Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
  8 */
 
 
 
  9#include <linux/compat.h>
 10#include <linux/efi.h>
 11#include <linux/elf.h>
 12#include <linux/export.h>
 13#include <linux/sched.h>
 14#include <linux/sched/debug.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/mman.h>
 19#include <linux/mm.h>
 20#include <linux/nospec.h>
 21#include <linux/stddef.h>
 22#include <linux/sysctl.h>
 23#include <linux/unistd.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/reboot.h>
 27#include <linux/interrupt.h>
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 30#include <linux/elfcore.h>
 31#include <linux/pm.h>
 32#include <linux/tick.h>
 33#include <linux/utsname.h>
 34#include <linux/uaccess.h>
 35#include <linux/random.h>
 36#include <linux/hw_breakpoint.h>
 37#include <linux/personality.h>
 38#include <linux/notifier.h>
 39#include <trace/events/power.h>
 40#include <linux/percpu.h>
 41#include <linux/thread_info.h>
 42#include <linux/prctl.h>
 43#include <linux/stacktrace.h>
 44
 45#include <asm/alternative.h>
 
 46#include <asm/compat.h>
 47#include <asm/cpufeature.h>
 48#include <asm/cacheflush.h>
 49#include <asm/exec.h>
 50#include <asm/fpsimd.h>
 51#include <asm/mmu_context.h>
 52#include <asm/mte.h>
 53#include <asm/processor.h>
 54#include <asm/pointer_auth.h>
 55#include <asm/stacktrace.h>
 56#include <asm/switch_to.h>
 57#include <asm/system_misc.h>
 58
 59#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 60#include <linux/stackprotector.h>
 61unsigned long __stack_chk_guard __ro_after_init;
 62EXPORT_SYMBOL(__stack_chk_guard);
 63#endif
 64
 65/*
 66 * Function pointers to optional machine specific functions
 67 */
 68void (*pm_power_off)(void);
 69EXPORT_SYMBOL_GPL(pm_power_off);
 70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71#ifdef CONFIG_HOTPLUG_CPU
 72void __noreturn arch_cpu_idle_dead(void)
 73{
 74       cpu_die();
 75}
 76#endif
 77
 78/*
 79 * Called by kexec, immediately prior to machine_kexec().
 80 *
 81 * This must completely disable all secondary CPUs; simply causing those CPUs
 82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 83 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
 86 */
 87void machine_shutdown(void)
 88{
 89	smp_shutdown_nonboot_cpus(reboot_cpu);
 90}
 91
 92/*
 93 * Halting simply requires that the secondary CPUs stop performing any
 94 * activity (executing tasks, handling interrupts). smp_send_stop()
 95 * achieves this.
 96 */
 97void machine_halt(void)
 98{
 99	local_irq_disable();
100	smp_send_stop();
101	while (1);
102}
103
104/*
105 * Power-off simply requires that the secondary CPUs stop performing any
106 * activity (executing tasks, handling interrupts). smp_send_stop()
107 * achieves this. When the system power is turned off, it will take all CPUs
108 * with it.
109 */
110void machine_power_off(void)
111{
112	local_irq_disable();
113	smp_send_stop();
114	do_kernel_power_off();
 
115}
116
117/*
118 * Restart requires that the secondary CPUs stop performing any activity
119 * while the primary CPU resets the system. Systems with multiple CPUs must
120 * provide a HW restart implementation, to ensure that all CPUs reset at once.
121 * This is required so that any code running after reset on the primary CPU
122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123 * executing pre-reset code, and using RAM that the primary CPU's code wishes
124 * to use. Implementing such co-ordination would be essentially impossible.
125 */
126void machine_restart(char *cmd)
127{
128	/* Disable interrupts first */
129	local_irq_disable();
130	smp_send_stop();
131
132	/*
133	 * UpdateCapsule() depends on the system being reset via
134	 * ResetSystem().
135	 */
136	if (efi_enabled(EFI_RUNTIME_SERVICES))
137		efi_reboot(reboot_mode, NULL);
138
139	/* Now call the architecture specific reboot code. */
140	do_kernel_restart(cmd);
 
 
 
141
142	/*
143	 * Whoops - the architecture was unable to reboot.
144	 */
145	printk("Reboot failed -- System halted\n");
146	while (1);
147}
148
149#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150static const char *const btypes[] = {
151	bstr(NONE, "--"),
152	bstr(  JC, "jc"),
153	bstr(   C, "-c"),
154	bstr(  J , "j-")
155};
156#undef bstr
157
158static void print_pstate(struct pt_regs *regs)
159{
160	u64 pstate = regs->pstate;
161
162	if (compat_user_mode(regs)) {
163		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
164			pstate,
165			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
175			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
176			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
177	} else {
178		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
179					       PSR_BTYPE_SHIFT];
180
181		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
182			pstate,
183			pstate & PSR_N_BIT ? 'N' : 'n',
184			pstate & PSR_Z_BIT ? 'Z' : 'z',
185			pstate & PSR_C_BIT ? 'C' : 'c',
186			pstate & PSR_V_BIT ? 'V' : 'v',
187			pstate & PSR_D_BIT ? 'D' : 'd',
188			pstate & PSR_A_BIT ? 'A' : 'a',
189			pstate & PSR_I_BIT ? 'I' : 'i',
190			pstate & PSR_F_BIT ? 'F' : 'f',
191			pstate & PSR_PAN_BIT ? '+' : '-',
192			pstate & PSR_UAO_BIT ? '+' : '-',
193			pstate & PSR_TCO_BIT ? '+' : '-',
194			pstate & PSR_DIT_BIT ? '+' : '-',
195			pstate & PSR_SSBS_BIT ? '+' : '-',
196			btype_str);
197	}
198}
199
200void __show_regs(struct pt_regs *regs)
201{
202	int i, top_reg;
203	u64 lr, sp;
204
205	if (compat_user_mode(regs)) {
206		lr = regs->compat_lr;
207		sp = regs->compat_sp;
208		top_reg = 12;
209	} else {
210		lr = regs->regs[30];
211		sp = regs->sp;
212		top_reg = 29;
213	}
214
215	show_regs_print_info(KERN_DEFAULT);
216	print_pstate(regs);
217
218	if (!user_mode(regs)) {
219		printk("pc : %pS\n", (void *)regs->pc);
220		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
221	} else {
222		printk("pc : %016llx\n", regs->pc);
223		printk("lr : %016llx\n", lr);
224	}
225
226	printk("sp : %016llx\n", sp);
227
228	if (system_uses_irq_prio_masking())
229		printk("pmr_save: %08llx\n", regs->pmr_save);
230
231	i = top_reg;
232
233	while (i >= 0) {
234		printk("x%-2d: %016llx", i, regs->regs[i]);
 
235
236		while (i-- % 3)
237			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
 
 
238
239		pr_cont("\n");
240	}
241}
242
243void show_regs(struct pt_regs *regs)
244{
245	__show_regs(regs);
246	dump_backtrace(regs, NULL, KERN_DEFAULT);
247}
248
249static void tls_thread_flush(void)
250{
251	write_sysreg(0, tpidr_el0);
252	if (system_supports_tpidr2())
253		write_sysreg_s(0, SYS_TPIDR2_EL0);
254
255	if (is_compat_task()) {
256		current->thread.uw.tp_value = 0;
257
258		/*
259		 * We need to ensure ordering between the shadow state and the
260		 * hardware state, so that we don't corrupt the hardware state
261		 * with a stale shadow state during context switch.
262		 */
263		barrier();
264		write_sysreg(0, tpidrro_el0);
265	}
266}
267
268static void flush_tagged_addr_state(void)
269{
270	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
271		clear_thread_flag(TIF_TAGGED_ADDR);
272}
273
274void flush_thread(void)
275{
276	fpsimd_flush_thread();
277	tls_thread_flush();
278	flush_ptrace_hw_breakpoint(current);
279	flush_tagged_addr_state();
280}
281
 
 
 
 
282void arch_release_task_struct(struct task_struct *tsk)
283{
284	fpsimd_release_task(tsk);
285}
286
287int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
288{
289	if (current->mm)
290		fpsimd_preserve_current_state();
291	*dst = *src;
292
293	/* We rely on the above assignment to initialize dst's thread_flags: */
294	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
295
296	/*
297	 * Detach src's sve_state (if any) from dst so that it does not
298	 * get erroneously used or freed prematurely.  dst's copies
299	 * will be allocated on demand later on if dst uses SVE.
300	 * For consistency, also clear TIF_SVE here: this could be done
301	 * later in copy_process(), but to avoid tripping up future
302	 * maintainers it is best not to leave TIF flags and buffers in
303	 * an inconsistent state, even temporarily.
304	 */
305	dst->thread.sve_state = NULL;
306	clear_tsk_thread_flag(dst, TIF_SVE);
307
308	/*
309	 * In the unlikely event that we create a new thread with ZA
310	 * enabled we should retain the ZA and ZT state so duplicate
311	 * it here.  This may be shortly freed if we exec() or if
312	 * CLONE_SETTLS but it's simpler to do it here. To avoid
313	 * confusing the rest of the code ensure that we have a
314	 * sve_state allocated whenever sme_state is allocated.
315	 */
316	if (thread_za_enabled(&src->thread)) {
317		dst->thread.sve_state = kzalloc(sve_state_size(src),
318						GFP_KERNEL);
319		if (!dst->thread.sve_state)
320			return -ENOMEM;
321
322		dst->thread.sme_state = kmemdup(src->thread.sme_state,
323						sme_state_size(src),
324						GFP_KERNEL);
325		if (!dst->thread.sme_state) {
326			kfree(dst->thread.sve_state);
327			dst->thread.sve_state = NULL;
328			return -ENOMEM;
329		}
330	} else {
331		dst->thread.sme_state = NULL;
332		clear_tsk_thread_flag(dst, TIF_SME);
333	}
334
335	dst->thread.fp_type = FP_STATE_FPSIMD;
336
337	/* clear any pending asynchronous tag fault raised by the parent */
338	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
339
340	return 0;
341}
342
343asmlinkage void ret_from_fork(void) asm("ret_from_fork");
344
345int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
346{
347	unsigned long clone_flags = args->flags;
348	unsigned long stack_start = args->stack;
349	unsigned long tls = args->tls;
350	struct pt_regs *childregs = task_pt_regs(p);
351
352	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
353
354	/*
355	 * In case p was allocated the same task_struct pointer as some
356	 * other recently-exited task, make sure p is disassociated from
357	 * any cpu that may have run that now-exited task recently.
358	 * Otherwise we could erroneously skip reloading the FPSIMD
359	 * registers for p.
360	 */
361	fpsimd_flush_task_state(p);
362
363	ptrauth_thread_init_kernel(p);
364
365	if (likely(!args->fn)) {
366		*childregs = *current_pt_regs();
367		childregs->regs[0] = 0;
368
369		/*
370		 * Read the current TLS pointer from tpidr_el0 as it may be
371		 * out-of-sync with the saved value.
372		 */
373		*task_user_tls(p) = read_sysreg(tpidr_el0);
374		if (system_supports_tpidr2())
375			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
376
377		if (stack_start) {
378			if (is_compat_thread(task_thread_info(p)))
379				childregs->compat_sp = stack_start;
380			else
381				childregs->sp = stack_start;
382		}
383
384		/*
385		 * If a TLS pointer was passed to clone, use it for the new
386		 * thread.  We also reset TPIDR2 if it's in use.
387		 */
388		if (clone_flags & CLONE_SETTLS) {
389			p->thread.uw.tp_value = tls;
390			p->thread.tpidr2_el0 = 0;
391		}
392	} else {
393		/*
394		 * A kthread has no context to ERET to, so ensure any buggy
395		 * ERET is treated as an illegal exception return.
396		 *
397		 * When a user task is created from a kthread, childregs will
398		 * be initialized by start_thread() or start_compat_thread().
399		 */
400		memset(childregs, 0, sizeof(struct pt_regs));
401		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
 
 
 
 
 
 
402
403		p->thread.cpu_context.x19 = (unsigned long)args->fn;
404		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
 
 
 
405	}
406	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
407	p->thread.cpu_context.sp = (unsigned long)childregs;
408	/*
409	 * For the benefit of the unwinder, set up childregs->stackframe
410	 * as the final frame for the new task.
411	 */
412	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
413
414	ptrace_hw_copy_thread(p);
415
416	return 0;
417}
418
419void tls_preserve_current_state(void)
420{
421	*task_user_tls(current) = read_sysreg(tpidr_el0);
422	if (system_supports_tpidr2() && !is_compat_task())
423		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
424}
425
426static void tls_thread_switch(struct task_struct *next)
427{
428	tls_preserve_current_state();
429
430	if (is_compat_thread(task_thread_info(next)))
431		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
432	else if (!arm64_kernel_unmapped_at_el0())
433		write_sysreg(0, tpidrro_el0);
434
435	write_sysreg(*task_user_tls(next), tpidr_el0);
436	if (system_supports_tpidr2())
437		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
 
 
 
 
 
 
 
 
 
438}
439
440/*
441 * Force SSBS state on context-switch, since it may be lost after migrating
442 * from a CPU which treats the bit as RES0 in a heterogeneous system.
443 */
444static void ssbs_thread_switch(struct task_struct *next)
445{
 
 
446	/*
447	 * Nothing to do for kernel threads, but 'regs' may be junk
448	 * (e.g. idle task) so check the flags and bail early.
449	 */
450	if (unlikely(next->flags & PF_KTHREAD))
451		return;
452
453	/*
454	 * If all CPUs implement the SSBS extension, then we just need to
455	 * context-switch the PSTATE field.
456	 */
457	if (alternative_has_cap_unlikely(ARM64_SSBS))
458		return;
459
460	spectre_v4_enable_task_mitigation(next);
 
 
 
461}
462
463/*
464 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
465 * shadow copy so that we can restore this upon entry from userspace.
466 *
467 * This is *only* for exception entry from EL0, and is not valid until we
468 * __switch_to() a user task.
469 */
470DEFINE_PER_CPU(struct task_struct *, __entry_task);
471
472static void entry_task_switch(struct task_struct *next)
473{
474	__this_cpu_write(__entry_task, next);
475}
476
477/*
478 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
479 * Ensure access is disabled when switching to a 32bit task, ensure
480 * access is enabled when switching to a 64bit task.
481 */
482static void erratum_1418040_thread_switch(struct task_struct *next)
483{
484	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
485	    !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
486		return;
487
488	if (is_compat_thread(task_thread_info(next)))
489		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
490	else
491		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
492}
493
494static void erratum_1418040_new_exec(void)
495{
496	preempt_disable();
497	erratum_1418040_thread_switch(current);
498	preempt_enable();
499}
500
501/*
502 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
503 * this function must be called with preemption disabled and the update to
504 * sctlr_user must be made in the same preemption disabled block so that
505 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
506 */
507void update_sctlr_el1(u64 sctlr)
508{
509	/*
510	 * EnIA must not be cleared while in the kernel as this is necessary for
511	 * in-kernel PAC. It will be cleared on kernel exit if needed.
512	 */
513	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
514
515	/* ISB required for the kernel uaccess routines when setting TCF0. */
516	isb();
517}
518
519/*
520 * Thread switching.
521 */
522__notrace_funcgraph __sched
523struct task_struct *__switch_to(struct task_struct *prev,
524				struct task_struct *next)
525{
526	struct task_struct *last;
527
528	fpsimd_thread_switch(next);
529	tls_thread_switch(next);
530	hw_breakpoint_thread_switch(next);
531	contextidr_thread_switch(next);
532	entry_task_switch(next);
 
 
533	ssbs_thread_switch(next);
534	erratum_1418040_thread_switch(next);
535	ptrauth_thread_switch_user(next);
536
537	/*
538	 * Complete any pending TLB or cache maintenance on this CPU in case
539	 * the thread migrates to a different CPU.
540	 * This full barrier is also required by the membarrier system
541	 * call.
542	 */
543	dsb(ish);
544
545	/*
546	 * MTE thread switching must happen after the DSB above to ensure that
547	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
548	 * registers.
549	 */
550	mte_thread_switch(next);
551	/* avoid expensive SCTLR_EL1 accesses if no change */
552	if (prev->thread.sctlr_user != next->thread.sctlr_user)
553		update_sctlr_el1(next->thread.sctlr_user);
554
555	/* the actual thread switch */
556	last = cpu_switch_to(prev, next);
557
558	return last;
559}
560
561struct wchan_info {
562	unsigned long	pc;
563	int		count;
564};
565
566static bool get_wchan_cb(void *arg, unsigned long pc)
567{
568	struct wchan_info *wchan_info = arg;
569
570	if (!in_sched_functions(pc)) {
571		wchan_info->pc = pc;
572		return false;
573	}
574	return wchan_info->count++ < 16;
575}
576
577unsigned long __get_wchan(struct task_struct *p)
578{
579	struct wchan_info wchan_info = {
580		.pc = 0,
581		.count = 0,
582	};
 
583
584	if (!try_get_task_stack(p))
 
585		return 0;
586
587	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
588
589	put_task_stack(p);
 
 
 
 
 
 
 
590
591	return wchan_info.pc;
 
 
592}
593
594unsigned long arch_align_stack(unsigned long sp)
595{
596	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
597		sp -= get_random_u32_below(PAGE_SIZE);
598	return sp & ~0xf;
599}
600
601#ifdef CONFIG_COMPAT
602int compat_elf_check_arch(const struct elf32_hdr *hdr)
603{
604	if (!system_supports_32bit_el0())
605		return false;
606
607	if ((hdr)->e_machine != EM_ARM)
608		return false;
609
610	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
611		return false;
612
613	/*
614	 * Prevent execve() of a 32-bit program from a deadline task
615	 * if the restricted affinity mask would be inadmissible on an
616	 * asymmetric system.
617	 */
618	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
619	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
620}
621#endif
622
623/*
624 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
625 */
626void arch_setup_new_exec(void)
627{
628	unsigned long mmflags = 0;
629
630	if (is_compat_task()) {
631		mmflags = MMCF_AARCH32;
632
633		/*
634		 * Restrict the CPU affinity mask for a 32-bit task so that
635		 * it contains only 32-bit-capable CPUs.
636		 *
637		 * From the perspective of the task, this looks similar to
638		 * what would happen if the 64-bit-only CPUs were hot-unplugged
639		 * at the point of execve(), although we try a bit harder to
640		 * honour the cpuset hierarchy.
641		 */
642		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
643			force_compatible_cpus_allowed_ptr(current);
644	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
645		relax_compatible_cpus_allowed_ptr(current);
646	}
647
648	current->mm->context.flags = mmflags;
649	ptrauth_thread_init_user();
650	mte_thread_init_user();
651	erratum_1418040_new_exec();
652
653	if (task_spec_ssb_noexec(current)) {
654		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
655					 PR_SPEC_ENABLE);
656	}
657}
658
659#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
660/*
661 * Control the relaxed ABI allowing tagged user addresses into the kernel.
662 */
663static unsigned int tagged_addr_disabled;
664
665long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
666{
667	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
668	struct thread_info *ti = task_thread_info(task);
669
670	if (is_compat_thread(ti))
671		return -EINVAL;
672
673	if (system_supports_mte())
674		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
675			| PR_MTE_TAG_MASK;
676
677	if (arg & ~valid_mask)
678		return -EINVAL;
679
680	/*
681	 * Do not allow the enabling of the tagged address ABI if globally
682	 * disabled via sysctl abi.tagged_addr_disabled.
683	 */
684	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
685		return -EINVAL;
686
687	if (set_mte_ctrl(task, arg) != 0)
688		return -EINVAL;
689
690	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
691
692	return 0;
693}
694
695long get_tagged_addr_ctrl(struct task_struct *task)
696{
697	long ret = 0;
698	struct thread_info *ti = task_thread_info(task);
699
700	if (is_compat_thread(ti))
701		return -EINVAL;
702
703	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
704		ret = PR_TAGGED_ADDR_ENABLE;
705
706	ret |= get_mte_ctrl(task);
707
708	return ret;
709}
710
711/*
712 * Global sysctl to disable the tagged user addresses support. This control
713 * only prevents the tagged address ABI enabling via prctl() and does not
714 * disable it for tasks that already opted in to the relaxed ABI.
715 */
 
 
716
717static struct ctl_table tagged_addr_sysctl_table[] = {
718	{
719		.procname	= "tagged_addr_disabled",
720		.mode		= 0644,
721		.data		= &tagged_addr_disabled,
722		.maxlen		= sizeof(int),
723		.proc_handler	= proc_dointvec_minmax,
724		.extra1		= SYSCTL_ZERO,
725		.extra2		= SYSCTL_ONE,
726	},
 
727};
728
729static int __init tagged_addr_init(void)
730{
731	if (!register_sysctl("abi", tagged_addr_sysctl_table))
732		return -EINVAL;
733	return 0;
734}
735
736core_initcall(tagged_addr_init);
737#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
738
739#ifdef CONFIG_BINFMT_ELF
740int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
741			 bool has_interp, bool is_interp)
742{
 
 
743	/*
744	 * For dynamically linked executables the interpreter is
745	 * responsible for setting PROT_BTI on everything except
746	 * itself.
 
 
 
747	 */
748	if (is_interp != has_interp)
749		return prot;
750
751	if (!(state->flags & ARM64_ELF_BTI))
752		return prot;
753
754	if (prot & PROT_EXEC)
755		prot |= PROT_BTI;
756
757	return prot;
758}
759#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
  8 */
  9
 10#include <stdarg.h>
 11
 12#include <linux/compat.h>
 13#include <linux/efi.h>
 
 14#include <linux/export.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/sched/task.h>
 18#include <linux/sched/task_stack.h>
 19#include <linux/kernel.h>
 20#include <linux/lockdep.h>
 21#include <linux/mm.h>
 
 22#include <linux/stddef.h>
 23#include <linux/sysctl.h>
 24#include <linux/unistd.h>
 25#include <linux/user.h>
 26#include <linux/delay.h>
 27#include <linux/reboot.h>
 28#include <linux/interrupt.h>
 29#include <linux/init.h>
 30#include <linux/cpu.h>
 31#include <linux/elfcore.h>
 32#include <linux/pm.h>
 33#include <linux/tick.h>
 34#include <linux/utsname.h>
 35#include <linux/uaccess.h>
 36#include <linux/random.h>
 37#include <linux/hw_breakpoint.h>
 38#include <linux/personality.h>
 39#include <linux/notifier.h>
 40#include <trace/events/power.h>
 41#include <linux/percpu.h>
 42#include <linux/thread_info.h>
 43#include <linux/prctl.h>
 
 44
 45#include <asm/alternative.h>
 46#include <asm/arch_gicv3.h>
 47#include <asm/compat.h>
 48#include <asm/cpufeature.h>
 49#include <asm/cacheflush.h>
 50#include <asm/exec.h>
 51#include <asm/fpsimd.h>
 52#include <asm/mmu_context.h>
 
 53#include <asm/processor.h>
 54#include <asm/pointer_auth.h>
 55#include <asm/stacktrace.h>
 
 
 56
 57#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 58#include <linux/stackprotector.h>
 59unsigned long __stack_chk_guard __read_mostly;
 60EXPORT_SYMBOL(__stack_chk_guard);
 61#endif
 62
 63/*
 64 * Function pointers to optional machine specific functions
 65 */
 66void (*pm_power_off)(void);
 67EXPORT_SYMBOL_GPL(pm_power_off);
 68
 69void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 70
 71static void __cpu_do_idle(void)
 72{
 73	dsb(sy);
 74	wfi();
 75}
 76
 77static void __cpu_do_idle_irqprio(void)
 78{
 79	unsigned long pmr;
 80	unsigned long daif_bits;
 81
 82	daif_bits = read_sysreg(daif);
 83	write_sysreg(daif_bits | PSR_I_BIT, daif);
 84
 85	/*
 86	 * Unmask PMR before going idle to make sure interrupts can
 87	 * be raised.
 88	 */
 89	pmr = gic_read_pmr();
 90	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
 91
 92	__cpu_do_idle();
 93
 94	gic_write_pmr(pmr);
 95	write_sysreg(daif_bits, daif);
 96}
 97
 98/*
 99 *	cpu_do_idle()
100 *
101 *	Idle the processor (wait for interrupt).
102 *
103 *	If the CPU supports priority masking we must do additional work to
104 *	ensure that interrupts are not masked at the PMR (because the core will
105 *	not wake up if we block the wake up signal in the interrupt controller).
106 */
107void cpu_do_idle(void)
108{
109	if (system_uses_irq_prio_masking())
110		__cpu_do_idle_irqprio();
111	else
112		__cpu_do_idle();
113}
114
115/*
116 * This is our default idle handler.
117 */
118void arch_cpu_idle(void)
119{
120	/*
121	 * This should do all the clock switching and wait for interrupt
122	 * tricks
123	 */
124	trace_cpu_idle_rcuidle(1, smp_processor_id());
125	cpu_do_idle();
126	local_irq_enable();
127	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
128}
129
130#ifdef CONFIG_HOTPLUG_CPU
131void arch_cpu_idle_dead(void)
132{
133       cpu_die();
134}
135#endif
136
137/*
138 * Called by kexec, immediately prior to machine_kexec().
139 *
140 * This must completely disable all secondary CPUs; simply causing those CPUs
141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142 * kexec'd kernel to use any and all RAM as it sees fit, without having to
143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144 * functionality embodied in disable_nonboot_cpus() to achieve this.
145 */
146void machine_shutdown(void)
147{
148	disable_nonboot_cpus();
149}
150
151/*
152 * Halting simply requires that the secondary CPUs stop performing any
153 * activity (executing tasks, handling interrupts). smp_send_stop()
154 * achieves this.
155 */
156void machine_halt(void)
157{
158	local_irq_disable();
159	smp_send_stop();
160	while (1);
161}
162
163/*
164 * Power-off simply requires that the secondary CPUs stop performing any
165 * activity (executing tasks, handling interrupts). smp_send_stop()
166 * achieves this. When the system power is turned off, it will take all CPUs
167 * with it.
168 */
169void machine_power_off(void)
170{
171	local_irq_disable();
172	smp_send_stop();
173	if (pm_power_off)
174		pm_power_off();
175}
176
177/*
178 * Restart requires that the secondary CPUs stop performing any activity
179 * while the primary CPU resets the system. Systems with multiple CPUs must
180 * provide a HW restart implementation, to ensure that all CPUs reset at once.
181 * This is required so that any code running after reset on the primary CPU
182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183 * executing pre-reset code, and using RAM that the primary CPU's code wishes
184 * to use. Implementing such co-ordination would be essentially impossible.
185 */
186void machine_restart(char *cmd)
187{
188	/* Disable interrupts first */
189	local_irq_disable();
190	smp_send_stop();
191
192	/*
193	 * UpdateCapsule() depends on the system being reset via
194	 * ResetSystem().
195	 */
196	if (efi_enabled(EFI_RUNTIME_SERVICES))
197		efi_reboot(reboot_mode, NULL);
198
199	/* Now call the architecture specific reboot code. */
200	if (arm_pm_restart)
201		arm_pm_restart(reboot_mode, cmd);
202	else
203		do_kernel_restart(cmd);
204
205	/*
206	 * Whoops - the architecture was unable to reboot.
207	 */
208	printk("Reboot failed -- System halted\n");
209	while (1);
210}
211
 
 
 
 
 
 
 
 
 
212static void print_pstate(struct pt_regs *regs)
213{
214	u64 pstate = regs->pstate;
215
216	if (compat_user_mode(regs)) {
217		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
218			pstate,
219			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
220			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
221			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
222			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
223			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
224			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
225			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
226			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
227			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
228			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
 
 
229	} else {
230		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
 
 
 
231			pstate,
232			pstate & PSR_N_BIT ? 'N' : 'n',
233			pstate & PSR_Z_BIT ? 'Z' : 'z',
234			pstate & PSR_C_BIT ? 'C' : 'c',
235			pstate & PSR_V_BIT ? 'V' : 'v',
236			pstate & PSR_D_BIT ? 'D' : 'd',
237			pstate & PSR_A_BIT ? 'A' : 'a',
238			pstate & PSR_I_BIT ? 'I' : 'i',
239			pstate & PSR_F_BIT ? 'F' : 'f',
240			pstate & PSR_PAN_BIT ? '+' : '-',
241			pstate & PSR_UAO_BIT ? '+' : '-');
 
 
 
 
242	}
243}
244
245void __show_regs(struct pt_regs *regs)
246{
247	int i, top_reg;
248	u64 lr, sp;
249
250	if (compat_user_mode(regs)) {
251		lr = regs->compat_lr;
252		sp = regs->compat_sp;
253		top_reg = 12;
254	} else {
255		lr = regs->regs[30];
256		sp = regs->sp;
257		top_reg = 29;
258	}
259
260	show_regs_print_info(KERN_DEFAULT);
261	print_pstate(regs);
262
263	if (!user_mode(regs)) {
264		printk("pc : %pS\n", (void *)regs->pc);
265		printk("lr : %pS\n", (void *)lr);
266	} else {
267		printk("pc : %016llx\n", regs->pc);
268		printk("lr : %016llx\n", lr);
269	}
270
271	printk("sp : %016llx\n", sp);
272
273	if (system_uses_irq_prio_masking())
274		printk("pmr_save: %08llx\n", regs->pmr_save);
275
276	i = top_reg;
277
278	while (i >= 0) {
279		printk("x%-2d: %016llx ", i, regs->regs[i]);
280		i--;
281
282		if (i % 2 == 0) {
283			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
284			i--;
285		}
286
287		pr_cont("\n");
288	}
289}
290
291void show_regs(struct pt_regs * regs)
292{
293	__show_regs(regs);
294	dump_backtrace(regs, NULL);
295}
296
297static void tls_thread_flush(void)
298{
299	write_sysreg(0, tpidr_el0);
 
 
300
301	if (is_compat_task()) {
302		current->thread.uw.tp_value = 0;
303
304		/*
305		 * We need to ensure ordering between the shadow state and the
306		 * hardware state, so that we don't corrupt the hardware state
307		 * with a stale shadow state during context switch.
308		 */
309		barrier();
310		write_sysreg(0, tpidrro_el0);
311	}
312}
313
314static void flush_tagged_addr_state(void)
315{
316	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
317		clear_thread_flag(TIF_TAGGED_ADDR);
318}
319
320void flush_thread(void)
321{
322	fpsimd_flush_thread();
323	tls_thread_flush();
324	flush_ptrace_hw_breakpoint(current);
325	flush_tagged_addr_state();
326}
327
328void release_thread(struct task_struct *dead_task)
329{
330}
331
332void arch_release_task_struct(struct task_struct *tsk)
333{
334	fpsimd_release_task(tsk);
335}
336
337int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
338{
339	if (current->mm)
340		fpsimd_preserve_current_state();
341	*dst = *src;
342
343	/* We rely on the above assignment to initialize dst's thread_flags: */
344	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
345
346	/*
347	 * Detach src's sve_state (if any) from dst so that it does not
348	 * get erroneously used or freed prematurely.  dst's sve_state
349	 * will be allocated on demand later on if dst uses SVE.
350	 * For consistency, also clear TIF_SVE here: this could be done
351	 * later in copy_process(), but to avoid tripping up future
352	 * maintainers it is best not to leave TIF_SVE and sve_state in
353	 * an inconsistent state, even temporarily.
354	 */
355	dst->thread.sve_state = NULL;
356	clear_tsk_thread_flag(dst, TIF_SVE);
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358	return 0;
359}
360
361asmlinkage void ret_from_fork(void) asm("ret_from_fork");
362
363int copy_thread(unsigned long clone_flags, unsigned long stack_start,
364		unsigned long stk_sz, struct task_struct *p)
365{
 
 
 
366	struct pt_regs *childregs = task_pt_regs(p);
367
368	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
369
370	/*
371	 * In case p was allocated the same task_struct pointer as some
372	 * other recently-exited task, make sure p is disassociated from
373	 * any cpu that may have run that now-exited task recently.
374	 * Otherwise we could erroneously skip reloading the FPSIMD
375	 * registers for p.
376	 */
377	fpsimd_flush_task_state(p);
378
379	if (likely(!(p->flags & PF_KTHREAD))) {
 
 
380		*childregs = *current_pt_regs();
381		childregs->regs[0] = 0;
382
383		/*
384		 * Read the current TLS pointer from tpidr_el0 as it may be
385		 * out-of-sync with the saved value.
386		 */
387		*task_user_tls(p) = read_sysreg(tpidr_el0);
 
 
388
389		if (stack_start) {
390			if (is_compat_thread(task_thread_info(p)))
391				childregs->compat_sp = stack_start;
392			else
393				childregs->sp = stack_start;
394		}
395
396		/*
397		 * If a TLS pointer was passed to clone (4th argument), use it
398		 * for the new thread.
399		 */
400		if (clone_flags & CLONE_SETTLS)
401			p->thread.uw.tp_value = childregs->regs[3];
 
 
402	} else {
 
 
 
 
 
 
 
403		memset(childregs, 0, sizeof(struct pt_regs));
404		childregs->pstate = PSR_MODE_EL1h;
405		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
406		    cpus_have_const_cap(ARM64_HAS_UAO))
407			childregs->pstate |= PSR_UAO_BIT;
408
409		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
410			set_ssbs_bit(childregs);
411
412		if (system_uses_irq_prio_masking())
413			childregs->pmr_save = GIC_PRIO_IRQON;
414
415		p->thread.cpu_context.x19 = stack_start;
416		p->thread.cpu_context.x20 = stk_sz;
417	}
418	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
419	p->thread.cpu_context.sp = (unsigned long)childregs;
 
 
 
 
 
420
421	ptrace_hw_copy_thread(p);
422
423	return 0;
424}
425
426void tls_preserve_current_state(void)
427{
428	*task_user_tls(current) = read_sysreg(tpidr_el0);
 
 
429}
430
431static void tls_thread_switch(struct task_struct *next)
432{
433	tls_preserve_current_state();
434
435	if (is_compat_thread(task_thread_info(next)))
436		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
437	else if (!arm64_kernel_unmapped_at_el0())
438		write_sysreg(0, tpidrro_el0);
439
440	write_sysreg(*task_user_tls(next), tpidr_el0);
441}
442
443/* Restore the UAO state depending on next's addr_limit */
444void uao_thread_switch(struct task_struct *next)
445{
446	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
447		if (task_thread_info(next)->addr_limit == KERNEL_DS)
448			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
449		else
450			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
451	}
452}
453
454/*
455 * Force SSBS state on context-switch, since it may be lost after migrating
456 * from a CPU which treats the bit as RES0 in a heterogeneous system.
457 */
458static void ssbs_thread_switch(struct task_struct *next)
459{
460	struct pt_regs *regs = task_pt_regs(next);
461
462	/*
463	 * Nothing to do for kernel threads, but 'regs' may be junk
464	 * (e.g. idle task) so check the flags and bail early.
465	 */
466	if (unlikely(next->flags & PF_KTHREAD))
467		return;
468
469	/* If the mitigation is enabled, then we leave SSBS clear. */
470	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
471	    test_tsk_thread_flag(next, TIF_SSBD))
 
 
472		return;
473
474	if (compat_user_mode(regs))
475		set_compat_ssbs_bit(regs);
476	else if (user_mode(regs))
477		set_ssbs_bit(regs);
478}
479
480/*
481 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
482 * shadow copy so that we can restore this upon entry from userspace.
483 *
484 * This is *only* for exception entry from EL0, and is not valid until we
485 * __switch_to() a user task.
486 */
487DEFINE_PER_CPU(struct task_struct *, __entry_task);
488
489static void entry_task_switch(struct task_struct *next)
490{
491	__this_cpu_write(__entry_task, next);
492}
493
494/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495 * Thread switching.
496 */
497__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
 
498				struct task_struct *next)
499{
500	struct task_struct *last;
501
502	fpsimd_thread_switch(next);
503	tls_thread_switch(next);
504	hw_breakpoint_thread_switch(next);
505	contextidr_thread_switch(next);
506	entry_task_switch(next);
507	uao_thread_switch(next);
508	ptrauth_thread_switch(next);
509	ssbs_thread_switch(next);
 
 
510
511	/*
512	 * Complete any pending TLB or cache maintenance on this CPU in case
513	 * the thread migrates to a different CPU.
514	 * This full barrier is also required by the membarrier system
515	 * call.
516	 */
517	dsb(ish);
518
 
 
 
 
 
 
 
 
 
 
519	/* the actual thread switch */
520	last = cpu_switch_to(prev, next);
521
522	return last;
523}
524
525unsigned long get_wchan(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526{
527	struct stackframe frame;
528	unsigned long stack_page, ret = 0;
529	int count = 0;
530	if (!p || p == current || p->state == TASK_RUNNING)
531		return 0;
532
533	stack_page = (unsigned long)try_get_task_stack(p);
534	if (!stack_page)
535		return 0;
536
537	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
538
539	do {
540		if (unwind_frame(p, &frame))
541			goto out;
542		if (!in_sched_functions(frame.pc)) {
543			ret = frame.pc;
544			goto out;
545		}
546	} while (count ++ < 16);
547
548out:
549	put_task_stack(p);
550	return ret;
551}
552
553unsigned long arch_align_stack(unsigned long sp)
554{
555	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
556		sp -= get_random_int() & ~PAGE_MASK;
557	return sp & ~0xf;
558}
559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560/*
561 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
562 */
563void arch_setup_new_exec(void)
564{
565	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566
567	ptrauth_thread_init_user(current);
 
 
 
 
 
 
 
 
568}
569
570#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
571/*
572 * Control the relaxed ABI allowing tagged user addresses into the kernel.
573 */
574static unsigned int tagged_addr_disabled;
575
576long set_tagged_addr_ctrl(unsigned long arg)
577{
578	if (is_compat_task())
 
 
 
579		return -EINVAL;
580	if (arg & ~PR_TAGGED_ADDR_ENABLE)
 
 
 
 
 
581		return -EINVAL;
582
583	/*
584	 * Do not allow the enabling of the tagged address ABI if globally
585	 * disabled via sysctl abi.tagged_addr_disabled.
586	 */
587	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
588		return -EINVAL;
589
590	update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
 
 
 
591
592	return 0;
593}
594
595long get_tagged_addr_ctrl(void)
596{
597	if (is_compat_task())
 
 
 
598		return -EINVAL;
599
600	if (test_thread_flag(TIF_TAGGED_ADDR))
601		return PR_TAGGED_ADDR_ENABLE;
 
 
602
603	return 0;
604}
605
606/*
607 * Global sysctl to disable the tagged user addresses support. This control
608 * only prevents the tagged address ABI enabling via prctl() and does not
609 * disable it for tasks that already opted in to the relaxed ABI.
610 */
611static int zero;
612static int one = 1;
613
614static struct ctl_table tagged_addr_sysctl_table[] = {
615	{
616		.procname	= "tagged_addr_disabled",
617		.mode		= 0644,
618		.data		= &tagged_addr_disabled,
619		.maxlen		= sizeof(int),
620		.proc_handler	= proc_dointvec_minmax,
621		.extra1		= &zero,
622		.extra2		= &one,
623	},
624	{ }
625};
626
627static int __init tagged_addr_init(void)
628{
629	if (!register_sysctl("abi", tagged_addr_sysctl_table))
630		return -EINVAL;
631	return 0;
632}
633
634core_initcall(tagged_addr_init);
635#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
636
637asmlinkage void __sched arm64_preempt_schedule_irq(void)
 
 
638{
639	lockdep_assert_irqs_disabled();
640
641	/*
642	 * Preempting a task from an IRQ means we leave copies of PSTATE
643	 * on the stack. cpufeature's enable calls may modify PSTATE, but
644	 * resuming one of these preempted tasks would undo those changes.
645	 *
646	 * Only allow a task to be preempted once cpufeatures have been
647	 * enabled.
648	 */
649	if (static_branch_likely(&arm64_const_caps_ready))
650		preempt_schedule_irq();
 
 
 
 
 
 
 
 
651}