Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 */
15
16/*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
22#define pr_fmt(fmt) "ipmi_si: " fmt
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/sched.h>
27#include <linux/seq_file.h>
28#include <linux/timer.h>
29#include <linux/errno.h>
30#include <linux/spinlock.h>
31#include <linux/slab.h>
32#include <linux/delay.h>
33#include <linux/list.h>
34#include <linux/notifier.h>
35#include <linux/mutex.h>
36#include <linux/kthread.h>
37#include <asm/irq.h>
38#include <linux/interrupt.h>
39#include <linux/rcupdate.h>
40#include <linux/ipmi.h>
41#include <linux/ipmi_smi.h>
42#include "ipmi_si.h"
43#include "ipmi_si_sm.h"
44#include <linux/string.h>
45#include <linux/ctype.h>
46
47/* Measure times between events in the driver. */
48#undef DEBUG_TIMING
49
50/* Call every 10 ms. */
51#define SI_TIMEOUT_TIME_USEC 10000
52#define SI_USEC_PER_JIFFY (1000000/HZ)
53#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
55 short timeout */
56
57enum si_intf_state {
58 SI_NORMAL,
59 SI_GETTING_FLAGS,
60 SI_GETTING_EVENTS,
61 SI_CLEARING_FLAGS,
62 SI_GETTING_MESSAGES,
63 SI_CHECKING_ENABLES,
64 SI_SETTING_ENABLES
65 /* FIXME - add watchdog stuff. */
66};
67
68/* Some BT-specific defines we need here. */
69#define IPMI_BT_INTMASK_REG 2
70#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
71#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72
73/* 'invalid' to allow a firmware-specified interface to be disabled */
74const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
75
76static bool initialized;
77
78/*
79 * Indexes into stats[] in smi_info below.
80 */
81enum si_stat_indexes {
82 /*
83 * Number of times the driver requested a timer while an operation
84 * was in progress.
85 */
86 SI_STAT_short_timeouts = 0,
87
88 /*
89 * Number of times the driver requested a timer while nothing was in
90 * progress.
91 */
92 SI_STAT_long_timeouts,
93
94 /* Number of times the interface was idle while being polled. */
95 SI_STAT_idles,
96
97 /* Number of interrupts the driver handled. */
98 SI_STAT_interrupts,
99
100 /* Number of time the driver got an ATTN from the hardware. */
101 SI_STAT_attentions,
102
103 /* Number of times the driver requested flags from the hardware. */
104 SI_STAT_flag_fetches,
105
106 /* Number of times the hardware didn't follow the state machine. */
107 SI_STAT_hosed_count,
108
109 /* Number of completed messages. */
110 SI_STAT_complete_transactions,
111
112 /* Number of IPMI events received from the hardware. */
113 SI_STAT_events,
114
115 /* Number of watchdog pretimeouts. */
116 SI_STAT_watchdog_pretimeouts,
117
118 /* Number of asynchronous messages received. */
119 SI_STAT_incoming_messages,
120
121
122 /* This *must* remain last, add new values above this. */
123 SI_NUM_STATS
124};
125
126struct smi_info {
127 int si_num;
128 struct ipmi_smi *intf;
129 struct si_sm_data *si_sm;
130 const struct si_sm_handlers *handlers;
131 spinlock_t si_lock;
132 struct ipmi_smi_msg *waiting_msg;
133 struct ipmi_smi_msg *curr_msg;
134 enum si_intf_state si_state;
135
136 /*
137 * Used to handle the various types of I/O that can occur with
138 * IPMI
139 */
140 struct si_sm_io io;
141
142 /*
143 * Per-OEM handler, called from handle_flags(). Returns 1
144 * when handle_flags() needs to be re-run or 0 indicating it
145 * set si_state itself.
146 */
147 int (*oem_data_avail_handler)(struct smi_info *smi_info);
148
149 /*
150 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
151 * is set to hold the flags until we are done handling everything
152 * from the flags.
153 */
154#define RECEIVE_MSG_AVAIL 0x01
155#define EVENT_MSG_BUFFER_FULL 0x02
156#define WDT_PRE_TIMEOUT_INT 0x08
157#define OEM0_DATA_AVAIL 0x20
158#define OEM1_DATA_AVAIL 0x40
159#define OEM2_DATA_AVAIL 0x80
160#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
161 OEM1_DATA_AVAIL | \
162 OEM2_DATA_AVAIL)
163 unsigned char msg_flags;
164
165 /* Does the BMC have an event buffer? */
166 bool has_event_buffer;
167
168 /*
169 * If set to true, this will request events the next time the
170 * state machine is idle.
171 */
172 atomic_t req_events;
173
174 /*
175 * If true, run the state machine to completion on every send
176 * call. Generally used after a panic to make sure stuff goes
177 * out.
178 */
179 bool run_to_completion;
180
181 /* The timer for this si. */
182 struct timer_list si_timer;
183
184 /* This flag is set, if the timer can be set */
185 bool timer_can_start;
186
187 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188 bool timer_running;
189
190 /* The time (in jiffies) the last timeout occurred at. */
191 unsigned long last_timeout_jiffies;
192
193 /* Are we waiting for the events, pretimeouts, received msgs? */
194 atomic_t need_watch;
195
196 /*
197 * The driver will disable interrupts when it gets into a
198 * situation where it cannot handle messages due to lack of
199 * memory. Once that situation clears up, it will re-enable
200 * interrupts.
201 */
202 bool interrupt_disabled;
203
204 /*
205 * Does the BMC support events?
206 */
207 bool supports_event_msg_buff;
208
209 /*
210 * Can we disable interrupts the global enables receive irq
211 * bit? There are currently two forms of brokenness, some
212 * systems cannot disable the bit (which is technically within
213 * the spec but a bad idea) and some systems have the bit
214 * forced to zero even though interrupts work (which is
215 * clearly outside the spec). The next bool tells which form
216 * of brokenness is present.
217 */
218 bool cannot_disable_irq;
219
220 /*
221 * Some systems are broken and cannot set the irq enable
222 * bit, even if they support interrupts.
223 */
224 bool irq_enable_broken;
225
226 /* Is the driver in maintenance mode? */
227 bool in_maintenance_mode;
228
229 /*
230 * Did we get an attention that we did not handle?
231 */
232 bool got_attn;
233
234 /* From the get device id response... */
235 struct ipmi_device_id device_id;
236
237 /* Have we added the device group to the device? */
238 bool dev_group_added;
239
240 /* Counters and things for the proc filesystem. */
241 atomic_t stats[SI_NUM_STATS];
242
243 struct task_struct *thread;
244
245 struct list_head link;
246};
247
248#define smi_inc_stat(smi, stat) \
249 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
250#define smi_get_stat(smi, stat) \
251 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
252
253#define IPMI_MAX_INTFS 4
254static int force_kipmid[IPMI_MAX_INTFS];
255static int num_force_kipmid;
256
257static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
258static int num_max_busy_us;
259
260static bool unload_when_empty = true;
261
262static int try_smi_init(struct smi_info *smi);
263static void cleanup_one_si(struct smi_info *smi_info);
264static void cleanup_ipmi_si(void);
265
266#ifdef DEBUG_TIMING
267void debug_timestamp(struct smi_info *smi_info, char *msg)
268{
269 struct timespec64 t;
270
271 ktime_get_ts64(&t);
272 dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
273 msg, t.tv_sec, t.tv_nsec);
274}
275#else
276#define debug_timestamp(smi_info, x)
277#endif
278
279static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
280static int register_xaction_notifier(struct notifier_block *nb)
281{
282 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
283}
284
285static void deliver_recv_msg(struct smi_info *smi_info,
286 struct ipmi_smi_msg *msg)
287{
288 /* Deliver the message to the upper layer. */
289 ipmi_smi_msg_received(smi_info->intf, msg);
290}
291
292static void return_hosed_msg(struct smi_info *smi_info, int cCode)
293{
294 struct ipmi_smi_msg *msg = smi_info->curr_msg;
295
296 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
297 cCode = IPMI_ERR_UNSPECIFIED;
298 /* else use it as is */
299
300 /* Make it a response */
301 msg->rsp[0] = msg->data[0] | 4;
302 msg->rsp[1] = msg->data[1];
303 msg->rsp[2] = cCode;
304 msg->rsp_size = 3;
305
306 smi_info->curr_msg = NULL;
307 deliver_recv_msg(smi_info, msg);
308}
309
310static enum si_sm_result start_next_msg(struct smi_info *smi_info)
311{
312 int rv;
313
314 if (!smi_info->waiting_msg) {
315 smi_info->curr_msg = NULL;
316 rv = SI_SM_IDLE;
317 } else {
318 int err;
319
320 smi_info->curr_msg = smi_info->waiting_msg;
321 smi_info->waiting_msg = NULL;
322 debug_timestamp(smi_info, "Start2");
323 err = atomic_notifier_call_chain(&xaction_notifier_list,
324 0, smi_info);
325 if (err & NOTIFY_STOP_MASK) {
326 rv = SI_SM_CALL_WITHOUT_DELAY;
327 goto out;
328 }
329 err = smi_info->handlers->start_transaction(
330 smi_info->si_sm,
331 smi_info->curr_msg->data,
332 smi_info->curr_msg->data_size);
333 if (err)
334 return_hosed_msg(smi_info, err);
335
336 rv = SI_SM_CALL_WITHOUT_DELAY;
337 }
338out:
339 return rv;
340}
341
342static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
343{
344 if (!smi_info->timer_can_start)
345 return;
346 smi_info->last_timeout_jiffies = jiffies;
347 mod_timer(&smi_info->si_timer, new_val);
348 smi_info->timer_running = true;
349}
350
351/*
352 * Start a new message and (re)start the timer and thread.
353 */
354static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
355 unsigned int size)
356{
357 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
358
359 if (smi_info->thread)
360 wake_up_process(smi_info->thread);
361
362 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
363}
364
365static void start_check_enables(struct smi_info *smi_info)
366{
367 unsigned char msg[2];
368
369 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
371
372 start_new_msg(smi_info, msg, 2);
373 smi_info->si_state = SI_CHECKING_ENABLES;
374}
375
376static void start_clear_flags(struct smi_info *smi_info)
377{
378 unsigned char msg[3];
379
380 /* Make sure the watchdog pre-timeout flag is not set at startup. */
381 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
382 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
383 msg[2] = WDT_PRE_TIMEOUT_INT;
384
385 start_new_msg(smi_info, msg, 3);
386 smi_info->si_state = SI_CLEARING_FLAGS;
387}
388
389static void start_getting_msg_queue(struct smi_info *smi_info)
390{
391 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
392 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
393 smi_info->curr_msg->data_size = 2;
394
395 start_new_msg(smi_info, smi_info->curr_msg->data,
396 smi_info->curr_msg->data_size);
397 smi_info->si_state = SI_GETTING_MESSAGES;
398}
399
400static void start_getting_events(struct smi_info *smi_info)
401{
402 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
404 smi_info->curr_msg->data_size = 2;
405
406 start_new_msg(smi_info, smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 smi_info->si_state = SI_GETTING_EVENTS;
409}
410
411/*
412 * When we have a situtaion where we run out of memory and cannot
413 * allocate messages, we just leave them in the BMC and run the system
414 * polled until we can allocate some memory. Once we have some
415 * memory, we will re-enable the interrupt.
416 *
417 * Note that we cannot just use disable_irq(), since the interrupt may
418 * be shared.
419 */
420static inline bool disable_si_irq(struct smi_info *smi_info)
421{
422 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
423 smi_info->interrupt_disabled = true;
424 start_check_enables(smi_info);
425 return true;
426 }
427 return false;
428}
429
430static inline bool enable_si_irq(struct smi_info *smi_info)
431{
432 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
433 smi_info->interrupt_disabled = false;
434 start_check_enables(smi_info);
435 return true;
436 }
437 return false;
438}
439
440/*
441 * Allocate a message. If unable to allocate, start the interrupt
442 * disable process and return NULL. If able to allocate but
443 * interrupts are disabled, free the message and return NULL after
444 * starting the interrupt enable process.
445 */
446static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
447{
448 struct ipmi_smi_msg *msg;
449
450 msg = ipmi_alloc_smi_msg();
451 if (!msg) {
452 if (!disable_si_irq(smi_info))
453 smi_info->si_state = SI_NORMAL;
454 } else if (enable_si_irq(smi_info)) {
455 ipmi_free_smi_msg(msg);
456 msg = NULL;
457 }
458 return msg;
459}
460
461static void handle_flags(struct smi_info *smi_info)
462{
463retry:
464 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
465 /* Watchdog pre-timeout */
466 smi_inc_stat(smi_info, watchdog_pretimeouts);
467
468 start_clear_flags(smi_info);
469 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
470 ipmi_smi_watchdog_pretimeout(smi_info->intf);
471 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472 /* Messages available. */
473 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
474 if (!smi_info->curr_msg)
475 return;
476
477 start_getting_msg_queue(smi_info);
478 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
479 /* Events available. */
480 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
481 if (!smi_info->curr_msg)
482 return;
483
484 start_getting_events(smi_info);
485 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
486 smi_info->oem_data_avail_handler) {
487 if (smi_info->oem_data_avail_handler(smi_info))
488 goto retry;
489 } else
490 smi_info->si_state = SI_NORMAL;
491}
492
493/*
494 * Global enables we care about.
495 */
496#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
497 IPMI_BMC_EVT_MSG_INTR)
498
499static u8 current_global_enables(struct smi_info *smi_info, u8 base,
500 bool *irq_on)
501{
502 u8 enables = 0;
503
504 if (smi_info->supports_event_msg_buff)
505 enables |= IPMI_BMC_EVT_MSG_BUFF;
506
507 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
508 smi_info->cannot_disable_irq) &&
509 !smi_info->irq_enable_broken)
510 enables |= IPMI_BMC_RCV_MSG_INTR;
511
512 if (smi_info->supports_event_msg_buff &&
513 smi_info->io.irq && !smi_info->interrupt_disabled &&
514 !smi_info->irq_enable_broken)
515 enables |= IPMI_BMC_EVT_MSG_INTR;
516
517 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
518
519 return enables;
520}
521
522static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
523{
524 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
525
526 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
527
528 if ((bool)irqstate == irq_on)
529 return;
530
531 if (irq_on)
532 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
533 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
534 else
535 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
536}
537
538static void handle_transaction_done(struct smi_info *smi_info)
539{
540 struct ipmi_smi_msg *msg;
541
542 debug_timestamp(smi_info, "Done");
543 switch (smi_info->si_state) {
544 case SI_NORMAL:
545 if (!smi_info->curr_msg)
546 break;
547
548 smi_info->curr_msg->rsp_size
549 = smi_info->handlers->get_result(
550 smi_info->si_sm,
551 smi_info->curr_msg->rsp,
552 IPMI_MAX_MSG_LENGTH);
553
554 /*
555 * Do this here becase deliver_recv_msg() releases the
556 * lock, and a new message can be put in during the
557 * time the lock is released.
558 */
559 msg = smi_info->curr_msg;
560 smi_info->curr_msg = NULL;
561 deliver_recv_msg(smi_info, msg);
562 break;
563
564 case SI_GETTING_FLAGS:
565 {
566 unsigned char msg[4];
567 unsigned int len;
568
569 /* We got the flags from the SMI, now handle them. */
570 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571 if (msg[2] != 0) {
572 /* Error fetching flags, just give up for now. */
573 smi_info->si_state = SI_NORMAL;
574 } else if (len < 4) {
575 /*
576 * Hmm, no flags. That's technically illegal, but
577 * don't use uninitialized data.
578 */
579 smi_info->si_state = SI_NORMAL;
580 } else {
581 smi_info->msg_flags = msg[3];
582 handle_flags(smi_info);
583 }
584 break;
585 }
586
587 case SI_CLEARING_FLAGS:
588 {
589 unsigned char msg[3];
590
591 /* We cleared the flags. */
592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593 if (msg[2] != 0) {
594 /* Error clearing flags */
595 dev_warn_ratelimited(smi_info->io.dev,
596 "Error clearing flags: %2.2x\n", msg[2]);
597 }
598 smi_info->si_state = SI_NORMAL;
599 break;
600 }
601
602 case SI_GETTING_EVENTS:
603 {
604 smi_info->curr_msg->rsp_size
605 = smi_info->handlers->get_result(
606 smi_info->si_sm,
607 smi_info->curr_msg->rsp,
608 IPMI_MAX_MSG_LENGTH);
609
610 /*
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
614 */
615 msg = smi_info->curr_msg;
616 smi_info->curr_msg = NULL;
617 if (msg->rsp[2] != 0) {
618 /* Error getting event, probably done. */
619 msg->done(msg);
620
621 /* Take off the event flag. */
622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 handle_flags(smi_info);
624 } else {
625 smi_inc_stat(smi_info, events);
626
627 /*
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
631 * state.
632 */
633 handle_flags(smi_info);
634
635 deliver_recv_msg(smi_info, msg);
636 }
637 break;
638 }
639
640 case SI_GETTING_MESSAGES:
641 {
642 smi_info->curr_msg->rsp_size
643 = smi_info->handlers->get_result(
644 smi_info->si_sm,
645 smi_info->curr_msg->rsp,
646 IPMI_MAX_MSG_LENGTH);
647
648 /*
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
652 */
653 msg = smi_info->curr_msg;
654 smi_info->curr_msg = NULL;
655 if (msg->rsp[2] != 0) {
656 /* Error getting event, probably done. */
657 msg->done(msg);
658
659 /* Take off the msg flag. */
660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 handle_flags(smi_info);
662 } else {
663 smi_inc_stat(smi_info, incoming_messages);
664
665 /*
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
669 * state.
670 */
671 handle_flags(smi_info);
672
673 deliver_recv_msg(smi_info, msg);
674 }
675 break;
676 }
677
678 case SI_CHECKING_ENABLES:
679 {
680 unsigned char msg[4];
681 u8 enables;
682 bool irq_on;
683
684 /* We got the flags from the SMI, now handle them. */
685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686 if (msg[2] != 0) {
687 dev_warn_ratelimited(smi_info->io.dev,
688 "Couldn't get irq info: %x,\n"
689 "Maybe ok, but ipmi might run very slowly.\n",
690 msg[2]);
691 smi_info->si_state = SI_NORMAL;
692 break;
693 }
694 enables = current_global_enables(smi_info, 0, &irq_on);
695 if (smi_info->io.si_type == SI_BT)
696 /* BT has its own interrupt enable bit. */
697 check_bt_irq(smi_info, irq_on);
698 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
699 /* Enables are not correct, fix them. */
700 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
701 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
702 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
703 smi_info->handlers->start_transaction(
704 smi_info->si_sm, msg, 3);
705 smi_info->si_state = SI_SETTING_ENABLES;
706 } else if (smi_info->supports_event_msg_buff) {
707 smi_info->curr_msg = ipmi_alloc_smi_msg();
708 if (!smi_info->curr_msg) {
709 smi_info->si_state = SI_NORMAL;
710 break;
711 }
712 start_getting_events(smi_info);
713 } else {
714 smi_info->si_state = SI_NORMAL;
715 }
716 break;
717 }
718
719 case SI_SETTING_ENABLES:
720 {
721 unsigned char msg[4];
722
723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724 if (msg[2] != 0)
725 dev_warn_ratelimited(smi_info->io.dev,
726 "Could not set the global enables: 0x%x.\n",
727 msg[2]);
728
729 if (smi_info->supports_event_msg_buff) {
730 smi_info->curr_msg = ipmi_alloc_smi_msg();
731 if (!smi_info->curr_msg) {
732 smi_info->si_state = SI_NORMAL;
733 break;
734 }
735 start_getting_events(smi_info);
736 } else {
737 smi_info->si_state = SI_NORMAL;
738 }
739 break;
740 }
741 }
742}
743
744/*
745 * Called on timeouts and events. Timeouts should pass the elapsed
746 * time, interrupts should pass in zero. Must be called with
747 * si_lock held and interrupts disabled.
748 */
749static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
750 int time)
751{
752 enum si_sm_result si_sm_result;
753
754restart:
755 /*
756 * There used to be a loop here that waited a little while
757 * (around 25us) before giving up. That turned out to be
758 * pointless, the minimum delays I was seeing were in the 300us
759 * range, which is far too long to wait in an interrupt. So
760 * we just run until the state machine tells us something
761 * happened or it needs a delay.
762 */
763 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
764 time = 0;
765 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
766 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
767
768 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
769 smi_inc_stat(smi_info, complete_transactions);
770
771 handle_transaction_done(smi_info);
772 goto restart;
773 } else if (si_sm_result == SI_SM_HOSED) {
774 smi_inc_stat(smi_info, hosed_count);
775
776 /*
777 * Do the before return_hosed_msg, because that
778 * releases the lock.
779 */
780 smi_info->si_state = SI_NORMAL;
781 if (smi_info->curr_msg != NULL) {
782 /*
783 * If we were handling a user message, format
784 * a response to send to the upper layer to
785 * tell it about the error.
786 */
787 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
788 }
789 goto restart;
790 }
791
792 /*
793 * We prefer handling attn over new messages. But don't do
794 * this if there is not yet an upper layer to handle anything.
795 */
796 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
797 unsigned char msg[2];
798
799 if (smi_info->si_state != SI_NORMAL) {
800 /*
801 * We got an ATTN, but we are doing something else.
802 * Handle the ATTN later.
803 */
804 smi_info->got_attn = true;
805 } else {
806 smi_info->got_attn = false;
807 smi_inc_stat(smi_info, attentions);
808
809 /*
810 * Got a attn, send down a get message flags to see
811 * what's causing it. It would be better to handle
812 * this in the upper layer, but due to the way
813 * interrupts work with the SMI, that's not really
814 * possible.
815 */
816 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
817 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
818
819 start_new_msg(smi_info, msg, 2);
820 smi_info->si_state = SI_GETTING_FLAGS;
821 goto restart;
822 }
823 }
824
825 /* If we are currently idle, try to start the next message. */
826 if (si_sm_result == SI_SM_IDLE) {
827 smi_inc_stat(smi_info, idles);
828
829 si_sm_result = start_next_msg(smi_info);
830 if (si_sm_result != SI_SM_IDLE)
831 goto restart;
832 }
833
834 if ((si_sm_result == SI_SM_IDLE)
835 && (atomic_read(&smi_info->req_events))) {
836 /*
837 * We are idle and the upper layer requested that I fetch
838 * events, so do so.
839 */
840 atomic_set(&smi_info->req_events, 0);
841
842 /*
843 * Take this opportunity to check the interrupt and
844 * message enable state for the BMC. The BMC can be
845 * asynchronously reset, and may thus get interrupts
846 * disable and messages disabled.
847 */
848 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
849 start_check_enables(smi_info);
850 } else {
851 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
852 if (!smi_info->curr_msg)
853 goto out;
854
855 start_getting_events(smi_info);
856 }
857 goto restart;
858 }
859
860 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
861 /* Ok it if fails, the timer will just go off. */
862 if (del_timer(&smi_info->si_timer))
863 smi_info->timer_running = false;
864 }
865
866out:
867 return si_sm_result;
868}
869
870static void check_start_timer_thread(struct smi_info *smi_info)
871{
872 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
873 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
874
875 if (smi_info->thread)
876 wake_up_process(smi_info->thread);
877
878 start_next_msg(smi_info);
879 smi_event_handler(smi_info, 0);
880 }
881}
882
883static void flush_messages(void *send_info)
884{
885 struct smi_info *smi_info = send_info;
886 enum si_sm_result result;
887
888 /*
889 * Currently, this function is called only in run-to-completion
890 * mode. This means we are single-threaded, no need for locks.
891 */
892 result = smi_event_handler(smi_info, 0);
893 while (result != SI_SM_IDLE) {
894 udelay(SI_SHORT_TIMEOUT_USEC);
895 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
896 }
897}
898
899static void sender(void *send_info,
900 struct ipmi_smi_msg *msg)
901{
902 struct smi_info *smi_info = send_info;
903 unsigned long flags;
904
905 debug_timestamp(smi_info, "Enqueue");
906
907 if (smi_info->run_to_completion) {
908 /*
909 * If we are running to completion, start it. Upper
910 * layer will call flush_messages to clear it out.
911 */
912 smi_info->waiting_msg = msg;
913 return;
914 }
915
916 spin_lock_irqsave(&smi_info->si_lock, flags);
917 /*
918 * The following two lines don't need to be under the lock for
919 * the lock's sake, but they do need SMP memory barriers to
920 * avoid getting things out of order. We are already claiming
921 * the lock, anyway, so just do it under the lock to avoid the
922 * ordering problem.
923 */
924 BUG_ON(smi_info->waiting_msg);
925 smi_info->waiting_msg = msg;
926 check_start_timer_thread(smi_info);
927 spin_unlock_irqrestore(&smi_info->si_lock, flags);
928}
929
930static void set_run_to_completion(void *send_info, bool i_run_to_completion)
931{
932 struct smi_info *smi_info = send_info;
933
934 smi_info->run_to_completion = i_run_to_completion;
935 if (i_run_to_completion)
936 flush_messages(smi_info);
937}
938
939/*
940 * Use -1 as a special constant to tell that we are spinning in kipmid
941 * looking for something and not delaying between checks
942 */
943#define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
944static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
945 const struct smi_info *smi_info,
946 ktime_t *busy_until)
947{
948 unsigned int max_busy_us = 0;
949
950 if (smi_info->si_num < num_max_busy_us)
951 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
952 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
953 *busy_until = IPMI_TIME_NOT_BUSY;
954 else if (*busy_until == IPMI_TIME_NOT_BUSY) {
955 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
956 } else {
957 if (unlikely(ktime_get() > *busy_until)) {
958 *busy_until = IPMI_TIME_NOT_BUSY;
959 return false;
960 }
961 }
962 return true;
963}
964
965
966/*
967 * A busy-waiting loop for speeding up IPMI operation.
968 *
969 * Lousy hardware makes this hard. This is only enabled for systems
970 * that are not BT and do not have interrupts. It starts spinning
971 * when an operation is complete or until max_busy tells it to stop
972 * (if that is enabled). See the paragraph on kimid_max_busy_us in
973 * Documentation/driver-api/ipmi.rst for details.
974 */
975static int ipmi_thread(void *data)
976{
977 struct smi_info *smi_info = data;
978 unsigned long flags;
979 enum si_sm_result smi_result;
980 ktime_t busy_until = IPMI_TIME_NOT_BUSY;
981
982 set_user_nice(current, MAX_NICE);
983 while (!kthread_should_stop()) {
984 int busy_wait;
985
986 spin_lock_irqsave(&(smi_info->si_lock), flags);
987 smi_result = smi_event_handler(smi_info, 0);
988
989 /*
990 * If the driver is doing something, there is a possible
991 * race with the timer. If the timer handler see idle,
992 * and the thread here sees something else, the timer
993 * handler won't restart the timer even though it is
994 * required. So start it here if necessary.
995 */
996 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
997 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
998
999 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1001 &busy_until);
1002 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1003 ; /* do nothing */
1004 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1005 /*
1006 * In maintenance mode we run as fast as
1007 * possible to allow firmware updates to
1008 * complete as fast as possible, but normally
1009 * don't bang on the scheduler.
1010 */
1011 if (smi_info->in_maintenance_mode)
1012 schedule();
1013 else
1014 usleep_range(100, 200);
1015 } else if (smi_result == SI_SM_IDLE) {
1016 if (atomic_read(&smi_info->need_watch)) {
1017 schedule_timeout_interruptible(100);
1018 } else {
1019 /* Wait to be woken up when we are needed. */
1020 __set_current_state(TASK_INTERRUPTIBLE);
1021 schedule();
1022 }
1023 } else {
1024 schedule_timeout_interruptible(1);
1025 }
1026 }
1027 return 0;
1028}
1029
1030
1031static void poll(void *send_info)
1032{
1033 struct smi_info *smi_info = send_info;
1034 unsigned long flags = 0;
1035 bool run_to_completion = smi_info->run_to_completion;
1036
1037 /*
1038 * Make sure there is some delay in the poll loop so we can
1039 * drive time forward and timeout things.
1040 */
1041 udelay(10);
1042 if (!run_to_completion)
1043 spin_lock_irqsave(&smi_info->si_lock, flags);
1044 smi_event_handler(smi_info, 10);
1045 if (!run_to_completion)
1046 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047}
1048
1049static void request_events(void *send_info)
1050{
1051 struct smi_info *smi_info = send_info;
1052
1053 if (!smi_info->has_event_buffer)
1054 return;
1055
1056 atomic_set(&smi_info->req_events, 1);
1057}
1058
1059static void set_need_watch(void *send_info, unsigned int watch_mask)
1060{
1061 struct smi_info *smi_info = send_info;
1062 unsigned long flags;
1063 int enable;
1064
1065 enable = !!watch_mask;
1066
1067 atomic_set(&smi_info->need_watch, enable);
1068 spin_lock_irqsave(&smi_info->si_lock, flags);
1069 check_start_timer_thread(smi_info);
1070 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1071}
1072
1073static void smi_timeout(struct timer_list *t)
1074{
1075 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1076 enum si_sm_result smi_result;
1077 unsigned long flags;
1078 unsigned long jiffies_now;
1079 long time_diff;
1080 long timeout;
1081
1082 spin_lock_irqsave(&(smi_info->si_lock), flags);
1083 debug_timestamp(smi_info, "Timer");
1084
1085 jiffies_now = jiffies;
1086 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1087 * SI_USEC_PER_JIFFY);
1088 smi_result = smi_event_handler(smi_info, time_diff);
1089
1090 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1091 /* Running with interrupts, only do long timeouts. */
1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 smi_inc_stat(smi_info, long_timeouts);
1094 goto do_mod_timer;
1095 }
1096
1097 /*
1098 * If the state machine asks for a short delay, then shorten
1099 * the timer timeout.
1100 */
1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102 smi_inc_stat(smi_info, short_timeouts);
1103 timeout = jiffies + 1;
1104 } else {
1105 smi_inc_stat(smi_info, long_timeouts);
1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107 }
1108
1109do_mod_timer:
1110 if (smi_result != SI_SM_IDLE)
1111 smi_mod_timer(smi_info, timeout);
1112 else
1113 smi_info->timer_running = false;
1114 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115}
1116
1117irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1118{
1119 struct smi_info *smi_info = data;
1120 unsigned long flags;
1121
1122 if (smi_info->io.si_type == SI_BT)
1123 /* We need to clear the IRQ flag for the BT interface. */
1124 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1125 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1126 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1127
1128 spin_lock_irqsave(&(smi_info->si_lock), flags);
1129
1130 smi_inc_stat(smi_info, interrupts);
1131
1132 debug_timestamp(smi_info, "Interrupt");
1133
1134 smi_event_handler(smi_info, 0);
1135 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1136 return IRQ_HANDLED;
1137}
1138
1139static int smi_start_processing(void *send_info,
1140 struct ipmi_smi *intf)
1141{
1142 struct smi_info *new_smi = send_info;
1143 int enable = 0;
1144
1145 new_smi->intf = intf;
1146
1147 /* Set up the timer that drives the interface. */
1148 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1149 new_smi->timer_can_start = true;
1150 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1151
1152 /* Try to claim any interrupts. */
1153 if (new_smi->io.irq_setup) {
1154 new_smi->io.irq_handler_data = new_smi;
1155 new_smi->io.irq_setup(&new_smi->io);
1156 }
1157
1158 /*
1159 * Check if the user forcefully enabled the daemon.
1160 */
1161 if (new_smi->si_num < num_force_kipmid)
1162 enable = force_kipmid[new_smi->si_num];
1163 /*
1164 * The BT interface is efficient enough to not need a thread,
1165 * and there is no need for a thread if we have interrupts.
1166 */
1167 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1168 enable = 1;
1169
1170 if (enable) {
1171 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1172 "kipmi%d", new_smi->si_num);
1173 if (IS_ERR(new_smi->thread)) {
1174 dev_notice(new_smi->io.dev,
1175 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1176 PTR_ERR(new_smi->thread));
1177 new_smi->thread = NULL;
1178 }
1179 }
1180
1181 return 0;
1182}
1183
1184static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1185{
1186 struct smi_info *smi = send_info;
1187
1188 data->addr_src = smi->io.addr_source;
1189 data->dev = smi->io.dev;
1190 data->addr_info = smi->io.addr_info;
1191 get_device(smi->io.dev);
1192
1193 return 0;
1194}
1195
1196static void set_maintenance_mode(void *send_info, bool enable)
1197{
1198 struct smi_info *smi_info = send_info;
1199
1200 if (!enable)
1201 atomic_set(&smi_info->req_events, 0);
1202 smi_info->in_maintenance_mode = enable;
1203}
1204
1205static void shutdown_smi(void *send_info);
1206static const struct ipmi_smi_handlers handlers = {
1207 .owner = THIS_MODULE,
1208 .start_processing = smi_start_processing,
1209 .shutdown = shutdown_smi,
1210 .get_smi_info = get_smi_info,
1211 .sender = sender,
1212 .request_events = request_events,
1213 .set_need_watch = set_need_watch,
1214 .set_maintenance_mode = set_maintenance_mode,
1215 .set_run_to_completion = set_run_to_completion,
1216 .flush_messages = flush_messages,
1217 .poll = poll,
1218};
1219
1220static LIST_HEAD(smi_infos);
1221static DEFINE_MUTEX(smi_infos_lock);
1222static int smi_num; /* Used to sequence the SMIs */
1223
1224static const char * const addr_space_to_str[] = { "i/o", "mem" };
1225
1226module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1227MODULE_PARM_DESC(force_kipmid,
1228 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1229module_param(unload_when_empty, bool, 0);
1230MODULE_PARM_DESC(unload_when_empty,
1231 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod.");
1232module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233MODULE_PARM_DESC(kipmid_max_busy_us,
1234 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1235
1236void ipmi_irq_finish_setup(struct si_sm_io *io)
1237{
1238 if (io->si_type == SI_BT)
1239 /* Enable the interrupt in the BT interface. */
1240 io->outputb(io, IPMI_BT_INTMASK_REG,
1241 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1242}
1243
1244void ipmi_irq_start_cleanup(struct si_sm_io *io)
1245{
1246 if (io->si_type == SI_BT)
1247 /* Disable the interrupt in the BT interface. */
1248 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1249}
1250
1251static void std_irq_cleanup(struct si_sm_io *io)
1252{
1253 ipmi_irq_start_cleanup(io);
1254 free_irq(io->irq, io->irq_handler_data);
1255}
1256
1257int ipmi_std_irq_setup(struct si_sm_io *io)
1258{
1259 int rv;
1260
1261 if (!io->irq)
1262 return 0;
1263
1264 rv = request_irq(io->irq,
1265 ipmi_si_irq_handler,
1266 IRQF_SHARED,
1267 SI_DEVICE_NAME,
1268 io->irq_handler_data);
1269 if (rv) {
1270 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1271 SI_DEVICE_NAME, io->irq);
1272 io->irq = 0;
1273 } else {
1274 io->irq_cleanup = std_irq_cleanup;
1275 ipmi_irq_finish_setup(io);
1276 dev_info(io->dev, "Using irq %d\n", io->irq);
1277 }
1278
1279 return rv;
1280}
1281
1282static int wait_for_msg_done(struct smi_info *smi_info)
1283{
1284 enum si_sm_result smi_result;
1285
1286 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1287 for (;;) {
1288 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1289 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1290 schedule_timeout_uninterruptible(1);
1291 smi_result = smi_info->handlers->event(
1292 smi_info->si_sm, jiffies_to_usecs(1));
1293 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1294 smi_result = smi_info->handlers->event(
1295 smi_info->si_sm, 0);
1296 } else
1297 break;
1298 }
1299 if (smi_result == SI_SM_HOSED)
1300 /*
1301 * We couldn't get the state machine to run, so whatever's at
1302 * the port is probably not an IPMI SMI interface.
1303 */
1304 return -ENODEV;
1305
1306 return 0;
1307}
1308
1309static int try_get_dev_id(struct smi_info *smi_info)
1310{
1311 unsigned char msg[2];
1312 unsigned char *resp;
1313 unsigned long resp_len;
1314 int rv = 0;
1315 unsigned int retry_count = 0;
1316
1317 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1318 if (!resp)
1319 return -ENOMEM;
1320
1321 /*
1322 * Do a Get Device ID command, since it comes back with some
1323 * useful info.
1324 */
1325 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1326 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1327
1328retry:
1329 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1330
1331 rv = wait_for_msg_done(smi_info);
1332 if (rv)
1333 goto out;
1334
1335 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336 resp, IPMI_MAX_MSG_LENGTH);
1337
1338 /* Check and record info from the get device id, in case we need it. */
1339 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340 resp + 2, resp_len - 2, &smi_info->device_id);
1341 if (rv) {
1342 /* record completion code */
1343 unsigned char cc = *(resp + 2);
1344
1345 if (cc != IPMI_CC_NO_ERROR &&
1346 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1347 dev_warn_ratelimited(smi_info->io.dev,
1348 "BMC returned 0x%2.2x, retry get bmc device id\n",
1349 cc);
1350 goto retry;
1351 }
1352 }
1353
1354out:
1355 kfree(resp);
1356 return rv;
1357}
1358
1359static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1360{
1361 unsigned char msg[3];
1362 unsigned char *resp;
1363 unsigned long resp_len;
1364 int rv;
1365
1366 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1367 if (!resp)
1368 return -ENOMEM;
1369
1370 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1371 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1372 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1373
1374 rv = wait_for_msg_done(smi_info);
1375 if (rv) {
1376 dev_warn(smi_info->io.dev,
1377 "Error getting response from get global enables command: %d\n",
1378 rv);
1379 goto out;
1380 }
1381
1382 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1383 resp, IPMI_MAX_MSG_LENGTH);
1384
1385 if (resp_len < 4 ||
1386 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1387 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1388 resp[2] != 0) {
1389 dev_warn(smi_info->io.dev,
1390 "Invalid return from get global enables command: %ld %x %x %x\n",
1391 resp_len, resp[0], resp[1], resp[2]);
1392 rv = -EINVAL;
1393 goto out;
1394 } else {
1395 *enables = resp[3];
1396 }
1397
1398out:
1399 kfree(resp);
1400 return rv;
1401}
1402
1403/*
1404 * Returns 1 if it gets an error from the command.
1405 */
1406static int set_global_enables(struct smi_info *smi_info, u8 enables)
1407{
1408 unsigned char msg[3];
1409 unsigned char *resp;
1410 unsigned long resp_len;
1411 int rv;
1412
1413 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1414 if (!resp)
1415 return -ENOMEM;
1416
1417 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1418 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1419 msg[2] = enables;
1420 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1421
1422 rv = wait_for_msg_done(smi_info);
1423 if (rv) {
1424 dev_warn(smi_info->io.dev,
1425 "Error getting response from set global enables command: %d\n",
1426 rv);
1427 goto out;
1428 }
1429
1430 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1431 resp, IPMI_MAX_MSG_LENGTH);
1432
1433 if (resp_len < 3 ||
1434 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1435 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1436 dev_warn(smi_info->io.dev,
1437 "Invalid return from set global enables command: %ld %x %x\n",
1438 resp_len, resp[0], resp[1]);
1439 rv = -EINVAL;
1440 goto out;
1441 }
1442
1443 if (resp[2] != 0)
1444 rv = 1;
1445
1446out:
1447 kfree(resp);
1448 return rv;
1449}
1450
1451/*
1452 * Some BMCs do not support clearing the receive irq bit in the global
1453 * enables (even if they don't support interrupts on the BMC). Check
1454 * for this and handle it properly.
1455 */
1456static void check_clr_rcv_irq(struct smi_info *smi_info)
1457{
1458 u8 enables = 0;
1459 int rv;
1460
1461 rv = get_global_enables(smi_info, &enables);
1462 if (!rv) {
1463 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1464 /* Already clear, should work ok. */
1465 return;
1466
1467 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1468 rv = set_global_enables(smi_info, enables);
1469 }
1470
1471 if (rv < 0) {
1472 dev_err(smi_info->io.dev,
1473 "Cannot check clearing the rcv irq: %d\n", rv);
1474 return;
1475 }
1476
1477 if (rv) {
1478 /*
1479 * An error when setting the event buffer bit means
1480 * clearing the bit is not supported.
1481 */
1482 dev_warn(smi_info->io.dev,
1483 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1484 smi_info->cannot_disable_irq = true;
1485 }
1486}
1487
1488/*
1489 * Some BMCs do not support setting the interrupt bits in the global
1490 * enables even if they support interrupts. Clearly bad, but we can
1491 * compensate.
1492 */
1493static void check_set_rcv_irq(struct smi_info *smi_info)
1494{
1495 u8 enables = 0;
1496 int rv;
1497
1498 if (!smi_info->io.irq)
1499 return;
1500
1501 rv = get_global_enables(smi_info, &enables);
1502 if (!rv) {
1503 enables |= IPMI_BMC_RCV_MSG_INTR;
1504 rv = set_global_enables(smi_info, enables);
1505 }
1506
1507 if (rv < 0) {
1508 dev_err(smi_info->io.dev,
1509 "Cannot check setting the rcv irq: %d\n", rv);
1510 return;
1511 }
1512
1513 if (rv) {
1514 /*
1515 * An error when setting the event buffer bit means
1516 * setting the bit is not supported.
1517 */
1518 dev_warn(smi_info->io.dev,
1519 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1520 smi_info->cannot_disable_irq = true;
1521 smi_info->irq_enable_broken = true;
1522 }
1523}
1524
1525static int try_enable_event_buffer(struct smi_info *smi_info)
1526{
1527 unsigned char msg[3];
1528 unsigned char *resp;
1529 unsigned long resp_len;
1530 int rv = 0;
1531
1532 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1533 if (!resp)
1534 return -ENOMEM;
1535
1536 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1537 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1538 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1539
1540 rv = wait_for_msg_done(smi_info);
1541 if (rv) {
1542 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1543 goto out;
1544 }
1545
1546 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1547 resp, IPMI_MAX_MSG_LENGTH);
1548
1549 if (resp_len < 4 ||
1550 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1551 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1552 resp[2] != 0) {
1553 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1554 rv = -EINVAL;
1555 goto out;
1556 }
1557
1558 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1559 /* buffer is already enabled, nothing to do. */
1560 smi_info->supports_event_msg_buff = true;
1561 goto out;
1562 }
1563
1564 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1565 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1566 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1567 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1568
1569 rv = wait_for_msg_done(smi_info);
1570 if (rv) {
1571 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1572 goto out;
1573 }
1574
1575 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1576 resp, IPMI_MAX_MSG_LENGTH);
1577
1578 if (resp_len < 3 ||
1579 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1580 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1581 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1582 rv = -EINVAL;
1583 goto out;
1584 }
1585
1586 if (resp[2] != 0)
1587 /*
1588 * An error when setting the event buffer bit means
1589 * that the event buffer is not supported.
1590 */
1591 rv = -ENOENT;
1592 else
1593 smi_info->supports_event_msg_buff = true;
1594
1595out:
1596 kfree(resp);
1597 return rv;
1598}
1599
1600#define IPMI_SI_ATTR(name) \
1601static ssize_t name##_show(struct device *dev, \
1602 struct device_attribute *attr, \
1603 char *buf) \
1604{ \
1605 struct smi_info *smi_info = dev_get_drvdata(dev); \
1606 \
1607 return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \
1608} \
1609static DEVICE_ATTR_RO(name)
1610
1611static ssize_t type_show(struct device *dev,
1612 struct device_attribute *attr,
1613 char *buf)
1614{
1615 struct smi_info *smi_info = dev_get_drvdata(dev);
1616
1617 return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]);
1618}
1619static DEVICE_ATTR_RO(type);
1620
1621static ssize_t interrupts_enabled_show(struct device *dev,
1622 struct device_attribute *attr,
1623 char *buf)
1624{
1625 struct smi_info *smi_info = dev_get_drvdata(dev);
1626 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1627
1628 return sysfs_emit(buf, "%d\n", enabled);
1629}
1630static DEVICE_ATTR_RO(interrupts_enabled);
1631
1632IPMI_SI_ATTR(short_timeouts);
1633IPMI_SI_ATTR(long_timeouts);
1634IPMI_SI_ATTR(idles);
1635IPMI_SI_ATTR(interrupts);
1636IPMI_SI_ATTR(attentions);
1637IPMI_SI_ATTR(flag_fetches);
1638IPMI_SI_ATTR(hosed_count);
1639IPMI_SI_ATTR(complete_transactions);
1640IPMI_SI_ATTR(events);
1641IPMI_SI_ATTR(watchdog_pretimeouts);
1642IPMI_SI_ATTR(incoming_messages);
1643
1644static ssize_t params_show(struct device *dev,
1645 struct device_attribute *attr,
1646 char *buf)
1647{
1648 struct smi_info *smi_info = dev_get_drvdata(dev);
1649
1650 return sysfs_emit(buf,
1651 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1652 si_to_str[smi_info->io.si_type],
1653 addr_space_to_str[smi_info->io.addr_space],
1654 smi_info->io.addr_data,
1655 smi_info->io.regspacing,
1656 smi_info->io.regsize,
1657 smi_info->io.regshift,
1658 smi_info->io.irq,
1659 smi_info->io.slave_addr);
1660}
1661static DEVICE_ATTR_RO(params);
1662
1663static struct attribute *ipmi_si_dev_attrs[] = {
1664 &dev_attr_type.attr,
1665 &dev_attr_interrupts_enabled.attr,
1666 &dev_attr_short_timeouts.attr,
1667 &dev_attr_long_timeouts.attr,
1668 &dev_attr_idles.attr,
1669 &dev_attr_interrupts.attr,
1670 &dev_attr_attentions.attr,
1671 &dev_attr_flag_fetches.attr,
1672 &dev_attr_hosed_count.attr,
1673 &dev_attr_complete_transactions.attr,
1674 &dev_attr_events.attr,
1675 &dev_attr_watchdog_pretimeouts.attr,
1676 &dev_attr_incoming_messages.attr,
1677 &dev_attr_params.attr,
1678 NULL
1679};
1680
1681static const struct attribute_group ipmi_si_dev_attr_group = {
1682 .attrs = ipmi_si_dev_attrs,
1683};
1684
1685/*
1686 * oem_data_avail_to_receive_msg_avail
1687 * @info - smi_info structure with msg_flags set
1688 *
1689 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1690 * Returns 1 indicating need to re-run handle_flags().
1691 */
1692static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1693{
1694 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1695 RECEIVE_MSG_AVAIL);
1696 return 1;
1697}
1698
1699/*
1700 * setup_dell_poweredge_oem_data_handler
1701 * @info - smi_info.device_id must be populated
1702 *
1703 * Systems that match, but have firmware version < 1.40 may assert
1704 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1705 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1706 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1707 * as RECEIVE_MSG_AVAIL instead.
1708 *
1709 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1710 * assert the OEM[012] bits, and if it did, the driver would have to
1711 * change to handle that properly, we don't actually check for the
1712 * firmware version.
1713 * Device ID = 0x20 BMC on PowerEdge 8G servers
1714 * Device Revision = 0x80
1715 * Firmware Revision1 = 0x01 BMC version 1.40
1716 * Firmware Revision2 = 0x40 BCD encoded
1717 * IPMI Version = 0x51 IPMI 1.5
1718 * Manufacturer ID = A2 02 00 Dell IANA
1719 *
1720 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1721 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1722 *
1723 */
1724#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1725#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1726#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1727#define DELL_IANA_MFR_ID 0x0002a2
1728static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1729{
1730 struct ipmi_device_id *id = &smi_info->device_id;
1731 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1732 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1733 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1734 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1735 smi_info->oem_data_avail_handler =
1736 oem_data_avail_to_receive_msg_avail;
1737 } else if (ipmi_version_major(id) < 1 ||
1738 (ipmi_version_major(id) == 1 &&
1739 ipmi_version_minor(id) < 5)) {
1740 smi_info->oem_data_avail_handler =
1741 oem_data_avail_to_receive_msg_avail;
1742 }
1743 }
1744}
1745
1746#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1747static void return_hosed_msg_badsize(struct smi_info *smi_info)
1748{
1749 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1750
1751 /* Make it a response */
1752 msg->rsp[0] = msg->data[0] | 4;
1753 msg->rsp[1] = msg->data[1];
1754 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1755 msg->rsp_size = 3;
1756 smi_info->curr_msg = NULL;
1757 deliver_recv_msg(smi_info, msg);
1758}
1759
1760/*
1761 * dell_poweredge_bt_xaction_handler
1762 * @info - smi_info.device_id must be populated
1763 *
1764 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1765 * not respond to a Get SDR command if the length of the data
1766 * requested is exactly 0x3A, which leads to command timeouts and no
1767 * data returned. This intercepts such commands, and causes userspace
1768 * callers to try again with a different-sized buffer, which succeeds.
1769 */
1770
1771#define STORAGE_NETFN 0x0A
1772#define STORAGE_CMD_GET_SDR 0x23
1773static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1774 unsigned long unused,
1775 void *in)
1776{
1777 struct smi_info *smi_info = in;
1778 unsigned char *data = smi_info->curr_msg->data;
1779 unsigned int size = smi_info->curr_msg->data_size;
1780 if (size >= 8 &&
1781 (data[0]>>2) == STORAGE_NETFN &&
1782 data[1] == STORAGE_CMD_GET_SDR &&
1783 data[7] == 0x3A) {
1784 return_hosed_msg_badsize(smi_info);
1785 return NOTIFY_STOP;
1786 }
1787 return NOTIFY_DONE;
1788}
1789
1790static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1791 .notifier_call = dell_poweredge_bt_xaction_handler,
1792};
1793
1794/*
1795 * setup_dell_poweredge_bt_xaction_handler
1796 * @info - smi_info.device_id must be filled in already
1797 *
1798 * Fills in smi_info.device_id.start_transaction_pre_hook
1799 * when we know what function to use there.
1800 */
1801static void
1802setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1803{
1804 struct ipmi_device_id *id = &smi_info->device_id;
1805 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1806 smi_info->io.si_type == SI_BT)
1807 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1808}
1809
1810/*
1811 * setup_oem_data_handler
1812 * @info - smi_info.device_id must be filled in already
1813 *
1814 * Fills in smi_info.device_id.oem_data_available_handler
1815 * when we know what function to use there.
1816 */
1817
1818static void setup_oem_data_handler(struct smi_info *smi_info)
1819{
1820 setup_dell_poweredge_oem_data_handler(smi_info);
1821}
1822
1823static void setup_xaction_handlers(struct smi_info *smi_info)
1824{
1825 setup_dell_poweredge_bt_xaction_handler(smi_info);
1826}
1827
1828static void check_for_broken_irqs(struct smi_info *smi_info)
1829{
1830 check_clr_rcv_irq(smi_info);
1831 check_set_rcv_irq(smi_info);
1832}
1833
1834static inline void stop_timer_and_thread(struct smi_info *smi_info)
1835{
1836 if (smi_info->thread != NULL) {
1837 kthread_stop(smi_info->thread);
1838 smi_info->thread = NULL;
1839 }
1840
1841 smi_info->timer_can_start = false;
1842 del_timer_sync(&smi_info->si_timer);
1843}
1844
1845static struct smi_info *find_dup_si(struct smi_info *info)
1846{
1847 struct smi_info *e;
1848
1849 list_for_each_entry(e, &smi_infos, link) {
1850 if (e->io.addr_space != info->io.addr_space)
1851 continue;
1852 if (e->io.addr_data == info->io.addr_data) {
1853 /*
1854 * This is a cheap hack, ACPI doesn't have a defined
1855 * slave address but SMBIOS does. Pick it up from
1856 * any source that has it available.
1857 */
1858 if (info->io.slave_addr && !e->io.slave_addr)
1859 e->io.slave_addr = info->io.slave_addr;
1860 return e;
1861 }
1862 }
1863
1864 return NULL;
1865}
1866
1867int ipmi_si_add_smi(struct si_sm_io *io)
1868{
1869 int rv = 0;
1870 struct smi_info *new_smi, *dup;
1871
1872 /*
1873 * If the user gave us a hard-coded device at the same
1874 * address, they presumably want us to use it and not what is
1875 * in the firmware.
1876 */
1877 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1878 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1879 dev_info(io->dev,
1880 "Hard-coded device at this address already exists");
1881 return -ENODEV;
1882 }
1883
1884 if (!io->io_setup) {
1885 if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1886 io->io_setup = ipmi_si_port_setup;
1887 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1888 io->io_setup = ipmi_si_mem_setup;
1889 } else {
1890 return -EINVAL;
1891 }
1892 }
1893
1894 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1895 if (!new_smi)
1896 return -ENOMEM;
1897 spin_lock_init(&new_smi->si_lock);
1898
1899 new_smi->io = *io;
1900
1901 mutex_lock(&smi_infos_lock);
1902 dup = find_dup_si(new_smi);
1903 if (dup) {
1904 if (new_smi->io.addr_source == SI_ACPI &&
1905 dup->io.addr_source == SI_SMBIOS) {
1906 /* We prefer ACPI over SMBIOS. */
1907 dev_info(dup->io.dev,
1908 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1909 si_to_str[new_smi->io.si_type]);
1910 cleanup_one_si(dup);
1911 } else {
1912 dev_info(new_smi->io.dev,
1913 "%s-specified %s state machine: duplicate\n",
1914 ipmi_addr_src_to_str(new_smi->io.addr_source),
1915 si_to_str[new_smi->io.si_type]);
1916 rv = -EBUSY;
1917 kfree(new_smi);
1918 goto out_err;
1919 }
1920 }
1921
1922 pr_info("Adding %s-specified %s state machine\n",
1923 ipmi_addr_src_to_str(new_smi->io.addr_source),
1924 si_to_str[new_smi->io.si_type]);
1925
1926 list_add_tail(&new_smi->link, &smi_infos);
1927
1928 if (initialized)
1929 rv = try_smi_init(new_smi);
1930out_err:
1931 mutex_unlock(&smi_infos_lock);
1932 return rv;
1933}
1934
1935/*
1936 * Try to start up an interface. Must be called with smi_infos_lock
1937 * held, primarily to keep smi_num consistent, we only one to do these
1938 * one at a time.
1939 */
1940static int try_smi_init(struct smi_info *new_smi)
1941{
1942 int rv = 0;
1943 int i;
1944
1945 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1946 ipmi_addr_src_to_str(new_smi->io.addr_source),
1947 si_to_str[new_smi->io.si_type],
1948 addr_space_to_str[new_smi->io.addr_space],
1949 new_smi->io.addr_data,
1950 new_smi->io.slave_addr, new_smi->io.irq);
1951
1952 switch (new_smi->io.si_type) {
1953 case SI_KCS:
1954 new_smi->handlers = &kcs_smi_handlers;
1955 break;
1956
1957 case SI_SMIC:
1958 new_smi->handlers = &smic_smi_handlers;
1959 break;
1960
1961 case SI_BT:
1962 new_smi->handlers = &bt_smi_handlers;
1963 break;
1964
1965 default:
1966 /* No support for anything else yet. */
1967 rv = -EIO;
1968 goto out_err;
1969 }
1970
1971 new_smi->si_num = smi_num;
1972
1973 /* Do this early so it's available for logs. */
1974 if (!new_smi->io.dev) {
1975 pr_err("IPMI interface added with no device\n");
1976 rv = -EIO;
1977 goto out_err;
1978 }
1979
1980 /* Allocate the state machine's data and initialize it. */
1981 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1982 if (!new_smi->si_sm) {
1983 rv = -ENOMEM;
1984 goto out_err;
1985 }
1986 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1987 &new_smi->io);
1988
1989 /* Now that we know the I/O size, we can set up the I/O. */
1990 rv = new_smi->io.io_setup(&new_smi->io);
1991 if (rv) {
1992 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1993 goto out_err;
1994 }
1995
1996 /* Do low-level detection first. */
1997 if (new_smi->handlers->detect(new_smi->si_sm)) {
1998 if (new_smi->io.addr_source)
1999 dev_err(new_smi->io.dev,
2000 "Interface detection failed\n");
2001 rv = -ENODEV;
2002 goto out_err;
2003 }
2004
2005 /*
2006 * Attempt a get device id command. If it fails, we probably
2007 * don't have a BMC here.
2008 */
2009 rv = try_get_dev_id(new_smi);
2010 if (rv) {
2011 if (new_smi->io.addr_source)
2012 dev_err(new_smi->io.dev,
2013 "There appears to be no BMC at this location\n");
2014 goto out_err;
2015 }
2016
2017 setup_oem_data_handler(new_smi);
2018 setup_xaction_handlers(new_smi);
2019 check_for_broken_irqs(new_smi);
2020
2021 new_smi->waiting_msg = NULL;
2022 new_smi->curr_msg = NULL;
2023 atomic_set(&new_smi->req_events, 0);
2024 new_smi->run_to_completion = false;
2025 for (i = 0; i < SI_NUM_STATS; i++)
2026 atomic_set(&new_smi->stats[i], 0);
2027
2028 new_smi->interrupt_disabled = true;
2029 atomic_set(&new_smi->need_watch, 0);
2030
2031 rv = try_enable_event_buffer(new_smi);
2032 if (rv == 0)
2033 new_smi->has_event_buffer = true;
2034
2035 /*
2036 * Start clearing the flags before we enable interrupts or the
2037 * timer to avoid racing with the timer.
2038 */
2039 start_clear_flags(new_smi);
2040
2041 /*
2042 * IRQ is defined to be set when non-zero. req_events will
2043 * cause a global flags check that will enable interrupts.
2044 */
2045 if (new_smi->io.irq) {
2046 new_smi->interrupt_disabled = false;
2047 atomic_set(&new_smi->req_events, 1);
2048 }
2049
2050 dev_set_drvdata(new_smi->io.dev, new_smi);
2051 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2052 if (rv) {
2053 dev_err(new_smi->io.dev,
2054 "Unable to add device attributes: error %d\n",
2055 rv);
2056 goto out_err;
2057 }
2058 new_smi->dev_group_added = true;
2059
2060 rv = ipmi_register_smi(&handlers,
2061 new_smi,
2062 new_smi->io.dev,
2063 new_smi->io.slave_addr);
2064 if (rv) {
2065 dev_err(new_smi->io.dev,
2066 "Unable to register device: error %d\n",
2067 rv);
2068 goto out_err;
2069 }
2070
2071 /* Don't increment till we know we have succeeded. */
2072 smi_num++;
2073
2074 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2075 si_to_str[new_smi->io.si_type]);
2076
2077 WARN_ON(new_smi->io.dev->init_name != NULL);
2078
2079 out_err:
2080 if (rv && new_smi->io.io_cleanup) {
2081 new_smi->io.io_cleanup(&new_smi->io);
2082 new_smi->io.io_cleanup = NULL;
2083 }
2084
2085 if (rv && new_smi->si_sm) {
2086 kfree(new_smi->si_sm);
2087 new_smi->si_sm = NULL;
2088 }
2089
2090 return rv;
2091}
2092
2093static int __init init_ipmi_si(void)
2094{
2095 struct smi_info *e;
2096 enum ipmi_addr_src type = SI_INVALID;
2097
2098 if (initialized)
2099 return 0;
2100
2101 ipmi_hardcode_init();
2102
2103 pr_info("IPMI System Interface driver\n");
2104
2105 ipmi_si_platform_init();
2106
2107 ipmi_si_pci_init();
2108
2109 ipmi_si_parisc_init();
2110
2111 /* We prefer devices with interrupts, but in the case of a machine
2112 with multiple BMCs we assume that there will be several instances
2113 of a given type so if we succeed in registering a type then also
2114 try to register everything else of the same type */
2115 mutex_lock(&smi_infos_lock);
2116 list_for_each_entry(e, &smi_infos, link) {
2117 /* Try to register a device if it has an IRQ and we either
2118 haven't successfully registered a device yet or this
2119 device has the same type as one we successfully registered */
2120 if (e->io.irq && (!type || e->io.addr_source == type)) {
2121 if (!try_smi_init(e)) {
2122 type = e->io.addr_source;
2123 }
2124 }
2125 }
2126
2127 /* type will only have been set if we successfully registered an si */
2128 if (type)
2129 goto skip_fallback_noirq;
2130
2131 /* Fall back to the preferred device */
2132
2133 list_for_each_entry(e, &smi_infos, link) {
2134 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2135 if (!try_smi_init(e)) {
2136 type = e->io.addr_source;
2137 }
2138 }
2139 }
2140
2141skip_fallback_noirq:
2142 initialized = true;
2143 mutex_unlock(&smi_infos_lock);
2144
2145 if (type)
2146 return 0;
2147
2148 mutex_lock(&smi_infos_lock);
2149 if (unload_when_empty && list_empty(&smi_infos)) {
2150 mutex_unlock(&smi_infos_lock);
2151 cleanup_ipmi_si();
2152 pr_warn("Unable to find any System Interface(s)\n");
2153 return -ENODEV;
2154 } else {
2155 mutex_unlock(&smi_infos_lock);
2156 return 0;
2157 }
2158}
2159module_init(init_ipmi_si);
2160
2161static void wait_msg_processed(struct smi_info *smi_info)
2162{
2163 unsigned long jiffies_now;
2164 long time_diff;
2165
2166 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2167 jiffies_now = jiffies;
2168 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2169 * SI_USEC_PER_JIFFY);
2170 smi_event_handler(smi_info, time_diff);
2171 schedule_timeout_uninterruptible(1);
2172 }
2173}
2174
2175static void shutdown_smi(void *send_info)
2176{
2177 struct smi_info *smi_info = send_info;
2178
2179 if (smi_info->dev_group_added) {
2180 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2181 smi_info->dev_group_added = false;
2182 }
2183 if (smi_info->io.dev)
2184 dev_set_drvdata(smi_info->io.dev, NULL);
2185
2186 /*
2187 * Make sure that interrupts, the timer and the thread are
2188 * stopped and will not run again.
2189 */
2190 smi_info->interrupt_disabled = true;
2191 if (smi_info->io.irq_cleanup) {
2192 smi_info->io.irq_cleanup(&smi_info->io);
2193 smi_info->io.irq_cleanup = NULL;
2194 }
2195 stop_timer_and_thread(smi_info);
2196
2197 /*
2198 * Wait until we know that we are out of any interrupt
2199 * handlers might have been running before we freed the
2200 * interrupt.
2201 */
2202 synchronize_rcu();
2203
2204 /*
2205 * Timeouts are stopped, now make sure the interrupts are off
2206 * in the BMC. Note that timers and CPU interrupts are off,
2207 * so no need for locks.
2208 */
2209 wait_msg_processed(smi_info);
2210
2211 if (smi_info->handlers)
2212 disable_si_irq(smi_info);
2213
2214 wait_msg_processed(smi_info);
2215
2216 if (smi_info->handlers)
2217 smi_info->handlers->cleanup(smi_info->si_sm);
2218
2219 if (smi_info->io.io_cleanup) {
2220 smi_info->io.io_cleanup(&smi_info->io);
2221 smi_info->io.io_cleanup = NULL;
2222 }
2223
2224 kfree(smi_info->si_sm);
2225 smi_info->si_sm = NULL;
2226
2227 smi_info->intf = NULL;
2228}
2229
2230/*
2231 * Must be called with smi_infos_lock held, to serialize the
2232 * smi_info->intf check.
2233 */
2234static void cleanup_one_si(struct smi_info *smi_info)
2235{
2236 if (!smi_info)
2237 return;
2238
2239 list_del(&smi_info->link);
2240 ipmi_unregister_smi(smi_info->intf);
2241 kfree(smi_info);
2242}
2243
2244void ipmi_si_remove_by_dev(struct device *dev)
2245{
2246 struct smi_info *e;
2247
2248 mutex_lock(&smi_infos_lock);
2249 list_for_each_entry(e, &smi_infos, link) {
2250 if (e->io.dev == dev) {
2251 cleanup_one_si(e);
2252 break;
2253 }
2254 }
2255 mutex_unlock(&smi_infos_lock);
2256}
2257
2258struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2259 unsigned long addr)
2260{
2261 /* remove */
2262 struct smi_info *e, *tmp_e;
2263 struct device *dev = NULL;
2264
2265 mutex_lock(&smi_infos_lock);
2266 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2267 if (e->io.addr_space != addr_space)
2268 continue;
2269 if (e->io.si_type != si_type)
2270 continue;
2271 if (e->io.addr_data == addr) {
2272 dev = get_device(e->io.dev);
2273 cleanup_one_si(e);
2274 }
2275 }
2276 mutex_unlock(&smi_infos_lock);
2277
2278 return dev;
2279}
2280
2281static void cleanup_ipmi_si(void)
2282{
2283 struct smi_info *e, *tmp_e;
2284
2285 if (!initialized)
2286 return;
2287
2288 ipmi_si_pci_shutdown();
2289
2290 ipmi_si_parisc_shutdown();
2291
2292 ipmi_si_platform_shutdown();
2293
2294 mutex_lock(&smi_infos_lock);
2295 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2296 cleanup_one_si(e);
2297 mutex_unlock(&smi_infos_lock);
2298
2299 ipmi_si_hardcode_exit();
2300 ipmi_si_hotmod_exit();
2301}
2302module_exit(cleanup_ipmi_si);
2303
2304MODULE_ALIAS("platform:dmi-ipmi-si");
2305MODULE_LICENSE("GPL");
2306MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2307MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 */
15
16/*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
22#define pr_fmt(fmt) "ipmi_si: " fmt
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/sched.h>
27#include <linux/seq_file.h>
28#include <linux/timer.h>
29#include <linux/errno.h>
30#include <linux/spinlock.h>
31#include <linux/slab.h>
32#include <linux/delay.h>
33#include <linux/list.h>
34#include <linux/notifier.h>
35#include <linux/mutex.h>
36#include <linux/kthread.h>
37#include <asm/irq.h>
38#include <linux/interrupt.h>
39#include <linux/rcupdate.h>
40#include <linux/ipmi.h>
41#include <linux/ipmi_smi.h>
42#include "ipmi_si.h"
43#include "ipmi_si_sm.h"
44#include <linux/string.h>
45#include <linux/ctype.h>
46
47/* Measure times between events in the driver. */
48#undef DEBUG_TIMING
49
50/* Call every 10 ms. */
51#define SI_TIMEOUT_TIME_USEC 10000
52#define SI_USEC_PER_JIFFY (1000000/HZ)
53#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
55 short timeout */
56
57enum si_intf_state {
58 SI_NORMAL,
59 SI_GETTING_FLAGS,
60 SI_GETTING_EVENTS,
61 SI_CLEARING_FLAGS,
62 SI_GETTING_MESSAGES,
63 SI_CHECKING_ENABLES,
64 SI_SETTING_ENABLES
65 /* FIXME - add watchdog stuff. */
66};
67
68/* Some BT-specific defines we need here. */
69#define IPMI_BT_INTMASK_REG 2
70#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
71#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72
73static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
74
75static bool initialized;
76
77/*
78 * Indexes into stats[] in smi_info below.
79 */
80enum si_stat_indexes {
81 /*
82 * Number of times the driver requested a timer while an operation
83 * was in progress.
84 */
85 SI_STAT_short_timeouts = 0,
86
87 /*
88 * Number of times the driver requested a timer while nothing was in
89 * progress.
90 */
91 SI_STAT_long_timeouts,
92
93 /* Number of times the interface was idle while being polled. */
94 SI_STAT_idles,
95
96 /* Number of interrupts the driver handled. */
97 SI_STAT_interrupts,
98
99 /* Number of time the driver got an ATTN from the hardware. */
100 SI_STAT_attentions,
101
102 /* Number of times the driver requested flags from the hardware. */
103 SI_STAT_flag_fetches,
104
105 /* Number of times the hardware didn't follow the state machine. */
106 SI_STAT_hosed_count,
107
108 /* Number of completed messages. */
109 SI_STAT_complete_transactions,
110
111 /* Number of IPMI events received from the hardware. */
112 SI_STAT_events,
113
114 /* Number of watchdog pretimeouts. */
115 SI_STAT_watchdog_pretimeouts,
116
117 /* Number of asynchronous messages received. */
118 SI_STAT_incoming_messages,
119
120
121 /* This *must* remain last, add new values above this. */
122 SI_NUM_STATS
123};
124
125struct smi_info {
126 int si_num;
127 struct ipmi_smi *intf;
128 struct si_sm_data *si_sm;
129 const struct si_sm_handlers *handlers;
130 spinlock_t si_lock;
131 struct ipmi_smi_msg *waiting_msg;
132 struct ipmi_smi_msg *curr_msg;
133 enum si_intf_state si_state;
134
135 /*
136 * Used to handle the various types of I/O that can occur with
137 * IPMI
138 */
139 struct si_sm_io io;
140
141 /*
142 * Per-OEM handler, called from handle_flags(). Returns 1
143 * when handle_flags() needs to be re-run or 0 indicating it
144 * set si_state itself.
145 */
146 int (*oem_data_avail_handler)(struct smi_info *smi_info);
147
148 /*
149 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
150 * is set to hold the flags until we are done handling everything
151 * from the flags.
152 */
153#define RECEIVE_MSG_AVAIL 0x01
154#define EVENT_MSG_BUFFER_FULL 0x02
155#define WDT_PRE_TIMEOUT_INT 0x08
156#define OEM0_DATA_AVAIL 0x20
157#define OEM1_DATA_AVAIL 0x40
158#define OEM2_DATA_AVAIL 0x80
159#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
160 OEM1_DATA_AVAIL | \
161 OEM2_DATA_AVAIL)
162 unsigned char msg_flags;
163
164 /* Does the BMC have an event buffer? */
165 bool has_event_buffer;
166
167 /*
168 * If set to true, this will request events the next time the
169 * state machine is idle.
170 */
171 atomic_t req_events;
172
173 /*
174 * If true, run the state machine to completion on every send
175 * call. Generally used after a panic to make sure stuff goes
176 * out.
177 */
178 bool run_to_completion;
179
180 /* The timer for this si. */
181 struct timer_list si_timer;
182
183 /* This flag is set, if the timer can be set */
184 bool timer_can_start;
185
186 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
187 bool timer_running;
188
189 /* The time (in jiffies) the last timeout occurred at. */
190 unsigned long last_timeout_jiffies;
191
192 /* Are we waiting for the events, pretimeouts, received msgs? */
193 atomic_t need_watch;
194
195 /*
196 * The driver will disable interrupts when it gets into a
197 * situation where it cannot handle messages due to lack of
198 * memory. Once that situation clears up, it will re-enable
199 * interrupts.
200 */
201 bool interrupt_disabled;
202
203 /*
204 * Does the BMC support events?
205 */
206 bool supports_event_msg_buff;
207
208 /*
209 * Can we disable interrupts the global enables receive irq
210 * bit? There are currently two forms of brokenness, some
211 * systems cannot disable the bit (which is technically within
212 * the spec but a bad idea) and some systems have the bit
213 * forced to zero even though interrupts work (which is
214 * clearly outside the spec). The next bool tells which form
215 * of brokenness is present.
216 */
217 bool cannot_disable_irq;
218
219 /*
220 * Some systems are broken and cannot set the irq enable
221 * bit, even if they support interrupts.
222 */
223 bool irq_enable_broken;
224
225 /* Is the driver in maintenance mode? */
226 bool in_maintenance_mode;
227
228 /*
229 * Did we get an attention that we did not handle?
230 */
231 bool got_attn;
232
233 /* From the get device id response... */
234 struct ipmi_device_id device_id;
235
236 /* Have we added the device group to the device? */
237 bool dev_group_added;
238
239 /* Counters and things for the proc filesystem. */
240 atomic_t stats[SI_NUM_STATS];
241
242 struct task_struct *thread;
243
244 struct list_head link;
245};
246
247#define smi_inc_stat(smi, stat) \
248 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
249#define smi_get_stat(smi, stat) \
250 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
251
252#define IPMI_MAX_INTFS 4
253static int force_kipmid[IPMI_MAX_INTFS];
254static int num_force_kipmid;
255
256static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
257static int num_max_busy_us;
258
259static bool unload_when_empty = true;
260
261static int try_smi_init(struct smi_info *smi);
262static void cleanup_one_si(struct smi_info *smi_info);
263static void cleanup_ipmi_si(void);
264
265#ifdef DEBUG_TIMING
266void debug_timestamp(char *msg)
267{
268 struct timespec t;
269
270 ktime_get_ts(&t);
271 pr_debug("**%s: %ld.%9.9ld\n", msg, (long) t.tv_sec, t.tv_nsec);
272}
273#else
274#define debug_timestamp(x)
275#endif
276
277static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
278static int register_xaction_notifier(struct notifier_block *nb)
279{
280 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
281}
282
283static void deliver_recv_msg(struct smi_info *smi_info,
284 struct ipmi_smi_msg *msg)
285{
286 /* Deliver the message to the upper layer. */
287 ipmi_smi_msg_received(smi_info->intf, msg);
288}
289
290static void return_hosed_msg(struct smi_info *smi_info, int cCode)
291{
292 struct ipmi_smi_msg *msg = smi_info->curr_msg;
293
294 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
295 cCode = IPMI_ERR_UNSPECIFIED;
296 /* else use it as is */
297
298 /* Make it a response */
299 msg->rsp[0] = msg->data[0] | 4;
300 msg->rsp[1] = msg->data[1];
301 msg->rsp[2] = cCode;
302 msg->rsp_size = 3;
303
304 smi_info->curr_msg = NULL;
305 deliver_recv_msg(smi_info, msg);
306}
307
308static enum si_sm_result start_next_msg(struct smi_info *smi_info)
309{
310 int rv;
311
312 if (!smi_info->waiting_msg) {
313 smi_info->curr_msg = NULL;
314 rv = SI_SM_IDLE;
315 } else {
316 int err;
317
318 smi_info->curr_msg = smi_info->waiting_msg;
319 smi_info->waiting_msg = NULL;
320 debug_timestamp("Start2");
321 err = atomic_notifier_call_chain(&xaction_notifier_list,
322 0, smi_info);
323 if (err & NOTIFY_STOP_MASK) {
324 rv = SI_SM_CALL_WITHOUT_DELAY;
325 goto out;
326 }
327 err = smi_info->handlers->start_transaction(
328 smi_info->si_sm,
329 smi_info->curr_msg->data,
330 smi_info->curr_msg->data_size);
331 if (err)
332 return_hosed_msg(smi_info, err);
333
334 rv = SI_SM_CALL_WITHOUT_DELAY;
335 }
336out:
337 return rv;
338}
339
340static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
341{
342 if (!smi_info->timer_can_start)
343 return;
344 smi_info->last_timeout_jiffies = jiffies;
345 mod_timer(&smi_info->si_timer, new_val);
346 smi_info->timer_running = true;
347}
348
349/*
350 * Start a new message and (re)start the timer and thread.
351 */
352static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
353 unsigned int size)
354{
355 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
356
357 if (smi_info->thread)
358 wake_up_process(smi_info->thread);
359
360 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
361}
362
363static void start_check_enables(struct smi_info *smi_info)
364{
365 unsigned char msg[2];
366
367 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
368 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
369
370 start_new_msg(smi_info, msg, 2);
371 smi_info->si_state = SI_CHECKING_ENABLES;
372}
373
374static void start_clear_flags(struct smi_info *smi_info)
375{
376 unsigned char msg[3];
377
378 /* Make sure the watchdog pre-timeout flag is not set at startup. */
379 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
380 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
381 msg[2] = WDT_PRE_TIMEOUT_INT;
382
383 start_new_msg(smi_info, msg, 3);
384 smi_info->si_state = SI_CLEARING_FLAGS;
385}
386
387static void start_getting_msg_queue(struct smi_info *smi_info)
388{
389 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
390 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
391 smi_info->curr_msg->data_size = 2;
392
393 start_new_msg(smi_info, smi_info->curr_msg->data,
394 smi_info->curr_msg->data_size);
395 smi_info->si_state = SI_GETTING_MESSAGES;
396}
397
398static void start_getting_events(struct smi_info *smi_info)
399{
400 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
401 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
402 smi_info->curr_msg->data_size = 2;
403
404 start_new_msg(smi_info, smi_info->curr_msg->data,
405 smi_info->curr_msg->data_size);
406 smi_info->si_state = SI_GETTING_EVENTS;
407}
408
409/*
410 * When we have a situtaion where we run out of memory and cannot
411 * allocate messages, we just leave them in the BMC and run the system
412 * polled until we can allocate some memory. Once we have some
413 * memory, we will re-enable the interrupt.
414 *
415 * Note that we cannot just use disable_irq(), since the interrupt may
416 * be shared.
417 */
418static inline bool disable_si_irq(struct smi_info *smi_info)
419{
420 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
421 smi_info->interrupt_disabled = true;
422 start_check_enables(smi_info);
423 return true;
424 }
425 return false;
426}
427
428static inline bool enable_si_irq(struct smi_info *smi_info)
429{
430 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
431 smi_info->interrupt_disabled = false;
432 start_check_enables(smi_info);
433 return true;
434 }
435 return false;
436}
437
438/*
439 * Allocate a message. If unable to allocate, start the interrupt
440 * disable process and return NULL. If able to allocate but
441 * interrupts are disabled, free the message and return NULL after
442 * starting the interrupt enable process.
443 */
444static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
445{
446 struct ipmi_smi_msg *msg;
447
448 msg = ipmi_alloc_smi_msg();
449 if (!msg) {
450 if (!disable_si_irq(smi_info))
451 smi_info->si_state = SI_NORMAL;
452 } else if (enable_si_irq(smi_info)) {
453 ipmi_free_smi_msg(msg);
454 msg = NULL;
455 }
456 return msg;
457}
458
459static void handle_flags(struct smi_info *smi_info)
460{
461retry:
462 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
463 /* Watchdog pre-timeout */
464 smi_inc_stat(smi_info, watchdog_pretimeouts);
465
466 start_clear_flags(smi_info);
467 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
468 ipmi_smi_watchdog_pretimeout(smi_info->intf);
469 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
470 /* Messages available. */
471 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
472 if (!smi_info->curr_msg)
473 return;
474
475 start_getting_msg_queue(smi_info);
476 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
477 /* Events available. */
478 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
479 if (!smi_info->curr_msg)
480 return;
481
482 start_getting_events(smi_info);
483 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
484 smi_info->oem_data_avail_handler) {
485 if (smi_info->oem_data_avail_handler(smi_info))
486 goto retry;
487 } else
488 smi_info->si_state = SI_NORMAL;
489}
490
491/*
492 * Global enables we care about.
493 */
494#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
495 IPMI_BMC_EVT_MSG_INTR)
496
497static u8 current_global_enables(struct smi_info *smi_info, u8 base,
498 bool *irq_on)
499{
500 u8 enables = 0;
501
502 if (smi_info->supports_event_msg_buff)
503 enables |= IPMI_BMC_EVT_MSG_BUFF;
504
505 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
506 smi_info->cannot_disable_irq) &&
507 !smi_info->irq_enable_broken)
508 enables |= IPMI_BMC_RCV_MSG_INTR;
509
510 if (smi_info->supports_event_msg_buff &&
511 smi_info->io.irq && !smi_info->interrupt_disabled &&
512 !smi_info->irq_enable_broken)
513 enables |= IPMI_BMC_EVT_MSG_INTR;
514
515 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
516
517 return enables;
518}
519
520static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
521{
522 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
523
524 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
525
526 if ((bool)irqstate == irq_on)
527 return;
528
529 if (irq_on)
530 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
531 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
532 else
533 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
534}
535
536static void handle_transaction_done(struct smi_info *smi_info)
537{
538 struct ipmi_smi_msg *msg;
539
540 debug_timestamp("Done");
541 switch (smi_info->si_state) {
542 case SI_NORMAL:
543 if (!smi_info->curr_msg)
544 break;
545
546 smi_info->curr_msg->rsp_size
547 = smi_info->handlers->get_result(
548 smi_info->si_sm,
549 smi_info->curr_msg->rsp,
550 IPMI_MAX_MSG_LENGTH);
551
552 /*
553 * Do this here becase deliver_recv_msg() releases the
554 * lock, and a new message can be put in during the
555 * time the lock is released.
556 */
557 msg = smi_info->curr_msg;
558 smi_info->curr_msg = NULL;
559 deliver_recv_msg(smi_info, msg);
560 break;
561
562 case SI_GETTING_FLAGS:
563 {
564 unsigned char msg[4];
565 unsigned int len;
566
567 /* We got the flags from the SMI, now handle them. */
568 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
569 if (msg[2] != 0) {
570 /* Error fetching flags, just give up for now. */
571 smi_info->si_state = SI_NORMAL;
572 } else if (len < 4) {
573 /*
574 * Hmm, no flags. That's technically illegal, but
575 * don't use uninitialized data.
576 */
577 smi_info->si_state = SI_NORMAL;
578 } else {
579 smi_info->msg_flags = msg[3];
580 handle_flags(smi_info);
581 }
582 break;
583 }
584
585 case SI_CLEARING_FLAGS:
586 {
587 unsigned char msg[3];
588
589 /* We cleared the flags. */
590 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
591 if (msg[2] != 0) {
592 /* Error clearing flags */
593 dev_warn(smi_info->io.dev,
594 "Error clearing flags: %2.2x\n", msg[2]);
595 }
596 smi_info->si_state = SI_NORMAL;
597 break;
598 }
599
600 case SI_GETTING_EVENTS:
601 {
602 smi_info->curr_msg->rsp_size
603 = smi_info->handlers->get_result(
604 smi_info->si_sm,
605 smi_info->curr_msg->rsp,
606 IPMI_MAX_MSG_LENGTH);
607
608 /*
609 * Do this here becase deliver_recv_msg() releases the
610 * lock, and a new message can be put in during the
611 * time the lock is released.
612 */
613 msg = smi_info->curr_msg;
614 smi_info->curr_msg = NULL;
615 if (msg->rsp[2] != 0) {
616 /* Error getting event, probably done. */
617 msg->done(msg);
618
619 /* Take off the event flag. */
620 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
621 handle_flags(smi_info);
622 } else {
623 smi_inc_stat(smi_info, events);
624
625 /*
626 * Do this before we deliver the message
627 * because delivering the message releases the
628 * lock and something else can mess with the
629 * state.
630 */
631 handle_flags(smi_info);
632
633 deliver_recv_msg(smi_info, msg);
634 }
635 break;
636 }
637
638 case SI_GETTING_MESSAGES:
639 {
640 smi_info->curr_msg->rsp_size
641 = smi_info->handlers->get_result(
642 smi_info->si_sm,
643 smi_info->curr_msg->rsp,
644 IPMI_MAX_MSG_LENGTH);
645
646 /*
647 * Do this here becase deliver_recv_msg() releases the
648 * lock, and a new message can be put in during the
649 * time the lock is released.
650 */
651 msg = smi_info->curr_msg;
652 smi_info->curr_msg = NULL;
653 if (msg->rsp[2] != 0) {
654 /* Error getting event, probably done. */
655 msg->done(msg);
656
657 /* Take off the msg flag. */
658 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
659 handle_flags(smi_info);
660 } else {
661 smi_inc_stat(smi_info, incoming_messages);
662
663 /*
664 * Do this before we deliver the message
665 * because delivering the message releases the
666 * lock and something else can mess with the
667 * state.
668 */
669 handle_flags(smi_info);
670
671 deliver_recv_msg(smi_info, msg);
672 }
673 break;
674 }
675
676 case SI_CHECKING_ENABLES:
677 {
678 unsigned char msg[4];
679 u8 enables;
680 bool irq_on;
681
682 /* We got the flags from the SMI, now handle them. */
683 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684 if (msg[2] != 0) {
685 dev_warn(smi_info->io.dev,
686 "Couldn't get irq info: %x.\n", msg[2]);
687 dev_warn(smi_info->io.dev,
688 "Maybe ok, but ipmi might run very slowly.\n");
689 smi_info->si_state = SI_NORMAL;
690 break;
691 }
692 enables = current_global_enables(smi_info, 0, &irq_on);
693 if (smi_info->io.si_type == SI_BT)
694 /* BT has its own interrupt enable bit. */
695 check_bt_irq(smi_info, irq_on);
696 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
697 /* Enables are not correct, fix them. */
698 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
699 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
700 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
701 smi_info->handlers->start_transaction(
702 smi_info->si_sm, msg, 3);
703 smi_info->si_state = SI_SETTING_ENABLES;
704 } else if (smi_info->supports_event_msg_buff) {
705 smi_info->curr_msg = ipmi_alloc_smi_msg();
706 if (!smi_info->curr_msg) {
707 smi_info->si_state = SI_NORMAL;
708 break;
709 }
710 start_getting_events(smi_info);
711 } else {
712 smi_info->si_state = SI_NORMAL;
713 }
714 break;
715 }
716
717 case SI_SETTING_ENABLES:
718 {
719 unsigned char msg[4];
720
721 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
722 if (msg[2] != 0)
723 dev_warn(smi_info->io.dev,
724 "Could not set the global enables: 0x%x.\n",
725 msg[2]);
726
727 if (smi_info->supports_event_msg_buff) {
728 smi_info->curr_msg = ipmi_alloc_smi_msg();
729 if (!smi_info->curr_msg) {
730 smi_info->si_state = SI_NORMAL;
731 break;
732 }
733 start_getting_events(smi_info);
734 } else {
735 smi_info->si_state = SI_NORMAL;
736 }
737 break;
738 }
739 }
740}
741
742/*
743 * Called on timeouts and events. Timeouts should pass the elapsed
744 * time, interrupts should pass in zero. Must be called with
745 * si_lock held and interrupts disabled.
746 */
747static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
748 int time)
749{
750 enum si_sm_result si_sm_result;
751
752restart:
753 /*
754 * There used to be a loop here that waited a little while
755 * (around 25us) before giving up. That turned out to be
756 * pointless, the minimum delays I was seeing were in the 300us
757 * range, which is far too long to wait in an interrupt. So
758 * we just run until the state machine tells us something
759 * happened or it needs a delay.
760 */
761 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
762 time = 0;
763 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765
766 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
767 smi_inc_stat(smi_info, complete_transactions);
768
769 handle_transaction_done(smi_info);
770 goto restart;
771 } else if (si_sm_result == SI_SM_HOSED) {
772 smi_inc_stat(smi_info, hosed_count);
773
774 /*
775 * Do the before return_hosed_msg, because that
776 * releases the lock.
777 */
778 smi_info->si_state = SI_NORMAL;
779 if (smi_info->curr_msg != NULL) {
780 /*
781 * If we were handling a user message, format
782 * a response to send to the upper layer to
783 * tell it about the error.
784 */
785 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
786 }
787 goto restart;
788 }
789
790 /*
791 * We prefer handling attn over new messages. But don't do
792 * this if there is not yet an upper layer to handle anything.
793 */
794 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
795 unsigned char msg[2];
796
797 if (smi_info->si_state != SI_NORMAL) {
798 /*
799 * We got an ATTN, but we are doing something else.
800 * Handle the ATTN later.
801 */
802 smi_info->got_attn = true;
803 } else {
804 smi_info->got_attn = false;
805 smi_inc_stat(smi_info, attentions);
806
807 /*
808 * Got a attn, send down a get message flags to see
809 * what's causing it. It would be better to handle
810 * this in the upper layer, but due to the way
811 * interrupts work with the SMI, that's not really
812 * possible.
813 */
814 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
815 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
816
817 start_new_msg(smi_info, msg, 2);
818 smi_info->si_state = SI_GETTING_FLAGS;
819 goto restart;
820 }
821 }
822
823 /* If we are currently idle, try to start the next message. */
824 if (si_sm_result == SI_SM_IDLE) {
825 smi_inc_stat(smi_info, idles);
826
827 si_sm_result = start_next_msg(smi_info);
828 if (si_sm_result != SI_SM_IDLE)
829 goto restart;
830 }
831
832 if ((si_sm_result == SI_SM_IDLE)
833 && (atomic_read(&smi_info->req_events))) {
834 /*
835 * We are idle and the upper layer requested that I fetch
836 * events, so do so.
837 */
838 atomic_set(&smi_info->req_events, 0);
839
840 /*
841 * Take this opportunity to check the interrupt and
842 * message enable state for the BMC. The BMC can be
843 * asynchronously reset, and may thus get interrupts
844 * disable and messages disabled.
845 */
846 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
847 start_check_enables(smi_info);
848 } else {
849 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
850 if (!smi_info->curr_msg)
851 goto out;
852
853 start_getting_events(smi_info);
854 }
855 goto restart;
856 }
857
858 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
859 /* Ok it if fails, the timer will just go off. */
860 if (del_timer(&smi_info->si_timer))
861 smi_info->timer_running = false;
862 }
863
864out:
865 return si_sm_result;
866}
867
868static void check_start_timer_thread(struct smi_info *smi_info)
869{
870 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
871 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
872
873 if (smi_info->thread)
874 wake_up_process(smi_info->thread);
875
876 start_next_msg(smi_info);
877 smi_event_handler(smi_info, 0);
878 }
879}
880
881static void flush_messages(void *send_info)
882{
883 struct smi_info *smi_info = send_info;
884 enum si_sm_result result;
885
886 /*
887 * Currently, this function is called only in run-to-completion
888 * mode. This means we are single-threaded, no need for locks.
889 */
890 result = smi_event_handler(smi_info, 0);
891 while (result != SI_SM_IDLE) {
892 udelay(SI_SHORT_TIMEOUT_USEC);
893 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
894 }
895}
896
897static void sender(void *send_info,
898 struct ipmi_smi_msg *msg)
899{
900 struct smi_info *smi_info = send_info;
901 unsigned long flags;
902
903 debug_timestamp("Enqueue");
904
905 if (smi_info->run_to_completion) {
906 /*
907 * If we are running to completion, start it. Upper
908 * layer will call flush_messages to clear it out.
909 */
910 smi_info->waiting_msg = msg;
911 return;
912 }
913
914 spin_lock_irqsave(&smi_info->si_lock, flags);
915 /*
916 * The following two lines don't need to be under the lock for
917 * the lock's sake, but they do need SMP memory barriers to
918 * avoid getting things out of order. We are already claiming
919 * the lock, anyway, so just do it under the lock to avoid the
920 * ordering problem.
921 */
922 BUG_ON(smi_info->waiting_msg);
923 smi_info->waiting_msg = msg;
924 check_start_timer_thread(smi_info);
925 spin_unlock_irqrestore(&smi_info->si_lock, flags);
926}
927
928static void set_run_to_completion(void *send_info, bool i_run_to_completion)
929{
930 struct smi_info *smi_info = send_info;
931
932 smi_info->run_to_completion = i_run_to_completion;
933 if (i_run_to_completion)
934 flush_messages(smi_info);
935}
936
937/*
938 * Use -1 in the nsec value of the busy waiting timespec to tell that
939 * we are spinning in kipmid looking for something and not delaying
940 * between checks
941 */
942static inline void ipmi_si_set_not_busy(struct timespec *ts)
943{
944 ts->tv_nsec = -1;
945}
946static inline int ipmi_si_is_busy(struct timespec *ts)
947{
948 return ts->tv_nsec != -1;
949}
950
951static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
952 const struct smi_info *smi_info,
953 struct timespec *busy_until)
954{
955 unsigned int max_busy_us = 0;
956
957 if (smi_info->si_num < num_max_busy_us)
958 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
959 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
960 ipmi_si_set_not_busy(busy_until);
961 else if (!ipmi_si_is_busy(busy_until)) {
962 ktime_get_ts(busy_until);
963 timespec_add_ns(busy_until, max_busy_us * NSEC_PER_USEC);
964 } else {
965 struct timespec now;
966
967 ktime_get_ts(&now);
968 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
969 ipmi_si_set_not_busy(busy_until);
970 return false;
971 }
972 }
973 return true;
974}
975
976
977/*
978 * A busy-waiting loop for speeding up IPMI operation.
979 *
980 * Lousy hardware makes this hard. This is only enabled for systems
981 * that are not BT and do not have interrupts. It starts spinning
982 * when an operation is complete or until max_busy tells it to stop
983 * (if that is enabled). See the paragraph on kimid_max_busy_us in
984 * Documentation/IPMI.txt for details.
985 */
986static int ipmi_thread(void *data)
987{
988 struct smi_info *smi_info = data;
989 unsigned long flags;
990 enum si_sm_result smi_result;
991 struct timespec busy_until = { 0, 0 };
992
993 ipmi_si_set_not_busy(&busy_until);
994 set_user_nice(current, MAX_NICE);
995 while (!kthread_should_stop()) {
996 int busy_wait;
997
998 spin_lock_irqsave(&(smi_info->si_lock), flags);
999 smi_result = smi_event_handler(smi_info, 0);
1000
1001 /*
1002 * If the driver is doing something, there is a possible
1003 * race with the timer. If the timer handler see idle,
1004 * and the thread here sees something else, the timer
1005 * handler won't restart the timer even though it is
1006 * required. So start it here if necessary.
1007 */
1008 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1009 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1010
1011 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1012 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1013 &busy_until);
1014 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1015 ; /* do nothing */
1016 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1017 /*
1018 * In maintenance mode we run as fast as
1019 * possible to allow firmware updates to
1020 * complete as fast as possible, but normally
1021 * don't bang on the scheduler.
1022 */
1023 if (smi_info->in_maintenance_mode)
1024 schedule();
1025 else
1026 usleep_range(100, 200);
1027 } else if (smi_result == SI_SM_IDLE) {
1028 if (atomic_read(&smi_info->need_watch)) {
1029 schedule_timeout_interruptible(100);
1030 } else {
1031 /* Wait to be woken up when we are needed. */
1032 __set_current_state(TASK_INTERRUPTIBLE);
1033 schedule();
1034 }
1035 } else {
1036 schedule_timeout_interruptible(1);
1037 }
1038 }
1039 return 0;
1040}
1041
1042
1043static void poll(void *send_info)
1044{
1045 struct smi_info *smi_info = send_info;
1046 unsigned long flags = 0;
1047 bool run_to_completion = smi_info->run_to_completion;
1048
1049 /*
1050 * Make sure there is some delay in the poll loop so we can
1051 * drive time forward and timeout things.
1052 */
1053 udelay(10);
1054 if (!run_to_completion)
1055 spin_lock_irqsave(&smi_info->si_lock, flags);
1056 smi_event_handler(smi_info, 10);
1057 if (!run_to_completion)
1058 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1059}
1060
1061static void request_events(void *send_info)
1062{
1063 struct smi_info *smi_info = send_info;
1064
1065 if (!smi_info->has_event_buffer)
1066 return;
1067
1068 atomic_set(&smi_info->req_events, 1);
1069}
1070
1071static void set_need_watch(void *send_info, unsigned int watch_mask)
1072{
1073 struct smi_info *smi_info = send_info;
1074 unsigned long flags;
1075 int enable;
1076
1077 enable = !!watch_mask;
1078
1079 atomic_set(&smi_info->need_watch, enable);
1080 spin_lock_irqsave(&smi_info->si_lock, flags);
1081 check_start_timer_thread(smi_info);
1082 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1083}
1084
1085static void smi_timeout(struct timer_list *t)
1086{
1087 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1088 enum si_sm_result smi_result;
1089 unsigned long flags;
1090 unsigned long jiffies_now;
1091 long time_diff;
1092 long timeout;
1093
1094 spin_lock_irqsave(&(smi_info->si_lock), flags);
1095 debug_timestamp("Timer");
1096
1097 jiffies_now = jiffies;
1098 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1099 * SI_USEC_PER_JIFFY);
1100 smi_result = smi_event_handler(smi_info, time_diff);
1101
1102 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1103 /* Running with interrupts, only do long timeouts. */
1104 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1105 smi_inc_stat(smi_info, long_timeouts);
1106 goto do_mod_timer;
1107 }
1108
1109 /*
1110 * If the state machine asks for a short delay, then shorten
1111 * the timer timeout.
1112 */
1113 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1114 smi_inc_stat(smi_info, short_timeouts);
1115 timeout = jiffies + 1;
1116 } else {
1117 smi_inc_stat(smi_info, long_timeouts);
1118 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1119 }
1120
1121do_mod_timer:
1122 if (smi_result != SI_SM_IDLE)
1123 smi_mod_timer(smi_info, timeout);
1124 else
1125 smi_info->timer_running = false;
1126 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1127}
1128
1129irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1130{
1131 struct smi_info *smi_info = data;
1132 unsigned long flags;
1133
1134 if (smi_info->io.si_type == SI_BT)
1135 /* We need to clear the IRQ flag for the BT interface. */
1136 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1137 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1138 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1139
1140 spin_lock_irqsave(&(smi_info->si_lock), flags);
1141
1142 smi_inc_stat(smi_info, interrupts);
1143
1144 debug_timestamp("Interrupt");
1145
1146 smi_event_handler(smi_info, 0);
1147 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1148 return IRQ_HANDLED;
1149}
1150
1151static int smi_start_processing(void *send_info,
1152 struct ipmi_smi *intf)
1153{
1154 struct smi_info *new_smi = send_info;
1155 int enable = 0;
1156
1157 new_smi->intf = intf;
1158
1159 /* Set up the timer that drives the interface. */
1160 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1161 new_smi->timer_can_start = true;
1162 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1163
1164 /* Try to claim any interrupts. */
1165 if (new_smi->io.irq_setup) {
1166 new_smi->io.irq_handler_data = new_smi;
1167 new_smi->io.irq_setup(&new_smi->io);
1168 }
1169
1170 /*
1171 * Check if the user forcefully enabled the daemon.
1172 */
1173 if (new_smi->si_num < num_force_kipmid)
1174 enable = force_kipmid[new_smi->si_num];
1175 /*
1176 * The BT interface is efficient enough to not need a thread,
1177 * and there is no need for a thread if we have interrupts.
1178 */
1179 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1180 enable = 1;
1181
1182 if (enable) {
1183 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1184 "kipmi%d", new_smi->si_num);
1185 if (IS_ERR(new_smi->thread)) {
1186 dev_notice(new_smi->io.dev, "Could not start"
1187 " kernel thread due to error %ld, only using"
1188 " timers to drive the interface\n",
1189 PTR_ERR(new_smi->thread));
1190 new_smi->thread = NULL;
1191 }
1192 }
1193
1194 return 0;
1195}
1196
1197static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1198{
1199 struct smi_info *smi = send_info;
1200
1201 data->addr_src = smi->io.addr_source;
1202 data->dev = smi->io.dev;
1203 data->addr_info = smi->io.addr_info;
1204 get_device(smi->io.dev);
1205
1206 return 0;
1207}
1208
1209static void set_maintenance_mode(void *send_info, bool enable)
1210{
1211 struct smi_info *smi_info = send_info;
1212
1213 if (!enable)
1214 atomic_set(&smi_info->req_events, 0);
1215 smi_info->in_maintenance_mode = enable;
1216}
1217
1218static void shutdown_smi(void *send_info);
1219static const struct ipmi_smi_handlers handlers = {
1220 .owner = THIS_MODULE,
1221 .start_processing = smi_start_processing,
1222 .shutdown = shutdown_smi,
1223 .get_smi_info = get_smi_info,
1224 .sender = sender,
1225 .request_events = request_events,
1226 .set_need_watch = set_need_watch,
1227 .set_maintenance_mode = set_maintenance_mode,
1228 .set_run_to_completion = set_run_to_completion,
1229 .flush_messages = flush_messages,
1230 .poll = poll,
1231};
1232
1233static LIST_HEAD(smi_infos);
1234static DEFINE_MUTEX(smi_infos_lock);
1235static int smi_num; /* Used to sequence the SMIs */
1236
1237static const char * const addr_space_to_str[] = { "i/o", "mem" };
1238
1239module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1240MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1241 " disabled(0). Normally the IPMI driver auto-detects"
1242 " this, but the value may be overridden by this parm.");
1243module_param(unload_when_empty, bool, 0);
1244MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1245 " specified or found, default is 1. Setting to 0"
1246 " is useful for hot add of devices using hotmod.");
1247module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1248MODULE_PARM_DESC(kipmid_max_busy_us,
1249 "Max time (in microseconds) to busy-wait for IPMI data before"
1250 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1251 " if kipmid is using up a lot of CPU time.");
1252
1253void ipmi_irq_finish_setup(struct si_sm_io *io)
1254{
1255 if (io->si_type == SI_BT)
1256 /* Enable the interrupt in the BT interface. */
1257 io->outputb(io, IPMI_BT_INTMASK_REG,
1258 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1259}
1260
1261void ipmi_irq_start_cleanup(struct si_sm_io *io)
1262{
1263 if (io->si_type == SI_BT)
1264 /* Disable the interrupt in the BT interface. */
1265 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1266}
1267
1268static void std_irq_cleanup(struct si_sm_io *io)
1269{
1270 ipmi_irq_start_cleanup(io);
1271 free_irq(io->irq, io->irq_handler_data);
1272}
1273
1274int ipmi_std_irq_setup(struct si_sm_io *io)
1275{
1276 int rv;
1277
1278 if (!io->irq)
1279 return 0;
1280
1281 rv = request_irq(io->irq,
1282 ipmi_si_irq_handler,
1283 IRQF_SHARED,
1284 SI_DEVICE_NAME,
1285 io->irq_handler_data);
1286 if (rv) {
1287 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1288 " running polled\n",
1289 SI_DEVICE_NAME, io->irq);
1290 io->irq = 0;
1291 } else {
1292 io->irq_cleanup = std_irq_cleanup;
1293 ipmi_irq_finish_setup(io);
1294 dev_info(io->dev, "Using irq %d\n", io->irq);
1295 }
1296
1297 return rv;
1298}
1299
1300static int wait_for_msg_done(struct smi_info *smi_info)
1301{
1302 enum si_sm_result smi_result;
1303
1304 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1305 for (;;) {
1306 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1307 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1308 schedule_timeout_uninterruptible(1);
1309 smi_result = smi_info->handlers->event(
1310 smi_info->si_sm, jiffies_to_usecs(1));
1311 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1312 smi_result = smi_info->handlers->event(
1313 smi_info->si_sm, 0);
1314 } else
1315 break;
1316 }
1317 if (smi_result == SI_SM_HOSED)
1318 /*
1319 * We couldn't get the state machine to run, so whatever's at
1320 * the port is probably not an IPMI SMI interface.
1321 */
1322 return -ENODEV;
1323
1324 return 0;
1325}
1326
1327static int try_get_dev_id(struct smi_info *smi_info)
1328{
1329 unsigned char msg[2];
1330 unsigned char *resp;
1331 unsigned long resp_len;
1332 int rv = 0;
1333
1334 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1335 if (!resp)
1336 return -ENOMEM;
1337
1338 /*
1339 * Do a Get Device ID command, since it comes back with some
1340 * useful info.
1341 */
1342 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1343 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1344 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1345
1346 rv = wait_for_msg_done(smi_info);
1347 if (rv)
1348 goto out;
1349
1350 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1351 resp, IPMI_MAX_MSG_LENGTH);
1352
1353 /* Check and record info from the get device id, in case we need it. */
1354 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1355 resp + 2, resp_len - 2, &smi_info->device_id);
1356
1357out:
1358 kfree(resp);
1359 return rv;
1360}
1361
1362static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1363{
1364 unsigned char msg[3];
1365 unsigned char *resp;
1366 unsigned long resp_len;
1367 int rv;
1368
1369 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1370 if (!resp)
1371 return -ENOMEM;
1372
1373 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1374 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1375 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1376
1377 rv = wait_for_msg_done(smi_info);
1378 if (rv) {
1379 dev_warn(smi_info->io.dev,
1380 "Error getting response from get global enables command: %d\n",
1381 rv);
1382 goto out;
1383 }
1384
1385 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1386 resp, IPMI_MAX_MSG_LENGTH);
1387
1388 if (resp_len < 4 ||
1389 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1390 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1391 resp[2] != 0) {
1392 dev_warn(smi_info->io.dev,
1393 "Invalid return from get global enables command: %ld %x %x %x\n",
1394 resp_len, resp[0], resp[1], resp[2]);
1395 rv = -EINVAL;
1396 goto out;
1397 } else {
1398 *enables = resp[3];
1399 }
1400
1401out:
1402 kfree(resp);
1403 return rv;
1404}
1405
1406/*
1407 * Returns 1 if it gets an error from the command.
1408 */
1409static int set_global_enables(struct smi_info *smi_info, u8 enables)
1410{
1411 unsigned char msg[3];
1412 unsigned char *resp;
1413 unsigned long resp_len;
1414 int rv;
1415
1416 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1417 if (!resp)
1418 return -ENOMEM;
1419
1420 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1421 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1422 msg[2] = enables;
1423 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1424
1425 rv = wait_for_msg_done(smi_info);
1426 if (rv) {
1427 dev_warn(smi_info->io.dev,
1428 "Error getting response from set global enables command: %d\n",
1429 rv);
1430 goto out;
1431 }
1432
1433 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1434 resp, IPMI_MAX_MSG_LENGTH);
1435
1436 if (resp_len < 3 ||
1437 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1438 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1439 dev_warn(smi_info->io.dev,
1440 "Invalid return from set global enables command: %ld %x %x\n",
1441 resp_len, resp[0], resp[1]);
1442 rv = -EINVAL;
1443 goto out;
1444 }
1445
1446 if (resp[2] != 0)
1447 rv = 1;
1448
1449out:
1450 kfree(resp);
1451 return rv;
1452}
1453
1454/*
1455 * Some BMCs do not support clearing the receive irq bit in the global
1456 * enables (even if they don't support interrupts on the BMC). Check
1457 * for this and handle it properly.
1458 */
1459static void check_clr_rcv_irq(struct smi_info *smi_info)
1460{
1461 u8 enables = 0;
1462 int rv;
1463
1464 rv = get_global_enables(smi_info, &enables);
1465 if (!rv) {
1466 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1467 /* Already clear, should work ok. */
1468 return;
1469
1470 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1471 rv = set_global_enables(smi_info, enables);
1472 }
1473
1474 if (rv < 0) {
1475 dev_err(smi_info->io.dev,
1476 "Cannot check clearing the rcv irq: %d\n", rv);
1477 return;
1478 }
1479
1480 if (rv) {
1481 /*
1482 * An error when setting the event buffer bit means
1483 * clearing the bit is not supported.
1484 */
1485 dev_warn(smi_info->io.dev,
1486 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1487 smi_info->cannot_disable_irq = true;
1488 }
1489}
1490
1491/*
1492 * Some BMCs do not support setting the interrupt bits in the global
1493 * enables even if they support interrupts. Clearly bad, but we can
1494 * compensate.
1495 */
1496static void check_set_rcv_irq(struct smi_info *smi_info)
1497{
1498 u8 enables = 0;
1499 int rv;
1500
1501 if (!smi_info->io.irq)
1502 return;
1503
1504 rv = get_global_enables(smi_info, &enables);
1505 if (!rv) {
1506 enables |= IPMI_BMC_RCV_MSG_INTR;
1507 rv = set_global_enables(smi_info, enables);
1508 }
1509
1510 if (rv < 0) {
1511 dev_err(smi_info->io.dev,
1512 "Cannot check setting the rcv irq: %d\n", rv);
1513 return;
1514 }
1515
1516 if (rv) {
1517 /*
1518 * An error when setting the event buffer bit means
1519 * setting the bit is not supported.
1520 */
1521 dev_warn(smi_info->io.dev,
1522 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1523 smi_info->cannot_disable_irq = true;
1524 smi_info->irq_enable_broken = true;
1525 }
1526}
1527
1528static int try_enable_event_buffer(struct smi_info *smi_info)
1529{
1530 unsigned char msg[3];
1531 unsigned char *resp;
1532 unsigned long resp_len;
1533 int rv = 0;
1534
1535 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1536 if (!resp)
1537 return -ENOMEM;
1538
1539 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1540 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1541 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1542
1543 rv = wait_for_msg_done(smi_info);
1544 if (rv) {
1545 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1546 goto out;
1547 }
1548
1549 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1550 resp, IPMI_MAX_MSG_LENGTH);
1551
1552 if (resp_len < 4 ||
1553 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1554 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1555 resp[2] != 0) {
1556 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1557 rv = -EINVAL;
1558 goto out;
1559 }
1560
1561 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1562 /* buffer is already enabled, nothing to do. */
1563 smi_info->supports_event_msg_buff = true;
1564 goto out;
1565 }
1566
1567 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1568 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1569 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1570 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1571
1572 rv = wait_for_msg_done(smi_info);
1573 if (rv) {
1574 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1575 goto out;
1576 }
1577
1578 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1579 resp, IPMI_MAX_MSG_LENGTH);
1580
1581 if (resp_len < 3 ||
1582 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1583 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1584 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1585 rv = -EINVAL;
1586 goto out;
1587 }
1588
1589 if (resp[2] != 0)
1590 /*
1591 * An error when setting the event buffer bit means
1592 * that the event buffer is not supported.
1593 */
1594 rv = -ENOENT;
1595 else
1596 smi_info->supports_event_msg_buff = true;
1597
1598out:
1599 kfree(resp);
1600 return rv;
1601}
1602
1603#define IPMI_SI_ATTR(name) \
1604static ssize_t name##_show(struct device *dev, \
1605 struct device_attribute *attr, \
1606 char *buf) \
1607{ \
1608 struct smi_info *smi_info = dev_get_drvdata(dev); \
1609 \
1610 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1611} \
1612static DEVICE_ATTR(name, 0444, name##_show, NULL)
1613
1614static ssize_t type_show(struct device *dev,
1615 struct device_attribute *attr,
1616 char *buf)
1617{
1618 struct smi_info *smi_info = dev_get_drvdata(dev);
1619
1620 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1621}
1622static DEVICE_ATTR(type, 0444, type_show, NULL);
1623
1624static ssize_t interrupts_enabled_show(struct device *dev,
1625 struct device_attribute *attr,
1626 char *buf)
1627{
1628 struct smi_info *smi_info = dev_get_drvdata(dev);
1629 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1630
1631 return snprintf(buf, 10, "%d\n", enabled);
1632}
1633static DEVICE_ATTR(interrupts_enabled, 0444,
1634 interrupts_enabled_show, NULL);
1635
1636IPMI_SI_ATTR(short_timeouts);
1637IPMI_SI_ATTR(long_timeouts);
1638IPMI_SI_ATTR(idles);
1639IPMI_SI_ATTR(interrupts);
1640IPMI_SI_ATTR(attentions);
1641IPMI_SI_ATTR(flag_fetches);
1642IPMI_SI_ATTR(hosed_count);
1643IPMI_SI_ATTR(complete_transactions);
1644IPMI_SI_ATTR(events);
1645IPMI_SI_ATTR(watchdog_pretimeouts);
1646IPMI_SI_ATTR(incoming_messages);
1647
1648static ssize_t params_show(struct device *dev,
1649 struct device_attribute *attr,
1650 char *buf)
1651{
1652 struct smi_info *smi_info = dev_get_drvdata(dev);
1653
1654 return snprintf(buf, 200,
1655 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1656 si_to_str[smi_info->io.si_type],
1657 addr_space_to_str[smi_info->io.addr_space],
1658 smi_info->io.addr_data,
1659 smi_info->io.regspacing,
1660 smi_info->io.regsize,
1661 smi_info->io.regshift,
1662 smi_info->io.irq,
1663 smi_info->io.slave_addr);
1664}
1665static DEVICE_ATTR(params, 0444, params_show, NULL);
1666
1667static struct attribute *ipmi_si_dev_attrs[] = {
1668 &dev_attr_type.attr,
1669 &dev_attr_interrupts_enabled.attr,
1670 &dev_attr_short_timeouts.attr,
1671 &dev_attr_long_timeouts.attr,
1672 &dev_attr_idles.attr,
1673 &dev_attr_interrupts.attr,
1674 &dev_attr_attentions.attr,
1675 &dev_attr_flag_fetches.attr,
1676 &dev_attr_hosed_count.attr,
1677 &dev_attr_complete_transactions.attr,
1678 &dev_attr_events.attr,
1679 &dev_attr_watchdog_pretimeouts.attr,
1680 &dev_attr_incoming_messages.attr,
1681 &dev_attr_params.attr,
1682 NULL
1683};
1684
1685static const struct attribute_group ipmi_si_dev_attr_group = {
1686 .attrs = ipmi_si_dev_attrs,
1687};
1688
1689/*
1690 * oem_data_avail_to_receive_msg_avail
1691 * @info - smi_info structure with msg_flags set
1692 *
1693 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1694 * Returns 1 indicating need to re-run handle_flags().
1695 */
1696static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1697{
1698 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1699 RECEIVE_MSG_AVAIL);
1700 return 1;
1701}
1702
1703/*
1704 * setup_dell_poweredge_oem_data_handler
1705 * @info - smi_info.device_id must be populated
1706 *
1707 * Systems that match, but have firmware version < 1.40 may assert
1708 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1709 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1710 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1711 * as RECEIVE_MSG_AVAIL instead.
1712 *
1713 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1714 * assert the OEM[012] bits, and if it did, the driver would have to
1715 * change to handle that properly, we don't actually check for the
1716 * firmware version.
1717 * Device ID = 0x20 BMC on PowerEdge 8G servers
1718 * Device Revision = 0x80
1719 * Firmware Revision1 = 0x01 BMC version 1.40
1720 * Firmware Revision2 = 0x40 BCD encoded
1721 * IPMI Version = 0x51 IPMI 1.5
1722 * Manufacturer ID = A2 02 00 Dell IANA
1723 *
1724 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1725 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1726 *
1727 */
1728#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1729#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1730#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1731#define DELL_IANA_MFR_ID 0x0002a2
1732static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1733{
1734 struct ipmi_device_id *id = &smi_info->device_id;
1735 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1736 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1737 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1738 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1739 smi_info->oem_data_avail_handler =
1740 oem_data_avail_to_receive_msg_avail;
1741 } else if (ipmi_version_major(id) < 1 ||
1742 (ipmi_version_major(id) == 1 &&
1743 ipmi_version_minor(id) < 5)) {
1744 smi_info->oem_data_avail_handler =
1745 oem_data_avail_to_receive_msg_avail;
1746 }
1747 }
1748}
1749
1750#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1751static void return_hosed_msg_badsize(struct smi_info *smi_info)
1752{
1753 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1754
1755 /* Make it a response */
1756 msg->rsp[0] = msg->data[0] | 4;
1757 msg->rsp[1] = msg->data[1];
1758 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1759 msg->rsp_size = 3;
1760 smi_info->curr_msg = NULL;
1761 deliver_recv_msg(smi_info, msg);
1762}
1763
1764/*
1765 * dell_poweredge_bt_xaction_handler
1766 * @info - smi_info.device_id must be populated
1767 *
1768 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1769 * not respond to a Get SDR command if the length of the data
1770 * requested is exactly 0x3A, which leads to command timeouts and no
1771 * data returned. This intercepts such commands, and causes userspace
1772 * callers to try again with a different-sized buffer, which succeeds.
1773 */
1774
1775#define STORAGE_NETFN 0x0A
1776#define STORAGE_CMD_GET_SDR 0x23
1777static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1778 unsigned long unused,
1779 void *in)
1780{
1781 struct smi_info *smi_info = in;
1782 unsigned char *data = smi_info->curr_msg->data;
1783 unsigned int size = smi_info->curr_msg->data_size;
1784 if (size >= 8 &&
1785 (data[0]>>2) == STORAGE_NETFN &&
1786 data[1] == STORAGE_CMD_GET_SDR &&
1787 data[7] == 0x3A) {
1788 return_hosed_msg_badsize(smi_info);
1789 return NOTIFY_STOP;
1790 }
1791 return NOTIFY_DONE;
1792}
1793
1794static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1795 .notifier_call = dell_poweredge_bt_xaction_handler,
1796};
1797
1798/*
1799 * setup_dell_poweredge_bt_xaction_handler
1800 * @info - smi_info.device_id must be filled in already
1801 *
1802 * Fills in smi_info.device_id.start_transaction_pre_hook
1803 * when we know what function to use there.
1804 */
1805static void
1806setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1807{
1808 struct ipmi_device_id *id = &smi_info->device_id;
1809 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1810 smi_info->io.si_type == SI_BT)
1811 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1812}
1813
1814/*
1815 * setup_oem_data_handler
1816 * @info - smi_info.device_id must be filled in already
1817 *
1818 * Fills in smi_info.device_id.oem_data_available_handler
1819 * when we know what function to use there.
1820 */
1821
1822static void setup_oem_data_handler(struct smi_info *smi_info)
1823{
1824 setup_dell_poweredge_oem_data_handler(smi_info);
1825}
1826
1827static void setup_xaction_handlers(struct smi_info *smi_info)
1828{
1829 setup_dell_poweredge_bt_xaction_handler(smi_info);
1830}
1831
1832static void check_for_broken_irqs(struct smi_info *smi_info)
1833{
1834 check_clr_rcv_irq(smi_info);
1835 check_set_rcv_irq(smi_info);
1836}
1837
1838static inline void stop_timer_and_thread(struct smi_info *smi_info)
1839{
1840 if (smi_info->thread != NULL) {
1841 kthread_stop(smi_info->thread);
1842 smi_info->thread = NULL;
1843 }
1844
1845 smi_info->timer_can_start = false;
1846 del_timer_sync(&smi_info->si_timer);
1847}
1848
1849static struct smi_info *find_dup_si(struct smi_info *info)
1850{
1851 struct smi_info *e;
1852
1853 list_for_each_entry(e, &smi_infos, link) {
1854 if (e->io.addr_space != info->io.addr_space)
1855 continue;
1856 if (e->io.addr_data == info->io.addr_data) {
1857 /*
1858 * This is a cheap hack, ACPI doesn't have a defined
1859 * slave address but SMBIOS does. Pick it up from
1860 * any source that has it available.
1861 */
1862 if (info->io.slave_addr && !e->io.slave_addr)
1863 e->io.slave_addr = info->io.slave_addr;
1864 return e;
1865 }
1866 }
1867
1868 return NULL;
1869}
1870
1871int ipmi_si_add_smi(struct si_sm_io *io)
1872{
1873 int rv = 0;
1874 struct smi_info *new_smi, *dup;
1875
1876 /*
1877 * If the user gave us a hard-coded device at the same
1878 * address, they presumably want us to use it and not what is
1879 * in the firmware.
1880 */
1881 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1882 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1883 dev_info(io->dev,
1884 "Hard-coded device at this address already exists");
1885 return -ENODEV;
1886 }
1887
1888 if (!io->io_setup) {
1889 if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1890 io->io_setup = ipmi_si_port_setup;
1891 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1892 io->io_setup = ipmi_si_mem_setup;
1893 } else {
1894 return -EINVAL;
1895 }
1896 }
1897
1898 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1899 if (!new_smi)
1900 return -ENOMEM;
1901 spin_lock_init(&new_smi->si_lock);
1902
1903 new_smi->io = *io;
1904
1905 mutex_lock(&smi_infos_lock);
1906 dup = find_dup_si(new_smi);
1907 if (dup) {
1908 if (new_smi->io.addr_source == SI_ACPI &&
1909 dup->io.addr_source == SI_SMBIOS) {
1910 /* We prefer ACPI over SMBIOS. */
1911 dev_info(dup->io.dev,
1912 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1913 si_to_str[new_smi->io.si_type]);
1914 cleanup_one_si(dup);
1915 } else {
1916 dev_info(new_smi->io.dev,
1917 "%s-specified %s state machine: duplicate\n",
1918 ipmi_addr_src_to_str(new_smi->io.addr_source),
1919 si_to_str[new_smi->io.si_type]);
1920 rv = -EBUSY;
1921 kfree(new_smi);
1922 goto out_err;
1923 }
1924 }
1925
1926 pr_info("Adding %s-specified %s state machine\n",
1927 ipmi_addr_src_to_str(new_smi->io.addr_source),
1928 si_to_str[new_smi->io.si_type]);
1929
1930 list_add_tail(&new_smi->link, &smi_infos);
1931
1932 if (initialized)
1933 rv = try_smi_init(new_smi);
1934out_err:
1935 mutex_unlock(&smi_infos_lock);
1936 return rv;
1937}
1938
1939/*
1940 * Try to start up an interface. Must be called with smi_infos_lock
1941 * held, primarily to keep smi_num consistent, we only one to do these
1942 * one at a time.
1943 */
1944static int try_smi_init(struct smi_info *new_smi)
1945{
1946 int rv = 0;
1947 int i;
1948
1949 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1950 ipmi_addr_src_to_str(new_smi->io.addr_source),
1951 si_to_str[new_smi->io.si_type],
1952 addr_space_to_str[new_smi->io.addr_space],
1953 new_smi->io.addr_data,
1954 new_smi->io.slave_addr, new_smi->io.irq);
1955
1956 switch (new_smi->io.si_type) {
1957 case SI_KCS:
1958 new_smi->handlers = &kcs_smi_handlers;
1959 break;
1960
1961 case SI_SMIC:
1962 new_smi->handlers = &smic_smi_handlers;
1963 break;
1964
1965 case SI_BT:
1966 new_smi->handlers = &bt_smi_handlers;
1967 break;
1968
1969 default:
1970 /* No support for anything else yet. */
1971 rv = -EIO;
1972 goto out_err;
1973 }
1974
1975 new_smi->si_num = smi_num;
1976
1977 /* Do this early so it's available for logs. */
1978 if (!new_smi->io.dev) {
1979 pr_err("IPMI interface added with no device\n");
1980 rv = EIO;
1981 goto out_err;
1982 }
1983
1984 /* Allocate the state machine's data and initialize it. */
1985 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1986 if (!new_smi->si_sm) {
1987 rv = -ENOMEM;
1988 goto out_err;
1989 }
1990 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1991 &new_smi->io);
1992
1993 /* Now that we know the I/O size, we can set up the I/O. */
1994 rv = new_smi->io.io_setup(&new_smi->io);
1995 if (rv) {
1996 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1997 goto out_err;
1998 }
1999
2000 /* Do low-level detection first. */
2001 if (new_smi->handlers->detect(new_smi->si_sm)) {
2002 if (new_smi->io.addr_source)
2003 dev_err(new_smi->io.dev,
2004 "Interface detection failed\n");
2005 rv = -ENODEV;
2006 goto out_err;
2007 }
2008
2009 /*
2010 * Attempt a get device id command. If it fails, we probably
2011 * don't have a BMC here.
2012 */
2013 rv = try_get_dev_id(new_smi);
2014 if (rv) {
2015 if (new_smi->io.addr_source)
2016 dev_err(new_smi->io.dev,
2017 "There appears to be no BMC at this location\n");
2018 goto out_err;
2019 }
2020
2021 setup_oem_data_handler(new_smi);
2022 setup_xaction_handlers(new_smi);
2023 check_for_broken_irqs(new_smi);
2024
2025 new_smi->waiting_msg = NULL;
2026 new_smi->curr_msg = NULL;
2027 atomic_set(&new_smi->req_events, 0);
2028 new_smi->run_to_completion = false;
2029 for (i = 0; i < SI_NUM_STATS; i++)
2030 atomic_set(&new_smi->stats[i], 0);
2031
2032 new_smi->interrupt_disabled = true;
2033 atomic_set(&new_smi->need_watch, 0);
2034
2035 rv = try_enable_event_buffer(new_smi);
2036 if (rv == 0)
2037 new_smi->has_event_buffer = true;
2038
2039 /*
2040 * Start clearing the flags before we enable interrupts or the
2041 * timer to avoid racing with the timer.
2042 */
2043 start_clear_flags(new_smi);
2044
2045 /*
2046 * IRQ is defined to be set when non-zero. req_events will
2047 * cause a global flags check that will enable interrupts.
2048 */
2049 if (new_smi->io.irq) {
2050 new_smi->interrupt_disabled = false;
2051 atomic_set(&new_smi->req_events, 1);
2052 }
2053
2054 dev_set_drvdata(new_smi->io.dev, new_smi);
2055 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2056 if (rv) {
2057 dev_err(new_smi->io.dev,
2058 "Unable to add device attributes: error %d\n",
2059 rv);
2060 goto out_err;
2061 }
2062 new_smi->dev_group_added = true;
2063
2064 rv = ipmi_register_smi(&handlers,
2065 new_smi,
2066 new_smi->io.dev,
2067 new_smi->io.slave_addr);
2068 if (rv) {
2069 dev_err(new_smi->io.dev,
2070 "Unable to register device: error %d\n",
2071 rv);
2072 goto out_err;
2073 }
2074
2075 /* Don't increment till we know we have succeeded. */
2076 smi_num++;
2077
2078 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2079 si_to_str[new_smi->io.si_type]);
2080
2081 WARN_ON(new_smi->io.dev->init_name != NULL);
2082
2083 out_err:
2084 if (rv && new_smi->io.io_cleanup) {
2085 new_smi->io.io_cleanup(&new_smi->io);
2086 new_smi->io.io_cleanup = NULL;
2087 }
2088
2089 return rv;
2090}
2091
2092static int __init init_ipmi_si(void)
2093{
2094 struct smi_info *e;
2095 enum ipmi_addr_src type = SI_INVALID;
2096
2097 if (initialized)
2098 return 0;
2099
2100 ipmi_hardcode_init();
2101
2102 pr_info("IPMI System Interface driver\n");
2103
2104 ipmi_si_platform_init();
2105
2106 ipmi_si_pci_init();
2107
2108 ipmi_si_parisc_init();
2109
2110 /* We prefer devices with interrupts, but in the case of a machine
2111 with multiple BMCs we assume that there will be several instances
2112 of a given type so if we succeed in registering a type then also
2113 try to register everything else of the same type */
2114 mutex_lock(&smi_infos_lock);
2115 list_for_each_entry(e, &smi_infos, link) {
2116 /* Try to register a device if it has an IRQ and we either
2117 haven't successfully registered a device yet or this
2118 device has the same type as one we successfully registered */
2119 if (e->io.irq && (!type || e->io.addr_source == type)) {
2120 if (!try_smi_init(e)) {
2121 type = e->io.addr_source;
2122 }
2123 }
2124 }
2125
2126 /* type will only have been set if we successfully registered an si */
2127 if (type)
2128 goto skip_fallback_noirq;
2129
2130 /* Fall back to the preferred device */
2131
2132 list_for_each_entry(e, &smi_infos, link) {
2133 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2134 if (!try_smi_init(e)) {
2135 type = e->io.addr_source;
2136 }
2137 }
2138 }
2139
2140skip_fallback_noirq:
2141 initialized = true;
2142 mutex_unlock(&smi_infos_lock);
2143
2144 if (type)
2145 return 0;
2146
2147 mutex_lock(&smi_infos_lock);
2148 if (unload_when_empty && list_empty(&smi_infos)) {
2149 mutex_unlock(&smi_infos_lock);
2150 cleanup_ipmi_si();
2151 pr_warn("Unable to find any System Interface(s)\n");
2152 return -ENODEV;
2153 } else {
2154 mutex_unlock(&smi_infos_lock);
2155 return 0;
2156 }
2157}
2158module_init(init_ipmi_si);
2159
2160static void shutdown_smi(void *send_info)
2161{
2162 struct smi_info *smi_info = send_info;
2163
2164 if (smi_info->dev_group_added) {
2165 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2166 smi_info->dev_group_added = false;
2167 }
2168 if (smi_info->io.dev)
2169 dev_set_drvdata(smi_info->io.dev, NULL);
2170
2171 /*
2172 * Make sure that interrupts, the timer and the thread are
2173 * stopped and will not run again.
2174 */
2175 smi_info->interrupt_disabled = true;
2176 if (smi_info->io.irq_cleanup) {
2177 smi_info->io.irq_cleanup(&smi_info->io);
2178 smi_info->io.irq_cleanup = NULL;
2179 }
2180 stop_timer_and_thread(smi_info);
2181
2182 /*
2183 * Wait until we know that we are out of any interrupt
2184 * handlers might have been running before we freed the
2185 * interrupt.
2186 */
2187 synchronize_rcu();
2188
2189 /*
2190 * Timeouts are stopped, now make sure the interrupts are off
2191 * in the BMC. Note that timers and CPU interrupts are off,
2192 * so no need for locks.
2193 */
2194 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2195 poll(smi_info);
2196 schedule_timeout_uninterruptible(1);
2197 }
2198 if (smi_info->handlers)
2199 disable_si_irq(smi_info);
2200 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2201 poll(smi_info);
2202 schedule_timeout_uninterruptible(1);
2203 }
2204 if (smi_info->handlers)
2205 smi_info->handlers->cleanup(smi_info->si_sm);
2206
2207 if (smi_info->io.addr_source_cleanup) {
2208 smi_info->io.addr_source_cleanup(&smi_info->io);
2209 smi_info->io.addr_source_cleanup = NULL;
2210 }
2211 if (smi_info->io.io_cleanup) {
2212 smi_info->io.io_cleanup(&smi_info->io);
2213 smi_info->io.io_cleanup = NULL;
2214 }
2215
2216 kfree(smi_info->si_sm);
2217 smi_info->si_sm = NULL;
2218
2219 smi_info->intf = NULL;
2220}
2221
2222/*
2223 * Must be called with smi_infos_lock held, to serialize the
2224 * smi_info->intf check.
2225 */
2226static void cleanup_one_si(struct smi_info *smi_info)
2227{
2228 if (!smi_info)
2229 return;
2230
2231 list_del(&smi_info->link);
2232
2233 if (smi_info->intf)
2234 ipmi_unregister_smi(smi_info->intf);
2235
2236 kfree(smi_info);
2237}
2238
2239int ipmi_si_remove_by_dev(struct device *dev)
2240{
2241 struct smi_info *e;
2242 int rv = -ENOENT;
2243
2244 mutex_lock(&smi_infos_lock);
2245 list_for_each_entry(e, &smi_infos, link) {
2246 if (e->io.dev == dev) {
2247 cleanup_one_si(e);
2248 rv = 0;
2249 break;
2250 }
2251 }
2252 mutex_unlock(&smi_infos_lock);
2253
2254 return rv;
2255}
2256
2257struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2258 unsigned long addr)
2259{
2260 /* remove */
2261 struct smi_info *e, *tmp_e;
2262 struct device *dev = NULL;
2263
2264 mutex_lock(&smi_infos_lock);
2265 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2266 if (e->io.addr_space != addr_space)
2267 continue;
2268 if (e->io.si_type != si_type)
2269 continue;
2270 if (e->io.addr_data == addr) {
2271 dev = get_device(e->io.dev);
2272 cleanup_one_si(e);
2273 }
2274 }
2275 mutex_unlock(&smi_infos_lock);
2276
2277 return dev;
2278}
2279
2280static void cleanup_ipmi_si(void)
2281{
2282 struct smi_info *e, *tmp_e;
2283
2284 if (!initialized)
2285 return;
2286
2287 ipmi_si_pci_shutdown();
2288
2289 ipmi_si_parisc_shutdown();
2290
2291 ipmi_si_platform_shutdown();
2292
2293 mutex_lock(&smi_infos_lock);
2294 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2295 cleanup_one_si(e);
2296 mutex_unlock(&smi_infos_lock);
2297
2298 ipmi_si_hardcode_exit();
2299 ipmi_si_hotmod_exit();
2300}
2301module_exit(cleanup_ipmi_si);
2302
2303MODULE_ALIAS("platform:dmi-ipmi-si");
2304MODULE_LICENSE("GPL");
2305MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2306MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2307 " system interfaces.");