
2298}
2299
2300static int ahash_import(struct ahash_request *req, const void *in)
2301{
2302	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2303	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2304
2305	rctx->total_todo = spu_exp->total_todo;
2306	rctx->total_sent = spu_exp->total_sent;
2307	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2308	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2309	rctx->hash_carry_len = spu_exp->hash_carry_len;
2310	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2311
2312	return 0;
2313}
2314
2315static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2316			     unsigned int keylen)
2317{
2318	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2319	unsigned int blocksize =
2320		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2321	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2322	unsigned int index;
2323	int rc;
2324
2325	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2326		 __func__, ahash, key, keylen, blocksize, digestsize);
2327	flow_dump("  key: ", key, keylen);
2328
2329	if (keylen > blocksize) {
2330		switch (ctx->auth.alg) {
2331		case HASH_ALG_MD5:
2332			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2333				      0, NULL, 0);
2334			break;
2335		case HASH_ALG_SHA1:
2336			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2337				      0, NULL, 0);
2338			break;
2339		case HASH_ALG_SHA224:
2340			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2341				      0, NULL, 0);
2342			break;
2343		case HASH_ALG_SHA256:
2344			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2345				      0, NULL, 0);
2346			break;
2347		case HASH_ALG_SHA384:
2348			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2349				      0, NULL, 0);
2350			break;
2351		case HASH_ALG_SHA512:
2352			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2353				      0, NULL, 0);
2354			break;
2355		case HASH_ALG_SHA3_224:
2356			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2357				      NULL, 0, NULL, 0);
2358			break;
2359		case HASH_ALG_SHA3_256:
2360			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2361				      NULL, 0, NULL, 0);
2362			break;
2363		case HASH_ALG_SHA3_384:
2364			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2365				      NULL, 0, NULL, 0);
2366			break;
2367		case HASH_ALG_SHA3_512:
2368			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2369				      NULL, 0, NULL, 0);
2370			break;
2371		default:
2372			pr_err("%s() Error: unknown hash alg\n", __func__);
2373			return -EINVAL;
2374		}
2375		if (rc < 0) {
2376			pr_err("%s() Error %d computing shash for %s\n",
2377			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2378			return rc;
2379		}
2380		ctx->authkeylen = digestsize;
2381
2382		flow_log("  keylen > digestsize... hashed\n");
2383		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2384	} else {
2385		memcpy(ctx->authkey, key, keylen);
2386		ctx->authkeylen = keylen;
2387	}
2388
2389	/*
2390	 * Full HMAC operation in SPUM is not verified,
2391	 * So keeping the generation of IPAD, OPAD and
2392	 * outer hashing in software.
2393	 */
2394	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2395		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2396		memset(ctx->ipad + ctx->authkeylen, 0,
2397		       blocksize - ctx->authkeylen);
2398		ctx->authkeylen = 0;
2399		unsafe_memcpy(ctx->opad, ctx->ipad, blocksize,
2400			      "fortified memcpy causes -Wrestrict warning");
2401
2402		for (index = 0; index < blocksize; index++) {
2403			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2404			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2405		}
2406
2407		flow_dump("  ipad: ", ctx->ipad, blocksize);
2408		flow_dump("  opad: ", ctx->opad, blocksize);
2409	}
2410	ctx->digestsize = digestsize;
2411	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2412
2413	return 0;
2414}
2415
2416static int ahash_hmac_init(struct ahash_request *req)
2417{
2418	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2419	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2420	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2421	unsigned int blocksize =
2422			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2423
2424	flow_log("ahash_hmac_init()\n");
2425
2426	/* init the context as a hash */
2427	ahash_init(req);
2428
2429	if (!spu_no_incr_hash(ctx)) {
2430		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2431		rctx->is_sw_hmac = true;
2432		ctx->auth.mode = HASH_MODE_HASH;
2433		/* start with a prepended ipad */
2434		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2435		rctx->hash_carry_len = blocksize;
2436		rctx->total_todo += blocksize;
2437	}
2438
2439	return 0;
2440}
2441
2442static int ahash_hmac_update(struct ahash_request *req)
2443{
2444	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2445
2446	if (!req->nbytes)
2447		return 0;
2448
2449	return ahash_update(req);
2450}
2451
2452static int ahash_hmac_final(struct ahash_request *req)
2453{
2454	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2455
2456	return ahash_final(req);
2457}
2458
2459static int ahash_hmac_finup(struct ahash_request *req)
2460{
2461	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2462
2463	return ahash_finup(req);
2464}
2465
2466static int ahash_hmac_digest(struct ahash_request *req)
2467{
2468	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2469	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2470	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2471	unsigned int blocksize =
2472			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2473
2474	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2475
2476	/* Perform initialization and then call finup */
2477	__ahash_init(req);
2478
2479	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2480		/*
2481		 * SPU2 supports full HMAC implementation in the
2482		 * hardware, need not to generate IPAD, OPAD and
2483		 * outer hash in software.
2484		 * Only for hash key len > hash block size, SPU2
2485		 * expects to perform hashing on the key, shorten
2486		 * it to digest size and feed it as hash key.
2487		 */
2488		rctx->is_sw_hmac = false;
2489		ctx->auth.mode = HASH_MODE_HMAC;
2490	} else {
2491		rctx->is_sw_hmac = true;
2492		ctx->auth.mode = HASH_MODE_HASH;
2493		/* start with a prepended ipad */
2494		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2495		rctx->hash_carry_len = blocksize;
2496		rctx->total_todo += blocksize;
2497	}
2498
2499	return __ahash_finup(req);
2500}
2501
2502/* aead helpers */
2503
2504static int aead_need_fallback(struct aead_request *req)
2505{
2506	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2507	struct spu_hw *spu = &iproc_priv.spu;
2508	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2509	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2510	u32 payload_len;
2511
2512	/*
2513	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2514	 * and AAD are both 0 bytes long. So use fallback in this case.
2515	 */
2516	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2517	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2518	    (req->assoclen == 0)) {
2519		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2520		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2521			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2522			return 1;
2523		}
2524	}
2525
2526	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2527	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2528	    (spu->spu_type == SPU_TYPE_SPUM) &&
2529	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2530	    (ctx->digestsize != 16)) {
2531		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2532			 __func__, ctx->digestsize);
2533		return 1;
2534	}
2535
2536	/*
2537	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2538	 * when AAD size is 0
2539	 */
2540	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2541	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2542	    (req->assoclen == 0)) {
2543		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2544			 __func__);
2545		return 1;
2546	}
2547
2548	/*
2549	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2550	 * 16 or 20 bytes long. So use fallback in this case.
2551	 */
2552	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2553	    ctx->cipher.alg == CIPHER_ALG_AES &&
2554	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2555	    req->assoclen != 16 && req->assoclen != 20) {
2556		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2557			 " other than 16 or 20 bytes\n");
2558		return 1;
2559	}
2560
2561	payload_len = req->cryptlen;
2562	if (spu->spu_type == SPU_TYPE_SPUM)
2563		payload_len += req->assoclen;
2564
2565	flow_log("%s() payload len: %u\n", __func__, payload_len);
2566
2567	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2568		return 0;
2569	else
2570		return payload_len > ctx->max_payload;
2571}
2572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2573static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2574{
2575	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2576	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2577	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2578	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2579	struct aead_request *subreq;
 
2580
2581	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2582
2583	if (!ctx->fallback_cipher)
2584		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
2585
2586	subreq = &rctx->req;
2587	aead_request_set_tfm(subreq, ctx->fallback_cipher);
2588	aead_request_set_callback(subreq, aead_request_flags(req),
2589				  req->base.complete, req->base.data);
2590	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
2591			       req->iv);
2592	aead_request_set_ad(subreq, req->assoclen);
 
 
 
 
 
 
 
 
2593
2594	return is_encrypt ? crypto_aead_encrypt(req) :
2595			    crypto_aead_decrypt(req);
2596}
2597
2598static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2599{
2600	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2601	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2602	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2603	int err;
2604
2605	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2606
2607	if (req->assoclen > MAX_ASSOC_SIZE) {
2608		pr_err
2609		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2610		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2611		return -EINVAL;
2612	}
2613
2614	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2615		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2616	rctx->parent = &req->base;
2617	rctx->is_encrypt = is_encrypt;
2618	rctx->bd_suppress = false;
2619	rctx->total_todo = req->cryptlen;
2620	rctx->src_sent = 0;
2621	rctx->total_sent = 0;
2622	rctx->total_received = 0;
2623	rctx->is_sw_hmac = false;
2624	rctx->ctx = ctx;
2625	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2626
2627	/* assoc data is at start of src sg */
2628	rctx->assoc = req->src;
2629
2630	/*
2631	 * Init current position in src scatterlist to be after assoc data.
2632	 * src_skip set to buffer offset where data begins. (Assoc data could
2633	 * end in the middle of a buffer.)
2634	 */
2635	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2636			     &rctx->src_skip) < 0) {
2637		pr_err("%s() Error: Unable to find start of src data\n",
2638		       __func__);
2639		return -EINVAL;
2640	}
2641
2642	rctx->src_nents = 0;
2643	rctx->dst_nents = 0;
2644	if (req->dst == req->src) {
2645		rctx->dst_sg = rctx->src_sg;
2646		rctx->dst_skip = rctx->src_skip;
2647	} else {
2648		/*
2649		 * Expect req->dst to have room for assoc data followed by
2650		 * output data and ICV, if encrypt. So initialize dst_sg
2651		 * to point beyond assoc len offset.
2652		 */
2653		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2654				     &rctx->dst_skip) < 0) {
2655			pr_err("%s() Error: Unable to find start of dst data\n",
2656			       __func__);
2657			return -EINVAL;
2658		}
2659	}
2660
2661	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2662	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2663	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2664	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2665	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2666		rctx->iv_ctr_len =
2667			ctx->salt_len +
2668			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2669	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2670		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2671	} else {
2672		rctx->iv_ctr_len = 0;
2673	}
2674
2675	rctx->hash_carry_len = 0;
2676
2677	flow_log("  src sg: %p\n", req->src);
2678	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2679		 rctx->src_sg, rctx->src_skip);
2680	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2681	flow_log("  dst sg: %p\n", req->dst);
2682	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2683		 rctx->dst_sg, rctx->dst_skip);
2684	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2685	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2686	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2687	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2688
2689	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2690		flow_log("  max_payload infinite");
2691	else
2692		flow_log("  max_payload: %u\n", ctx->max_payload);
2693
2694	if (unlikely(aead_need_fallback(req)))
2695		return aead_do_fallback(req, is_encrypt);
2696
2697	/*
2698	 * Do memory allocations for request after fallback check, because if we
2699	 * do fallback, we won't call finish_req() to dealloc.
2700	 */
2701	if (rctx->iv_ctr_len) {
2702		if (ctx->salt_len)
2703			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2704			       ctx->salt, ctx->salt_len);
2705		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2706		       req->iv,
2707		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2708	}
2709
2710	rctx->chan_idx = select_channel();
2711	err = handle_aead_req(rctx);
2712	if (err != -EINPROGRESS)
2713		/* synchronous result */
2714		spu_chunk_cleanup(rctx);
2715
2716	return err;
2717}
2718
2719static int aead_authenc_setkey(struct crypto_aead *cipher,
2720			       const u8 *key, unsigned int keylen)
2721{
2722	struct spu_hw *spu = &iproc_priv.spu;
2723	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2724	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2725	struct crypto_authenc_keys keys;
2726	int ret;
2727
2728	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2729		 keylen);
2730	flow_dump("  key: ", key, keylen);
2731
2732	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2733	if (ret)
2734		goto badkey;
2735
2736	if (keys.enckeylen > MAX_KEY_SIZE ||
2737	    keys.authkeylen > MAX_KEY_SIZE)
2738		goto badkey;
2739
2740	ctx->enckeylen = keys.enckeylen;
2741	ctx->authkeylen = keys.authkeylen;
2742
2743	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2744	/* May end up padding auth key. So make sure it's zeroed. */
2745	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2746	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2747
2748	switch (ctx->alg->cipher_info.alg) {
2749	case CIPHER_ALG_DES:
2750		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2751			return -EINVAL;
2752
2753		ctx->cipher_type = CIPHER_TYPE_DES;
2754		break;
2755	case CIPHER_ALG_3DES:
2756		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2757			return -EINVAL;
2758
2759		ctx->cipher_type = CIPHER_TYPE_3DES;
2760		break;
2761	case CIPHER_ALG_AES:
2762		switch (ctx->enckeylen) {
2763		case AES_KEYSIZE_128:
2764			ctx->cipher_type = CIPHER_TYPE_AES128;
2765			break;
2766		case AES_KEYSIZE_192:
2767			ctx->cipher_type = CIPHER_TYPE_AES192;
2768			break;
2769		case AES_KEYSIZE_256:
2770			ctx->cipher_type = CIPHER_TYPE_AES256;
2771			break;
2772		default:
2773			goto badkey;
2774		}
2775		break;
 
 
 
2776	default:
2777		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2778		return -EINVAL;
2779	}
2780
2781	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2782		 ctx->authkeylen);
2783	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2784	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2785
2786	/* setkey the fallback just in case we needto use it */
2787	if (ctx->fallback_cipher) {
2788		flow_log("  running fallback setkey()\n");
2789
2790		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2791		ctx->fallback_cipher->base.crt_flags |=
2792		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2793		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2794		if (ret)
2795			flow_log("  fallback setkey() returned:%d\n", ret);
 
 
 
 
 
2796	}
2797
2798	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2799							  ctx->enckeylen,
2800							  false);
2801
2802	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2803
2804	return ret;
2805
2806badkey:
2807	ctx->enckeylen = 0;
2808	ctx->authkeylen = 0;
2809	ctx->digestsize = 0;
2810
 
2811	return -EINVAL;
2812}
2813
2814static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2815			       const u8 *key, unsigned int keylen)
2816{
2817	struct spu_hw *spu = &iproc_priv.spu;
2818	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2819	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2820
2821	int ret = 0;
2822
2823	flow_log("%s() keylen:%u\n", __func__, keylen);
2824	flow_dump("  key: ", key, keylen);
2825
2826	if (!ctx->is_esp)
2827		ctx->digestsize = keylen;
2828
2829	ctx->enckeylen = keylen;
2830	ctx->authkeylen = 0;
 
2831
2832	switch (ctx->enckeylen) {
2833	case AES_KEYSIZE_128:
2834		ctx->cipher_type = CIPHER_TYPE_AES128;
2835		break;
2836	case AES_KEYSIZE_192:
2837		ctx->cipher_type = CIPHER_TYPE_AES192;
2838		break;
2839	case AES_KEYSIZE_256:
2840		ctx->cipher_type = CIPHER_TYPE_AES256;
2841		break;
2842	default:
2843		goto badkey;
2844	}
2845
2846	memcpy(ctx->enckey, key, ctx->enckeylen);
2847
2848	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2849		 ctx->authkeylen);
2850	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2851	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2852
2853	/* setkey the fallback just in case we need to use it */
2854	if (ctx->fallback_cipher) {
2855		flow_log("  running fallback setkey()\n");
2856
2857		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2858		ctx->fallback_cipher->base.crt_flags |=
2859		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2860		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2861					 keylen + ctx->salt_len);
2862		if (ret)
2863			flow_log("  fallback setkey() returned:%d\n", ret);
 
 
 
 
 
2864	}
2865
2866	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2867							  ctx->enckeylen,
2868							  false);
2869
2870	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2871
2872	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2873		 ctx->authkeylen);
2874
2875	return ret;
2876
2877badkey:
2878	ctx->enckeylen = 0;
2879	ctx->authkeylen = 0;
2880	ctx->digestsize = 0;
2881
 
2882	return -EINVAL;
2883}
2884
2885/**
2886 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2887 * @cipher: AEAD structure
2888 * @key:    Key followed by 4 bytes of salt
2889 * @keylen: Length of key plus salt, in bytes
2890 *
2891 * Extracts salt from key and stores it to be prepended to IV on each request.
2892 * Digest is always 16 bytes
2893 *
2894 * Return: Value from generic gcm setkey.
2895 */
2896static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2897			       const u8 *key, unsigned int keylen)
2898{
2899	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2900
2901	flow_log("%s\n", __func__);
2902
2903	if (keylen < GCM_ESP_SALT_SIZE)
2904		return -EINVAL;
2905
2906	ctx->salt_len = GCM_ESP_SALT_SIZE;
2907	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2908	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2909	keylen -= GCM_ESP_SALT_SIZE;
2910	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2911	ctx->is_esp = true;
2912	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2913
2914	return aead_gcm_ccm_setkey(cipher, key, keylen);
2915}
2916
2917/**
2918 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2919 * @cipher: AEAD structure
2920 * @key:    Key followed by 4 bytes of salt
2921 * @keylen: Length of key plus salt, in bytes
2922 *
2923 * Extracts salt from key and stores it to be prepended to IV on each request.
2924 * Digest is always 16 bytes
2925 *
2926 * Return: Value from generic gcm setkey.
2927 */
2928static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2929				  const u8 *key, unsigned int keylen)
2930{
2931	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2932
2933	flow_log("%s\n", __func__);
2934
2935	if (keylen < GCM_ESP_SALT_SIZE)
2936		return -EINVAL;
2937
2938	ctx->salt_len = GCM_ESP_SALT_SIZE;
2939	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2940	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2941	keylen -= GCM_ESP_SALT_SIZE;
2942	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2943	ctx->is_esp = true;
2944	ctx->is_rfc4543 = true;
2945	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2946
2947	return aead_gcm_ccm_setkey(cipher, key, keylen);
2948}
2949
2950/**
2951 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2952 * @cipher: AEAD structure
2953 * @key:    Key followed by 4 bytes of salt
2954 * @keylen: Length of key plus salt, in bytes
2955 *
2956 * Extracts salt from key and stores it to be prepended to IV on each request.
2957 * Digest is always 16 bytes
2958 *
2959 * Return: Value from generic ccm setkey.
2960 */
2961static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
2962			       const u8 *key, unsigned int keylen)
2963{
2964	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2965
2966	flow_log("%s\n", __func__);
2967
2968	if (keylen < CCM_ESP_SALT_SIZE)
2969		return -EINVAL;
2970
2971	ctx->salt_len = CCM_ESP_SALT_SIZE;
2972	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
2973	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
2974	keylen -= CCM_ESP_SALT_SIZE;
2975	ctx->is_esp = true;
2976	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
2977
2978	return aead_gcm_ccm_setkey(cipher, key, keylen);
2979}
2980
2981static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
2982{
2983	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2984	int ret = 0;
2985
2986	flow_log("%s() authkeylen:%u authsize:%u\n",
2987		 __func__, ctx->authkeylen, authsize);
2988
2989	ctx->digestsize = authsize;
2990
2991	/* setkey the fallback just in case we needto use it */
2992	if (ctx->fallback_cipher) {
2993		flow_log("  running fallback setauth()\n");
2994
2995		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
2996		if (ret)
2997			flow_log("  fallback setauth() returned:%d\n", ret);
2998	}
2999
3000	return ret;
3001}
3002
3003static int aead_encrypt(struct aead_request *req)
3004{
3005	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3006		 req->cryptlen);
3007	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3008	flow_log("  assoc_len:%u\n", req->assoclen);
3009
3010	return aead_enqueue(req, true);
3011}
3012
3013static int aead_decrypt(struct aead_request *req)
3014{
3015	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3016	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3017	flow_log("  assoc_len:%u\n", req->assoclen);
3018
3019	return aead_enqueue(req, false);
3020}
3021
3022/* ==================== Supported Cipher Algorithms ==================== */
3023
3024static struct iproc_alg_s driver_algs[] = {
3025	{
3026	 .type = CRYPTO_ALG_TYPE_AEAD,
3027	 .alg.aead = {
3028		 .base = {
3029			.cra_name = "gcm(aes)",
3030			.cra_driver_name = "gcm-aes-iproc",
3031			.cra_blocksize = AES_BLOCK_SIZE,
3032			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3033		 },
3034		 .setkey = aead_gcm_ccm_setkey,
3035		 .ivsize = GCM_AES_IV_SIZE,
3036		.maxauthsize = AES_BLOCK_SIZE,
3037	 },
3038	 .cipher_info = {
3039			 .alg = CIPHER_ALG_AES,
3040			 .mode = CIPHER_MODE_GCM,
3041			 },
3042	 .auth_info = {
3043		       .alg = HASH_ALG_AES,
3044		       .mode = HASH_MODE_GCM,
3045		       },
3046	 .auth_first = 0,
3047	 },
3048	{
3049	 .type = CRYPTO_ALG_TYPE_AEAD,
3050	 .alg.aead = {
3051		 .base = {
3052			.cra_name = "ccm(aes)",
3053			.cra_driver_name = "ccm-aes-iproc",
3054			.cra_blocksize = AES_BLOCK_SIZE,
3055			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3056		 },
3057		 .setkey = aead_gcm_ccm_setkey,
3058		 .ivsize = CCM_AES_IV_SIZE,
3059		.maxauthsize = AES_BLOCK_SIZE,
3060	 },
3061	 .cipher_info = {
3062			 .alg = CIPHER_ALG_AES,
3063			 .mode = CIPHER_MODE_CCM,
3064			 },
3065	 .auth_info = {
3066		       .alg = HASH_ALG_AES,
3067		       .mode = HASH_MODE_CCM,
3068		       },
3069	 .auth_first = 0,
3070	 },
3071	{
3072	 .type = CRYPTO_ALG_TYPE_AEAD,
3073	 .alg.aead = {
3074		 .base = {
3075			.cra_name = "rfc4106(gcm(aes))",
3076			.cra_driver_name = "gcm-aes-esp-iproc",
3077			.cra_blocksize = AES_BLOCK_SIZE,
3078			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3079		 },
3080		 .setkey = aead_gcm_esp_setkey,
3081		 .ivsize = GCM_RFC4106_IV_SIZE,
3082		 .maxauthsize = AES_BLOCK_SIZE,
3083	 },
3084	 .cipher_info = {
3085			 .alg = CIPHER_ALG_AES,
3086			 .mode = CIPHER_MODE_GCM,
3087			 },
3088	 .auth_info = {
3089		       .alg = HASH_ALG_AES,
3090		       .mode = HASH_MODE_GCM,
3091		       },
3092	 .auth_first = 0,
3093	 },
3094	{
3095	 .type = CRYPTO_ALG_TYPE_AEAD,
3096	 .alg.aead = {
3097		 .base = {
3098			.cra_name = "rfc4309(ccm(aes))",
3099			.cra_driver_name = "ccm-aes-esp-iproc",
3100			.cra_blocksize = AES_BLOCK_SIZE,
3101			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3102		 },
3103		 .setkey = aead_ccm_esp_setkey,
3104		 .ivsize = CCM_AES_IV_SIZE,
3105		 .maxauthsize = AES_BLOCK_SIZE,
3106	 },
3107	 .cipher_info = {
3108			 .alg = CIPHER_ALG_AES,
3109			 .mode = CIPHER_MODE_CCM,
3110			 },
3111	 .auth_info = {
3112		       .alg = HASH_ALG_AES,
3113		       .mode = HASH_MODE_CCM,
3114		       },
3115	 .auth_first = 0,
3116	 },
3117	{
3118	 .type = CRYPTO_ALG_TYPE_AEAD,
3119	 .alg.aead = {
3120		 .base = {
3121			.cra_name = "rfc4543(gcm(aes))",
3122			.cra_driver_name = "gmac-aes-esp-iproc",
3123			.cra_blocksize = AES_BLOCK_SIZE,
3124			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3125		 },
3126		 .setkey = rfc4543_gcm_esp_setkey,
3127		 .ivsize = GCM_RFC4106_IV_SIZE,
3128		 .maxauthsize = AES_BLOCK_SIZE,
3129	 },
3130	 .cipher_info = {
3131			 .alg = CIPHER_ALG_AES,
3132			 .mode = CIPHER_MODE_GCM,
3133			 },
3134	 .auth_info = {
3135		       .alg = HASH_ALG_AES,
3136		       .mode = HASH_MODE_GCM,
3137		       },
3138	 .auth_first = 0,
3139	 },
3140	{
3141	 .type = CRYPTO_ALG_TYPE_AEAD,
3142	 .alg.aead = {
3143		 .base = {
3144			.cra_name = "authenc(hmac(md5),cbc(aes))",
3145			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3146			.cra_blocksize = AES_BLOCK_SIZE,
3147			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3148				     CRYPTO_ALG_ASYNC |
3149				     CRYPTO_ALG_ALLOCATES_MEMORY
3150		 },
3151		 .setkey = aead_authenc_setkey,
3152		.ivsize = AES_BLOCK_SIZE,
3153		.maxauthsize = MD5_DIGEST_SIZE,
3154	 },
3155	 .cipher_info = {
3156			 .alg = CIPHER_ALG_AES,
3157			 .mode = CIPHER_MODE_CBC,
3158			 },
3159	 .auth_info = {
3160		       .alg = HASH_ALG_MD5,
3161		       .mode = HASH_MODE_HMAC,
3162		       },
3163	 .auth_first = 0,
3164	 },
3165	{
3166	 .type = CRYPTO_ALG_TYPE_AEAD,
3167	 .alg.aead = {
3168		 .base = {
3169			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3170			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3171			.cra_blocksize = AES_BLOCK_SIZE,
3172			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3173				     CRYPTO_ALG_ASYNC |
3174				     CRYPTO_ALG_ALLOCATES_MEMORY
3175		 },
3176		 .setkey = aead_authenc_setkey,
3177		 .ivsize = AES_BLOCK_SIZE,
3178		 .maxauthsize = SHA1_DIGEST_SIZE,
3179	 },
3180	 .cipher_info = {
3181			 .alg = CIPHER_ALG_AES,
3182			 .mode = CIPHER_MODE_CBC,
3183			 },
3184	 .auth_info = {
3185		       .alg = HASH_ALG_SHA1,
3186		       .mode = HASH_MODE_HMAC,
3187		       },
3188	 .auth_first = 0,
3189	 },
3190	{
3191	 .type = CRYPTO_ALG_TYPE_AEAD,
3192	 .alg.aead = {
3193		 .base = {
3194			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3195			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3196			.cra_blocksize = AES_BLOCK_SIZE,
3197			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3198				     CRYPTO_ALG_ASYNC |
3199				     CRYPTO_ALG_ALLOCATES_MEMORY
3200		 },
3201		 .setkey = aead_authenc_setkey,
3202		 .ivsize = AES_BLOCK_SIZE,
3203		 .maxauthsize = SHA256_DIGEST_SIZE,
3204	 },
3205	 .cipher_info = {
3206			 .alg = CIPHER_ALG_AES,
3207			 .mode = CIPHER_MODE_CBC,
3208			 },
3209	 .auth_info = {
3210		       .alg = HASH_ALG_SHA256,
3211		       .mode = HASH_MODE_HMAC,
3212		       },
3213	 .auth_first = 0,
3214	 },
3215	{
3216	 .type = CRYPTO_ALG_TYPE_AEAD,
3217	 .alg.aead = {
3218		 .base = {
3219			.cra_name = "authenc(hmac(md5),cbc(des))",
3220			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3221			.cra_blocksize = DES_BLOCK_SIZE,
3222			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3223				     CRYPTO_ALG_ASYNC |
3224				     CRYPTO_ALG_ALLOCATES_MEMORY
3225		 },
3226		 .setkey = aead_authenc_setkey,
3227		 .ivsize = DES_BLOCK_SIZE,
3228		 .maxauthsize = MD5_DIGEST_SIZE,
3229	 },
3230	 .cipher_info = {
3231			 .alg = CIPHER_ALG_DES,
3232			 .mode = CIPHER_MODE_CBC,
3233			 },
3234	 .auth_info = {
3235		       .alg = HASH_ALG_MD5,
3236		       .mode = HASH_MODE_HMAC,
3237		       },
3238	 .auth_first = 0,
3239	 },
3240	{
3241	 .type = CRYPTO_ALG_TYPE_AEAD,
3242	 .alg.aead = {
3243		 .base = {
3244			.cra_name = "authenc(hmac(sha1),cbc(des))",
3245			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3246			.cra_blocksize = DES_BLOCK_SIZE,
3247			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3248				     CRYPTO_ALG_ASYNC |
3249				     CRYPTO_ALG_ALLOCATES_MEMORY
3250		 },
3251		 .setkey = aead_authenc_setkey,
3252		 .ivsize = DES_BLOCK_SIZE,
3253		 .maxauthsize = SHA1_DIGEST_SIZE,
3254	 },
3255	 .cipher_info = {
3256			 .alg = CIPHER_ALG_DES,
3257			 .mode = CIPHER_MODE_CBC,
3258			 },
3259	 .auth_info = {
3260		       .alg = HASH_ALG_SHA1,
3261		       .mode = HASH_MODE_HMAC,
3262		       },
3263	 .auth_first = 0,
3264	 },
3265	{
3266	 .type = CRYPTO_ALG_TYPE_AEAD,
3267	 .alg.aead = {
3268		 .base = {
3269			.cra_name = "authenc(hmac(sha224),cbc(des))",
3270			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3271			.cra_blocksize = DES_BLOCK_SIZE,
3272			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3273				     CRYPTO_ALG_ASYNC |
3274				     CRYPTO_ALG_ALLOCATES_MEMORY
3275		 },
3276		 .setkey = aead_authenc_setkey,
3277		 .ivsize = DES_BLOCK_SIZE,
3278		 .maxauthsize = SHA224_DIGEST_SIZE,
3279	 },
3280	 .cipher_info = {
3281			 .alg = CIPHER_ALG_DES,
3282			 .mode = CIPHER_MODE_CBC,
3283			 },
3284	 .auth_info = {
3285		       .alg = HASH_ALG_SHA224,
3286		       .mode = HASH_MODE_HMAC,
3287		       },
3288	 .auth_first = 0,
3289	 },
3290	{
3291	 .type = CRYPTO_ALG_TYPE_AEAD,
3292	 .alg.aead = {
3293		 .base = {
3294			.cra_name = "authenc(hmac(sha256),cbc(des))",
3295			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3296			.cra_blocksize = DES_BLOCK_SIZE,
3297			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3298				     CRYPTO_ALG_ASYNC |
3299				     CRYPTO_ALG_ALLOCATES_MEMORY
3300		 },
3301		 .setkey = aead_authenc_setkey,
3302		 .ivsize = DES_BLOCK_SIZE,
3303		 .maxauthsize = SHA256_DIGEST_SIZE,
3304	 },
3305	 .cipher_info = {
3306			 .alg = CIPHER_ALG_DES,
3307			 .mode = CIPHER_MODE_CBC,
3308			 },
3309	 .auth_info = {
3310		       .alg = HASH_ALG_SHA256,
3311		       .mode = HASH_MODE_HMAC,
3312		       },
3313	 .auth_first = 0,
3314	 },
3315	{
3316	 .type = CRYPTO_ALG_TYPE_AEAD,
3317	 .alg.aead = {
3318		 .base = {
3319			.cra_name = "authenc(hmac(sha384),cbc(des))",
3320			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3321			.cra_blocksize = DES_BLOCK_SIZE,
3322			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3323				     CRYPTO_ALG_ASYNC |
3324				     CRYPTO_ALG_ALLOCATES_MEMORY
3325		 },
3326		 .setkey = aead_authenc_setkey,
3327		 .ivsize = DES_BLOCK_SIZE,
3328		 .maxauthsize = SHA384_DIGEST_SIZE,
3329	 },
3330	 .cipher_info = {
3331			 .alg = CIPHER_ALG_DES,
3332			 .mode = CIPHER_MODE_CBC,
3333			 },
3334	 .auth_info = {
3335		       .alg = HASH_ALG_SHA384,
3336		       .mode = HASH_MODE_HMAC,
3337		       },
3338	 .auth_first = 0,
3339	 },
3340	{
3341	 .type = CRYPTO_ALG_TYPE_AEAD,
3342	 .alg.aead = {
3343		 .base = {
3344			.cra_name = "authenc(hmac(sha512),cbc(des))",
3345			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3346			.cra_blocksize = DES_BLOCK_SIZE,
3347			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3348				     CRYPTO_ALG_ASYNC |
3349				     CRYPTO_ALG_ALLOCATES_MEMORY
3350		 },
3351		 .setkey = aead_authenc_setkey,
3352		 .ivsize = DES_BLOCK_SIZE,
3353		 .maxauthsize = SHA512_DIGEST_SIZE,
3354	 },
3355	 .cipher_info = {
3356			 .alg = CIPHER_ALG_DES,
3357			 .mode = CIPHER_MODE_CBC,
3358			 },
3359	 .auth_info = {
3360		       .alg = HASH_ALG_SHA512,
3361		       .mode = HASH_MODE_HMAC,
3362		       },
3363	 .auth_first = 0,
3364	 },
3365	{
3366	 .type = CRYPTO_ALG_TYPE_AEAD,
3367	 .alg.aead = {
3368		 .base = {
3369			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3370			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3371			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3372			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3373				     CRYPTO_ALG_ASYNC |
3374				     CRYPTO_ALG_ALLOCATES_MEMORY
3375		 },
3376		 .setkey = aead_authenc_setkey,
3377		 .ivsize = DES3_EDE_BLOCK_SIZE,
3378		 .maxauthsize = MD5_DIGEST_SIZE,
3379	 },
3380	 .cipher_info = {
3381			 .alg = CIPHER_ALG_3DES,
3382			 .mode = CIPHER_MODE_CBC,
3383			 },
3384	 .auth_info = {
3385		       .alg = HASH_ALG_MD5,
3386		       .mode = HASH_MODE_HMAC,
3387		       },
3388	 .auth_first = 0,
3389	 },
3390	{
3391	 .type = CRYPTO_ALG_TYPE_AEAD,
3392	 .alg.aead = {
3393		 .base = {
3394			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3395			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3396			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3397			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3398				     CRYPTO_ALG_ASYNC |
3399				     CRYPTO_ALG_ALLOCATES_MEMORY
3400		 },
3401		 .setkey = aead_authenc_setkey,
3402		 .ivsize = DES3_EDE_BLOCK_SIZE,
3403		 .maxauthsize = SHA1_DIGEST_SIZE,
3404	 },
3405	 .cipher_info = {
3406			 .alg = CIPHER_ALG_3DES,
3407			 .mode = CIPHER_MODE_CBC,
3408			 },
3409	 .auth_info = {
3410		       .alg = HASH_ALG_SHA1,
3411		       .mode = HASH_MODE_HMAC,
3412		       },
3413	 .auth_first = 0,
3414	 },
3415	{
3416	 .type = CRYPTO_ALG_TYPE_AEAD,
3417	 .alg.aead = {
3418		 .base = {
3419			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3420			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3421			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3422			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3423				     CRYPTO_ALG_ASYNC |
3424				     CRYPTO_ALG_ALLOCATES_MEMORY
3425		 },
3426		 .setkey = aead_authenc_setkey,
3427		 .ivsize = DES3_EDE_BLOCK_SIZE,
3428		 .maxauthsize = SHA224_DIGEST_SIZE,
3429	 },
3430	 .cipher_info = {
3431			 .alg = CIPHER_ALG_3DES,
3432			 .mode = CIPHER_MODE_CBC,
3433			 },
3434	 .auth_info = {
3435		       .alg = HASH_ALG_SHA224,
3436		       .mode = HASH_MODE_HMAC,
3437		       },
3438	 .auth_first = 0,
3439	 },
3440	{
3441	 .type = CRYPTO_ALG_TYPE_AEAD,
3442	 .alg.aead = {
3443		 .base = {
3444			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3445			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3446			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3447			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3448				     CRYPTO_ALG_ASYNC |
3449				     CRYPTO_ALG_ALLOCATES_MEMORY
3450		 },
3451		 .setkey = aead_authenc_setkey,
3452		 .ivsize = DES3_EDE_BLOCK_SIZE,
3453		 .maxauthsize = SHA256_DIGEST_SIZE,
3454	 },
3455	 .cipher_info = {
3456			 .alg = CIPHER_ALG_3DES,
3457			 .mode = CIPHER_MODE_CBC,
3458			 },
3459	 .auth_info = {
3460		       .alg = HASH_ALG_SHA256,
3461		       .mode = HASH_MODE_HMAC,
3462		       },
3463	 .auth_first = 0,
3464	 },
3465	{
3466	 .type = CRYPTO_ALG_TYPE_AEAD,
3467	 .alg.aead = {
3468		 .base = {
3469			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3470			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3471			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3472			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3473				     CRYPTO_ALG_ASYNC |
3474				     CRYPTO_ALG_ALLOCATES_MEMORY
3475		 },
3476		 .setkey = aead_authenc_setkey,
3477		 .ivsize = DES3_EDE_BLOCK_SIZE,
3478		 .maxauthsize = SHA384_DIGEST_SIZE,
3479	 },
3480	 .cipher_info = {
3481			 .alg = CIPHER_ALG_3DES,
3482			 .mode = CIPHER_MODE_CBC,
3483			 },
3484	 .auth_info = {
3485		       .alg = HASH_ALG_SHA384,
3486		       .mode = HASH_MODE_HMAC,
3487		       },
3488	 .auth_first = 0,
3489	 },
3490	{
3491	 .type = CRYPTO_ALG_TYPE_AEAD,
3492	 .alg.aead = {
3493		 .base = {
3494			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3495			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3496			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3497			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3498				     CRYPTO_ALG_ASYNC |
3499				     CRYPTO_ALG_ALLOCATES_MEMORY
3500		 },
3501		 .setkey = aead_authenc_setkey,
3502		 .ivsize = DES3_EDE_BLOCK_SIZE,
3503		 .maxauthsize = SHA512_DIGEST_SIZE,
3504	 },
3505	 .cipher_info = {
3506			 .alg = CIPHER_ALG_3DES,
3507			 .mode = CIPHER_MODE_CBC,
3508			 },
3509	 .auth_info = {
3510		       .alg = HASH_ALG_SHA512,
3511		       .mode = HASH_MODE_HMAC,
3512		       },
3513	 .auth_first = 0,
3514	 },
3515
3516/* SKCIPHER algorithms. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3517	{
3518	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3519	 .alg.skcipher = {
3520			.base.cra_name = "cbc(des)",
3521			.base.cra_driver_name = "cbc-des-iproc",
3522			.base.cra_blocksize = DES_BLOCK_SIZE,
3523			.min_keysize = DES_KEY_SIZE,
3524			.max_keysize = DES_KEY_SIZE,
3525			.ivsize = DES_BLOCK_SIZE,
 
 
3526			},
3527	 .cipher_info = {
3528			 .alg = CIPHER_ALG_DES,
3529			 .mode = CIPHER_MODE_CBC,
3530			 },
3531	 .auth_info = {
3532		       .alg = HASH_ALG_NONE,
3533		       .mode = HASH_MODE_NONE,
3534		       },
3535	 },
3536	{
3537	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3538	 .alg.skcipher = {
3539			.base.cra_name = "ecb(des)",
3540			.base.cra_driver_name = "ecb-des-iproc",
3541			.base.cra_blocksize = DES_BLOCK_SIZE,
3542			.min_keysize = DES_KEY_SIZE,
3543			.max_keysize = DES_KEY_SIZE,
3544			.ivsize = 0,
 
 
3545			},
3546	 .cipher_info = {
3547			 .alg = CIPHER_ALG_DES,
3548			 .mode = CIPHER_MODE_ECB,
3549			 },
3550	 .auth_info = {
3551		       .alg = HASH_ALG_NONE,
3552		       .mode = HASH_MODE_NONE,
3553		       },
3554	 },
3555	{
3556	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3557	 .alg.skcipher = {
3558			.base.cra_name = "cbc(des3_ede)",
3559			.base.cra_driver_name = "cbc-des3-iproc",
3560			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3561			.min_keysize = DES3_EDE_KEY_SIZE,
3562			.max_keysize = DES3_EDE_KEY_SIZE,
3563			.ivsize = DES3_EDE_BLOCK_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3564			},
3565	 .cipher_info = {
3566			 .alg = CIPHER_ALG_3DES,
3567			 .mode = CIPHER_MODE_CBC,
3568			 },
3569	 .auth_info = {
3570		       .alg = HASH_ALG_NONE,
3571		       .mode = HASH_MODE_NONE,
3572		       },
3573	 },
3574	{
3575	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3576	 .alg.skcipher = {
3577			.base.cra_name = "ecb(des3_ede)",
3578			.base.cra_driver_name = "ecb-des3-iproc",
3579			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3580			.min_keysize = DES3_EDE_KEY_SIZE,
3581			.max_keysize = DES3_EDE_KEY_SIZE,
3582			.ivsize = 0,
 
 
3583			},
3584	 .cipher_info = {
3585			 .alg = CIPHER_ALG_3DES,
3586			 .mode = CIPHER_MODE_ECB,
3587			 },
3588	 .auth_info = {
3589		       .alg = HASH_ALG_NONE,
3590		       .mode = HASH_MODE_NONE,
3591		       },
3592	 },
3593	{
3594	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3595	 .alg.skcipher = {
3596			.base.cra_name = "cbc(aes)",
3597			.base.cra_driver_name = "cbc-aes-iproc",
3598			.base.cra_blocksize = AES_BLOCK_SIZE,
3599			.min_keysize = AES_MIN_KEY_SIZE,
3600			.max_keysize = AES_MAX_KEY_SIZE,
3601			.ivsize = AES_BLOCK_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3602			},
3603	 .cipher_info = {
3604			 .alg = CIPHER_ALG_AES,
3605			 .mode = CIPHER_MODE_CBC,
3606			 },
3607	 .auth_info = {
3608		       .alg = HASH_ALG_NONE,
3609		       .mode = HASH_MODE_NONE,
3610		       },
3611	 },
3612	{
3613	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3614	 .alg.skcipher = {
3615			.base.cra_name = "ecb(aes)",
3616			.base.cra_driver_name = "ecb-aes-iproc",
3617			.base.cra_blocksize = AES_BLOCK_SIZE,
3618			.min_keysize = AES_MIN_KEY_SIZE,
3619			.max_keysize = AES_MAX_KEY_SIZE,
3620			.ivsize = 0,
 
 
3621			},
3622	 .cipher_info = {
3623			 .alg = CIPHER_ALG_AES,
3624			 .mode = CIPHER_MODE_ECB,
3625			 },
3626	 .auth_info = {
3627		       .alg = HASH_ALG_NONE,
3628		       .mode = HASH_MODE_NONE,
3629		       },
3630	 },
3631	{
3632	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3633	 .alg.skcipher = {
3634			.base.cra_name = "ctr(aes)",
3635			.base.cra_driver_name = "ctr-aes-iproc",
3636			.base.cra_blocksize = AES_BLOCK_SIZE,
3637			.min_keysize = AES_MIN_KEY_SIZE,
3638			.max_keysize = AES_MAX_KEY_SIZE,
3639			.ivsize = AES_BLOCK_SIZE,
 
 
3640			},
3641	 .cipher_info = {
3642			 .alg = CIPHER_ALG_AES,
3643			 .mode = CIPHER_MODE_CTR,
3644			 },
3645	 .auth_info = {
3646		       .alg = HASH_ALG_NONE,
3647		       .mode = HASH_MODE_NONE,
3648		       },
3649	 },
3650{
3651	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3652	 .alg.skcipher = {
3653			.base.cra_name = "xts(aes)",
3654			.base.cra_driver_name = "xts-aes-iproc",
3655			.base.cra_blocksize = AES_BLOCK_SIZE,
3656			.min_keysize = 2 * AES_MIN_KEY_SIZE,
3657			.max_keysize = 2 * AES_MAX_KEY_SIZE,
3658			.ivsize = AES_BLOCK_SIZE,
 
 
3659			},
3660	 .cipher_info = {
3661			 .alg = CIPHER_ALG_AES,
3662			 .mode = CIPHER_MODE_XTS,
3663			 },
3664	 .auth_info = {
3665		       .alg = HASH_ALG_NONE,
3666		       .mode = HASH_MODE_NONE,
3667		       },
3668	 },
3669
3670/* AHASH algorithms. */
3671	{
3672	 .type = CRYPTO_ALG_TYPE_AHASH,
3673	 .alg.hash = {
3674		      .halg.digestsize = MD5_DIGEST_SIZE,
3675		      .halg.base = {
3676				    .cra_name = "md5",
3677				    .cra_driver_name = "md5-iproc",
3678				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3679				    .cra_flags = CRYPTO_ALG_ASYNC |
3680						 CRYPTO_ALG_ALLOCATES_MEMORY,
3681				}
3682		      },
3683	 .cipher_info = {
3684			 .alg = CIPHER_ALG_NONE,
3685			 .mode = CIPHER_MODE_NONE,
3686			 },
3687	 .auth_info = {
3688		       .alg = HASH_ALG_MD5,
3689		       .mode = HASH_MODE_HASH,
3690		       },
3691	 },
3692	{
3693	 .type = CRYPTO_ALG_TYPE_AHASH,
3694	 .alg.hash = {
3695		      .halg.digestsize = MD5_DIGEST_SIZE,
3696		      .halg.base = {
3697				    .cra_name = "hmac(md5)",
3698				    .cra_driver_name = "hmac-md5-iproc",
3699				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3700				}
3701		      },
3702	 .cipher_info = {
3703			 .alg = CIPHER_ALG_NONE,
3704			 .mode = CIPHER_MODE_NONE,
3705			 },
3706	 .auth_info = {
3707		       .alg = HASH_ALG_MD5,
3708		       .mode = HASH_MODE_HMAC,
3709		       },
3710	 },
3711	{.type = CRYPTO_ALG_TYPE_AHASH,
3712	 .alg.hash = {
3713		      .halg.digestsize = SHA1_DIGEST_SIZE,
3714		      .halg.base = {
3715				    .cra_name = "sha1",
3716				    .cra_driver_name = "sha1-iproc",
3717				    .cra_blocksize = SHA1_BLOCK_SIZE,
3718				}
3719		      },
3720	 .cipher_info = {
3721			 .alg = CIPHER_ALG_NONE,
3722			 .mode = CIPHER_MODE_NONE,
3723			 },
3724	 .auth_info = {
3725		       .alg = HASH_ALG_SHA1,
3726		       .mode = HASH_MODE_HASH,
3727		       },
3728	 },
3729	{.type = CRYPTO_ALG_TYPE_AHASH,
3730	 .alg.hash = {
3731		      .halg.digestsize = SHA1_DIGEST_SIZE,
3732		      .halg.base = {
3733				    .cra_name = "hmac(sha1)",
3734				    .cra_driver_name = "hmac-sha1-iproc",
3735				    .cra_blocksize = SHA1_BLOCK_SIZE,
3736				}
3737		      },
3738	 .cipher_info = {
3739			 .alg = CIPHER_ALG_NONE,
3740			 .mode = CIPHER_MODE_NONE,
3741			 },
3742	 .auth_info = {
3743		       .alg = HASH_ALG_SHA1,
3744		       .mode = HASH_MODE_HMAC,
3745		       },
3746	 },
3747	{.type = CRYPTO_ALG_TYPE_AHASH,
3748	 .alg.hash = {
3749			.halg.digestsize = SHA224_DIGEST_SIZE,
3750			.halg.base = {
3751				    .cra_name = "sha224",
3752				    .cra_driver_name = "sha224-iproc",
3753				    .cra_blocksize = SHA224_BLOCK_SIZE,
3754			}
3755		      },
3756	 .cipher_info = {
3757			 .alg = CIPHER_ALG_NONE,
3758			 .mode = CIPHER_MODE_NONE,
3759			 },
3760	 .auth_info = {
3761		       .alg = HASH_ALG_SHA224,
3762		       .mode = HASH_MODE_HASH,
3763		       },
3764	 },
3765	{.type = CRYPTO_ALG_TYPE_AHASH,
3766	 .alg.hash = {
3767		      .halg.digestsize = SHA224_DIGEST_SIZE,
3768		      .halg.base = {
3769				    .cra_name = "hmac(sha224)",
3770				    .cra_driver_name = "hmac-sha224-iproc",
3771				    .cra_blocksize = SHA224_BLOCK_SIZE,
3772				}
3773		      },
3774	 .cipher_info = {
3775			 .alg = CIPHER_ALG_NONE,
3776			 .mode = CIPHER_MODE_NONE,
3777			 },
3778	 .auth_info = {
3779		       .alg = HASH_ALG_SHA224,
3780		       .mode = HASH_MODE_HMAC,
3781		       },
3782	 },
3783	{.type = CRYPTO_ALG_TYPE_AHASH,
3784	 .alg.hash = {
3785		      .halg.digestsize = SHA256_DIGEST_SIZE,
3786		      .halg.base = {
3787				    .cra_name = "sha256",
3788				    .cra_driver_name = "sha256-iproc",
3789				    .cra_blocksize = SHA256_BLOCK_SIZE,
3790				}
3791		      },
3792	 .cipher_info = {
3793			 .alg = CIPHER_ALG_NONE,
3794			 .mode = CIPHER_MODE_NONE,
3795			 },
3796	 .auth_info = {
3797		       .alg = HASH_ALG_SHA256,
3798		       .mode = HASH_MODE_HASH,
3799		       },
3800	 },
3801	{.type = CRYPTO_ALG_TYPE_AHASH,
3802	 .alg.hash = {
3803		      .halg.digestsize = SHA256_DIGEST_SIZE,
3804		      .halg.base = {
3805				    .cra_name = "hmac(sha256)",
3806				    .cra_driver_name = "hmac-sha256-iproc",
3807				    .cra_blocksize = SHA256_BLOCK_SIZE,
3808				}
3809		      },
3810	 .cipher_info = {
3811			 .alg = CIPHER_ALG_NONE,
3812			 .mode = CIPHER_MODE_NONE,
3813			 },
3814	 .auth_info = {
3815		       .alg = HASH_ALG_SHA256,
3816		       .mode = HASH_MODE_HMAC,
3817		       },
3818	 },
3819	{
3820	.type = CRYPTO_ALG_TYPE_AHASH,
3821	 .alg.hash = {
3822		      .halg.digestsize = SHA384_DIGEST_SIZE,
3823		      .halg.base = {
3824				    .cra_name = "sha384",
3825				    .cra_driver_name = "sha384-iproc",
3826				    .cra_blocksize = SHA384_BLOCK_SIZE,
3827				}
3828		      },
3829	 .cipher_info = {
3830			 .alg = CIPHER_ALG_NONE,
3831			 .mode = CIPHER_MODE_NONE,
3832			 },
3833	 .auth_info = {
3834		       .alg = HASH_ALG_SHA384,
3835		       .mode = HASH_MODE_HASH,
3836		       },
3837	 },
3838	{
3839	 .type = CRYPTO_ALG_TYPE_AHASH,
3840	 .alg.hash = {
3841		      .halg.digestsize = SHA384_DIGEST_SIZE,
3842		      .halg.base = {
3843				    .cra_name = "hmac(sha384)",
3844				    .cra_driver_name = "hmac-sha384-iproc",
3845				    .cra_blocksize = SHA384_BLOCK_SIZE,
3846				}
3847		      },
3848	 .cipher_info = {
3849			 .alg = CIPHER_ALG_NONE,
3850			 .mode = CIPHER_MODE_NONE,
3851			 },
3852	 .auth_info = {
3853		       .alg = HASH_ALG_SHA384,
3854		       .mode = HASH_MODE_HMAC,
3855		       },
3856	 },
3857	{
3858	 .type = CRYPTO_ALG_TYPE_AHASH,
3859	 .alg.hash = {
3860		      .halg.digestsize = SHA512_DIGEST_SIZE,
3861		      .halg.base = {
3862				    .cra_name = "sha512",
3863				    .cra_driver_name = "sha512-iproc",
3864				    .cra_blocksize = SHA512_BLOCK_SIZE,
3865				}
3866		      },
3867	 .cipher_info = {
3868			 .alg = CIPHER_ALG_NONE,
3869			 .mode = CIPHER_MODE_NONE,
3870			 },
3871	 .auth_info = {
3872		       .alg = HASH_ALG_SHA512,
3873		       .mode = HASH_MODE_HASH,
3874		       },
3875	 },
3876	{
3877	 .type = CRYPTO_ALG_TYPE_AHASH,
3878	 .alg.hash = {
3879		      .halg.digestsize = SHA512_DIGEST_SIZE,
3880		      .halg.base = {
3881				    .cra_name = "hmac(sha512)",
3882				    .cra_driver_name = "hmac-sha512-iproc",
3883				    .cra_blocksize = SHA512_BLOCK_SIZE,
3884				}
3885		      },
3886	 .cipher_info = {
3887			 .alg = CIPHER_ALG_NONE,
3888			 .mode = CIPHER_MODE_NONE,
3889			 },
3890	 .auth_info = {
3891		       .alg = HASH_ALG_SHA512,
3892		       .mode = HASH_MODE_HMAC,
3893		       },
3894	 },
3895	{
3896	 .type = CRYPTO_ALG_TYPE_AHASH,
3897	 .alg.hash = {
3898		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3899		      .halg.base = {
3900				    .cra_name = "sha3-224",
3901				    .cra_driver_name = "sha3-224-iproc",
3902				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3903				}
3904		      },
3905	 .cipher_info = {
3906			 .alg = CIPHER_ALG_NONE,
3907			 .mode = CIPHER_MODE_NONE,
3908			 },
3909	 .auth_info = {
3910		       .alg = HASH_ALG_SHA3_224,
3911		       .mode = HASH_MODE_HASH,
3912		       },
3913	 },
3914	{
3915	 .type = CRYPTO_ALG_TYPE_AHASH,
3916	 .alg.hash = {
3917		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3918		      .halg.base = {
3919				    .cra_name = "hmac(sha3-224)",
3920				    .cra_driver_name = "hmac-sha3-224-iproc",
3921				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3922				}
3923		      },
3924	 .cipher_info = {
3925			 .alg = CIPHER_ALG_NONE,
3926			 .mode = CIPHER_MODE_NONE,
3927			 },
3928	 .auth_info = {
3929		       .alg = HASH_ALG_SHA3_224,
3930		       .mode = HASH_MODE_HMAC
3931		       },
3932	 },
3933	{
3934	 .type = CRYPTO_ALG_TYPE_AHASH,
3935	 .alg.hash = {
3936		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
3937		      .halg.base = {
3938				    .cra_name = "sha3-256",
3939				    .cra_driver_name = "sha3-256-iproc",
3940				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
3941				}
3942		      },
3943	 .cipher_info = {
3944			 .alg = CIPHER_ALG_NONE,
3945			 .mode = CIPHER_MODE_NONE,
3946			 },
3947	 .auth_info = {
3948		       .alg = HASH_ALG_SHA3_256,
3949		       .mode = HASH_MODE_HASH,
3950		       },
3951	 },
3952	{
3953	 .type = CRYPTO_ALG_TYPE_AHASH,
3954	 .alg.hash = {
3955		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
3956		      .halg.base = {
3957				    .cra_name = "hmac(sha3-256)",
3958				    .cra_driver_name = "hmac-sha3-256-iproc",
3959				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
3960				}
3961		      },
3962	 .cipher_info = {
3963			 .alg = CIPHER_ALG_NONE,
3964			 .mode = CIPHER_MODE_NONE,
3965			 },
3966	 .auth_info = {
3967		       .alg = HASH_ALG_SHA3_256,
3968		       .mode = HASH_MODE_HMAC,
3969		       },
3970	 },
3971	{
3972	 .type = CRYPTO_ALG_TYPE_AHASH,
3973	 .alg.hash = {
3974		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
3975		      .halg.base = {
3976				    .cra_name = "sha3-384",
3977				    .cra_driver_name = "sha3-384-iproc",
3978				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3979				}
3980		      },
3981	 .cipher_info = {
3982			 .alg = CIPHER_ALG_NONE,
3983			 .mode = CIPHER_MODE_NONE,
3984			 },
3985	 .auth_info = {
3986		       .alg = HASH_ALG_SHA3_384,
3987		       .mode = HASH_MODE_HASH,
3988		       },
3989	 },
3990	{
3991	 .type = CRYPTO_ALG_TYPE_AHASH,
3992	 .alg.hash = {
3993		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
3994		      .halg.base = {
3995				    .cra_name = "hmac(sha3-384)",
3996				    .cra_driver_name = "hmac-sha3-384-iproc",
3997				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
3998				}
3999		      },
4000	 .cipher_info = {
4001			 .alg = CIPHER_ALG_NONE,
4002			 .mode = CIPHER_MODE_NONE,
4003			 },
4004	 .auth_info = {
4005		       .alg = HASH_ALG_SHA3_384,
4006		       .mode = HASH_MODE_HMAC,
4007		       },
4008	 },
4009	{
4010	 .type = CRYPTO_ALG_TYPE_AHASH,
4011	 .alg.hash = {
4012		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4013		      .halg.base = {
4014				    .cra_name = "sha3-512",
4015				    .cra_driver_name = "sha3-512-iproc",
4016				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4017				}
4018		      },
4019	 .cipher_info = {
4020			 .alg = CIPHER_ALG_NONE,
4021			 .mode = CIPHER_MODE_NONE,
4022			 },
4023	 .auth_info = {
4024		       .alg = HASH_ALG_SHA3_512,
4025		       .mode = HASH_MODE_HASH,
4026		       },
4027	 },
4028	{
4029	 .type = CRYPTO_ALG_TYPE_AHASH,
4030	 .alg.hash = {
4031		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4032		      .halg.base = {
4033				    .cra_name = "hmac(sha3-512)",
4034				    .cra_driver_name = "hmac-sha3-512-iproc",
4035				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4036				}
4037		      },
4038	 .cipher_info = {
4039			 .alg = CIPHER_ALG_NONE,
4040			 .mode = CIPHER_MODE_NONE,
4041			 },
4042	 .auth_info = {
4043		       .alg = HASH_ALG_SHA3_512,
4044		       .mode = HASH_MODE_HMAC,
4045		       },
4046	 },
4047	{
4048	 .type = CRYPTO_ALG_TYPE_AHASH,
4049	 .alg.hash = {
4050		      .halg.digestsize = AES_BLOCK_SIZE,
4051		      .halg.base = {
4052				    .cra_name = "xcbc(aes)",
4053				    .cra_driver_name = "xcbc-aes-iproc",
4054				    .cra_blocksize = AES_BLOCK_SIZE,
4055				}
4056		      },
4057	 .cipher_info = {
4058			 .alg = CIPHER_ALG_NONE,
4059			 .mode = CIPHER_MODE_NONE,
4060			 },
4061	 .auth_info = {
4062		       .alg = HASH_ALG_AES,
4063		       .mode = HASH_MODE_XCBC,
4064		       },
4065	 },
4066	{
4067	 .type = CRYPTO_ALG_TYPE_AHASH,
4068	 .alg.hash = {
4069		      .halg.digestsize = AES_BLOCK_SIZE,
4070		      .halg.base = {
4071				    .cra_name = "cmac(aes)",
4072				    .cra_driver_name = "cmac-aes-iproc",
4073				    .cra_blocksize = AES_BLOCK_SIZE,
4074				}
4075		      },
4076	 .cipher_info = {
4077			 .alg = CIPHER_ALG_NONE,
4078			 .mode = CIPHER_MODE_NONE,
4079			 },
4080	 .auth_info = {
4081		       .alg = HASH_ALG_AES,
4082		       .mode = HASH_MODE_CMAC,
4083		       },
4084	 },
4085};
4086
4087static int generic_cra_init(struct crypto_tfm *tfm,
4088			    struct iproc_alg_s *cipher_alg)
4089{
4090	struct spu_hw *spu = &iproc_priv.spu;
4091	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4092	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4093
4094	flow_log("%s()\n", __func__);
4095
4096	ctx->alg = cipher_alg;
4097	ctx->cipher = cipher_alg->cipher_info;
4098	ctx->auth = cipher_alg->auth_info;
4099	ctx->auth_first = cipher_alg->auth_first;
4100	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4101						    ctx->cipher.mode,
4102						    blocksize);
4103	ctx->fallback_cipher = NULL;
4104
4105	ctx->enckeylen = 0;
4106	ctx->authkeylen = 0;
4107
4108	atomic_inc(&iproc_priv.stream_count);
4109	atomic_inc(&iproc_priv.session_count);
4110
4111	return 0;
4112}
4113
4114static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4115{
4116	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4117	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4118	struct iproc_alg_s *cipher_alg;
4119
4120	flow_log("%s()\n", __func__);
4121
4122	crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4123
4124	cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4125	return generic_cra_init(tfm, cipher_alg);
4126}
4127
4128static int ahash_cra_init(struct crypto_tfm *tfm)
4129{
4130	int err;
4131	struct crypto_alg *alg = tfm->__crt_alg;
4132	struct iproc_alg_s *cipher_alg;
4133
4134	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4135				  alg.hash);
4136
4137	err = generic_cra_init(tfm, cipher_alg);
4138	flow_log("%s()\n", __func__);
4139
4140	/*
4141	 * export state size has to be < 512 bytes. So don't include msg bufs
4142	 * in state size.
4143	 */
4144	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4145				 sizeof(struct iproc_reqctx_s));
4146
4147	return err;
4148}
4149
4150static int aead_cra_init(struct crypto_aead *aead)
4151{
4152	unsigned int reqsize = sizeof(struct iproc_reqctx_s);
4153	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4154	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4155	struct crypto_alg *alg = tfm->__crt_alg;
4156	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4157	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4158						      alg.aead);
4159
4160	int err = generic_cra_init(tfm, cipher_alg);
4161
4162	flow_log("%s()\n", __func__);
4163
 
4164	ctx->is_esp = false;
4165	ctx->salt_len = 0;
4166	ctx->salt_offset = 0;
4167
4168	/* random first IV */
4169	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4170	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4171
4172	if (err)
4173		goto out;
4174
4175	if (!(alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK))
4176		goto reqsize;
4177
4178	flow_log("%s() creating fallback cipher\n", __func__);
4179
4180	ctx->fallback_cipher = crypto_alloc_aead(alg->cra_name, 0,
4181						 CRYPTO_ALG_ASYNC |
4182						 CRYPTO_ALG_NEED_FALLBACK);
4183	if (IS_ERR(ctx->fallback_cipher)) {
4184		pr_err("%s() Error: failed to allocate fallback for %s\n",
4185		       __func__, alg->cra_name);
4186		return PTR_ERR(ctx->fallback_cipher);
4187	}
4188
4189	reqsize += crypto_aead_reqsize(ctx->fallback_cipher);
4190
4191reqsize:
4192	crypto_aead_set_reqsize(aead, reqsize);
4193
4194out:
4195	return err;
4196}
4197
4198static void generic_cra_exit(struct crypto_tfm *tfm)
4199{
4200	atomic_dec(&iproc_priv.session_count);
4201}
4202
4203static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4204{
4205	generic_cra_exit(crypto_skcipher_tfm(tfm));
4206}
4207
4208static void aead_cra_exit(struct crypto_aead *aead)
4209{
4210	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4211	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4212
4213	generic_cra_exit(tfm);
4214
4215	if (ctx->fallback_cipher) {
4216		crypto_free_aead(ctx->fallback_cipher);
4217		ctx->fallback_cipher = NULL;
4218	}
4219}
4220
4221/**
4222 * spu_functions_register() - Specify hardware-specific SPU functions based on
4223 * SPU type read from device tree.
4224 * @dev:	device structure
4225 * @spu_type:	SPU hardware generation
4226 * @spu_subtype: SPU hardware version
4227 */
4228static void spu_functions_register(struct device *dev,
4229				   enum spu_spu_type spu_type,
4230				   enum spu_spu_subtype spu_subtype)
4231{
4232	struct spu_hw *spu = &iproc_priv.spu;
4233
4234	if (spu_type == SPU_TYPE_SPUM) {
4235		dev_dbg(dev, "Registering SPUM functions");
4236		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4237		spu->spu_payload_length = spum_payload_length;
4238		spu->spu_response_hdr_len = spum_response_hdr_len;
4239		spu->spu_hash_pad_len = spum_hash_pad_len;
4240		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4241		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4242		spu->spu_aead_ivlen = spum_aead_ivlen;
4243		spu->spu_hash_type = spum_hash_type;
4244		spu->spu_digest_size = spum_digest_size;
4245		spu->spu_create_request = spum_create_request;
4246		spu->spu_cipher_req_init = spum_cipher_req_init;
4247		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4248		spu->spu_request_pad = spum_request_pad;
4249		spu->spu_tx_status_len = spum_tx_status_len;
4250		spu->spu_rx_status_len = spum_rx_status_len;
4251		spu->spu_status_process = spum_status_process;
4252		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4253		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4254		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4255		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4256			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4257		else
4258			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4259	} else {
4260		dev_dbg(dev, "Registering SPU2 functions");
4261		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4262		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4263		spu->spu_payload_length = spu2_payload_length;
4264		spu->spu_response_hdr_len = spu2_response_hdr_len;
4265		spu->spu_hash_pad_len = spu2_hash_pad_len;
4266		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4267		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4268		spu->spu_aead_ivlen = spu2_aead_ivlen;
4269		spu->spu_hash_type = spu2_hash_type;
4270		spu->spu_digest_size = spu2_digest_size;
4271		spu->spu_create_request = spu2_create_request;
4272		spu->spu_cipher_req_init = spu2_cipher_req_init;
4273		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4274		spu->spu_request_pad = spu2_request_pad;
4275		spu->spu_tx_status_len = spu2_tx_status_len;
4276		spu->spu_rx_status_len = spu2_rx_status_len;
4277		spu->spu_status_process = spu2_status_process;
4278		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4279		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4280		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4281	}
4282}
4283
4284/**
4285 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4286 * channel for the SPU being probed.
4287 * @dev:  SPU driver device structure
4288 *
4289 * Return: 0 if successful
4290 *	   < 0 otherwise
4291 */
4292static int spu_mb_init(struct device *dev)
4293{
4294	struct mbox_client *mcl = &iproc_priv.mcl;
4295	int err, i;
4296
4297	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4298				  sizeof(struct mbox_chan *), GFP_KERNEL);
4299	if (!iproc_priv.mbox)
4300		return -ENOMEM;
4301
4302	mcl->dev = dev;
4303	mcl->tx_block = false;
4304	mcl->tx_tout = 0;
4305	mcl->knows_txdone = true;
4306	mcl->rx_callback = spu_rx_callback;
4307	mcl->tx_done = NULL;
4308
4309	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4310		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4311		if (IS_ERR(iproc_priv.mbox[i])) {
4312			err = PTR_ERR(iproc_priv.mbox[i]);
4313			dev_err(dev,
4314				"Mbox channel %d request failed with err %d",
4315				i, err);
4316			iproc_priv.mbox[i] = NULL;
4317			goto free_channels;
4318		}
4319	}
4320
4321	return 0;
4322free_channels:
4323	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4324		if (iproc_priv.mbox[i])
4325			mbox_free_channel(iproc_priv.mbox[i]);
4326	}
4327
4328	return err;
4329}
4330
4331static void spu_mb_release(struct platform_device *pdev)
4332{
4333	int i;
4334
4335	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4336		mbox_free_channel(iproc_priv.mbox[i]);
4337}
4338
4339static void spu_counters_init(void)
4340{
4341	int i;
4342	int j;
4343
4344	atomic_set(&iproc_priv.session_count, 0);
4345	atomic_set(&iproc_priv.stream_count, 0);
4346	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4347	atomic64_set(&iproc_priv.bytes_in, 0);
4348	atomic64_set(&iproc_priv.bytes_out, 0);
4349	for (i = 0; i < SPU_OP_NUM; i++) {
4350		atomic_set(&iproc_priv.op_counts[i], 0);
4351		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4352	}
4353	for (i = 0; i < CIPHER_ALG_LAST; i++)
4354		for (j = 0; j < CIPHER_MODE_LAST; j++)
4355			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4356
4357	for (i = 0; i < HASH_ALG_LAST; i++) {
4358		atomic_set(&iproc_priv.hash_cnt[i], 0);
4359		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4360	}
4361	for (i = 0; i < AEAD_TYPE_LAST; i++)
4362		atomic_set(&iproc_priv.aead_cnt[i], 0);
4363
4364	atomic_set(&iproc_priv.mb_no_spc, 0);
4365	atomic_set(&iproc_priv.mb_send_fail, 0);
4366	atomic_set(&iproc_priv.bad_icv, 0);
4367}
4368
4369static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4370{
4371	struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
 
4372	int err;
4373
4374	crypto->base.cra_module = THIS_MODULE;
4375	crypto->base.cra_priority = cipher_pri;
4376	crypto->base.cra_alignmask = 0;
4377	crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4378	crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4379				 CRYPTO_ALG_ALLOCATES_MEMORY |
4380				 CRYPTO_ALG_KERN_DRIVER_ONLY;
4381
4382	crypto->init = skcipher_init_tfm;
4383	crypto->exit = skcipher_exit_tfm;
4384	crypto->setkey = skcipher_setkey;
4385	crypto->encrypt = skcipher_encrypt;
4386	crypto->decrypt = skcipher_decrypt;
 
 
 
 
 
 
4387
4388	err = crypto_register_skcipher(crypto);
4389	/* Mark alg as having been registered, if successful */
4390	if (err == 0)
4391		driver_alg->registered = true;
4392	pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4393	return err;
4394}
4395
4396static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4397{
4398	struct spu_hw *spu = &iproc_priv.spu;
4399	struct ahash_alg *hash = &driver_alg->alg.hash;
4400	int err;
4401
4402	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4403	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4404	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4405	    (spu->spu_type == SPU_TYPE_SPUM))
4406		return 0;
4407
4408	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4409	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4410	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4411		return 0;
4412
4413	hash->halg.base.cra_module = THIS_MODULE;
4414	hash->halg.base.cra_priority = hash_pri;
4415	hash->halg.base.cra_alignmask = 0;
4416	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4417	hash->halg.base.cra_init = ahash_cra_init;
4418	hash->halg.base.cra_exit = generic_cra_exit;
4419	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4420				    CRYPTO_ALG_ALLOCATES_MEMORY;
4421	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4422
4423	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4424		hash->init = ahash_init;
4425		hash->update = ahash_update;
4426		hash->final = ahash_final;
4427		hash->finup = ahash_finup;
4428		hash->digest = ahash_digest;
4429		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4430		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4431		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4432			hash->setkey = ahash_setkey;
4433		}
4434	} else {
4435		hash->setkey = ahash_hmac_setkey;
4436		hash->init = ahash_hmac_init;
4437		hash->update = ahash_hmac_update;
4438		hash->final = ahash_hmac_final;
4439		hash->finup = ahash_hmac_finup;
4440		hash->digest = ahash_hmac_digest;
4441	}
4442	hash->export = ahash_export;
4443	hash->import = ahash_import;
4444
4445	err = crypto_register_ahash(hash);
4446	/* Mark alg as having been registered, if successful */
4447	if (err == 0)
4448		driver_alg->registered = true;
4449	pr_debug("  registered ahash %s\n",
4450		 hash->halg.base.cra_driver_name);
4451	return err;
4452}
4453
4454static int spu_register_aead(struct iproc_alg_s *driver_alg)
4455{
4456	struct aead_alg *aead = &driver_alg->alg.aead;
4457	int err;
4458
4459	aead->base.cra_module = THIS_MODULE;
4460	aead->base.cra_priority = aead_pri;
4461	aead->base.cra_alignmask = 0;
4462	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4463
4464	aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4465	/* setkey set in alg initialization */
4466	aead->setauthsize = aead_setauthsize;
4467	aead->encrypt = aead_encrypt;
4468	aead->decrypt = aead_decrypt;
4469	aead->init = aead_cra_init;
4470	aead->exit = aead_cra_exit;
4471
4472	err = crypto_register_aead(aead);
4473	/* Mark alg as having been registered, if successful */
4474	if (err == 0)
4475		driver_alg->registered = true;
4476	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4477	return err;
4478}
4479
4480/* register crypto algorithms the device supports */
4481static int spu_algs_register(struct device *dev)
4482{
4483	int i, j;
4484	int err;
4485
4486	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4487		switch (driver_algs[i].type) {
4488		case CRYPTO_ALG_TYPE_SKCIPHER:
4489			err = spu_register_skcipher(&driver_algs[i]);
4490			break;
4491		case CRYPTO_ALG_TYPE_AHASH:
4492			err = spu_register_ahash(&driver_algs[i]);
4493			break;
4494		case CRYPTO_ALG_TYPE_AEAD:
4495			err = spu_register_aead(&driver_algs[i]);
4496			break;
4497		default:
4498			dev_err(dev,
4499				"iproc-crypto: unknown alg type: %d",
4500				driver_algs[i].type);
4501			err = -EINVAL;
4502		}
4503
4504		if (err) {
4505			dev_err(dev, "alg registration failed with error %d\n",
4506				err);
4507			goto err_algs;
4508		}
4509	}
4510
4511	return 0;
4512
4513err_algs:
4514	for (j = 0; j < i; j++) {
4515		/* Skip any algorithm not registered */
4516		if (!driver_algs[j].registered)
4517			continue;
4518		switch (driver_algs[j].type) {
4519		case CRYPTO_ALG_TYPE_SKCIPHER:
4520			crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4521			driver_algs[j].registered = false;
4522			break;
4523		case CRYPTO_ALG_TYPE_AHASH:
4524			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4525			driver_algs[j].registered = false;
4526			break;
4527		case CRYPTO_ALG_TYPE_AEAD:
4528			crypto_unregister_aead(&driver_algs[j].alg.aead);
4529			driver_algs[j].registered = false;
4530			break;
4531		}
4532	}
4533	return err;
4534}
4535
4536/* ==================== Kernel Platform API ==================== */
4537
4538static struct spu_type_subtype spum_ns2_types = {
4539	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4540};
4541
4542static struct spu_type_subtype spum_nsp_types = {
4543	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4544};
4545
4546static struct spu_type_subtype spu2_types = {
4547	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4548};
4549
4550static struct spu_type_subtype spu2_v2_types = {
4551	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4552};
4553
4554static const struct of_device_id bcm_spu_dt_ids[] = {
4555	{
4556		.compatible = "brcm,spum-crypto",
4557		.data = &spum_ns2_types,
4558	},
4559	{
4560		.compatible = "brcm,spum-nsp-crypto",
4561		.data = &spum_nsp_types,
4562	},
4563	{
4564		.compatible = "brcm,spu2-crypto",
4565		.data = &spu2_types,
4566	},
4567	{
4568		.compatible = "brcm,spu2-v2-crypto",
4569		.data = &spu2_v2_types,
4570	},
4571	{ /* sentinel */ }
4572};
4573
4574MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4575
4576static int spu_dt_read(struct platform_device *pdev)
4577{
4578	struct device *dev = &pdev->dev;
4579	struct spu_hw *spu = &iproc_priv.spu;
4580	struct resource *spu_ctrl_regs;
4581	const struct spu_type_subtype *matched_spu_type;
4582	struct device_node *dn = pdev->dev.of_node;
4583	int err, i;
4584
4585	/* Count number of mailbox channels */
4586	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4587
4588	matched_spu_type = of_device_get_match_data(dev);
4589	if (!matched_spu_type) {
4590		dev_err(dev, "Failed to match device\n");
4591		return -ENODEV;
4592	}
4593
4594	spu->spu_type = matched_spu_type->type;
4595	spu->spu_subtype = matched_spu_type->subtype;
4596
 
4597	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4598		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4599
4600		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4601		if (IS_ERR(spu->reg_vbase[i])) {
4602			err = PTR_ERR(spu->reg_vbase[i]);
4603			dev_err(dev, "Failed to map registers: %d\n",
4604				err);
4605			spu->reg_vbase[i] = NULL;
4606			return err;
4607		}
4608	}
4609	spu->num_spu = i;
4610	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4611
4612	return 0;
4613}
4614
4615static int bcm_spu_probe(struct platform_device *pdev)
4616{
4617	struct device *dev = &pdev->dev;
4618	struct spu_hw *spu = &iproc_priv.spu;
4619	int err;
4620
4621	iproc_priv.pdev  = pdev;
4622	platform_set_drvdata(iproc_priv.pdev,
4623			     &iproc_priv);
4624
4625	err = spu_dt_read(pdev);
4626	if (err < 0)
4627		goto failure;
4628
4629	err = spu_mb_init(dev);
4630	if (err < 0)
4631		goto failure;
4632
4633	if (spu->spu_type == SPU_TYPE_SPUM)
4634		iproc_priv.bcm_hdr_len = 8;
4635	else if (spu->spu_type == SPU_TYPE_SPU2)
4636		iproc_priv.bcm_hdr_len = 0;
4637
4638	spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4639
4640	spu_counters_init();
4641
4642	spu_setup_debugfs();
4643
4644	err = spu_algs_register(dev);
4645	if (err < 0)
4646		goto fail_reg;
4647
4648	return 0;
4649
4650fail_reg:
4651	spu_free_debugfs();
4652failure:
4653	spu_mb_release(pdev);
4654	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4655
4656	return err;
4657}
4658
4659static void bcm_spu_remove(struct platform_device *pdev)
4660{
4661	int i;
4662	struct device *dev = &pdev->dev;
4663	char *cdn;
4664
4665	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4666		/*
4667		 * Not all algorithms were registered, depending on whether
4668		 * hardware is SPU or SPU2.  So here we make sure to skip
4669		 * those algorithms that were not previously registered.
4670		 */
4671		if (!driver_algs[i].registered)
4672			continue;
4673
4674		switch (driver_algs[i].type) {
4675		case CRYPTO_ALG_TYPE_SKCIPHER:
4676			crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4677			dev_dbg(dev, "  unregistered cipher %s\n",
4678				driver_algs[i].alg.skcipher.base.cra_driver_name);
4679			driver_algs[i].registered = false;
4680			break;
4681		case CRYPTO_ALG_TYPE_AHASH:
4682			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4683			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4684			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4685			driver_algs[i].registered = false;
4686			break;
4687		case CRYPTO_ALG_TYPE_AEAD:
4688			crypto_unregister_aead(&driver_algs[i].alg.aead);
4689			dev_dbg(dev, "  unregistered aead %s\n",
4690				driver_algs[i].alg.aead.base.cra_driver_name);
4691			driver_algs[i].registered = false;
4692			break;
4693		}
4694	}
4695	spu_free_debugfs();
4696	spu_mb_release(pdev);
 
4697}
4698
4699/* ===== Kernel Module API ===== */
4700
4701static struct platform_driver bcm_spu_pdriver = {
4702	.driver = {
4703		   .name = "brcm-spu-crypto",
4704		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4705		   },
4706	.probe = bcm_spu_probe,
4707	.remove_new = bcm_spu_remove,
4708};
4709module_platform_driver(bcm_spu_pdriver);
4710
4711MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4712MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4713MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2016 Broadcom
   4 */
   5
   6#include <linux/err.h>
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/errno.h>
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/platform_device.h>
  13#include <linux/scatterlist.h>
  14#include <linux/crypto.h>
  15#include <linux/kthread.h>
  16#include <linux/rtnetlink.h>
  17#include <linux/sched.h>
  18#include <linux/of_address.h>
  19#include <linux/of_device.h>
  20#include <linux/io.h>
  21#include <linux/bitops.h>
  22
  23#include <crypto/algapi.h>
  24#include <crypto/aead.h>
  25#include <crypto/internal/aead.h>
  26#include <crypto/aes.h>
  27#include <crypto/internal/des.h>
  28#include <crypto/hmac.h>
  29#include <crypto/sha.h>
  30#include <crypto/md5.h>
  31#include <crypto/authenc.h>
  32#include <crypto/skcipher.h>
  33#include <crypto/hash.h>
 
 
  34#include <crypto/sha3.h>
  35
  36#include "util.h"
  37#include "cipher.h"
  38#include "spu.h"
  39#include "spum.h"
  40#include "spu2.h"
  41
  42/* ================= Device Structure ================== */
  43
  44struct device_private iproc_priv;
  45
  46/* ==================== Parameters ===================== */
  47
  48int flow_debug_logging;
  49module_param(flow_debug_logging, int, 0644);
  50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
  51
  52int packet_debug_logging;
  53module_param(packet_debug_logging, int, 0644);
  54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
  55
  56int debug_logging_sleep;
  57module_param(debug_logging_sleep, int, 0644);
  58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
  59
  60/*
  61 * The value of these module parameters is used to set the priority for each
  62 * algo type when this driver registers algos with the kernel crypto API.
  63 * To use a priority other than the default, set the priority in the insmod or
  64 * modprobe. Changing the module priority after init time has no effect.
  65 *
  66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
  67 * algos, but more preferred than generic software algos.
  68 */
  69static int cipher_pri = 150;
  70module_param(cipher_pri, int, 0644);
  71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
  72
  73static int hash_pri = 100;
  74module_param(hash_pri, int, 0644);
  75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
  76
  77static int aead_pri = 150;
  78module_param(aead_pri, int, 0644);
  79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
  80
  81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
  82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
  83 * 0x60 - ring 0
  84 * 0x68 - ring 1
  85 * 0x70 - ring 2
  86 * 0x78 - ring 3
  87 */
  88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
  89/*
  90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
  91 * is set dynamically after reading SPU type from device tree.
  92 */
  93#define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
  94
  95/* min and max time to sleep before retrying when mbox queue is full. usec */
  96#define MBOX_SLEEP_MIN  800
  97#define MBOX_SLEEP_MAX 1000
  98
  99/**
 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
 101 * channel in round robin order.
 102 *
 103 * Return:  channel index
 104 */
 105static u8 select_channel(void)
 106{
 107	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
 108
 109	return chan_idx % iproc_priv.spu.num_chan;
 110}
 111
 112/**
 113 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
 114 * receive a SPU response message for an ablkcipher request. Includes buffers to
 115 * catch SPU message headers and the response data.
 116 * @mssg:	mailbox message containing the receive sg
 117 * @rctx:	crypto request context
 118 * @rx_frag_num: number of scatterlist elements required to hold the
 119 *		SPU response message
 120 * @chunksize:	Number of bytes of response data expected
 121 * @stat_pad_len: Number of bytes required to pad the STAT field to
 122 *		a 4-byte boundary
 123 *
 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 125 * when the request completes, whether the request is handled successfully or
 126 * there is an error.
 127 *
 128 * Returns:
 129 *   0 if successful
 130 *   < 0 if an error
 131 */
 132static int
 133spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
 134			    struct iproc_reqctx_s *rctx,
 135			    u8 rx_frag_num,
 136			    unsigned int chunksize, u32 stat_pad_len)
 137{
 138	struct spu_hw *spu = &iproc_priv.spu;
 139	struct scatterlist *sg;	/* used to build sgs in mbox message */
 140	struct iproc_ctx_s *ctx = rctx->ctx;
 141	u32 datalen;		/* Number of bytes of response data expected */
 142
 143	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 144				rctx->gfp);
 145	if (!mssg->spu.dst)
 146		return -ENOMEM;
 147
 148	sg = mssg->spu.dst;
 149	sg_init_table(sg, rx_frag_num);
 150	/* Space for SPU message header */
 151	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 152
 153	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
 154	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 155	    spu->spu_xts_tweak_in_payload())
 156		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
 157			   SPU_XTS_TWEAK_SIZE);
 158
 159	/* Copy in each dst sg entry from request, up to chunksize */
 160	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
 161				 rctx->dst_nents, chunksize);
 162	if (datalen < chunksize) {
 163		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
 164		       __func__, chunksize, datalen);
 165		return -EFAULT;
 166	}
 167
 168	if (ctx->cipher.alg == CIPHER_ALG_RC4)
 169		/* Add buffer to catch 260-byte SUPDT field for RC4 */
 170		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
 171
 172	if (stat_pad_len)
 173		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 174
 175	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 176	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 177
 178	return 0;
 179}
 180
 181/**
 182 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
 183 * send a SPU request message for an ablkcipher request. Includes SPU message
 184 * headers and the request data.
 185 * @mssg:	mailbox message containing the transmit sg
 186 * @rctx:	crypto request context
 187 * @tx_frag_num: number of scatterlist elements required to construct the
 188 *		SPU request message
 189 * @chunksize:	Number of bytes of request data
 190 * @pad_len:	Number of pad bytes
 191 *
 192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 193 * when the request completes, whether the request is handled successfully or
 194 * there is an error.
 195 *
 196 * Returns:
 197 *   0 if successful
 198 *   < 0 if an error
 199 */
 200static int
 201spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
 202			    struct iproc_reqctx_s *rctx,
 203			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
 204{
 205	struct spu_hw *spu = &iproc_priv.spu;
 206	struct scatterlist *sg;	/* used to build sgs in mbox message */
 207	struct iproc_ctx_s *ctx = rctx->ctx;
 208	u32 datalen;		/* Number of bytes of response data expected */
 209	u32 stat_len;
 210
 211	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 212				rctx->gfp);
 213	if (unlikely(!mssg->spu.src))
 214		return -ENOMEM;
 215
 216	sg = mssg->spu.src;
 217	sg_init_table(sg, tx_frag_num);
 218
 219	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 220		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
 221
 222	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
 223	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 224	    spu->spu_xts_tweak_in_payload())
 225		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
 226
 227	/* Copy in each src sg entry from request, up to chunksize */
 228	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 229				 rctx->src_nents, chunksize);
 230	if (unlikely(datalen < chunksize)) {
 231		pr_err("%s(): failed to copy src sg to mbox msg",
 232		       __func__);
 233		return -EFAULT;
 234	}
 235
 236	if (pad_len)
 237		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 238
 239	stat_len = spu->spu_tx_status_len();
 240	if (stat_len) {
 241		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 242		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 243	}
 244	return 0;
 245}
 246
 247static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
 248				u8 chan_idx)
 249{
 250	int err;
 251	int retry_cnt = 0;
 252	struct device *dev = &(iproc_priv.pdev->dev);
 253
 254	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
 255	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
 256		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
 257			/*
 258			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
 259			 * not in atomic context and we can wait and try again.
 260			 */
 261			retry_cnt++;
 262			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
 263			err = mbox_send_message(iproc_priv.mbox[chan_idx],
 264						mssg);
 265			atomic_inc(&iproc_priv.mb_no_spc);
 266		}
 267	}
 268	if (err < 0) {
 269		atomic_inc(&iproc_priv.mb_send_fail);
 270		return err;
 271	}
 272
 273	/* Check error returned by mailbox controller */
 274	err = mssg->error;
 275	if (unlikely(err < 0)) {
 276		dev_err(dev, "message error %d", err);
 277		/* Signal txdone for mailbox channel */
 278	}
 279
 280	/* Signal txdone for mailbox channel */
 281	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
 282	return err;
 283}
 284
 285/**
 286 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
 287 * a single SPU request message, starting at the current position in the request
 288 * data.
 289 * @rctx:	Crypto request context
 290 *
 291 * This may be called on the crypto API thread, or, when a request is so large
 292 * it must be broken into multiple SPU messages, on the thread used to invoke
 293 * the response callback. When requests are broken into multiple SPU
 294 * messages, we assume subsequent messages depend on previous results, and
 295 * thus always wait for previous results before submitting the next message.
 296 * Because requests are submitted in lock step like this, there is no need
 297 * to synchronize access to request data structures.
 298 *
 299 * Return: -EINPROGRESS: request has been accepted and result will be returned
 300 *			 asynchronously
 301 *         Any other value indicates an error
 302 */
 303static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
 304{
 305	struct spu_hw *spu = &iproc_priv.spu;
 306	struct crypto_async_request *areq = rctx->parent;
 307	struct ablkcipher_request *req =
 308	    container_of(areq, struct ablkcipher_request, base);
 309	struct iproc_ctx_s *ctx = rctx->ctx;
 310	struct spu_cipher_parms cipher_parms;
 311	int err = 0;
 312	unsigned int chunksize = 0;	/* Num bytes of request to submit */
 313	int remaining = 0;	/* Bytes of request still to process */
 314	int chunk_start;	/* Beginning of data for current SPU msg */
 315
 316	/* IV or ctr value to use in this SPU msg */
 317	u8 local_iv_ctr[MAX_IV_SIZE];
 318	u32 stat_pad_len;	/* num bytes to align status field */
 319	u32 pad_len;		/* total length of all padding */
 320	bool update_key = false;
 321	struct brcm_message *mssg;	/* mailbox message */
 322
 323	/* number of entries in src and dst sg in mailbox message. */
 324	u8 rx_frag_num = 2;	/* response header and STATUS */
 325	u8 tx_frag_num = 1;	/* request header */
 326
 327	flow_log("%s\n", __func__);
 328
 329	cipher_parms.alg = ctx->cipher.alg;
 330	cipher_parms.mode = ctx->cipher.mode;
 331	cipher_parms.type = ctx->cipher_type;
 332	cipher_parms.key_len = ctx->enckeylen;
 333	cipher_parms.key_buf = ctx->enckey;
 334	cipher_parms.iv_buf = local_iv_ctr;
 335	cipher_parms.iv_len = rctx->iv_ctr_len;
 336
 337	mssg = &rctx->mb_mssg;
 338	chunk_start = rctx->src_sent;
 339	remaining = rctx->total_todo - chunk_start;
 340
 341	/* determine the chunk we are breaking off and update the indexes */
 342	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 343	    (remaining > ctx->max_payload))
 344		chunksize = ctx->max_payload;
 345	else
 346		chunksize = remaining;
 347
 348	rctx->src_sent += chunksize;
 349	rctx->total_sent = rctx->src_sent;
 350
 351	/* Count number of sg entries to be included in this request */
 352	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
 353	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
 354
 355	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 356	    rctx->is_encrypt && chunk_start)
 357		/*
 358		 * Encrypting non-first first chunk. Copy last block of
 359		 * previous result to IV for this chunk.
 360		 */
 361		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
 362				    rctx->iv_ctr_len,
 363				    chunk_start - rctx->iv_ctr_len);
 364
 365	if (rctx->iv_ctr_len) {
 366		/* get our local copy of the iv */
 367		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
 368				 rctx->iv_ctr_len);
 369
 370		/* generate the next IV if possible */
 371		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 372		    !rctx->is_encrypt) {
 373			/*
 374			 * CBC Decrypt: next IV is the last ciphertext block in
 375			 * this chunk
 376			 */
 377			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
 378					    rctx->iv_ctr_len,
 379					    rctx->src_sent - rctx->iv_ctr_len);
 380		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
 381			/*
 382			 * The SPU hardware increments the counter once for
 383			 * each AES block of 16 bytes. So update the counter
 384			 * for the next chunk, if there is one. Note that for
 385			 * this chunk, the counter has already been copied to
 386			 * local_iv_ctr. We can assume a block size of 16,
 387			 * because we only support CTR mode for AES, not for
 388			 * any other cipher alg.
 389			 */
 390			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
 391		}
 392	}
 393
 394	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
 395		rx_frag_num++;
 396		if (chunk_start) {
 397			/*
 398			 * for non-first RC4 chunks, use SUPDT from previous
 399			 * response as key for this chunk.
 400			 */
 401			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
 402			update_key = true;
 403			cipher_parms.type = CIPHER_TYPE_UPDT;
 404		} else if (!rctx->is_encrypt) {
 405			/*
 406			 * First RC4 chunk. For decrypt, key in pre-built msg
 407			 * header may have been changed if encrypt required
 408			 * multiple chunks. So revert the key to the
 409			 * ctx->enckey value.
 410			 */
 411			update_key = true;
 412			cipher_parms.type = CIPHER_TYPE_INIT;
 413		}
 414	}
 415
 416	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 417		flow_log("max_payload infinite\n");
 418	else
 419		flow_log("max_payload %u\n", ctx->max_payload);
 420
 421	flow_log("sent:%u start:%u remains:%u size:%u\n",
 422		 rctx->src_sent, chunk_start, remaining, chunksize);
 423
 424	/* Copy SPU header template created at setkey time */
 425	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
 426	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
 427
 428	/*
 429	 * Pass SUPDT field as key. Key field in finish() call is only used
 430	 * when update_key has been set above for RC4. Will be ignored in
 431	 * all other cases.
 432	 */
 433	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 434				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
 435				   &cipher_parms, update_key, chunksize);
 436
 437	atomic64_add(chunksize, &iproc_priv.bytes_out);
 438
 439	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
 440	if (stat_pad_len)
 441		rx_frag_num++;
 442	pad_len = stat_pad_len;
 443	if (pad_len) {
 444		tx_frag_num++;
 445		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
 446				     0, ctx->auth.alg, ctx->auth.mode,
 447				     rctx->total_sent, stat_pad_len);
 448	}
 449
 450	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 451			      ctx->spu_req_hdr_len);
 452	packet_log("payload:\n");
 453	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
 454	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 455
 456	/*
 457	 * Build mailbox message containing SPU request msg and rx buffers
 458	 * to catch response message
 459	 */
 460	memset(mssg, 0, sizeof(*mssg));
 461	mssg->type = BRCM_MESSAGE_SPU;
 462	mssg->ctx = rctx;	/* Will be returned in response */
 463
 464	/* Create rx scatterlist to catch result */
 465	rx_frag_num += rctx->dst_nents;
 466
 467	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 468	    spu->spu_xts_tweak_in_payload())
 469		rx_frag_num++;	/* extra sg to insert tweak */
 470
 471	err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
 472					  stat_pad_len);
 473	if (err)
 474		return err;
 475
 476	/* Create tx scatterlist containing SPU request message */
 477	tx_frag_num += rctx->src_nents;
 478	if (spu->spu_tx_status_len())
 479		tx_frag_num++;
 480
 481	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 482	    spu->spu_xts_tweak_in_payload())
 483		tx_frag_num++;	/* extra sg to insert tweak */
 484
 485	err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
 486					  pad_len);
 487	if (err)
 488		return err;
 489
 490	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 491	if (unlikely(err < 0))
 492		return err;
 493
 494	return -EINPROGRESS;
 495}
 496
 497/**
 498 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
 499 * total received count for the request and updates global stats.
 500 * @rctx:	Crypto request context
 501 */
 502static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
 503{
 504	struct spu_hw *spu = &iproc_priv.spu;
 505#ifdef DEBUG
 506	struct crypto_async_request *areq = rctx->parent;
 507	struct ablkcipher_request *req = ablkcipher_request_cast(areq);
 508#endif
 509	struct iproc_ctx_s *ctx = rctx->ctx;
 510	u32 payload_len;
 511
 512	/* See how much data was returned */
 513	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
 514
 515	/*
 516	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
 517	 * encrypted tweak ("i") value; we don't count those.
 518	 */
 519	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 520	    spu->spu_xts_tweak_in_payload() &&
 521	    (payload_len >= SPU_XTS_TWEAK_SIZE))
 522		payload_len -= SPU_XTS_TWEAK_SIZE;
 523
 524	atomic64_add(payload_len, &iproc_priv.bytes_in);
 525
 526	flow_log("%s() offset: %u, bd_len: %u BD:\n",
 527		 __func__, rctx->total_received, payload_len);
 528
 529	dump_sg(req->dst, rctx->total_received, payload_len);
 530	if (ctx->cipher.alg == CIPHER_ALG_RC4)
 531		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
 532			    SPU_SUPDT_LEN);
 533
 534	rctx->total_received += payload_len;
 535	if (rctx->total_received == rctx->total_todo) {
 536		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
 537		atomic_inc(
 538		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
 539	}
 540}
 541
 542/**
 543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
 544 * receive a SPU response message for an ahash request.
 545 * @mssg:	mailbox message containing the receive sg
 546 * @rctx:	crypto request context
 547 * @rx_frag_num: number of scatterlist elements required to hold the
 548 *		SPU response message
 549 * @digestsize: length of hash digest, in bytes
 550 * @stat_pad_len: Number of bytes required to pad the STAT field to
 551 *		a 4-byte boundary
 552 *
 553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 554 * when the request completes, whether the request is handled successfully or
 555 * there is an error.
 556 *
 557 * Return:
 558 *   0 if successful
 559 *   < 0 if an error
 560 */
 561static int
 562spu_ahash_rx_sg_create(struct brcm_message *mssg,
 563		       struct iproc_reqctx_s *rctx,
 564		       u8 rx_frag_num, unsigned int digestsize,
 565		       u32 stat_pad_len)
 566{
 567	struct spu_hw *spu = &iproc_priv.spu;
 568	struct scatterlist *sg;	/* used to build sgs in mbox message */
 569	struct iproc_ctx_s *ctx = rctx->ctx;
 570
 571	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 572				rctx->gfp);
 573	if (!mssg->spu.dst)
 574		return -ENOMEM;
 575
 576	sg = mssg->spu.dst;
 577	sg_init_table(sg, rx_frag_num);
 578	/* Space for SPU message header */
 579	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 580
 581	/* Space for digest */
 582	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
 583
 584	if (stat_pad_len)
 585		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 586
 587	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 588	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 589	return 0;
 590}
 591
 592/**
 593 * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
 594 * a SPU request message for an ahash request. Includes SPU message headers and
 595 * the request data.
 596 * @mssg:	mailbox message containing the transmit sg
 597 * @rctx:	crypto request context
 598 * @tx_frag_num: number of scatterlist elements required to construct the
 599 *		SPU request message
 600 * @spu_hdr_len: length in bytes of SPU message header
 601 * @hash_carry_len: Number of bytes of data carried over from previous req
 602 * @new_data_len: Number of bytes of new request data
 603 * @pad_len:	Number of pad bytes
 604 *
 605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 606 * when the request completes, whether the request is handled successfully or
 607 * there is an error.
 608 *
 609 * Return:
 610 *   0 if successful
 611 *   < 0 if an error
 612 */
 613static int
 614spu_ahash_tx_sg_create(struct brcm_message *mssg,
 615		       struct iproc_reqctx_s *rctx,
 616		       u8 tx_frag_num,
 617		       u32 spu_hdr_len,
 618		       unsigned int hash_carry_len,
 619		       unsigned int new_data_len, u32 pad_len)
 620{
 621	struct spu_hw *spu = &iproc_priv.spu;
 622	struct scatterlist *sg;	/* used to build sgs in mbox message */
 623	u32 datalen;		/* Number of bytes of response data expected */
 624	u32 stat_len;
 625
 626	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 627				rctx->gfp);
 628	if (!mssg->spu.src)
 629		return -ENOMEM;
 630
 631	sg = mssg->spu.src;
 632	sg_init_table(sg, tx_frag_num);
 633
 634	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 635		   BCM_HDR_LEN + spu_hdr_len);
 636
 637	if (hash_carry_len)
 638		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
 639
 640	if (new_data_len) {
 641		/* Copy in each src sg entry from request, up to chunksize */
 642		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 643					 rctx->src_nents, new_data_len);
 644		if (datalen < new_data_len) {
 645			pr_err("%s(): failed to copy src sg to mbox msg",
 646			       __func__);
 647			return -EFAULT;
 648		}
 649	}
 650
 651	if (pad_len)
 652		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 653
 654	stat_len = spu->spu_tx_status_len();
 655	if (stat_len) {
 656		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 657		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 658	}
 659
 660	return 0;
 661}
 662
 663/**
 664 * handle_ahash_req() - Process an asynchronous hash request from the crypto
 665 * API.
 666 * @rctx:  Crypto request context
 667 *
 668 * Builds a SPU request message embedded in a mailbox message and submits the
 669 * mailbox message on a selected mailbox channel. The SPU request message is
 670 * constructed as a scatterlist, including entries from the crypto API's
 671 * src scatterlist to avoid copying the data to be hashed. This function is
 672 * called either on the thread from the crypto API, or, in the case that the
 673 * crypto API request is too large to fit in a single SPU request message,
 674 * on the thread that invokes the receive callback with a response message.
 675 * Because some operations require the response from one chunk before the next
 676 * chunk can be submitted, we always wait for the response for the previous
 677 * chunk before submitting the next chunk. Because requests are submitted in
 678 * lock step like this, there is no need to synchronize access to request data
 679 * structures.
 680 *
 681 * Return:
 682 *   -EINPROGRESS: request has been submitted to SPU and response will be
 683 *		   returned asynchronously
 684 *   -EAGAIN:      non-final request included a small amount of data, which for
 685 *		   efficiency we did not submit to the SPU, but instead stored
 686 *		   to be submitted to the SPU with the next part of the request
 687 *   other:        an error code
 688 */
 689static int handle_ahash_req(struct iproc_reqctx_s *rctx)
 690{
 691	struct spu_hw *spu = &iproc_priv.spu;
 692	struct crypto_async_request *areq = rctx->parent;
 693	struct ahash_request *req = ahash_request_cast(areq);
 694	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 695	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
 696	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
 697	struct iproc_ctx_s *ctx = rctx->ctx;
 698
 699	/* number of bytes still to be hashed in this req */
 700	unsigned int nbytes_to_hash = 0;
 701	int err = 0;
 702	unsigned int chunksize = 0;	/* length of hash carry + new data */
 703	/*
 704	 * length of new data, not from hash carry, to be submitted in
 705	 * this hw request
 706	 */
 707	unsigned int new_data_len;
 708
 709	unsigned int __maybe_unused chunk_start = 0;
 710	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
 711	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
 712	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
 713	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
 714	struct brcm_message *mssg;	/* mailbox message */
 715	struct spu_request_opts req_opts;
 716	struct spu_cipher_parms cipher_parms;
 717	struct spu_hash_parms hash_parms;
 718	struct spu_aead_parms aead_parms;
 719	unsigned int local_nbuf;
 720	u32 spu_hdr_len;
 721	unsigned int digestsize;
 722	u16 rem = 0;
 723
 724	/*
 725	 * number of entries in src and dst sg. Always includes SPU msg header.
 726	 * rx always includes a buffer to catch digest and STATUS.
 727	 */
 728	u8 rx_frag_num = 3;
 729	u8 tx_frag_num = 1;
 730
 731	flow_log("total_todo %u, total_sent %u\n",
 732		 rctx->total_todo, rctx->total_sent);
 733
 734	memset(&req_opts, 0, sizeof(req_opts));
 735	memset(&cipher_parms, 0, sizeof(cipher_parms));
 736	memset(&hash_parms, 0, sizeof(hash_parms));
 737	memset(&aead_parms, 0, sizeof(aead_parms));
 738
 739	req_opts.bd_suppress = true;
 740	hash_parms.alg = ctx->auth.alg;
 741	hash_parms.mode = ctx->auth.mode;
 742	hash_parms.type = HASH_TYPE_NONE;
 743	hash_parms.key_buf = (u8 *)ctx->authkey;
 744	hash_parms.key_len = ctx->authkeylen;
 745
 746	/*
 747	 * For hash algorithms below assignment looks bit odd but
 748	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
 749	 * to differentiate between 128, 192, 256 bit key values.
 750	 * Based on the key values, hash algorithm is selected.
 751	 * For example for 128 bit key, hash algorithm is AES-128.
 752	 */
 753	cipher_parms.type = ctx->cipher_type;
 754
 755	mssg = &rctx->mb_mssg;
 756	chunk_start = rctx->src_sent;
 757
 758	/*
 759	 * Compute the amount remaining to hash. This may include data
 760	 * carried over from previous requests.
 761	 */
 762	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
 763	chunksize = nbytes_to_hash;
 764	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 765	    (chunksize > ctx->max_payload))
 766		chunksize = ctx->max_payload;
 767
 768	/*
 769	 * If this is not a final request and the request data is not a multiple
 770	 * of a full block, then simply park the extra data and prefix it to the
 771	 * data for the next request.
 772	 */
 773	if (!rctx->is_final) {
 774		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
 775		u16 new_len;  /* len of data to add to hash carry */
 776
 777		rem = chunksize % blocksize;   /* remainder */
 778		if (rem) {
 779			/* chunksize not a multiple of blocksize */
 780			chunksize -= rem;
 781			if (chunksize == 0) {
 782				/* Don't have a full block to submit to hw */
 783				new_len = rem - rctx->hash_carry_len;
 784				sg_copy_part_to_buf(req->src, dest, new_len,
 785						    rctx->src_sent);
 786				rctx->hash_carry_len = rem;
 787				flow_log("Exiting with hash carry len: %u\n",
 788					 rctx->hash_carry_len);
 789				packet_dump("  buf: ",
 790					    rctx->hash_carry,
 791					    rctx->hash_carry_len);
 792				return -EAGAIN;
 793			}
 794		}
 795	}
 796
 797	/* if we have hash carry, then prefix it to the data in this request */
 798	local_nbuf = rctx->hash_carry_len;
 799	rctx->hash_carry_len = 0;
 800	if (local_nbuf)
 801		tx_frag_num++;
 802	new_data_len = chunksize - local_nbuf;
 803
 804	/* Count number of sg entries to be used in this request */
 805	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
 806				       new_data_len);
 807
 808	/* AES hashing keeps key size in type field, so need to copy it here */
 809	if (hash_parms.alg == HASH_ALG_AES)
 810		hash_parms.type = (enum hash_type)cipher_parms.type;
 811	else
 812		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
 813
 814	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
 815					  hash_parms.type);
 816	hash_parms.digestsize =	digestsize;
 817
 818	/* update the indexes */
 819	rctx->total_sent += chunksize;
 820	/* if you sent a prebuf then that wasn't from this req->src */
 821	rctx->src_sent += new_data_len;
 822
 823	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
 824		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
 825							   hash_parms.mode,
 826							   chunksize,
 827							   blocksize);
 828
 829	/*
 830	 * If a non-first chunk, then include the digest returned from the
 831	 * previous chunk so that hw can add to it (except for AES types).
 832	 */
 833	if ((hash_parms.type == HASH_TYPE_UPDT) &&
 834	    (hash_parms.alg != HASH_ALG_AES)) {
 835		hash_parms.key_buf = rctx->incr_hash;
 836		hash_parms.key_len = digestsize;
 837	}
 838
 839	atomic64_add(chunksize, &iproc_priv.bytes_out);
 840
 841	flow_log("%s() final: %u nbuf: %u ",
 842		 __func__, rctx->is_final, local_nbuf);
 843
 844	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 845		flow_log("max_payload infinite\n");
 846	else
 847		flow_log("max_payload %u\n", ctx->max_payload);
 848
 849	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
 850
 851	/* Prepend SPU header with type 3 BCM header */
 852	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
 853
 854	hash_parms.prebuf_len = local_nbuf;
 855	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
 856					      BCM_HDR_LEN,
 857					      &req_opts, &cipher_parms,
 858					      &hash_parms, &aead_parms,
 859					      new_data_len);
 860
 861	if (spu_hdr_len == 0) {
 862		pr_err("Failed to create SPU request header\n");
 863		return -EFAULT;
 864	}
 865
 866	/*
 867	 * Determine total length of padding required. Put all padding in one
 868	 * buffer.
 869	 */
 870	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
 871	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
 872				   0, 0, hash_parms.pad_len);
 873	if (spu->spu_tx_status_len())
 874		stat_pad_len = spu->spu_wordalign_padlen(db_size);
 875	if (stat_pad_len)
 876		rx_frag_num++;
 877	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
 878	if (pad_len) {
 879		tx_frag_num++;
 880		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
 881				     hash_parms.pad_len, ctx->auth.alg,
 882				     ctx->auth.mode, rctx->total_sent,
 883				     stat_pad_len);
 884	}
 885
 886	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 887			      spu_hdr_len);
 888	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
 889	flow_log("Data:\n");
 890	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
 891	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 892
 893	/*
 894	 * Build mailbox message containing SPU request msg and rx buffers
 895	 * to catch response message
 896	 */
 897	memset(mssg, 0, sizeof(*mssg));
 898	mssg->type = BRCM_MESSAGE_SPU;
 899	mssg->ctx = rctx;	/* Will be returned in response */
 900
 901	/* Create rx scatterlist to catch result */
 902	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
 903				     stat_pad_len);
 904	if (err)
 905		return err;
 906
 907	/* Create tx scatterlist containing SPU request message */
 908	tx_frag_num += rctx->src_nents;
 909	if (spu->spu_tx_status_len())
 910		tx_frag_num++;
 911	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
 912				     local_nbuf, new_data_len, pad_len);
 913	if (err)
 914		return err;
 915
 916	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 917	if (unlikely(err < 0))
 918		return err;
 919
 920	return -EINPROGRESS;
 921}
 922
 923/**
 924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
 925 * for an HMAC request.
 926 * @req:  The HMAC request from the crypto API
 927 * @ctx:  The session context
 928 *
 929 * Return: 0 if synchronous hash operation successful
 930 *         -EINVAL if the hash algo is unrecognized
 931 *         any other value indicates an error
 932 */
 933static int spu_hmac_outer_hash(struct ahash_request *req,
 934			       struct iproc_ctx_s *ctx)
 935{
 936	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 937	unsigned int blocksize =
 938		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 939	int rc;
 940
 941	switch (ctx->auth.alg) {
 942	case HASH_ALG_MD5:
 943		rc = do_shash("md5", req->result, ctx->opad, blocksize,
 944			      req->result, ctx->digestsize, NULL, 0);
 945		break;
 946	case HASH_ALG_SHA1:
 947		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
 948			      req->result, ctx->digestsize, NULL, 0);
 949		break;
 950	case HASH_ALG_SHA224:
 951		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
 952			      req->result, ctx->digestsize, NULL, 0);
 953		break;
 954	case HASH_ALG_SHA256:
 955		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
 956			      req->result, ctx->digestsize, NULL, 0);
 957		break;
 958	case HASH_ALG_SHA384:
 959		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
 960			      req->result, ctx->digestsize, NULL, 0);
 961		break;
 962	case HASH_ALG_SHA512:
 963		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
 964			      req->result, ctx->digestsize, NULL, 0);
 965		break;
 966	default:
 967		pr_err("%s() Error : unknown hmac type\n", __func__);
 968		rc = -EINVAL;
 969	}
 970	return rc;
 971}
 972
 973/**
 974 * ahash_req_done() - Process a hash result from the SPU hardware.
 975 * @rctx: Crypto request context
 976 *
 977 * Return: 0 if successful
 978 *         < 0 if an error
 979 */
 980static int ahash_req_done(struct iproc_reqctx_s *rctx)
 981{
 982	struct spu_hw *spu = &iproc_priv.spu;
 983	struct crypto_async_request *areq = rctx->parent;
 984	struct ahash_request *req = ahash_request_cast(areq);
 985	struct iproc_ctx_s *ctx = rctx->ctx;
 986	int err;
 987
 988	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
 989
 990	if (spu->spu_type == SPU_TYPE_SPUM) {
 991		/* byte swap the output from the UPDT function to network byte
 992		 * order
 993		 */
 994		if (ctx->auth.alg == HASH_ALG_MD5) {
 995			__swab32s((u32 *)req->result);
 996			__swab32s(((u32 *)req->result) + 1);
 997			__swab32s(((u32 *)req->result) + 2);
 998			__swab32s(((u32 *)req->result) + 3);
 999			__swab32s(((u32 *)req->result) + 4);
1000		}
1001	}
1002
1003	flow_dump("  digest ", req->result, ctx->digestsize);
1004
1005	/* if this an HMAC then do the outer hash */
1006	if (rctx->is_sw_hmac) {
1007		err = spu_hmac_outer_hash(req, ctx);
1008		if (err < 0)
1009			return err;
1010		flow_dump("  hmac: ", req->result, ctx->digestsize);
1011	}
1012
1013	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1014		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1015		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1016	} else {
1017		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1018		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1019	}
1020
1021	return 0;
1022}
1023
1024/**
1025 * handle_ahash_resp() - Process a SPU response message for a hash request.
1026 * Checks if the entire crypto API request has been processed, and if so,
1027 * invokes post processing on the result.
1028 * @rctx: Crypto request context
1029 */
1030static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1031{
1032	struct iproc_ctx_s *ctx = rctx->ctx;
1033#ifdef DEBUG
1034	struct crypto_async_request *areq = rctx->parent;
1035	struct ahash_request *req = ahash_request_cast(areq);
1036	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1037	unsigned int blocksize =
1038		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1039#endif
1040	/*
1041	 * Save hash to use as input to next op if incremental. Might be copying
1042	 * too much, but that's easier than figuring out actual digest size here
1043	 */
1044	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1045
1046	flow_log("%s() blocksize:%u digestsize:%u\n",
1047		 __func__, blocksize, ctx->digestsize);
1048
1049	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1050
1051	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1052		ahash_req_done(rctx);
1053}
1054
1055/**
1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058 * message headers and the response data.
1059 * @mssg:	mailbox message containing the receive sg
 
1060 * @rctx:	crypto request context
1061 * @rx_frag_num: number of scatterlist elements required to hold the
1062 *		SPU response message
1063 * @assoc_len:	Length of associated data included in the crypto request
1064 * @ret_iv_len: Length of IV returned in response
1065 * @resp_len:	Number of bytes of response data expected to be written to
1066 *              dst buffer from crypto API
1067 * @digestsize: Length of hash digest, in bytes
1068 * @stat_pad_len: Number of bytes required to pad the STAT field to
1069 *		a 4-byte boundary
1070 *
1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072 * when the request completes, whether the request is handled successfully or
1073 * there is an error.
1074 *
1075 * Returns:
1076 *   0 if successful
1077 *   < 0 if an error
1078 */
1079static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1080				 struct aead_request *req,
1081				 struct iproc_reqctx_s *rctx,
1082				 u8 rx_frag_num,
1083				 unsigned int assoc_len,
1084				 u32 ret_iv_len, unsigned int resp_len,
1085				 unsigned int digestsize, u32 stat_pad_len)
1086{
1087	struct spu_hw *spu = &iproc_priv.spu;
1088	struct scatterlist *sg;	/* used to build sgs in mbox message */
1089	struct iproc_ctx_s *ctx = rctx->ctx;
1090	u32 datalen;		/* Number of bytes of response data expected */
1091	u32 assoc_buf_len;
1092	u8 data_padlen = 0;
1093
1094	if (ctx->is_rfc4543) {
1095		/* RFC4543: only pad after data, not after AAD */
1096		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1097							  assoc_len + resp_len);
1098		assoc_buf_len = assoc_len;
1099	} else {
1100		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1101							  resp_len);
1102		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1103						assoc_len, ret_iv_len,
1104						rctx->is_encrypt);
1105	}
1106
1107	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1108		/* ICV (after data) must be in the next 32-bit word for CCM */
1109		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1110							 resp_len +
1111							 data_padlen);
1112
1113	if (data_padlen)
1114		/* have to catch gcm pad in separate buffer */
1115		rx_frag_num++;
1116
1117	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1118				rctx->gfp);
1119	if (!mssg->spu.dst)
1120		return -ENOMEM;
1121
1122	sg = mssg->spu.dst;
1123	sg_init_table(sg, rx_frag_num);
1124
1125	/* Space for SPU message header */
1126	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1127
1128	if (assoc_buf_len) {
1129		/*
1130		 * Don't write directly to req->dst, because SPU may pad the
1131		 * assoc data in the response
1132		 */
1133		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1134		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1135	}
1136
1137	if (resp_len) {
1138		/*
1139		 * Copy in each dst sg entry from request, up to chunksize.
1140		 * dst sg catches just the data. digest caught in separate buf.
1141		 */
1142		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1143					 rctx->dst_nents, resp_len);
1144		if (datalen < (resp_len)) {
1145			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146			       __func__, resp_len, datalen);
1147			return -EFAULT;
1148		}
1149	}
1150
1151	/* If GCM/CCM data is padded, catch padding in separate buffer */
1152	if (data_padlen) {
1153		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1154		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1155	}
1156
1157	/* Always catch ICV in separate buffer */
1158	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1159
1160	flow_log("stat_pad_len %u\n", stat_pad_len);
1161	if (stat_pad_len) {
1162		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1163		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1164	}
1165
1166	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1167	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1168
1169	return 0;
1170}
1171
1172/**
1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174 * SPU request message for an AEAD request. Includes SPU message headers and the
1175 * request data.
1176 * @mssg:	mailbox message containing the transmit sg
1177 * @rctx:	crypto request context
1178 * @tx_frag_num: number of scatterlist elements required to construct the
1179 *		SPU request message
1180 * @spu_hdr_len: length of SPU message header in bytes
1181 * @assoc:	crypto API associated data scatterlist
1182 * @assoc_len:	length of associated data
1183 * @assoc_nents: number of scatterlist entries containing assoc data
1184 * @aead_iv_len: length of AEAD IV, if included
1185 * @chunksize:	Number of bytes of request data
1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187 * @pad_len:	Number of pad bytes
1188 * @incl_icv:	If true, write separate ICV buffer after data and
1189 *              any padding
1190 *
1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192 * when the request completes, whether the request is handled successfully or
1193 * there is an error.
1194 *
1195 * Return:
1196 *   0 if successful
1197 *   < 0 if an error
1198 */
1199static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1200				 struct iproc_reqctx_s *rctx,
1201				 u8 tx_frag_num,
1202				 u32 spu_hdr_len,
1203				 struct scatterlist *assoc,
1204				 unsigned int assoc_len,
1205				 int assoc_nents,
1206				 unsigned int aead_iv_len,
1207				 unsigned int chunksize,
1208				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1209{
1210	struct spu_hw *spu = &iproc_priv.spu;
1211	struct scatterlist *sg;	/* used to build sgs in mbox message */
1212	struct scatterlist *assoc_sg = assoc;
1213	struct iproc_ctx_s *ctx = rctx->ctx;
1214	u32 datalen;		/* Number of bytes of data to write */
1215	u32 written;		/* Number of bytes of data written */
1216	u32 assoc_offset = 0;
1217	u32 stat_len;
1218
1219	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1220				rctx->gfp);
1221	if (!mssg->spu.src)
1222		return -ENOMEM;
1223
1224	sg = mssg->spu.src;
1225	sg_init_table(sg, tx_frag_num);
1226
1227	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1228		   BCM_HDR_LEN + spu_hdr_len);
1229
1230	if (assoc_len) {
1231		/* Copy in each associated data sg entry from request */
1232		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1233					 assoc_nents, assoc_len);
1234		if (written < assoc_len) {
1235			pr_err("%s(): failed to copy assoc sg to mbox msg",
1236			       __func__);
1237			return -EFAULT;
1238		}
1239	}
1240
1241	if (aead_iv_len)
1242		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1243
1244	if (aad_pad_len) {
1245		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1246		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1247	}
1248
1249	datalen = chunksize;
1250	if ((chunksize > ctx->digestsize) && incl_icv)
1251		datalen -= ctx->digestsize;
1252	if (datalen) {
1253		/* For aead, a single msg should consume the entire src sg */
1254		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1255					 rctx->src_nents, datalen);
1256		if (written < datalen) {
1257			pr_err("%s(): failed to copy src sg to mbox msg",
1258			       __func__);
1259			return -EFAULT;
1260		}
1261	}
1262
1263	if (pad_len) {
1264		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1265		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1266	}
1267
1268	if (incl_icv)
1269		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1270
1271	stat_len = spu->spu_tx_status_len();
1272	if (stat_len) {
1273		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1274		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1275	}
1276	return 0;
1277}
1278
1279/**
1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281 * current AEAD request.
1282 * @rctx:  Crypto request context
1283 *
1284 * Unlike other operation types, we assume the length of the request fits in
1285 * a single SPU request message. aead_enqueue() makes sure this is true.
1286 * Comments for other op types regarding threads applies here as well.
1287 *
1288 * Unlike incremental hash ops, where the spu returns the entire hash for
1289 * truncated algs like sha-224, the SPU returns just the truncated hash in
1290 * response to aead requests. So digestsize is always ctx->digestsize here.
1291 *
1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293 *			 returned asynchronously
1294 *         Any other value indicates an error
1295 */
1296static int handle_aead_req(struct iproc_reqctx_s *rctx)
1297{
1298	struct spu_hw *spu = &iproc_priv.spu;
1299	struct crypto_async_request *areq = rctx->parent;
1300	struct aead_request *req = container_of(areq,
1301						struct aead_request, base);
1302	struct iproc_ctx_s *ctx = rctx->ctx;
1303	int err;
1304	unsigned int chunksize;
1305	unsigned int resp_len;
1306	u32 spu_hdr_len;
1307	u32 db_size;
1308	u32 stat_pad_len;
1309	u32 pad_len;
1310	struct brcm_message *mssg;	/* mailbox message */
1311	struct spu_request_opts req_opts;
1312	struct spu_cipher_parms cipher_parms;
1313	struct spu_hash_parms hash_parms;
1314	struct spu_aead_parms aead_parms;
1315	int assoc_nents = 0;
1316	bool incl_icv = false;
1317	unsigned int digestsize = ctx->digestsize;
1318
1319	/* number of entries in src and dst sg. Always includes SPU msg header.
1320	 */
1321	u8 rx_frag_num = 2;	/* and STATUS */
1322	u8 tx_frag_num = 1;
1323
1324	/* doing the whole thing at once */
1325	chunksize = rctx->total_todo;
1326
1327	flow_log("%s: chunksize %u\n", __func__, chunksize);
1328
1329	memset(&req_opts, 0, sizeof(req_opts));
1330	memset(&hash_parms, 0, sizeof(hash_parms));
1331	memset(&aead_parms, 0, sizeof(aead_parms));
1332
1333	req_opts.is_inbound = !(rctx->is_encrypt);
1334	req_opts.auth_first = ctx->auth_first;
1335	req_opts.is_aead = true;
1336	req_opts.is_esp = ctx->is_esp;
1337
1338	cipher_parms.alg = ctx->cipher.alg;
1339	cipher_parms.mode = ctx->cipher.mode;
1340	cipher_parms.type = ctx->cipher_type;
1341	cipher_parms.key_buf = ctx->enckey;
1342	cipher_parms.key_len = ctx->enckeylen;
1343	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1344	cipher_parms.iv_len = rctx->iv_ctr_len;
1345
1346	hash_parms.alg = ctx->auth.alg;
1347	hash_parms.mode = ctx->auth.mode;
1348	hash_parms.type = HASH_TYPE_NONE;
1349	hash_parms.key_buf = (u8 *)ctx->authkey;
1350	hash_parms.key_len = ctx->authkeylen;
1351	hash_parms.digestsize = digestsize;
1352
1353	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1354	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1355		hash_parms.key_len = SHA224_DIGEST_SIZE;
1356
1357	aead_parms.assoc_size = req->assoclen;
1358	if (ctx->is_esp && !ctx->is_rfc4543) {
1359		/*
1360		 * 8-byte IV is included assoc data in request. SPU2
1361		 * expects AAD to include just SPI and seqno. So
1362		 * subtract off the IV len.
1363		 */
1364		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1365
1366		if (rctx->is_encrypt) {
1367			aead_parms.return_iv = true;
1368			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1369			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1370		}
1371	} else {
1372		aead_parms.ret_iv_len = 0;
1373	}
1374
1375	/*
1376	 * Count number of sg entries from the crypto API request that are to
1377	 * be included in this mailbox message. For dst sg, don't count space
1378	 * for digest. Digest gets caught in a separate buffer and copied back
1379	 * to dst sg when processing response.
1380	 */
1381	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1382	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1383	if (aead_parms.assoc_size)
1384		assoc_nents = spu_sg_count(rctx->assoc, 0,
1385					   aead_parms.assoc_size);
1386
1387	mssg = &rctx->mb_mssg;
1388
1389	rctx->total_sent = chunksize;
1390	rctx->src_sent = chunksize;
1391	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1392				    aead_parms.assoc_size,
1393				    aead_parms.ret_iv_len,
1394				    rctx->is_encrypt))
1395		rx_frag_num++;
1396
1397	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1398						rctx->iv_ctr_len);
1399
1400	if (ctx->auth.alg == HASH_ALG_AES)
1401		hash_parms.type = (enum hash_type)ctx->cipher_type;
1402
1403	/* General case AAD padding (CCM and RFC4543 special cases below) */
1404	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1405						 aead_parms.assoc_size);
1406
1407	/* General case data padding (CCM decrypt special case below) */
1408	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1409							   chunksize);
1410
1411	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1412		/*
1413		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1414		 * 128-bit aligned
1415		 */
1416		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1417					 ctx->cipher.mode,
1418					 aead_parms.assoc_size + 2);
1419
1420		/*
1421		 * And when decrypting CCM, need to pad without including
1422		 * size of ICV which is tacked on to end of chunk
1423		 */
1424		if (!rctx->is_encrypt)
1425			aead_parms.data_pad_len =
1426				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1427							chunksize - digestsize);
1428
1429		/* CCM also requires software to rewrite portions of IV: */
1430		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1431				       chunksize, rctx->is_encrypt,
1432				       ctx->is_esp);
1433	}
1434
1435	if (ctx->is_rfc4543) {
1436		/*
1437		 * RFC4543: data is included in AAD, so don't pad after AAD
1438		 * and pad data based on both AAD + data size
1439		 */
1440		aead_parms.aad_pad_len = 0;
1441		if (!rctx->is_encrypt)
1442			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1443					ctx->cipher.mode,
1444					aead_parms.assoc_size + chunksize -
1445					digestsize);
1446		else
1447			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1448					ctx->cipher.mode,
1449					aead_parms.assoc_size + chunksize);
1450
1451		req_opts.is_rfc4543 = true;
1452	}
1453
1454	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1455		incl_icv = true;
1456		tx_frag_num++;
1457		/* Copy ICV from end of src scatterlist to digest buf */
1458		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1459				    req->assoclen + rctx->total_sent -
1460				    digestsize);
1461	}
1462
1463	atomic64_add(chunksize, &iproc_priv.bytes_out);
1464
1465	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1466
1467	/* Prepend SPU header with type 3 BCM header */
1468	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1469
1470	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1471					      BCM_HDR_LEN, &req_opts,
1472					      &cipher_parms, &hash_parms,
1473					      &aead_parms, chunksize);
1474
1475	/* Determine total length of padding. Put all padding in one buffer. */
1476	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1477				   chunksize, aead_parms.aad_pad_len,
1478				   aead_parms.data_pad_len, 0);
1479
1480	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1481
1482	if (stat_pad_len)
1483		rx_frag_num++;
1484	pad_len = aead_parms.data_pad_len + stat_pad_len;
1485	if (pad_len) {
1486		tx_frag_num++;
1487		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1488				     aead_parms.data_pad_len, 0,
1489				     ctx->auth.alg, ctx->auth.mode,
1490				     rctx->total_sent, stat_pad_len);
1491	}
1492
1493	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1494			      spu_hdr_len);
1495	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1496	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1497	packet_log("BD:\n");
1498	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1499	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1500
1501	/*
1502	 * Build mailbox message containing SPU request msg and rx buffers
1503	 * to catch response message
1504	 */
1505	memset(mssg, 0, sizeof(*mssg));
1506	mssg->type = BRCM_MESSAGE_SPU;
1507	mssg->ctx = rctx;	/* Will be returned in response */
1508
1509	/* Create rx scatterlist to catch result */
1510	rx_frag_num += rctx->dst_nents;
1511	resp_len = chunksize;
1512
1513	/*
1514	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516	 * sends entire digest back.
1517	 */
1518	rx_frag_num++;
1519
1520	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1521	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1522		/*
1523		 * Input is ciphertxt plus ICV, but ICV not incl
1524		 * in output.
1525		 */
1526		resp_len -= ctx->digestsize;
1527		if (resp_len == 0)
1528			/* no rx frags to catch output data */
1529			rx_frag_num -= rctx->dst_nents;
1530	}
1531
1532	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1533				    aead_parms.assoc_size,
1534				    aead_parms.ret_iv_len, resp_len, digestsize,
1535				    stat_pad_len);
1536	if (err)
1537		return err;
1538
1539	/* Create tx scatterlist containing SPU request message */
1540	tx_frag_num += rctx->src_nents;
1541	tx_frag_num += assoc_nents;
1542	if (aead_parms.aad_pad_len)
1543		tx_frag_num++;
1544	if (aead_parms.iv_len)
1545		tx_frag_num++;
1546	if (spu->spu_tx_status_len())
1547		tx_frag_num++;
1548	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1549				    rctx->assoc, aead_parms.assoc_size,
1550				    assoc_nents, aead_parms.iv_len, chunksize,
1551				    aead_parms.aad_pad_len, pad_len, incl_icv);
1552	if (err)
1553		return err;
1554
1555	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1556	if (unlikely(err < 0))
1557		return err;
1558
1559	return -EINPROGRESS;
1560}
1561
1562/**
1563 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564 * @rctx:  Crypto request context
1565 */
1566static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1567{
1568	struct spu_hw *spu = &iproc_priv.spu;
1569	struct crypto_async_request *areq = rctx->parent;
1570	struct aead_request *req = container_of(areq,
1571						struct aead_request, base);
1572	struct iproc_ctx_s *ctx = rctx->ctx;
1573	u32 payload_len;
1574	unsigned int icv_offset;
1575	u32 result_len;
1576
1577	/* See how much data was returned */
1578	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1579	flow_log("payload_len %u\n", payload_len);
1580
1581	/* only count payload */
1582	atomic64_add(payload_len, &iproc_priv.bytes_in);
1583
1584	if (req->assoclen)
1585		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1586			    req->assoclen);
1587
1588	/*
1589	 * Copy the ICV back to the destination
1590	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591	 * API doesn't expect ICV in dst buffer.
1592	 */
1593	result_len = req->cryptlen;
1594	if (rctx->is_encrypt) {
1595		icv_offset = req->assoclen + rctx->total_sent;
1596		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1597		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1598		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1599				      ctx->digestsize, icv_offset);
1600		result_len += ctx->digestsize;
1601	}
1602
1603	packet_log("response data:  ");
1604	dump_sg(req->dst, req->assoclen, result_len);
1605
1606	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1607	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1608		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1609			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1610		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1611			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1612		else
1613			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1614	} else {
1615		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1616	}
1617}
1618
1619/**
1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621 * @rctx:  request context
1622 *
1623 * Mailbox scatterlists are allocated for each chunk. So free them after
1624 * processing each chunk.
1625 */
1626static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1627{
1628	/* mailbox message used to tx request */
1629	struct brcm_message *mssg = &rctx->mb_mssg;
1630
1631	kfree(mssg->spu.src);
1632	kfree(mssg->spu.dst);
1633	memset(mssg, 0, sizeof(struct brcm_message));
1634}
1635
1636/**
1637 * finish_req() - Used to invoke the complete callback from the requester when
1638 * a request has been handled asynchronously.
1639 * @rctx:  Request context
1640 * @err:   Indicates whether the request was successful or not
1641 *
1642 * Ensures that cleanup has been done for request
1643 */
1644static void finish_req(struct iproc_reqctx_s *rctx, int err)
1645{
1646	struct crypto_async_request *areq = rctx->parent;
1647
1648	flow_log("%s() err:%d\n\n", __func__, err);
1649
1650	/* No harm done if already called */
1651	spu_chunk_cleanup(rctx);
1652
1653	if (areq)
1654		areq->complete(areq, err);
1655}
1656
1657/**
1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659 * @cl:		mailbox client structure for SPU driver
1660 * @msg:	mailbox message containing SPU response
1661 */
1662static void spu_rx_callback(struct mbox_client *cl, void *msg)
1663{
1664	struct spu_hw *spu = &iproc_priv.spu;
1665	struct brcm_message *mssg = msg;
1666	struct iproc_reqctx_s *rctx;
1667	int err = 0;
1668
1669	rctx = mssg->ctx;
1670	if (unlikely(!rctx)) {
1671		/* This is fatal */
1672		pr_err("%s(): no request context", __func__);
1673		err = -EFAULT;
1674		goto cb_finish;
1675	}
1676
1677	/* process the SPU status */
1678	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1679	if (err != 0) {
1680		if (err == SPU_INVALID_ICV)
1681			atomic_inc(&iproc_priv.bad_icv);
1682		err = -EBADMSG;
1683		goto cb_finish;
1684	}
1685
1686	/* Process the SPU response message */
1687	switch (rctx->ctx->alg->type) {
1688	case CRYPTO_ALG_TYPE_ABLKCIPHER:
1689		handle_ablkcipher_resp(rctx);
1690		break;
1691	case CRYPTO_ALG_TYPE_AHASH:
1692		handle_ahash_resp(rctx);
1693		break;
1694	case CRYPTO_ALG_TYPE_AEAD:
1695		handle_aead_resp(rctx);
1696		break;
1697	default:
1698		err = -EINVAL;
1699		goto cb_finish;
1700	}
1701
1702	/*
1703	 * If this response does not complete the request, then send the next
1704	 * request chunk.
1705	 */
1706	if (rctx->total_sent < rctx->total_todo) {
1707		/* Deallocate anything specific to previous chunk */
1708		spu_chunk_cleanup(rctx);
1709
1710		switch (rctx->ctx->alg->type) {
1711		case CRYPTO_ALG_TYPE_ABLKCIPHER:
1712			err = handle_ablkcipher_req(rctx);
1713			break;
1714		case CRYPTO_ALG_TYPE_AHASH:
1715			err = handle_ahash_req(rctx);
1716			if (err == -EAGAIN)
1717				/*
1718				 * we saved data in hash carry, but tell crypto
1719				 * API we successfully completed request.
1720				 */
1721				err = 0;
1722			break;
1723		case CRYPTO_ALG_TYPE_AEAD:
1724			err = handle_aead_req(rctx);
1725			break;
1726		default:
1727			err = -EINVAL;
1728		}
1729
1730		if (err == -EINPROGRESS)
1731			/* Successfully submitted request for next chunk */
1732			return;
1733	}
1734
1735cb_finish:
1736	finish_req(rctx, err);
1737}
1738
1739/* ==================== Kernel Cryptographic API ==================== */
1740
1741/**
1742 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1743 * @req:	Crypto API request
1744 * @encrypt:	true if encrypting; false if decrypting
1745 *
1746 * Return: -EINPROGRESS if request accepted and result will be returned
1747 *			asynchronously
1748 *	   < 0 if an error
1749 */
1750static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1751{
1752	struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1753	struct iproc_ctx_s *ctx =
1754	    crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1755	int err;
1756
1757	flow_log("%s() enc:%u\n", __func__, encrypt);
1758
1759	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1760		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1761	rctx->parent = &req->base;
1762	rctx->is_encrypt = encrypt;
1763	rctx->bd_suppress = false;
1764	rctx->total_todo = req->nbytes;
1765	rctx->src_sent = 0;
1766	rctx->total_sent = 0;
1767	rctx->total_received = 0;
1768	rctx->ctx = ctx;
1769
1770	/* Initialize current position in src and dst scatterlists */
1771	rctx->src_sg = req->src;
1772	rctx->src_nents = 0;
1773	rctx->src_skip = 0;
1774	rctx->dst_sg = req->dst;
1775	rctx->dst_nents = 0;
1776	rctx->dst_skip = 0;
1777
1778	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1779	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1780	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1781	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1782	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1783	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1784		rctx->iv_ctr_len =
1785		    crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1786		memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1787	} else {
1788		rctx->iv_ctr_len = 0;
1789	}
1790
1791	/* Choose a SPU to process this request */
1792	rctx->chan_idx = select_channel();
1793	err = handle_ablkcipher_req(rctx);
1794	if (err != -EINPROGRESS)
1795		/* synchronous result */
1796		spu_chunk_cleanup(rctx);
1797
1798	return err;
1799}
1800
1801static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1802		      unsigned int keylen)
1803{
1804	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1805	int err;
1806
1807	err = verify_ablkcipher_des_key(cipher, key);
1808	if (err)
1809		return err;
1810
1811	ctx->cipher_type = CIPHER_TYPE_DES;
1812	return 0;
1813}
1814
1815static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1816			   unsigned int keylen)
1817{
1818	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1819	int err;
1820
1821	err = verify_ablkcipher_des3_key(cipher, key);
1822	if (err)
1823		return err;
1824
1825	ctx->cipher_type = CIPHER_TYPE_3DES;
1826	return 0;
1827}
1828
1829static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1830		      unsigned int keylen)
1831{
1832	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1833
1834	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1835		/* XTS includes two keys of equal length */
1836		keylen = keylen / 2;
1837
1838	switch (keylen) {
1839	case AES_KEYSIZE_128:
1840		ctx->cipher_type = CIPHER_TYPE_AES128;
1841		break;
1842	case AES_KEYSIZE_192:
1843		ctx->cipher_type = CIPHER_TYPE_AES192;
1844		break;
1845	case AES_KEYSIZE_256:
1846		ctx->cipher_type = CIPHER_TYPE_AES256;
1847		break;
1848	default:
1849		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1850		return -EINVAL;
1851	}
1852	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1853		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1854	return 0;
1855}
1856
1857static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1858		      unsigned int keylen)
1859{
1860	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1861	int i;
1862
1863	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1864
1865	ctx->enckey[0] = 0x00;	/* 0x00 */
1866	ctx->enckey[1] = 0x00;	/* i    */
1867	ctx->enckey[2] = 0x00;	/* 0x00 */
1868	ctx->enckey[3] = 0x00;	/* j    */
1869	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1870		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1871
1872	ctx->cipher_type = CIPHER_TYPE_INIT;
1873
1874	return 0;
1875}
1876
1877static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1878			     unsigned int keylen)
1879{
1880	struct spu_hw *spu = &iproc_priv.spu;
1881	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1882	struct spu_cipher_parms cipher_parms;
1883	u32 alloc_len = 0;
1884	int err;
1885
1886	flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1887	flow_dump("  key: ", key, keylen);
1888
1889	switch (ctx->cipher.alg) {
1890	case CIPHER_ALG_DES:
1891		err = des_setkey(cipher, key, keylen);
1892		break;
1893	case CIPHER_ALG_3DES:
1894		err = threedes_setkey(cipher, key, keylen);
1895		break;
1896	case CIPHER_ALG_AES:
1897		err = aes_setkey(cipher, key, keylen);
1898		break;
1899	case CIPHER_ALG_RC4:
1900		err = rc4_setkey(cipher, key, keylen);
1901		break;
1902	default:
1903		pr_err("%s() Error: unknown cipher alg\n", __func__);
1904		err = -EINVAL;
1905	}
1906	if (err)
1907		return err;
1908
1909	/* RC4 already populated ctx->enkey */
1910	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1911		memcpy(ctx->enckey, key, keylen);
1912		ctx->enckeylen = keylen;
1913	}
1914	/* SPU needs XTS keys in the reverse order the crypto API presents */
1915	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1916	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1917		unsigned int xts_keylen = keylen / 2;
1918
1919		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1920		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1921	}
1922
1923	if (spu->spu_type == SPU_TYPE_SPUM)
1924		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1925	else if (spu->spu_type == SPU_TYPE_SPU2)
1926		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1927	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1928	cipher_parms.iv_buf = NULL;
1929	cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1930	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1931
1932	cipher_parms.alg = ctx->cipher.alg;
1933	cipher_parms.mode = ctx->cipher.mode;
1934	cipher_parms.type = ctx->cipher_type;
1935	cipher_parms.key_buf = ctx->enckey;
1936	cipher_parms.key_len = ctx->enckeylen;
1937
1938	/* Prepend SPU request message with BCM header */
1939	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1940	ctx->spu_req_hdr_len =
1941	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1942				     &cipher_parms);
1943
1944	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1945							  ctx->enckeylen,
1946							  false);
1947
1948	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1949
1950	return 0;
1951}
1952
1953static int ablkcipher_encrypt(struct ablkcipher_request *req)
1954{
1955	flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1956
1957	return ablkcipher_enqueue(req, true);
1958}
1959
1960static int ablkcipher_decrypt(struct ablkcipher_request *req)
1961{
1962	flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1963	return ablkcipher_enqueue(req, false);
1964}
1965
1966static int ahash_enqueue(struct ahash_request *req)
1967{
1968	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1969	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1970	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1971	int err = 0;
1972	const char *alg_name;
1973
1974	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1975
1976	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1977		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1978	rctx->parent = &req->base;
1979	rctx->ctx = ctx;
1980	rctx->bd_suppress = true;
1981	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1982
1983	/* Initialize position in src scatterlist */
1984	rctx->src_sg = req->src;
1985	rctx->src_skip = 0;
1986	rctx->src_nents = 0;
1987	rctx->dst_sg = NULL;
1988	rctx->dst_skip = 0;
1989	rctx->dst_nents = 0;
1990
1991	/* SPU2 hardware does not compute hash of zero length data */
1992	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1993	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1994		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1995		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1996			 rctx->is_final ? "" : "non-", alg_name);
1997		err = do_shash((unsigned char *)alg_name, req->result,
1998			       NULL, 0, NULL, 0, ctx->authkey,
1999			       ctx->authkeylen);
2000		if (err < 0)
2001			flow_log("Hash request failed with error %d\n", err);
2002		return err;
2003	}
2004	/* Choose a SPU to process this request */
2005	rctx->chan_idx = select_channel();
2006
2007	err = handle_ahash_req(rctx);
2008	if (err != -EINPROGRESS)
2009		/* synchronous result */
2010		spu_chunk_cleanup(rctx);
2011
2012	if (err == -EAGAIN)
2013		/*
2014		 * we saved data in hash carry, but tell crypto API
2015		 * we successfully completed request.
2016		 */
2017		err = 0;
2018
2019	return err;
2020}
2021
2022static int __ahash_init(struct ahash_request *req)
2023{
2024	struct spu_hw *spu = &iproc_priv.spu;
2025	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2026	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2027	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2028
2029	flow_log("%s()\n", __func__);
2030
2031	/* Initialize the context */
2032	rctx->hash_carry_len = 0;
2033	rctx->is_final = 0;
2034
2035	rctx->total_todo = 0;
2036	rctx->src_sent = 0;
2037	rctx->total_sent = 0;
2038	rctx->total_received = 0;
2039
2040	ctx->digestsize = crypto_ahash_digestsize(tfm);
2041	/* If we add a hash whose digest is larger, catch it here. */
2042	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2043
2044	rctx->is_sw_hmac = false;
2045
2046	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2047							  true);
2048
2049	return 0;
2050}
2051
2052/**
2053 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2054 * @ctx:  Crypto session context
2055 *
2056 * SPU-2 does not support incremental hashing (we'll have to revisit and
2057 * condition based on chip revision or device tree entry if future versions do
2058 * support incremental hash)
2059 *
2060 * SPU-M also doesn't support incremental hashing of AES-XCBC
2061 *
2062 * Return: true if incremental hashing is not supported
2063 *         false otherwise
2064 */
2065static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2066{
2067	struct spu_hw *spu = &iproc_priv.spu;
2068
2069	if (spu->spu_type == SPU_TYPE_SPU2)
2070		return true;
2071
2072	if ((ctx->auth.alg == HASH_ALG_AES) &&
2073	    (ctx->auth.mode == HASH_MODE_XCBC))
2074		return true;
2075
2076	/* Otherwise, incremental hashing is supported */
2077	return false;
2078}
2079
2080static int ahash_init(struct ahash_request *req)
2081{
2082	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2083	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2084	const char *alg_name;
2085	struct crypto_shash *hash;
2086	int ret;
2087	gfp_t gfp;
2088
2089	if (spu_no_incr_hash(ctx)) {
2090		/*
2091		 * If we get an incremental hashing request and it's not
2092		 * supported by the hardware, we need to handle it in software
2093		 * by calling synchronous hash functions.
2094		 */
2095		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2096		hash = crypto_alloc_shash(alg_name, 0, 0);
2097		if (IS_ERR(hash)) {
2098			ret = PTR_ERR(hash);
2099			goto err;
2100		}
2101
2102		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2103		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2104		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2105				     crypto_shash_descsize(hash), gfp);
2106		if (!ctx->shash) {
2107			ret = -ENOMEM;
2108			goto err_hash;
2109		}
2110		ctx->shash->tfm = hash;
2111
2112		/* Set the key using data we already have from setkey */
2113		if (ctx->authkeylen > 0) {
2114			ret = crypto_shash_setkey(hash, ctx->authkey,
2115						  ctx->authkeylen);
2116			if (ret)
2117				goto err_shash;
2118		}
2119
2120		/* Initialize hash w/ this key and other params */
2121		ret = crypto_shash_init(ctx->shash);
2122		if (ret)
2123			goto err_shash;
2124	} else {
2125		/* Otherwise call the internal function which uses SPU hw */
2126		ret = __ahash_init(req);
2127	}
2128
2129	return ret;
2130
2131err_shash:
2132	kfree(ctx->shash);
2133err_hash:
2134	crypto_free_shash(hash);
2135err:
2136	return ret;
2137}
2138
2139static int __ahash_update(struct ahash_request *req)
2140{
2141	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2142
2143	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2144
2145	if (!req->nbytes)
2146		return 0;
2147	rctx->total_todo += req->nbytes;
2148	rctx->src_sent = 0;
2149
2150	return ahash_enqueue(req);
2151}
2152
2153static int ahash_update(struct ahash_request *req)
2154{
2155	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2156	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2157	u8 *tmpbuf;
2158	int ret;
2159	int nents;
2160	gfp_t gfp;
2161
2162	if (spu_no_incr_hash(ctx)) {
2163		/*
2164		 * If we get an incremental hashing request and it's not
2165		 * supported by the hardware, we need to handle it in software
2166		 * by calling synchronous hash functions.
2167		 */
2168		if (req->src)
2169			nents = sg_nents(req->src);
2170		else
2171			return -EINVAL;
2172
2173		/* Copy data from req scatterlist to tmp buffer */
2174		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2175		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2176		tmpbuf = kmalloc(req->nbytes, gfp);
2177		if (!tmpbuf)
2178			return -ENOMEM;
2179
2180		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2181				req->nbytes) {
2182			kfree(tmpbuf);
2183			return -EINVAL;
2184		}
2185
2186		/* Call synchronous update */
2187		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2188		kfree(tmpbuf);
2189	} else {
2190		/* Otherwise call the internal function which uses SPU hw */
2191		ret = __ahash_update(req);
2192	}
2193
2194	return ret;
2195}
2196
2197static int __ahash_final(struct ahash_request *req)
2198{
2199	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2200
2201	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2202
2203	rctx->is_final = 1;
2204
2205	return ahash_enqueue(req);
2206}
2207
2208static int ahash_final(struct ahash_request *req)
2209{
2210	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2211	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2212	int ret;
2213
2214	if (spu_no_incr_hash(ctx)) {
2215		/*
2216		 * If we get an incremental hashing request and it's not
2217		 * supported by the hardware, we need to handle it in software
2218		 * by calling synchronous hash functions.
2219		 */
2220		ret = crypto_shash_final(ctx->shash, req->result);
2221
2222		/* Done with hash, can deallocate it now */
2223		crypto_free_shash(ctx->shash->tfm);
2224		kfree(ctx->shash);
2225
2226	} else {
2227		/* Otherwise call the internal function which uses SPU hw */
2228		ret = __ahash_final(req);
2229	}
2230
2231	return ret;
2232}
2233
2234static int __ahash_finup(struct ahash_request *req)
2235{
2236	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2237
2238	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2239
2240	rctx->total_todo += req->nbytes;
2241	rctx->src_sent = 0;
2242	rctx->is_final = 1;
2243
2244	return ahash_enqueue(req);
2245}
2246
2247static int ahash_finup(struct ahash_request *req)
2248{
2249	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2250	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2251	u8 *tmpbuf;
2252	int ret;
2253	int nents;
2254	gfp_t gfp;
2255
2256	if (spu_no_incr_hash(ctx)) {
2257		/*
2258		 * If we get an incremental hashing request and it's not
2259		 * supported by the hardware, we need to handle it in software
2260		 * by calling synchronous hash functions.
2261		 */
2262		if (req->src) {
2263			nents = sg_nents(req->src);
2264		} else {
2265			ret = -EINVAL;
2266			goto ahash_finup_exit;
2267		}
2268
2269		/* Copy data from req scatterlist to tmp buffer */
2270		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2271		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2272		tmpbuf = kmalloc(req->nbytes, gfp);
2273		if (!tmpbuf) {
2274			ret = -ENOMEM;
2275			goto ahash_finup_exit;
2276		}
2277
2278		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2279				req->nbytes) {
2280			ret = -EINVAL;
2281			goto ahash_finup_free;
2282		}
2283
2284		/* Call synchronous update */
2285		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2286					 req->result);
2287	} else {
2288		/* Otherwise call the internal function which uses SPU hw */
2289		return __ahash_finup(req);
2290	}
2291ahash_finup_free:
2292	kfree(tmpbuf);
2293
2294ahash_finup_exit:
2295	/* Done with hash, can deallocate it now */
2296	crypto_free_shash(ctx->shash->tfm);
2297	kfree(ctx->shash);
2298	return ret;
2299}
2300
2301static int ahash_digest(struct ahash_request *req)
2302{
2303	int err = 0;
2304
2305	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2306
2307	/* whole thing at once */
2308	err = __ahash_init(req);
2309	if (!err)
2310		err = __ahash_finup(req);
2311
2312	return err;
2313}
2314
2315static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2316			unsigned int keylen)
2317{
2318	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2319
2320	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2321		 __func__, ahash, key, keylen);
2322	flow_dump("  key: ", key, keylen);
2323
2324	if (ctx->auth.alg == HASH_ALG_AES) {
2325		switch (keylen) {
2326		case AES_KEYSIZE_128:
2327			ctx->cipher_type = CIPHER_TYPE_AES128;
2328			break;
2329		case AES_KEYSIZE_192:
2330			ctx->cipher_type = CIPHER_TYPE_AES192;
2331			break;
2332		case AES_KEYSIZE_256:
2333			ctx->cipher_type = CIPHER_TYPE_AES256;
2334			break;
2335		default:
2336			pr_err("%s() Error: Invalid key length\n", __func__);
2337			return -EINVAL;
2338		}
2339	} else {
2340		pr_err("%s() Error: unknown hash alg\n", __func__);
2341		return -EINVAL;
2342	}
2343	memcpy(ctx->authkey, key, keylen);
2344	ctx->authkeylen = keylen;
2345
2346	return 0;
2347}
2348
2349static int ahash_export(struct ahash_request *req, void *out)
2350{
2351	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2352	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2353
2354	spu_exp->total_todo = rctx->total_todo;
2355	spu_exp->total_sent = rctx->total_sent;
2356	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2357	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2358	spu_exp->hash_carry_len = rctx->hash_carry_len;
2359	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2360
2361	return 0;
2362}
2363
2364static int ahash_import(struct ahash_request *req, const void *in)
2365{
2366	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2367	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2368
2369	rctx->total_todo = spu_exp->total_todo;
2370	rctx->total_sent = spu_exp->total_sent;
2371	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2372	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2373	rctx->hash_carry_len = spu_exp->hash_carry_len;
2374	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2375
2376	return 0;
2377}
2378
2379static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2380			     unsigned int keylen)
2381{
2382	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2383	unsigned int blocksize =
2384		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2385	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2386	unsigned int index;
2387	int rc;
2388
2389	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2390		 __func__, ahash, key, keylen, blocksize, digestsize);
2391	flow_dump("  key: ", key, keylen);
2392
2393	if (keylen > blocksize) {
2394		switch (ctx->auth.alg) {
2395		case HASH_ALG_MD5:
2396			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2397				      0, NULL, 0);
2398			break;
2399		case HASH_ALG_SHA1:
2400			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2401				      0, NULL, 0);
2402			break;
2403		case HASH_ALG_SHA224:
2404			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2405				      0, NULL, 0);
2406			break;
2407		case HASH_ALG_SHA256:
2408			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2409				      0, NULL, 0);
2410			break;
2411		case HASH_ALG_SHA384:
2412			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2413				      0, NULL, 0);
2414			break;
2415		case HASH_ALG_SHA512:
2416			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2417				      0, NULL, 0);
2418			break;
2419		case HASH_ALG_SHA3_224:
2420			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2421				      NULL, 0, NULL, 0);
2422			break;
2423		case HASH_ALG_SHA3_256:
2424			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2425				      NULL, 0, NULL, 0);
2426			break;
2427		case HASH_ALG_SHA3_384:
2428			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2429				      NULL, 0, NULL, 0);
2430			break;
2431		case HASH_ALG_SHA3_512:
2432			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2433				      NULL, 0, NULL, 0);
2434			break;
2435		default:
2436			pr_err("%s() Error: unknown hash alg\n", __func__);
2437			return -EINVAL;
2438		}
2439		if (rc < 0) {
2440			pr_err("%s() Error %d computing shash for %s\n",
2441			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2442			return rc;
2443		}
2444		ctx->authkeylen = digestsize;
2445
2446		flow_log("  keylen > digestsize... hashed\n");
2447		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2448	} else {
2449		memcpy(ctx->authkey, key, keylen);
2450		ctx->authkeylen = keylen;
2451	}
2452
2453	/*
2454	 * Full HMAC operation in SPUM is not verified,
2455	 * So keeping the generation of IPAD, OPAD and
2456	 * outer hashing in software.
2457	 */
2458	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2459		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2460		memset(ctx->ipad + ctx->authkeylen, 0,
2461		       blocksize - ctx->authkeylen);
2462		ctx->authkeylen = 0;
2463		memcpy(ctx->opad, ctx->ipad, blocksize);
 
2464
2465		for (index = 0; index < blocksize; index++) {
2466			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2467			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2468		}
2469
2470		flow_dump("  ipad: ", ctx->ipad, blocksize);
2471		flow_dump("  opad: ", ctx->opad, blocksize);
2472	}
2473	ctx->digestsize = digestsize;
2474	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2475
2476	return 0;
2477}
2478
2479static int ahash_hmac_init(struct ahash_request *req)
2480{
2481	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2482	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2483	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2484	unsigned int blocksize =
2485			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2486
2487	flow_log("ahash_hmac_init()\n");
2488
2489	/* init the context as a hash */
2490	ahash_init(req);
2491
2492	if (!spu_no_incr_hash(ctx)) {
2493		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2494		rctx->is_sw_hmac = true;
2495		ctx->auth.mode = HASH_MODE_HASH;
2496		/* start with a prepended ipad */
2497		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2498		rctx->hash_carry_len = blocksize;
2499		rctx->total_todo += blocksize;
2500	}
2501
2502	return 0;
2503}
2504
2505static int ahash_hmac_update(struct ahash_request *req)
2506{
2507	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2508
2509	if (!req->nbytes)
2510		return 0;
2511
2512	return ahash_update(req);
2513}
2514
2515static int ahash_hmac_final(struct ahash_request *req)
2516{
2517	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2518
2519	return ahash_final(req);
2520}
2521
2522static int ahash_hmac_finup(struct ahash_request *req)
2523{
2524	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2525
2526	return ahash_finup(req);
2527}
2528
2529static int ahash_hmac_digest(struct ahash_request *req)
2530{
2531	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2532	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2533	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2534	unsigned int blocksize =
2535			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2536
2537	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2538
2539	/* Perform initialization and then call finup */
2540	__ahash_init(req);
2541
2542	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2543		/*
2544		 * SPU2 supports full HMAC implementation in the
2545		 * hardware, need not to generate IPAD, OPAD and
2546		 * outer hash in software.
2547		 * Only for hash key len > hash block size, SPU2
2548		 * expects to perform hashing on the key, shorten
2549		 * it to digest size and feed it as hash key.
2550		 */
2551		rctx->is_sw_hmac = false;
2552		ctx->auth.mode = HASH_MODE_HMAC;
2553	} else {
2554		rctx->is_sw_hmac = true;
2555		ctx->auth.mode = HASH_MODE_HASH;
2556		/* start with a prepended ipad */
2557		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2558		rctx->hash_carry_len = blocksize;
2559		rctx->total_todo += blocksize;
2560	}
2561
2562	return __ahash_finup(req);
2563}
2564
2565/* aead helpers */
2566
2567static int aead_need_fallback(struct aead_request *req)
2568{
2569	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2570	struct spu_hw *spu = &iproc_priv.spu;
2571	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2572	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2573	u32 payload_len;
2574
2575	/*
2576	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2577	 * and AAD are both 0 bytes long. So use fallback in this case.
2578	 */
2579	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2580	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2581	    (req->assoclen == 0)) {
2582		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2583		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2584			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2585			return 1;
2586		}
2587	}
2588
2589	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2590	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2591	    (spu->spu_type == SPU_TYPE_SPUM) &&
2592	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2593	    (ctx->digestsize != 16)) {
2594		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2595			 __func__, ctx->digestsize);
2596		return 1;
2597	}
2598
2599	/*
2600	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2601	 * when AAD size is 0
2602	 */
2603	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2604	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2605	    (req->assoclen == 0)) {
2606		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2607			 __func__);
2608		return 1;
2609	}
2610
2611	/*
2612	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2613	 * 16 or 20 bytes long. So use fallback in this case.
2614	 */
2615	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2616	    ctx->cipher.alg == CIPHER_ALG_AES &&
2617	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2618	    req->assoclen != 16 && req->assoclen != 20) {
2619		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2620			 " other than 16 or 20 bytes\n");
2621		return 1;
2622	}
2623
2624	payload_len = req->cryptlen;
2625	if (spu->spu_type == SPU_TYPE_SPUM)
2626		payload_len += req->assoclen;
2627
2628	flow_log("%s() payload len: %u\n", __func__, payload_len);
2629
2630	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2631		return 0;
2632	else
2633		return payload_len > ctx->max_payload;
2634}
2635
2636static void aead_complete(struct crypto_async_request *areq, int err)
2637{
2638	struct aead_request *req =
2639	    container_of(areq, struct aead_request, base);
2640	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2641	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2642
2643	flow_log("%s() err:%d\n", __func__, err);
2644
2645	areq->tfm = crypto_aead_tfm(aead);
2646
2647	areq->complete = rctx->old_complete;
2648	areq->data = rctx->old_data;
2649
2650	areq->complete(areq, err);
2651}
2652
2653static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2654{
2655	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2656	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2657	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2658	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2659	int err;
2660	u32 req_flags;
2661
2662	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2663
2664	if (ctx->fallback_cipher) {
2665		/* Store the cipher tfm and then use the fallback tfm */
2666		rctx->old_tfm = tfm;
2667		aead_request_set_tfm(req, ctx->fallback_cipher);
2668		/*
2669		 * Save the callback and chain ourselves in, so we can restore
2670		 * the tfm
2671		 */
2672		rctx->old_complete = req->base.complete;
2673		rctx->old_data = req->base.data;
2674		req_flags = aead_request_flags(req);
2675		aead_request_set_callback(req, req_flags, aead_complete, req);
2676		err = is_encrypt ? crypto_aead_encrypt(req) :
2677		    crypto_aead_decrypt(req);
2678
2679		if (err == 0) {
2680			/*
2681			 * fallback was synchronous (did not return
2682			 * -EINPROGRESS). So restore request state here.
2683			 */
2684			aead_request_set_callback(req, req_flags,
2685						  rctx->old_complete, req);
2686			req->base.data = rctx->old_data;
2687			aead_request_set_tfm(req, aead);
2688			flow_log("%s() fallback completed successfully\n\n",
2689				 __func__);
2690		}
2691	} else {
2692		err = -EINVAL;
2693	}
2694
2695	return err;
 
2696}
2697
2698static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2699{
2700	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2701	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2702	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2703	int err;
2704
2705	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2706
2707	if (req->assoclen > MAX_ASSOC_SIZE) {
2708		pr_err
2709		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2710		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2711		return -EINVAL;
2712	}
2713
2714	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2715		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2716	rctx->parent = &req->base;
2717	rctx->is_encrypt = is_encrypt;
2718	rctx->bd_suppress = false;
2719	rctx->total_todo = req->cryptlen;
2720	rctx->src_sent = 0;
2721	rctx->total_sent = 0;
2722	rctx->total_received = 0;
2723	rctx->is_sw_hmac = false;
2724	rctx->ctx = ctx;
2725	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2726
2727	/* assoc data is at start of src sg */
2728	rctx->assoc = req->src;
2729
2730	/*
2731	 * Init current position in src scatterlist to be after assoc data.
2732	 * src_skip set to buffer offset where data begins. (Assoc data could
2733	 * end in the middle of a buffer.)
2734	 */
2735	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2736			     &rctx->src_skip) < 0) {
2737		pr_err("%s() Error: Unable to find start of src data\n",
2738		       __func__);
2739		return -EINVAL;
2740	}
2741
2742	rctx->src_nents = 0;
2743	rctx->dst_nents = 0;
2744	if (req->dst == req->src) {
2745		rctx->dst_sg = rctx->src_sg;
2746		rctx->dst_skip = rctx->src_skip;
2747	} else {
2748		/*
2749		 * Expect req->dst to have room for assoc data followed by
2750		 * output data and ICV, if encrypt. So initialize dst_sg
2751		 * to point beyond assoc len offset.
2752		 */
2753		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2754				     &rctx->dst_skip) < 0) {
2755			pr_err("%s() Error: Unable to find start of dst data\n",
2756			       __func__);
2757			return -EINVAL;
2758		}
2759	}
2760
2761	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2762	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2763	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2764	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2765	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2766		rctx->iv_ctr_len =
2767			ctx->salt_len +
2768			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2769	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2770		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2771	} else {
2772		rctx->iv_ctr_len = 0;
2773	}
2774
2775	rctx->hash_carry_len = 0;
2776
2777	flow_log("  src sg: %p\n", req->src);
2778	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2779		 rctx->src_sg, rctx->src_skip);
2780	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2781	flow_log("  dst sg: %p\n", req->dst);
2782	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2783		 rctx->dst_sg, rctx->dst_skip);
2784	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2785	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2786	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2787	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2788
2789	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2790		flow_log("  max_payload infinite");
2791	else
2792		flow_log("  max_payload: %u\n", ctx->max_payload);
2793
2794	if (unlikely(aead_need_fallback(req)))
2795		return aead_do_fallback(req, is_encrypt);
2796
2797	/*
2798	 * Do memory allocations for request after fallback check, because if we
2799	 * do fallback, we won't call finish_req() to dealloc.
2800	 */
2801	if (rctx->iv_ctr_len) {
2802		if (ctx->salt_len)
2803			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2804			       ctx->salt, ctx->salt_len);
2805		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2806		       req->iv,
2807		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2808	}
2809
2810	rctx->chan_idx = select_channel();
2811	err = handle_aead_req(rctx);
2812	if (err != -EINPROGRESS)
2813		/* synchronous result */
2814		spu_chunk_cleanup(rctx);
2815
2816	return err;
2817}
2818
2819static int aead_authenc_setkey(struct crypto_aead *cipher,
2820			       const u8 *key, unsigned int keylen)
2821{
2822	struct spu_hw *spu = &iproc_priv.spu;
2823	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2824	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2825	struct crypto_authenc_keys keys;
2826	int ret;
2827
2828	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2829		 keylen);
2830	flow_dump("  key: ", key, keylen);
2831
2832	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2833	if (ret)
2834		goto badkey;
2835
2836	if (keys.enckeylen > MAX_KEY_SIZE ||
2837	    keys.authkeylen > MAX_KEY_SIZE)
2838		goto badkey;
2839
2840	ctx->enckeylen = keys.enckeylen;
2841	ctx->authkeylen = keys.authkeylen;
2842
2843	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2844	/* May end up padding auth key. So make sure it's zeroed. */
2845	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2846	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2847
2848	switch (ctx->alg->cipher_info.alg) {
2849	case CIPHER_ALG_DES:
2850		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2851			return -EINVAL;
2852
2853		ctx->cipher_type = CIPHER_TYPE_DES;
2854		break;
2855	case CIPHER_ALG_3DES:
2856		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2857			return -EINVAL;
2858
2859		ctx->cipher_type = CIPHER_TYPE_3DES;
2860		break;
2861	case CIPHER_ALG_AES:
2862		switch (ctx->enckeylen) {
2863		case AES_KEYSIZE_128:
2864			ctx->cipher_type = CIPHER_TYPE_AES128;
2865			break;
2866		case AES_KEYSIZE_192:
2867			ctx->cipher_type = CIPHER_TYPE_AES192;
2868			break;
2869		case AES_KEYSIZE_256:
2870			ctx->cipher_type = CIPHER_TYPE_AES256;
2871			break;
2872		default:
2873			goto badkey;
2874		}
2875		break;
2876	case CIPHER_ALG_RC4:
2877		ctx->cipher_type = CIPHER_TYPE_INIT;
2878		break;
2879	default:
2880		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2881		return -EINVAL;
2882	}
2883
2884	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2885		 ctx->authkeylen);
2886	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2887	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2888
2889	/* setkey the fallback just in case we needto use it */
2890	if (ctx->fallback_cipher) {
2891		flow_log("  running fallback setkey()\n");
2892
2893		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2894		ctx->fallback_cipher->base.crt_flags |=
2895		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2896		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2897		if (ret) {
2898			flow_log("  fallback setkey() returned:%d\n", ret);
2899			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2900			tfm->crt_flags |=
2901			    (ctx->fallback_cipher->base.crt_flags &
2902			     CRYPTO_TFM_RES_MASK);
2903		}
2904	}
2905
2906	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2907							  ctx->enckeylen,
2908							  false);
2909
2910	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2911
2912	return ret;
2913
2914badkey:
2915	ctx->enckeylen = 0;
2916	ctx->authkeylen = 0;
2917	ctx->digestsize = 0;
2918
2919	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2920	return -EINVAL;
2921}
2922
2923static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2924			       const u8 *key, unsigned int keylen)
2925{
2926	struct spu_hw *spu = &iproc_priv.spu;
2927	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2928	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2929
2930	int ret = 0;
2931
2932	flow_log("%s() keylen:%u\n", __func__, keylen);
2933	flow_dump("  key: ", key, keylen);
2934
2935	if (!ctx->is_esp)
2936		ctx->digestsize = keylen;
2937
2938	ctx->enckeylen = keylen;
2939	ctx->authkeylen = 0;
2940	memcpy(ctx->enckey, key, ctx->enckeylen);
2941
2942	switch (ctx->enckeylen) {
2943	case AES_KEYSIZE_128:
2944		ctx->cipher_type = CIPHER_TYPE_AES128;
2945		break;
2946	case AES_KEYSIZE_192:
2947		ctx->cipher_type = CIPHER_TYPE_AES192;
2948		break;
2949	case AES_KEYSIZE_256:
2950		ctx->cipher_type = CIPHER_TYPE_AES256;
2951		break;
2952	default:
2953		goto badkey;
2954	}
2955
 
 
2956	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2957		 ctx->authkeylen);
2958	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2959	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2960
2961	/* setkey the fallback just in case we need to use it */
2962	if (ctx->fallback_cipher) {
2963		flow_log("  running fallback setkey()\n");
2964
2965		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2966		ctx->fallback_cipher->base.crt_flags |=
2967		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2968		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2969					 keylen + ctx->salt_len);
2970		if (ret) {
2971			flow_log("  fallback setkey() returned:%d\n", ret);
2972			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2973			tfm->crt_flags |=
2974			    (ctx->fallback_cipher->base.crt_flags &
2975			     CRYPTO_TFM_RES_MASK);
2976		}
2977	}
2978
2979	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2980							  ctx->enckeylen,
2981							  false);
2982
2983	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2984
2985	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2986		 ctx->authkeylen);
2987
2988	return ret;
2989
2990badkey:
2991	ctx->enckeylen = 0;
2992	ctx->authkeylen = 0;
2993	ctx->digestsize = 0;
2994
2995	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2996	return -EINVAL;
2997}
2998
2999/**
3000 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3001 * @cipher: AEAD structure
3002 * @key:    Key followed by 4 bytes of salt
3003 * @keylen: Length of key plus salt, in bytes
3004 *
3005 * Extracts salt from key and stores it to be prepended to IV on each request.
3006 * Digest is always 16 bytes
3007 *
3008 * Return: Value from generic gcm setkey.
3009 */
3010static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3011			       const u8 *key, unsigned int keylen)
3012{
3013	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3014
3015	flow_log("%s\n", __func__);
 
 
 
 
3016	ctx->salt_len = GCM_ESP_SALT_SIZE;
3017	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3018	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3019	keylen -= GCM_ESP_SALT_SIZE;
3020	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3021	ctx->is_esp = true;
3022	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3023
3024	return aead_gcm_ccm_setkey(cipher, key, keylen);
3025}
3026
3027/**
3028 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3029 * cipher: AEAD structure
3030 * key:    Key followed by 4 bytes of salt
3031 * keylen: Length of key plus salt, in bytes
3032 *
3033 * Extracts salt from key and stores it to be prepended to IV on each request.
3034 * Digest is always 16 bytes
3035 *
3036 * Return: Value from generic gcm setkey.
3037 */
3038static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3039				  const u8 *key, unsigned int keylen)
3040{
3041	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3042
3043	flow_log("%s\n", __func__);
 
 
 
 
3044	ctx->salt_len = GCM_ESP_SALT_SIZE;
3045	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3046	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3047	keylen -= GCM_ESP_SALT_SIZE;
3048	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3049	ctx->is_esp = true;
3050	ctx->is_rfc4543 = true;
3051	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3052
3053	return aead_gcm_ccm_setkey(cipher, key, keylen);
3054}
3055
3056/**
3057 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3058 * @cipher: AEAD structure
3059 * @key:    Key followed by 4 bytes of salt
3060 * @keylen: Length of key plus salt, in bytes
3061 *
3062 * Extracts salt from key and stores it to be prepended to IV on each request.
3063 * Digest is always 16 bytes
3064 *
3065 * Return: Value from generic ccm setkey.
3066 */
3067static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3068			       const u8 *key, unsigned int keylen)
3069{
3070	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3071
3072	flow_log("%s\n", __func__);
 
 
 
 
3073	ctx->salt_len = CCM_ESP_SALT_SIZE;
3074	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3075	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3076	keylen -= CCM_ESP_SALT_SIZE;
3077	ctx->is_esp = true;
3078	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3079
3080	return aead_gcm_ccm_setkey(cipher, key, keylen);
3081}
3082
3083static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3084{
3085	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3086	int ret = 0;
3087
3088	flow_log("%s() authkeylen:%u authsize:%u\n",
3089		 __func__, ctx->authkeylen, authsize);
3090
3091	ctx->digestsize = authsize;
3092
3093	/* setkey the fallback just in case we needto use it */
3094	if (ctx->fallback_cipher) {
3095		flow_log("  running fallback setauth()\n");
3096
3097		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3098		if (ret)
3099			flow_log("  fallback setauth() returned:%d\n", ret);
3100	}
3101
3102	return ret;
3103}
3104
3105static int aead_encrypt(struct aead_request *req)
3106{
3107	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3108		 req->cryptlen);
3109	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3110	flow_log("  assoc_len:%u\n", req->assoclen);
3111
3112	return aead_enqueue(req, true);
3113}
3114
3115static int aead_decrypt(struct aead_request *req)
3116{
3117	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3118	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3119	flow_log("  assoc_len:%u\n", req->assoclen);
3120
3121	return aead_enqueue(req, false);
3122}
3123
3124/* ==================== Supported Cipher Algorithms ==================== */
3125
3126static struct iproc_alg_s driver_algs[] = {
3127	{
3128	 .type = CRYPTO_ALG_TYPE_AEAD,
3129	 .alg.aead = {
3130		 .base = {
3131			.cra_name = "gcm(aes)",
3132			.cra_driver_name = "gcm-aes-iproc",
3133			.cra_blocksize = AES_BLOCK_SIZE,
3134			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3135		 },
3136		 .setkey = aead_gcm_ccm_setkey,
3137		 .ivsize = GCM_AES_IV_SIZE,
3138		.maxauthsize = AES_BLOCK_SIZE,
3139	 },
3140	 .cipher_info = {
3141			 .alg = CIPHER_ALG_AES,
3142			 .mode = CIPHER_MODE_GCM,
3143			 },
3144	 .auth_info = {
3145		       .alg = HASH_ALG_AES,
3146		       .mode = HASH_MODE_GCM,
3147		       },
3148	 .auth_first = 0,
3149	 },
3150	{
3151	 .type = CRYPTO_ALG_TYPE_AEAD,
3152	 .alg.aead = {
3153		 .base = {
3154			.cra_name = "ccm(aes)",
3155			.cra_driver_name = "ccm-aes-iproc",
3156			.cra_blocksize = AES_BLOCK_SIZE,
3157			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3158		 },
3159		 .setkey = aead_gcm_ccm_setkey,
3160		 .ivsize = CCM_AES_IV_SIZE,
3161		.maxauthsize = AES_BLOCK_SIZE,
3162	 },
3163	 .cipher_info = {
3164			 .alg = CIPHER_ALG_AES,
3165			 .mode = CIPHER_MODE_CCM,
3166			 },
3167	 .auth_info = {
3168		       .alg = HASH_ALG_AES,
3169		       .mode = HASH_MODE_CCM,
3170		       },
3171	 .auth_first = 0,
3172	 },
3173	{
3174	 .type = CRYPTO_ALG_TYPE_AEAD,
3175	 .alg.aead = {
3176		 .base = {
3177			.cra_name = "rfc4106(gcm(aes))",
3178			.cra_driver_name = "gcm-aes-esp-iproc",
3179			.cra_blocksize = AES_BLOCK_SIZE,
3180			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3181		 },
3182		 .setkey = aead_gcm_esp_setkey,
3183		 .ivsize = GCM_RFC4106_IV_SIZE,
3184		 .maxauthsize = AES_BLOCK_SIZE,
3185	 },
3186	 .cipher_info = {
3187			 .alg = CIPHER_ALG_AES,
3188			 .mode = CIPHER_MODE_GCM,
3189			 },
3190	 .auth_info = {
3191		       .alg = HASH_ALG_AES,
3192		       .mode = HASH_MODE_GCM,
3193		       },
3194	 .auth_first = 0,
3195	 },
3196	{
3197	 .type = CRYPTO_ALG_TYPE_AEAD,
3198	 .alg.aead = {
3199		 .base = {
3200			.cra_name = "rfc4309(ccm(aes))",
3201			.cra_driver_name = "ccm-aes-esp-iproc",
3202			.cra_blocksize = AES_BLOCK_SIZE,
3203			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3204		 },
3205		 .setkey = aead_ccm_esp_setkey,
3206		 .ivsize = CCM_AES_IV_SIZE,
3207		 .maxauthsize = AES_BLOCK_SIZE,
3208	 },
3209	 .cipher_info = {
3210			 .alg = CIPHER_ALG_AES,
3211			 .mode = CIPHER_MODE_CCM,
3212			 },
3213	 .auth_info = {
3214		       .alg = HASH_ALG_AES,
3215		       .mode = HASH_MODE_CCM,
3216		       },
3217	 .auth_first = 0,
3218	 },
3219	{
3220	 .type = CRYPTO_ALG_TYPE_AEAD,
3221	 .alg.aead = {
3222		 .base = {
3223			.cra_name = "rfc4543(gcm(aes))",
3224			.cra_driver_name = "gmac-aes-esp-iproc",
3225			.cra_blocksize = AES_BLOCK_SIZE,
3226			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3227		 },
3228		 .setkey = rfc4543_gcm_esp_setkey,
3229		 .ivsize = GCM_RFC4106_IV_SIZE,
3230		 .maxauthsize = AES_BLOCK_SIZE,
3231	 },
3232	 .cipher_info = {
3233			 .alg = CIPHER_ALG_AES,
3234			 .mode = CIPHER_MODE_GCM,
3235			 },
3236	 .auth_info = {
3237		       .alg = HASH_ALG_AES,
3238		       .mode = HASH_MODE_GCM,
3239		       },
3240	 .auth_first = 0,
3241	 },
3242	{
3243	 .type = CRYPTO_ALG_TYPE_AEAD,
3244	 .alg.aead = {
3245		 .base = {
3246			.cra_name = "authenc(hmac(md5),cbc(aes))",
3247			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3248			.cra_blocksize = AES_BLOCK_SIZE,
3249			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3250		 },
3251		 .setkey = aead_authenc_setkey,
3252		.ivsize = AES_BLOCK_SIZE,
3253		.maxauthsize = MD5_DIGEST_SIZE,
3254	 },
3255	 .cipher_info = {
3256			 .alg = CIPHER_ALG_AES,
3257			 .mode = CIPHER_MODE_CBC,
3258			 },
3259	 .auth_info = {
3260		       .alg = HASH_ALG_MD5,
3261		       .mode = HASH_MODE_HMAC,
3262		       },
3263	 .auth_first = 0,
3264	 },
3265	{
3266	 .type = CRYPTO_ALG_TYPE_AEAD,
3267	 .alg.aead = {
3268		 .base = {
3269			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3270			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3271			.cra_blocksize = AES_BLOCK_SIZE,
3272			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3273		 },
3274		 .setkey = aead_authenc_setkey,
3275		 .ivsize = AES_BLOCK_SIZE,
3276		 .maxauthsize = SHA1_DIGEST_SIZE,
3277	 },
3278	 .cipher_info = {
3279			 .alg = CIPHER_ALG_AES,
3280			 .mode = CIPHER_MODE_CBC,
3281			 },
3282	 .auth_info = {
3283		       .alg = HASH_ALG_SHA1,
3284		       .mode = HASH_MODE_HMAC,
3285		       },
3286	 .auth_first = 0,
3287	 },
3288	{
3289	 .type = CRYPTO_ALG_TYPE_AEAD,
3290	 .alg.aead = {
3291		 .base = {
3292			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3293			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3294			.cra_blocksize = AES_BLOCK_SIZE,
3295			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3296		 },
3297		 .setkey = aead_authenc_setkey,
3298		 .ivsize = AES_BLOCK_SIZE,
3299		 .maxauthsize = SHA256_DIGEST_SIZE,
3300	 },
3301	 .cipher_info = {
3302			 .alg = CIPHER_ALG_AES,
3303			 .mode = CIPHER_MODE_CBC,
3304			 },
3305	 .auth_info = {
3306		       .alg = HASH_ALG_SHA256,
3307		       .mode = HASH_MODE_HMAC,
3308		       },
3309	 .auth_first = 0,
3310	 },
3311	{
3312	 .type = CRYPTO_ALG_TYPE_AEAD,
3313	 .alg.aead = {
3314		 .base = {
3315			.cra_name = "authenc(hmac(md5),cbc(des))",
3316			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3317			.cra_blocksize = DES_BLOCK_SIZE,
3318			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3319		 },
3320		 .setkey = aead_authenc_setkey,
3321		 .ivsize = DES_BLOCK_SIZE,
3322		 .maxauthsize = MD5_DIGEST_SIZE,
3323	 },
3324	 .cipher_info = {
3325			 .alg = CIPHER_ALG_DES,
3326			 .mode = CIPHER_MODE_CBC,
3327			 },
3328	 .auth_info = {
3329		       .alg = HASH_ALG_MD5,
3330		       .mode = HASH_MODE_HMAC,
3331		       },
3332	 .auth_first = 0,
3333	 },
3334	{
3335	 .type = CRYPTO_ALG_TYPE_AEAD,
3336	 .alg.aead = {
3337		 .base = {
3338			.cra_name = "authenc(hmac(sha1),cbc(des))",
3339			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3340			.cra_blocksize = DES_BLOCK_SIZE,
3341			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3342		 },
3343		 .setkey = aead_authenc_setkey,
3344		 .ivsize = DES_BLOCK_SIZE,
3345		 .maxauthsize = SHA1_DIGEST_SIZE,
3346	 },
3347	 .cipher_info = {
3348			 .alg = CIPHER_ALG_DES,
3349			 .mode = CIPHER_MODE_CBC,
3350			 },
3351	 .auth_info = {
3352		       .alg = HASH_ALG_SHA1,
3353		       .mode = HASH_MODE_HMAC,
3354		       },
3355	 .auth_first = 0,
3356	 },
3357	{
3358	 .type = CRYPTO_ALG_TYPE_AEAD,
3359	 .alg.aead = {
3360		 .base = {
3361			.cra_name = "authenc(hmac(sha224),cbc(des))",
3362			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3363			.cra_blocksize = DES_BLOCK_SIZE,
3364			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3365		 },
3366		 .setkey = aead_authenc_setkey,
3367		 .ivsize = DES_BLOCK_SIZE,
3368		 .maxauthsize = SHA224_DIGEST_SIZE,
3369	 },
3370	 .cipher_info = {
3371			 .alg = CIPHER_ALG_DES,
3372			 .mode = CIPHER_MODE_CBC,
3373			 },
3374	 .auth_info = {
3375		       .alg = HASH_ALG_SHA224,
3376		       .mode = HASH_MODE_HMAC,
3377		       },
3378	 .auth_first = 0,
3379	 },
3380	{
3381	 .type = CRYPTO_ALG_TYPE_AEAD,
3382	 .alg.aead = {
3383		 .base = {
3384			.cra_name = "authenc(hmac(sha256),cbc(des))",
3385			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3386			.cra_blocksize = DES_BLOCK_SIZE,
3387			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3388		 },
3389		 .setkey = aead_authenc_setkey,
3390		 .ivsize = DES_BLOCK_SIZE,
3391		 .maxauthsize = SHA256_DIGEST_SIZE,
3392	 },
3393	 .cipher_info = {
3394			 .alg = CIPHER_ALG_DES,
3395			 .mode = CIPHER_MODE_CBC,
3396			 },
3397	 .auth_info = {
3398		       .alg = HASH_ALG_SHA256,
3399		       .mode = HASH_MODE_HMAC,
3400		       },
3401	 .auth_first = 0,
3402	 },
3403	{
3404	 .type = CRYPTO_ALG_TYPE_AEAD,
3405	 .alg.aead = {
3406		 .base = {
3407			.cra_name = "authenc(hmac(sha384),cbc(des))",
3408			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3409			.cra_blocksize = DES_BLOCK_SIZE,
3410			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3411		 },
3412		 .setkey = aead_authenc_setkey,
3413		 .ivsize = DES_BLOCK_SIZE,
3414		 .maxauthsize = SHA384_DIGEST_SIZE,
3415	 },
3416	 .cipher_info = {
3417			 .alg = CIPHER_ALG_DES,
3418			 .mode = CIPHER_MODE_CBC,
3419			 },
3420	 .auth_info = {
3421		       .alg = HASH_ALG_SHA384,
3422		       .mode = HASH_MODE_HMAC,
3423		       },
3424	 .auth_first = 0,
3425	 },
3426	{
3427	 .type = CRYPTO_ALG_TYPE_AEAD,
3428	 .alg.aead = {
3429		 .base = {
3430			.cra_name = "authenc(hmac(sha512),cbc(des))",
3431			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3432			.cra_blocksize = DES_BLOCK_SIZE,
3433			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3434		 },
3435		 .setkey = aead_authenc_setkey,
3436		 .ivsize = DES_BLOCK_SIZE,
3437		 .maxauthsize = SHA512_DIGEST_SIZE,
3438	 },
3439	 .cipher_info = {
3440			 .alg = CIPHER_ALG_DES,
3441			 .mode = CIPHER_MODE_CBC,
3442			 },
3443	 .auth_info = {
3444		       .alg = HASH_ALG_SHA512,
3445		       .mode = HASH_MODE_HMAC,
3446		       },
3447	 .auth_first = 0,
3448	 },
3449	{
3450	 .type = CRYPTO_ALG_TYPE_AEAD,
3451	 .alg.aead = {
3452		 .base = {
3453			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3454			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3455			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3456			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3457		 },
3458		 .setkey = aead_authenc_setkey,
3459		 .ivsize = DES3_EDE_BLOCK_SIZE,
3460		 .maxauthsize = MD5_DIGEST_SIZE,
3461	 },
3462	 .cipher_info = {
3463			 .alg = CIPHER_ALG_3DES,
3464			 .mode = CIPHER_MODE_CBC,
3465			 },
3466	 .auth_info = {
3467		       .alg = HASH_ALG_MD5,
3468		       .mode = HASH_MODE_HMAC,
3469		       },
3470	 .auth_first = 0,
3471	 },
3472	{
3473	 .type = CRYPTO_ALG_TYPE_AEAD,
3474	 .alg.aead = {
3475		 .base = {
3476			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3477			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3478			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3479			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3480		 },
3481		 .setkey = aead_authenc_setkey,
3482		 .ivsize = DES3_EDE_BLOCK_SIZE,
3483		 .maxauthsize = SHA1_DIGEST_SIZE,
3484	 },
3485	 .cipher_info = {
3486			 .alg = CIPHER_ALG_3DES,
3487			 .mode = CIPHER_MODE_CBC,
3488			 },
3489	 .auth_info = {
3490		       .alg = HASH_ALG_SHA1,
3491		       .mode = HASH_MODE_HMAC,
3492		       },
3493	 .auth_first = 0,
3494	 },
3495	{
3496	 .type = CRYPTO_ALG_TYPE_AEAD,
3497	 .alg.aead = {
3498		 .base = {
3499			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3500			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3501			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3502			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3503		 },
3504		 .setkey = aead_authenc_setkey,
3505		 .ivsize = DES3_EDE_BLOCK_SIZE,
3506		 .maxauthsize = SHA224_DIGEST_SIZE,
3507	 },
3508	 .cipher_info = {
3509			 .alg = CIPHER_ALG_3DES,
3510			 .mode = CIPHER_MODE_CBC,
3511			 },
3512	 .auth_info = {
3513		       .alg = HASH_ALG_SHA224,
3514		       .mode = HASH_MODE_HMAC,
3515		       },
3516	 .auth_first = 0,
3517	 },
3518	{
3519	 .type = CRYPTO_ALG_TYPE_AEAD,
3520	 .alg.aead = {
3521		 .base = {
3522			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3523			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3524			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3525			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3526		 },
3527		 .setkey = aead_authenc_setkey,
3528		 .ivsize = DES3_EDE_BLOCK_SIZE,
3529		 .maxauthsize = SHA256_DIGEST_SIZE,
3530	 },
3531	 .cipher_info = {
3532			 .alg = CIPHER_ALG_3DES,
3533			 .mode = CIPHER_MODE_CBC,
3534			 },
3535	 .auth_info = {
3536		       .alg = HASH_ALG_SHA256,
3537		       .mode = HASH_MODE_HMAC,
3538		       },
3539	 .auth_first = 0,
3540	 },
3541	{
3542	 .type = CRYPTO_ALG_TYPE_AEAD,
3543	 .alg.aead = {
3544		 .base = {
3545			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3546			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3547			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3548			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3549		 },
3550		 .setkey = aead_authenc_setkey,
3551		 .ivsize = DES3_EDE_BLOCK_SIZE,
3552		 .maxauthsize = SHA384_DIGEST_SIZE,
3553	 },
3554	 .cipher_info = {
3555			 .alg = CIPHER_ALG_3DES,
3556			 .mode = CIPHER_MODE_CBC,
3557			 },
3558	 .auth_info = {
3559		       .alg = HASH_ALG_SHA384,
3560		       .mode = HASH_MODE_HMAC,
3561		       },
3562	 .auth_first = 0,
3563	 },
3564	{
3565	 .type = CRYPTO_ALG_TYPE_AEAD,
3566	 .alg.aead = {
3567		 .base = {
3568			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3569			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3570			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3571			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
 
 
3572		 },
3573		 .setkey = aead_authenc_setkey,
3574		 .ivsize = DES3_EDE_BLOCK_SIZE,
3575		 .maxauthsize = SHA512_DIGEST_SIZE,
3576	 },
3577	 .cipher_info = {
3578			 .alg = CIPHER_ALG_3DES,
3579			 .mode = CIPHER_MODE_CBC,
3580			 },
3581	 .auth_info = {
3582		       .alg = HASH_ALG_SHA512,
3583		       .mode = HASH_MODE_HMAC,
3584		       },
3585	 .auth_first = 0,
3586	 },
3587
3588/* ABLKCIPHER algorithms. */
3589	{
3590	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3591	 .alg.crypto = {
3592			.cra_name = "ecb(arc4)",
3593			.cra_driver_name = "ecb-arc4-iproc",
3594			.cra_blocksize = ARC4_BLOCK_SIZE,
3595			.cra_ablkcipher = {
3596					   .min_keysize = ARC4_MIN_KEY_SIZE,
3597					   .max_keysize = ARC4_MAX_KEY_SIZE,
3598					   .ivsize = 0,
3599					}
3600			},
3601	 .cipher_info = {
3602			 .alg = CIPHER_ALG_RC4,
3603			 .mode = CIPHER_MODE_NONE,
3604			 },
3605	 .auth_info = {
3606		       .alg = HASH_ALG_NONE,
3607		       .mode = HASH_MODE_NONE,
3608		       },
3609	 },
3610	{
3611	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3612	 .alg.crypto = {
3613			.cra_name = "ofb(des)",
3614			.cra_driver_name = "ofb-des-iproc",
3615			.cra_blocksize = DES_BLOCK_SIZE,
3616			.cra_ablkcipher = {
3617					   .min_keysize = DES_KEY_SIZE,
3618					   .max_keysize = DES_KEY_SIZE,
3619					   .ivsize = DES_BLOCK_SIZE,
3620					}
3621			},
3622	 .cipher_info = {
3623			 .alg = CIPHER_ALG_DES,
3624			 .mode = CIPHER_MODE_OFB,
3625			 },
3626	 .auth_info = {
3627		       .alg = HASH_ALG_NONE,
3628		       .mode = HASH_MODE_NONE,
3629		       },
3630	 },
3631	{
3632	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3633	 .alg.crypto = {
3634			.cra_name = "cbc(des)",
3635			.cra_driver_name = "cbc-des-iproc",
3636			.cra_blocksize = DES_BLOCK_SIZE,
3637			.cra_ablkcipher = {
3638					   .min_keysize = DES_KEY_SIZE,
3639					   .max_keysize = DES_KEY_SIZE,
3640					   .ivsize = DES_BLOCK_SIZE,
3641					}
3642			},
3643	 .cipher_info = {
3644			 .alg = CIPHER_ALG_DES,
3645			 .mode = CIPHER_MODE_CBC,
3646			 },
3647	 .auth_info = {
3648		       .alg = HASH_ALG_NONE,
3649		       .mode = HASH_MODE_NONE,
3650		       },
3651	 },
3652	{
3653	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3654	 .alg.crypto = {
3655			.cra_name = "ecb(des)",
3656			.cra_driver_name = "ecb-des-iproc",
3657			.cra_blocksize = DES_BLOCK_SIZE,
3658			.cra_ablkcipher = {
3659					   .min_keysize = DES_KEY_SIZE,
3660					   .max_keysize = DES_KEY_SIZE,
3661					   .ivsize = 0,
3662					}
3663			},
3664	 .cipher_info = {
3665			 .alg = CIPHER_ALG_DES,
3666			 .mode = CIPHER_MODE_ECB,
3667			 },
3668	 .auth_info = {
3669		       .alg = HASH_ALG_NONE,
3670		       .mode = HASH_MODE_NONE,
3671		       },
3672	 },
3673	{
3674	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3675	 .alg.crypto = {
3676			.cra_name = "ofb(des3_ede)",
3677			.cra_driver_name = "ofb-des3-iproc",
3678			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3679			.cra_ablkcipher = {
3680					   .min_keysize = DES3_EDE_KEY_SIZE,
3681					   .max_keysize = DES3_EDE_KEY_SIZE,
3682					   .ivsize = DES3_EDE_BLOCK_SIZE,
3683					}
3684			},
3685	 .cipher_info = {
3686			 .alg = CIPHER_ALG_3DES,
3687			 .mode = CIPHER_MODE_OFB,
3688			 },
3689	 .auth_info = {
3690		       .alg = HASH_ALG_NONE,
3691		       .mode = HASH_MODE_NONE,
3692		       },
3693	 },
3694	{
3695	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3696	 .alg.crypto = {
3697			.cra_name = "cbc(des3_ede)",
3698			.cra_driver_name = "cbc-des3-iproc",
3699			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3700			.cra_ablkcipher = {
3701					   .min_keysize = DES3_EDE_KEY_SIZE,
3702					   .max_keysize = DES3_EDE_KEY_SIZE,
3703					   .ivsize = DES3_EDE_BLOCK_SIZE,
3704					}
3705			},
3706	 .cipher_info = {
3707			 .alg = CIPHER_ALG_3DES,
3708			 .mode = CIPHER_MODE_CBC,
3709			 },
3710	 .auth_info = {
3711		       .alg = HASH_ALG_NONE,
3712		       .mode = HASH_MODE_NONE,
3713		       },
3714	 },
3715	{
3716	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3717	 .alg.crypto = {
3718			.cra_name = "ecb(des3_ede)",
3719			.cra_driver_name = "ecb-des3-iproc",
3720			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3721			.cra_ablkcipher = {
3722					   .min_keysize = DES3_EDE_KEY_SIZE,
3723					   .max_keysize = DES3_EDE_KEY_SIZE,
3724					   .ivsize = 0,
3725					}
3726			},
3727	 .cipher_info = {
3728			 .alg = CIPHER_ALG_3DES,
3729			 .mode = CIPHER_MODE_ECB,
3730			 },
3731	 .auth_info = {
3732		       .alg = HASH_ALG_NONE,
3733		       .mode = HASH_MODE_NONE,
3734		       },
3735	 },
3736	{
3737	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3738	 .alg.crypto = {
3739			.cra_name = "ofb(aes)",
3740			.cra_driver_name = "ofb-aes-iproc",
3741			.cra_blocksize = AES_BLOCK_SIZE,
3742			.cra_ablkcipher = {
3743					   .min_keysize = AES_MIN_KEY_SIZE,
3744					   .max_keysize = AES_MAX_KEY_SIZE,
3745					   .ivsize = AES_BLOCK_SIZE,
3746					}
3747			},
3748	 .cipher_info = {
3749			 .alg = CIPHER_ALG_AES,
3750			 .mode = CIPHER_MODE_OFB,
3751			 },
3752	 .auth_info = {
3753		       .alg = HASH_ALG_NONE,
3754		       .mode = HASH_MODE_NONE,
3755		       },
3756	 },
3757	{
3758	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3759	 .alg.crypto = {
3760			.cra_name = "cbc(aes)",
3761			.cra_driver_name = "cbc-aes-iproc",
3762			.cra_blocksize = AES_BLOCK_SIZE,
3763			.cra_ablkcipher = {
3764					   .min_keysize = AES_MIN_KEY_SIZE,
3765					   .max_keysize = AES_MAX_KEY_SIZE,
3766					   .ivsize = AES_BLOCK_SIZE,
3767					}
3768			},
3769	 .cipher_info = {
3770			 .alg = CIPHER_ALG_AES,
3771			 .mode = CIPHER_MODE_CBC,
3772			 },
3773	 .auth_info = {
3774		       .alg = HASH_ALG_NONE,
3775		       .mode = HASH_MODE_NONE,
3776		       },
3777	 },
3778	{
3779	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3780	 .alg.crypto = {
3781			.cra_name = "ecb(aes)",
3782			.cra_driver_name = "ecb-aes-iproc",
3783			.cra_blocksize = AES_BLOCK_SIZE,
3784			.cra_ablkcipher = {
3785					   .min_keysize = AES_MIN_KEY_SIZE,
3786					   .max_keysize = AES_MAX_KEY_SIZE,
3787					   .ivsize = 0,
3788					}
3789			},
3790	 .cipher_info = {
3791			 .alg = CIPHER_ALG_AES,
3792			 .mode = CIPHER_MODE_ECB,
3793			 },
3794	 .auth_info = {
3795		       .alg = HASH_ALG_NONE,
3796		       .mode = HASH_MODE_NONE,
3797		       },
3798	 },
3799	{
3800	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3801	 .alg.crypto = {
3802			.cra_name = "ctr(aes)",
3803			.cra_driver_name = "ctr-aes-iproc",
3804			.cra_blocksize = AES_BLOCK_SIZE,
3805			.cra_ablkcipher = {
3806					   .min_keysize = AES_MIN_KEY_SIZE,
3807					   .max_keysize = AES_MAX_KEY_SIZE,
3808					   .ivsize = AES_BLOCK_SIZE,
3809					}
3810			},
3811	 .cipher_info = {
3812			 .alg = CIPHER_ALG_AES,
3813			 .mode = CIPHER_MODE_CTR,
3814			 },
3815	 .auth_info = {
3816		       .alg = HASH_ALG_NONE,
3817		       .mode = HASH_MODE_NONE,
3818		       },
3819	 },
3820{
3821	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3822	 .alg.crypto = {
3823			.cra_name = "xts(aes)",
3824			.cra_driver_name = "xts-aes-iproc",
3825			.cra_blocksize = AES_BLOCK_SIZE,
3826			.cra_ablkcipher = {
3827				.min_keysize = 2 * AES_MIN_KEY_SIZE,
3828				.max_keysize = 2 * AES_MAX_KEY_SIZE,
3829				.ivsize = AES_BLOCK_SIZE,
3830				}
3831			},
3832	 .cipher_info = {
3833			 .alg = CIPHER_ALG_AES,
3834			 .mode = CIPHER_MODE_XTS,
3835			 },
3836	 .auth_info = {
3837		       .alg = HASH_ALG_NONE,
3838		       .mode = HASH_MODE_NONE,
3839		       },
3840	 },
3841
3842/* AHASH algorithms. */
3843	{
3844	 .type = CRYPTO_ALG_TYPE_AHASH,
3845	 .alg.hash = {
3846		      .halg.digestsize = MD5_DIGEST_SIZE,
3847		      .halg.base = {
3848				    .cra_name = "md5",
3849				    .cra_driver_name = "md5-iproc",
3850				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3851				    .cra_flags = CRYPTO_ALG_ASYNC,
 
3852				}
3853		      },
3854	 .cipher_info = {
3855			 .alg = CIPHER_ALG_NONE,
3856			 .mode = CIPHER_MODE_NONE,
3857			 },
3858	 .auth_info = {
3859		       .alg = HASH_ALG_MD5,
3860		       .mode = HASH_MODE_HASH,
3861		       },
3862	 },
3863	{
3864	 .type = CRYPTO_ALG_TYPE_AHASH,
3865	 .alg.hash = {
3866		      .halg.digestsize = MD5_DIGEST_SIZE,
3867		      .halg.base = {
3868				    .cra_name = "hmac(md5)",
3869				    .cra_driver_name = "hmac-md5-iproc",
3870				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3871				}
3872		      },
3873	 .cipher_info = {
3874			 .alg = CIPHER_ALG_NONE,
3875			 .mode = CIPHER_MODE_NONE,
3876			 },
3877	 .auth_info = {
3878		       .alg = HASH_ALG_MD5,
3879		       .mode = HASH_MODE_HMAC,
3880		       },
3881	 },
3882	{.type = CRYPTO_ALG_TYPE_AHASH,
3883	 .alg.hash = {
3884		      .halg.digestsize = SHA1_DIGEST_SIZE,
3885		      .halg.base = {
3886				    .cra_name = "sha1",
3887				    .cra_driver_name = "sha1-iproc",
3888				    .cra_blocksize = SHA1_BLOCK_SIZE,
3889				}
3890		      },
3891	 .cipher_info = {
3892			 .alg = CIPHER_ALG_NONE,
3893			 .mode = CIPHER_MODE_NONE,
3894			 },
3895	 .auth_info = {
3896		       .alg = HASH_ALG_SHA1,
3897		       .mode = HASH_MODE_HASH,
3898		       },
3899	 },
3900	{.type = CRYPTO_ALG_TYPE_AHASH,
3901	 .alg.hash = {
3902		      .halg.digestsize = SHA1_DIGEST_SIZE,
3903		      .halg.base = {
3904				    .cra_name = "hmac(sha1)",
3905				    .cra_driver_name = "hmac-sha1-iproc",
3906				    .cra_blocksize = SHA1_BLOCK_SIZE,
3907				}
3908		      },
3909	 .cipher_info = {
3910			 .alg = CIPHER_ALG_NONE,
3911			 .mode = CIPHER_MODE_NONE,
3912			 },
3913	 .auth_info = {
3914		       .alg = HASH_ALG_SHA1,
3915		       .mode = HASH_MODE_HMAC,
3916		       },
3917	 },
3918	{.type = CRYPTO_ALG_TYPE_AHASH,
3919	 .alg.hash = {
3920			.halg.digestsize = SHA224_DIGEST_SIZE,
3921			.halg.base = {
3922				    .cra_name = "sha224",
3923				    .cra_driver_name = "sha224-iproc",
3924				    .cra_blocksize = SHA224_BLOCK_SIZE,
3925			}
3926		      },
3927	 .cipher_info = {
3928			 .alg = CIPHER_ALG_NONE,
3929			 .mode = CIPHER_MODE_NONE,
3930			 },
3931	 .auth_info = {
3932		       .alg = HASH_ALG_SHA224,
3933		       .mode = HASH_MODE_HASH,
3934		       },
3935	 },
3936	{.type = CRYPTO_ALG_TYPE_AHASH,
3937	 .alg.hash = {
3938		      .halg.digestsize = SHA224_DIGEST_SIZE,
3939		      .halg.base = {
3940				    .cra_name = "hmac(sha224)",
3941				    .cra_driver_name = "hmac-sha224-iproc",
3942				    .cra_blocksize = SHA224_BLOCK_SIZE,
3943				}
3944		      },
3945	 .cipher_info = {
3946			 .alg = CIPHER_ALG_NONE,
3947			 .mode = CIPHER_MODE_NONE,
3948			 },
3949	 .auth_info = {
3950		       .alg = HASH_ALG_SHA224,
3951		       .mode = HASH_MODE_HMAC,
3952		       },
3953	 },
3954	{.type = CRYPTO_ALG_TYPE_AHASH,
3955	 .alg.hash = {
3956		      .halg.digestsize = SHA256_DIGEST_SIZE,
3957		      .halg.base = {
3958				    .cra_name = "sha256",
3959				    .cra_driver_name = "sha256-iproc",
3960				    .cra_blocksize = SHA256_BLOCK_SIZE,
3961				}
3962		      },
3963	 .cipher_info = {
3964			 .alg = CIPHER_ALG_NONE,
3965			 .mode = CIPHER_MODE_NONE,
3966			 },
3967	 .auth_info = {
3968		       .alg = HASH_ALG_SHA256,
3969		       .mode = HASH_MODE_HASH,
3970		       },
3971	 },
3972	{.type = CRYPTO_ALG_TYPE_AHASH,
3973	 .alg.hash = {
3974		      .halg.digestsize = SHA256_DIGEST_SIZE,
3975		      .halg.base = {
3976				    .cra_name = "hmac(sha256)",
3977				    .cra_driver_name = "hmac-sha256-iproc",
3978				    .cra_blocksize = SHA256_BLOCK_SIZE,
3979				}
3980		      },
3981	 .cipher_info = {
3982			 .alg = CIPHER_ALG_NONE,
3983			 .mode = CIPHER_MODE_NONE,
3984			 },
3985	 .auth_info = {
3986		       .alg = HASH_ALG_SHA256,
3987		       .mode = HASH_MODE_HMAC,
3988		       },
3989	 },
3990	{
3991	.type = CRYPTO_ALG_TYPE_AHASH,
3992	 .alg.hash = {
3993		      .halg.digestsize = SHA384_DIGEST_SIZE,
3994		      .halg.base = {
3995				    .cra_name = "sha384",
3996				    .cra_driver_name = "sha384-iproc",
3997				    .cra_blocksize = SHA384_BLOCK_SIZE,
3998				}
3999		      },
4000	 .cipher_info = {
4001			 .alg = CIPHER_ALG_NONE,
4002			 .mode = CIPHER_MODE_NONE,
4003			 },
4004	 .auth_info = {
4005		       .alg = HASH_ALG_SHA384,
4006		       .mode = HASH_MODE_HASH,
4007		       },
4008	 },
4009	{
4010	 .type = CRYPTO_ALG_TYPE_AHASH,
4011	 .alg.hash = {
4012		      .halg.digestsize = SHA384_DIGEST_SIZE,
4013		      .halg.base = {
4014				    .cra_name = "hmac(sha384)",
4015				    .cra_driver_name = "hmac-sha384-iproc",
4016				    .cra_blocksize = SHA384_BLOCK_SIZE,
4017				}
4018		      },
4019	 .cipher_info = {
4020			 .alg = CIPHER_ALG_NONE,
4021			 .mode = CIPHER_MODE_NONE,
4022			 },
4023	 .auth_info = {
4024		       .alg = HASH_ALG_SHA384,
4025		       .mode = HASH_MODE_HMAC,
4026		       },
4027	 },
4028	{
4029	 .type = CRYPTO_ALG_TYPE_AHASH,
4030	 .alg.hash = {
4031		      .halg.digestsize = SHA512_DIGEST_SIZE,
4032		      .halg.base = {
4033				    .cra_name = "sha512",
4034				    .cra_driver_name = "sha512-iproc",
4035				    .cra_blocksize = SHA512_BLOCK_SIZE,
4036				}
4037		      },
4038	 .cipher_info = {
4039			 .alg = CIPHER_ALG_NONE,
4040			 .mode = CIPHER_MODE_NONE,
4041			 },
4042	 .auth_info = {
4043		       .alg = HASH_ALG_SHA512,
4044		       .mode = HASH_MODE_HASH,
4045		       },
4046	 },
4047	{
4048	 .type = CRYPTO_ALG_TYPE_AHASH,
4049	 .alg.hash = {
4050		      .halg.digestsize = SHA512_DIGEST_SIZE,
4051		      .halg.base = {
4052				    .cra_name = "hmac(sha512)",
4053				    .cra_driver_name = "hmac-sha512-iproc",
4054				    .cra_blocksize = SHA512_BLOCK_SIZE,
4055				}
4056		      },
4057	 .cipher_info = {
4058			 .alg = CIPHER_ALG_NONE,
4059			 .mode = CIPHER_MODE_NONE,
4060			 },
4061	 .auth_info = {
4062		       .alg = HASH_ALG_SHA512,
4063		       .mode = HASH_MODE_HMAC,
4064		       },
4065	 },
4066	{
4067	 .type = CRYPTO_ALG_TYPE_AHASH,
4068	 .alg.hash = {
4069		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4070		      .halg.base = {
4071				    .cra_name = "sha3-224",
4072				    .cra_driver_name = "sha3-224-iproc",
4073				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4074				}
4075		      },
4076	 .cipher_info = {
4077			 .alg = CIPHER_ALG_NONE,
4078			 .mode = CIPHER_MODE_NONE,
4079			 },
4080	 .auth_info = {
4081		       .alg = HASH_ALG_SHA3_224,
4082		       .mode = HASH_MODE_HASH,
4083		       },
4084	 },
4085	{
4086	 .type = CRYPTO_ALG_TYPE_AHASH,
4087	 .alg.hash = {
4088		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4089		      .halg.base = {
4090				    .cra_name = "hmac(sha3-224)",
4091				    .cra_driver_name = "hmac-sha3-224-iproc",
4092				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4093				}
4094		      },
4095	 .cipher_info = {
4096			 .alg = CIPHER_ALG_NONE,
4097			 .mode = CIPHER_MODE_NONE,
4098			 },
4099	 .auth_info = {
4100		       .alg = HASH_ALG_SHA3_224,
4101		       .mode = HASH_MODE_HMAC
4102		       },
4103	 },
4104	{
4105	 .type = CRYPTO_ALG_TYPE_AHASH,
4106	 .alg.hash = {
4107		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4108		      .halg.base = {
4109				    .cra_name = "sha3-256",
4110				    .cra_driver_name = "sha3-256-iproc",
4111				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4112				}
4113		      },
4114	 .cipher_info = {
4115			 .alg = CIPHER_ALG_NONE,
4116			 .mode = CIPHER_MODE_NONE,
4117			 },
4118	 .auth_info = {
4119		       .alg = HASH_ALG_SHA3_256,
4120		       .mode = HASH_MODE_HASH,
4121		       },
4122	 },
4123	{
4124	 .type = CRYPTO_ALG_TYPE_AHASH,
4125	 .alg.hash = {
4126		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4127		      .halg.base = {
4128				    .cra_name = "hmac(sha3-256)",
4129				    .cra_driver_name = "hmac-sha3-256-iproc",
4130				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4131				}
4132		      },
4133	 .cipher_info = {
4134			 .alg = CIPHER_ALG_NONE,
4135			 .mode = CIPHER_MODE_NONE,
4136			 },
4137	 .auth_info = {
4138		       .alg = HASH_ALG_SHA3_256,
4139		       .mode = HASH_MODE_HMAC,
4140		       },
4141	 },
4142	{
4143	 .type = CRYPTO_ALG_TYPE_AHASH,
4144	 .alg.hash = {
4145		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4146		      .halg.base = {
4147				    .cra_name = "sha3-384",
4148				    .cra_driver_name = "sha3-384-iproc",
4149				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4150				}
4151		      },
4152	 .cipher_info = {
4153			 .alg = CIPHER_ALG_NONE,
4154			 .mode = CIPHER_MODE_NONE,
4155			 },
4156	 .auth_info = {
4157		       .alg = HASH_ALG_SHA3_384,
4158		       .mode = HASH_MODE_HASH,
4159		       },
4160	 },
4161	{
4162	 .type = CRYPTO_ALG_TYPE_AHASH,
4163	 .alg.hash = {
4164		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4165		      .halg.base = {
4166				    .cra_name = "hmac(sha3-384)",
4167				    .cra_driver_name = "hmac-sha3-384-iproc",
4168				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4169				}
4170		      },
4171	 .cipher_info = {
4172			 .alg = CIPHER_ALG_NONE,
4173			 .mode = CIPHER_MODE_NONE,
4174			 },
4175	 .auth_info = {
4176		       .alg = HASH_ALG_SHA3_384,
4177		       .mode = HASH_MODE_HMAC,
4178		       },
4179	 },
4180	{
4181	 .type = CRYPTO_ALG_TYPE_AHASH,
4182	 .alg.hash = {
4183		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4184		      .halg.base = {
4185				    .cra_name = "sha3-512",
4186				    .cra_driver_name = "sha3-512-iproc",
4187				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4188				}
4189		      },
4190	 .cipher_info = {
4191			 .alg = CIPHER_ALG_NONE,
4192			 .mode = CIPHER_MODE_NONE,
4193			 },
4194	 .auth_info = {
4195		       .alg = HASH_ALG_SHA3_512,
4196		       .mode = HASH_MODE_HASH,
4197		       },
4198	 },
4199	{
4200	 .type = CRYPTO_ALG_TYPE_AHASH,
4201	 .alg.hash = {
4202		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4203		      .halg.base = {
4204				    .cra_name = "hmac(sha3-512)",
4205				    .cra_driver_name = "hmac-sha3-512-iproc",
4206				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4207				}
4208		      },
4209	 .cipher_info = {
4210			 .alg = CIPHER_ALG_NONE,
4211			 .mode = CIPHER_MODE_NONE,
4212			 },
4213	 .auth_info = {
4214		       .alg = HASH_ALG_SHA3_512,
4215		       .mode = HASH_MODE_HMAC,
4216		       },
4217	 },
4218	{
4219	 .type = CRYPTO_ALG_TYPE_AHASH,
4220	 .alg.hash = {
4221		      .halg.digestsize = AES_BLOCK_SIZE,
4222		      .halg.base = {
4223				    .cra_name = "xcbc(aes)",
4224				    .cra_driver_name = "xcbc-aes-iproc",
4225				    .cra_blocksize = AES_BLOCK_SIZE,
4226				}
4227		      },
4228	 .cipher_info = {
4229			 .alg = CIPHER_ALG_NONE,
4230			 .mode = CIPHER_MODE_NONE,
4231			 },
4232	 .auth_info = {
4233		       .alg = HASH_ALG_AES,
4234		       .mode = HASH_MODE_XCBC,
4235		       },
4236	 },
4237	{
4238	 .type = CRYPTO_ALG_TYPE_AHASH,
4239	 .alg.hash = {
4240		      .halg.digestsize = AES_BLOCK_SIZE,
4241		      .halg.base = {
4242				    .cra_name = "cmac(aes)",
4243				    .cra_driver_name = "cmac-aes-iproc",
4244				    .cra_blocksize = AES_BLOCK_SIZE,
4245				}
4246		      },
4247	 .cipher_info = {
4248			 .alg = CIPHER_ALG_NONE,
4249			 .mode = CIPHER_MODE_NONE,
4250			 },
4251	 .auth_info = {
4252		       .alg = HASH_ALG_AES,
4253		       .mode = HASH_MODE_CMAC,
4254		       },
4255	 },
4256};
4257
4258static int generic_cra_init(struct crypto_tfm *tfm,
4259			    struct iproc_alg_s *cipher_alg)
4260{
4261	struct spu_hw *spu = &iproc_priv.spu;
4262	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4263	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4264
4265	flow_log("%s()\n", __func__);
4266
4267	ctx->alg = cipher_alg;
4268	ctx->cipher = cipher_alg->cipher_info;
4269	ctx->auth = cipher_alg->auth_info;
4270	ctx->auth_first = cipher_alg->auth_first;
4271	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4272						    ctx->cipher.mode,
4273						    blocksize);
4274	ctx->fallback_cipher = NULL;
4275
4276	ctx->enckeylen = 0;
4277	ctx->authkeylen = 0;
4278
4279	atomic_inc(&iproc_priv.stream_count);
4280	atomic_inc(&iproc_priv.session_count);
4281
4282	return 0;
4283}
4284
4285static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4286{
4287	struct crypto_alg *alg = tfm->__crt_alg;
 
4288	struct iproc_alg_s *cipher_alg;
4289
4290	flow_log("%s()\n", __func__);
4291
4292	tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4293
4294	cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4295	return generic_cra_init(tfm, cipher_alg);
4296}
4297
4298static int ahash_cra_init(struct crypto_tfm *tfm)
4299{
4300	int err;
4301	struct crypto_alg *alg = tfm->__crt_alg;
4302	struct iproc_alg_s *cipher_alg;
4303
4304	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4305				  alg.hash);
4306
4307	err = generic_cra_init(tfm, cipher_alg);
4308	flow_log("%s()\n", __func__);
4309
4310	/*
4311	 * export state size has to be < 512 bytes. So don't include msg bufs
4312	 * in state size.
4313	 */
4314	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4315				 sizeof(struct iproc_reqctx_s));
4316
4317	return err;
4318}
4319
4320static int aead_cra_init(struct crypto_aead *aead)
4321{
 
4322	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4323	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4324	struct crypto_alg *alg = tfm->__crt_alg;
4325	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4326	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4327						      alg.aead);
4328
4329	int err = generic_cra_init(tfm, cipher_alg);
4330
4331	flow_log("%s()\n", __func__);
4332
4333	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4334	ctx->is_esp = false;
4335	ctx->salt_len = 0;
4336	ctx->salt_offset = 0;
4337
4338	/* random first IV */
4339	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4340	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4341
4342	if (!err) {
4343		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4344			flow_log("%s() creating fallback cipher\n", __func__);
4345
4346			ctx->fallback_cipher =
4347			    crypto_alloc_aead(alg->cra_name, 0,
4348					      CRYPTO_ALG_ASYNC |
4349					      CRYPTO_ALG_NEED_FALLBACK);
4350			if (IS_ERR(ctx->fallback_cipher)) {
4351				pr_err("%s() Error: failed to allocate fallback for %s\n",
4352				       __func__, alg->cra_name);
4353				return PTR_ERR(ctx->fallback_cipher);
4354			}
4355		}
 
4356	}
4357
 
 
 
 
 
 
4358	return err;
4359}
4360
4361static void generic_cra_exit(struct crypto_tfm *tfm)
4362{
4363	atomic_dec(&iproc_priv.session_count);
4364}
4365
 
 
 
 
 
4366static void aead_cra_exit(struct crypto_aead *aead)
4367{
4368	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4369	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4370
4371	generic_cra_exit(tfm);
4372
4373	if (ctx->fallback_cipher) {
4374		crypto_free_aead(ctx->fallback_cipher);
4375		ctx->fallback_cipher = NULL;
4376	}
4377}
4378
4379/**
4380 * spu_functions_register() - Specify hardware-specific SPU functions based on
4381 * SPU type read from device tree.
4382 * @dev:	device structure
4383 * @spu_type:	SPU hardware generation
4384 * @spu_subtype: SPU hardware version
4385 */
4386static void spu_functions_register(struct device *dev,
4387				   enum spu_spu_type spu_type,
4388				   enum spu_spu_subtype spu_subtype)
4389{
4390	struct spu_hw *spu = &iproc_priv.spu;
4391
4392	if (spu_type == SPU_TYPE_SPUM) {
4393		dev_dbg(dev, "Registering SPUM functions");
4394		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4395		spu->spu_payload_length = spum_payload_length;
4396		spu->spu_response_hdr_len = spum_response_hdr_len;
4397		spu->spu_hash_pad_len = spum_hash_pad_len;
4398		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4399		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4400		spu->spu_aead_ivlen = spum_aead_ivlen;
4401		spu->spu_hash_type = spum_hash_type;
4402		spu->spu_digest_size = spum_digest_size;
4403		spu->spu_create_request = spum_create_request;
4404		spu->spu_cipher_req_init = spum_cipher_req_init;
4405		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4406		spu->spu_request_pad = spum_request_pad;
4407		spu->spu_tx_status_len = spum_tx_status_len;
4408		spu->spu_rx_status_len = spum_rx_status_len;
4409		spu->spu_status_process = spum_status_process;
4410		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4411		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4412		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4413		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4414			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4415		else
4416			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4417	} else {
4418		dev_dbg(dev, "Registering SPU2 functions");
4419		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4420		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4421		spu->spu_payload_length = spu2_payload_length;
4422		spu->spu_response_hdr_len = spu2_response_hdr_len;
4423		spu->spu_hash_pad_len = spu2_hash_pad_len;
4424		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4425		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4426		spu->spu_aead_ivlen = spu2_aead_ivlen;
4427		spu->spu_hash_type = spu2_hash_type;
4428		spu->spu_digest_size = spu2_digest_size;
4429		spu->spu_create_request = spu2_create_request;
4430		spu->spu_cipher_req_init = spu2_cipher_req_init;
4431		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4432		spu->spu_request_pad = spu2_request_pad;
4433		spu->spu_tx_status_len = spu2_tx_status_len;
4434		spu->spu_rx_status_len = spu2_rx_status_len;
4435		spu->spu_status_process = spu2_status_process;
4436		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4437		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4438		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4439	}
4440}
4441
4442/**
4443 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4444 * channel for the SPU being probed.
4445 * @dev:  SPU driver device structure
4446 *
4447 * Return: 0 if successful
4448 *	   < 0 otherwise
4449 */
4450static int spu_mb_init(struct device *dev)
4451{
4452	struct mbox_client *mcl = &iproc_priv.mcl;
4453	int err, i;
4454
4455	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4456				  sizeof(struct mbox_chan *), GFP_KERNEL);
4457	if (!iproc_priv.mbox)
4458		return -ENOMEM;
4459
4460	mcl->dev = dev;
4461	mcl->tx_block = false;
4462	mcl->tx_tout = 0;
4463	mcl->knows_txdone = true;
4464	mcl->rx_callback = spu_rx_callback;
4465	mcl->tx_done = NULL;
4466
4467	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4468		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4469		if (IS_ERR(iproc_priv.mbox[i])) {
4470			err = (int)PTR_ERR(iproc_priv.mbox[i]);
4471			dev_err(dev,
4472				"Mbox channel %d request failed with err %d",
4473				i, err);
4474			iproc_priv.mbox[i] = NULL;
4475			goto free_channels;
4476		}
4477	}
4478
4479	return 0;
4480free_channels:
4481	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4482		if (iproc_priv.mbox[i])
4483			mbox_free_channel(iproc_priv.mbox[i]);
4484	}
4485
4486	return err;
4487}
4488
4489static void spu_mb_release(struct platform_device *pdev)
4490{
4491	int i;
4492
4493	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4494		mbox_free_channel(iproc_priv.mbox[i]);
4495}
4496
4497static void spu_counters_init(void)
4498{
4499	int i;
4500	int j;
4501
4502	atomic_set(&iproc_priv.session_count, 0);
4503	atomic_set(&iproc_priv.stream_count, 0);
4504	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4505	atomic64_set(&iproc_priv.bytes_in, 0);
4506	atomic64_set(&iproc_priv.bytes_out, 0);
4507	for (i = 0; i < SPU_OP_NUM; i++) {
4508		atomic_set(&iproc_priv.op_counts[i], 0);
4509		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4510	}
4511	for (i = 0; i < CIPHER_ALG_LAST; i++)
4512		for (j = 0; j < CIPHER_MODE_LAST; j++)
4513			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4514
4515	for (i = 0; i < HASH_ALG_LAST; i++) {
4516		atomic_set(&iproc_priv.hash_cnt[i], 0);
4517		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4518	}
4519	for (i = 0; i < AEAD_TYPE_LAST; i++)
4520		atomic_set(&iproc_priv.aead_cnt[i], 0);
4521
4522	atomic_set(&iproc_priv.mb_no_spc, 0);
4523	atomic_set(&iproc_priv.mb_send_fail, 0);
4524	atomic_set(&iproc_priv.bad_icv, 0);
4525}
4526
4527static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4528{
4529	struct spu_hw *spu = &iproc_priv.spu;
4530	struct crypto_alg *crypto = &driver_alg->alg.crypto;
4531	int err;
4532
4533	/* SPU2 does not support RC4 */
4534	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4535	    (spu->spu_type == SPU_TYPE_SPU2))
4536		return 0;
4537
4538	crypto->cra_module = THIS_MODULE;
4539	crypto->cra_priority = cipher_pri;
4540	crypto->cra_alignmask = 0;
4541	crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4542
4543	crypto->cra_init = ablkcipher_cra_init;
4544	crypto->cra_exit = generic_cra_exit;
4545	crypto->cra_type = &crypto_ablkcipher_type;
4546	crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4547				CRYPTO_ALG_KERN_DRIVER_ONLY;
4548
4549	crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4550	crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4551	crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4552
4553	err = crypto_register_alg(crypto);
4554	/* Mark alg as having been registered, if successful */
4555	if (err == 0)
4556		driver_alg->registered = true;
4557	pr_debug("  registered ablkcipher %s\n", crypto->cra_driver_name);
4558	return err;
4559}
4560
4561static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4562{
4563	struct spu_hw *spu = &iproc_priv.spu;
4564	struct ahash_alg *hash = &driver_alg->alg.hash;
4565	int err;
4566
4567	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4568	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4569	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4570	    (spu->spu_type == SPU_TYPE_SPUM))
4571		return 0;
4572
4573	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4574	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4575	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4576		return 0;
4577
4578	hash->halg.base.cra_module = THIS_MODULE;
4579	hash->halg.base.cra_priority = hash_pri;
4580	hash->halg.base.cra_alignmask = 0;
4581	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4582	hash->halg.base.cra_init = ahash_cra_init;
4583	hash->halg.base.cra_exit = generic_cra_exit;
4584	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
 
4585	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4586
4587	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4588		hash->init = ahash_init;
4589		hash->update = ahash_update;
4590		hash->final = ahash_final;
4591		hash->finup = ahash_finup;
4592		hash->digest = ahash_digest;
4593		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4594		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4595		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4596			hash->setkey = ahash_setkey;
4597		}
4598	} else {
4599		hash->setkey = ahash_hmac_setkey;
4600		hash->init = ahash_hmac_init;
4601		hash->update = ahash_hmac_update;
4602		hash->final = ahash_hmac_final;
4603		hash->finup = ahash_hmac_finup;
4604		hash->digest = ahash_hmac_digest;
4605	}
4606	hash->export = ahash_export;
4607	hash->import = ahash_import;
4608
4609	err = crypto_register_ahash(hash);
4610	/* Mark alg as having been registered, if successful */
4611	if (err == 0)
4612		driver_alg->registered = true;
4613	pr_debug("  registered ahash %s\n",
4614		 hash->halg.base.cra_driver_name);
4615	return err;
4616}
4617
4618static int spu_register_aead(struct iproc_alg_s *driver_alg)
4619{
4620	struct aead_alg *aead = &driver_alg->alg.aead;
4621	int err;
4622
4623	aead->base.cra_module = THIS_MODULE;
4624	aead->base.cra_priority = aead_pri;
4625	aead->base.cra_alignmask = 0;
4626	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4627
4628	aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
4629	/* setkey set in alg initialization */
4630	aead->setauthsize = aead_setauthsize;
4631	aead->encrypt = aead_encrypt;
4632	aead->decrypt = aead_decrypt;
4633	aead->init = aead_cra_init;
4634	aead->exit = aead_cra_exit;
4635
4636	err = crypto_register_aead(aead);
4637	/* Mark alg as having been registered, if successful */
4638	if (err == 0)
4639		driver_alg->registered = true;
4640	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4641	return err;
4642}
4643
4644/* register crypto algorithms the device supports */
4645static int spu_algs_register(struct device *dev)
4646{
4647	int i, j;
4648	int err;
4649
4650	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4651		switch (driver_algs[i].type) {
4652		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4653			err = spu_register_ablkcipher(&driver_algs[i]);
4654			break;
4655		case CRYPTO_ALG_TYPE_AHASH:
4656			err = spu_register_ahash(&driver_algs[i]);
4657			break;
4658		case CRYPTO_ALG_TYPE_AEAD:
4659			err = spu_register_aead(&driver_algs[i]);
4660			break;
4661		default:
4662			dev_err(dev,
4663				"iproc-crypto: unknown alg type: %d",
4664				driver_algs[i].type);
4665			err = -EINVAL;
4666		}
4667
4668		if (err) {
4669			dev_err(dev, "alg registration failed with error %d\n",
4670				err);
4671			goto err_algs;
4672		}
4673	}
4674
4675	return 0;
4676
4677err_algs:
4678	for (j = 0; j < i; j++) {
4679		/* Skip any algorithm not registered */
4680		if (!driver_algs[j].registered)
4681			continue;
4682		switch (driver_algs[j].type) {
4683		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4684			crypto_unregister_alg(&driver_algs[j].alg.crypto);
4685			driver_algs[j].registered = false;
4686			break;
4687		case CRYPTO_ALG_TYPE_AHASH:
4688			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4689			driver_algs[j].registered = false;
4690			break;
4691		case CRYPTO_ALG_TYPE_AEAD:
4692			crypto_unregister_aead(&driver_algs[j].alg.aead);
4693			driver_algs[j].registered = false;
4694			break;
4695		}
4696	}
4697	return err;
4698}
4699
4700/* ==================== Kernel Platform API ==================== */
4701
4702static struct spu_type_subtype spum_ns2_types = {
4703	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4704};
4705
4706static struct spu_type_subtype spum_nsp_types = {
4707	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4708};
4709
4710static struct spu_type_subtype spu2_types = {
4711	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4712};
4713
4714static struct spu_type_subtype spu2_v2_types = {
4715	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4716};
4717
4718static const struct of_device_id bcm_spu_dt_ids[] = {
4719	{
4720		.compatible = "brcm,spum-crypto",
4721		.data = &spum_ns2_types,
4722	},
4723	{
4724		.compatible = "brcm,spum-nsp-crypto",
4725		.data = &spum_nsp_types,
4726	},
4727	{
4728		.compatible = "brcm,spu2-crypto",
4729		.data = &spu2_types,
4730	},
4731	{
4732		.compatible = "brcm,spu2-v2-crypto",
4733		.data = &spu2_v2_types,
4734	},
4735	{ /* sentinel */ }
4736};
4737
4738MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4739
4740static int spu_dt_read(struct platform_device *pdev)
4741{
4742	struct device *dev = &pdev->dev;
4743	struct spu_hw *spu = &iproc_priv.spu;
4744	struct resource *spu_ctrl_regs;
4745	const struct spu_type_subtype *matched_spu_type;
4746	struct device_node *dn = pdev->dev.of_node;
4747	int err, i;
4748
4749	/* Count number of mailbox channels */
4750	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4751
4752	matched_spu_type = of_device_get_match_data(dev);
4753	if (!matched_spu_type) {
4754		dev_err(&pdev->dev, "Failed to match device\n");
4755		return -ENODEV;
4756	}
4757
4758	spu->spu_type = matched_spu_type->type;
4759	spu->spu_subtype = matched_spu_type->subtype;
4760
4761	i = 0;
4762	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4763		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4764
4765		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4766		if (IS_ERR(spu->reg_vbase[i])) {
4767			err = PTR_ERR(spu->reg_vbase[i]);
4768			dev_err(&pdev->dev, "Failed to map registers: %d\n",
4769				err);
4770			spu->reg_vbase[i] = NULL;
4771			return err;
4772		}
4773	}
4774	spu->num_spu = i;
4775	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4776
4777	return 0;
4778}
4779
4780static int bcm_spu_probe(struct platform_device *pdev)
4781{
4782	struct device *dev = &pdev->dev;
4783	struct spu_hw *spu = &iproc_priv.spu;
4784	int err = 0;
4785
4786	iproc_priv.pdev  = pdev;
4787	platform_set_drvdata(iproc_priv.pdev,
4788			     &iproc_priv);
4789
4790	err = spu_dt_read(pdev);
4791	if (err < 0)
4792		goto failure;
4793
4794	err = spu_mb_init(&pdev->dev);
4795	if (err < 0)
4796		goto failure;
4797
4798	if (spu->spu_type == SPU_TYPE_SPUM)
4799		iproc_priv.bcm_hdr_len = 8;
4800	else if (spu->spu_type == SPU_TYPE_SPU2)
4801		iproc_priv.bcm_hdr_len = 0;
4802
4803	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4804
4805	spu_counters_init();
4806
4807	spu_setup_debugfs();
4808
4809	err = spu_algs_register(dev);
4810	if (err < 0)
4811		goto fail_reg;
4812
4813	return 0;
4814
4815fail_reg:
4816	spu_free_debugfs();
4817failure:
4818	spu_mb_release(pdev);
4819	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4820
4821	return err;
4822}
4823
4824static int bcm_spu_remove(struct platform_device *pdev)
4825{
4826	int i;
4827	struct device *dev = &pdev->dev;
4828	char *cdn;
4829
4830	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4831		/*
4832		 * Not all algorithms were registered, depending on whether
4833		 * hardware is SPU or SPU2.  So here we make sure to skip
4834		 * those algorithms that were not previously registered.
4835		 */
4836		if (!driver_algs[i].registered)
4837			continue;
4838
4839		switch (driver_algs[i].type) {
4840		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4841			crypto_unregister_alg(&driver_algs[i].alg.crypto);
4842			dev_dbg(dev, "  unregistered cipher %s\n",
4843				driver_algs[i].alg.crypto.cra_driver_name);
4844			driver_algs[i].registered = false;
4845			break;
4846		case CRYPTO_ALG_TYPE_AHASH:
4847			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4848			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4849			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4850			driver_algs[i].registered = false;
4851			break;
4852		case CRYPTO_ALG_TYPE_AEAD:
4853			crypto_unregister_aead(&driver_algs[i].alg.aead);
4854			dev_dbg(dev, "  unregistered aead %s\n",
4855				driver_algs[i].alg.aead.base.cra_driver_name);
4856			driver_algs[i].registered = false;
4857			break;
4858		}
4859	}
4860	spu_free_debugfs();
4861	spu_mb_release(pdev);
4862	return 0;
4863}
4864
4865/* ===== Kernel Module API ===== */
4866
4867static struct platform_driver bcm_spu_pdriver = {
4868	.driver = {
4869		   .name = "brcm-spu-crypto",
4870		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4871		   },
4872	.probe = bcm_spu_probe,
4873	.remove = bcm_spu_remove,
4874};
4875module_platform_driver(bcm_spu_pdriver);
4876
4877MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4878MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4879MODULE_LICENSE("GPL v2");