Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * S390 kdump implementation
  4 *
  5 * Copyright IBM Corp. 2011
  6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  7 */
  8
  9#include <linux/crash_dump.h>
 10#include <asm/lowcore.h>
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/mm.h>
 14#include <linux/gfp.h>
 15#include <linux/slab.h>
 16#include <linux/memblock.h>
 17#include <linux/elf.h>
 18#include <linux/uio.h>
 19#include <asm/asm-offsets.h>
 20#include <asm/os_info.h>
 21#include <asm/elf.h>
 22#include <asm/ipl.h>
 23#include <asm/sclp.h>
 24#include <asm/maccess.h>
 25#include <asm/fpu/api.h>
 26
 27#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
 28#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
 29#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
 30
 31static struct memblock_region oldmem_region;
 32
 33static struct memblock_type oldmem_type = {
 34	.cnt = 1,
 35	.max = 1,
 36	.total_size = 0,
 37	.regions = &oldmem_region,
 38	.name = "oldmem",
 39};
 40
 41struct save_area {
 42	struct list_head list;
 43	u64 psw[2];
 44	u64 ctrs[16];
 45	u64 gprs[16];
 46	u32 acrs[16];
 47	u64 fprs[16];
 48	u32 fpc;
 49	u32 prefix;
 50	u32 todpreg;
 51	u64 timer;
 52	u64 todcmp;
 53	u64 vxrs_low[16];
 54	__vector128 vxrs_high[16];
 55};
 56
 57static LIST_HEAD(dump_save_areas);
 58
 59/*
 60 * Allocate a save area
 61 */
 62struct save_area * __init save_area_alloc(bool is_boot_cpu)
 63{
 64	struct save_area *sa;
 65
 66	sa = memblock_alloc(sizeof(*sa), 8);
 67	if (!sa)
 68		return NULL;
 69
 70	if (is_boot_cpu)
 71		list_add(&sa->list, &dump_save_areas);
 72	else
 73		list_add_tail(&sa->list, &dump_save_areas);
 74	return sa;
 75}
 76
 77/*
 78 * Return the address of the save area for the boot CPU
 79 */
 80struct save_area * __init save_area_boot_cpu(void)
 81{
 82	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
 83}
 84
 85/*
 86 * Copy CPU registers into the save area
 87 */
 88void __init save_area_add_regs(struct save_area *sa, void *regs)
 89{
 90	struct lowcore *lc;
 91
 92	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
 93	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
 94	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
 95	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
 96	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
 97	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
 98	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
 99	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
100	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
101	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
102	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
103}
104
105/*
106 * Copy vector registers into the save area
107 */
108void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
109{
110	int i;
111
112	/* Copy lower halves of vector registers 0-15 */
113	for (i = 0; i < 16; i++)
114		sa->vxrs_low[i] = vxrs[i].low;
115	/* Copy vector registers 16-31 */
116	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
117}
118
119static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120{
121	size_t len, copied, res = 0;
 
 
122
123	while (count) {
124		if (!oldmem_data.start && src < sclp.hsa_size) {
125			/* Copy from zfcp/nvme dump HSA area */
126			len = min(count, sclp.hsa_size - src);
127			copied = memcpy_hsa_iter(iter, src, len);
 
 
 
128		} else {
129			/* Check for swapped kdump oldmem areas */
130			if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
131				src -= oldmem_data.start;
132				len = min(count, oldmem_data.size - src);
133			} else if (oldmem_data.start && src < oldmem_data.size) {
134				len = min(count, oldmem_data.size - src);
135				src += oldmem_data.start;
136			} else {
137				len = count;
138			}
139			copied = memcpy_real_iter(iter, src, len);
 
 
 
 
 
 
 
140		}
141		count -= copied;
142		src += copied;
143		res += copied;
144		if (copied < len)
145			break;
146	}
147	return res;
148}
149
150int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
 
 
 
151{
152	struct iov_iter iter;
153	struct kvec kvec;
154
155	kvec.iov_base = dst;
156	kvec.iov_len = count;
157	iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
158	if (copy_oldmem_iter(&iter, src, count) < count)
159		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160	return 0;
161}
162
163/*
164 * Copy one page from "oldmem"
165 */
166ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
167			 unsigned long offset)
168{
169	unsigned long src;
 
170
171	src = pfn_to_phys(pfn) + offset;
172	return copy_oldmem_iter(iter, src, csize);
 
 
 
 
 
 
173}
174
175/*
176 * Remap "oldmem" for kdump
177 *
178 * For the kdump reserved memory this functions performs a swap operation:
179 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
180 */
181static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
182					unsigned long from, unsigned long pfn,
183					unsigned long size, pgprot_t prot)
184{
185	unsigned long size_old;
186	int rc;
187
188	if (pfn < oldmem_data.size >> PAGE_SHIFT) {
189		size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
190		rc = remap_pfn_range(vma, from,
191				     pfn + (oldmem_data.start >> PAGE_SHIFT),
192				     size_old, prot);
193		if (rc || size == size_old)
194			return rc;
195		size -= size_old;
196		from += size_old;
197		pfn += size_old >> PAGE_SHIFT;
198	}
199	return remap_pfn_range(vma, from, pfn, size, prot);
200}
201
202/*
203 * Remap "oldmem" for zfcp/nvme dump
204 *
205 * We only map available memory above HSA size. Memory below HSA size
206 * is read on demand using the copy_oldmem_page() function.
207 */
208static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
209					   unsigned long from,
210					   unsigned long pfn,
211					   unsigned long size, pgprot_t prot)
212{
213	unsigned long hsa_end = sclp.hsa_size;
214	unsigned long size_hsa;
215
216	if (pfn < hsa_end >> PAGE_SHIFT) {
217		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
218		if (size == size_hsa)
219			return 0;
220		size -= size_hsa;
221		from += size_hsa;
222		pfn += size_hsa >> PAGE_SHIFT;
223	}
224	return remap_pfn_range(vma, from, pfn, size, prot);
225}
226
227/*
228 * Remap "oldmem" for kdump or zfcp/nvme dump
229 */
230int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
231			   unsigned long pfn, unsigned long size, pgprot_t prot)
232{
233	if (oldmem_data.start)
234		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
235	else
236		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
237						       prot);
238}
239
240static const char *nt_name(Elf64_Word type)
241{
242	const char *name = "LINUX";
243
244	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
245		name = KEXEC_CORE_NOTE_NAME;
246	return name;
247}
248
249/*
250 * Initialize ELF note
251 */
252static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
253			  const char *name)
254{
255	Elf64_Nhdr *note;
256	u64 len;
257
258	note = (Elf64_Nhdr *)buf;
259	note->n_namesz = strlen(name) + 1;
260	note->n_descsz = d_len;
261	note->n_type = type;
262	len = sizeof(Elf64_Nhdr);
263
264	memcpy(buf + len, name, note->n_namesz);
265	len = roundup(len + note->n_namesz, 4);
266
267	memcpy(buf + len, desc, note->n_descsz);
268	len = roundup(len + note->n_descsz, 4);
269
270	return PTR_ADD(buf, len);
271}
272
273static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
274{
275	return nt_init_name(buf, type, desc, d_len, nt_name(type));
276}
277
278/*
279 * Calculate the size of ELF note
280 */
281static size_t nt_size_name(int d_len, const char *name)
282{
283	size_t size;
284
285	size = sizeof(Elf64_Nhdr);
286	size += roundup(strlen(name) + 1, 4);
287	size += roundup(d_len, 4);
288
289	return size;
290}
291
292static inline size_t nt_size(Elf64_Word type, int d_len)
293{
294	return nt_size_name(d_len, nt_name(type));
295}
296
297/*
298 * Fill ELF notes for one CPU with save area registers
299 */
300static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
301{
302	struct elf_prstatus nt_prstatus;
303	elf_fpregset_t nt_fpregset;
304
305	/* Prepare prstatus note */
306	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
307	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
308	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
309	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
310	nt_prstatus.common.pr_pid = cpu;
311	/* Prepare fpregset (floating point) note */
312	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
313	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
314	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
315	/* Create ELF notes for the CPU */
316	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
317	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
318	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
319	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
320	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
321	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
322	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
323	if (cpu_has_vx()) {
324		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
325			      &sa->vxrs_high, sizeof(sa->vxrs_high));
326		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
327			      &sa->vxrs_low, sizeof(sa->vxrs_low));
328	}
329	return ptr;
330}
331
332/*
333 * Calculate size of ELF notes per cpu
334 */
335static size_t get_cpu_elf_notes_size(void)
336{
337	struct save_area *sa = NULL;
338	size_t size;
339
340	size =	nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
341	size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
342	size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
343	size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
344	size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
345	size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
346	size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
347	if (cpu_has_vx()) {
348		size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
349		size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
350	}
351
352	return size;
353}
354
355/*
356 * Initialize prpsinfo note (new kernel)
357 */
358static void *nt_prpsinfo(void *ptr)
359{
360	struct elf_prpsinfo prpsinfo;
361
362	memset(&prpsinfo, 0, sizeof(prpsinfo));
363	prpsinfo.pr_sname = 'R';
364	strcpy(prpsinfo.pr_fname, "vmlinux");
365	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
366}
367
368/*
369 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
370 */
371static void *get_vmcoreinfo_old(unsigned long *size)
372{
373	char nt_name[11], *vmcoreinfo;
374	unsigned long addr;
375	Elf64_Nhdr note;
 
376
377	if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
378		return NULL;
379	memset(nt_name, 0, sizeof(nt_name));
380	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
381		return NULL;
382	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
383			       sizeof(nt_name) - 1))
384		return NULL;
385	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
386		return NULL;
387	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
388	if (!vmcoreinfo)
389		return NULL;
390	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
391		kfree(vmcoreinfo);
392		return NULL;
393	}
394	*size = note.n_descsz;
395	return vmcoreinfo;
396}
397
398/*
399 * Initialize vmcoreinfo note (new kernel)
400 */
401static void *nt_vmcoreinfo(void *ptr)
402{
403	const char *name = VMCOREINFO_NOTE_NAME;
404	unsigned long size;
405	void *vmcoreinfo;
406
407	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
408	if (vmcoreinfo)
409		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
410
411	vmcoreinfo = get_vmcoreinfo_old(&size);
412	if (!vmcoreinfo)
413		return ptr;
414	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
415	kfree(vmcoreinfo);
416	return ptr;
417}
418
419static size_t nt_vmcoreinfo_size(void)
420{
421	const char *name = VMCOREINFO_NOTE_NAME;
422	unsigned long size;
423	void *vmcoreinfo;
424
425	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
426	if (vmcoreinfo)
427		return nt_size_name(size, name);
428
429	vmcoreinfo = get_vmcoreinfo_old(&size);
430	if (!vmcoreinfo)
431		return 0;
432
433	kfree(vmcoreinfo);
434	return nt_size_name(size, name);
435}
436
437/*
438 * Initialize final note (needed for /proc/vmcore code)
439 */
440static void *nt_final(void *ptr)
441{
442	Elf64_Nhdr *note;
443
444	note = (Elf64_Nhdr *) ptr;
445	note->n_namesz = 0;
446	note->n_descsz = 0;
447	note->n_type = 0;
448	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
449}
450
451/*
452 * Initialize ELF header (new kernel)
453 */
454static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
455{
456	memset(ehdr, 0, sizeof(*ehdr));
457	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
458	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
459	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
460	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
461	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
462	ehdr->e_type = ET_CORE;
463	ehdr->e_machine = EM_S390;
464	ehdr->e_version = EV_CURRENT;
465	ehdr->e_phoff = sizeof(Elf64_Ehdr);
466	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
467	ehdr->e_phentsize = sizeof(Elf64_Phdr);
468	ehdr->e_phnum = mem_chunk_cnt + 1;
469	return ehdr + 1;
470}
471
472/*
473 * Return CPU count for ELF header (new kernel)
474 */
475static int get_cpu_cnt(void)
476{
477	struct save_area *sa;
478	int cpus = 0;
479
480	list_for_each_entry(sa, &dump_save_areas, list)
481		if (sa->prefix != 0)
482			cpus++;
483	return cpus;
484}
485
486/*
487 * Return memory chunk count for ELF header (new kernel)
488 */
489static int get_mem_chunk_cnt(void)
490{
491	int cnt = 0;
492	u64 idx;
493
494	for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
 
495		cnt++;
496	return cnt;
497}
498
499/*
500 * Initialize ELF loads (new kernel)
501 */
502static void loads_init(Elf64_Phdr *phdr)
503{
504	phys_addr_t start, end;
505	u64 idx;
506
507	for_each_physmem_range(idx, &oldmem_type, &start, &end) {
 
508		phdr->p_filesz = end - start;
509		phdr->p_type = PT_LOAD;
510		phdr->p_offset = start;
511		phdr->p_vaddr = (unsigned long)__va(start);
512		phdr->p_paddr = start;
513		phdr->p_memsz = end - start;
514		phdr->p_flags = PF_R | PF_W | PF_X;
515		phdr->p_align = PAGE_SIZE;
516		phdr++;
517	}
518}
519
520/*
521 * Initialize notes (new kernel)
522 */
523static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
524{
525	struct save_area *sa;
526	void *ptr_start = ptr;
527	int cpu;
528
529	ptr = nt_prpsinfo(ptr);
530
531	cpu = 1;
532	list_for_each_entry(sa, &dump_save_areas, list)
533		if (sa->prefix != 0)
534			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
535	ptr = nt_vmcoreinfo(ptr);
536	ptr = nt_final(ptr);
537	memset(phdr, 0, sizeof(*phdr));
538	phdr->p_type = PT_NOTE;
539	phdr->p_offset = notes_offset;
540	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
541	phdr->p_memsz = phdr->p_filesz;
542	return ptr;
543}
544
545static size_t get_elfcorehdr_size(int mem_chunk_cnt)
546{
547	size_t size;
548
549	size = sizeof(Elf64_Ehdr);
550	/* PT_NOTES */
551	size += sizeof(Elf64_Phdr);
552	/* nt_prpsinfo */
553	size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
554	/* regsets */
555	size += get_cpu_cnt() * get_cpu_elf_notes_size();
556	/* nt_vmcoreinfo */
557	size += nt_vmcoreinfo_size();
558	/* nt_final */
559	size += sizeof(Elf64_Nhdr);
560	/* PT_LOADS */
561	size += mem_chunk_cnt * sizeof(Elf64_Phdr);
562
563	return size;
564}
565
566/*
567 * Create ELF core header (new kernel)
568 */
569int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
570{
571	Elf64_Phdr *phdr_notes, *phdr_loads;
572	size_t alloc_size;
573	int mem_chunk_cnt;
574	void *ptr, *hdr;
 
575	u64 hdr_off;
576
577	/* If we are not in kdump or zfcp/nvme dump mode return */
578	if (!oldmem_data.start && !is_ipl_type_dump())
579		return 0;
580	/* If we cannot get HSA size for zfcp/nvme dump return error */
581	if (is_ipl_type_dump() && !sclp.hsa_size)
582		return -ENODEV;
583
584	/* For kdump, exclude previous crashkernel memory */
585	if (oldmem_data.start) {
586		oldmem_region.base = oldmem_data.start;
587		oldmem_region.size = oldmem_data.size;
588		oldmem_type.total_size = oldmem_data.size;
589	}
590
591	mem_chunk_cnt = get_mem_chunk_cnt();
592
593	alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
594
595	hdr = kzalloc(alloc_size, GFP_KERNEL);
596
597	/* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
598	 * a dump with this crash kernel will fail. Panic now to allow other
599	 * dump mechanisms to take over.
600	 */
601	if (!hdr)
602		panic("s390 kdump allocating elfcorehdr failed");
603
604	/* Init elf header */
605	ptr = ehdr_init(hdr, mem_chunk_cnt);
606	/* Init program headers */
607	phdr_notes = ptr;
608	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
609	phdr_loads = ptr;
610	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
611	/* Init notes */
612	hdr_off = PTR_DIFF(ptr, hdr);
613	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
614	/* Init loads */
615	hdr_off = PTR_DIFF(ptr, hdr);
616	loads_init(phdr_loads);
617	*addr = (unsigned long long) hdr;
618	*size = (unsigned long long) hdr_off;
619	BUG_ON(elfcorehdr_size > alloc_size);
620	return 0;
621}
622
623/*
624 * Free ELF core header (new kernel)
625 */
626void elfcorehdr_free(unsigned long long addr)
627{
628	kfree((void *)(unsigned long)addr);
629}
630
631/*
632 * Read from ELF header
633 */
634ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
635{
636	void *src = (void *)(unsigned long)*ppos;
637
638	memcpy(buf, src, count);
639	*ppos += count;
640	return count;
641}
642
643/*
644 * Read from ELF notes data
645 */
646ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
647{
648	void *src = (void *)(unsigned long)*ppos;
649
650	memcpy(buf, src, count);
651	*ppos += count;
652	return count;
653}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * S390 kdump implementation
  4 *
  5 * Copyright IBM Corp. 2011
  6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  7 */
  8
  9#include <linux/crash_dump.h>
 10#include <asm/lowcore.h>
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/mm.h>
 14#include <linux/gfp.h>
 15#include <linux/slab.h>
 16#include <linux/memblock.h>
 17#include <linux/elf.h>
 
 18#include <asm/asm-offsets.h>
 19#include <asm/os_info.h>
 20#include <asm/elf.h>
 21#include <asm/ipl.h>
 22#include <asm/sclp.h>
 
 
 23
 24#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
 25#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
 26#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
 27
 28static struct memblock_region oldmem_region;
 29
 30static struct memblock_type oldmem_type = {
 31	.cnt = 1,
 32	.max = 1,
 33	.total_size = 0,
 34	.regions = &oldmem_region,
 35	.name = "oldmem",
 36};
 37
 38struct save_area {
 39	struct list_head list;
 40	u64 psw[2];
 41	u64 ctrs[16];
 42	u64 gprs[16];
 43	u32 acrs[16];
 44	u64 fprs[16];
 45	u32 fpc;
 46	u32 prefix;
 47	u64 todpreg;
 48	u64 timer;
 49	u64 todcmp;
 50	u64 vxrs_low[16];
 51	__vector128 vxrs_high[16];
 52};
 53
 54static LIST_HEAD(dump_save_areas);
 55
 56/*
 57 * Allocate a save area
 58 */
 59struct save_area * __init save_area_alloc(bool is_boot_cpu)
 60{
 61	struct save_area *sa;
 62
 63	sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
 64	if (!sa)
 65		panic("Failed to allocate save area\n");
 66
 67	if (is_boot_cpu)
 68		list_add(&sa->list, &dump_save_areas);
 69	else
 70		list_add_tail(&sa->list, &dump_save_areas);
 71	return sa;
 72}
 73
 74/*
 75 * Return the address of the save area for the boot CPU
 76 */
 77struct save_area * __init save_area_boot_cpu(void)
 78{
 79	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
 80}
 81
 82/*
 83 * Copy CPU registers into the save area
 84 */
 85void __init save_area_add_regs(struct save_area *sa, void *regs)
 86{
 87	struct lowcore *lc;
 88
 89	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
 90	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
 91	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
 92	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
 93	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
 94	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
 95	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
 96	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
 97	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
 98	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
 99	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
100}
101
102/*
103 * Copy vector registers into the save area
104 */
105void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
106{
107	int i;
108
109	/* Copy lower halves of vector registers 0-15 */
110	for (i = 0; i < 16; i++)
111		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
112	/* Copy vector registers 16-31 */
113	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
114}
115
116/*
117 * Return physical address for virtual address
118 */
119static inline void *load_real_addr(void *addr)
120{
121	unsigned long real_addr;
122
123	asm volatile(
124		   "	lra     %0,0(%1)\n"
125		   "	jz	0f\n"
126		   "	la	%0,0\n"
127		   "0:"
128		   : "=a" (real_addr) : "a" (addr) : "cc");
129	return (void *)real_addr;
130}
131
132/*
133 * Copy memory of the old, dumped system to a kernel space virtual address
134 */
135int copy_oldmem_kernel(void *dst, void *src, size_t count)
136{
137	unsigned long from, len;
138	void *ra;
139	int rc;
140
141	while (count) {
142		from = __pa(src);
143		if (!OLDMEM_BASE && from < sclp.hsa_size) {
144			/* Copy from zfcpdump HSA area */
145			len = min(count, sclp.hsa_size - from);
146			rc = memcpy_hsa_kernel(dst, from, len);
147			if (rc)
148				return rc;
149		} else {
150			/* Check for swapped kdump oldmem areas */
151			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
152				from -= OLDMEM_BASE;
153				len = min(count, OLDMEM_SIZE - from);
154			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
155				len = min(count, OLDMEM_SIZE - from);
156				from += OLDMEM_BASE;
157			} else {
158				len = count;
159			}
160			if (is_vmalloc_or_module_addr(dst)) {
161				ra = load_real_addr(dst);
162				len = min(PAGE_SIZE - offset_in_page(ra), len);
163			} else {
164				ra = dst;
165			}
166			if (memcpy_real(ra, (void *) from, len))
167				return -EFAULT;
168		}
169		dst += len;
170		src += len;
171		count -= len;
 
 
172	}
173	return 0;
174}
175
176/*
177 * Copy memory of the old, dumped system to a user space virtual address
178 */
179static int copy_oldmem_user(void __user *dst, void *src, size_t count)
180{
181	unsigned long from, len;
182	int rc;
183
184	while (count) {
185		from = __pa(src);
186		if (!OLDMEM_BASE && from < sclp.hsa_size) {
187			/* Copy from zfcpdump HSA area */
188			len = min(count, sclp.hsa_size - from);
189			rc = memcpy_hsa_user(dst, from, len);
190			if (rc)
191				return rc;
192		} else {
193			/* Check for swapped kdump oldmem areas */
194			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
195				from -= OLDMEM_BASE;
196				len = min(count, OLDMEM_SIZE - from);
197			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
198				len = min(count, OLDMEM_SIZE - from);
199				from += OLDMEM_BASE;
200			} else {
201				len = count;
202			}
203			rc = copy_to_user_real(dst, (void *) from, count);
204			if (rc)
205				return rc;
206		}
207		dst += len;
208		src += len;
209		count -= len;
210	}
211	return 0;
212}
213
214/*
215 * Copy one page from "oldmem"
216 */
217ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
218			 unsigned long offset, int userbuf)
219{
220	void *src;
221	int rc;
222
223	if (!csize)
224		return 0;
225	src = (void *) (pfn << PAGE_SHIFT) + offset;
226	if (userbuf)
227		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
228	else
229		rc = copy_oldmem_kernel((void *) buf, src, csize);
230	return rc;
231}
232
233/*
234 * Remap "oldmem" for kdump
235 *
236 * For the kdump reserved memory this functions performs a swap operation:
237 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
238 */
239static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
240					unsigned long from, unsigned long pfn,
241					unsigned long size, pgprot_t prot)
242{
243	unsigned long size_old;
244	int rc;
245
246	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
247		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
248		rc = remap_pfn_range(vma, from,
249				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
250				     size_old, prot);
251		if (rc || size == size_old)
252			return rc;
253		size -= size_old;
254		from += size_old;
255		pfn += size_old >> PAGE_SHIFT;
256	}
257	return remap_pfn_range(vma, from, pfn, size, prot);
258}
259
260/*
261 * Remap "oldmem" for zfcpdump
262 *
263 * We only map available memory above HSA size. Memory below HSA size
264 * is read on demand using the copy_oldmem_page() function.
265 */
266static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
267					   unsigned long from,
268					   unsigned long pfn,
269					   unsigned long size, pgprot_t prot)
270{
271	unsigned long hsa_end = sclp.hsa_size;
272	unsigned long size_hsa;
273
274	if (pfn < hsa_end >> PAGE_SHIFT) {
275		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
276		if (size == size_hsa)
277			return 0;
278		size -= size_hsa;
279		from += size_hsa;
280		pfn += size_hsa >> PAGE_SHIFT;
281	}
282	return remap_pfn_range(vma, from, pfn, size, prot);
283}
284
285/*
286 * Remap "oldmem" for kdump or zfcpdump
287 */
288int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
289			   unsigned long pfn, unsigned long size, pgprot_t prot)
290{
291	if (OLDMEM_BASE)
292		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
293	else
294		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
295						       prot);
296}
297
298static const char *nt_name(Elf64_Word type)
299{
300	const char *name = "LINUX";
301
302	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
303		name = KEXEC_CORE_NOTE_NAME;
304	return name;
305}
306
307/*
308 * Initialize ELF note
309 */
310static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
311			  const char *name)
312{
313	Elf64_Nhdr *note;
314	u64 len;
315
316	note = (Elf64_Nhdr *)buf;
317	note->n_namesz = strlen(name) + 1;
318	note->n_descsz = d_len;
319	note->n_type = type;
320	len = sizeof(Elf64_Nhdr);
321
322	memcpy(buf + len, name, note->n_namesz);
323	len = roundup(len + note->n_namesz, 4);
324
325	memcpy(buf + len, desc, note->n_descsz);
326	len = roundup(len + note->n_descsz, 4);
327
328	return PTR_ADD(buf, len);
329}
330
331static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
332{
333	return nt_init_name(buf, type, desc, d_len, nt_name(type));
334}
335
336/*
337 * Calculate the size of ELF note
338 */
339static size_t nt_size_name(int d_len, const char *name)
340{
341	size_t size;
342
343	size = sizeof(Elf64_Nhdr);
344	size += roundup(strlen(name) + 1, 4);
345	size += roundup(d_len, 4);
346
347	return size;
348}
349
350static inline size_t nt_size(Elf64_Word type, int d_len)
351{
352	return nt_size_name(d_len, nt_name(type));
353}
354
355/*
356 * Fill ELF notes for one CPU with save area registers
357 */
358static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
359{
360	struct elf_prstatus nt_prstatus;
361	elf_fpregset_t nt_fpregset;
362
363	/* Prepare prstatus note */
364	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
365	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
366	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
367	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
368	nt_prstatus.pr_pid = cpu;
369	/* Prepare fpregset (floating point) note */
370	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
371	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
372	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
373	/* Create ELF notes for the CPU */
374	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
375	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
376	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
377	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
378	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
379	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
380	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
381	if (MACHINE_HAS_VX) {
382		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
383			      &sa->vxrs_high, sizeof(sa->vxrs_high));
384		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
385			      &sa->vxrs_low, sizeof(sa->vxrs_low));
386	}
387	return ptr;
388}
389
390/*
391 * Calculate size of ELF notes per cpu
392 */
393static size_t get_cpu_elf_notes_size(void)
394{
395	struct save_area *sa = NULL;
396	size_t size;
397
398	size =	nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
399	size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
400	size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
401	size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
402	size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
403	size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
404	size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
405	if (MACHINE_HAS_VX) {
406		size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
407		size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
408	}
409
410	return size;
411}
412
413/*
414 * Initialize prpsinfo note (new kernel)
415 */
416static void *nt_prpsinfo(void *ptr)
417{
418	struct elf_prpsinfo prpsinfo;
419
420	memset(&prpsinfo, 0, sizeof(prpsinfo));
421	prpsinfo.pr_sname = 'R';
422	strcpy(prpsinfo.pr_fname, "vmlinux");
423	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
424}
425
426/*
427 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
428 */
429static void *get_vmcoreinfo_old(unsigned long *size)
430{
431	char nt_name[11], *vmcoreinfo;
 
432	Elf64_Nhdr note;
433	void *addr;
434
435	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
436		return NULL;
437	memset(nt_name, 0, sizeof(nt_name));
438	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
439		return NULL;
440	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
441			       sizeof(nt_name) - 1))
442		return NULL;
443	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
444		return NULL;
445	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
446	if (!vmcoreinfo)
447		return NULL;
448	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
449		kfree(vmcoreinfo);
450		return NULL;
451	}
452	*size = note.n_descsz;
453	return vmcoreinfo;
454}
455
456/*
457 * Initialize vmcoreinfo note (new kernel)
458 */
459static void *nt_vmcoreinfo(void *ptr)
460{
461	const char *name = VMCOREINFO_NOTE_NAME;
462	unsigned long size;
463	void *vmcoreinfo;
464
465	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
466	if (vmcoreinfo)
467		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
468
469	vmcoreinfo = get_vmcoreinfo_old(&size);
470	if (!vmcoreinfo)
471		return ptr;
472	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
473	kfree(vmcoreinfo);
474	return ptr;
475}
476
477static size_t nt_vmcoreinfo_size(void)
478{
479	const char *name = VMCOREINFO_NOTE_NAME;
480	unsigned long size;
481	void *vmcoreinfo;
482
483	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
484	if (vmcoreinfo)
485		return nt_size_name(size, name);
486
487	vmcoreinfo = get_vmcoreinfo_old(&size);
488	if (!vmcoreinfo)
489		return 0;
490
491	kfree(vmcoreinfo);
492	return nt_size_name(size, name);
493}
494
495/*
496 * Initialize final note (needed for /proc/vmcore code)
497 */
498static void *nt_final(void *ptr)
499{
500	Elf64_Nhdr *note;
501
502	note = (Elf64_Nhdr *) ptr;
503	note->n_namesz = 0;
504	note->n_descsz = 0;
505	note->n_type = 0;
506	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
507}
508
509/*
510 * Initialize ELF header (new kernel)
511 */
512static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
513{
514	memset(ehdr, 0, sizeof(*ehdr));
515	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
516	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
517	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
518	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
519	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
520	ehdr->e_type = ET_CORE;
521	ehdr->e_machine = EM_S390;
522	ehdr->e_version = EV_CURRENT;
523	ehdr->e_phoff = sizeof(Elf64_Ehdr);
524	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
525	ehdr->e_phentsize = sizeof(Elf64_Phdr);
526	ehdr->e_phnum = mem_chunk_cnt + 1;
527	return ehdr + 1;
528}
529
530/*
531 * Return CPU count for ELF header (new kernel)
532 */
533static int get_cpu_cnt(void)
534{
535	struct save_area *sa;
536	int cpus = 0;
537
538	list_for_each_entry(sa, &dump_save_areas, list)
539		if (sa->prefix != 0)
540			cpus++;
541	return cpus;
542}
543
544/*
545 * Return memory chunk count for ELF header (new kernel)
546 */
547static int get_mem_chunk_cnt(void)
548{
549	int cnt = 0;
550	u64 idx;
551
552	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
553			   MEMBLOCK_NONE, NULL, NULL, NULL)
554		cnt++;
555	return cnt;
556}
557
558/*
559 * Initialize ELF loads (new kernel)
560 */
561static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
562{
563	phys_addr_t start, end;
564	u64 idx;
565
566	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
567			   MEMBLOCK_NONE, &start, &end, NULL) {
568		phdr->p_filesz = end - start;
569		phdr->p_type = PT_LOAD;
570		phdr->p_offset = start;
571		phdr->p_vaddr = start;
572		phdr->p_paddr = start;
573		phdr->p_memsz = end - start;
574		phdr->p_flags = PF_R | PF_W | PF_X;
575		phdr->p_align = PAGE_SIZE;
576		phdr++;
577	}
578}
579
580/*
581 * Initialize notes (new kernel)
582 */
583static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
584{
585	struct save_area *sa;
586	void *ptr_start = ptr;
587	int cpu;
588
589	ptr = nt_prpsinfo(ptr);
590
591	cpu = 1;
592	list_for_each_entry(sa, &dump_save_areas, list)
593		if (sa->prefix != 0)
594			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
595	ptr = nt_vmcoreinfo(ptr);
596	ptr = nt_final(ptr);
597	memset(phdr, 0, sizeof(*phdr));
598	phdr->p_type = PT_NOTE;
599	phdr->p_offset = notes_offset;
600	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
601	phdr->p_memsz = phdr->p_filesz;
602	return ptr;
603}
604
605static size_t get_elfcorehdr_size(int mem_chunk_cnt)
606{
607	size_t size;
608
609	size = sizeof(Elf64_Ehdr);
610	/* PT_NOTES */
611	size += sizeof(Elf64_Phdr);
612	/* nt_prpsinfo */
613	size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
614	/* regsets */
615	size += get_cpu_cnt() * get_cpu_elf_notes_size();
616	/* nt_vmcoreinfo */
617	size += nt_vmcoreinfo_size();
618	/* nt_final */
619	size += sizeof(Elf64_Nhdr);
620	/* PT_LOADS */
621	size += mem_chunk_cnt * sizeof(Elf64_Phdr);
622
623	return size;
624}
625
626/*
627 * Create ELF core header (new kernel)
628 */
629int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
630{
631	Elf64_Phdr *phdr_notes, *phdr_loads;
 
632	int mem_chunk_cnt;
633	void *ptr, *hdr;
634	u32 alloc_size;
635	u64 hdr_off;
636
637	/* If we are not in kdump or zfcpdump mode return */
638	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
639		return 0;
640	/* If we cannot get HSA size for zfcpdump return error */
641	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
642		return -ENODEV;
643
644	/* For kdump, exclude previous crashkernel memory */
645	if (OLDMEM_BASE) {
646		oldmem_region.base = OLDMEM_BASE;
647		oldmem_region.size = OLDMEM_SIZE;
648		oldmem_type.total_size = OLDMEM_SIZE;
649	}
650
651	mem_chunk_cnt = get_mem_chunk_cnt();
652
653	alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
654
655	hdr = kzalloc(alloc_size, GFP_KERNEL);
656
657	/* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
658	 * a dump with this crash kernel will fail. Panic now to allow other
659	 * dump mechanisms to take over.
660	 */
661	if (!hdr)
662		panic("s390 kdump allocating elfcorehdr failed");
663
664	/* Init elf header */
665	ptr = ehdr_init(hdr, mem_chunk_cnt);
666	/* Init program headers */
667	phdr_notes = ptr;
668	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
669	phdr_loads = ptr;
670	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
671	/* Init notes */
672	hdr_off = PTR_DIFF(ptr, hdr);
673	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
674	/* Init loads */
675	hdr_off = PTR_DIFF(ptr, hdr);
676	loads_init(phdr_loads, hdr_off);
677	*addr = (unsigned long long) hdr;
678	*size = (unsigned long long) hdr_off;
679	BUG_ON(elfcorehdr_size > alloc_size);
680	return 0;
681}
682
683/*
684 * Free ELF core header (new kernel)
685 */
686void elfcorehdr_free(unsigned long long addr)
687{
688	kfree((void *)(unsigned long)addr);
689}
690
691/*
692 * Read from ELF header
693 */
694ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
695{
696	void *src = (void *)(unsigned long)*ppos;
697
698	memcpy(buf, src, count);
699	*ppos += count;
700	return count;
701}
702
703/*
704 * Read from ELF notes data
705 */
706ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
707{
708	void *src = (void *)(unsigned long)*ppos;
709
710	memcpy(buf, src, count);
711	*ppos += count;
712	return count;
713}