Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation ( includes contributions from
9 * Rusty Russell).
10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11 * interface to access function arguments.
12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
14 * 2005-Mar Roland McGrath <roland@redhat.com>
15 * Fixed to handle %rip-relative addressing mode correctly.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
20 * Added function return probes functionality
21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22 * kprobe-booster and kretprobe-booster for i386.
23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24 * and kretprobe-booster for x86-64
25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27 * unified x86 kprobes code.
28 */
29#include <linux/kprobes.h>
30#include <linux/ptrace.h>
31#include <linux/string.h>
32#include <linux/slab.h>
33#include <linux/hardirq.h>
34#include <linux/preempt.h>
35#include <linux/sched/debug.h>
36#include <linux/perf_event.h>
37#include <linux/extable.h>
38#include <linux/kdebug.h>
39#include <linux/kallsyms.h>
40#include <linux/kgdb.h>
41#include <linux/ftrace.h>
42#include <linux/kasan.h>
43#include <linux/moduleloader.h>
44#include <linux/objtool.h>
45#include <linux/vmalloc.h>
46#include <linux/pgtable.h>
47#include <linux/set_memory.h>
48#include <linux/cfi.h>
49
50#include <asm/text-patching.h>
51#include <asm/cacheflush.h>
52#include <asm/desc.h>
53#include <linux/uaccess.h>
54#include <asm/alternative.h>
55#include <asm/insn.h>
56#include <asm/debugreg.h>
57#include <asm/ibt.h>
58
59#include "common.h"
60
61DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
62DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
63
64#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
65 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
66 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
67 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
68 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
69 << (row % 32))
70 /*
71 * Undefined/reserved opcodes, conditional jump, Opcode Extension
72 * Groups, and some special opcodes can not boost.
73 * This is non-const and volatile to keep gcc from statically
74 * optimizing it out, as variable_test_bit makes gcc think only
75 * *(unsigned long*) is used.
76 */
77static volatile u32 twobyte_is_boostable[256 / 32] = {
78 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
79 /* ---------------------------------------------- */
80 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
81 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
82 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
83 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
84 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
85 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
86 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
87 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
88 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
89 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
90 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
91 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
92 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
93 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
94 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
95 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
96 /* ----------------------------------------------- */
97 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
98};
99#undef W
100
101struct kretprobe_blackpoint kretprobe_blacklist[] = {
102 {"__switch_to", }, /* This function switches only current task, but
103 doesn't switch kernel stack.*/
104 {NULL, NULL} /* Terminator */
105};
106
107const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108
109static nokprobe_inline void
110__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111{
112 struct __arch_relative_insn {
113 u8 op;
114 s32 raddr;
115 } __packed *insn;
116
117 insn = (struct __arch_relative_insn *)dest;
118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 insn->op = op;
120}
121
122/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123void synthesize_reljump(void *dest, void *from, void *to)
124{
125 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126}
127NOKPROBE_SYMBOL(synthesize_reljump);
128
129/* Insert a call instruction at address 'from', which calls address 'to'.*/
130void synthesize_relcall(void *dest, void *from, void *to)
131{
132 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133}
134NOKPROBE_SYMBOL(synthesize_relcall);
135
136/*
137 * Returns non-zero if INSN is boostable.
138 * RIP relative instructions are adjusted at copying time in 64 bits mode
139 */
140int can_boost(struct insn *insn, void *addr)
141{
142 kprobe_opcode_t opcode;
143 insn_byte_t prefix;
144 int i;
145
146 if (search_exception_tables((unsigned long)addr))
147 return 0; /* Page fault may occur on this address. */
148
149 /* 2nd-byte opcode */
150 if (insn->opcode.nbytes == 2)
151 return test_bit(insn->opcode.bytes[1],
152 (unsigned long *)twobyte_is_boostable);
153
154 if (insn->opcode.nbytes != 1)
155 return 0;
156
157 for_each_insn_prefix(insn, i, prefix) {
158 insn_attr_t attr;
159
160 attr = inat_get_opcode_attribute(prefix);
161 /* Can't boost Address-size override prefix and CS override prefix */
162 if (prefix == 0x2e || inat_is_address_size_prefix(attr))
163 return 0;
164 }
165
166 opcode = insn->opcode.bytes[0];
167
168 switch (opcode) {
169 case 0x62: /* bound */
170 case 0x70 ... 0x7f: /* Conditional jumps */
171 case 0x9a: /* Call far */
172 case 0xc0 ... 0xc1: /* Grp2 */
173 case 0xcc ... 0xce: /* software exceptions */
174 case 0xd0 ... 0xd3: /* Grp2 */
175 case 0xd6: /* (UD) */
176 case 0xd8 ... 0xdf: /* ESC */
177 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */
178 case 0xe8 ... 0xe9: /* near Call, JMP */
179 case 0xeb: /* Short JMP */
180 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */
181 case 0xf6 ... 0xf7: /* Grp3 */
182 case 0xfe: /* Grp4 */
183 /* ... are not boostable */
184 return 0;
185 case 0xff: /* Grp5 */
186 /* Only indirect jmp is boostable */
187 return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
188 default:
189 return 1;
190 }
191}
192
193static unsigned long
194__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
195{
196 struct kprobe *kp;
197 bool faddr;
198
199 kp = get_kprobe((void *)addr);
200 faddr = ftrace_location(addr) == addr;
201 /*
202 * Use the current code if it is not modified by Kprobe
203 * and it cannot be modified by ftrace.
204 */
205 if (!kp && !faddr)
206 return addr;
207
208 /*
209 * Basically, kp->ainsn.insn has an original instruction.
210 * However, RIP-relative instruction can not do single-stepping
211 * at different place, __copy_instruction() tweaks the displacement of
212 * that instruction. In that case, we can't recover the instruction
213 * from the kp->ainsn.insn.
214 *
215 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
216 * of the first byte of the probed instruction, which is overwritten
217 * by int3. And the instruction at kp->addr is not modified by kprobes
218 * except for the first byte, we can recover the original instruction
219 * from it and kp->opcode.
220 *
221 * In case of Kprobes using ftrace, we do not have a copy of
222 * the original instruction. In fact, the ftrace location might
223 * be modified at anytime and even could be in an inconsistent state.
224 * Fortunately, we know that the original code is the ideal 5-byte
225 * long NOP.
226 */
227 if (copy_from_kernel_nofault(buf, (void *)addr,
228 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
229 return 0UL;
230
231 if (faddr)
232 memcpy(buf, x86_nops[5], 5);
233 else
234 buf[0] = kp->opcode;
235 return (unsigned long)buf;
236}
237
238/*
239 * Recover the probed instruction at addr for further analysis.
240 * Caller must lock kprobes by kprobe_mutex, or disable preemption
241 * for preventing to release referencing kprobes.
242 * Returns zero if the instruction can not get recovered (or access failed).
243 */
244unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
245{
246 unsigned long __addr;
247
248 __addr = __recover_optprobed_insn(buf, addr);
249 if (__addr != addr)
250 return __addr;
251
252 return __recover_probed_insn(buf, addr);
253}
254
255/* Check if paddr is at an instruction boundary */
256static int can_probe(unsigned long paddr)
257{
258 unsigned long addr, __addr, offset = 0;
259 struct insn insn;
260 kprobe_opcode_t buf[MAX_INSN_SIZE];
261
262 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
263 return 0;
264
265 /* Decode instructions */
266 addr = paddr - offset;
267 while (addr < paddr) {
268 int ret;
269
270 /*
271 * Check if the instruction has been modified by another
272 * kprobe, in which case we replace the breakpoint by the
273 * original instruction in our buffer.
274 * Also, jump optimization will change the breakpoint to
275 * relative-jump. Since the relative-jump itself is
276 * normally used, we just go through if there is no kprobe.
277 */
278 __addr = recover_probed_instruction(buf, addr);
279 if (!__addr)
280 return 0;
281
282 ret = insn_decode_kernel(&insn, (void *)__addr);
283 if (ret < 0)
284 return 0;
285
286#ifdef CONFIG_KGDB
287 /*
288 * If there is a dynamically installed kgdb sw breakpoint,
289 * this function should not be probed.
290 */
291 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
292 kgdb_has_hit_break(addr))
293 return 0;
294#endif
295 addr += insn.length;
296 }
297 if (IS_ENABLED(CONFIG_CFI_CLANG)) {
298 /*
299 * The compiler generates the following instruction sequence
300 * for indirect call checks and cfi.c decodes this;
301 *
302 *Â movl -<id>, %r10d ; 6 bytes
303 * addl -4(%reg), %r10d ; 4 bytes
304 * je .Ltmp1 ; 2 bytes
305 * ud2 ; <- regs->ip
306 * .Ltmp1:
307 *
308 * Also, these movl and addl are used for showing expected
309 * type. So those must not be touched.
310 */
311 __addr = recover_probed_instruction(buf, addr);
312 if (!__addr)
313 return 0;
314
315 if (insn_decode_kernel(&insn, (void *)__addr) < 0)
316 return 0;
317
318 if (insn.opcode.value == 0xBA)
319 offset = 12;
320 else if (insn.opcode.value == 0x3)
321 offset = 6;
322 else
323 goto out;
324
325 /* This movl/addl is used for decoding CFI. */
326 if (is_cfi_trap(addr + offset))
327 return 0;
328 }
329
330out:
331 return (addr == paddr);
332}
333
334/* If x86 supports IBT (ENDBR) it must be skipped. */
335kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
336 bool *on_func_entry)
337{
338 if (is_endbr(*(u32 *)addr)) {
339 *on_func_entry = !offset || offset == 4;
340 if (*on_func_entry)
341 offset = 4;
342
343 } else {
344 *on_func_entry = !offset;
345 }
346
347 return (kprobe_opcode_t *)(addr + offset);
348}
349
350/*
351 * Copy an instruction with recovering modified instruction by kprobes
352 * and adjust the displacement if the instruction uses the %rip-relative
353 * addressing mode. Note that since @real will be the final place of copied
354 * instruction, displacement must be adjust by @real, not @dest.
355 * This returns the length of copied instruction, or 0 if it has an error.
356 */
357int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
358{
359 kprobe_opcode_t buf[MAX_INSN_SIZE];
360 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
361 int ret;
362
363 if (!recovered_insn || !insn)
364 return 0;
365
366 /* This can access kernel text if given address is not recovered */
367 if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
368 MAX_INSN_SIZE))
369 return 0;
370
371 ret = insn_decode_kernel(insn, dest);
372 if (ret < 0)
373 return 0;
374
375 /* We can not probe force emulate prefixed instruction */
376 if (insn_has_emulate_prefix(insn))
377 return 0;
378
379 /* Another subsystem puts a breakpoint, failed to recover */
380 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
381 return 0;
382
383 /* We should not singlestep on the exception masking instructions */
384 if (insn_masking_exception(insn))
385 return 0;
386
387#ifdef CONFIG_X86_64
388 /* Only x86_64 has RIP relative instructions */
389 if (insn_rip_relative(insn)) {
390 s64 newdisp;
391 u8 *disp;
392 /*
393 * The copied instruction uses the %rip-relative addressing
394 * mode. Adjust the displacement for the difference between
395 * the original location of this instruction and the location
396 * of the copy that will actually be run. The tricky bit here
397 * is making sure that the sign extension happens correctly in
398 * this calculation, since we need a signed 32-bit result to
399 * be sign-extended to 64 bits when it's added to the %rip
400 * value and yield the same 64-bit result that the sign-
401 * extension of the original signed 32-bit displacement would
402 * have given.
403 */
404 newdisp = (u8 *) src + (s64) insn->displacement.value
405 - (u8 *) real;
406 if ((s64) (s32) newdisp != newdisp) {
407 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
408 return 0;
409 }
410 disp = (u8 *) dest + insn_offset_displacement(insn);
411 *(s32 *) disp = (s32) newdisp;
412 }
413#endif
414 return insn->length;
415}
416
417/* Prepare reljump or int3 right after instruction */
418static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
419 struct insn *insn)
420{
421 int len = insn->length;
422
423 if (!IS_ENABLED(CONFIG_PREEMPTION) &&
424 !p->post_handler && can_boost(insn, p->addr) &&
425 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
426 /*
427 * These instructions can be executed directly if it
428 * jumps back to correct address.
429 */
430 synthesize_reljump(buf + len, p->ainsn.insn + len,
431 p->addr + insn->length);
432 len += JMP32_INSN_SIZE;
433 p->ainsn.boostable = 1;
434 } else {
435 /* Otherwise, put an int3 for trapping singlestep */
436 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
437 return -ENOSPC;
438
439 buf[len] = INT3_INSN_OPCODE;
440 len += INT3_INSN_SIZE;
441 }
442
443 return len;
444}
445
446/* Make page to RO mode when allocate it */
447void *alloc_insn_page(void)
448{
449 void *page;
450
451 page = module_alloc(PAGE_SIZE);
452 if (!page)
453 return NULL;
454
455 /*
456 * TODO: Once additional kernel code protection mechanisms are set, ensure
457 * that the page was not maliciously altered and it is still zeroed.
458 */
459 set_memory_rox((unsigned long)page, 1);
460
461 return page;
462}
463
464/* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
465
466static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
467{
468 switch (p->ainsn.opcode) {
469 case 0xfa: /* cli */
470 regs->flags &= ~(X86_EFLAGS_IF);
471 break;
472 case 0xfb: /* sti */
473 regs->flags |= X86_EFLAGS_IF;
474 break;
475 case 0x9c: /* pushf */
476 int3_emulate_push(regs, regs->flags);
477 break;
478 case 0x9d: /* popf */
479 regs->flags = int3_emulate_pop(regs);
480 break;
481 }
482 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
483}
484NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
485
486static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
487{
488 int3_emulate_ret(regs);
489}
490NOKPROBE_SYMBOL(kprobe_emulate_ret);
491
492static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
493{
494 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
495
496 func += p->ainsn.rel32;
497 int3_emulate_call(regs, func);
498}
499NOKPROBE_SYMBOL(kprobe_emulate_call);
500
501static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
502{
503 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
504
505 ip += p->ainsn.rel32;
506 int3_emulate_jmp(regs, ip);
507}
508NOKPROBE_SYMBOL(kprobe_emulate_jmp);
509
510static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
511{
512 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
513
514 int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
515}
516NOKPROBE_SYMBOL(kprobe_emulate_jcc);
517
518static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
519{
520 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
521 bool match;
522
523 if (p->ainsn.loop.type != 3) { /* LOOP* */
524 if (p->ainsn.loop.asize == 32)
525 match = ((*(u32 *)®s->cx)--) != 0;
526#ifdef CONFIG_X86_64
527 else if (p->ainsn.loop.asize == 64)
528 match = ((*(u64 *)®s->cx)--) != 0;
529#endif
530 else
531 match = ((*(u16 *)®s->cx)--) != 0;
532 } else { /* JCXZ */
533 if (p->ainsn.loop.asize == 32)
534 match = *(u32 *)(®s->cx) == 0;
535#ifdef CONFIG_X86_64
536 else if (p->ainsn.loop.asize == 64)
537 match = *(u64 *)(®s->cx) == 0;
538#endif
539 else
540 match = *(u16 *)(®s->cx) == 0;
541 }
542
543 if (p->ainsn.loop.type == 0) /* LOOPNE */
544 match = match && !(regs->flags & X86_EFLAGS_ZF);
545 else if (p->ainsn.loop.type == 1) /* LOOPE */
546 match = match && (regs->flags & X86_EFLAGS_ZF);
547
548 if (match)
549 ip += p->ainsn.rel32;
550 int3_emulate_jmp(regs, ip);
551}
552NOKPROBE_SYMBOL(kprobe_emulate_loop);
553
554static const int addrmode_regoffs[] = {
555 offsetof(struct pt_regs, ax),
556 offsetof(struct pt_regs, cx),
557 offsetof(struct pt_regs, dx),
558 offsetof(struct pt_regs, bx),
559 offsetof(struct pt_regs, sp),
560 offsetof(struct pt_regs, bp),
561 offsetof(struct pt_regs, si),
562 offsetof(struct pt_regs, di),
563#ifdef CONFIG_X86_64
564 offsetof(struct pt_regs, r8),
565 offsetof(struct pt_regs, r9),
566 offsetof(struct pt_regs, r10),
567 offsetof(struct pt_regs, r11),
568 offsetof(struct pt_regs, r12),
569 offsetof(struct pt_regs, r13),
570 offsetof(struct pt_regs, r14),
571 offsetof(struct pt_regs, r15),
572#endif
573};
574
575static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
576{
577 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
578
579 int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
580 int3_emulate_jmp(regs, regs_get_register(regs, offs));
581}
582NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
583
584static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
585{
586 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
587
588 int3_emulate_jmp(regs, regs_get_register(regs, offs));
589}
590NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
591
592static int prepare_emulation(struct kprobe *p, struct insn *insn)
593{
594 insn_byte_t opcode = insn->opcode.bytes[0];
595
596 switch (opcode) {
597 case 0xfa: /* cli */
598 case 0xfb: /* sti */
599 case 0x9c: /* pushfl */
600 case 0x9d: /* popf/popfd */
601 /*
602 * IF modifiers must be emulated since it will enable interrupt while
603 * int3 single stepping.
604 */
605 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
606 p->ainsn.opcode = opcode;
607 break;
608 case 0xc2: /* ret/lret */
609 case 0xc3:
610 case 0xca:
611 case 0xcb:
612 p->ainsn.emulate_op = kprobe_emulate_ret;
613 break;
614 case 0x9a: /* far call absolute -- segment is not supported */
615 case 0xea: /* far jmp absolute -- segment is not supported */
616 case 0xcc: /* int3 */
617 case 0xcf: /* iret -- in-kernel IRET is not supported */
618 return -EOPNOTSUPP;
619 break;
620 case 0xe8: /* near call relative */
621 p->ainsn.emulate_op = kprobe_emulate_call;
622 if (insn->immediate.nbytes == 2)
623 p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
624 else
625 p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
626 break;
627 case 0xeb: /* short jump relative */
628 case 0xe9: /* near jump relative */
629 p->ainsn.emulate_op = kprobe_emulate_jmp;
630 if (insn->immediate.nbytes == 1)
631 p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
632 else if (insn->immediate.nbytes == 2)
633 p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
634 else
635 p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
636 break;
637 case 0x70 ... 0x7f:
638 /* 1 byte conditional jump */
639 p->ainsn.emulate_op = kprobe_emulate_jcc;
640 p->ainsn.jcc.type = opcode & 0xf;
641 p->ainsn.rel32 = insn->immediate.value;
642 break;
643 case 0x0f:
644 opcode = insn->opcode.bytes[1];
645 if ((opcode & 0xf0) == 0x80) {
646 /* 2 bytes Conditional Jump */
647 p->ainsn.emulate_op = kprobe_emulate_jcc;
648 p->ainsn.jcc.type = opcode & 0xf;
649 if (insn->immediate.nbytes == 2)
650 p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
651 else
652 p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
653 } else if (opcode == 0x01 &&
654 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
655 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
656 /* VM extensions - not supported */
657 return -EOPNOTSUPP;
658 }
659 break;
660 case 0xe0: /* Loop NZ */
661 case 0xe1: /* Loop */
662 case 0xe2: /* Loop */
663 case 0xe3: /* J*CXZ */
664 p->ainsn.emulate_op = kprobe_emulate_loop;
665 p->ainsn.loop.type = opcode & 0x3;
666 p->ainsn.loop.asize = insn->addr_bytes * 8;
667 p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
668 break;
669 case 0xff:
670 /*
671 * Since the 0xff is an extended group opcode, the instruction
672 * is determined by the MOD/RM byte.
673 */
674 opcode = insn->modrm.bytes[0];
675 switch (X86_MODRM_REG(opcode)) {
676 case 0b010: /* FF /2, call near, absolute indirect */
677 p->ainsn.emulate_op = kprobe_emulate_call_indirect;
678 break;
679 case 0b100: /* FF /4, jmp near, absolute indirect */
680 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
681 break;
682 case 0b011: /* FF /3, call far, absolute indirect */
683 case 0b101: /* FF /5, jmp far, absolute indirect */
684 return -EOPNOTSUPP;
685 }
686
687 if (!p->ainsn.emulate_op)
688 break;
689
690 if (insn->addr_bytes != sizeof(unsigned long))
691 return -EOPNOTSUPP; /* Don't support different size */
692 if (X86_MODRM_MOD(opcode) != 3)
693 return -EOPNOTSUPP; /* TODO: support memory addressing */
694
695 p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
696#ifdef CONFIG_X86_64
697 if (X86_REX_B(insn->rex_prefix.value))
698 p->ainsn.indirect.reg += 8;
699#endif
700 break;
701 default:
702 break;
703 }
704 p->ainsn.size = insn->length;
705
706 return 0;
707}
708
709static int arch_copy_kprobe(struct kprobe *p)
710{
711 struct insn insn;
712 kprobe_opcode_t buf[MAX_INSN_SIZE];
713 int ret, len;
714
715 /* Copy an instruction with recovering if other optprobe modifies it.*/
716 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
717 if (!len)
718 return -EINVAL;
719
720 /* Analyze the opcode and setup emulate functions */
721 ret = prepare_emulation(p, &insn);
722 if (ret < 0)
723 return ret;
724
725 /* Add int3 for single-step or booster jmp */
726 len = prepare_singlestep(buf, p, &insn);
727 if (len < 0)
728 return len;
729
730 /* Also, displacement change doesn't affect the first byte */
731 p->opcode = buf[0];
732
733 p->ainsn.tp_len = len;
734 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
735
736 /* OK, write back the instruction(s) into ROX insn buffer */
737 text_poke(p->ainsn.insn, buf, len);
738
739 return 0;
740}
741
742int arch_prepare_kprobe(struct kprobe *p)
743{
744 int ret;
745
746 if (alternatives_text_reserved(p->addr, p->addr))
747 return -EINVAL;
748
749 if (!can_probe((unsigned long)p->addr))
750 return -EILSEQ;
751
752 memset(&p->ainsn, 0, sizeof(p->ainsn));
753
754 /* insn: must be on special executable page on x86. */
755 p->ainsn.insn = get_insn_slot();
756 if (!p->ainsn.insn)
757 return -ENOMEM;
758
759 ret = arch_copy_kprobe(p);
760 if (ret) {
761 free_insn_slot(p->ainsn.insn, 0);
762 p->ainsn.insn = NULL;
763 }
764
765 return ret;
766}
767
768void arch_arm_kprobe(struct kprobe *p)
769{
770 u8 int3 = INT3_INSN_OPCODE;
771
772 text_poke(p->addr, &int3, 1);
773 text_poke_sync();
774 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
775}
776
777void arch_disarm_kprobe(struct kprobe *p)
778{
779 u8 int3 = INT3_INSN_OPCODE;
780
781 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
782 text_poke(p->addr, &p->opcode, 1);
783 text_poke_sync();
784}
785
786void arch_remove_kprobe(struct kprobe *p)
787{
788 if (p->ainsn.insn) {
789 /* Record the perf event before freeing the slot */
790 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
791 p->ainsn.tp_len, NULL, 0);
792 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
793 p->ainsn.insn = NULL;
794 }
795}
796
797static nokprobe_inline void
798save_previous_kprobe(struct kprobe_ctlblk *kcb)
799{
800 kcb->prev_kprobe.kp = kprobe_running();
801 kcb->prev_kprobe.status = kcb->kprobe_status;
802 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
803 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
804}
805
806static nokprobe_inline void
807restore_previous_kprobe(struct kprobe_ctlblk *kcb)
808{
809 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
810 kcb->kprobe_status = kcb->prev_kprobe.status;
811 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
812 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
813}
814
815static nokprobe_inline void
816set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
817 struct kprobe_ctlblk *kcb)
818{
819 __this_cpu_write(current_kprobe, p);
820 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
821 = (regs->flags & X86_EFLAGS_IF);
822}
823
824static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
825 struct kprobe_ctlblk *kcb)
826{
827 /* Restore back the original saved kprobes variables and continue. */
828 if (kcb->kprobe_status == KPROBE_REENTER) {
829 /* This will restore both kcb and current_kprobe */
830 restore_previous_kprobe(kcb);
831 } else {
832 /*
833 * Always update the kcb status because
834 * reset_curent_kprobe() doesn't update kcb.
835 */
836 kcb->kprobe_status = KPROBE_HIT_SSDONE;
837 if (cur->post_handler)
838 cur->post_handler(cur, regs, 0);
839 reset_current_kprobe();
840 }
841}
842NOKPROBE_SYMBOL(kprobe_post_process);
843
844static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
845 struct kprobe_ctlblk *kcb, int reenter)
846{
847 if (setup_detour_execution(p, regs, reenter))
848 return;
849
850#if !defined(CONFIG_PREEMPTION)
851 if (p->ainsn.boostable) {
852 /* Boost up -- we can execute copied instructions directly */
853 if (!reenter)
854 reset_current_kprobe();
855 /*
856 * Reentering boosted probe doesn't reset current_kprobe,
857 * nor set current_kprobe, because it doesn't use single
858 * stepping.
859 */
860 regs->ip = (unsigned long)p->ainsn.insn;
861 return;
862 }
863#endif
864 if (reenter) {
865 save_previous_kprobe(kcb);
866 set_current_kprobe(p, regs, kcb);
867 kcb->kprobe_status = KPROBE_REENTER;
868 } else
869 kcb->kprobe_status = KPROBE_HIT_SS;
870
871 if (p->ainsn.emulate_op) {
872 p->ainsn.emulate_op(p, regs);
873 kprobe_post_process(p, regs, kcb);
874 return;
875 }
876
877 /* Disable interrupt, and set ip register on trampoline */
878 regs->flags &= ~X86_EFLAGS_IF;
879 regs->ip = (unsigned long)p->ainsn.insn;
880}
881NOKPROBE_SYMBOL(setup_singlestep);
882
883/*
884 * Called after single-stepping. p->addr is the address of the
885 * instruction whose first byte has been replaced by the "int3"
886 * instruction. To avoid the SMP problems that can occur when we
887 * temporarily put back the original opcode to single-step, we
888 * single-stepped a copy of the instruction. The address of this
889 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
890 * right after the copied instruction.
891 * Different from the trap single-step, "int3" single-step can not
892 * handle the instruction which changes the ip register, e.g. jmp,
893 * call, conditional jmp, and the instructions which changes the IF
894 * flags because interrupt must be disabled around the single-stepping.
895 * Such instructions are software emulated, but others are single-stepped
896 * using "int3".
897 *
898 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
899 * be adjusted, so that we can resume execution on correct code.
900 */
901static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
902 struct kprobe_ctlblk *kcb)
903{
904 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
905 unsigned long orig_ip = (unsigned long)p->addr;
906
907 /* Restore saved interrupt flag and ip register */
908 regs->flags |= kcb->kprobe_saved_flags;
909 /* Note that regs->ip is executed int3 so must be a step back */
910 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
911}
912NOKPROBE_SYMBOL(resume_singlestep);
913
914/*
915 * We have reentered the kprobe_handler(), since another probe was hit while
916 * within the handler. We save the original kprobes variables and just single
917 * step on the instruction of the new probe without calling any user handlers.
918 */
919static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
920 struct kprobe_ctlblk *kcb)
921{
922 switch (kcb->kprobe_status) {
923 case KPROBE_HIT_SSDONE:
924 case KPROBE_HIT_ACTIVE:
925 case KPROBE_HIT_SS:
926 kprobes_inc_nmissed_count(p);
927 setup_singlestep(p, regs, kcb, 1);
928 break;
929 case KPROBE_REENTER:
930 /* A probe has been hit in the codepath leading up to, or just
931 * after, single-stepping of a probed instruction. This entire
932 * codepath should strictly reside in .kprobes.text section.
933 * Raise a BUG or we'll continue in an endless reentering loop
934 * and eventually a stack overflow.
935 */
936 pr_err("Unrecoverable kprobe detected.\n");
937 dump_kprobe(p);
938 BUG();
939 default:
940 /* impossible cases */
941 WARN_ON(1);
942 return 0;
943 }
944
945 return 1;
946}
947NOKPROBE_SYMBOL(reenter_kprobe);
948
949static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
950{
951 return (kcb->kprobe_status == KPROBE_HIT_SS ||
952 kcb->kprobe_status == KPROBE_REENTER);
953}
954
955/*
956 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
957 * remain disabled throughout this function.
958 */
959int kprobe_int3_handler(struct pt_regs *regs)
960{
961 kprobe_opcode_t *addr;
962 struct kprobe *p;
963 struct kprobe_ctlblk *kcb;
964
965 if (user_mode(regs))
966 return 0;
967
968 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
969 /*
970 * We don't want to be preempted for the entire duration of kprobe
971 * processing. Since int3 and debug trap disables irqs and we clear
972 * IF while singlestepping, it must be no preemptible.
973 */
974
975 kcb = get_kprobe_ctlblk();
976 p = get_kprobe(addr);
977
978 if (p) {
979 if (kprobe_running()) {
980 if (reenter_kprobe(p, regs, kcb))
981 return 1;
982 } else {
983 set_current_kprobe(p, regs, kcb);
984 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
985
986 /*
987 * If we have no pre-handler or it returned 0, we
988 * continue with normal processing. If we have a
989 * pre-handler and it returned non-zero, that means
990 * user handler setup registers to exit to another
991 * instruction, we must skip the single stepping.
992 */
993 if (!p->pre_handler || !p->pre_handler(p, regs))
994 setup_singlestep(p, regs, kcb, 0);
995 else
996 reset_current_kprobe();
997 return 1;
998 }
999 } else if (kprobe_is_ss(kcb)) {
1000 p = kprobe_running();
1001 if ((unsigned long)p->ainsn.insn < regs->ip &&
1002 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
1003 /* Most provably this is the second int3 for singlestep */
1004 resume_singlestep(p, regs, kcb);
1005 kprobe_post_process(p, regs, kcb);
1006 return 1;
1007 }
1008 } /* else: not a kprobe fault; let the kernel handle it */
1009
1010 return 0;
1011}
1012NOKPROBE_SYMBOL(kprobe_int3_handler);
1013
1014int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1015{
1016 struct kprobe *cur = kprobe_running();
1017 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1018
1019 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1020 /* This must happen on single-stepping */
1021 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1022 kcb->kprobe_status != KPROBE_REENTER);
1023 /*
1024 * We are here because the instruction being single
1025 * stepped caused a page fault. We reset the current
1026 * kprobe and the ip points back to the probe address
1027 * and allow the page fault handler to continue as a
1028 * normal page fault.
1029 */
1030 regs->ip = (unsigned long)cur->addr;
1031
1032 /*
1033 * If the IF flag was set before the kprobe hit,
1034 * don't touch it:
1035 */
1036 regs->flags |= kcb->kprobe_old_flags;
1037
1038 if (kcb->kprobe_status == KPROBE_REENTER)
1039 restore_previous_kprobe(kcb);
1040 else
1041 reset_current_kprobe();
1042 }
1043
1044 return 0;
1045}
1046NOKPROBE_SYMBOL(kprobe_fault_handler);
1047
1048int __init arch_populate_kprobe_blacklist(void)
1049{
1050 return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1051 (unsigned long)__entry_text_end);
1052}
1053
1054int __init arch_init_kprobes(void)
1055{
1056 return 0;
1057}
1058
1059int arch_trampoline_kprobe(struct kprobe *p)
1060{
1061 return 0;
1062}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation ( includes contributions from
9 * Rusty Russell).
10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11 * interface to access function arguments.
12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
14 * 2005-Mar Roland McGrath <roland@redhat.com>
15 * Fixed to handle %rip-relative addressing mode correctly.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
20 * Added function return probes functionality
21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22 * kprobe-booster and kretprobe-booster for i386.
23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24 * and kretprobe-booster for x86-64
25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27 * unified x86 kprobes code.
28 */
29#include <linux/kprobes.h>
30#include <linux/ptrace.h>
31#include <linux/string.h>
32#include <linux/slab.h>
33#include <linux/hardirq.h>
34#include <linux/preempt.h>
35#include <linux/sched/debug.h>
36#include <linux/extable.h>
37#include <linux/kdebug.h>
38#include <linux/kallsyms.h>
39#include <linux/ftrace.h>
40#include <linux/frame.h>
41#include <linux/kasan.h>
42#include <linux/moduleloader.h>
43
44#include <asm/text-patching.h>
45#include <asm/cacheflush.h>
46#include <asm/desc.h>
47#include <asm/pgtable.h>
48#include <linux/uaccess.h>
49#include <asm/alternative.h>
50#include <asm/insn.h>
51#include <asm/debugreg.h>
52#include <asm/set_memory.h>
53
54#include "common.h"
55
56DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
57DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
58
59#define stack_addr(regs) ((unsigned long *)regs->sp)
60
61#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
66 << (row % 32))
67 /*
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not boost.
70 * This is non-const and volatile to keep gcc from statically
71 * optimizing it out, as variable_test_bit makes gcc think only
72 * *(unsigned long*) is used.
73 */
74static volatile u32 twobyte_is_boostable[256 / 32] = {
75 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
76 /* ---------------------------------------------- */
77 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
78 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
79 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
80 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
81 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
82 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
83 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
84 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
85 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
86 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
87 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
88 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
89 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
90 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
91 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
92 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
93 /* ----------------------------------------------- */
94 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
95};
96#undef W
97
98struct kretprobe_blackpoint kretprobe_blacklist[] = {
99 {"__switch_to", }, /* This function switches only current task, but
100 doesn't switch kernel stack.*/
101 {NULL, NULL} /* Terminator */
102};
103
104const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
105
106static nokprobe_inline void
107__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
108{
109 struct __arch_relative_insn {
110 u8 op;
111 s32 raddr;
112 } __packed *insn;
113
114 insn = (struct __arch_relative_insn *)dest;
115 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
116 insn->op = op;
117}
118
119/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
120void synthesize_reljump(void *dest, void *from, void *to)
121{
122 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
123}
124NOKPROBE_SYMBOL(synthesize_reljump);
125
126/* Insert a call instruction at address 'from', which calls address 'to'.*/
127void synthesize_relcall(void *dest, void *from, void *to)
128{
129 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
130}
131NOKPROBE_SYMBOL(synthesize_relcall);
132
133/*
134 * Skip the prefixes of the instruction.
135 */
136static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
137{
138 insn_attr_t attr;
139
140 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
141 while (inat_is_legacy_prefix(attr)) {
142 insn++;
143 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
144 }
145#ifdef CONFIG_X86_64
146 if (inat_is_rex_prefix(attr))
147 insn++;
148#endif
149 return insn;
150}
151NOKPROBE_SYMBOL(skip_prefixes);
152
153/*
154 * Returns non-zero if INSN is boostable.
155 * RIP relative instructions are adjusted at copying time in 64 bits mode
156 */
157int can_boost(struct insn *insn, void *addr)
158{
159 kprobe_opcode_t opcode;
160
161 if (search_exception_tables((unsigned long)addr))
162 return 0; /* Page fault may occur on this address. */
163
164 /* 2nd-byte opcode */
165 if (insn->opcode.nbytes == 2)
166 return test_bit(insn->opcode.bytes[1],
167 (unsigned long *)twobyte_is_boostable);
168
169 if (insn->opcode.nbytes != 1)
170 return 0;
171
172 /* Can't boost Address-size override prefix */
173 if (unlikely(inat_is_address_size_prefix(insn->attr)))
174 return 0;
175
176 opcode = insn->opcode.bytes[0];
177
178 switch (opcode & 0xf0) {
179 case 0x60:
180 /* can't boost "bound" */
181 return (opcode != 0x62);
182 case 0x70:
183 return 0; /* can't boost conditional jump */
184 case 0x90:
185 return opcode != 0x9a; /* can't boost call far */
186 case 0xc0:
187 /* can't boost software-interruptions */
188 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
189 case 0xd0:
190 /* can boost AA* and XLAT */
191 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
192 case 0xe0:
193 /* can boost in/out and absolute jmps */
194 return ((opcode & 0x04) || opcode == 0xea);
195 case 0xf0:
196 /* clear and set flags are boostable */
197 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 default:
199 /* CS override prefix and call are not boostable */
200 return (opcode != 0x2e && opcode != 0x9a);
201 }
202}
203
204static unsigned long
205__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
206{
207 struct kprobe *kp;
208 unsigned long faddr;
209
210 kp = get_kprobe((void *)addr);
211 faddr = ftrace_location(addr);
212 /*
213 * Addresses inside the ftrace location are refused by
214 * arch_check_ftrace_location(). Something went terribly wrong
215 * if such an address is checked here.
216 */
217 if (WARN_ON(faddr && faddr != addr))
218 return 0UL;
219 /*
220 * Use the current code if it is not modified by Kprobe
221 * and it cannot be modified by ftrace.
222 */
223 if (!kp && !faddr)
224 return addr;
225
226 /*
227 * Basically, kp->ainsn.insn has an original instruction.
228 * However, RIP-relative instruction can not do single-stepping
229 * at different place, __copy_instruction() tweaks the displacement of
230 * that instruction. In that case, we can't recover the instruction
231 * from the kp->ainsn.insn.
232 *
233 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
234 * of the first byte of the probed instruction, which is overwritten
235 * by int3. And the instruction at kp->addr is not modified by kprobes
236 * except for the first byte, we can recover the original instruction
237 * from it and kp->opcode.
238 *
239 * In case of Kprobes using ftrace, we do not have a copy of
240 * the original instruction. In fact, the ftrace location might
241 * be modified at anytime and even could be in an inconsistent state.
242 * Fortunately, we know that the original code is the ideal 5-byte
243 * long NOP.
244 */
245 if (probe_kernel_read(buf, (void *)addr,
246 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
247 return 0UL;
248
249 if (faddr)
250 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
251 else
252 buf[0] = kp->opcode;
253 return (unsigned long)buf;
254}
255
256/*
257 * Recover the probed instruction at addr for further analysis.
258 * Caller must lock kprobes by kprobe_mutex, or disable preemption
259 * for preventing to release referencing kprobes.
260 * Returns zero if the instruction can not get recovered (or access failed).
261 */
262unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
263{
264 unsigned long __addr;
265
266 __addr = __recover_optprobed_insn(buf, addr);
267 if (__addr != addr)
268 return __addr;
269
270 return __recover_probed_insn(buf, addr);
271}
272
273/* Check if paddr is at an instruction boundary */
274static int can_probe(unsigned long paddr)
275{
276 unsigned long addr, __addr, offset = 0;
277 struct insn insn;
278 kprobe_opcode_t buf[MAX_INSN_SIZE];
279
280 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
281 return 0;
282
283 /* Decode instructions */
284 addr = paddr - offset;
285 while (addr < paddr) {
286 /*
287 * Check if the instruction has been modified by another
288 * kprobe, in which case we replace the breakpoint by the
289 * original instruction in our buffer.
290 * Also, jump optimization will change the breakpoint to
291 * relative-jump. Since the relative-jump itself is
292 * normally used, we just go through if there is no kprobe.
293 */
294 __addr = recover_probed_instruction(buf, addr);
295 if (!__addr)
296 return 0;
297 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
298 insn_get_length(&insn);
299
300 /*
301 * Another debugging subsystem might insert this breakpoint.
302 * In that case, we can't recover it.
303 */
304 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
305 return 0;
306 addr += insn.length;
307 }
308
309 return (addr == paddr);
310}
311
312/*
313 * Returns non-zero if opcode modifies the interrupt flag.
314 */
315static int is_IF_modifier(kprobe_opcode_t *insn)
316{
317 /* Skip prefixes */
318 insn = skip_prefixes(insn);
319
320 switch (*insn) {
321 case 0xfa: /* cli */
322 case 0xfb: /* sti */
323 case 0xcf: /* iret/iretd */
324 case 0x9d: /* popf/popfd */
325 return 1;
326 }
327
328 return 0;
329}
330
331/*
332 * Copy an instruction with recovering modified instruction by kprobes
333 * and adjust the displacement if the instruction uses the %rip-relative
334 * addressing mode. Note that since @real will be the final place of copied
335 * instruction, displacement must be adjust by @real, not @dest.
336 * This returns the length of copied instruction, or 0 if it has an error.
337 */
338int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
339{
340 kprobe_opcode_t buf[MAX_INSN_SIZE];
341 unsigned long recovered_insn =
342 recover_probed_instruction(buf, (unsigned long)src);
343
344 if (!recovered_insn || !insn)
345 return 0;
346
347 /* This can access kernel text if given address is not recovered */
348 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
349 return 0;
350
351 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
352 insn_get_length(insn);
353
354 /* Another subsystem puts a breakpoint, failed to recover */
355 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
356 return 0;
357
358 /* We should not singlestep on the exception masking instructions */
359 if (insn_masking_exception(insn))
360 return 0;
361
362#ifdef CONFIG_X86_64
363 /* Only x86_64 has RIP relative instructions */
364 if (insn_rip_relative(insn)) {
365 s64 newdisp;
366 u8 *disp;
367 /*
368 * The copied instruction uses the %rip-relative addressing
369 * mode. Adjust the displacement for the difference between
370 * the original location of this instruction and the location
371 * of the copy that will actually be run. The tricky bit here
372 * is making sure that the sign extension happens correctly in
373 * this calculation, since we need a signed 32-bit result to
374 * be sign-extended to 64 bits when it's added to the %rip
375 * value and yield the same 64-bit result that the sign-
376 * extension of the original signed 32-bit displacement would
377 * have given.
378 */
379 newdisp = (u8 *) src + (s64) insn->displacement.value
380 - (u8 *) real;
381 if ((s64) (s32) newdisp != newdisp) {
382 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
383 return 0;
384 }
385 disp = (u8 *) dest + insn_offset_displacement(insn);
386 *(s32 *) disp = (s32) newdisp;
387 }
388#endif
389 return insn->length;
390}
391
392/* Prepare reljump right after instruction to boost */
393static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
394 struct insn *insn)
395{
396 int len = insn->length;
397
398 if (can_boost(insn, p->addr) &&
399 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
400 /*
401 * These instructions can be executed directly if it
402 * jumps back to correct address.
403 */
404 synthesize_reljump(buf + len, p->ainsn.insn + len,
405 p->addr + insn->length);
406 len += RELATIVEJUMP_SIZE;
407 p->ainsn.boostable = true;
408 } else {
409 p->ainsn.boostable = false;
410 }
411
412 return len;
413}
414
415/* Make page to RO mode when allocate it */
416void *alloc_insn_page(void)
417{
418 void *page;
419
420 page = module_alloc(PAGE_SIZE);
421 if (!page)
422 return NULL;
423
424 set_vm_flush_reset_perms(page);
425 /*
426 * First make the page read-only, and only then make it executable to
427 * prevent it from being W+X in between.
428 */
429 set_memory_ro((unsigned long)page, 1);
430
431 /*
432 * TODO: Once additional kernel code protection mechanisms are set, ensure
433 * that the page was not maliciously altered and it is still zeroed.
434 */
435 set_memory_x((unsigned long)page, 1);
436
437 return page;
438}
439
440/* Recover page to RW mode before releasing it */
441void free_insn_page(void *page)
442{
443 module_memfree(page);
444}
445
446static int arch_copy_kprobe(struct kprobe *p)
447{
448 struct insn insn;
449 kprobe_opcode_t buf[MAX_INSN_SIZE];
450 int len;
451
452 /* Copy an instruction with recovering if other optprobe modifies it.*/
453 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
454 if (!len)
455 return -EINVAL;
456
457 /*
458 * __copy_instruction can modify the displacement of the instruction,
459 * but it doesn't affect boostable check.
460 */
461 len = prepare_boost(buf, p, &insn);
462
463 /* Check whether the instruction modifies Interrupt Flag or not */
464 p->ainsn.if_modifier = is_IF_modifier(buf);
465
466 /* Also, displacement change doesn't affect the first byte */
467 p->opcode = buf[0];
468
469 /* OK, write back the instruction(s) into ROX insn buffer */
470 text_poke(p->ainsn.insn, buf, len);
471
472 return 0;
473}
474
475int arch_prepare_kprobe(struct kprobe *p)
476{
477 int ret;
478
479 if (alternatives_text_reserved(p->addr, p->addr))
480 return -EINVAL;
481
482 if (!can_probe((unsigned long)p->addr))
483 return -EILSEQ;
484 /* insn: must be on special executable page on x86. */
485 p->ainsn.insn = get_insn_slot();
486 if (!p->ainsn.insn)
487 return -ENOMEM;
488
489 ret = arch_copy_kprobe(p);
490 if (ret) {
491 free_insn_slot(p->ainsn.insn, 0);
492 p->ainsn.insn = NULL;
493 }
494
495 return ret;
496}
497
498void arch_arm_kprobe(struct kprobe *p)
499{
500 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
501}
502
503void arch_disarm_kprobe(struct kprobe *p)
504{
505 text_poke(p->addr, &p->opcode, 1);
506}
507
508void arch_remove_kprobe(struct kprobe *p)
509{
510 if (p->ainsn.insn) {
511 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
512 p->ainsn.insn = NULL;
513 }
514}
515
516static nokprobe_inline void
517save_previous_kprobe(struct kprobe_ctlblk *kcb)
518{
519 kcb->prev_kprobe.kp = kprobe_running();
520 kcb->prev_kprobe.status = kcb->kprobe_status;
521 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
522 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
523}
524
525static nokprobe_inline void
526restore_previous_kprobe(struct kprobe_ctlblk *kcb)
527{
528 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
529 kcb->kprobe_status = kcb->prev_kprobe.status;
530 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
531 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
532}
533
534static nokprobe_inline void
535set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
536 struct kprobe_ctlblk *kcb)
537{
538 __this_cpu_write(current_kprobe, p);
539 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
540 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
541 if (p->ainsn.if_modifier)
542 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
543}
544
545static nokprobe_inline void clear_btf(void)
546{
547 if (test_thread_flag(TIF_BLOCKSTEP)) {
548 unsigned long debugctl = get_debugctlmsr();
549
550 debugctl &= ~DEBUGCTLMSR_BTF;
551 update_debugctlmsr(debugctl);
552 }
553}
554
555static nokprobe_inline void restore_btf(void)
556{
557 if (test_thread_flag(TIF_BLOCKSTEP)) {
558 unsigned long debugctl = get_debugctlmsr();
559
560 debugctl |= DEBUGCTLMSR_BTF;
561 update_debugctlmsr(debugctl);
562 }
563}
564
565void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
566{
567 unsigned long *sara = stack_addr(regs);
568
569 ri->ret_addr = (kprobe_opcode_t *) *sara;
570 ri->fp = sara;
571
572 /* Replace the return addr with trampoline addr */
573 *sara = (unsigned long) &kretprobe_trampoline;
574}
575NOKPROBE_SYMBOL(arch_prepare_kretprobe);
576
577static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
578 struct kprobe_ctlblk *kcb, int reenter)
579{
580 if (setup_detour_execution(p, regs, reenter))
581 return;
582
583#if !defined(CONFIG_PREEMPTION)
584 if (p->ainsn.boostable && !p->post_handler) {
585 /* Boost up -- we can execute copied instructions directly */
586 if (!reenter)
587 reset_current_kprobe();
588 /*
589 * Reentering boosted probe doesn't reset current_kprobe,
590 * nor set current_kprobe, because it doesn't use single
591 * stepping.
592 */
593 regs->ip = (unsigned long)p->ainsn.insn;
594 return;
595 }
596#endif
597 if (reenter) {
598 save_previous_kprobe(kcb);
599 set_current_kprobe(p, regs, kcb);
600 kcb->kprobe_status = KPROBE_REENTER;
601 } else
602 kcb->kprobe_status = KPROBE_HIT_SS;
603 /* Prepare real single stepping */
604 clear_btf();
605 regs->flags |= X86_EFLAGS_TF;
606 regs->flags &= ~X86_EFLAGS_IF;
607 /* single step inline if the instruction is an int3 */
608 if (p->opcode == BREAKPOINT_INSTRUCTION)
609 regs->ip = (unsigned long)p->addr;
610 else
611 regs->ip = (unsigned long)p->ainsn.insn;
612}
613NOKPROBE_SYMBOL(setup_singlestep);
614
615/*
616 * We have reentered the kprobe_handler(), since another probe was hit while
617 * within the handler. We save the original kprobes variables and just single
618 * step on the instruction of the new probe without calling any user handlers.
619 */
620static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
621 struct kprobe_ctlblk *kcb)
622{
623 switch (kcb->kprobe_status) {
624 case KPROBE_HIT_SSDONE:
625 case KPROBE_HIT_ACTIVE:
626 case KPROBE_HIT_SS:
627 kprobes_inc_nmissed_count(p);
628 setup_singlestep(p, regs, kcb, 1);
629 break;
630 case KPROBE_REENTER:
631 /* A probe has been hit in the codepath leading up to, or just
632 * after, single-stepping of a probed instruction. This entire
633 * codepath should strictly reside in .kprobes.text section.
634 * Raise a BUG or we'll continue in an endless reentering loop
635 * and eventually a stack overflow.
636 */
637 pr_err("Unrecoverable kprobe detected.\n");
638 dump_kprobe(p);
639 BUG();
640 default:
641 /* impossible cases */
642 WARN_ON(1);
643 return 0;
644 }
645
646 return 1;
647}
648NOKPROBE_SYMBOL(reenter_kprobe);
649
650/*
651 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
652 * remain disabled throughout this function.
653 */
654int kprobe_int3_handler(struct pt_regs *regs)
655{
656 kprobe_opcode_t *addr;
657 struct kprobe *p;
658 struct kprobe_ctlblk *kcb;
659
660 if (user_mode(regs))
661 return 0;
662
663 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
664 /*
665 * We don't want to be preempted for the entire duration of kprobe
666 * processing. Since int3 and debug trap disables irqs and we clear
667 * IF while singlestepping, it must be no preemptible.
668 */
669
670 kcb = get_kprobe_ctlblk();
671 p = get_kprobe(addr);
672
673 if (p) {
674 if (kprobe_running()) {
675 if (reenter_kprobe(p, regs, kcb))
676 return 1;
677 } else {
678 set_current_kprobe(p, regs, kcb);
679 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
680
681 /*
682 * If we have no pre-handler or it returned 0, we
683 * continue with normal processing. If we have a
684 * pre-handler and it returned non-zero, that means
685 * user handler setup registers to exit to another
686 * instruction, we must skip the single stepping.
687 */
688 if (!p->pre_handler || !p->pre_handler(p, regs))
689 setup_singlestep(p, regs, kcb, 0);
690 else
691 reset_current_kprobe();
692 return 1;
693 }
694 } else if (*addr != BREAKPOINT_INSTRUCTION) {
695 /*
696 * The breakpoint instruction was removed right
697 * after we hit it. Another cpu has removed
698 * either a probepoint or a debugger breakpoint
699 * at this address. In either case, no further
700 * handling of this interrupt is appropriate.
701 * Back up over the (now missing) int3 and run
702 * the original instruction.
703 */
704 regs->ip = (unsigned long)addr;
705 return 1;
706 } /* else: not a kprobe fault; let the kernel handle it */
707
708 return 0;
709}
710NOKPROBE_SYMBOL(kprobe_int3_handler);
711
712/*
713 * When a retprobed function returns, this code saves registers and
714 * calls trampoline_handler() runs, which calls the kretprobe's handler.
715 */
716asm(
717 ".text\n"
718 ".global kretprobe_trampoline\n"
719 ".type kretprobe_trampoline, @function\n"
720 "kretprobe_trampoline:\n"
721 /* We don't bother saving the ss register */
722#ifdef CONFIG_X86_64
723 " pushq %rsp\n"
724 " pushfq\n"
725 SAVE_REGS_STRING
726 " movq %rsp, %rdi\n"
727 " call trampoline_handler\n"
728 /* Replace saved sp with true return address. */
729 " movq %rax, 19*8(%rsp)\n"
730 RESTORE_REGS_STRING
731 " popfq\n"
732#else
733 " pushl %esp\n"
734 " pushfl\n"
735 SAVE_REGS_STRING
736 " movl %esp, %eax\n"
737 " call trampoline_handler\n"
738 /* Replace saved sp with true return address. */
739 " movl %eax, 15*4(%esp)\n"
740 RESTORE_REGS_STRING
741 " popfl\n"
742#endif
743 " ret\n"
744 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
745);
746NOKPROBE_SYMBOL(kretprobe_trampoline);
747STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
748
749static struct kprobe kretprobe_kprobe = {
750 .addr = (void *)kretprobe_trampoline,
751};
752
753/*
754 * Called from kretprobe_trampoline
755 */
756__used __visible void *trampoline_handler(struct pt_regs *regs)
757{
758 struct kprobe_ctlblk *kcb;
759 struct kretprobe_instance *ri = NULL;
760 struct hlist_head *head, empty_rp;
761 struct hlist_node *tmp;
762 unsigned long flags, orig_ret_address = 0;
763 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
764 kprobe_opcode_t *correct_ret_addr = NULL;
765 void *frame_pointer;
766 bool skipped = false;
767
768 preempt_disable();
769
770 /*
771 * Set a dummy kprobe for avoiding kretprobe recursion.
772 * Since kretprobe never run in kprobe handler, kprobe must not
773 * be running at this point.
774 */
775 kcb = get_kprobe_ctlblk();
776 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
777 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
778
779 INIT_HLIST_HEAD(&empty_rp);
780 kretprobe_hash_lock(current, &head, &flags);
781 /* fixup registers */
782 regs->cs = __KERNEL_CS;
783#ifdef CONFIG_X86_32
784 regs->cs |= get_kernel_rpl();
785 regs->gs = 0;
786#endif
787 /* We use pt_regs->sp for return address holder. */
788 frame_pointer = ®s->sp;
789 regs->ip = trampoline_address;
790 regs->orig_ax = ~0UL;
791
792 /*
793 * It is possible to have multiple instances associated with a given
794 * task either because multiple functions in the call path have
795 * return probes installed on them, and/or more than one
796 * return probe was registered for a target function.
797 *
798 * We can handle this because:
799 * - instances are always pushed into the head of the list
800 * - when multiple return probes are registered for the same
801 * function, the (chronologically) first instance's ret_addr
802 * will be the real return address, and all the rest will
803 * point to kretprobe_trampoline.
804 */
805 hlist_for_each_entry(ri, head, hlist) {
806 if (ri->task != current)
807 /* another task is sharing our hash bucket */
808 continue;
809 /*
810 * Return probes must be pushed on this hash list correct
811 * order (same as return order) so that it can be popped
812 * correctly. However, if we find it is pushed it incorrect
813 * order, this means we find a function which should not be
814 * probed, because the wrong order entry is pushed on the
815 * path of processing other kretprobe itself.
816 */
817 if (ri->fp != frame_pointer) {
818 if (!skipped)
819 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
820 skipped = true;
821 continue;
822 }
823
824 orig_ret_address = (unsigned long)ri->ret_addr;
825 if (skipped)
826 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
827 ri->rp->kp.addr);
828
829 if (orig_ret_address != trampoline_address)
830 /*
831 * This is the real return address. Any other
832 * instances associated with this task are for
833 * other calls deeper on the call stack
834 */
835 break;
836 }
837
838 kretprobe_assert(ri, orig_ret_address, trampoline_address);
839
840 correct_ret_addr = ri->ret_addr;
841 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
842 if (ri->task != current)
843 /* another task is sharing our hash bucket */
844 continue;
845 if (ri->fp != frame_pointer)
846 continue;
847
848 orig_ret_address = (unsigned long)ri->ret_addr;
849 if (ri->rp && ri->rp->handler) {
850 __this_cpu_write(current_kprobe, &ri->rp->kp);
851 ri->ret_addr = correct_ret_addr;
852 ri->rp->handler(ri, regs);
853 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
854 }
855
856 recycle_rp_inst(ri, &empty_rp);
857
858 if (orig_ret_address != trampoline_address)
859 /*
860 * This is the real return address. Any other
861 * instances associated with this task are for
862 * other calls deeper on the call stack
863 */
864 break;
865 }
866
867 kretprobe_hash_unlock(current, &flags);
868
869 __this_cpu_write(current_kprobe, NULL);
870 preempt_enable();
871
872 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
873 hlist_del(&ri->hlist);
874 kfree(ri);
875 }
876 return (void *)orig_ret_address;
877}
878NOKPROBE_SYMBOL(trampoline_handler);
879
880/*
881 * Called after single-stepping. p->addr is the address of the
882 * instruction whose first byte has been replaced by the "int 3"
883 * instruction. To avoid the SMP problems that can occur when we
884 * temporarily put back the original opcode to single-step, we
885 * single-stepped a copy of the instruction. The address of this
886 * copy is p->ainsn.insn.
887 *
888 * This function prepares to return from the post-single-step
889 * interrupt. We have to fix up the stack as follows:
890 *
891 * 0) Except in the case of absolute or indirect jump or call instructions,
892 * the new ip is relative to the copied instruction. We need to make
893 * it relative to the original instruction.
894 *
895 * 1) If the single-stepped instruction was pushfl, then the TF and IF
896 * flags are set in the just-pushed flags, and may need to be cleared.
897 *
898 * 2) If the single-stepped instruction was a call, the return address
899 * that is atop the stack is the address following the copied instruction.
900 * We need to make it the address following the original instruction.
901 *
902 * If this is the first time we've single-stepped the instruction at
903 * this probepoint, and the instruction is boostable, boost it: add a
904 * jump instruction after the copied instruction, that jumps to the next
905 * instruction after the probepoint.
906 */
907static void resume_execution(struct kprobe *p, struct pt_regs *regs,
908 struct kprobe_ctlblk *kcb)
909{
910 unsigned long *tos = stack_addr(regs);
911 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
912 unsigned long orig_ip = (unsigned long)p->addr;
913 kprobe_opcode_t *insn = p->ainsn.insn;
914
915 /* Skip prefixes */
916 insn = skip_prefixes(insn);
917
918 regs->flags &= ~X86_EFLAGS_TF;
919 switch (*insn) {
920 case 0x9c: /* pushfl */
921 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
922 *tos |= kcb->kprobe_old_flags;
923 break;
924 case 0xc2: /* iret/ret/lret */
925 case 0xc3:
926 case 0xca:
927 case 0xcb:
928 case 0xcf:
929 case 0xea: /* jmp absolute -- ip is correct */
930 /* ip is already adjusted, no more changes required */
931 p->ainsn.boostable = true;
932 goto no_change;
933 case 0xe8: /* call relative - Fix return addr */
934 *tos = orig_ip + (*tos - copy_ip);
935 break;
936#ifdef CONFIG_X86_32
937 case 0x9a: /* call absolute -- same as call absolute, indirect */
938 *tos = orig_ip + (*tos - copy_ip);
939 goto no_change;
940#endif
941 case 0xff:
942 if ((insn[1] & 0x30) == 0x10) {
943 /*
944 * call absolute, indirect
945 * Fix return addr; ip is correct.
946 * But this is not boostable
947 */
948 *tos = orig_ip + (*tos - copy_ip);
949 goto no_change;
950 } else if (((insn[1] & 0x31) == 0x20) ||
951 ((insn[1] & 0x31) == 0x21)) {
952 /*
953 * jmp near and far, absolute indirect
954 * ip is correct. And this is boostable
955 */
956 p->ainsn.boostable = true;
957 goto no_change;
958 }
959 default:
960 break;
961 }
962
963 regs->ip += orig_ip - copy_ip;
964
965no_change:
966 restore_btf();
967}
968NOKPROBE_SYMBOL(resume_execution);
969
970/*
971 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
972 * remain disabled throughout this function.
973 */
974int kprobe_debug_handler(struct pt_regs *regs)
975{
976 struct kprobe *cur = kprobe_running();
977 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
978
979 if (!cur)
980 return 0;
981
982 resume_execution(cur, regs, kcb);
983 regs->flags |= kcb->kprobe_saved_flags;
984
985 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
986 kcb->kprobe_status = KPROBE_HIT_SSDONE;
987 cur->post_handler(cur, regs, 0);
988 }
989
990 /* Restore back the original saved kprobes variables and continue. */
991 if (kcb->kprobe_status == KPROBE_REENTER) {
992 restore_previous_kprobe(kcb);
993 goto out;
994 }
995 reset_current_kprobe();
996out:
997 /*
998 * if somebody else is singlestepping across a probe point, flags
999 * will have TF set, in which case, continue the remaining processing
1000 * of do_debug, as if this is not a probe hit.
1001 */
1002 if (regs->flags & X86_EFLAGS_TF)
1003 return 0;
1004
1005 return 1;
1006}
1007NOKPROBE_SYMBOL(kprobe_debug_handler);
1008
1009int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1010{
1011 struct kprobe *cur = kprobe_running();
1012 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1013
1014 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1015 /* This must happen on single-stepping */
1016 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1017 kcb->kprobe_status != KPROBE_REENTER);
1018 /*
1019 * We are here because the instruction being single
1020 * stepped caused a page fault. We reset the current
1021 * kprobe and the ip points back to the probe address
1022 * and allow the page fault handler to continue as a
1023 * normal page fault.
1024 */
1025 regs->ip = (unsigned long)cur->addr;
1026 /*
1027 * Trap flag (TF) has been set here because this fault
1028 * happened where the single stepping will be done.
1029 * So clear it by resetting the current kprobe:
1030 */
1031 regs->flags &= ~X86_EFLAGS_TF;
1032
1033 /*
1034 * If the TF flag was set before the kprobe hit,
1035 * don't touch it:
1036 */
1037 regs->flags |= kcb->kprobe_old_flags;
1038
1039 if (kcb->kprobe_status == KPROBE_REENTER)
1040 restore_previous_kprobe(kcb);
1041 else
1042 reset_current_kprobe();
1043 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1044 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1045 /*
1046 * We increment the nmissed count for accounting,
1047 * we can also use npre/npostfault count for accounting
1048 * these specific fault cases.
1049 */
1050 kprobes_inc_nmissed_count(cur);
1051
1052 /*
1053 * We come here because instructions in the pre/post
1054 * handler caused the page_fault, this could happen
1055 * if handler tries to access user space by
1056 * copy_from_user(), get_user() etc. Let the
1057 * user-specified handler try to fix it first.
1058 */
1059 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1060 return 1;
1061 }
1062
1063 return 0;
1064}
1065NOKPROBE_SYMBOL(kprobe_fault_handler);
1066
1067int __init arch_populate_kprobe_blacklist(void)
1068{
1069 int ret;
1070
1071 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1072 (unsigned long)__irqentry_text_end);
1073 if (ret)
1074 return ret;
1075
1076 return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1077 (unsigned long)__entry_text_end);
1078}
1079
1080int __init arch_init_kprobes(void)
1081{
1082 return 0;
1083}
1084
1085int arch_trampoline_kprobe(struct kprobe *p)
1086{
1087 return 0;
1088}