Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_IA64_UACCESS_H
  3#define _ASM_IA64_UACCESS_H
  4
  5/*
  6 * This file defines various macros to transfer memory areas across
  7 * the user/kernel boundary.  This needs to be done carefully because
  8 * this code is executed in kernel mode and uses user-specified
  9 * addresses.  Thus, we need to be careful not to let the user to
 10 * trick us into accessing kernel memory that would normally be
 11 * inaccessible.  This code is also fairly performance sensitive,
 12 * so we want to spend as little time doing safety checks as
 13 * possible.
 14 *
 15 * To make matters a bit more interesting, these macros sometimes also
 16 * called from within the kernel itself, in which case the address
 17 * validity check must be skipped.  The get_fs() macro tells us what
 18 * to do: if get_fs()==USER_DS, checking is performed, if
 19 * get_fs()==KERNEL_DS, checking is bypassed.
 20 *
 21 * Note that even if the memory area specified by the user is in a
 22 * valid address range, it is still possible that we'll get a page
 23 * fault while accessing it.  This is handled by filling out an
 24 * exception handler fixup entry for each instruction that has the
 25 * potential to fault.  When such a fault occurs, the page fault
 26 * handler checks to see whether the faulting instruction has a fixup
 27 * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
 28 * then resumes execution at the continuation point.
 29 *
 30 * Based on <asm-alpha/uaccess.h>.
 31 *
 32 * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
 33 *	David Mosberger-Tang <davidm@hpl.hp.com>
 34 */
 35
 36#include <linux/compiler.h>
 37#include <linux/page-flags.h>
 38#include <linux/mm.h>
 39
 40#include <asm/intrinsics.h>
 41#include <asm/pgtable.h>
 42#include <asm/io.h>
 43#include <asm/extable.h>
 44
 45/*
 46 * For historical reasons, the following macros are grossly misnamed:
 47 */
 48#define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
 49#define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */
 50
 51#define get_fs()  (current_thread_info()->addr_limit)
 52#define set_fs(x) (current_thread_info()->addr_limit = (x))
 53
 54#define segment_eq(a, b)	((a).seg == (b).seg)
 55
 56/*
 57 * When accessing user memory, we need to make sure the entire area really is in
 58 * user-level space.  In order to do this efficiently, we make sure that the page at
 59 * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
 60 * point inside the virtually mapped linear page table.
 61 */
 62static inline int __access_ok(const void __user *p, unsigned long size)
 63{
 64	unsigned long addr = (unsigned long)p;
 65	unsigned long seg = get_fs().seg;
 66	return likely(addr <= seg) &&
 67	 (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
 68}
 69#define access_ok(addr, size)	__access_ok((addr), (size))
 70
 71/*
 72 * These are the main single-value transfer routines.  They automatically
 73 * use the right size if we just have the right pointer type.
 74 *
 75 * Careful to not
 76 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 77 * (b) require any knowledge of processes at this stage
 78 */
 79#define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 80#define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)))
 81
 82/*
 83 * The "__xxx" versions do not do address space checking, useful when
 84 * doing multiple accesses to the same area (the programmer has to do the
 85 * checks by hand with "access_ok()")
 86 */
 87#define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 88#define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 89
 90#ifdef ASM_SUPPORTED
 91  struct __large_struct { unsigned long buf[100]; };
 92# define __m(x) (*(struct __large_struct __user *)(x))
 93
 94/* We need to declare the __ex_table section before we can use it in .xdata.  */
 95asm (".section \"__ex_table\", \"a\"\n\t.previous");
 96
 97# define __get_user_size(val, addr, n, err)							\
 98do {												\
 99	register long __gu_r8 asm ("r8") = 0;							\
100	register long __gu_r9 asm ("r9");							\
101	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
102	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
103	     "[1:]"										\
104	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
105	(err) = __gu_r8;									\
106	(val) = __gu_r9;									\
107} while (0)
108
109/*
110 * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
111 * is because they do not write to any memory gcc knows about, so there are no aliasing
112 * issues.
113 */
114# define __put_user_size(val, addr, n, err)							\
115do {												\
116	register long __pu_r8 asm ("r8") = 0;							\
117	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
118		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
119		      "[1:]"									\
120		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
121	(err) = __pu_r8;									\
122} while (0)
123
124#else /* !ASM_SUPPORTED */
125# define RELOC_TYPE	2	/* ip-rel */
126# define __get_user_size(val, addr, n, err)				\
127do {									\
128	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
129	(err) = ia64_getreg(_IA64_REG_R8);				\
130	(val) = ia64_getreg(_IA64_REG_R9);				\
131} while (0)
132# define __put_user_size(val, addr, n, err)				\
133do {									\
134	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
135		  (__force unsigned long) (val));			\
136	(err) = ia64_getreg(_IA64_REG_R8);				\
137} while (0)
138#endif /* !ASM_SUPPORTED */
139
140extern void __get_user_unknown (void);
141
142/*
143 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
144 * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
145 * using r8/r9.
146 */
147#define __do_get_user(check, x, ptr, size)						\
148({											\
149	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
150	__typeof__ (size) __gu_size = (size);						\
151	long __gu_err = -EFAULT;							\
152	unsigned long __gu_val = 0;							\
153	if (!check || __access_ok(__gu_ptr, size))					\
154		switch (__gu_size) {							\
155		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
156		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
157		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
158		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
159		      default: __get_user_unknown(); break;				\
160		}									\
161	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
162	__gu_err;									\
163})
164
165#define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size)
166#define __get_user_check(x, ptr, size)	__do_get_user(1, x, ptr, size)
167
168extern void __put_user_unknown (void);
169
170/*
171 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
172 * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
173 */
174#define __do_put_user(check, x, ptr, size)						\
175({											\
176	__typeof__ (x) __pu_x = (x);							\
177	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
178	__typeof__ (size) __pu_size = (size);						\
179	long __pu_err = -EFAULT;							\
180											\
181	if (!check || __access_ok(__pu_ptr, __pu_size))					\
182		switch (__pu_size) {							\
183		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
184		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
185		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
186		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
187		      default: __put_user_unknown(); break;				\
188		}									\
189	__pu_err;									\
190})
191
192#define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size)
193#define __put_user_check(x, ptr, size)	__do_put_user(1, x, ptr, size)
194
195/*
196 * Complex access routines
197 */
198extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
199					       unsigned long count);
200
201static inline unsigned long
202raw_copy_to_user(void __user *to, const void *from, unsigned long count)
203{
204	return __copy_user(to, (__force void __user *) from, count);
205}
206
207static inline unsigned long
208raw_copy_from_user(void *to, const void __user *from, unsigned long count)
209{
210	return __copy_user((__force void __user *) to, from, count);
211}
212
213#define INLINE_COPY_FROM_USER
214#define INLINE_COPY_TO_USER
215
216extern unsigned long __do_clear_user (void __user *, unsigned long);
217
218#define __clear_user(to, n)		__do_clear_user(to, n)
219
220#define clear_user(to, n)					\
221({								\
222	unsigned long __cu_len = (n);				\
223	if (__access_ok(to, __cu_len))				\
224		__cu_len = __do_clear_user(to, __cu_len);	\
225	__cu_len;						\
226})
227
228
229/*
230 * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
231 * strlen.
232 */
233extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
234
235#define strncpy_from_user(to, from, n)					\
236({									\
237	const char __user * __sfu_from = (from);			\
238	long __sfu_ret = -EFAULT;					\
239	if (__access_ok(__sfu_from, 0))					\
240		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
241	__sfu_ret;							\
242})
243
244/*
245 * Returns: 0 if exception before NUL or reaching the supplied limit
246 * (N), a value greater than N if the limit would be exceeded, else
247 * strlen.
248 */
249extern unsigned long __strnlen_user (const char __user *, long);
250
251#define strnlen_user(str, len)					\
252({								\
253	const char __user *__su_str = (str);			\
254	unsigned long __su_ret = 0;				\
255	if (__access_ok(__su_str, 0))				\
256		__su_ret = __strnlen_user(__su_str, len);	\
257	__su_ret;						\
258})
259
260#define ARCH_HAS_TRANSLATE_MEM_PTR	1
261static __inline__ void *
262xlate_dev_mem_ptr(phys_addr_t p)
263{
264	struct page *page;
265	void *ptr;
266
267	page = pfn_to_page(p >> PAGE_SHIFT);
268	if (PageUncached(page))
269		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
270	else
271		ptr = __va(p);
272
273	return ptr;
274}
275
276/*
277 * Convert a virtual cached kernel memory pointer to an uncached pointer
278 */
279static __inline__ void *
280xlate_dev_kmem_ptr(void *p)
281{
282	struct page *page;
283	void *ptr;
284
285	page = virt_to_page((unsigned long)p);
286	if (PageUncached(page))
287		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
288	else
289		ptr = p;
290
291	return ptr;
292}
293
294#endif /* _ASM_IA64_UACCESS_H */