Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Common code for 32 and 64-bit NUMA */
   3#include <linux/acpi.h>
   4#include <linux/kernel.h>
   5#include <linux/mm.h>
   6#include <linux/of.h>
   7#include <linux/string.h>
   8#include <linux/init.h>
   9#include <linux/memblock.h>
  10#include <linux/mmzone.h>
  11#include <linux/ctype.h>
  12#include <linux/nodemask.h>
  13#include <linux/sched.h>
  14#include <linux/topology.h>
  15#include <linux/sort.h>
  16
  17#include <asm/e820/api.h>
  18#include <asm/proto.h>
  19#include <asm/dma.h>
  20#include <asm/amd_nb.h>
  21
  22#include "numa_internal.h"
  23
  24int numa_off;
  25nodemask_t numa_nodes_parsed __initdata;
  26
  27struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  28EXPORT_SYMBOL(node_data);
  29
  30static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
  31static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
 
 
 
  32
  33static int numa_distance_cnt;
  34static u8 *numa_distance;
  35
  36static __init int numa_setup(char *opt)
  37{
  38	if (!opt)
  39		return -EINVAL;
  40	if (!strncmp(opt, "off", 3))
  41		numa_off = 1;
 
  42	if (!strncmp(opt, "fake=", 5))
  43		return numa_emu_cmdline(opt + 5);
 
 
  44	if (!strncmp(opt, "noacpi", 6))
  45		disable_srat();
  46	if (!strncmp(opt, "nohmat", 6))
  47		disable_hmat();
  48	return 0;
  49}
  50early_param("numa", numa_setup);
  51
  52/*
  53 * apicid, cpu, node mappings
  54 */
  55s16 __apicid_to_node[MAX_LOCAL_APIC] = {
  56	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  57};
  58
  59int numa_cpu_node(int cpu)
  60{
  61	u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
  62
  63	if (apicid != BAD_APICID)
  64		return __apicid_to_node[apicid];
  65	return NUMA_NO_NODE;
  66}
  67
  68cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  69EXPORT_SYMBOL(node_to_cpumask_map);
  70
  71/*
  72 * Map cpu index to node index
  73 */
  74DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  75EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  76
  77void numa_set_node(int cpu, int node)
  78{
  79	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  80
  81	/* early setting, no percpu area yet */
  82	if (cpu_to_node_map) {
  83		cpu_to_node_map[cpu] = node;
  84		return;
  85	}
  86
  87#ifdef CONFIG_DEBUG_PER_CPU_MAPS
  88	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  89		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  90		dump_stack();
  91		return;
  92	}
  93#endif
  94	per_cpu(x86_cpu_to_node_map, cpu) = node;
  95
  96	set_cpu_numa_node(cpu, node);
  97}
  98
  99void numa_clear_node(int cpu)
 100{
 101	numa_set_node(cpu, NUMA_NO_NODE);
 102}
 103
 104/*
 105 * Allocate node_to_cpumask_map based on number of available nodes
 106 * Requires node_possible_map to be valid.
 107 *
 108 * Note: cpumask_of_node() is not valid until after this is done.
 109 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
 110 */
 111void __init setup_node_to_cpumask_map(void)
 112{
 113	unsigned int node;
 114
 115	/* setup nr_node_ids if not done yet */
 116	if (nr_node_ids == MAX_NUMNODES)
 117		setup_nr_node_ids();
 118
 119	/* allocate the map */
 120	for (node = 0; node < nr_node_ids; node++)
 121		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
 122
 123	/* cpumask_of_node() will now work */
 124	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
 125}
 126
 127static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
 128				     struct numa_meminfo *mi)
 129{
 130	/* ignore zero length blks */
 131	if (start == end)
 132		return 0;
 133
 134	/* whine about and ignore invalid blks */
 135	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
 136		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
 137			nid, start, end - 1);
 138		return 0;
 139	}
 140
 141	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
 142		pr_err("too many memblk ranges\n");
 143		return -EINVAL;
 144	}
 145
 146	mi->blk[mi->nr_blks].start = start;
 147	mi->blk[mi->nr_blks].end = end;
 148	mi->blk[mi->nr_blks].nid = nid;
 149	mi->nr_blks++;
 150	return 0;
 151}
 152
 153/**
 154 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 155 * @idx: Index of memblk to remove
 156 * @mi: numa_meminfo to remove memblk from
 157 *
 158 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 159 * decrementing @mi->nr_blks.
 160 */
 161void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
 162{
 163	mi->nr_blks--;
 164	memmove(&mi->blk[idx], &mi->blk[idx + 1],
 165		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
 166}
 167
 168/**
 169 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
 170 * @dst: numa_meminfo to append block to
 171 * @idx: Index of memblk to remove
 172 * @src: numa_meminfo to remove memblk from
 173 */
 174static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
 175					 struct numa_meminfo *src)
 176{
 177	dst->blk[dst->nr_blks++] = src->blk[idx];
 178	numa_remove_memblk_from(idx, src);
 179}
 180
 181/**
 182 * numa_add_memblk - Add one numa_memblk to numa_meminfo
 183 * @nid: NUMA node ID of the new memblk
 184 * @start: Start address of the new memblk
 185 * @end: End address of the new memblk
 186 *
 187 * Add a new memblk to the default numa_meminfo.
 188 *
 189 * RETURNS:
 190 * 0 on success, -errno on failure.
 191 */
 192int __init numa_add_memblk(int nid, u64 start, u64 end)
 193{
 194	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
 195}
 196
 197/* Allocate NODE_DATA for a node on the local memory */
 198static void __init alloc_node_data(int nid)
 199{
 200	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
 201	u64 nd_pa;
 202	void *nd;
 203	int tnid;
 204
 205	/*
 206	 * Allocate node data.  Try node-local memory and then any node.
 207	 * Never allocate in DMA zone.
 208	 */
 209	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 210	if (!nd_pa) {
 211		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
 212		       nd_size, nid);
 213		return;
 214	}
 215	nd = __va(nd_pa);
 216
 217	/* report and initialize */
 218	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
 219	       nd_pa, nd_pa + nd_size - 1);
 220	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 221	if (tnid != nid)
 222		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
 223
 224	node_data[nid] = nd;
 225	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 226
 227	node_set_online(nid);
 228}
 229
 230/**
 231 * numa_cleanup_meminfo - Cleanup a numa_meminfo
 232 * @mi: numa_meminfo to clean up
 233 *
 234 * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
 235 * conflicts and clear unused memblks.
 236 *
 237 * RETURNS:
 238 * 0 on success, -errno on failure.
 239 */
 240int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
 241{
 242	const u64 low = 0;
 243	const u64 high = PFN_PHYS(max_pfn);
 244	int i, j, k;
 245
 246	/* first, trim all entries */
 247	for (i = 0; i < mi->nr_blks; i++) {
 248		struct numa_memblk *bi = &mi->blk[i];
 249
 250		/* move / save reserved memory ranges */
 251		if (!memblock_overlaps_region(&memblock.memory,
 252					bi->start, bi->end - bi->start)) {
 253			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
 254			continue;
 255		}
 256
 257		/* make sure all non-reserved blocks are inside the limits */
 258		bi->start = max(bi->start, low);
 
 259
 260		/* preserve info for non-RAM areas above 'max_pfn': */
 261		if (bi->end > high) {
 262			numa_add_memblk_to(bi->nid, high, bi->end,
 263					   &numa_reserved_meminfo);
 264			bi->end = high;
 265		}
 266
 267		/* and there's no empty block */
 268		if (bi->start >= bi->end)
 269			numa_remove_memblk_from(i--, mi);
 270	}
 271
 272	/* merge neighboring / overlapping entries */
 273	for (i = 0; i < mi->nr_blks; i++) {
 274		struct numa_memblk *bi = &mi->blk[i];
 275
 276		for (j = i + 1; j < mi->nr_blks; j++) {
 277			struct numa_memblk *bj = &mi->blk[j];
 278			u64 start, end;
 279
 280			/*
 281			 * See whether there are overlapping blocks.  Whine
 282			 * about but allow overlaps of the same nid.  They
 283			 * will be merged below.
 284			 */
 285			if (bi->end > bj->start && bi->start < bj->end) {
 286				if (bi->nid != bj->nid) {
 287					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
 288					       bi->nid, bi->start, bi->end - 1,
 289					       bj->nid, bj->start, bj->end - 1);
 290					return -EINVAL;
 291				}
 292				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
 293					bi->nid, bi->start, bi->end - 1,
 294					bj->start, bj->end - 1);
 295			}
 296
 297			/*
 298			 * Join together blocks on the same node, holes
 299			 * between which don't overlap with memory on other
 300			 * nodes.
 301			 */
 302			if (bi->nid != bj->nid)
 303				continue;
 304			start = min(bi->start, bj->start);
 305			end = max(bi->end, bj->end);
 306			for (k = 0; k < mi->nr_blks; k++) {
 307				struct numa_memblk *bk = &mi->blk[k];
 308
 309				if (bi->nid == bk->nid)
 310					continue;
 311				if (start < bk->end && end > bk->start)
 312					break;
 313			}
 314			if (k < mi->nr_blks)
 315				continue;
 316			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
 317			       bi->nid, bi->start, bi->end - 1, bj->start,
 318			       bj->end - 1, start, end - 1);
 319			bi->start = start;
 320			bi->end = end;
 321			numa_remove_memblk_from(j--, mi);
 322		}
 323	}
 324
 325	/* clear unused ones */
 326	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
 327		mi->blk[i].start = mi->blk[i].end = 0;
 328		mi->blk[i].nid = NUMA_NO_NODE;
 329	}
 330
 331	return 0;
 332}
 333
 334/*
 335 * Set nodes, which have memory in @mi, in *@nodemask.
 336 */
 337static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
 338					      const struct numa_meminfo *mi)
 339{
 340	int i;
 341
 342	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
 343		if (mi->blk[i].start != mi->blk[i].end &&
 344		    mi->blk[i].nid != NUMA_NO_NODE)
 345			node_set(mi->blk[i].nid, *nodemask);
 346}
 347
 348/**
 349 * numa_reset_distance - Reset NUMA distance table
 350 *
 351 * The current table is freed.  The next numa_set_distance() call will
 352 * create a new one.
 353 */
 354void __init numa_reset_distance(void)
 355{
 356	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
 357
 358	/* numa_distance could be 1LU marking allocation failure, test cnt */
 359	if (numa_distance_cnt)
 360		memblock_free(numa_distance, size);
 361	numa_distance_cnt = 0;
 362	numa_distance = NULL;	/* enable table creation */
 363}
 364
 365static int __init numa_alloc_distance(void)
 366{
 367	nodemask_t nodes_parsed;
 368	size_t size;
 369	int i, j, cnt = 0;
 370	u64 phys;
 371
 372	/* size the new table and allocate it */
 373	nodes_parsed = numa_nodes_parsed;
 374	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
 375
 376	for_each_node_mask(i, nodes_parsed)
 377		cnt = i;
 378	cnt++;
 379	size = cnt * cnt * sizeof(numa_distance[0]);
 380
 381	phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
 382					 PFN_PHYS(max_pfn_mapped));
 383	if (!phys) {
 384		pr_warn("Warning: can't allocate distance table!\n");
 385		/* don't retry until explicitly reset */
 386		numa_distance = (void *)1LU;
 387		return -ENOMEM;
 388	}
 
 389
 390	numa_distance = __va(phys);
 391	numa_distance_cnt = cnt;
 392
 393	/* fill with the default distances */
 394	for (i = 0; i < cnt; i++)
 395		for (j = 0; j < cnt; j++)
 396			numa_distance[i * cnt + j] = i == j ?
 397				LOCAL_DISTANCE : REMOTE_DISTANCE;
 398	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
 399
 400	return 0;
 401}
 402
 403/**
 404 * numa_set_distance - Set NUMA distance from one NUMA to another
 405 * @from: the 'from' node to set distance
 406 * @to: the 'to'  node to set distance
 407 * @distance: NUMA distance
 408 *
 409 * Set the distance from node @from to @to to @distance.  If distance table
 410 * doesn't exist, one which is large enough to accommodate all the currently
 411 * known nodes will be created.
 412 *
 413 * If such table cannot be allocated, a warning is printed and further
 414 * calls are ignored until the distance table is reset with
 415 * numa_reset_distance().
 416 *
 417 * If @from or @to is higher than the highest known node or lower than zero
 418 * at the time of table creation or @distance doesn't make sense, the call
 419 * is ignored.
 420 * This is to allow simplification of specific NUMA config implementations.
 421 */
 422void __init numa_set_distance(int from, int to, int distance)
 423{
 424	if (!numa_distance && numa_alloc_distance() < 0)
 425		return;
 426
 427	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
 428			from < 0 || to < 0) {
 429		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
 430			     from, to, distance);
 431		return;
 432	}
 433
 434	if ((u8)distance != distance ||
 435	    (from == to && distance != LOCAL_DISTANCE)) {
 436		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
 437			     from, to, distance);
 438		return;
 439	}
 440
 441	numa_distance[from * numa_distance_cnt + to] = distance;
 442}
 443
 444int __node_distance(int from, int to)
 445{
 446	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
 447		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
 448	return numa_distance[from * numa_distance_cnt + to];
 449}
 450EXPORT_SYMBOL(__node_distance);
 451
 452/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453 * Mark all currently memblock-reserved physical memory (which covers the
 454 * kernel's own memory ranges) as hot-unswappable.
 455 */
 456static void __init numa_clear_kernel_node_hotplug(void)
 457{
 458	nodemask_t reserved_nodemask = NODE_MASK_NONE;
 459	struct memblock_region *mb_region;
 460	int i;
 461
 462	/*
 463	 * We have to do some preprocessing of memblock regions, to
 464	 * make them suitable for reservation.
 465	 *
 466	 * At this time, all memory regions reserved by memblock are
 467	 * used by the kernel, but those regions are not split up
 468	 * along node boundaries yet, and don't necessarily have their
 469	 * node ID set yet either.
 470	 *
 471	 * So iterate over all memory known to the x86 architecture,
 472	 * and use those ranges to set the nid in memblock.reserved.
 473	 * This will split up the memblock regions along node
 474	 * boundaries and will set the node IDs as well.
 475	 */
 476	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 477		struct numa_memblk *mb = numa_meminfo.blk + i;
 478		int ret;
 479
 480		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
 481		WARN_ON_ONCE(ret);
 482	}
 483
 484	/*
 485	 * Now go over all reserved memblock regions, to construct a
 486	 * node mask of all kernel reserved memory areas.
 487	 *
 488	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
 489	 *   numa_meminfo might not include all memblock.reserved
 490	 *   memory ranges, because quirks such as trim_snb_memory()
 491	 *   reserve specific pages for Sandy Bridge graphics. ]
 492	 */
 493	for_each_reserved_mem_region(mb_region) {
 494		int nid = memblock_get_region_node(mb_region);
 495
 496		if (nid != MAX_NUMNODES)
 497			node_set(nid, reserved_nodemask);
 498	}
 499
 500	/*
 501	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
 502	 * belonging to the reserved node mask.
 503	 *
 504	 * Note that this will include memory regions that reside
 505	 * on nodes that contain kernel memory - entire nodes
 506	 * become hot-unpluggable:
 507	 */
 508	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 509		struct numa_memblk *mb = numa_meminfo.blk + i;
 510
 511		if (!node_isset(mb->nid, reserved_nodemask))
 512			continue;
 513
 514		memblock_clear_hotplug(mb->start, mb->end - mb->start);
 515	}
 516}
 517
 518static int __init numa_register_memblks(struct numa_meminfo *mi)
 519{
 
 520	int i, nid;
 521
 522	/* Account for nodes with cpus and no memory */
 523	node_possible_map = numa_nodes_parsed;
 524	numa_nodemask_from_meminfo(&node_possible_map, mi);
 525	if (WARN_ON(nodes_empty(node_possible_map)))
 526		return -EINVAL;
 527
 528	for (i = 0; i < mi->nr_blks; i++) {
 529		struct numa_memblk *mb = &mi->blk[i];
 530		memblock_set_node(mb->start, mb->end - mb->start,
 531				  &memblock.memory, mb->nid);
 532	}
 533
 534	/*
 535	 * At very early time, the kernel have to use some memory such as
 536	 * loading the kernel image. We cannot prevent this anyway. So any
 537	 * node the kernel resides in should be un-hotpluggable.
 538	 *
 539	 * And when we come here, alloc node data won't fail.
 540	 */
 541	numa_clear_kernel_node_hotplug();
 542
 543	/*
 544	 * If sections array is gonna be used for pfn -> nid mapping, check
 545	 * whether its granularity is fine enough.
 546	 */
 547	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
 548		unsigned long pfn_align = node_map_pfn_alignment();
 549
 550		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
 551			pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
 552				PFN_PHYS(pfn_align) >> 20,
 553				PFN_PHYS(PAGES_PER_SECTION) >> 20);
 554			return -EINVAL;
 555		}
 556	}
 557
 558	if (!memblock_validate_numa_coverage(SZ_1M))
 559		return -EINVAL;
 560
 561	/* Finally register nodes. */
 562	for_each_node_mask(nid, node_possible_map) {
 563		u64 start = PFN_PHYS(max_pfn);
 564		u64 end = 0;
 565
 566		for (i = 0; i < mi->nr_blks; i++) {
 567			if (nid != mi->blk[i].nid)
 568				continue;
 569			start = min(mi->blk[i].start, start);
 570			end = max(mi->blk[i].end, end);
 571		}
 572
 573		if (start >= end)
 574			continue;
 575
 
 
 
 
 
 
 
 576		alloc_node_data(nid);
 577	}
 578
 579	/* Dump memblock with node info and return. */
 580	memblock_dump_all();
 581	return 0;
 582}
 583
 584/*
 585 * There are unfortunately some poorly designed mainboards around that
 586 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 587 * mapping. To avoid this fill in the mapping for all possible CPUs,
 588 * as the number of CPUs is not known yet. We round robin the existing
 589 * nodes.
 590 */
 591static void __init numa_init_array(void)
 592{
 593	int rr, i;
 594
 595	rr = first_node(node_online_map);
 596	for (i = 0; i < nr_cpu_ids; i++) {
 597		if (early_cpu_to_node(i) != NUMA_NO_NODE)
 598			continue;
 599		numa_set_node(i, rr);
 600		rr = next_node_in(rr, node_online_map);
 601	}
 602}
 603
 604static int __init numa_init(int (*init_func)(void))
 605{
 606	int i;
 607	int ret;
 608
 609	for (i = 0; i < MAX_LOCAL_APIC; i++)
 610		set_apicid_to_node(i, NUMA_NO_NODE);
 611
 612	nodes_clear(numa_nodes_parsed);
 613	nodes_clear(node_possible_map);
 614	nodes_clear(node_online_map);
 615	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
 616	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
 617				  MAX_NUMNODES));
 618	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
 619				  MAX_NUMNODES));
 620	/* In case that parsing SRAT failed. */
 621	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
 622	numa_reset_distance();
 623
 624	ret = init_func();
 625	if (ret < 0)
 626		return ret;
 627
 628	/*
 629	 * We reset memblock back to the top-down direction
 630	 * here because if we configured ACPI_NUMA, we have
 631	 * parsed SRAT in init_func(). It is ok to have the
 632	 * reset here even if we did't configure ACPI_NUMA
 633	 * or acpi numa init fails and fallbacks to dummy
 634	 * numa init.
 635	 */
 636	memblock_set_bottom_up(false);
 637
 638	ret = numa_cleanup_meminfo(&numa_meminfo);
 639	if (ret < 0)
 640		return ret;
 641
 642	numa_emulation(&numa_meminfo, numa_distance_cnt);
 643
 644	ret = numa_register_memblks(&numa_meminfo);
 645	if (ret < 0)
 646		return ret;
 647
 648	for (i = 0; i < nr_cpu_ids; i++) {
 649		int nid = early_cpu_to_node(i);
 650
 651		if (nid == NUMA_NO_NODE)
 652			continue;
 653		if (!node_online(nid))
 654			numa_clear_node(i);
 655	}
 656	numa_init_array();
 657
 658	return 0;
 659}
 660
 661/**
 662 * dummy_numa_init - Fallback dummy NUMA init
 663 *
 664 * Used if there's no underlying NUMA architecture, NUMA initialization
 665 * fails, or NUMA is disabled on the command line.
 666 *
 667 * Must online at least one node and add memory blocks that cover all
 668 * allowed memory.  This function must not fail.
 669 */
 670static int __init dummy_numa_init(void)
 671{
 672	printk(KERN_INFO "%s\n",
 673	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
 674	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
 675	       0LLU, PFN_PHYS(max_pfn) - 1);
 676
 677	node_set(0, numa_nodes_parsed);
 678	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
 679
 680	return 0;
 681}
 682
 683/**
 684 * x86_numa_init - Initialize NUMA
 685 *
 686 * Try each configured NUMA initialization method until one succeeds.  The
 687 * last fallback is dummy single node config encompassing whole memory and
 688 * never fails.
 689 */
 690void __init x86_numa_init(void)
 691{
 692	if (!numa_off) {
 693#ifdef CONFIG_ACPI_NUMA
 694		if (!numa_init(x86_acpi_numa_init))
 695			return;
 696#endif
 697#ifdef CONFIG_AMD_NUMA
 698		if (!numa_init(amd_numa_init))
 699			return;
 700#endif
 701		if (acpi_disabled && !numa_init(of_numa_init))
 702			return;
 703	}
 704
 705	numa_init(dummy_numa_init);
 706}
 707
 708
 709/*
 710 * A node may exist which has one or more Generic Initiators but no CPUs and no
 711 * memory.
 712 *
 713 * This function must be called after init_cpu_to_node(), to ensure that any
 714 * memoryless CPU nodes have already been brought online, and before the
 715 * node_data[nid] is needed for zone list setup in build_all_zonelists().
 716 *
 717 * When this function is called, any nodes containing either memory and/or CPUs
 718 * will already be online and there is no need to do anything extra, even if
 719 * they also contain one or more Generic Initiators.
 720 */
 721void __init init_gi_nodes(void)
 722{
 723	int nid;
 
 
 
 
 
 724
 725	/*
 726	 * Exclude this node from
 727	 * bringup_nonboot_cpus
 728	 *  cpu_up
 729	 *   __try_online_node
 730	 *    register_one_node
 731	 * because node_subsys is not initialized yet.
 732	 * TODO remove dependency on node_online
 733	 */
 734	for_each_node_state(nid, N_GENERIC_INITIATOR)
 735		if (!node_online(nid))
 736			node_set_online(nid);
 737}
 738
 739/*
 740 * Setup early cpu_to_node.
 741 *
 742 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 743 * and apicid_to_node[] tables have valid entries for a CPU.
 744 * This means we skip cpu_to_node[] initialisation for NUMA
 745 * emulation and faking node case (when running a kernel compiled
 746 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 747 * is already initialized in a round robin manner at numa_init_array,
 748 * prior to this call, and this initialization is good enough
 749 * for the fake NUMA cases.
 750 *
 751 * Called before the per_cpu areas are setup.
 752 */
 753void __init init_cpu_to_node(void)
 754{
 755	int cpu;
 756	u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
 757
 758	BUG_ON(cpu_to_apicid == NULL);
 759
 760	for_each_possible_cpu(cpu) {
 761		int node = numa_cpu_node(cpu);
 762
 763		if (node == NUMA_NO_NODE)
 764			continue;
 765
 766		/*
 767		 * Exclude this node from
 768		 * bringup_nonboot_cpus
 769		 *  cpu_up
 770		 *   __try_online_node
 771		 *    register_one_node
 772		 * because node_subsys is not initialized yet.
 773		 * TODO remove dependency on node_online
 774		 */
 775		if (!node_online(node))
 776			node_set_online(node);
 777
 778		numa_set_node(cpu, node);
 779	}
 780}
 781
 782#ifndef CONFIG_DEBUG_PER_CPU_MAPS
 783
 784# ifndef CONFIG_NUMA_EMU
 785void numa_add_cpu(int cpu)
 786{
 787	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 788}
 789
 790void numa_remove_cpu(int cpu)
 791{
 792	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 793}
 794# endif	/* !CONFIG_NUMA_EMU */
 795
 796#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 797
 798int __cpu_to_node(int cpu)
 799{
 800	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
 801		printk(KERN_WARNING
 802			"cpu_to_node(%d): usage too early!\n", cpu);
 803		dump_stack();
 804		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 805	}
 806	return per_cpu(x86_cpu_to_node_map, cpu);
 807}
 808EXPORT_SYMBOL(__cpu_to_node);
 809
 810/*
 811 * Same function as cpu_to_node() but used if called before the
 812 * per_cpu areas are setup.
 813 */
 814int early_cpu_to_node(int cpu)
 815{
 816	if (early_per_cpu_ptr(x86_cpu_to_node_map))
 817		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 818
 819	if (!cpu_possible(cpu)) {
 820		printk(KERN_WARNING
 821			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
 822		dump_stack();
 823		return NUMA_NO_NODE;
 824	}
 825	return per_cpu(x86_cpu_to_node_map, cpu);
 826}
 827
 828void debug_cpumask_set_cpu(int cpu, int node, bool enable)
 829{
 830	struct cpumask *mask;
 831
 832	if (node == NUMA_NO_NODE) {
 833		/* early_cpu_to_node() already emits a warning and trace */
 834		return;
 835	}
 836	mask = node_to_cpumask_map[node];
 837	if (!cpumask_available(mask)) {
 838		pr_err("node_to_cpumask_map[%i] NULL\n", node);
 839		dump_stack();
 840		return;
 841	}
 842
 843	if (enable)
 844		cpumask_set_cpu(cpu, mask);
 845	else
 846		cpumask_clear_cpu(cpu, mask);
 847
 848	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
 849		enable ? "numa_add_cpu" : "numa_remove_cpu",
 850		cpu, node, cpumask_pr_args(mask));
 851	return;
 852}
 853
 854# ifndef CONFIG_NUMA_EMU
 855static void numa_set_cpumask(int cpu, bool enable)
 856{
 857	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
 858}
 859
 860void numa_add_cpu(int cpu)
 861{
 862	numa_set_cpumask(cpu, true);
 863}
 864
 865void numa_remove_cpu(int cpu)
 866{
 867	numa_set_cpumask(cpu, false);
 868}
 869# endif	/* !CONFIG_NUMA_EMU */
 870
 871/*
 872 * Returns a pointer to the bitmask of CPUs on Node 'node'.
 873 */
 874const struct cpumask *cpumask_of_node(int node)
 875{
 876	if ((unsigned)node >= nr_node_ids) {
 877		printk(KERN_WARNING
 878			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
 879			node, nr_node_ids);
 880		dump_stack();
 881		return cpu_none_mask;
 882	}
 883	if (!cpumask_available(node_to_cpumask_map[node])) {
 884		printk(KERN_WARNING
 885			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
 886			node);
 887		dump_stack();
 888		return cpu_online_mask;
 889	}
 890	return node_to_cpumask_map[node];
 891}
 892EXPORT_SYMBOL(cpumask_of_node);
 893
 894#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 895
 896#ifdef CONFIG_NUMA_KEEP_MEMINFO
 897static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
 898{
 
 
 899	int i;
 900
 901	for (i = 0; i < mi->nr_blks; i++)
 902		if (mi->blk[i].start <= start && mi->blk[i].end > start)
 903			return mi->blk[i].nid;
 904	return NUMA_NO_NODE;
 905}
 906
 907int phys_to_target_node(phys_addr_t start)
 908{
 909	int nid = meminfo_to_nid(&numa_meminfo, start);
 910
 911	/*
 912	 * Prefer online nodes, but if reserved memory might be
 913	 * hot-added continue the search with reserved ranges.
 914	 */
 915	if (nid != NUMA_NO_NODE)
 916		return nid;
 917
 918	return meminfo_to_nid(&numa_reserved_meminfo, start);
 919}
 920EXPORT_SYMBOL_GPL(phys_to_target_node);
 921
 922int memory_add_physaddr_to_nid(u64 start)
 923{
 924	int nid = meminfo_to_nid(&numa_meminfo, start);
 925
 926	if (nid == NUMA_NO_NODE)
 927		nid = numa_meminfo.blk[0].nid;
 928	return nid;
 929}
 930EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 931
 932static int __init cmp_memblk(const void *a, const void *b)
 933{
 934	const struct numa_memblk *ma = *(const struct numa_memblk **)a;
 935	const struct numa_memblk *mb = *(const struct numa_memblk **)b;
 936
 937	return (ma->start > mb->start) - (ma->start < mb->start);
 938}
 939
 940static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
 941
 942/**
 943 * numa_fill_memblks - Fill gaps in numa_meminfo memblks
 944 * @start: address to begin fill
 945 * @end: address to end fill
 946 *
 947 * Find and extend numa_meminfo memblks to cover the physical
 948 * address range @start-@end
 949 *
 950 * RETURNS:
 951 * 0		  : Success
 952 * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
 953 */
 954
 955int __init numa_fill_memblks(u64 start, u64 end)
 956{
 957	struct numa_memblk **blk = &numa_memblk_list[0];
 958	struct numa_meminfo *mi = &numa_meminfo;
 959	int count = 0;
 960	u64 prev_end;
 961
 962	/*
 963	 * Create a list of pointers to numa_meminfo memblks that
 964	 * overlap start, end. The list is used to make in-place
 965	 * changes that fill out the numa_meminfo memblks.
 966	 */
 967	for (int i = 0; i < mi->nr_blks; i++) {
 968		struct numa_memblk *bi = &mi->blk[i];
 969
 970		if (memblock_addrs_overlap(start, end - start, bi->start,
 971					   bi->end - bi->start)) {
 972			blk[count] = &mi->blk[i];
 973			count++;
 974		}
 975	}
 976	if (!count)
 977		return NUMA_NO_MEMBLK;
 978
 979	/* Sort the list of pointers in memblk->start order */
 980	sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
 981
 982	/* Make sure the first/last memblks include start/end */
 983	blk[0]->start = min(blk[0]->start, start);
 984	blk[count - 1]->end = max(blk[count - 1]->end, end);
 985
 986	/*
 987	 * Fill any gaps by tracking the previous memblks
 988	 * end address and backfilling to it if needed.
 989	 */
 990	prev_end = blk[0]->end;
 991	for (int i = 1; i < count; i++) {
 992		struct numa_memblk *curr = blk[i];
 993
 994		if (prev_end >= curr->start) {
 995			if (prev_end < curr->end)
 996				prev_end = curr->end;
 997		} else {
 998			curr->start = prev_end;
 999			prev_end = curr->end;
1000		}
1001	}
1002	return 0;
1003}
1004
1005#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Common code for 32 and 64-bit NUMA */
  3#include <linux/acpi.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
 
  6#include <linux/string.h>
  7#include <linux/init.h>
  8#include <linux/memblock.h>
  9#include <linux/mmzone.h>
 10#include <linux/ctype.h>
 11#include <linux/nodemask.h>
 12#include <linux/sched.h>
 13#include <linux/topology.h>
 
 14
 15#include <asm/e820/api.h>
 16#include <asm/proto.h>
 17#include <asm/dma.h>
 18#include <asm/amd_nb.h>
 19
 20#include "numa_internal.h"
 21
 22int numa_off;
 23nodemask_t numa_nodes_parsed __initdata;
 24
 25struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 26EXPORT_SYMBOL(node_data);
 27
 28static struct numa_meminfo numa_meminfo
 29#ifndef CONFIG_MEMORY_HOTPLUG
 30__initdata
 31#endif
 32;
 33
 34static int numa_distance_cnt;
 35static u8 *numa_distance;
 36
 37static __init int numa_setup(char *opt)
 38{
 39	if (!opt)
 40		return -EINVAL;
 41	if (!strncmp(opt, "off", 3))
 42		numa_off = 1;
 43#ifdef CONFIG_NUMA_EMU
 44	if (!strncmp(opt, "fake=", 5))
 45		numa_emu_cmdline(opt + 5);
 46#endif
 47#ifdef CONFIG_ACPI_NUMA
 48	if (!strncmp(opt, "noacpi", 6))
 49		acpi_numa = -1;
 50#endif
 
 51	return 0;
 52}
 53early_param("numa", numa_setup);
 54
 55/*
 56 * apicid, cpu, node mappings
 57 */
 58s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 59	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 60};
 61
 62int numa_cpu_node(int cpu)
 63{
 64	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 65
 66	if (apicid != BAD_APICID)
 67		return __apicid_to_node[apicid];
 68	return NUMA_NO_NODE;
 69}
 70
 71cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 72EXPORT_SYMBOL(node_to_cpumask_map);
 73
 74/*
 75 * Map cpu index to node index
 76 */
 77DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 78EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 79
 80void numa_set_node(int cpu, int node)
 81{
 82	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 83
 84	/* early setting, no percpu area yet */
 85	if (cpu_to_node_map) {
 86		cpu_to_node_map[cpu] = node;
 87		return;
 88	}
 89
 90#ifdef CONFIG_DEBUG_PER_CPU_MAPS
 91	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 92		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 93		dump_stack();
 94		return;
 95	}
 96#endif
 97	per_cpu(x86_cpu_to_node_map, cpu) = node;
 98
 99	set_cpu_numa_node(cpu, node);
100}
101
102void numa_clear_node(int cpu)
103{
104	numa_set_node(cpu, NUMA_NO_NODE);
105}
106
107/*
108 * Allocate node_to_cpumask_map based on number of available nodes
109 * Requires node_possible_map to be valid.
110 *
111 * Note: cpumask_of_node() is not valid until after this is done.
112 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
113 */
114void __init setup_node_to_cpumask_map(void)
115{
116	unsigned int node;
117
118	/* setup nr_node_ids if not done yet */
119	if (nr_node_ids == MAX_NUMNODES)
120		setup_nr_node_ids();
121
122	/* allocate the map */
123	for (node = 0; node < nr_node_ids; node++)
124		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
125
126	/* cpumask_of_node() will now work */
127	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
128}
129
130static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
131				     struct numa_meminfo *mi)
132{
133	/* ignore zero length blks */
134	if (start == end)
135		return 0;
136
137	/* whine about and ignore invalid blks */
138	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
139		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
140			nid, start, end - 1);
141		return 0;
142	}
143
144	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
145		pr_err("too many memblk ranges\n");
146		return -EINVAL;
147	}
148
149	mi->blk[mi->nr_blks].start = start;
150	mi->blk[mi->nr_blks].end = end;
151	mi->blk[mi->nr_blks].nid = nid;
152	mi->nr_blks++;
153	return 0;
154}
155
156/**
157 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
158 * @idx: Index of memblk to remove
159 * @mi: numa_meminfo to remove memblk from
160 *
161 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
162 * decrementing @mi->nr_blks.
163 */
164void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
165{
166	mi->nr_blks--;
167	memmove(&mi->blk[idx], &mi->blk[idx + 1],
168		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
169}
170
171/**
 
 
 
 
 
 
 
 
 
 
 
 
 
172 * numa_add_memblk - Add one numa_memblk to numa_meminfo
173 * @nid: NUMA node ID of the new memblk
174 * @start: Start address of the new memblk
175 * @end: End address of the new memblk
176 *
177 * Add a new memblk to the default numa_meminfo.
178 *
179 * RETURNS:
180 * 0 on success, -errno on failure.
181 */
182int __init numa_add_memblk(int nid, u64 start, u64 end)
183{
184	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
185}
186
187/* Allocate NODE_DATA for a node on the local memory */
188static void __init alloc_node_data(int nid)
189{
190	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
191	u64 nd_pa;
192	void *nd;
193	int tnid;
194
195	/*
196	 * Allocate node data.  Try node-local memory and then any node.
197	 * Never allocate in DMA zone.
198	 */
199	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
200	if (!nd_pa) {
201		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
202		       nd_size, nid);
203		return;
204	}
205	nd = __va(nd_pa);
206
207	/* report and initialize */
208	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
209	       nd_pa, nd_pa + nd_size - 1);
210	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
211	if (tnid != nid)
212		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
213
214	node_data[nid] = nd;
215	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
216
217	node_set_online(nid);
218}
219
220/**
221 * numa_cleanup_meminfo - Cleanup a numa_meminfo
222 * @mi: numa_meminfo to clean up
223 *
224 * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
225 * conflicts and clear unused memblks.
226 *
227 * RETURNS:
228 * 0 on success, -errno on failure.
229 */
230int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
231{
232	const u64 low = 0;
233	const u64 high = PFN_PHYS(max_pfn);
234	int i, j, k;
235
236	/* first, trim all entries */
237	for (i = 0; i < mi->nr_blks; i++) {
238		struct numa_memblk *bi = &mi->blk[i];
239
240		/* make sure all blocks are inside the limits */
 
 
 
 
 
 
 
241		bi->start = max(bi->start, low);
242		bi->end = min(bi->end, high);
243
244		/* and there's no empty or non-exist block */
245		if (bi->start >= bi->end ||
246		    !memblock_overlaps_region(&memblock.memory,
247			bi->start, bi->end - bi->start))
 
 
 
 
 
248			numa_remove_memblk_from(i--, mi);
249	}
250
251	/* merge neighboring / overlapping entries */
252	for (i = 0; i < mi->nr_blks; i++) {
253		struct numa_memblk *bi = &mi->blk[i];
254
255		for (j = i + 1; j < mi->nr_blks; j++) {
256			struct numa_memblk *bj = &mi->blk[j];
257			u64 start, end;
258
259			/*
260			 * See whether there are overlapping blocks.  Whine
261			 * about but allow overlaps of the same nid.  They
262			 * will be merged below.
263			 */
264			if (bi->end > bj->start && bi->start < bj->end) {
265				if (bi->nid != bj->nid) {
266					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
267					       bi->nid, bi->start, bi->end - 1,
268					       bj->nid, bj->start, bj->end - 1);
269					return -EINVAL;
270				}
271				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
272					bi->nid, bi->start, bi->end - 1,
273					bj->start, bj->end - 1);
274			}
275
276			/*
277			 * Join together blocks on the same node, holes
278			 * between which don't overlap with memory on other
279			 * nodes.
280			 */
281			if (bi->nid != bj->nid)
282				continue;
283			start = min(bi->start, bj->start);
284			end = max(bi->end, bj->end);
285			for (k = 0; k < mi->nr_blks; k++) {
286				struct numa_memblk *bk = &mi->blk[k];
287
288				if (bi->nid == bk->nid)
289					continue;
290				if (start < bk->end && end > bk->start)
291					break;
292			}
293			if (k < mi->nr_blks)
294				continue;
295			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
296			       bi->nid, bi->start, bi->end - 1, bj->start,
297			       bj->end - 1, start, end - 1);
298			bi->start = start;
299			bi->end = end;
300			numa_remove_memblk_from(j--, mi);
301		}
302	}
303
304	/* clear unused ones */
305	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
306		mi->blk[i].start = mi->blk[i].end = 0;
307		mi->blk[i].nid = NUMA_NO_NODE;
308	}
309
310	return 0;
311}
312
313/*
314 * Set nodes, which have memory in @mi, in *@nodemask.
315 */
316static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
317					      const struct numa_meminfo *mi)
318{
319	int i;
320
321	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
322		if (mi->blk[i].start != mi->blk[i].end &&
323		    mi->blk[i].nid != NUMA_NO_NODE)
324			node_set(mi->blk[i].nid, *nodemask);
325}
326
327/**
328 * numa_reset_distance - Reset NUMA distance table
329 *
330 * The current table is freed.  The next numa_set_distance() call will
331 * create a new one.
332 */
333void __init numa_reset_distance(void)
334{
335	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
336
337	/* numa_distance could be 1LU marking allocation failure, test cnt */
338	if (numa_distance_cnt)
339		memblock_free(__pa(numa_distance), size);
340	numa_distance_cnt = 0;
341	numa_distance = NULL;	/* enable table creation */
342}
343
344static int __init numa_alloc_distance(void)
345{
346	nodemask_t nodes_parsed;
347	size_t size;
348	int i, j, cnt = 0;
349	u64 phys;
350
351	/* size the new table and allocate it */
352	nodes_parsed = numa_nodes_parsed;
353	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
354
355	for_each_node_mask(i, nodes_parsed)
356		cnt = i;
357	cnt++;
358	size = cnt * cnt * sizeof(numa_distance[0]);
359
360	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
361				      size, PAGE_SIZE);
362	if (!phys) {
363		pr_warn("Warning: can't allocate distance table!\n");
364		/* don't retry until explicitly reset */
365		numa_distance = (void *)1LU;
366		return -ENOMEM;
367	}
368	memblock_reserve(phys, size);
369
370	numa_distance = __va(phys);
371	numa_distance_cnt = cnt;
372
373	/* fill with the default distances */
374	for (i = 0; i < cnt; i++)
375		for (j = 0; j < cnt; j++)
376			numa_distance[i * cnt + j] = i == j ?
377				LOCAL_DISTANCE : REMOTE_DISTANCE;
378	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
379
380	return 0;
381}
382
383/**
384 * numa_set_distance - Set NUMA distance from one NUMA to another
385 * @from: the 'from' node to set distance
386 * @to: the 'to'  node to set distance
387 * @distance: NUMA distance
388 *
389 * Set the distance from node @from to @to to @distance.  If distance table
390 * doesn't exist, one which is large enough to accommodate all the currently
391 * known nodes will be created.
392 *
393 * If such table cannot be allocated, a warning is printed and further
394 * calls are ignored until the distance table is reset with
395 * numa_reset_distance().
396 *
397 * If @from or @to is higher than the highest known node or lower than zero
398 * at the time of table creation or @distance doesn't make sense, the call
399 * is ignored.
400 * This is to allow simplification of specific NUMA config implementations.
401 */
402void __init numa_set_distance(int from, int to, int distance)
403{
404	if (!numa_distance && numa_alloc_distance() < 0)
405		return;
406
407	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
408			from < 0 || to < 0) {
409		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
410			     from, to, distance);
411		return;
412	}
413
414	if ((u8)distance != distance ||
415	    (from == to && distance != LOCAL_DISTANCE)) {
416		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
417			     from, to, distance);
418		return;
419	}
420
421	numa_distance[from * numa_distance_cnt + to] = distance;
422}
423
424int __node_distance(int from, int to)
425{
426	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
427		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
428	return numa_distance[from * numa_distance_cnt + to];
429}
430EXPORT_SYMBOL(__node_distance);
431
432/*
433 * Sanity check to catch more bad NUMA configurations (they are amazingly
434 * common).  Make sure the nodes cover all memory.
435 */
436static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
437{
438	u64 numaram, e820ram;
439	int i;
440
441	numaram = 0;
442	for (i = 0; i < mi->nr_blks; i++) {
443		u64 s = mi->blk[i].start >> PAGE_SHIFT;
444		u64 e = mi->blk[i].end >> PAGE_SHIFT;
445		numaram += e - s;
446		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
447		if ((s64)numaram < 0)
448			numaram = 0;
449	}
450
451	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
452
453	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
454	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
455		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
456		       (numaram << PAGE_SHIFT) >> 20,
457		       (e820ram << PAGE_SHIFT) >> 20);
458		return false;
459	}
460	return true;
461}
462
463/*
464 * Mark all currently memblock-reserved physical memory (which covers the
465 * kernel's own memory ranges) as hot-unswappable.
466 */
467static void __init numa_clear_kernel_node_hotplug(void)
468{
469	nodemask_t reserved_nodemask = NODE_MASK_NONE;
470	struct memblock_region *mb_region;
471	int i;
472
473	/*
474	 * We have to do some preprocessing of memblock regions, to
475	 * make them suitable for reservation.
476	 *
477	 * At this time, all memory regions reserved by memblock are
478	 * used by the kernel, but those regions are not split up
479	 * along node boundaries yet, and don't necessarily have their
480	 * node ID set yet either.
481	 *
482	 * So iterate over all memory known to the x86 architecture,
483	 * and use those ranges to set the nid in memblock.reserved.
484	 * This will split up the memblock regions along node
485	 * boundaries and will set the node IDs as well.
486	 */
487	for (i = 0; i < numa_meminfo.nr_blks; i++) {
488		struct numa_memblk *mb = numa_meminfo.blk + i;
489		int ret;
490
491		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
492		WARN_ON_ONCE(ret);
493	}
494
495	/*
496	 * Now go over all reserved memblock regions, to construct a
497	 * node mask of all kernel reserved memory areas.
498	 *
499	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
500	 *   numa_meminfo might not include all memblock.reserved
501	 *   memory ranges, because quirks such as trim_snb_memory()
502	 *   reserve specific pages for Sandy Bridge graphics. ]
503	 */
504	for_each_memblock(reserved, mb_region) {
505		if (mb_region->nid != MAX_NUMNODES)
506			node_set(mb_region->nid, reserved_nodemask);
 
 
507	}
508
509	/*
510	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
511	 * belonging to the reserved node mask.
512	 *
513	 * Note that this will include memory regions that reside
514	 * on nodes that contain kernel memory - entire nodes
515	 * become hot-unpluggable:
516	 */
517	for (i = 0; i < numa_meminfo.nr_blks; i++) {
518		struct numa_memblk *mb = numa_meminfo.blk + i;
519
520		if (!node_isset(mb->nid, reserved_nodemask))
521			continue;
522
523		memblock_clear_hotplug(mb->start, mb->end - mb->start);
524	}
525}
526
527static int __init numa_register_memblks(struct numa_meminfo *mi)
528{
529	unsigned long uninitialized_var(pfn_align);
530	int i, nid;
531
532	/* Account for nodes with cpus and no memory */
533	node_possible_map = numa_nodes_parsed;
534	numa_nodemask_from_meminfo(&node_possible_map, mi);
535	if (WARN_ON(nodes_empty(node_possible_map)))
536		return -EINVAL;
537
538	for (i = 0; i < mi->nr_blks; i++) {
539		struct numa_memblk *mb = &mi->blk[i];
540		memblock_set_node(mb->start, mb->end - mb->start,
541				  &memblock.memory, mb->nid);
542	}
543
544	/*
545	 * At very early time, the kernel have to use some memory such as
546	 * loading the kernel image. We cannot prevent this anyway. So any
547	 * node the kernel resides in should be un-hotpluggable.
548	 *
549	 * And when we come here, alloc node data won't fail.
550	 */
551	numa_clear_kernel_node_hotplug();
552
553	/*
554	 * If sections array is gonna be used for pfn -> nid mapping, check
555	 * whether its granularity is fine enough.
556	 */
557#ifdef NODE_NOT_IN_PAGE_FLAGS
558	pfn_align = node_map_pfn_alignment();
559	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
560		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
561		       PFN_PHYS(pfn_align) >> 20,
562		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
563		return -EINVAL;
 
 
564	}
565#endif
566	if (!numa_meminfo_cover_memory(mi))
567		return -EINVAL;
568
569	/* Finally register nodes. */
570	for_each_node_mask(nid, node_possible_map) {
571		u64 start = PFN_PHYS(max_pfn);
572		u64 end = 0;
573
574		for (i = 0; i < mi->nr_blks; i++) {
575			if (nid != mi->blk[i].nid)
576				continue;
577			start = min(mi->blk[i].start, start);
578			end = max(mi->blk[i].end, end);
579		}
580
581		if (start >= end)
582			continue;
583
584		/*
585		 * Don't confuse VM with a node that doesn't have the
586		 * minimum amount of memory:
587		 */
588		if (end && (end - start) < NODE_MIN_SIZE)
589			continue;
590
591		alloc_node_data(nid);
592	}
593
594	/* Dump memblock with node info and return. */
595	memblock_dump_all();
596	return 0;
597}
598
599/*
600 * There are unfortunately some poorly designed mainboards around that
601 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
602 * mapping. To avoid this fill in the mapping for all possible CPUs,
603 * as the number of CPUs is not known yet. We round robin the existing
604 * nodes.
605 */
606static void __init numa_init_array(void)
607{
608	int rr, i;
609
610	rr = first_node(node_online_map);
611	for (i = 0; i < nr_cpu_ids; i++) {
612		if (early_cpu_to_node(i) != NUMA_NO_NODE)
613			continue;
614		numa_set_node(i, rr);
615		rr = next_node_in(rr, node_online_map);
616	}
617}
618
619static int __init numa_init(int (*init_func)(void))
620{
621	int i;
622	int ret;
623
624	for (i = 0; i < MAX_LOCAL_APIC; i++)
625		set_apicid_to_node(i, NUMA_NO_NODE);
626
627	nodes_clear(numa_nodes_parsed);
628	nodes_clear(node_possible_map);
629	nodes_clear(node_online_map);
630	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
631	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
632				  MAX_NUMNODES));
633	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
634				  MAX_NUMNODES));
635	/* In case that parsing SRAT failed. */
636	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
637	numa_reset_distance();
638
639	ret = init_func();
640	if (ret < 0)
641		return ret;
642
643	/*
644	 * We reset memblock back to the top-down direction
645	 * here because if we configured ACPI_NUMA, we have
646	 * parsed SRAT in init_func(). It is ok to have the
647	 * reset here even if we did't configure ACPI_NUMA
648	 * or acpi numa init fails and fallbacks to dummy
649	 * numa init.
650	 */
651	memblock_set_bottom_up(false);
652
653	ret = numa_cleanup_meminfo(&numa_meminfo);
654	if (ret < 0)
655		return ret;
656
657	numa_emulation(&numa_meminfo, numa_distance_cnt);
658
659	ret = numa_register_memblks(&numa_meminfo);
660	if (ret < 0)
661		return ret;
662
663	for (i = 0; i < nr_cpu_ids; i++) {
664		int nid = early_cpu_to_node(i);
665
666		if (nid == NUMA_NO_NODE)
667			continue;
668		if (!node_online(nid))
669			numa_clear_node(i);
670	}
671	numa_init_array();
672
673	return 0;
674}
675
676/**
677 * dummy_numa_init - Fallback dummy NUMA init
678 *
679 * Used if there's no underlying NUMA architecture, NUMA initialization
680 * fails, or NUMA is disabled on the command line.
681 *
682 * Must online at least one node and add memory blocks that cover all
683 * allowed memory.  This function must not fail.
684 */
685static int __init dummy_numa_init(void)
686{
687	printk(KERN_INFO "%s\n",
688	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
689	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
690	       0LLU, PFN_PHYS(max_pfn) - 1);
691
692	node_set(0, numa_nodes_parsed);
693	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
694
695	return 0;
696}
697
698/**
699 * x86_numa_init - Initialize NUMA
700 *
701 * Try each configured NUMA initialization method until one succeeds.  The
702 * last fallback is dummy single node config encomapssing whole memory and
703 * never fails.
704 */
705void __init x86_numa_init(void)
706{
707	if (!numa_off) {
708#ifdef CONFIG_ACPI_NUMA
709		if (!numa_init(x86_acpi_numa_init))
710			return;
711#endif
712#ifdef CONFIG_AMD_NUMA
713		if (!numa_init(amd_numa_init))
714			return;
715#endif
 
 
716	}
717
718	numa_init(dummy_numa_init);
719}
720
721static void __init init_memory_less_node(int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
722{
723	unsigned long zones_size[MAX_NR_ZONES] = {0};
724	unsigned long zholes_size[MAX_NR_ZONES] = {0};
725
726	/* Allocate and initialize node data. Memory-less node is now online.*/
727	alloc_node_data(nid);
728	free_area_init_node(nid, zones_size, 0, zholes_size);
729
730	/*
731	 * All zonelists will be built later in start_kernel() after per cpu
732	 * areas are initialized.
 
 
 
 
 
733	 */
 
 
 
734}
735
736/*
737 * Setup early cpu_to_node.
738 *
739 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
740 * and apicid_to_node[] tables have valid entries for a CPU.
741 * This means we skip cpu_to_node[] initialisation for NUMA
742 * emulation and faking node case (when running a kernel compiled
743 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
744 * is already initialized in a round robin manner at numa_init_array,
745 * prior to this call, and this initialization is good enough
746 * for the fake NUMA cases.
747 *
748 * Called before the per_cpu areas are setup.
749 */
750void __init init_cpu_to_node(void)
751{
752	int cpu;
753	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
754
755	BUG_ON(cpu_to_apicid == NULL);
756
757	for_each_possible_cpu(cpu) {
758		int node = numa_cpu_node(cpu);
759
760		if (node == NUMA_NO_NODE)
761			continue;
762
 
 
 
 
 
 
 
 
 
763		if (!node_online(node))
764			init_memory_less_node(node);
765
766		numa_set_node(cpu, node);
767	}
768}
769
770#ifndef CONFIG_DEBUG_PER_CPU_MAPS
771
772# ifndef CONFIG_NUMA_EMU
773void numa_add_cpu(int cpu)
774{
775	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
776}
777
778void numa_remove_cpu(int cpu)
779{
780	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
781}
782# endif	/* !CONFIG_NUMA_EMU */
783
784#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
785
786int __cpu_to_node(int cpu)
787{
788	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
789		printk(KERN_WARNING
790			"cpu_to_node(%d): usage too early!\n", cpu);
791		dump_stack();
792		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
793	}
794	return per_cpu(x86_cpu_to_node_map, cpu);
795}
796EXPORT_SYMBOL(__cpu_to_node);
797
798/*
799 * Same function as cpu_to_node() but used if called before the
800 * per_cpu areas are setup.
801 */
802int early_cpu_to_node(int cpu)
803{
804	if (early_per_cpu_ptr(x86_cpu_to_node_map))
805		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
806
807	if (!cpu_possible(cpu)) {
808		printk(KERN_WARNING
809			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
810		dump_stack();
811		return NUMA_NO_NODE;
812	}
813	return per_cpu(x86_cpu_to_node_map, cpu);
814}
815
816void debug_cpumask_set_cpu(int cpu, int node, bool enable)
817{
818	struct cpumask *mask;
819
820	if (node == NUMA_NO_NODE) {
821		/* early_cpu_to_node() already emits a warning and trace */
822		return;
823	}
824	mask = node_to_cpumask_map[node];
825	if (!mask) {
826		pr_err("node_to_cpumask_map[%i] NULL\n", node);
827		dump_stack();
828		return;
829	}
830
831	if (enable)
832		cpumask_set_cpu(cpu, mask);
833	else
834		cpumask_clear_cpu(cpu, mask);
835
836	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
837		enable ? "numa_add_cpu" : "numa_remove_cpu",
838		cpu, node, cpumask_pr_args(mask));
839	return;
840}
841
842# ifndef CONFIG_NUMA_EMU
843static void numa_set_cpumask(int cpu, bool enable)
844{
845	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
846}
847
848void numa_add_cpu(int cpu)
849{
850	numa_set_cpumask(cpu, true);
851}
852
853void numa_remove_cpu(int cpu)
854{
855	numa_set_cpumask(cpu, false);
856}
857# endif	/* !CONFIG_NUMA_EMU */
858
859/*
860 * Returns a pointer to the bitmask of CPUs on Node 'node'.
861 */
862const struct cpumask *cpumask_of_node(int node)
863{
864	if ((unsigned)node >= nr_node_ids) {
865		printk(KERN_WARNING
866			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
867			node, nr_node_ids);
868		dump_stack();
869		return cpu_none_mask;
870	}
871	if (node_to_cpumask_map[node] == NULL) {
872		printk(KERN_WARNING
873			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
874			node);
875		dump_stack();
876		return cpu_online_mask;
877	}
878	return node_to_cpumask_map[node];
879}
880EXPORT_SYMBOL(cpumask_of_node);
881
882#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
883
884#ifdef CONFIG_MEMORY_HOTPLUG
885int memory_add_physaddr_to_nid(u64 start)
886{
887	struct numa_meminfo *mi = &numa_meminfo;
888	int nid = mi->blk[0].nid;
889	int i;
890
891	for (i = 0; i < mi->nr_blks; i++)
892		if (mi->blk[i].start <= start && mi->blk[i].end > start)
893			nid = mi->blk[i].nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894	return nid;
895}
896EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897#endif