Linux Audio

Check our new training course

Loading...
v6.8
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 18#include <linux/moduleparam.h>
 19#include <linux/swap.h>
 20#include <linux/swapops.h>
 21#include <linux/kmemleak.h>
 
 22#include <asm/pgalloc.h>
 23#include <asm/tlb.h>
 24#include <asm/setup.h>
 25#include <asm/hugetlb.h>
 26#include <asm/pte-walk.h>
 27#include <asm/firmware.h>
 28
 29bool hugetlb_disabled = false;
 30
 31#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 32
 33#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_basic_t)) - \
 34			 __builtin_ffs(sizeof(void *)))
 35
 36pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 37{
 38	/*
 39	 * Only called for hugetlbfs pages, hence can ignore THP and the
 40	 * irq disabled walk.
 41	 */
 42	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 43}
 44
 45static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 46			   unsigned long address, unsigned int pdshift,
 47			   unsigned int pshift, spinlock_t *ptl)
 48{
 49	struct kmem_cache *cachep;
 50	pte_t *new;
 51	int i;
 52	int num_hugepd;
 53
 54	if (pshift >= pdshift) {
 55		cachep = PGT_CACHE(PTE_T_ORDER);
 56		num_hugepd = 1 << (pshift - pdshift);
 
 
 
 57	} else {
 58		cachep = PGT_CACHE(pdshift - pshift);
 59		num_hugepd = 1;
 60	}
 61
 62	if (!cachep) {
 63		WARN_ONCE(1, "No page table cache created for hugetlb tables");
 64		return -ENOMEM;
 65	}
 66
 67	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 68
 69	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 70	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 71
 72	if (!new)
 73		return -ENOMEM;
 74
 75	/*
 76	 * Make sure other cpus find the hugepd set only after a
 77	 * properly initialized page table is visible to them.
 78	 * For more details look for comment in __pte_alloc().
 79	 */
 80	smp_wmb();
 81
 82	spin_lock(ptl);
 83	/*
 84	 * We have multiple higher-level entries that point to the same
 85	 * actual pte location.  Fill in each as we go and backtrack on error.
 86	 * We need all of these so the DTLB pgtable walk code can find the
 87	 * right higher-level entry without knowing if it's a hugepage or not.
 88	 */
 89	for (i = 0; i < num_hugepd; i++, hpdp++) {
 90		if (unlikely(!hugepd_none(*hpdp)))
 91			break;
 92		hugepd_populate(hpdp, new, pshift);
 93	}
 94	/* If we bailed from the for loop early, an error occurred, clean up */
 95	if (i < num_hugepd) {
 96		for (i = i - 1 ; i >= 0; i--, hpdp--)
 97			*hpdp = __hugepd(0);
 98		kmem_cache_free(cachep, new);
 99	} else {
100		kmemleak_ignore(new);
101	}
102	spin_unlock(ptl);
103	return 0;
104}
105
106/*
107 * At this point we do the placement change only for BOOK3S 64. This would
108 * possibly work on other subarchs.
109 */
110pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
111		      unsigned long addr, unsigned long sz)
112{
113	pgd_t *pg;
114	p4d_t *p4;
115	pud_t *pu;
116	pmd_t *pm;
117	hugepd_t *hpdp = NULL;
118	unsigned pshift = __ffs(sz);
119	unsigned pdshift = PGDIR_SHIFT;
120	spinlock_t *ptl;
121
122	addr &= ~(sz-1);
123	pg = pgd_offset(mm, addr);
124	p4 = p4d_offset(pg, addr);
125
126#ifdef CONFIG_PPC_BOOK3S_64
127	if (pshift == PGDIR_SHIFT)
128		/* 16GB huge page */
129		return (pte_t *) p4;
130	else if (pshift > PUD_SHIFT) {
131		/*
132		 * We need to use hugepd table
133		 */
134		ptl = &mm->page_table_lock;
135		hpdp = (hugepd_t *)p4;
136	} else {
137		pdshift = PUD_SHIFT;
138		pu = pud_alloc(mm, p4, addr);
139		if (!pu)
140			return NULL;
141		if (pshift == PUD_SHIFT)
142			return (pte_t *)pu;
143		else if (pshift > PMD_SHIFT) {
144			ptl = pud_lockptr(mm, pu);
145			hpdp = (hugepd_t *)pu;
146		} else {
147			pdshift = PMD_SHIFT;
148			pm = pmd_alloc(mm, pu, addr);
149			if (!pm)
150				return NULL;
151			if (pshift == PMD_SHIFT)
152				/* 16MB hugepage */
153				return (pte_t *)pm;
154			else {
155				ptl = pmd_lockptr(mm, pm);
156				hpdp = (hugepd_t *)pm;
157			}
158		}
159	}
160#else
161	if (pshift >= PGDIR_SHIFT) {
162		ptl = &mm->page_table_lock;
163		hpdp = (hugepd_t *)p4;
164	} else {
165		pdshift = PUD_SHIFT;
166		pu = pud_alloc(mm, p4, addr);
167		if (!pu)
168			return NULL;
169		if (pshift >= PUD_SHIFT) {
170			ptl = pud_lockptr(mm, pu);
171			hpdp = (hugepd_t *)pu;
172		} else {
173			pdshift = PMD_SHIFT;
174			pm = pmd_alloc(mm, pu, addr);
175			if (!pm)
176				return NULL;
177			ptl = pmd_lockptr(mm, pm);
178			hpdp = (hugepd_t *)pm;
179		}
180	}
181#endif
182	if (!hpdp)
183		return NULL;
184
185	if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
186		return pte_alloc_huge(mm, (pmd_t *)hpdp, addr);
187
188	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
189
190	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
191						  pdshift, pshift, ptl))
192		return NULL;
193
194	return hugepte_offset(*hpdp, addr, pdshift);
195}
196
197#ifdef CONFIG_PPC_BOOK3S_64
198/*
199 * Tracks gpages after the device tree is scanned and before the
200 * huge_boot_pages list is ready on pseries.
201 */
202#define MAX_NUMBER_GPAGES	1024
203__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
204__initdata static unsigned nr_gpages;
205
206/*
207 * Build list of addresses of gigantic pages.  This function is used in early
208 * boot before the buddy allocator is setup.
209 */
210void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
211{
212	if (!addr)
213		return;
214	while (number_of_pages > 0) {
215		gpage_freearray[nr_gpages] = addr;
216		nr_gpages++;
217		number_of_pages--;
218		addr += page_size;
219	}
220}
221
222static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
223{
224	struct huge_bootmem_page *m;
225	if (nr_gpages == 0)
226		return 0;
227	m = phys_to_virt(gpage_freearray[--nr_gpages]);
228	gpage_freearray[nr_gpages] = 0;
229	list_add(&m->list, &huge_boot_pages);
230	m->hstate = hstate;
231	return 1;
232}
233
234bool __init hugetlb_node_alloc_supported(void)
235{
236	return false;
237}
238#endif
239
240
241int __init alloc_bootmem_huge_page(struct hstate *h, int nid)
242{
243
244#ifdef CONFIG_PPC_BOOK3S_64
245	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
246		return pseries_alloc_bootmem_huge_page(h);
247#endif
248	return __alloc_bootmem_huge_page(h, nid);
249}
250
251#ifndef CONFIG_PPC_BOOK3S_64
252#define HUGEPD_FREELIST_SIZE \
253	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
254
255struct hugepd_freelist {
256	struct rcu_head	rcu;
257	unsigned int index;
258	void *ptes[];
259};
260
261static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
262
263static void hugepd_free_rcu_callback(struct rcu_head *head)
264{
265	struct hugepd_freelist *batch =
266		container_of(head, struct hugepd_freelist, rcu);
267	unsigned int i;
268
269	for (i = 0; i < batch->index; i++)
270		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
271
272	free_page((unsigned long)batch);
273}
274
275static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
276{
277	struct hugepd_freelist **batchp;
278
279	batchp = &get_cpu_var(hugepd_freelist_cur);
280
281	if (atomic_read(&tlb->mm->mm_users) < 2 ||
282	    mm_is_thread_local(tlb->mm)) {
283		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
284		put_cpu_var(hugepd_freelist_cur);
285		return;
286	}
287
288	if (*batchp == NULL) {
289		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
290		(*batchp)->index = 0;
291	}
292
293	(*batchp)->ptes[(*batchp)->index++] = hugepte;
294	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
295		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
296		*batchp = NULL;
297	}
298	put_cpu_var(hugepd_freelist_cur);
299}
300#else
301static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
302#endif
303
304/* Return true when the entry to be freed maps more than the area being freed */
305static bool range_is_outside_limits(unsigned long start, unsigned long end,
306				    unsigned long floor, unsigned long ceiling,
307				    unsigned long mask)
308{
309	if ((start & mask) < floor)
310		return true;
311	if (ceiling) {
312		ceiling &= mask;
313		if (!ceiling)
314			return true;
315	}
316	return end - 1 > ceiling - 1;
317}
318
319static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
320			      unsigned long start, unsigned long end,
321			      unsigned long floor, unsigned long ceiling)
322{
323	pte_t *hugepte = hugepd_page(*hpdp);
324	int i;
325
326	unsigned long pdmask = ~((1UL << pdshift) - 1);
327	unsigned int num_hugepd = 1;
328	unsigned int shift = hugepd_shift(*hpdp);
329
330	/* Note: On fsl the hpdp may be the first of several */
331	if (shift > pdshift)
332		num_hugepd = 1 << (shift - pdshift);
333
334	if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
 
 
 
 
 
 
 
 
335		return;
336
337	for (i = 0; i < num_hugepd; i++, hpdp++)
338		*hpdp = __hugepd(0);
339
340	if (shift >= pdshift)
341		hugepd_free(tlb, hugepte);
 
 
 
342	else
343		pgtable_free_tlb(tlb, hugepte,
344				 get_hugepd_cache_index(pdshift - shift));
345}
346
347static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
348				   unsigned long addr, unsigned long end,
349				   unsigned long floor, unsigned long ceiling)
350{
351	pgtable_t token = pmd_pgtable(*pmd);
352
353	if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
354		return;
355
356	pmd_clear(pmd);
357	pte_free_tlb(tlb, token, addr);
358	mm_dec_nr_ptes(tlb->mm);
359}
360
361static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
362				   unsigned long addr, unsigned long end,
363				   unsigned long floor, unsigned long ceiling)
364{
365	pmd_t *pmd;
366	unsigned long next;
367	unsigned long start;
368
369	start = addr;
370	do {
371		unsigned long more;
372
373		pmd = pmd_offset(pud, addr);
374		next = pmd_addr_end(addr, end);
375		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
376			if (pmd_none_or_clear_bad(pmd))
377				continue;
378
379			/*
380			 * if it is not hugepd pointer, we should already find
381			 * it cleared.
382			 */
383			WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
384
385			hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
386
387			continue;
388		}
389		/*
390		 * Increment next by the size of the huge mapping since
391		 * there may be more than one entry at this level for a
392		 * single hugepage, but all of them point to
393		 * the same kmem cache that holds the hugepte.
394		 */
395		more = addr + (1UL << hugepd_shift(*(hugepd_t *)pmd));
396		if (more > next)
397			next = more;
398
399		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
400				  addr, next, floor, ceiling);
401	} while (addr = next, addr != end);
402
403	if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
 
 
 
 
 
 
 
 
404		return;
405
406	pmd = pmd_offset(pud, start & PUD_MASK);
407	pud_clear(pud);
408	pmd_free_tlb(tlb, pmd, start & PUD_MASK);
409	mm_dec_nr_pmds(tlb->mm);
410}
411
412static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
413				   unsigned long addr, unsigned long end,
414				   unsigned long floor, unsigned long ceiling)
415{
416	pud_t *pud;
417	unsigned long next;
418	unsigned long start;
419
420	start = addr;
421	do {
422		pud = pud_offset(p4d, addr);
423		next = pud_addr_end(addr, end);
424		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
425			if (pud_none_or_clear_bad(pud))
426				continue;
427			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
428					       ceiling);
429		} else {
430			unsigned long more;
431			/*
432			 * Increment next by the size of the huge mapping since
433			 * there may be more than one entry at this level for a
434			 * single hugepage, but all of them point to
435			 * the same kmem cache that holds the hugepte.
436			 */
437			more = addr + (1UL << hugepd_shift(*(hugepd_t *)pud));
438			if (more > next)
439				next = more;
440
441			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
442					  addr, next, floor, ceiling);
443		}
444	} while (addr = next, addr != end);
445
446	if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
 
 
 
 
 
 
 
 
447		return;
448
449	pud = pud_offset(p4d, start & PGDIR_MASK);
450	p4d_clear(p4d);
451	pud_free_tlb(tlb, pud, start & PGDIR_MASK);
452	mm_dec_nr_puds(tlb->mm);
453}
454
455/*
456 * This function frees user-level page tables of a process.
457 */
458void hugetlb_free_pgd_range(struct mmu_gather *tlb,
459			    unsigned long addr, unsigned long end,
460			    unsigned long floor, unsigned long ceiling)
461{
462	pgd_t *pgd;
463	p4d_t *p4d;
464	unsigned long next;
465
466	/*
467	 * Because there are a number of different possible pagetable
468	 * layouts for hugepage ranges, we limit knowledge of how
469	 * things should be laid out to the allocation path
470	 * (huge_pte_alloc(), above).  Everything else works out the
471	 * structure as it goes from information in the hugepd
472	 * pointers.  That means that we can't here use the
473	 * optimization used in the normal page free_pgd_range(), of
474	 * checking whether we're actually covering a large enough
475	 * range to have to do anything at the top level of the walk
476	 * instead of at the bottom.
477	 *
478	 * To make sense of this, you should probably go read the big
479	 * block comment at the top of the normal free_pgd_range(),
480	 * too.
481	 */
482
483	do {
484		next = pgd_addr_end(addr, end);
485		pgd = pgd_offset(tlb->mm, addr);
486		p4d = p4d_offset(pgd, addr);
487		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
488			if (p4d_none_or_clear_bad(p4d))
489				continue;
490			hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
491		} else {
492			unsigned long more;
493			/*
494			 * Increment next by the size of the huge mapping since
495			 * there may be more than one entry at the pgd level
496			 * for a single hugepage, but all of them point to the
497			 * same kmem cache that holds the hugepte.
498			 */
499			more = addr + (1UL << hugepd_shift(*(hugepd_t *)pgd));
500			if (more > next)
501				next = more;
502
503			free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
504					  addr, next, floor, ceiling);
505		}
506	} while (addr = next, addr != end);
507}
508
509bool __init arch_hugetlb_valid_size(unsigned long size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510{
511	int shift = __ffs(size);
512	int mmu_psize;
513
514	/* Check that it is a page size supported by the hardware and
515	 * that it fits within pagetable and slice limits. */
516	if (size <= PAGE_SIZE || !is_power_of_2(size))
517		return false;
518
519	mmu_psize = check_and_get_huge_psize(shift);
520	if (mmu_psize < 0)
521		return false;
522
523	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
524
525	return true;
 
 
 
 
 
 
526}
527
528static int __init add_huge_page_size(unsigned long long size)
529{
530	int shift = __ffs(size);
531
532	if (!arch_hugetlb_valid_size((unsigned long)size))
533		return -EINVAL;
534
535	hugetlb_add_hstate(shift - PAGE_SHIFT);
536	return 0;
 
 
 
 
537}
 
538
539static int __init hugetlbpage_init(void)
540{
541	bool configured = false;
542	int psize;
543
544	if (hugetlb_disabled) {
545		pr_info("HugeTLB support is disabled!\n");
546		return 0;
547	}
548
549	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
550	    !mmu_has_feature(MMU_FTR_16M_PAGE))
551		return -ENODEV;
552
553	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
554		unsigned shift;
555		unsigned pdshift;
556
557		if (!mmu_psize_defs[psize].shift)
558			continue;
559
560		shift = mmu_psize_to_shift(psize);
561
562#ifdef CONFIG_PPC_BOOK3S_64
563		if (shift > PGDIR_SHIFT)
564			continue;
565		else if (shift > PUD_SHIFT)
566			pdshift = PGDIR_SHIFT;
567		else if (shift > PMD_SHIFT)
568			pdshift = PUD_SHIFT;
569		else
570			pdshift = PMD_SHIFT;
571#else
572		if (shift < PUD_SHIFT)
573			pdshift = PMD_SHIFT;
574		else if (shift < PGDIR_SHIFT)
575			pdshift = PUD_SHIFT;
576		else
577			pdshift = PGDIR_SHIFT;
578#endif
579
580		if (add_huge_page_size(1ULL << shift) < 0)
581			continue;
582		/*
583		 * if we have pdshift and shift value same, we don't
584		 * use pgt cache for hugepd.
585		 */
586		if (pdshift > shift) {
587			if (!IS_ENABLED(CONFIG_PPC_8xx))
588				pgtable_cache_add(pdshift - shift);
589		} else if (IS_ENABLED(CONFIG_PPC_E500) ||
590			   IS_ENABLED(CONFIG_PPC_8xx)) {
591			pgtable_cache_add(PTE_T_ORDER);
592		}
593
594		configured = true;
595	}
596
597	if (!configured)
 
 
 
598		pr_info("Failed to initialize. Disabling HugeTLB");
599
600	return 0;
601}
602
603arch_initcall(hugetlbpage_init);
604
605void __init gigantic_hugetlb_cma_reserve(void)
606{
607	unsigned long order = 0;
 
608
609	if (radix_enabled())
610		order = PUD_SHIFT - PAGE_SHIFT;
611	else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
612		/*
613		 * For pseries we do use ibm,expected#pages for reserving 16G pages.
614		 */
615		order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
616
617	if (order) {
618		VM_WARN_ON(order <= MAX_PAGE_ORDER);
619		hugetlb_cma_reserve(order);
 
 
 
 
 
620	}
621}
v5.4
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 18#include <linux/moduleparam.h>
 19#include <linux/swap.h>
 20#include <linux/swapops.h>
 21#include <linux/kmemleak.h>
 22#include <asm/pgtable.h>
 23#include <asm/pgalloc.h>
 24#include <asm/tlb.h>
 25#include <asm/setup.h>
 26#include <asm/hugetlb.h>
 27#include <asm/pte-walk.h>
 
 28
 29bool hugetlb_disabled = false;
 30
 31#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 32
 33#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
 
 34
 35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 36{
 37	/*
 38	 * Only called for hugetlbfs pages, hence can ignore THP and the
 39	 * irq disabled walk.
 40	 */
 41	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 42}
 43
 44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 45			   unsigned long address, unsigned int pdshift,
 46			   unsigned int pshift, spinlock_t *ptl)
 47{
 48	struct kmem_cache *cachep;
 49	pte_t *new;
 50	int i;
 51	int num_hugepd;
 52
 53	if (pshift >= pdshift) {
 54		cachep = PGT_CACHE(PTE_T_ORDER);
 55		num_hugepd = 1 << (pshift - pdshift);
 56	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
 57		cachep = PGT_CACHE(PTE_INDEX_SIZE);
 58		num_hugepd = 1;
 59	} else {
 60		cachep = PGT_CACHE(pdshift - pshift);
 61		num_hugepd = 1;
 62	}
 63
 64	if (!cachep) {
 65		WARN_ONCE(1, "No page table cache created for hugetlb tables");
 66		return -ENOMEM;
 67	}
 68
 69	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 70
 71	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 72	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 73
 74	if (!new)
 75		return -ENOMEM;
 76
 77	/*
 78	 * Make sure other cpus find the hugepd set only after a
 79	 * properly initialized page table is visible to them.
 80	 * For more details look for comment in __pte_alloc().
 81	 */
 82	smp_wmb();
 83
 84	spin_lock(ptl);
 85	/*
 86	 * We have multiple higher-level entries that point to the same
 87	 * actual pte location.  Fill in each as we go and backtrack on error.
 88	 * We need all of these so the DTLB pgtable walk code can find the
 89	 * right higher-level entry without knowing if it's a hugepage or not.
 90	 */
 91	for (i = 0; i < num_hugepd; i++, hpdp++) {
 92		if (unlikely(!hugepd_none(*hpdp)))
 93			break;
 94		hugepd_populate(hpdp, new, pshift);
 95	}
 96	/* If we bailed from the for loop early, an error occurred, clean up */
 97	if (i < num_hugepd) {
 98		for (i = i - 1 ; i >= 0; i--, hpdp--)
 99			*hpdp = __hugepd(0);
100		kmem_cache_free(cachep, new);
101	} else {
102		kmemleak_ignore(new);
103	}
104	spin_unlock(ptl);
105	return 0;
106}
107
108/*
109 * At this point we do the placement change only for BOOK3S 64. This would
110 * possibly work on other subarchs.
111 */
112pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 
113{
114	pgd_t *pg;
 
115	pud_t *pu;
116	pmd_t *pm;
117	hugepd_t *hpdp = NULL;
118	unsigned pshift = __ffs(sz);
119	unsigned pdshift = PGDIR_SHIFT;
120	spinlock_t *ptl;
121
122	addr &= ~(sz-1);
123	pg = pgd_offset(mm, addr);
 
124
125#ifdef CONFIG_PPC_BOOK3S_64
126	if (pshift == PGDIR_SHIFT)
127		/* 16GB huge page */
128		return (pte_t *) pg;
129	else if (pshift > PUD_SHIFT) {
130		/*
131		 * We need to use hugepd table
132		 */
133		ptl = &mm->page_table_lock;
134		hpdp = (hugepd_t *)pg;
135	} else {
136		pdshift = PUD_SHIFT;
137		pu = pud_alloc(mm, pg, addr);
138		if (!pu)
139			return NULL;
140		if (pshift == PUD_SHIFT)
141			return (pte_t *)pu;
142		else if (pshift > PMD_SHIFT) {
143			ptl = pud_lockptr(mm, pu);
144			hpdp = (hugepd_t *)pu;
145		} else {
146			pdshift = PMD_SHIFT;
147			pm = pmd_alloc(mm, pu, addr);
148			if (!pm)
149				return NULL;
150			if (pshift == PMD_SHIFT)
151				/* 16MB hugepage */
152				return (pte_t *)pm;
153			else {
154				ptl = pmd_lockptr(mm, pm);
155				hpdp = (hugepd_t *)pm;
156			}
157		}
158	}
159#else
160	if (pshift >= PGDIR_SHIFT) {
161		ptl = &mm->page_table_lock;
162		hpdp = (hugepd_t *)pg;
163	} else {
164		pdshift = PUD_SHIFT;
165		pu = pud_alloc(mm, pg, addr);
166		if (!pu)
167			return NULL;
168		if (pshift >= PUD_SHIFT) {
169			ptl = pud_lockptr(mm, pu);
170			hpdp = (hugepd_t *)pu;
171		} else {
172			pdshift = PMD_SHIFT;
173			pm = pmd_alloc(mm, pu, addr);
174			if (!pm)
175				return NULL;
176			ptl = pmd_lockptr(mm, pm);
177			hpdp = (hugepd_t *)pm;
178		}
179	}
180#endif
181	if (!hpdp)
182		return NULL;
183
 
 
 
184	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185
186	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187						  pdshift, pshift, ptl))
188		return NULL;
189
190	return hugepte_offset(*hpdp, addr, pdshift);
191}
192
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * Tracks gpages after the device tree is scanned and before the
196 * huge_boot_pages list is ready on pseries.
197 */
198#define MAX_NUMBER_GPAGES	1024
199__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200__initdata static unsigned nr_gpages;
201
202/*
203 * Build list of addresses of gigantic pages.  This function is used in early
204 * boot before the buddy allocator is setup.
205 */
206void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207{
208	if (!addr)
209		return;
210	while (number_of_pages > 0) {
211		gpage_freearray[nr_gpages] = addr;
212		nr_gpages++;
213		number_of_pages--;
214		addr += page_size;
215	}
216}
217
218int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
219{
220	struct huge_bootmem_page *m;
221	if (nr_gpages == 0)
222		return 0;
223	m = phys_to_virt(gpage_freearray[--nr_gpages]);
224	gpage_freearray[nr_gpages] = 0;
225	list_add(&m->list, &huge_boot_pages);
226	m->hstate = hstate;
227	return 1;
228}
 
 
 
 
 
229#endif
230
231
232int __init alloc_bootmem_huge_page(struct hstate *h)
233{
234
235#ifdef CONFIG_PPC_BOOK3S_64
236	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237		return pseries_alloc_bootmem_huge_page(h);
238#endif
239	return __alloc_bootmem_huge_page(h);
240}
241
242#ifndef CONFIG_PPC_BOOK3S_64
243#define HUGEPD_FREELIST_SIZE \
244	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245
246struct hugepd_freelist {
247	struct rcu_head	rcu;
248	unsigned int index;
249	void *ptes[0];
250};
251
252static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253
254static void hugepd_free_rcu_callback(struct rcu_head *head)
255{
256	struct hugepd_freelist *batch =
257		container_of(head, struct hugepd_freelist, rcu);
258	unsigned int i;
259
260	for (i = 0; i < batch->index; i++)
261		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262
263	free_page((unsigned long)batch);
264}
265
266static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267{
268	struct hugepd_freelist **batchp;
269
270	batchp = &get_cpu_var(hugepd_freelist_cur);
271
272	if (atomic_read(&tlb->mm->mm_users) < 2 ||
273	    mm_is_thread_local(tlb->mm)) {
274		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
275		put_cpu_var(hugepd_freelist_cur);
276		return;
277	}
278
279	if (*batchp == NULL) {
280		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281		(*batchp)->index = 0;
282	}
283
284	(*batchp)->ptes[(*batchp)->index++] = hugepte;
285	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287		*batchp = NULL;
288	}
289	put_cpu_var(hugepd_freelist_cur);
290}
291#else
292static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293#endif
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296			      unsigned long start, unsigned long end,
297			      unsigned long floor, unsigned long ceiling)
298{
299	pte_t *hugepte = hugepd_page(*hpdp);
300	int i;
301
302	unsigned long pdmask = ~((1UL << pdshift) - 1);
303	unsigned int num_hugepd = 1;
304	unsigned int shift = hugepd_shift(*hpdp);
305
306	/* Note: On fsl the hpdp may be the first of several */
307	if (shift > pdshift)
308		num_hugepd = 1 << (shift - pdshift);
309
310	start &= pdmask;
311	if (start < floor)
312		return;
313	if (ceiling) {
314		ceiling &= pdmask;
315		if (! ceiling)
316			return;
317	}
318	if (end - 1 > ceiling - 1)
319		return;
320
321	for (i = 0; i < num_hugepd; i++, hpdp++)
322		*hpdp = __hugepd(0);
323
324	if (shift >= pdshift)
325		hugepd_free(tlb, hugepte);
326	else if (IS_ENABLED(CONFIG_PPC_8xx))
327		pgtable_free_tlb(tlb, hugepte,
328				 get_hugepd_cache_index(PTE_INDEX_SIZE));
329	else
330		pgtable_free_tlb(tlb, hugepte,
331				 get_hugepd_cache_index(pdshift - shift));
332}
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335				   unsigned long addr, unsigned long end,
336				   unsigned long floor, unsigned long ceiling)
337{
338	pmd_t *pmd;
339	unsigned long next;
340	unsigned long start;
341
342	start = addr;
343	do {
344		unsigned long more;
345
346		pmd = pmd_offset(pud, addr);
347		next = pmd_addr_end(addr, end);
348		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 
 
 
349			/*
350			 * if it is not hugepd pointer, we should already find
351			 * it cleared.
352			 */
353			WARN_ON(!pmd_none_or_clear_bad(pmd));
 
 
 
354			continue;
355		}
356		/*
357		 * Increment next by the size of the huge mapping since
358		 * there may be more than one entry at this level for a
359		 * single hugepage, but all of them point to
360		 * the same kmem cache that holds the hugepte.
361		 */
362		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363		if (more > next)
364			next = more;
365
366		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367				  addr, next, floor, ceiling);
368	} while (addr = next, addr != end);
369
370	start &= PUD_MASK;
371	if (start < floor)
372		return;
373	if (ceiling) {
374		ceiling &= PUD_MASK;
375		if (!ceiling)
376			return;
377	}
378	if (end - 1 > ceiling - 1)
379		return;
380
381	pmd = pmd_offset(pud, start);
382	pud_clear(pud);
383	pmd_free_tlb(tlb, pmd, start);
384	mm_dec_nr_pmds(tlb->mm);
385}
386
387static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388				   unsigned long addr, unsigned long end,
389				   unsigned long floor, unsigned long ceiling)
390{
391	pud_t *pud;
392	unsigned long next;
393	unsigned long start;
394
395	start = addr;
396	do {
397		pud = pud_offset(pgd, addr);
398		next = pud_addr_end(addr, end);
399		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400			if (pud_none_or_clear_bad(pud))
401				continue;
402			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403					       ceiling);
404		} else {
405			unsigned long more;
406			/*
407			 * Increment next by the size of the huge mapping since
408			 * there may be more than one entry at this level for a
409			 * single hugepage, but all of them point to
410			 * the same kmem cache that holds the hugepte.
411			 */
412			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413			if (more > next)
414				next = more;
415
416			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417					  addr, next, floor, ceiling);
418		}
419	} while (addr = next, addr != end);
420
421	start &= PGDIR_MASK;
422	if (start < floor)
423		return;
424	if (ceiling) {
425		ceiling &= PGDIR_MASK;
426		if (!ceiling)
427			return;
428	}
429	if (end - 1 > ceiling - 1)
430		return;
431
432	pud = pud_offset(pgd, start);
433	pgd_clear(pgd);
434	pud_free_tlb(tlb, pud, start);
435	mm_dec_nr_puds(tlb->mm);
436}
437
438/*
439 * This function frees user-level page tables of a process.
440 */
441void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442			    unsigned long addr, unsigned long end,
443			    unsigned long floor, unsigned long ceiling)
444{
445	pgd_t *pgd;
 
446	unsigned long next;
447
448	/*
449	 * Because there are a number of different possible pagetable
450	 * layouts for hugepage ranges, we limit knowledge of how
451	 * things should be laid out to the allocation path
452	 * (huge_pte_alloc(), above).  Everything else works out the
453	 * structure as it goes from information in the hugepd
454	 * pointers.  That means that we can't here use the
455	 * optimization used in the normal page free_pgd_range(), of
456	 * checking whether we're actually covering a large enough
457	 * range to have to do anything at the top level of the walk
458	 * instead of at the bottom.
459	 *
460	 * To make sense of this, you should probably go read the big
461	 * block comment at the top of the normal free_pgd_range(),
462	 * too.
463	 */
464
465	do {
466		next = pgd_addr_end(addr, end);
467		pgd = pgd_offset(tlb->mm, addr);
 
468		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469			if (pgd_none_or_clear_bad(pgd))
470				continue;
471			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472		} else {
473			unsigned long more;
474			/*
475			 * Increment next by the size of the huge mapping since
476			 * there may be more than one entry at the pgd level
477			 * for a single hugepage, but all of them point to the
478			 * same kmem cache that holds the hugepte.
479			 */
480			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481			if (more > next)
482				next = more;
483
484			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485					  addr, next, floor, ceiling);
486		}
487	} while (addr = next, addr != end);
488}
489
490struct page *follow_huge_pd(struct vm_area_struct *vma,
491			    unsigned long address, hugepd_t hpd,
492			    int flags, int pdshift)
493{
494	pte_t *ptep;
495	spinlock_t *ptl;
496	struct page *page = NULL;
497	unsigned long mask;
498	int shift = hugepd_shift(hpd);
499	struct mm_struct *mm = vma->vm_mm;
500
501retry:
502	/*
503	 * hugepage directory entries are protected by mm->page_table_lock
504	 * Use this instead of huge_pte_lockptr
505	 */
506	ptl = &mm->page_table_lock;
507	spin_lock(ptl);
508
509	ptep = hugepte_offset(hpd, address, pdshift);
510	if (pte_present(*ptep)) {
511		mask = (1UL << shift) - 1;
512		page = pte_page(*ptep);
513		page += ((address & mask) >> PAGE_SHIFT);
514		if (flags & FOLL_GET)
515			get_page(page);
516	} else {
517		if (is_hugetlb_entry_migration(*ptep)) {
518			spin_unlock(ptl);
519			__migration_entry_wait(mm, ptep, ptl);
520			goto retry;
521		}
522	}
523	spin_unlock(ptl);
524	return page;
525}
526
527#ifdef CONFIG_PPC_MM_SLICES
528unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529					unsigned long len, unsigned long pgoff,
530					unsigned long flags)
531{
532	struct hstate *hstate = hstate_file(file);
533	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534
535#ifdef CONFIG_PPC_RADIX_MMU
536	if (radix_enabled())
537		return radix__hugetlb_get_unmapped_area(file, addr, len,
538						       pgoff, flags);
539#endif
540	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541}
542#endif
543
544unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545{
546	/* With radix we don't use slice, so derive it from vma*/
547	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549
550		return 1UL << mmu_psize_to_shift(psize);
551	}
552	return vma_kernel_pagesize(vma);
553}
554
555static int __init add_huge_page_size(unsigned long long size)
556{
557	int shift = __ffs(size);
558	int mmu_psize;
559
560	/* Check that it is a page size supported by the hardware and
561	 * that it fits within pagetable and slice limits. */
562	if (size <= PAGE_SIZE || !is_power_of_2(size))
563		return -EINVAL;
564
565	mmu_psize = check_and_get_huge_psize(shift);
566	if (mmu_psize < 0)
567		return -EINVAL;
568
569	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570
571	/* Return if huge page size has already been setup */
572	if (size_to_hstate(size))
573		return 0;
574
575	hugetlb_add_hstate(shift - PAGE_SHIFT);
576
577	return 0;
578}
579
580static int __init hugepage_setup_sz(char *str)
581{
582	unsigned long long size;
583
584	size = memparse(str, &str);
 
585
586	if (add_huge_page_size(size) != 0) {
587		hugetlb_bad_size();
588		pr_err("Invalid huge page size specified(%llu)\n", size);
589	}
590
591	return 1;
592}
593__setup("hugepagesz=", hugepage_setup_sz);
594
595static int __init hugetlbpage_init(void)
596{
597	bool configured = false;
598	int psize;
599
600	if (hugetlb_disabled) {
601		pr_info("HugeTLB support is disabled!\n");
602		return 0;
603	}
604
605	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606	    !mmu_has_feature(MMU_FTR_16M_PAGE))
607		return -ENODEV;
608
609	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610		unsigned shift;
611		unsigned pdshift;
612
613		if (!mmu_psize_defs[psize].shift)
614			continue;
615
616		shift = mmu_psize_to_shift(psize);
617
618#ifdef CONFIG_PPC_BOOK3S_64
619		if (shift > PGDIR_SHIFT)
620			continue;
621		else if (shift > PUD_SHIFT)
622			pdshift = PGDIR_SHIFT;
623		else if (shift > PMD_SHIFT)
624			pdshift = PUD_SHIFT;
625		else
626			pdshift = PMD_SHIFT;
627#else
628		if (shift < PUD_SHIFT)
629			pdshift = PMD_SHIFT;
630		else if (shift < PGDIR_SHIFT)
631			pdshift = PUD_SHIFT;
632		else
633			pdshift = PGDIR_SHIFT;
634#endif
635
636		if (add_huge_page_size(1ULL << shift) < 0)
637			continue;
638		/*
639		 * if we have pdshift and shift value same, we don't
640		 * use pgt cache for hugepd.
641		 */
642		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643			pgtable_cache_add(PTE_INDEX_SIZE);
644		else if (pdshift > shift)
645			pgtable_cache_add(pdshift - shift);
646		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647			pgtable_cache_add(PTE_T_ORDER);
 
648
649		configured = true;
650	}
651
652	if (configured) {
653		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654			hugetlbpage_init_default();
655	} else
656		pr_info("Failed to initialize. Disabling HugeTLB");
657
658	return 0;
659}
660
661arch_initcall(hugetlbpage_init);
662
663void flush_dcache_icache_hugepage(struct page *page)
664{
665	int i;
666	void *start;
667
668	BUG_ON(!PageCompound(page));
 
 
 
 
 
 
669
670	for (i = 0; i < compound_nr(page); i++) {
671		if (!PageHighMem(page)) {
672			__flush_dcache_icache(page_address(page+i));
673		} else {
674			start = kmap_atomic(page+i);
675			__flush_dcache_icache(start);
676			kunmap_atomic(start);
677		}
678	}
679}