Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * acpi_pad.c ACPI Processor Aggregator Driver
  4 *
  5 * Copyright (c) 2009, Intel Corporation.
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/cpumask.h>
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/types.h>
 13#include <linux/kthread.h>
 14#include <uapi/linux/sched/types.h>
 15#include <linux/freezer.h>
 16#include <linux/cpu.h>
 17#include <linux/tick.h>
 18#include <linux/slab.h>
 19#include <linux/acpi.h>
 20#include <linux/perf_event.h>
 21#include <linux/platform_device.h>
 22#include <asm/mwait.h>
 23#include <xen/xen.h>
 24
 25#define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
 26#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
 27#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
 28static DEFINE_MUTEX(isolated_cpus_lock);
 29static DEFINE_MUTEX(round_robin_lock);
 30
 31static unsigned long power_saving_mwait_eax;
 32
 33static unsigned char tsc_detected_unstable;
 34static unsigned char tsc_marked_unstable;
 35
 36static void power_saving_mwait_init(void)
 37{
 38	unsigned int eax, ebx, ecx, edx;
 39	unsigned int highest_cstate = 0;
 40	unsigned int highest_subcstate = 0;
 41	int i;
 42
 43	if (!boot_cpu_has(X86_FEATURE_MWAIT))
 44		return;
 45	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 46		return;
 47
 48	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 49
 50	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
 51	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
 52		return;
 53
 54	edx >>= MWAIT_SUBSTATE_SIZE;
 55	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
 56		if (edx & MWAIT_SUBSTATE_MASK) {
 57			highest_cstate = i;
 58			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
 59		}
 60	}
 61	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
 62		(highest_subcstate - 1);
 63
 64#if defined(CONFIG_X86)
 65	switch (boot_cpu_data.x86_vendor) {
 66	case X86_VENDOR_HYGON:
 67	case X86_VENDOR_AMD:
 68	case X86_VENDOR_INTEL:
 69	case X86_VENDOR_ZHAOXIN:
 70	case X86_VENDOR_CENTAUR:
 71		/*
 72		 * AMD Fam10h TSC will tick in all
 73		 * C/P/S0/S1 states when this bit is set.
 74		 */
 75		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 76			tsc_detected_unstable = 1;
 77		break;
 78	default:
 79		/* TSC could halt in idle */
 80		tsc_detected_unstable = 1;
 81	}
 82#endif
 83}
 84
 85static unsigned long cpu_weight[NR_CPUS];
 86static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
 87static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
 88static void round_robin_cpu(unsigned int tsk_index)
 89{
 90	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
 91	cpumask_var_t tmp;
 92	int cpu;
 93	unsigned long min_weight = -1;
 94	unsigned long preferred_cpu;
 95
 96	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 97		return;
 98
 99	mutex_lock(&round_robin_lock);
100	cpumask_clear(tmp);
101	for_each_cpu(cpu, pad_busy_cpus)
102		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
103	cpumask_andnot(tmp, cpu_online_mask, tmp);
104	/* avoid HT siblings if possible */
105	if (cpumask_empty(tmp))
106		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
107	if (cpumask_empty(tmp)) {
108		mutex_unlock(&round_robin_lock);
109		free_cpumask_var(tmp);
110		return;
111	}
112	for_each_cpu(cpu, tmp) {
113		if (cpu_weight[cpu] < min_weight) {
114			min_weight = cpu_weight[cpu];
115			preferred_cpu = cpu;
116		}
117	}
118
119	if (tsk_in_cpu[tsk_index] != -1)
120		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
121	tsk_in_cpu[tsk_index] = preferred_cpu;
122	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
123	cpu_weight[preferred_cpu]++;
124	mutex_unlock(&round_robin_lock);
125
126	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
127
128	free_cpumask_var(tmp);
129}
130
131static void exit_round_robin(unsigned int tsk_index)
132{
133	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
134
135	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136	tsk_in_cpu[tsk_index] = -1;
137}
138
139static unsigned int idle_pct = 5; /* percentage */
140static unsigned int round_robin_time = 1; /* second */
141static int power_saving_thread(void *data)
142{
 
143	int do_sleep;
144	unsigned int tsk_index = (unsigned long)data;
145	u64 last_jiffies = 0;
146
147	sched_set_fifo_low(current);
148
149	while (!kthread_should_stop()) {
150		unsigned long expire_time;
151
152		/* round robin to cpus */
153		expire_time = last_jiffies + round_robin_time * HZ;
154		if (time_before(expire_time, jiffies)) {
155			last_jiffies = jiffies;
156			round_robin_cpu(tsk_index);
157		}
158
159		do_sleep = 0;
160
161		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
162
163		while (!need_resched()) {
164			if (tsc_detected_unstable && !tsc_marked_unstable) {
165				/* TSC could halt in idle, so notify users */
166				mark_tsc_unstable("TSC halts in idle");
167				tsc_marked_unstable = 1;
168			}
169			local_irq_disable();
170
171			perf_lopwr_cb(true);
172
173			tick_broadcast_enable();
174			tick_broadcast_enter();
175			stop_critical_timings();
176
177			mwait_idle_with_hints(power_saving_mwait_eax, 1);
178
179			start_critical_timings();
180			tick_broadcast_exit();
181
182			perf_lopwr_cb(false);
183
184			local_irq_enable();
185
186			if (time_before(expire_time, jiffies)) {
187				do_sleep = 1;
188				break;
189			}
190		}
191
192		/*
193		 * current sched_rt has threshold for rt task running time.
194		 * When a rt task uses 95% CPU time, the rt thread will be
195		 * scheduled out for 5% CPU time to not starve other tasks. But
196		 * the mechanism only works when all CPUs have RT task running,
197		 * as if one CPU hasn't RT task, RT task from other CPUs will
198		 * borrow CPU time from this CPU and cause RT task use > 95%
199		 * CPU time. To make 'avoid starvation' work, takes a nap here.
200		 */
201		if (unlikely(do_sleep))
202			schedule_timeout_killable(HZ * idle_pct / 100);
203
204		/* If an external event has set the need_resched flag, then
205		 * we need to deal with it, or this loop will continue to
206		 * spin without calling __mwait().
207		 */
208		if (unlikely(need_resched()))
209			schedule();
210	}
211
212	exit_round_robin(tsk_index);
213	return 0;
214}
215
216static struct task_struct *ps_tsks[NR_CPUS];
217static unsigned int ps_tsk_num;
218static int create_power_saving_task(void)
219{
220	int rc;
221
222	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
223		(void *)(unsigned long)ps_tsk_num,
224		"acpi_pad/%d", ps_tsk_num);
225
226	if (IS_ERR(ps_tsks[ps_tsk_num])) {
227		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
228		ps_tsks[ps_tsk_num] = NULL;
229	} else {
230		rc = 0;
231		ps_tsk_num++;
232	}
233
234	return rc;
235}
236
237static void destroy_power_saving_task(void)
238{
239	if (ps_tsk_num > 0) {
240		ps_tsk_num--;
241		kthread_stop(ps_tsks[ps_tsk_num]);
242		ps_tsks[ps_tsk_num] = NULL;
243	}
244}
245
246static void set_power_saving_task_num(unsigned int num)
247{
248	if (num > ps_tsk_num) {
249		while (ps_tsk_num < num) {
250			if (create_power_saving_task())
251				return;
252		}
253	} else if (num < ps_tsk_num) {
254		while (ps_tsk_num > num)
255			destroy_power_saving_task();
256	}
257}
258
259static void acpi_pad_idle_cpus(unsigned int num_cpus)
260{
261	cpus_read_lock();
262
263	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
264	set_power_saving_task_num(num_cpus);
265
266	cpus_read_unlock();
267}
268
269static uint32_t acpi_pad_idle_cpus_num(void)
270{
271	return ps_tsk_num;
272}
273
274static ssize_t rrtime_store(struct device *dev,
275	struct device_attribute *attr, const char *buf, size_t count)
276{
277	unsigned long num;
278
279	if (kstrtoul(buf, 0, &num))
280		return -EINVAL;
281	if (num < 1 || num >= 100)
282		return -EINVAL;
283	mutex_lock(&isolated_cpus_lock);
284	round_robin_time = num;
285	mutex_unlock(&isolated_cpus_lock);
286	return count;
287}
288
289static ssize_t rrtime_show(struct device *dev,
290	struct device_attribute *attr, char *buf)
291{
292	return sysfs_emit(buf, "%d\n", round_robin_time);
293}
294static DEVICE_ATTR_RW(rrtime);
 
 
295
296static ssize_t idlepct_store(struct device *dev,
297	struct device_attribute *attr, const char *buf, size_t count)
298{
299	unsigned long num;
300
301	if (kstrtoul(buf, 0, &num))
302		return -EINVAL;
303	if (num < 1 || num >= 100)
304		return -EINVAL;
305	mutex_lock(&isolated_cpus_lock);
306	idle_pct = num;
307	mutex_unlock(&isolated_cpus_lock);
308	return count;
309}
310
311static ssize_t idlepct_show(struct device *dev,
312	struct device_attribute *attr, char *buf)
313{
314	return sysfs_emit(buf, "%d\n", idle_pct);
315}
316static DEVICE_ATTR_RW(idlepct);
 
 
317
318static ssize_t idlecpus_store(struct device *dev,
319	struct device_attribute *attr, const char *buf, size_t count)
320{
321	unsigned long num;
322
323	if (kstrtoul(buf, 0, &num))
324		return -EINVAL;
325	mutex_lock(&isolated_cpus_lock);
326	acpi_pad_idle_cpus(num);
327	mutex_unlock(&isolated_cpus_lock);
328	return count;
329}
330
331static ssize_t idlecpus_show(struct device *dev,
332	struct device_attribute *attr, char *buf)
333{
334	return cpumap_print_to_pagebuf(false, buf,
335				       to_cpumask(pad_busy_cpus_bits));
336}
337
338static DEVICE_ATTR_RW(idlecpus);
 
 
339
340static struct attribute *acpi_pad_attrs[] = {
341	&dev_attr_idlecpus.attr,
342	&dev_attr_idlepct.attr,
343	&dev_attr_rrtime.attr,
344	NULL
345};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
347ATTRIBUTE_GROUPS(acpi_pad);
 
 
 
 
 
348
349/*
350 * Query firmware how many CPUs should be idle
351 * return -1 on failure
352 */
353static int acpi_pad_pur(acpi_handle handle)
354{
355	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356	union acpi_object *package;
357	int num = -1;
358
359	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
360		return num;
361
362	if (!buffer.length || !buffer.pointer)
363		return num;
364
365	package = buffer.pointer;
366
367	if (package->type == ACPI_TYPE_PACKAGE &&
368		package->package.count == 2 &&
369		package->package.elements[0].integer.value == 1) /* rev 1 */
370
371		num = package->package.elements[1].integer.value;
372
373	kfree(buffer.pointer);
374	return num;
375}
376
377static void acpi_pad_handle_notify(acpi_handle handle)
378{
379	int num_cpus;
380	uint32_t idle_cpus;
381	struct acpi_buffer param = {
382		.length = 4,
383		.pointer = (void *)&idle_cpus,
384	};
385
386	mutex_lock(&isolated_cpus_lock);
387	num_cpus = acpi_pad_pur(handle);
388	if (num_cpus < 0) {
389		mutex_unlock(&isolated_cpus_lock);
390		return;
391	}
392	acpi_pad_idle_cpus(num_cpus);
393	idle_cpus = acpi_pad_idle_cpus_num();
394	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
395	mutex_unlock(&isolated_cpus_lock);
396}
397
398static void acpi_pad_notify(acpi_handle handle, u32 event,
399	void *data)
400{
401	struct acpi_device *adev = data;
402
403	switch (event) {
404	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
405		acpi_pad_handle_notify(handle);
406		acpi_bus_generate_netlink_event(adev->pnp.device_class,
407			dev_name(&adev->dev), event, 0);
408		break;
409	default:
410		pr_warn("Unsupported event [0x%x]\n", event);
411		break;
412	}
413}
414
415static int acpi_pad_probe(struct platform_device *pdev)
416{
417	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
418	acpi_status status;
419
420	strcpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
421	strcpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
422
423	status = acpi_install_notify_handler(adev->handle,
424		ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
425
426	if (ACPI_FAILURE(status))
 
 
 
427		return -ENODEV;
 
428
429	return 0;
430}
431
432static void acpi_pad_remove(struct platform_device *pdev)
433{
434	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
435
436	mutex_lock(&isolated_cpus_lock);
437	acpi_pad_idle_cpus(0);
438	mutex_unlock(&isolated_cpus_lock);
439
440	acpi_remove_notify_handler(adev->handle,
441		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
 
 
442}
443
444static const struct acpi_device_id pad_device_ids[] = {
445	{"ACPI000C", 0},
446	{"", 0},
447};
448MODULE_DEVICE_TABLE(acpi, pad_device_ids);
449
450static struct platform_driver acpi_pad_driver = {
451	.probe = acpi_pad_probe,
452	.remove_new = acpi_pad_remove,
453	.driver = {
454		.dev_groups = acpi_pad_groups,
455		.name = "processor_aggregator",
456		.acpi_match_table = pad_device_ids,
457	},
458};
459
460static int __init acpi_pad_init(void)
461{
462	/* Xen ACPI PAD is used when running as Xen Dom0. */
463	if (xen_initial_domain())
464		return -ENODEV;
465
466	power_saving_mwait_init();
467	if (power_saving_mwait_eax == 0)
468		return -EINVAL;
469
470	return platform_driver_register(&acpi_pad_driver);
471}
472
473static void __exit acpi_pad_exit(void)
474{
475	platform_driver_unregister(&acpi_pad_driver);
476}
477
478module_init(acpi_pad_init);
479module_exit(acpi_pad_exit);
480MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
481MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
482MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * acpi_pad.c ACPI Processor Aggregator Driver
  4 *
  5 * Copyright (c) 2009, Intel Corporation.
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/cpumask.h>
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/types.h>
 13#include <linux/kthread.h>
 14#include <uapi/linux/sched/types.h>
 15#include <linux/freezer.h>
 16#include <linux/cpu.h>
 17#include <linux/tick.h>
 18#include <linux/slab.h>
 19#include <linux/acpi.h>
 
 
 20#include <asm/mwait.h>
 21#include <xen/xen.h>
 22
 23#define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
 24#define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
 25#define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
 26static DEFINE_MUTEX(isolated_cpus_lock);
 27static DEFINE_MUTEX(round_robin_lock);
 28
 29static unsigned long power_saving_mwait_eax;
 30
 31static unsigned char tsc_detected_unstable;
 32static unsigned char tsc_marked_unstable;
 33
 34static void power_saving_mwait_init(void)
 35{
 36	unsigned int eax, ebx, ecx, edx;
 37	unsigned int highest_cstate = 0;
 38	unsigned int highest_subcstate = 0;
 39	int i;
 40
 41	if (!boot_cpu_has(X86_FEATURE_MWAIT))
 42		return;
 43	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 44		return;
 45
 46	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 47
 48	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
 49	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
 50		return;
 51
 52	edx >>= MWAIT_SUBSTATE_SIZE;
 53	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
 54		if (edx & MWAIT_SUBSTATE_MASK) {
 55			highest_cstate = i;
 56			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
 57		}
 58	}
 59	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
 60		(highest_subcstate - 1);
 61
 62#if defined(CONFIG_X86)
 63	switch (boot_cpu_data.x86_vendor) {
 64	case X86_VENDOR_HYGON:
 65	case X86_VENDOR_AMD:
 66	case X86_VENDOR_INTEL:
 67	case X86_VENDOR_ZHAOXIN:
 
 68		/*
 69		 * AMD Fam10h TSC will tick in all
 70		 * C/P/S0/S1 states when this bit is set.
 71		 */
 72		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 73			tsc_detected_unstable = 1;
 74		break;
 75	default:
 76		/* TSC could halt in idle */
 77		tsc_detected_unstable = 1;
 78	}
 79#endif
 80}
 81
 82static unsigned long cpu_weight[NR_CPUS];
 83static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
 84static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
 85static void round_robin_cpu(unsigned int tsk_index)
 86{
 87	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
 88	cpumask_var_t tmp;
 89	int cpu;
 90	unsigned long min_weight = -1;
 91	unsigned long uninitialized_var(preferred_cpu);
 92
 93	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 94		return;
 95
 96	mutex_lock(&round_robin_lock);
 97	cpumask_clear(tmp);
 98	for_each_cpu(cpu, pad_busy_cpus)
 99		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100	cpumask_andnot(tmp, cpu_online_mask, tmp);
101	/* avoid HT sibilings if possible */
102	if (cpumask_empty(tmp))
103		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104	if (cpumask_empty(tmp)) {
105		mutex_unlock(&round_robin_lock);
106		free_cpumask_var(tmp);
107		return;
108	}
109	for_each_cpu(cpu, tmp) {
110		if (cpu_weight[cpu] < min_weight) {
111			min_weight = cpu_weight[cpu];
112			preferred_cpu = cpu;
113		}
114	}
115
116	if (tsk_in_cpu[tsk_index] != -1)
117		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118	tsk_in_cpu[tsk_index] = preferred_cpu;
119	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120	cpu_weight[preferred_cpu]++;
121	mutex_unlock(&round_robin_lock);
122
123	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124
125	free_cpumask_var(tmp);
126}
127
128static void exit_round_robin(unsigned int tsk_index)
129{
130	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
 
131	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132	tsk_in_cpu[tsk_index] = -1;
133}
134
135static unsigned int idle_pct = 5; /* percentage */
136static unsigned int round_robin_time = 1; /* second */
137static int power_saving_thread(void *data)
138{
139	struct sched_param param = {.sched_priority = 1};
140	int do_sleep;
141	unsigned int tsk_index = (unsigned long)data;
142	u64 last_jiffies = 0;
143
144	sched_setscheduler(current, SCHED_RR, &param);
145
146	while (!kthread_should_stop()) {
147		unsigned long expire_time;
148
149		/* round robin to cpus */
150		expire_time = last_jiffies + round_robin_time * HZ;
151		if (time_before(expire_time, jiffies)) {
152			last_jiffies = jiffies;
153			round_robin_cpu(tsk_index);
154		}
155
156		do_sleep = 0;
157
158		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
159
160		while (!need_resched()) {
161			if (tsc_detected_unstable && !tsc_marked_unstable) {
162				/* TSC could halt in idle, so notify users */
163				mark_tsc_unstable("TSC halts in idle");
164				tsc_marked_unstable = 1;
165			}
166			local_irq_disable();
 
 
 
167			tick_broadcast_enable();
168			tick_broadcast_enter();
169			stop_critical_timings();
170
171			mwait_idle_with_hints(power_saving_mwait_eax, 1);
172
173			start_critical_timings();
174			tick_broadcast_exit();
 
 
 
175			local_irq_enable();
176
177			if (time_before(expire_time, jiffies)) {
178				do_sleep = 1;
179				break;
180			}
181		}
182
183		/*
184		 * current sched_rt has threshold for rt task running time.
185		 * When a rt task uses 95% CPU time, the rt thread will be
186		 * scheduled out for 5% CPU time to not starve other tasks. But
187		 * the mechanism only works when all CPUs have RT task running,
188		 * as if one CPU hasn't RT task, RT task from other CPUs will
189		 * borrow CPU time from this CPU and cause RT task use > 95%
190		 * CPU time. To make 'avoid starvation' work, takes a nap here.
191		 */
192		if (unlikely(do_sleep))
193			schedule_timeout_killable(HZ * idle_pct / 100);
194
195		/* If an external event has set the need_resched flag, then
196		 * we need to deal with it, or this loop will continue to
197		 * spin without calling __mwait().
198		 */
199		if (unlikely(need_resched()))
200			schedule();
201	}
202
203	exit_round_robin(tsk_index);
204	return 0;
205}
206
207static struct task_struct *ps_tsks[NR_CPUS];
208static unsigned int ps_tsk_num;
209static int create_power_saving_task(void)
210{
211	int rc;
212
213	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
214		(void *)(unsigned long)ps_tsk_num,
215		"acpi_pad/%d", ps_tsk_num);
216
217	if (IS_ERR(ps_tsks[ps_tsk_num])) {
218		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
219		ps_tsks[ps_tsk_num] = NULL;
220	} else {
221		rc = 0;
222		ps_tsk_num++;
223	}
224
225	return rc;
226}
227
228static void destroy_power_saving_task(void)
229{
230	if (ps_tsk_num > 0) {
231		ps_tsk_num--;
232		kthread_stop(ps_tsks[ps_tsk_num]);
233		ps_tsks[ps_tsk_num] = NULL;
234	}
235}
236
237static void set_power_saving_task_num(unsigned int num)
238{
239	if (num > ps_tsk_num) {
240		while (ps_tsk_num < num) {
241			if (create_power_saving_task())
242				return;
243		}
244	} else if (num < ps_tsk_num) {
245		while (ps_tsk_num > num)
246			destroy_power_saving_task();
247	}
248}
249
250static void acpi_pad_idle_cpus(unsigned int num_cpus)
251{
252	get_online_cpus();
253
254	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
255	set_power_saving_task_num(num_cpus);
256
257	put_online_cpus();
258}
259
260static uint32_t acpi_pad_idle_cpus_num(void)
261{
262	return ps_tsk_num;
263}
264
265static ssize_t acpi_pad_rrtime_store(struct device *dev,
266	struct device_attribute *attr, const char *buf, size_t count)
267{
268	unsigned long num;
 
269	if (kstrtoul(buf, 0, &num))
270		return -EINVAL;
271	if (num < 1 || num >= 100)
272		return -EINVAL;
273	mutex_lock(&isolated_cpus_lock);
274	round_robin_time = num;
275	mutex_unlock(&isolated_cpus_lock);
276	return count;
277}
278
279static ssize_t acpi_pad_rrtime_show(struct device *dev,
280	struct device_attribute *attr, char *buf)
281{
282	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
283}
284static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
285	acpi_pad_rrtime_show,
286	acpi_pad_rrtime_store);
287
288static ssize_t acpi_pad_idlepct_store(struct device *dev,
289	struct device_attribute *attr, const char *buf, size_t count)
290{
291	unsigned long num;
 
292	if (kstrtoul(buf, 0, &num))
293		return -EINVAL;
294	if (num < 1 || num >= 100)
295		return -EINVAL;
296	mutex_lock(&isolated_cpus_lock);
297	idle_pct = num;
298	mutex_unlock(&isolated_cpus_lock);
299	return count;
300}
301
302static ssize_t acpi_pad_idlepct_show(struct device *dev,
303	struct device_attribute *attr, char *buf)
304{
305	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
306}
307static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
308	acpi_pad_idlepct_show,
309	acpi_pad_idlepct_store);
310
311static ssize_t acpi_pad_idlecpus_store(struct device *dev,
312	struct device_attribute *attr, const char *buf, size_t count)
313{
314	unsigned long num;
 
315	if (kstrtoul(buf, 0, &num))
316		return -EINVAL;
317	mutex_lock(&isolated_cpus_lock);
318	acpi_pad_idle_cpus(num);
319	mutex_unlock(&isolated_cpus_lock);
320	return count;
321}
322
323static ssize_t acpi_pad_idlecpus_show(struct device *dev,
324	struct device_attribute *attr, char *buf)
325{
326	return cpumap_print_to_pagebuf(false, buf,
327				       to_cpumask(pad_busy_cpus_bits));
328}
329
330static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
331	acpi_pad_idlecpus_show,
332	acpi_pad_idlecpus_store);
333
334static int acpi_pad_add_sysfs(struct acpi_device *device)
335{
336	int result;
337
338	result = device_create_file(&device->dev, &dev_attr_idlecpus);
339	if (result)
340		return -ENODEV;
341	result = device_create_file(&device->dev, &dev_attr_idlepct);
342	if (result) {
343		device_remove_file(&device->dev, &dev_attr_idlecpus);
344		return -ENODEV;
345	}
346	result = device_create_file(&device->dev, &dev_attr_rrtime);
347	if (result) {
348		device_remove_file(&device->dev, &dev_attr_idlecpus);
349		device_remove_file(&device->dev, &dev_attr_idlepct);
350		return -ENODEV;
351	}
352	return 0;
353}
354
355static void acpi_pad_remove_sysfs(struct acpi_device *device)
356{
357	device_remove_file(&device->dev, &dev_attr_idlecpus);
358	device_remove_file(&device->dev, &dev_attr_idlepct);
359	device_remove_file(&device->dev, &dev_attr_rrtime);
360}
361
362/*
363 * Query firmware how many CPUs should be idle
364 * return -1 on failure
365 */
366static int acpi_pad_pur(acpi_handle handle)
367{
368	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369	union acpi_object *package;
370	int num = -1;
371
372	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
373		return num;
374
375	if (!buffer.length || !buffer.pointer)
376		return num;
377
378	package = buffer.pointer;
379
380	if (package->type == ACPI_TYPE_PACKAGE &&
381		package->package.count == 2 &&
382		package->package.elements[0].integer.value == 1) /* rev 1 */
383
384		num = package->package.elements[1].integer.value;
385
386	kfree(buffer.pointer);
387	return num;
388}
389
390static void acpi_pad_handle_notify(acpi_handle handle)
391{
392	int num_cpus;
393	uint32_t idle_cpus;
394	struct acpi_buffer param = {
395		.length = 4,
396		.pointer = (void *)&idle_cpus,
397	};
398
399	mutex_lock(&isolated_cpus_lock);
400	num_cpus = acpi_pad_pur(handle);
401	if (num_cpus < 0) {
402		mutex_unlock(&isolated_cpus_lock);
403		return;
404	}
405	acpi_pad_idle_cpus(num_cpus);
406	idle_cpus = acpi_pad_idle_cpus_num();
407	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
408	mutex_unlock(&isolated_cpus_lock);
409}
410
411static void acpi_pad_notify(acpi_handle handle, u32 event,
412	void *data)
413{
414	struct acpi_device *device = data;
415
416	switch (event) {
417	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
418		acpi_pad_handle_notify(handle);
419		acpi_bus_generate_netlink_event(device->pnp.device_class,
420			dev_name(&device->dev), event, 0);
421		break;
422	default:
423		pr_warn("Unsupported event [0x%x]\n", event);
424		break;
425	}
426}
427
428static int acpi_pad_add(struct acpi_device *device)
429{
 
430	acpi_status status;
431
432	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434
435	if (acpi_pad_add_sysfs(device))
436		return -ENODEV;
437
438	status = acpi_install_notify_handler(device->handle,
439		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
440	if (ACPI_FAILURE(status)) {
441		acpi_pad_remove_sysfs(device);
442		return -ENODEV;
443	}
444
445	return 0;
446}
447
448static int acpi_pad_remove(struct acpi_device *device)
449{
 
 
450	mutex_lock(&isolated_cpus_lock);
451	acpi_pad_idle_cpus(0);
452	mutex_unlock(&isolated_cpus_lock);
453
454	acpi_remove_notify_handler(device->handle,
455		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
456	acpi_pad_remove_sysfs(device);
457	return 0;
458}
459
460static const struct acpi_device_id pad_device_ids[] = {
461	{"ACPI000C", 0},
462	{"", 0},
463};
464MODULE_DEVICE_TABLE(acpi, pad_device_ids);
465
466static struct acpi_driver acpi_pad_driver = {
467	.name = "processor_aggregator",
468	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
469	.ids = pad_device_ids,
470	.ops = {
471		.add = acpi_pad_add,
472		.remove = acpi_pad_remove,
473	},
474};
475
476static int __init acpi_pad_init(void)
477{
478	/* Xen ACPI PAD is used when running as Xen Dom0. */
479	if (xen_initial_domain())
480		return -ENODEV;
481
482	power_saving_mwait_init();
483	if (power_saving_mwait_eax == 0)
484		return -EINVAL;
485
486	return acpi_bus_register_driver(&acpi_pad_driver);
487}
488
489static void __exit acpi_pad_exit(void)
490{
491	acpi_bus_unregister_driver(&acpi_pad_driver);
492}
493
494module_init(acpi_pad_init);
495module_exit(acpi_pad_exit);
496MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
497MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
498MODULE_LICENSE("GPL");