Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
 
 
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/io.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/memcontrol.h>
  35#include <linux/llist.h>
  36#include <linux/uio.h>
  37#include <linux/bitops.h>
  38#include <linux/rbtree_augmented.h>
  39#include <linux/overflow.h>
  40#include <linux/pgtable.h>
  41#include <linux/hugetlb.h>
  42#include <linux/sched/mm.h>
  43#include <asm/tlbflush.h>
  44#include <asm/shmparam.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/vmalloc.h>
  48
  49#include "internal.h"
  50#include "pgalloc-track.h"
  51
  52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
  53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
  54
  55static int __init set_nohugeiomap(char *str)
  56{
  57	ioremap_max_page_shift = PAGE_SHIFT;
  58	return 0;
  59}
  60early_param("nohugeiomap", set_nohugeiomap);
  61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
  63#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
  64
  65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
  66static bool __ro_after_init vmap_allow_huge = true;
  67
  68static int __init set_nohugevmalloc(char *str)
  69{
  70	vmap_allow_huge = false;
  71	return 0;
  72}
  73early_param("nohugevmalloc", set_nohugevmalloc);
  74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  75static const bool vmap_allow_huge = false;
  76#endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  77
  78bool is_vmalloc_addr(const void *x)
  79{
  80	unsigned long addr = (unsigned long)kasan_reset_tag(x);
  81
  82	return addr >= VMALLOC_START && addr < VMALLOC_END;
  83}
  84EXPORT_SYMBOL(is_vmalloc_addr);
  85
  86struct vfree_deferred {
  87	struct llist_head list;
  88	struct work_struct wq;
  89};
  90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  91
  92/*** Page table manipulation functions ***/
  93static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  94			phys_addr_t phys_addr, pgprot_t prot,
  95			unsigned int max_page_shift, pgtbl_mod_mask *mask)
  96{
  97	pte_t *pte;
  98	u64 pfn;
  99	unsigned long size = PAGE_SIZE;
 100
 101	pfn = phys_addr >> PAGE_SHIFT;
 102	pte = pte_alloc_kernel_track(pmd, addr, mask);
 103	if (!pte)
 104		return -ENOMEM;
 105	do {
 106		BUG_ON(!pte_none(ptep_get(pte)));
 107
 108#ifdef CONFIG_HUGETLB_PAGE
 109		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 110		if (size != PAGE_SIZE) {
 111			pte_t entry = pfn_pte(pfn, prot);
 112
 113			entry = arch_make_huge_pte(entry, ilog2(size), 0);
 114			set_huge_pte_at(&init_mm, addr, pte, entry, size);
 115			pfn += PFN_DOWN(size);
 116			continue;
 117		}
 118#endif
 119		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 120		pfn++;
 121	} while (pte += PFN_DOWN(size), addr += size, addr != end);
 122	*mask |= PGTBL_PTE_MODIFIED;
 123	return 0;
 124}
 125
 126static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 127			phys_addr_t phys_addr, pgprot_t prot,
 128			unsigned int max_page_shift)
 129{
 130	if (max_page_shift < PMD_SHIFT)
 131		return 0;
 132
 133	if (!arch_vmap_pmd_supported(prot))
 134		return 0;
 135
 136	if ((end - addr) != PMD_SIZE)
 137		return 0;
 138
 139	if (!IS_ALIGNED(addr, PMD_SIZE))
 140		return 0;
 141
 142	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 143		return 0;
 144
 145	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 146		return 0;
 147
 148	return pmd_set_huge(pmd, phys_addr, prot);
 149}
 150
 151static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 152			phys_addr_t phys_addr, pgprot_t prot,
 153			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 154{
 155	pmd_t *pmd;
 156	unsigned long next;
 157
 158	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 159	if (!pmd)
 160		return -ENOMEM;
 161	do {
 162		next = pmd_addr_end(addr, end);
 163
 164		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 165					max_page_shift)) {
 166			*mask |= PGTBL_PMD_MODIFIED;
 167			continue;
 168		}
 169
 170		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 171			return -ENOMEM;
 172	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 173	return 0;
 174}
 175
 176static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 177			phys_addr_t phys_addr, pgprot_t prot,
 178			unsigned int max_page_shift)
 179{
 180	if (max_page_shift < PUD_SHIFT)
 181		return 0;
 182
 183	if (!arch_vmap_pud_supported(prot))
 184		return 0;
 185
 186	if ((end - addr) != PUD_SIZE)
 187		return 0;
 188
 189	if (!IS_ALIGNED(addr, PUD_SIZE))
 190		return 0;
 191
 192	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 193		return 0;
 194
 195	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 196		return 0;
 197
 198	return pud_set_huge(pud, phys_addr, prot);
 199}
 200
 201static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 202			phys_addr_t phys_addr, pgprot_t prot,
 203			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 204{
 205	pud_t *pud;
 206	unsigned long next;
 207
 208	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 209	if (!pud)
 210		return -ENOMEM;
 211	do {
 212		next = pud_addr_end(addr, end);
 213
 214		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 215					max_page_shift)) {
 216			*mask |= PGTBL_PUD_MODIFIED;
 217			continue;
 218		}
 219
 220		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 221					max_page_shift, mask))
 222			return -ENOMEM;
 223	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 224	return 0;
 225}
 226
 227static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 228			phys_addr_t phys_addr, pgprot_t prot,
 229			unsigned int max_page_shift)
 230{
 231	if (max_page_shift < P4D_SHIFT)
 232		return 0;
 233
 234	if (!arch_vmap_p4d_supported(prot))
 235		return 0;
 236
 237	if ((end - addr) != P4D_SIZE)
 238		return 0;
 239
 240	if (!IS_ALIGNED(addr, P4D_SIZE))
 241		return 0;
 242
 243	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 244		return 0;
 245
 246	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 247		return 0;
 248
 249	return p4d_set_huge(p4d, phys_addr, prot);
 250}
 251
 252static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 253			phys_addr_t phys_addr, pgprot_t prot,
 254			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 255{
 256	p4d_t *p4d;
 257	unsigned long next;
 258
 259	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 260	if (!p4d)
 261		return -ENOMEM;
 262	do {
 263		next = p4d_addr_end(addr, end);
 264
 265		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 266					max_page_shift)) {
 267			*mask |= PGTBL_P4D_MODIFIED;
 268			continue;
 269		}
 270
 271		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 272					max_page_shift, mask))
 273			return -ENOMEM;
 274	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 275	return 0;
 276}
 277
 278static int vmap_range_noflush(unsigned long addr, unsigned long end,
 279			phys_addr_t phys_addr, pgprot_t prot,
 280			unsigned int max_page_shift)
 281{
 282	pgd_t *pgd;
 283	unsigned long start;
 284	unsigned long next;
 285	int err;
 286	pgtbl_mod_mask mask = 0;
 287
 288	might_sleep();
 289	BUG_ON(addr >= end);
 290
 291	start = addr;
 292	pgd = pgd_offset_k(addr);
 293	do {
 294		next = pgd_addr_end(addr, end);
 295		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 296					max_page_shift, &mask);
 297		if (err)
 298			break;
 299	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 300
 301	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 302		arch_sync_kernel_mappings(start, end);
 303
 304	return err;
 
 305}
 306
 307int ioremap_page_range(unsigned long addr, unsigned long end,
 308		phys_addr_t phys_addr, pgprot_t prot)
 309{
 310	int err;
 311
 312	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
 313				 ioremap_max_page_shift);
 314	flush_cache_vmap(addr, end);
 315	if (!err)
 316		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
 317					       ioremap_max_page_shift);
 318	return err;
 319}
 320
 321static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 322			     pgtbl_mod_mask *mask)
 323{
 324	pte_t *pte;
 325
 326	pte = pte_offset_kernel(pmd, addr);
 327	do {
 328		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 329		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 330	} while (pte++, addr += PAGE_SIZE, addr != end);
 331	*mask |= PGTBL_PTE_MODIFIED;
 332}
 333
 334static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 335			     pgtbl_mod_mask *mask)
 336{
 337	pmd_t *pmd;
 338	unsigned long next;
 339	int cleared;
 340
 341	pmd = pmd_offset(pud, addr);
 342	do {
 343		next = pmd_addr_end(addr, end);
 344
 345		cleared = pmd_clear_huge(pmd);
 346		if (cleared || pmd_bad(*pmd))
 347			*mask |= PGTBL_PMD_MODIFIED;
 348
 349		if (cleared)
 350			continue;
 351		if (pmd_none_or_clear_bad(pmd))
 352			continue;
 353		vunmap_pte_range(pmd, addr, next, mask);
 354
 355		cond_resched();
 356	} while (pmd++, addr = next, addr != end);
 357}
 358
 359static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 360			     pgtbl_mod_mask *mask)
 361{
 362	pud_t *pud;
 363	unsigned long next;
 364	int cleared;
 365
 366	pud = pud_offset(p4d, addr);
 367	do {
 368		next = pud_addr_end(addr, end);
 369
 370		cleared = pud_clear_huge(pud);
 371		if (cleared || pud_bad(*pud))
 372			*mask |= PGTBL_PUD_MODIFIED;
 373
 374		if (cleared)
 375			continue;
 376		if (pud_none_or_clear_bad(pud))
 377			continue;
 378		vunmap_pmd_range(pud, addr, next, mask);
 379	} while (pud++, addr = next, addr != end);
 380}
 381
 382static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 383			     pgtbl_mod_mask *mask)
 384{
 385	p4d_t *p4d;
 386	unsigned long next;
 387
 388	p4d = p4d_offset(pgd, addr);
 389	do {
 390		next = p4d_addr_end(addr, end);
 391
 392		p4d_clear_huge(p4d);
 393		if (p4d_bad(*p4d))
 394			*mask |= PGTBL_P4D_MODIFIED;
 395
 396		if (p4d_none_or_clear_bad(p4d))
 397			continue;
 398		vunmap_pud_range(p4d, addr, next, mask);
 399	} while (p4d++, addr = next, addr != end);
 400}
 401
 402/*
 403 * vunmap_range_noflush is similar to vunmap_range, but does not
 404 * flush caches or TLBs.
 405 *
 406 * The caller is responsible for calling flush_cache_vmap() before calling
 407 * this function, and flush_tlb_kernel_range after it has returned
 408 * successfully (and before the addresses are expected to cause a page fault
 409 * or be re-mapped for something else, if TLB flushes are being delayed or
 410 * coalesced).
 411 *
 412 * This is an internal function only. Do not use outside mm/.
 413 */
 414void __vunmap_range_noflush(unsigned long start, unsigned long end)
 415{
 416	unsigned long next;
 417	pgd_t *pgd;
 418	unsigned long addr = start;
 419	pgtbl_mod_mask mask = 0;
 420
 421	BUG_ON(addr >= end);
 422	pgd = pgd_offset_k(addr);
 423	do {
 424		next = pgd_addr_end(addr, end);
 425		if (pgd_bad(*pgd))
 426			mask |= PGTBL_PGD_MODIFIED;
 427		if (pgd_none_or_clear_bad(pgd))
 428			continue;
 429		vunmap_p4d_range(pgd, addr, next, &mask);
 430	} while (pgd++, addr = next, addr != end);
 431
 432	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 433		arch_sync_kernel_mappings(start, end);
 434}
 435
 436void vunmap_range_noflush(unsigned long start, unsigned long end)
 437{
 438	kmsan_vunmap_range_noflush(start, end);
 439	__vunmap_range_noflush(start, end);
 440}
 441
 442/**
 443 * vunmap_range - unmap kernel virtual addresses
 444 * @addr: start of the VM area to unmap
 445 * @end: end of the VM area to unmap (non-inclusive)
 446 *
 447 * Clears any present PTEs in the virtual address range, flushes TLBs and
 448 * caches. Any subsequent access to the address before it has been re-mapped
 449 * is a kernel bug.
 450 */
 451void vunmap_range(unsigned long addr, unsigned long end)
 452{
 453	flush_cache_vunmap(addr, end);
 454	vunmap_range_noflush(addr, end);
 455	flush_tlb_kernel_range(addr, end);
 456}
 457
 458static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 459		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 460		pgtbl_mod_mask *mask)
 461{
 462	pte_t *pte;
 463
 464	/*
 465	 * nr is a running index into the array which helps higher level
 466	 * callers keep track of where we're up to.
 467	 */
 468
 469	pte = pte_alloc_kernel_track(pmd, addr, mask);
 470	if (!pte)
 471		return -ENOMEM;
 472	do {
 473		struct page *page = pages[*nr];
 474
 475		if (WARN_ON(!pte_none(ptep_get(pte))))
 476			return -EBUSY;
 477		if (WARN_ON(!page))
 478			return -ENOMEM;
 479		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
 480			return -EINVAL;
 481
 482		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 483		(*nr)++;
 484	} while (pte++, addr += PAGE_SIZE, addr != end);
 485	*mask |= PGTBL_PTE_MODIFIED;
 486	return 0;
 487}
 488
 489static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 490		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 491		pgtbl_mod_mask *mask)
 492{
 493	pmd_t *pmd;
 494	unsigned long next;
 495
 496	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 497	if (!pmd)
 498		return -ENOMEM;
 499	do {
 500		next = pmd_addr_end(addr, end);
 501		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 502			return -ENOMEM;
 503	} while (pmd++, addr = next, addr != end);
 504	return 0;
 505}
 506
 507static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 508		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 509		pgtbl_mod_mask *mask)
 510{
 511	pud_t *pud;
 512	unsigned long next;
 513
 514	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 515	if (!pud)
 516		return -ENOMEM;
 517	do {
 518		next = pud_addr_end(addr, end);
 519		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 520			return -ENOMEM;
 521	} while (pud++, addr = next, addr != end);
 522	return 0;
 523}
 524
 525static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 526		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 527		pgtbl_mod_mask *mask)
 528{
 529	p4d_t *p4d;
 530	unsigned long next;
 531
 532	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 533	if (!p4d)
 534		return -ENOMEM;
 535	do {
 536		next = p4d_addr_end(addr, end);
 537		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 538			return -ENOMEM;
 539	} while (p4d++, addr = next, addr != end);
 540	return 0;
 541}
 542
 543static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 544		pgprot_t prot, struct page **pages)
 
 
 
 
 
 
 545{
 546	unsigned long start = addr;
 547	pgd_t *pgd;
 548	unsigned long next;
 
 549	int err = 0;
 550	int nr = 0;
 551	pgtbl_mod_mask mask = 0;
 552
 553	BUG_ON(addr >= end);
 554	pgd = pgd_offset_k(addr);
 555	do {
 556		next = pgd_addr_end(addr, end);
 557		if (pgd_bad(*pgd))
 558			mask |= PGTBL_PGD_MODIFIED;
 559		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 560		if (err)
 561			return err;
 562	} while (pgd++, addr = next, addr != end);
 563
 564	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 565		arch_sync_kernel_mappings(start, end);
 566
 567	return 0;
 568}
 569
 570/*
 571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 572 * flush caches.
 573 *
 574 * The caller is responsible for calling flush_cache_vmap() after this
 575 * function returns successfully and before the addresses are accessed.
 576 *
 577 * This is an internal function only. Do not use outside mm/.
 578 */
 579int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 580		pgprot_t prot, struct page **pages, unsigned int page_shift)
 581{
 582	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 583
 584	WARN_ON(page_shift < PAGE_SHIFT);
 585
 586	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 587			page_shift == PAGE_SHIFT)
 588		return vmap_small_pages_range_noflush(addr, end, prot, pages);
 589
 590	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 591		int err;
 592
 593		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 594					page_to_phys(pages[i]), prot,
 595					page_shift);
 596		if (err)
 597			return err;
 598
 599		addr += 1UL << page_shift;
 600	}
 601
 602	return 0;
 603}
 604
 605int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 606		pgprot_t prot, struct page **pages, unsigned int page_shift)
 607{
 608	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
 609						 page_shift);
 610
 611	if (ret)
 612		return ret;
 613	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 614}
 615
 616/**
 617 * vmap_pages_range - map pages to a kernel virtual address
 618 * @addr: start of the VM area to map
 619 * @end: end of the VM area to map (non-inclusive)
 620 * @prot: page protection flags to use
 621 * @pages: pages to map (always PAGE_SIZE pages)
 622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 623 * be aligned and contiguous up to at least this shift.
 624 *
 625 * RETURNS:
 626 * 0 on success, -errno on failure.
 627 */
 628static int vmap_pages_range(unsigned long addr, unsigned long end,
 629		pgprot_t prot, struct page **pages, unsigned int page_shift)
 630{
 631	int err;
 632
 633	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 634	flush_cache_vmap(addr, end);
 635	return err;
 636}
 637
 638int is_vmalloc_or_module_addr(const void *x)
 639{
 640	/*
 641	 * ARM, x86-64 and sparc64 put modules in a special place,
 642	 * and fall back on vmalloc() if that fails. Others
 643	 * just put it in the vmalloc space.
 644	 */
 645#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 646	unsigned long addr = (unsigned long)kasan_reset_tag(x);
 647	if (addr >= MODULES_VADDR && addr < MODULES_END)
 648		return 1;
 649#endif
 650	return is_vmalloc_addr(x);
 651}
 652EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
 653
 654/*
 655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 656 * return the tail page that corresponds to the base page address, which
 657 * matches small vmap mappings.
 658 */
 659struct page *vmalloc_to_page(const void *vmalloc_addr)
 660{
 661	unsigned long addr = (unsigned long) vmalloc_addr;
 662	struct page *page = NULL;
 663	pgd_t *pgd = pgd_offset_k(addr);
 664	p4d_t *p4d;
 665	pud_t *pud;
 666	pmd_t *pmd;
 667	pte_t *ptep, pte;
 668
 669	/*
 670	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 671	 * architectures that do not vmalloc module space
 672	 */
 673	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 674
 675	if (pgd_none(*pgd))
 676		return NULL;
 677	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 678		return NULL; /* XXX: no allowance for huge pgd */
 679	if (WARN_ON_ONCE(pgd_bad(*pgd)))
 680		return NULL;
 681
 682	p4d = p4d_offset(pgd, addr);
 683	if (p4d_none(*p4d))
 684		return NULL;
 685	if (p4d_leaf(*p4d))
 686		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 687	if (WARN_ON_ONCE(p4d_bad(*p4d)))
 688		return NULL;
 689
 690	pud = pud_offset(p4d, addr);
 691	if (pud_none(*pud))
 692		return NULL;
 693	if (pud_leaf(*pud))
 694		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 695	if (WARN_ON_ONCE(pud_bad(*pud)))
 696		return NULL;
 697
 698	pmd = pmd_offset(pud, addr);
 699	if (pmd_none(*pmd))
 
 
 
 
 
 
 
 
 700		return NULL;
 701	if (pmd_leaf(*pmd))
 702		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 703	if (WARN_ON_ONCE(pmd_bad(*pmd)))
 704		return NULL;
 705
 706	ptep = pte_offset_kernel(pmd, addr);
 707	pte = ptep_get(ptep);
 708	if (pte_present(pte))
 709		page = pte_page(pte);
 710
 711	return page;
 712}
 713EXPORT_SYMBOL(vmalloc_to_page);
 714
 715/*
 716 * Map a vmalloc()-space virtual address to the physical page frame number.
 717 */
 718unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 719{
 720	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 721}
 722EXPORT_SYMBOL(vmalloc_to_pfn);
 723
 724
 725/*** Global kva allocator ***/
 726
 727#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 728#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 729
 730
 731static DEFINE_SPINLOCK(vmap_area_lock);
 732static DEFINE_SPINLOCK(free_vmap_area_lock);
 733/* Export for kexec only */
 734LIST_HEAD(vmap_area_list);
 
 735static struct rb_root vmap_area_root = RB_ROOT;
 736static bool vmap_initialized __read_mostly;
 737
 738static struct rb_root purge_vmap_area_root = RB_ROOT;
 739static LIST_HEAD(purge_vmap_area_list);
 740static DEFINE_SPINLOCK(purge_vmap_area_lock);
 741
 742/*
 743 * This kmem_cache is used for vmap_area objects. Instead of
 744 * allocating from slab we reuse an object from this cache to
 745 * make things faster. Especially in "no edge" splitting of
 746 * free block.
 747 */
 748static struct kmem_cache *vmap_area_cachep;
 749
 750/*
 751 * This linked list is used in pair with free_vmap_area_root.
 752 * It gives O(1) access to prev/next to perform fast coalescing.
 753 */
 754static LIST_HEAD(free_vmap_area_list);
 755
 756/*
 757 * This augment red-black tree represents the free vmap space.
 758 * All vmap_area objects in this tree are sorted by va->va_start
 759 * address. It is used for allocation and merging when a vmap
 760 * object is released.
 761 *
 762 * Each vmap_area node contains a maximum available free block
 763 * of its sub-tree, right or left. Therefore it is possible to
 764 * find a lowest match of free area.
 765 */
 766static struct rb_root free_vmap_area_root = RB_ROOT;
 767
 768/*
 769 * Preload a CPU with one object for "no edge" split case. The
 770 * aim is to get rid of allocations from the atomic context, thus
 771 * to use more permissive allocation masks.
 772 */
 773static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 774
 775static __always_inline unsigned long
 776va_size(struct vmap_area *va)
 777{
 778	return (va->va_end - va->va_start);
 779}
 780
 781static __always_inline unsigned long
 782get_subtree_max_size(struct rb_node *node)
 783{
 784	struct vmap_area *va;
 785
 786	va = rb_entry_safe(node, struct vmap_area, rb_node);
 787	return va ? va->subtree_max_size : 0;
 788}
 789
 
 
 
 
 
 
 
 
 
 
 
 790RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 791	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 792
 793static void reclaim_and_purge_vmap_areas(void);
 794static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 795static void drain_vmap_area_work(struct work_struct *work);
 796static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
 797
 798static atomic_long_t nr_vmalloc_pages;
 799
 800unsigned long vmalloc_nr_pages(void)
 801{
 802	return atomic_long_read(&nr_vmalloc_pages);
 803}
 804
 805/* Look up the first VA which satisfies addr < va_end, NULL if none. */
 806static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
 807{
 808	struct vmap_area *va = NULL;
 809	struct rb_node *n = vmap_area_root.rb_node;
 810
 811	addr = (unsigned long)kasan_reset_tag((void *)addr);
 812
 813	while (n) {
 814		struct vmap_area *tmp;
 815
 816		tmp = rb_entry(n, struct vmap_area, rb_node);
 817		if (tmp->va_end > addr) {
 818			va = tmp;
 819			if (tmp->va_start <= addr)
 820				break;
 821
 822			n = n->rb_left;
 823		} else
 824			n = n->rb_right;
 825	}
 826
 827	return va;
 828}
 829
 830static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
 831{
 832	struct rb_node *n = root->rb_node;
 833
 834	addr = (unsigned long)kasan_reset_tag((void *)addr);
 835
 836	while (n) {
 837		struct vmap_area *va;
 838
 839		va = rb_entry(n, struct vmap_area, rb_node);
 840		if (addr < va->va_start)
 841			n = n->rb_left;
 842		else if (addr >= va->va_end)
 843			n = n->rb_right;
 844		else
 845			return va;
 846	}
 847
 848	return NULL;
 849}
 850
 851/*
 852 * This function returns back addresses of parent node
 853 * and its left or right link for further processing.
 854 *
 855 * Otherwise NULL is returned. In that case all further
 856 * steps regarding inserting of conflicting overlap range
 857 * have to be declined and actually considered as a bug.
 858 */
 859static __always_inline struct rb_node **
 860find_va_links(struct vmap_area *va,
 861	struct rb_root *root, struct rb_node *from,
 862	struct rb_node **parent)
 863{
 864	struct vmap_area *tmp_va;
 865	struct rb_node **link;
 866
 867	if (root) {
 868		link = &root->rb_node;
 869		if (unlikely(!*link)) {
 870			*parent = NULL;
 871			return link;
 872		}
 873	} else {
 874		link = &from;
 875	}
 876
 877	/*
 878	 * Go to the bottom of the tree. When we hit the last point
 879	 * we end up with parent rb_node and correct direction, i name
 880	 * it link, where the new va->rb_node will be attached to.
 881	 */
 882	do {
 883		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 884
 885		/*
 886		 * During the traversal we also do some sanity check.
 887		 * Trigger the BUG() if there are sides(left/right)
 888		 * or full overlaps.
 889		 */
 890		if (va->va_end <= tmp_va->va_start)
 
 891			link = &(*link)->rb_left;
 892		else if (va->va_start >= tmp_va->va_end)
 
 893			link = &(*link)->rb_right;
 894		else {
 895			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 896				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 897
 898			return NULL;
 899		}
 900	} while (*link);
 901
 902	*parent = &tmp_va->rb_node;
 903	return link;
 904}
 905
 906static __always_inline struct list_head *
 907get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 908{
 909	struct list_head *list;
 910
 911	if (unlikely(!parent))
 912		/*
 913		 * The red-black tree where we try to find VA neighbors
 914		 * before merging or inserting is empty, i.e. it means
 915		 * there is no free vmap space. Normally it does not
 916		 * happen but we handle this case anyway.
 917		 */
 918		return NULL;
 919
 920	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 921	return (&parent->rb_right == link ? list->next : list);
 922}
 923
 924static __always_inline void
 925__link_va(struct vmap_area *va, struct rb_root *root,
 926	struct rb_node *parent, struct rb_node **link,
 927	struct list_head *head, bool augment)
 928{
 929	/*
 930	 * VA is still not in the list, but we can
 931	 * identify its future previous list_head node.
 932	 */
 933	if (likely(parent)) {
 934		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 935		if (&parent->rb_right != link)
 936			head = head->prev;
 937	}
 938
 939	/* Insert to the rb-tree */
 940	rb_link_node(&va->rb_node, parent, link);
 941	if (augment) {
 942		/*
 943		 * Some explanation here. Just perform simple insertion
 944		 * to the tree. We do not set va->subtree_max_size to
 945		 * its current size before calling rb_insert_augmented().
 946		 * It is because we populate the tree from the bottom
 947		 * to parent levels when the node _is_ in the tree.
 948		 *
 949		 * Therefore we set subtree_max_size to zero after insertion,
 950		 * to let __augment_tree_propagate_from() puts everything to
 951		 * the correct order later on.
 952		 */
 953		rb_insert_augmented(&va->rb_node,
 954			root, &free_vmap_area_rb_augment_cb);
 955		va->subtree_max_size = 0;
 956	} else {
 957		rb_insert_color(&va->rb_node, root);
 958	}
 959
 960	/* Address-sort this list */
 961	list_add(&va->list, head);
 962}
 963
 964static __always_inline void
 965link_va(struct vmap_area *va, struct rb_root *root,
 966	struct rb_node *parent, struct rb_node **link,
 967	struct list_head *head)
 968{
 969	__link_va(va, root, parent, link, head, false);
 970}
 971
 972static __always_inline void
 973link_va_augment(struct vmap_area *va, struct rb_root *root,
 974	struct rb_node *parent, struct rb_node **link,
 975	struct list_head *head)
 976{
 977	__link_va(va, root, parent, link, head, true);
 978}
 979
 980static __always_inline void
 981__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
 982{
 983	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 984		return;
 985
 986	if (augment)
 987		rb_erase_augmented(&va->rb_node,
 988			root, &free_vmap_area_rb_augment_cb);
 989	else
 990		rb_erase(&va->rb_node, root);
 991
 992	list_del_init(&va->list);
 993	RB_CLEAR_NODE(&va->rb_node);
 994}
 995
 996static __always_inline void
 997unlink_va(struct vmap_area *va, struct rb_root *root)
 998{
 999	__unlink_va(va, root, false);
1000}
1001
1002static __always_inline void
1003unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1004{
1005	__unlink_va(va, root, true);
1006}
1007
1008#if DEBUG_AUGMENT_PROPAGATE_CHECK
1009/*
1010 * Gets called when remove the node and rotate.
1011 */
1012static __always_inline unsigned long
1013compute_subtree_max_size(struct vmap_area *va)
1014{
1015	return max3(va_size(va),
1016		get_subtree_max_size(va->rb_node.rb_left),
1017		get_subtree_max_size(va->rb_node.rb_right));
1018}
1019
1020static void
1021augment_tree_propagate_check(void)
1022{
1023	struct vmap_area *va;
1024	unsigned long computed_size;
 
 
1025
1026	list_for_each_entry(va, &free_vmap_area_list, list) {
1027		computed_size = compute_subtree_max_size(va);
1028		if (computed_size != va->subtree_max_size)
1029			pr_emerg("tree is corrupted: %lu, %lu\n",
1030				va_size(va), va->subtree_max_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	}
 
 
 
 
 
 
 
 
 
1032}
1033#endif
1034
1035/*
1036 * This function populates subtree_max_size from bottom to upper
1037 * levels starting from VA point. The propagation must be done
1038 * when VA size is modified by changing its va_start/va_end. Or
1039 * in case of newly inserting of VA to the tree.
1040 *
1041 * It means that __augment_tree_propagate_from() must be called:
1042 * - After VA has been inserted to the tree(free path);
1043 * - After VA has been shrunk(allocation path);
1044 * - After VA has been increased(merging path).
1045 *
1046 * Please note that, it does not mean that upper parent nodes
1047 * and their subtree_max_size are recalculated all the time up
1048 * to the root node.
1049 *
1050 *       4--8
1051 *        /\
1052 *       /  \
1053 *      /    \
1054 *    2--2  8--8
1055 *
1056 * For example if we modify the node 4, shrinking it to 2, then
1057 * no any modification is required. If we shrink the node 2 to 1
1058 * its subtree_max_size is updated only, and set to 1. If we shrink
1059 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1060 * node becomes 4--6.
1061 */
1062static __always_inline void
1063augment_tree_propagate_from(struct vmap_area *va)
1064{
1065	/*
1066	 * Populate the tree from bottom towards the root until
1067	 * the calculated maximum available size of checked node
1068	 * is equal to its current one.
1069	 */
1070	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072#if DEBUG_AUGMENT_PROPAGATE_CHECK
1073	augment_tree_propagate_check();
1074#endif
1075}
1076
1077static void
1078insert_vmap_area(struct vmap_area *va,
1079	struct rb_root *root, struct list_head *head)
1080{
1081	struct rb_node **link;
1082	struct rb_node *parent;
1083
1084	link = find_va_links(va, root, NULL, &parent);
1085	if (link)
1086		link_va(va, root, parent, link, head);
1087}
1088
1089static void
1090insert_vmap_area_augment(struct vmap_area *va,
1091	struct rb_node *from, struct rb_root *root,
1092	struct list_head *head)
1093{
1094	struct rb_node **link;
1095	struct rb_node *parent;
1096
1097	if (from)
1098		link = find_va_links(va, NULL, from, &parent);
1099	else
1100		link = find_va_links(va, root, NULL, &parent);
1101
1102	if (link) {
1103		link_va_augment(va, root, parent, link, head);
1104		augment_tree_propagate_from(va);
1105	}
1106}
1107
1108/*
1109 * Merge de-allocated chunk of VA memory with previous
1110 * and next free blocks. If coalesce is not done a new
1111 * free area is inserted. If VA has been merged, it is
1112 * freed.
1113 *
1114 * Please note, it can return NULL in case of overlap
1115 * ranges, followed by WARN() report. Despite it is a
1116 * buggy behaviour, a system can be alive and keep
1117 * ongoing.
1118 */
1119static __always_inline struct vmap_area *
1120__merge_or_add_vmap_area(struct vmap_area *va,
1121	struct rb_root *root, struct list_head *head, bool augment)
1122{
1123	struct vmap_area *sibling;
1124	struct list_head *next;
1125	struct rb_node **link;
1126	struct rb_node *parent;
1127	bool merged = false;
1128
1129	/*
1130	 * Find a place in the tree where VA potentially will be
1131	 * inserted, unless it is merged with its sibling/siblings.
1132	 */
1133	link = find_va_links(va, root, NULL, &parent);
1134	if (!link)
1135		return NULL;
1136
1137	/*
1138	 * Get next node of VA to check if merging can be done.
1139	 */
1140	next = get_va_next_sibling(parent, link);
1141	if (unlikely(next == NULL))
1142		goto insert;
1143
1144	/*
1145	 * start            end
1146	 * |                |
1147	 * |<------VA------>|<-----Next----->|
1148	 *                  |                |
1149	 *                  start            end
1150	 */
1151	if (next != head) {
1152		sibling = list_entry(next, struct vmap_area, list);
1153		if (sibling->va_start == va->va_end) {
1154			sibling->va_start = va->va_start;
1155
 
 
 
1156			/* Free vmap_area object. */
1157			kmem_cache_free(vmap_area_cachep, va);
1158
1159			/* Point to the new merged area. */
1160			va = sibling;
1161			merged = true;
1162		}
1163	}
1164
1165	/*
1166	 * start            end
1167	 * |                |
1168	 * |<-----Prev----->|<------VA------>|
1169	 *                  |                |
1170	 *                  start            end
1171	 */
1172	if (next->prev != head) {
1173		sibling = list_entry(next->prev, struct vmap_area, list);
1174		if (sibling->va_end == va->va_start) {
1175			/*
1176			 * If both neighbors are coalesced, it is important
1177			 * to unlink the "next" node first, followed by merging
1178			 * with "previous" one. Otherwise the tree might not be
1179			 * fully populated if a sibling's augmented value is
1180			 * "normalized" because of rotation operations.
1181			 */
1182			if (merged)
1183				__unlink_va(va, root, augment);
1184
1185			sibling->va_end = va->va_end;
1186
 
 
 
 
 
 
1187			/* Free vmap_area object. */
1188			kmem_cache_free(vmap_area_cachep, va);
1189
1190			/* Point to the new merged area. */
1191			va = sibling;
1192			merged = true;
1193		}
1194	}
1195
1196insert:
1197	if (!merged)
1198		__link_va(va, root, parent, link, head, augment);
1199
1200	return va;
1201}
1202
1203static __always_inline struct vmap_area *
1204merge_or_add_vmap_area(struct vmap_area *va,
1205	struct rb_root *root, struct list_head *head)
1206{
1207	return __merge_or_add_vmap_area(va, root, head, false);
1208}
1209
1210static __always_inline struct vmap_area *
1211merge_or_add_vmap_area_augment(struct vmap_area *va,
1212	struct rb_root *root, struct list_head *head)
1213{
1214	va = __merge_or_add_vmap_area(va, root, head, true);
1215	if (va)
1216		augment_tree_propagate_from(va);
1217
1218	return va;
1219}
1220
1221static __always_inline bool
1222is_within_this_va(struct vmap_area *va, unsigned long size,
1223	unsigned long align, unsigned long vstart)
1224{
1225	unsigned long nva_start_addr;
1226
1227	if (va->va_start > vstart)
1228		nva_start_addr = ALIGN(va->va_start, align);
1229	else
1230		nva_start_addr = ALIGN(vstart, align);
1231
1232	/* Can be overflowed due to big size or alignment. */
1233	if (nva_start_addr + size < nva_start_addr ||
1234			nva_start_addr < vstart)
1235		return false;
1236
1237	return (nva_start_addr + size <= va->va_end);
1238}
1239
1240/*
1241 * Find the first free block(lowest start address) in the tree,
1242 * that will accomplish the request corresponding to passing
1243 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1244 * a search length is adjusted to account for worst case alignment
1245 * overhead.
1246 */
1247static __always_inline struct vmap_area *
1248find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1249	unsigned long align, unsigned long vstart, bool adjust_search_size)
1250{
1251	struct vmap_area *va;
1252	struct rb_node *node;
1253	unsigned long length;
1254
1255	/* Start from the root. */
1256	node = root->rb_node;
1257
1258	/* Adjust the search size for alignment overhead. */
1259	length = adjust_search_size ? size + align - 1 : size;
1260
1261	while (node) {
1262		va = rb_entry(node, struct vmap_area, rb_node);
1263
1264		if (get_subtree_max_size(node->rb_left) >= length &&
1265				vstart < va->va_start) {
1266			node = node->rb_left;
1267		} else {
1268			if (is_within_this_va(va, size, align, vstart))
1269				return va;
1270
1271			/*
1272			 * Does not make sense to go deeper towards the right
1273			 * sub-tree if it does not have a free block that is
1274			 * equal or bigger to the requested search length.
1275			 */
1276			if (get_subtree_max_size(node->rb_right) >= length) {
1277				node = node->rb_right;
1278				continue;
1279			}
1280
1281			/*
1282			 * OK. We roll back and find the first right sub-tree,
1283			 * that will satisfy the search criteria. It can happen
1284			 * due to "vstart" restriction or an alignment overhead
1285			 * that is bigger then PAGE_SIZE.
1286			 */
1287			while ((node = rb_parent(node))) {
1288				va = rb_entry(node, struct vmap_area, rb_node);
1289				if (is_within_this_va(va, size, align, vstart))
1290					return va;
1291
1292				if (get_subtree_max_size(node->rb_right) >= length &&
1293						vstart <= va->va_start) {
1294					/*
1295					 * Shift the vstart forward. Please note, we update it with
1296					 * parent's start address adding "1" because we do not want
1297					 * to enter same sub-tree after it has already been checked
1298					 * and no suitable free block found there.
1299					 */
1300					vstart = va->va_start + 1;
1301					node = node->rb_right;
1302					break;
1303				}
1304			}
1305		}
1306	}
1307
1308	return NULL;
1309}
1310
1311#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1312#include <linux/random.h>
1313
1314static struct vmap_area *
1315find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1316	unsigned long align, unsigned long vstart)
1317{
1318	struct vmap_area *va;
1319
1320	list_for_each_entry(va, head, list) {
1321		if (!is_within_this_va(va, size, align, vstart))
1322			continue;
1323
1324		return va;
1325	}
1326
1327	return NULL;
1328}
1329
1330static void
1331find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1332			     unsigned long size, unsigned long align)
1333{
1334	struct vmap_area *va_1, *va_2;
1335	unsigned long vstart;
1336	unsigned int rnd;
1337
1338	get_random_bytes(&rnd, sizeof(rnd));
1339	vstart = VMALLOC_START + rnd;
1340
1341	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1342	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1343
1344	if (va_1 != va_2)
1345		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1346			va_1, va_2, vstart);
1347}
1348#endif
1349
1350enum fit_type {
1351	NOTHING_FIT = 0,
1352	FL_FIT_TYPE = 1,	/* full fit */
1353	LE_FIT_TYPE = 2,	/* left edge fit */
1354	RE_FIT_TYPE = 3,	/* right edge fit */
1355	NE_FIT_TYPE = 4		/* no edge fit */
1356};
1357
1358static __always_inline enum fit_type
1359classify_va_fit_type(struct vmap_area *va,
1360	unsigned long nva_start_addr, unsigned long size)
1361{
1362	enum fit_type type;
1363
1364	/* Check if it is within VA. */
1365	if (nva_start_addr < va->va_start ||
1366			nva_start_addr + size > va->va_end)
1367		return NOTHING_FIT;
1368
1369	/* Now classify. */
1370	if (va->va_start == nva_start_addr) {
1371		if (va->va_end == nva_start_addr + size)
1372			type = FL_FIT_TYPE;
1373		else
1374			type = LE_FIT_TYPE;
1375	} else if (va->va_end == nva_start_addr + size) {
1376		type = RE_FIT_TYPE;
1377	} else {
1378		type = NE_FIT_TYPE;
1379	}
1380
1381	return type;
1382}
1383
1384static __always_inline int
1385adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1386		      struct vmap_area *va, unsigned long nva_start_addr,
1387		      unsigned long size)
1388{
1389	struct vmap_area *lva = NULL;
1390	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1391
1392	if (type == FL_FIT_TYPE) {
1393		/*
1394		 * No need to split VA, it fully fits.
1395		 *
1396		 * |               |
1397		 * V      NVA      V
1398		 * |---------------|
1399		 */
1400		unlink_va_augment(va, root);
1401		kmem_cache_free(vmap_area_cachep, va);
1402	} else if (type == LE_FIT_TYPE) {
1403		/*
1404		 * Split left edge of fit VA.
1405		 *
1406		 * |       |
1407		 * V  NVA  V   R
1408		 * |-------|-------|
1409		 */
1410		va->va_start += size;
1411	} else if (type == RE_FIT_TYPE) {
1412		/*
1413		 * Split right edge of fit VA.
1414		 *
1415		 *         |       |
1416		 *     L   V  NVA  V
1417		 * |-------|-------|
1418		 */
1419		va->va_end = nva_start_addr;
1420	} else if (type == NE_FIT_TYPE) {
1421		/*
1422		 * Split no edge of fit VA.
1423		 *
1424		 *     |       |
1425		 *   L V  NVA  V R
1426		 * |---|-------|---|
1427		 */
1428		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1429		if (unlikely(!lva)) {
1430			/*
1431			 * For percpu allocator we do not do any pre-allocation
1432			 * and leave it as it is. The reason is it most likely
1433			 * never ends up with NE_FIT_TYPE splitting. In case of
1434			 * percpu allocations offsets and sizes are aligned to
1435			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1436			 * are its main fitting cases.
1437			 *
1438			 * There are a few exceptions though, as an example it is
1439			 * a first allocation (early boot up) when we have "one"
1440			 * big free space that has to be split.
1441			 *
1442			 * Also we can hit this path in case of regular "vmap"
1443			 * allocations, if "this" current CPU was not preloaded.
1444			 * See the comment in alloc_vmap_area() why. If so, then
1445			 * GFP_NOWAIT is used instead to get an extra object for
1446			 * split purpose. That is rare and most time does not
1447			 * occur.
1448			 *
1449			 * What happens if an allocation gets failed. Basically,
1450			 * an "overflow" path is triggered to purge lazily freed
1451			 * areas to free some memory, then, the "retry" path is
1452			 * triggered to repeat one more time. See more details
1453			 * in alloc_vmap_area() function.
1454			 */
1455			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1456			if (!lva)
1457				return -1;
1458		}
1459
1460		/*
1461		 * Build the remainder.
1462		 */
1463		lva->va_start = va->va_start;
1464		lva->va_end = nva_start_addr;
1465
1466		/*
1467		 * Shrink this VA to remaining size.
1468		 */
1469		va->va_start = nva_start_addr + size;
1470	} else {
1471		return -1;
1472	}
1473
1474	if (type != FL_FIT_TYPE) {
1475		augment_tree_propagate_from(va);
1476
1477		if (lva)	/* type == NE_FIT_TYPE */
1478			insert_vmap_area_augment(lva, &va->rb_node, root, head);
 
1479	}
1480
1481	return 0;
1482}
1483
1484/*
1485 * Returns a start address of the newly allocated area, if success.
1486 * Otherwise a vend is returned that indicates failure.
1487 */
1488static __always_inline unsigned long
1489__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1490	unsigned long size, unsigned long align,
1491	unsigned long vstart, unsigned long vend)
1492{
1493	bool adjust_search_size = true;
1494	unsigned long nva_start_addr;
1495	struct vmap_area *va;
 
1496	int ret;
1497
1498	/*
1499	 * Do not adjust when:
1500	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1501	 *      All blocks(their start addresses) are at least PAGE_SIZE
1502	 *      aligned anyway;
1503	 *   b) a short range where a requested size corresponds to exactly
1504	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1505	 *      With adjusted search length an allocation would not succeed.
1506	 */
1507	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1508		adjust_search_size = false;
1509
1510	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1511	if (unlikely(!va))
1512		return vend;
1513
1514	if (va->va_start > vstart)
1515		nva_start_addr = ALIGN(va->va_start, align);
1516	else
1517		nva_start_addr = ALIGN(vstart, align);
1518
1519	/* Check the "vend" restriction. */
1520	if (nva_start_addr + size > vend)
1521		return vend;
1522
 
 
 
 
 
1523	/* Update the free vmap_area. */
1524	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1525	if (WARN_ON_ONCE(ret))
1526		return vend;
1527
1528#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1529	find_vmap_lowest_match_check(root, head, size, align);
1530#endif
1531
1532	return nva_start_addr;
1533}
1534
1535/*
1536 * Free a region of KVA allocated by alloc_vmap_area
1537 */
1538static void free_vmap_area(struct vmap_area *va)
1539{
1540	/*
1541	 * Remove from the busy tree/list.
1542	 */
1543	spin_lock(&vmap_area_lock);
1544	unlink_va(va, &vmap_area_root);
1545	spin_unlock(&vmap_area_lock);
1546
1547	/*
1548	 * Insert/Merge it back to the free tree/list.
1549	 */
1550	spin_lock(&free_vmap_area_lock);
1551	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1552	spin_unlock(&free_vmap_area_lock);
1553}
1554
1555static inline void
1556preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1557{
1558	struct vmap_area *va = NULL;
1559
1560	/*
1561	 * Preload this CPU with one extra vmap_area object. It is used
1562	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1563	 * a CPU that does an allocation is preloaded.
1564	 *
1565	 * We do it in non-atomic context, thus it allows us to use more
1566	 * permissive allocation masks to be more stable under low memory
1567	 * condition and high memory pressure.
1568	 */
1569	if (!this_cpu_read(ne_fit_preload_node))
1570		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1571
1572	spin_lock(lock);
1573
1574	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1575		kmem_cache_free(vmap_area_cachep, va);
1576}
1577
1578/*
1579 * Allocate a region of KVA of the specified size and alignment, within the
1580 * vstart and vend.
1581 */
1582static struct vmap_area *alloc_vmap_area(unsigned long size,
1583				unsigned long align,
1584				unsigned long vstart, unsigned long vend,
1585				int node, gfp_t gfp_mask,
1586				unsigned long va_flags)
1587{
1588	struct vmap_area *va;
1589	unsigned long freed;
1590	unsigned long addr;
1591	int purged = 0;
1592	int ret;
1593
1594	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1595		return ERR_PTR(-EINVAL);
 
1596
1597	if (unlikely(!vmap_initialized))
1598		return ERR_PTR(-EBUSY);
1599
1600	might_sleep();
1601	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1602
1603	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 
1604	if (unlikely(!va))
1605		return ERR_PTR(-ENOMEM);
1606
1607	/*
1608	 * Only scan the relevant parts containing pointers to other objects
1609	 * to avoid false negatives.
1610	 */
1611	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1612
1613retry:
1614	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1615	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1616		size, align, vstart, vend);
1617	spin_unlock(&free_vmap_area_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618
1619	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
 
1620
1621	/*
1622	 * If an allocation fails, the "vend" address is
1623	 * returned. Therefore trigger the overflow path.
1624	 */
 
1625	if (unlikely(addr == vend))
1626		goto overflow;
1627
1628	va->va_start = addr;
1629	va->va_end = addr + size;
1630	va->vm = NULL;
1631	va->flags = va_flags;
1632
1633	spin_lock(&vmap_area_lock);
1634	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 
1635	spin_unlock(&vmap_area_lock);
1636
1637	BUG_ON(!IS_ALIGNED(va->va_start, align));
1638	BUG_ON(va->va_start < vstart);
1639	BUG_ON(va->va_end > vend);
1640
1641	ret = kasan_populate_vmalloc(addr, size);
1642	if (ret) {
1643		free_vmap_area(va);
1644		return ERR_PTR(ret);
1645	}
1646
1647	return va;
1648
1649overflow:
 
1650	if (!purged) {
1651		reclaim_and_purge_vmap_areas();
1652		purged = 1;
1653		goto retry;
1654	}
1655
1656	freed = 0;
1657	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1658
1659	if (freed > 0) {
1660		purged = 0;
1661		goto retry;
 
1662	}
1663
1664	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1665		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1666			size);
1667
1668	kmem_cache_free(vmap_area_cachep, va);
1669	return ERR_PTR(-EBUSY);
1670}
1671
1672int register_vmap_purge_notifier(struct notifier_block *nb)
1673{
1674	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1675}
1676EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1677
1678int unregister_vmap_purge_notifier(struct notifier_block *nb)
1679{
1680	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1681}
1682EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684/*
1685 * lazy_max_pages is the maximum amount of virtual address space we gather up
1686 * before attempting to purge with a TLB flush.
1687 *
1688 * There is a tradeoff here: a larger number will cover more kernel page tables
1689 * and take slightly longer to purge, but it will linearly reduce the number of
1690 * global TLB flushes that must be performed. It would seem natural to scale
1691 * this number up linearly with the number of CPUs (because vmapping activity
1692 * could also scale linearly with the number of CPUs), however it is likely
1693 * that in practice, workloads might be constrained in other ways that mean
1694 * vmap activity will not scale linearly with CPUs. Also, I want to be
1695 * conservative and not introduce a big latency on huge systems, so go with
1696 * a less aggressive log scale. It will still be an improvement over the old
1697 * code, and it will be simple to change the scale factor if we find that it
1698 * becomes a problem on bigger systems.
1699 */
1700static unsigned long lazy_max_pages(void)
1701{
1702	unsigned int log;
1703
1704	log = fls(num_online_cpus());
1705
1706	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1707}
1708
1709static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1710
1711/*
1712 * Serialize vmap purging.  There is no actual critical section protected
1713 * by this lock, but we want to avoid concurrent calls for performance
1714 * reasons and to make the pcpu_get_vm_areas more deterministic.
1715 */
1716static DEFINE_MUTEX(vmap_purge_lock);
1717
1718/* for per-CPU blocks */
1719static void purge_fragmented_blocks_allcpus(void);
1720
1721/*
 
 
 
 
 
 
 
 
 
1722 * Purges all lazily-freed vmap areas.
1723 */
1724static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1725{
1726	unsigned long resched_threshold;
1727	unsigned int num_purged_areas = 0;
1728	struct list_head local_purge_list;
1729	struct vmap_area *va, *n_va;
1730
1731	lockdep_assert_held(&vmap_purge_lock);
1732
1733	spin_lock(&purge_vmap_area_lock);
1734	purge_vmap_area_root = RB_ROOT;
1735	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1736	spin_unlock(&purge_vmap_area_lock);
1737
1738	if (unlikely(list_empty(&local_purge_list)))
1739		goto out;
1740
1741	start = min(start,
1742		list_first_entry(&local_purge_list,
1743			struct vmap_area, list)->va_start);
1744
1745	end = max(end,
1746		list_last_entry(&local_purge_list,
1747			struct vmap_area, list)->va_end);
 
 
 
 
 
1748
1749	flush_tlb_kernel_range(start, end);
1750	resched_threshold = lazy_max_pages() << 1;
1751
1752	spin_lock(&free_vmap_area_lock);
1753	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1754		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1755		unsigned long orig_start = va->va_start;
1756		unsigned long orig_end = va->va_end;
1757
1758		/*
1759		 * Finally insert or merge lazily-freed area. It is
1760		 * detached and there is no need to "unlink" it from
1761		 * anything.
1762		 */
1763		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1764				&free_vmap_area_list);
1765
1766		if (!va)
1767			continue;
1768
1769		if (is_vmalloc_or_module_addr((void *)orig_start))
1770			kasan_release_vmalloc(orig_start, orig_end,
1771					      va->va_start, va->va_end);
1772
1773		atomic_long_sub(nr, &vmap_lazy_nr);
1774		num_purged_areas++;
1775
1776		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1777			cond_resched_lock(&free_vmap_area_lock);
1778	}
1779	spin_unlock(&free_vmap_area_lock);
1780
1781out:
1782	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1783	return num_purged_areas > 0;
1784}
1785
1786/*
1787 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
 
1788 */
1789static void reclaim_and_purge_vmap_areas(void)
 
 
 
 
 
 
1790
 
 
 
 
1791{
1792	mutex_lock(&vmap_purge_lock);
1793	purge_fragmented_blocks_allcpus();
1794	__purge_vmap_area_lazy(ULONG_MAX, 0);
1795	mutex_unlock(&vmap_purge_lock);
1796}
1797
1798static void drain_vmap_area_work(struct work_struct *work)
1799{
1800	unsigned long nr_lazy;
1801
1802	do {
1803		mutex_lock(&vmap_purge_lock);
1804		__purge_vmap_area_lazy(ULONG_MAX, 0);
1805		mutex_unlock(&vmap_purge_lock);
1806
1807		/* Recheck if further work is required. */
1808		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809	} while (nr_lazy > lazy_max_pages());
1810}
1811
1812/*
1813 * Free a vmap area, caller ensuring that the area has been unmapped,
1814 * unlinked and flush_cache_vunmap had been called for the correct
1815 * range previously.
1816 */
1817static void free_vmap_area_noflush(struct vmap_area *va)
1818{
1819	unsigned long nr_lazy_max = lazy_max_pages();
1820	unsigned long va_start = va->va_start;
1821	unsigned long nr_lazy;
1822
1823	if (WARN_ON_ONCE(!list_empty(&va->list)))
1824		return;
 
1825
1826	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827				PAGE_SHIFT, &vmap_lazy_nr);
1828
1829	/*
1830	 * Merge or place it to the purge tree/list.
1831	 */
1832	spin_lock(&purge_vmap_area_lock);
1833	merge_or_add_vmap_area(va,
1834		&purge_vmap_area_root, &purge_vmap_area_list);
1835	spin_unlock(&purge_vmap_area_lock);
1836
1837	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838
1839	/* After this point, we may free va at any time */
1840	if (unlikely(nr_lazy > nr_lazy_max))
1841		schedule_work(&drain_vmap_work);
 
 
1842}
1843
1844/*
1845 * Free and unmap a vmap area
1846 */
1847static void free_unmap_vmap_area(struct vmap_area *va)
1848{
1849	flush_cache_vunmap(va->va_start, va->va_end);
1850	vunmap_range_noflush(va->va_start, va->va_end);
1851	if (debug_pagealloc_enabled_static())
1852		flush_tlb_kernel_range(va->va_start, va->va_end);
1853
1854	free_vmap_area_noflush(va);
1855}
1856
1857struct vmap_area *find_vmap_area(unsigned long addr)
1858{
1859	struct vmap_area *va;
1860
1861	spin_lock(&vmap_area_lock);
1862	va = __find_vmap_area(addr, &vmap_area_root);
1863	spin_unlock(&vmap_area_lock);
1864
1865	return va;
1866}
1867
1868static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869{
1870	struct vmap_area *va;
1871
1872	spin_lock(&vmap_area_lock);
1873	va = __find_vmap_area(addr, &vmap_area_root);
1874	if (va)
1875		unlink_va(va, &vmap_area_root);
1876	spin_unlock(&vmap_area_lock);
1877
1878	return va;
1879}
1880
1881/*** Per cpu kva allocator ***/
1882
1883/*
1884 * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 * room for at least 16 percpu vmap blocks per CPU.
1886 */
1887/*
1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1890 * instead (we just need a rough idea)
1891 */
1892#if BITS_PER_LONG == 32
1893#define VMALLOC_SPACE		(128UL*1024*1024)
1894#else
1895#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1896#endif
1897
1898#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1899#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1900#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1901#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1902#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1903#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1904#define VMAP_BBMAP_BITS		\
1905		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1906		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1907			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908
1909#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1910
1911/*
1912 * Purge threshold to prevent overeager purging of fragmented blocks for
1913 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1914 */
1915#define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
1916
1917#define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1918#define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1919#define VMAP_FLAGS_MASK		0x3
1920
1921struct vmap_block_queue {
1922	spinlock_t lock;
1923	struct list_head free;
1924
1925	/*
1926	 * An xarray requires an extra memory dynamically to
1927	 * be allocated. If it is an issue, we can use rb-tree
1928	 * instead.
1929	 */
1930	struct xarray vmap_blocks;
1931};
1932
1933struct vmap_block {
1934	spinlock_t lock;
1935	struct vmap_area *va;
1936	unsigned long free, dirty;
1937	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1938	unsigned long dirty_min, dirty_max; /*< dirty range */
1939	struct list_head free_list;
1940	struct rcu_head rcu_head;
1941	struct list_head purge;
1942};
1943
1944/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1945static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1946
1947/*
1948 * In order to fast access to any "vmap_block" associated with a
1949 * specific address, we use a hash.
1950 *
1951 * A per-cpu vmap_block_queue is used in both ways, to serialize
1952 * an access to free block chains among CPUs(alloc path) and it
1953 * also acts as a vmap_block hash(alloc/free paths). It means we
1954 * overload it, since we already have the per-cpu array which is
1955 * used as a hash table. When used as a hash a 'cpu' passed to
1956 * per_cpu() is not actually a CPU but rather a hash index.
1957 *
1958 * A hash function is addr_to_vb_xa() which hashes any address
1959 * to a specific index(in a hash) it belongs to. This then uses a
1960 * per_cpu() macro to access an array with generated index.
1961 *
1962 * An example:
1963 *
1964 *  CPU_1  CPU_2  CPU_0
1965 *    |      |      |
1966 *    V      V      V
1967 * 0     10     20     30     40     50     60
1968 * |------|------|------|------|------|------|...<vmap address space>
1969 *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
1970 *
1971 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1972 *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1973 *
1974 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1975 *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1976 *
1977 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1978 *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1979 *
1980 * This technique almost always avoids lock contention on insert/remove,
1981 * however xarray spinlocks protect against any contention that remains.
1982 */
1983static struct xarray *
1984addr_to_vb_xa(unsigned long addr)
1985{
1986	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1987
1988	return &per_cpu(vmap_block_queue, index).vmap_blocks;
1989}
1990
1991/*
1992 * We should probably have a fallback mechanism to allocate virtual memory
1993 * out of partially filled vmap blocks. However vmap block sizing should be
1994 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1995 * big problem.
1996 */
1997
1998static unsigned long addr_to_vb_idx(unsigned long addr)
1999{
2000	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2001	addr /= VMAP_BLOCK_SIZE;
2002	return addr;
2003}
2004
2005static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2006{
2007	unsigned long addr;
2008
2009	addr = va_start + (pages_off << PAGE_SHIFT);
2010	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2011	return (void *)addr;
2012}
2013
2014/**
2015 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2016 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2017 * @order:    how many 2^order pages should be occupied in newly allocated block
2018 * @gfp_mask: flags for the page level allocator
2019 *
2020 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2021 */
2022static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2023{
2024	struct vmap_block_queue *vbq;
2025	struct vmap_block *vb;
2026	struct vmap_area *va;
2027	struct xarray *xa;
2028	unsigned long vb_idx;
2029	int node, err;
2030	void *vaddr;
2031
2032	node = numa_node_id();
2033
2034	vb = kmalloc_node(sizeof(struct vmap_block),
2035			gfp_mask & GFP_RECLAIM_MASK, node);
2036	if (unlikely(!vb))
2037		return ERR_PTR(-ENOMEM);
2038
2039	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2040					VMALLOC_START, VMALLOC_END,
2041					node, gfp_mask,
2042					VMAP_RAM|VMAP_BLOCK);
2043	if (IS_ERR(va)) {
2044		kfree(vb);
2045		return ERR_CAST(va);
2046	}
2047
 
 
 
 
 
 
 
2048	vaddr = vmap_block_vaddr(va->va_start, 0);
2049	spin_lock_init(&vb->lock);
2050	vb->va = va;
2051	/* At least something should be left free */
2052	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2053	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2054	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2055	vb->dirty = 0;
2056	vb->dirty_min = VMAP_BBMAP_BITS;
2057	vb->dirty_max = 0;
2058	bitmap_set(vb->used_map, 0, (1UL << order));
2059	INIT_LIST_HEAD(&vb->free_list);
2060
2061	xa = addr_to_vb_xa(va->va_start);
2062	vb_idx = addr_to_vb_idx(va->va_start);
2063	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2064	if (err) {
2065		kfree(vb);
2066		free_vmap_area(va);
2067		return ERR_PTR(err);
2068	}
2069
2070	vbq = raw_cpu_ptr(&vmap_block_queue);
2071	spin_lock(&vbq->lock);
2072	list_add_tail_rcu(&vb->free_list, &vbq->free);
2073	spin_unlock(&vbq->lock);
 
2074
2075	return vaddr;
2076}
2077
2078static void free_vmap_block(struct vmap_block *vb)
2079{
2080	struct vmap_block *tmp;
2081	struct xarray *xa;
2082
2083	xa = addr_to_vb_xa(vb->va->va_start);
2084	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
 
 
2085	BUG_ON(tmp != vb);
2086
2087	spin_lock(&vmap_area_lock);
2088	unlink_va(vb->va, &vmap_area_root);
2089	spin_unlock(&vmap_area_lock);
2090
2091	free_vmap_area_noflush(vb->va);
2092	kfree_rcu(vb, rcu_head);
2093}
2094
2095static bool purge_fragmented_block(struct vmap_block *vb,
2096		struct vmap_block_queue *vbq, struct list_head *purge_list,
2097		bool force_purge)
2098{
2099	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2100	    vb->dirty == VMAP_BBMAP_BITS)
2101		return false;
2102
2103	/* Don't overeagerly purge usable blocks unless requested */
2104	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2105		return false;
2106
2107	/* prevent further allocs after releasing lock */
2108	WRITE_ONCE(vb->free, 0);
2109	/* prevent purging it again */
2110	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2111	vb->dirty_min = 0;
2112	vb->dirty_max = VMAP_BBMAP_BITS;
2113	spin_lock(&vbq->lock);
2114	list_del_rcu(&vb->free_list);
2115	spin_unlock(&vbq->lock);
2116	list_add_tail(&vb->purge, purge_list);
2117	return true;
2118}
2119
2120static void free_purged_blocks(struct list_head *purge_list)
2121{
2122	struct vmap_block *vb, *n_vb;
2123
2124	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2125		list_del(&vb->purge);
2126		free_vmap_block(vb);
2127	}
2128}
2129
2130static void purge_fragmented_blocks(int cpu)
2131{
2132	LIST_HEAD(purge);
2133	struct vmap_block *vb;
 
2134	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2135
2136	rcu_read_lock();
2137	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2138		unsigned long free = READ_ONCE(vb->free);
2139		unsigned long dirty = READ_ONCE(vb->dirty);
2140
2141		if (free + dirty != VMAP_BBMAP_BITS ||
2142		    dirty == VMAP_BBMAP_BITS)
2143			continue;
2144
2145		spin_lock(&vb->lock);
2146		purge_fragmented_block(vb, vbq, &purge, true);
2147		spin_unlock(&vb->lock);
 
 
 
 
 
 
 
 
 
 
2148	}
2149	rcu_read_unlock();
2150	free_purged_blocks(&purge);
 
 
 
 
2151}
2152
2153static void purge_fragmented_blocks_allcpus(void)
2154{
2155	int cpu;
2156
2157	for_each_possible_cpu(cpu)
2158		purge_fragmented_blocks(cpu);
2159}
2160
2161static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2162{
2163	struct vmap_block_queue *vbq;
2164	struct vmap_block *vb;
2165	void *vaddr = NULL;
2166	unsigned int order;
2167
2168	BUG_ON(offset_in_page(size));
2169	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2170	if (WARN_ON(size == 0)) {
2171		/*
2172		 * Allocating 0 bytes isn't what caller wants since
2173		 * get_order(0) returns funny result. Just warn and terminate
2174		 * early.
2175		 */
2176		return NULL;
2177	}
2178	order = get_order(size);
2179
2180	rcu_read_lock();
2181	vbq = raw_cpu_ptr(&vmap_block_queue);
2182	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2183		unsigned long pages_off;
2184
2185		if (READ_ONCE(vb->free) < (1UL << order))
2186			continue;
2187
2188		spin_lock(&vb->lock);
2189		if (vb->free < (1UL << order)) {
2190			spin_unlock(&vb->lock);
2191			continue;
2192		}
2193
2194		pages_off = VMAP_BBMAP_BITS - vb->free;
2195		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2196		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2197		bitmap_set(vb->used_map, pages_off, (1UL << order));
2198		if (vb->free == 0) {
2199			spin_lock(&vbq->lock);
2200			list_del_rcu(&vb->free_list);
2201			spin_unlock(&vbq->lock);
2202		}
2203
2204		spin_unlock(&vb->lock);
2205		break;
2206	}
2207
 
2208	rcu_read_unlock();
2209
2210	/* Allocate new block if nothing was found */
2211	if (!vaddr)
2212		vaddr = new_vmap_block(order, gfp_mask);
2213
2214	return vaddr;
2215}
2216
2217static void vb_free(unsigned long addr, unsigned long size)
2218{
2219	unsigned long offset;
 
2220	unsigned int order;
2221	struct vmap_block *vb;
2222	struct xarray *xa;
2223
2224	BUG_ON(offset_in_page(size));
2225	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2226
2227	flush_cache_vunmap(addr, addr + size);
2228
2229	order = get_order(size);
2230	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2231
2232	xa = addr_to_vb_xa(addr);
2233	vb = xa_load(xa, addr_to_vb_idx(addr));
2234
2235	spin_lock(&vb->lock);
2236	bitmap_clear(vb->used_map, offset, (1UL << order));
2237	spin_unlock(&vb->lock);
 
 
2238
2239	vunmap_range_noflush(addr, addr + size);
2240
2241	if (debug_pagealloc_enabled_static())
2242		flush_tlb_kernel_range(addr, addr + size);
 
2243
2244	spin_lock(&vb->lock);
2245
2246	/* Expand the not yet TLB flushed dirty range */
2247	vb->dirty_min = min(vb->dirty_min, offset);
2248	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2249
2250	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2251	if (vb->dirty == VMAP_BBMAP_BITS) {
2252		BUG_ON(vb->free);
2253		spin_unlock(&vb->lock);
2254		free_vmap_block(vb);
2255	} else
2256		spin_unlock(&vb->lock);
2257}
2258
2259static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2260{
2261	LIST_HEAD(purge_list);
2262	int cpu;
2263
2264	if (unlikely(!vmap_initialized))
2265		return;
2266
2267	mutex_lock(&vmap_purge_lock);
2268
2269	for_each_possible_cpu(cpu) {
2270		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2271		struct vmap_block *vb;
2272		unsigned long idx;
2273
2274		rcu_read_lock();
2275		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2276			spin_lock(&vb->lock);
2277
2278			/*
2279			 * Try to purge a fragmented block first. If it's
2280			 * not purgeable, check whether there is dirty
2281			 * space to be flushed.
2282			 */
2283			if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2284			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2285				unsigned long va_start = vb->va->va_start;
2286				unsigned long s, e;
2287
2288				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2289				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2290
2291				start = min(s, start);
2292				end   = max(e, end);
2293
2294				/* Prevent that this is flushed again */
2295				vb->dirty_min = VMAP_BBMAP_BITS;
2296				vb->dirty_max = 0;
2297
2298				flush = 1;
2299			}
2300			spin_unlock(&vb->lock);
2301		}
2302		rcu_read_unlock();
2303	}
2304	free_purged_blocks(&purge_list);
2305
 
 
2306	if (!__purge_vmap_area_lazy(start, end) && flush)
2307		flush_tlb_kernel_range(start, end);
2308	mutex_unlock(&vmap_purge_lock);
2309}
2310
2311/**
2312 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2313 *
2314 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2315 * to amortize TLB flushing overheads. What this means is that any page you
2316 * have now, may, in a former life, have been mapped into kernel virtual
2317 * address by the vmap layer and so there might be some CPUs with TLB entries
2318 * still referencing that page (additional to the regular 1:1 kernel mapping).
2319 *
2320 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2321 * be sure that none of the pages we have control over will have any aliases
2322 * from the vmap layer.
2323 */
2324void vm_unmap_aliases(void)
2325{
2326	unsigned long start = ULONG_MAX, end = 0;
2327	int flush = 0;
2328
2329	_vm_unmap_aliases(start, end, flush);
2330}
2331EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2332
2333/**
2334 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2335 * @mem: the pointer returned by vm_map_ram
2336 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2337 */
2338void vm_unmap_ram(const void *mem, unsigned int count)
2339{
2340	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2341	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2342	struct vmap_area *va;
2343
2344	might_sleep();
2345	BUG_ON(!addr);
2346	BUG_ON(addr < VMALLOC_START);
2347	BUG_ON(addr > VMALLOC_END);
2348	BUG_ON(!PAGE_ALIGNED(addr));
2349
2350	kasan_poison_vmalloc(mem, size);
2351
2352	if (likely(count <= VMAP_MAX_ALLOC)) {
2353		debug_check_no_locks_freed(mem, size);
2354		vb_free(addr, size);
2355		return;
2356	}
2357
2358	va = find_unlink_vmap_area(addr);
2359	if (WARN_ON_ONCE(!va))
2360		return;
2361
2362	debug_check_no_locks_freed((void *)va->va_start,
2363				    (va->va_end - va->va_start));
2364	free_unmap_vmap_area(va);
2365}
2366EXPORT_SYMBOL(vm_unmap_ram);
2367
2368/**
2369 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2370 * @pages: an array of pointers to the pages to be mapped
2371 * @count: number of pages
2372 * @node: prefer to allocate data structures on this node
 
2373 *
2374 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2375 * faster than vmap so it's good.  But if you mix long-life and short-life
2376 * objects with vm_map_ram(), it could consume lots of address space through
2377 * fragmentation (especially on a 32bit machine).  You could see failures in
2378 * the end.  Please use this function for short-lived objects.
2379 *
2380 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2381 */
2382void *vm_map_ram(struct page **pages, unsigned int count, int node)
2383{
2384	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2385	unsigned long addr;
2386	void *mem;
2387
2388	if (likely(count <= VMAP_MAX_ALLOC)) {
2389		mem = vb_alloc(size, GFP_KERNEL);
2390		if (IS_ERR(mem))
2391			return NULL;
2392		addr = (unsigned long)mem;
2393	} else {
2394		struct vmap_area *va;
2395		va = alloc_vmap_area(size, PAGE_SIZE,
2396				VMALLOC_START, VMALLOC_END,
2397				node, GFP_KERNEL, VMAP_RAM);
2398		if (IS_ERR(va))
2399			return NULL;
2400
2401		addr = va->va_start;
2402		mem = (void *)addr;
2403	}
2404
2405	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2406				pages, PAGE_SHIFT) < 0) {
2407		vm_unmap_ram(mem, count);
2408		return NULL;
2409	}
2410
2411	/*
2412	 * Mark the pages as accessible, now that they are mapped.
2413	 * With hardware tag-based KASAN, marking is skipped for
2414	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2415	 */
2416	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2417
2418	return mem;
2419}
2420EXPORT_SYMBOL(vm_map_ram);
2421
2422static struct vm_struct *vmlist __initdata;
2423
2424static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2425{
2426#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2427	return vm->page_order;
2428#else
2429	return 0;
2430#endif
2431}
2432
2433static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2434{
2435#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2436	vm->page_order = order;
2437#else
2438	BUG_ON(order != 0);
2439#endif
2440}
2441
2442/**
2443 * vm_area_add_early - add vmap area early during boot
2444 * @vm: vm_struct to add
2445 *
2446 * This function is used to add fixed kernel vm area to vmlist before
2447 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2448 * should contain proper values and the other fields should be zero.
2449 *
2450 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2451 */
2452void __init vm_area_add_early(struct vm_struct *vm)
2453{
2454	struct vm_struct *tmp, **p;
2455
2456	BUG_ON(vmap_initialized);
2457	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2458		if (tmp->addr >= vm->addr) {
2459			BUG_ON(tmp->addr < vm->addr + vm->size);
2460			break;
2461		} else
2462			BUG_ON(tmp->addr + tmp->size > vm->addr);
2463	}
2464	vm->next = *p;
2465	*p = vm;
2466}
2467
2468/**
2469 * vm_area_register_early - register vmap area early during boot
2470 * @vm: vm_struct to register
2471 * @align: requested alignment
2472 *
2473 * This function is used to register kernel vm area before
2474 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2475 * proper values on entry and other fields should be zero.  On return,
2476 * vm->addr contains the allocated address.
2477 *
2478 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2479 */
2480void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2481{
2482	unsigned long addr = ALIGN(VMALLOC_START, align);
2483	struct vm_struct *cur, **p;
2484
2485	BUG_ON(vmap_initialized);
2486
2487	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2488		if ((unsigned long)cur->addr - addr >= vm->size)
2489			break;
2490		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2491	}
2492
2493	BUG_ON(addr > VMALLOC_END - vm->size);
2494	vm->addr = (void *)addr;
2495	vm->next = *p;
2496	*p = vm;
2497	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2498}
2499
2500static void vmap_init_free_space(void)
2501{
2502	unsigned long vmap_start = 1;
2503	const unsigned long vmap_end = ULONG_MAX;
2504	struct vmap_area *busy, *free;
2505
2506	/*
2507	 *     B     F     B     B     B     F
2508	 * -|-----|.....|-----|-----|-----|.....|-
2509	 *  |           The KVA space           |
2510	 *  |<--------------------------------->|
2511	 */
2512	list_for_each_entry(busy, &vmap_area_list, list) {
2513		if (busy->va_start - vmap_start > 0) {
2514			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2515			if (!WARN_ON_ONCE(!free)) {
2516				free->va_start = vmap_start;
2517				free->va_end = busy->va_start;
2518
2519				insert_vmap_area_augment(free, NULL,
2520					&free_vmap_area_root,
2521						&free_vmap_area_list);
2522			}
2523		}
2524
2525		vmap_start = busy->va_end;
2526	}
2527
2528	if (vmap_end - vmap_start > 0) {
2529		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2530		if (!WARN_ON_ONCE(!free)) {
2531			free->va_start = vmap_start;
2532			free->va_end = vmap_end;
2533
2534			insert_vmap_area_augment(free, NULL,
2535				&free_vmap_area_root,
2536					&free_vmap_area_list);
2537		}
2538	}
2539}
2540
2541static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2542	struct vmap_area *va, unsigned long flags, const void *caller)
2543{
2544	vm->flags = flags;
2545	vm->addr = (void *)va->va_start;
2546	vm->size = va->va_end - va->va_start;
2547	vm->caller = caller;
2548	va->vm = vm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549}
 
2550
2551static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2552			      unsigned long flags, const void *caller)
2553{
2554	spin_lock(&vmap_area_lock);
2555	setup_vmalloc_vm_locked(vm, va, flags, caller);
 
 
 
 
2556	spin_unlock(&vmap_area_lock);
2557}
2558
2559static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2560{
2561	/*
2562	 * Before removing VM_UNINITIALIZED,
2563	 * we should make sure that vm has proper values.
2564	 * Pair with smp_rmb() in show_numa_info().
2565	 */
2566	smp_wmb();
2567	vm->flags &= ~VM_UNINITIALIZED;
2568}
2569
2570static struct vm_struct *__get_vm_area_node(unsigned long size,
2571		unsigned long align, unsigned long shift, unsigned long flags,
2572		unsigned long start, unsigned long end, int node,
2573		gfp_t gfp_mask, const void *caller)
2574{
2575	struct vmap_area *va;
2576	struct vm_struct *area;
2577	unsigned long requested_size = size;
2578
2579	BUG_ON(in_interrupt());
2580	size = ALIGN(size, 1ul << shift);
2581	if (unlikely(!size))
2582		return NULL;
2583
2584	if (flags & VM_IOREMAP)
2585		align = 1ul << clamp_t(int, get_count_order_long(size),
2586				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2587
2588	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2589	if (unlikely(!area))
2590		return NULL;
2591
2592	if (!(flags & VM_NO_GUARD))
2593		size += PAGE_SIZE;
2594
2595	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2596	if (IS_ERR(va)) {
2597		kfree(area);
2598		return NULL;
2599	}
2600
2601	setup_vmalloc_vm(area, va, flags, caller);
2602
2603	/*
2604	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2605	 * best-effort approach, as they can be mapped outside of vmalloc code.
2606	 * For VM_ALLOC mappings, the pages are marked as accessible after
2607	 * getting mapped in __vmalloc_node_range().
2608	 * With hardware tag-based KASAN, marking is skipped for
2609	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2610	 */
2611	if (!(flags & VM_ALLOC))
2612		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2613						    KASAN_VMALLOC_PROT_NORMAL);
2614
2615	return area;
2616}
2617
 
 
 
 
 
 
 
 
2618struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2619				       unsigned long start, unsigned long end,
2620				       const void *caller)
2621{
2622	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2623				  NUMA_NO_NODE, GFP_KERNEL, caller);
2624}
2625
2626/**
2627 * get_vm_area - reserve a contiguous kernel virtual area
2628 * @size:	 size of the area
2629 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2630 *
2631 * Search an area of @size in the kernel virtual mapping area,
2632 * and reserved it for out purposes.  Returns the area descriptor
2633 * on success or %NULL on failure.
2634 *
2635 * Return: the area descriptor on success or %NULL on failure.
2636 */
2637struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2638{
2639	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2640				  VMALLOC_START, VMALLOC_END,
2641				  NUMA_NO_NODE, GFP_KERNEL,
2642				  __builtin_return_address(0));
2643}
2644
2645struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2646				const void *caller)
2647{
2648	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2649				  VMALLOC_START, VMALLOC_END,
2650				  NUMA_NO_NODE, GFP_KERNEL, caller);
2651}
2652
2653/**
2654 * find_vm_area - find a continuous kernel virtual area
2655 * @addr:	  base address
2656 *
2657 * Search for the kernel VM area starting at @addr, and return it.
2658 * It is up to the caller to do all required locking to keep the returned
2659 * pointer valid.
2660 *
2661 * Return: the area descriptor on success or %NULL on failure.
2662 */
2663struct vm_struct *find_vm_area(const void *addr)
2664{
2665	struct vmap_area *va;
2666
2667	va = find_vmap_area((unsigned long)addr);
2668	if (!va)
2669		return NULL;
2670
2671	return va->vm;
2672}
2673
2674/**
2675 * remove_vm_area - find and remove a continuous kernel virtual area
2676 * @addr:	    base address
2677 *
2678 * Search for the kernel VM area starting at @addr, and remove it.
2679 * This function returns the found VM area, but using it is NOT safe
2680 * on SMP machines, except for its size or flags.
2681 *
2682 * Return: the area descriptor on success or %NULL on failure.
2683 */
2684struct vm_struct *remove_vm_area(const void *addr)
2685{
2686	struct vmap_area *va;
2687	struct vm_struct *vm;
2688
2689	might_sleep();
2690
2691	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2692			addr))
2693		return NULL;
 
2694
2695	va = find_unlink_vmap_area((unsigned long)addr);
2696	if (!va || !va->vm)
2697		return NULL;
2698	vm = va->vm;
2699
2700	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2701	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2702	kasan_free_module_shadow(vm);
2703	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2704
2705	free_unmap_vmap_area(va);
2706	return vm;
 
 
 
2707}
2708
2709static inline void set_area_direct_map(const struct vm_struct *area,
2710				       int (*set_direct_map)(struct page *page))
2711{
2712	int i;
2713
2714	/* HUGE_VMALLOC passes small pages to set_direct_map */
2715	for (i = 0; i < area->nr_pages; i++)
2716		if (page_address(area->pages[i]))
2717			set_direct_map(area->pages[i]);
2718}
2719
2720/*
2721 * Flush the vm mapping and reset the direct map.
2722 */
2723static void vm_reset_perms(struct vm_struct *area)
2724{
2725	unsigned long start = ULONG_MAX, end = 0;
2726	unsigned int page_order = vm_area_page_order(area);
2727	int flush_dmap = 0;
2728	int i;
2729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2730	/*
2731	 * Find the start and end range of the direct mappings to make sure that
 
2732	 * the vm_unmap_aliases() flush includes the direct map.
2733	 */
2734	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2735		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2736
2737		if (addr) {
2738			unsigned long page_size;
2739
2740			page_size = PAGE_SIZE << page_order;
2741			start = min(addr, start);
2742			end = max(addr + page_size, end);
2743			flush_dmap = 1;
2744		}
2745	}
2746
2747	/*
2748	 * Set direct map to something invalid so that it won't be cached if
2749	 * there are any accesses after the TLB flush, then flush the TLB and
2750	 * reset the direct map permissions to the default.
2751	 */
2752	set_area_direct_map(area, set_direct_map_invalid_noflush);
2753	_vm_unmap_aliases(start, end, flush_dmap);
2754	set_area_direct_map(area, set_direct_map_default_noflush);
2755}
2756
2757static void delayed_vfree_work(struct work_struct *w)
2758{
2759	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2760	struct llist_node *t, *llnode;
2761
2762	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2763		vfree(llnode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764}
2765
2766/**
2767 * vfree_atomic - release memory allocated by vmalloc()
2768 * @addr:	  memory base address
2769 *
2770 * This one is just like vfree() but can be called in any atomic context
2771 * except NMIs.
2772 */
2773void vfree_atomic(const void *addr)
2774{
2775	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2776
2777	BUG_ON(in_nmi());
 
2778	kmemleak_free(addr);
2779
2780	/*
2781	 * Use raw_cpu_ptr() because this can be called from preemptible
2782	 * context. Preemption is absolutely fine here, because the llist_add()
2783	 * implementation is lockless, so it works even if we are adding to
2784	 * another cpu's list. schedule_work() should be fine with this too.
2785	 */
2786	if (addr && llist_add((struct llist_node *)addr, &p->list))
2787		schedule_work(&p->wq);
 
 
 
2788}
2789
2790/**
2791 * vfree - Release memory allocated by vmalloc()
2792 * @addr:  Memory base address
2793 *
2794 * Free the virtually continuous memory area starting at @addr, as obtained
2795 * from one of the vmalloc() family of APIs.  This will usually also free the
2796 * physical memory underlying the virtual allocation, but that memory is
2797 * reference counted, so it will not be freed until the last user goes away.
2798 *
2799 * If @addr is NULL, no operation is performed.
 
 
2800 *
2801 * Context:
2802 * May sleep if called *not* from interrupt context.
2803 * Must not be called in NMI context (strictly speaking, it could be
2804 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2805 * conventions for vfree() arch-dependent would be a really bad idea).
2806 */
2807void vfree(const void *addr)
2808{
2809	struct vm_struct *vm;
2810	int i;
2811
2812	if (unlikely(in_interrupt())) {
2813		vfree_atomic(addr);
2814		return;
2815	}
2816
2817	BUG_ON(in_nmi());
 
2818	kmemleak_free(addr);
2819	might_sleep();
2820
2821	if (!addr)
2822		return;
2823
2824	vm = remove_vm_area(addr);
2825	if (unlikely(!vm)) {
2826		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2827				addr);
2828		return;
2829	}
2830
2831	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2832		vm_reset_perms(vm);
2833	for (i = 0; i < vm->nr_pages; i++) {
2834		struct page *page = vm->pages[i];
2835
2836		BUG_ON(!page);
2837		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2838		/*
2839		 * High-order allocs for huge vmallocs are split, so
2840		 * can be freed as an array of order-0 allocations
2841		 */
2842		__free_page(page);
2843		cond_resched();
2844	}
2845	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2846	kvfree(vm->pages);
2847	kfree(vm);
2848}
2849EXPORT_SYMBOL(vfree);
2850
2851/**
2852 * vunmap - release virtual mapping obtained by vmap()
2853 * @addr:   memory base address
2854 *
2855 * Free the virtually contiguous memory area starting at @addr,
2856 * which was created from the page array passed to vmap().
2857 *
2858 * Must not be called in interrupt context.
2859 */
2860void vunmap(const void *addr)
2861{
2862	struct vm_struct *vm;
2863
2864	BUG_ON(in_interrupt());
2865	might_sleep();
2866
2867	if (!addr)
2868		return;
2869	vm = remove_vm_area(addr);
2870	if (unlikely(!vm)) {
2871		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2872				addr);
2873		return;
2874	}
2875	kfree(vm);
2876}
2877EXPORT_SYMBOL(vunmap);
2878
2879/**
2880 * vmap - map an array of pages into virtually contiguous space
2881 * @pages: array of page pointers
2882 * @count: number of pages to map
2883 * @flags: vm_area->flags
2884 * @prot: page protection for the mapping
2885 *
2886 * Maps @count pages from @pages into contiguous kernel virtual space.
2887 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2888 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2889 * are transferred from the caller to vmap(), and will be freed / dropped when
2890 * vfree() is called on the return value.
2891 *
2892 * Return: the address of the area or %NULL on failure
2893 */
2894void *vmap(struct page **pages, unsigned int count,
2895	   unsigned long flags, pgprot_t prot)
2896{
2897	struct vm_struct *area;
2898	unsigned long addr;
2899	unsigned long size;		/* In bytes */
2900
2901	might_sleep();
2902
2903	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2904		return NULL;
2905
2906	/*
2907	 * Your top guard is someone else's bottom guard. Not having a top
2908	 * guard compromises someone else's mappings too.
2909	 */
2910	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2911		flags &= ~VM_NO_GUARD;
2912
2913	if (count > totalram_pages())
2914		return NULL;
2915
2916	size = (unsigned long)count << PAGE_SHIFT;
2917	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2918	if (!area)
2919		return NULL;
2920
2921	addr = (unsigned long)area->addr;
2922	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2923				pages, PAGE_SHIFT) < 0) {
2924		vunmap(area->addr);
2925		return NULL;
2926	}
2927
2928	if (flags & VM_MAP_PUT_PAGES) {
2929		area->pages = pages;
2930		area->nr_pages = count;
2931	}
2932	return area->addr;
2933}
2934EXPORT_SYMBOL(vmap);
2935
2936#ifdef CONFIG_VMAP_PFN
2937struct vmap_pfn_data {
2938	unsigned long	*pfns;
2939	pgprot_t	prot;
2940	unsigned int	idx;
2941};
2942
2943static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2944{
2945	struct vmap_pfn_data *data = private;
2946	unsigned long pfn = data->pfns[data->idx];
2947	pte_t ptent;
2948
2949	if (WARN_ON_ONCE(pfn_valid(pfn)))
2950		return -EINVAL;
2951
2952	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2953	set_pte_at(&init_mm, addr, pte, ptent);
2954
2955	data->idx++;
2956	return 0;
2957}
2958
2959/**
2960 * vmap_pfn - map an array of PFNs into virtually contiguous space
2961 * @pfns: array of PFNs
2962 * @count: number of pages to map
2963 * @prot: page protection for the mapping
2964 *
2965 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2966 * the start address of the mapping.
2967 */
2968void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2969{
2970	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2971	struct vm_struct *area;
2972
2973	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2974			__builtin_return_address(0));
2975	if (!area)
2976		return NULL;
2977	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2978			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2979		free_vm_area(area);
2980		return NULL;
2981	}
2982
2983	flush_cache_vmap((unsigned long)area->addr,
2984			 (unsigned long)area->addr + count * PAGE_SIZE);
2985
2986	return area->addr;
2987}
2988EXPORT_SYMBOL_GPL(vmap_pfn);
2989#endif /* CONFIG_VMAP_PFN */
2990
2991static inline unsigned int
2992vm_area_alloc_pages(gfp_t gfp, int nid,
2993		unsigned int order, unsigned int nr_pages, struct page **pages)
2994{
2995	unsigned int nr_allocated = 0;
2996	gfp_t alloc_gfp = gfp;
2997	bool nofail = false;
2998	struct page *page;
2999	int i;
3000
3001	/*
3002	 * For order-0 pages we make use of bulk allocator, if
3003	 * the page array is partly or not at all populated due
3004	 * to fails, fallback to a single page allocator that is
3005	 * more permissive.
3006	 */
3007	if (!order) {
3008		/* bulk allocator doesn't support nofail req. officially */
3009		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3010
3011		while (nr_allocated < nr_pages) {
3012			unsigned int nr, nr_pages_request;
3013
3014			/*
3015			 * A maximum allowed request is hard-coded and is 100
3016			 * pages per call. That is done in order to prevent a
3017			 * long preemption off scenario in the bulk-allocator
3018			 * so the range is [1:100].
3019			 */
3020			nr_pages_request = min(100U, nr_pages - nr_allocated);
3021
3022			/* memory allocation should consider mempolicy, we can't
3023			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3024			 * otherwise memory may be allocated in only one node,
3025			 * but mempolicy wants to alloc memory by interleaving.
3026			 */
3027			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3028				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3029							nr_pages_request,
3030							pages + nr_allocated);
3031
3032			else
3033				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3034							nr_pages_request,
3035							pages + nr_allocated);
3036
3037			nr_allocated += nr;
3038			cond_resched();
3039
3040			/*
3041			 * If zero or pages were obtained partly,
3042			 * fallback to a single page allocator.
3043			 */
3044			if (nr != nr_pages_request)
3045				break;
3046		}
3047	} else if (gfp & __GFP_NOFAIL) {
3048		/*
3049		 * Higher order nofail allocations are really expensive and
3050		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3051		 * and compaction etc.
3052		 */
3053		alloc_gfp &= ~__GFP_NOFAIL;
3054		nofail = true;
3055	}
3056
3057	/* High-order pages or fallback path if "bulk" fails. */
3058	while (nr_allocated < nr_pages) {
3059		if (fatal_signal_pending(current))
3060			break;
3061
3062		if (nid == NUMA_NO_NODE)
3063			page = alloc_pages(alloc_gfp, order);
3064		else
3065			page = alloc_pages_node(nid, alloc_gfp, order);
3066		if (unlikely(!page)) {
3067			if (!nofail)
3068				break;
3069
3070			/* fall back to the zero order allocations */
3071			alloc_gfp |= __GFP_NOFAIL;
3072			order = 0;
3073			continue;
3074		}
3075
3076		/*
3077		 * Higher order allocations must be able to be treated as
3078		 * indepdenent small pages by callers (as they can with
3079		 * small-page vmallocs). Some drivers do their own refcounting
3080		 * on vmalloc_to_page() pages, some use page->mapping,
3081		 * page->lru, etc.
3082		 */
3083		if (order)
3084			split_page(page, order);
3085
3086		/*
3087		 * Careful, we allocate and map page-order pages, but
3088		 * tracking is done per PAGE_SIZE page so as to keep the
3089		 * vm_struct APIs independent of the physical/mapped size.
3090		 */
3091		for (i = 0; i < (1U << order); i++)
3092			pages[nr_allocated + i] = page + i;
3093
3094		cond_resched();
3095		nr_allocated += 1U << order;
3096	}
3097
3098	return nr_allocated;
3099}
3100
3101static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3102				 pgprot_t prot, unsigned int page_shift,
3103				 int node)
3104{
 
 
3105	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3106	bool nofail = gfp_mask & __GFP_NOFAIL;
3107	unsigned long addr = (unsigned long)area->addr;
3108	unsigned long size = get_vm_area_size(area);
3109	unsigned long array_size;
3110	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3111	unsigned int page_order;
3112	unsigned int flags;
3113	int ret;
3114
3115	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3116
3117	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3118		gfp_mask |= __GFP_HIGHMEM;
3119
3120	/* Please note that the recursion is strictly bounded. */
3121	if (array_size > PAGE_SIZE) {
3122		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3123					area->caller);
3124	} else {
3125		area->pages = kmalloc_node(array_size, nested_gfp, node);
3126	}
3127
3128	if (!area->pages) {
3129		warn_alloc(gfp_mask, NULL,
3130			"vmalloc error: size %lu, failed to allocated page array size %lu",
3131			nr_small_pages * PAGE_SIZE, array_size);
3132		free_vm_area(area);
3133		return NULL;
3134	}
3135
3136	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3137	page_order = vm_area_page_order(area);
3138
3139	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3140		node, page_order, nr_small_pages, area->pages);
3141
3142	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3143	if (gfp_mask & __GFP_ACCOUNT) {
3144		int i;
 
3145
3146		for (i = 0; i < area->nr_pages; i++)
3147			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
 
 
 
 
 
 
 
3148	}
 
3149
3150	/*
3151	 * If not enough pages were obtained to accomplish an
3152	 * allocation request, free them via vfree() if any.
3153	 */
3154	if (area->nr_pages != nr_small_pages) {
3155		/*
3156		 * vm_area_alloc_pages() can fail due to insufficient memory but
3157		 * also:-
3158		 *
3159		 * - a pending fatal signal
3160		 * - insufficient huge page-order pages
3161		 *
3162		 * Since we always retry allocations at order-0 in the huge page
3163		 * case a warning for either is spurious.
3164		 */
3165		if (!fatal_signal_pending(current) && page_order == 0)
3166			warn_alloc(gfp_mask, NULL,
3167				"vmalloc error: size %lu, failed to allocate pages",
3168				area->nr_pages * PAGE_SIZE);
3169		goto fail;
3170	}
3171
3172	/*
3173	 * page tables allocations ignore external gfp mask, enforce it
3174	 * by the scope API
3175	 */
3176	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3177		flags = memalloc_nofs_save();
3178	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3179		flags = memalloc_noio_save();
3180
3181	do {
3182		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3183			page_shift);
3184		if (nofail && (ret < 0))
3185			schedule_timeout_uninterruptible(1);
3186	} while (nofail && (ret < 0));
3187
3188	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3189		memalloc_nofs_restore(flags);
3190	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3191		memalloc_noio_restore(flags);
3192
3193	if (ret < 0) {
3194		warn_alloc(gfp_mask, NULL,
3195			"vmalloc error: size %lu, failed to map pages",
3196			area->nr_pages * PAGE_SIZE);
3197		goto fail;
3198	}
3199
3200	return area->addr;
3201
3202fail:
3203	vfree(area->addr);
 
 
 
3204	return NULL;
3205}
3206
3207/**
3208 * __vmalloc_node_range - allocate virtually contiguous memory
3209 * @size:		  allocation size
3210 * @align:		  desired alignment
3211 * @start:		  vm area range start
3212 * @end:		  vm area range end
3213 * @gfp_mask:		  flags for the page level allocator
3214 * @prot:		  protection mask for the allocated pages
3215 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3216 * @node:		  node to use for allocation or NUMA_NO_NODE
3217 * @caller:		  caller's return address
3218 *
3219 * Allocate enough pages to cover @size from the page level
3220 * allocator with @gfp_mask flags. Please note that the full set of gfp
3221 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3222 * supported.
3223 * Zone modifiers are not supported. From the reclaim modifiers
3224 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3225 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3226 * __GFP_RETRY_MAYFAIL are not supported).
3227 *
3228 * __GFP_NOWARN can be used to suppress failures messages.
3229 *
3230 * Map them into contiguous kernel virtual space, using a pagetable
3231 * protection of @prot.
3232 *
3233 * Return: the address of the area or %NULL on failure
3234 */
3235void *__vmalloc_node_range(unsigned long size, unsigned long align,
3236			unsigned long start, unsigned long end, gfp_t gfp_mask,
3237			pgprot_t prot, unsigned long vm_flags, int node,
3238			const void *caller)
3239{
3240	struct vm_struct *area;
3241	void *ret;
3242	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3243	unsigned long real_size = size;
3244	unsigned long real_align = align;
3245	unsigned int shift = PAGE_SHIFT;
3246
3247	if (WARN_ON_ONCE(!size))
3248		return NULL;
3249
3250	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3251		warn_alloc(gfp_mask, NULL,
3252			"vmalloc error: size %lu, exceeds total pages",
3253			real_size);
3254		return NULL;
3255	}
3256
3257	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3258		unsigned long size_per_node;
3259
3260		/*
3261		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3262		 * others like modules don't yet expect huge pages in
3263		 * their allocations due to apply_to_page_range not
3264		 * supporting them.
3265		 */
3266
3267		size_per_node = size;
3268		if (node == NUMA_NO_NODE)
3269			size_per_node /= num_online_nodes();
3270		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3271			shift = PMD_SHIFT;
3272		else
3273			shift = arch_vmap_pte_supported_shift(size_per_node);
3274
3275		align = max(real_align, 1UL << shift);
3276		size = ALIGN(real_size, 1UL << shift);
3277	}
3278
3279again:
3280	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3281				  VM_UNINITIALIZED | vm_flags, start, end, node,
3282				  gfp_mask, caller);
3283	if (!area) {
3284		bool nofail = gfp_mask & __GFP_NOFAIL;
3285		warn_alloc(gfp_mask, NULL,
3286			"vmalloc error: size %lu, vm_struct allocation failed%s",
3287			real_size, (nofail) ? ". Retrying." : "");
3288		if (nofail) {
3289			schedule_timeout_uninterruptible(1);
3290			goto again;
3291		}
3292		goto fail;
3293	}
3294
3295	/*
3296	 * Prepare arguments for __vmalloc_area_node() and
3297	 * kasan_unpoison_vmalloc().
3298	 */
3299	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3300		if (kasan_hw_tags_enabled()) {
3301			/*
3302			 * Modify protection bits to allow tagging.
3303			 * This must be done before mapping.
3304			 */
3305			prot = arch_vmap_pgprot_tagged(prot);
3306
3307			/*
3308			 * Skip page_alloc poisoning and zeroing for physical
3309			 * pages backing VM_ALLOC mapping. Memory is instead
3310			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3311			 */
3312			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3313		}
3314
3315		/* Take note that the mapping is PAGE_KERNEL. */
3316		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3317	}
3318
3319	/* Allocate physical pages and map them into vmalloc space. */
3320	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3321	if (!ret)
3322		goto fail;
3323
3324	/*
3325	 * Mark the pages as accessible, now that they are mapped.
3326	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3327	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3328	 * to make sure that memory is initialized under the same conditions.
3329	 * Tag-based KASAN modes only assign tags to normal non-executable
3330	 * allocations, see __kasan_unpoison_vmalloc().
3331	 */
3332	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3333	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3334	    (gfp_mask & __GFP_SKIP_ZERO))
3335		kasan_flags |= KASAN_VMALLOC_INIT;
3336	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3337	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3338
3339	/*
3340	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3341	 * flag. It means that vm_struct is not fully initialized.
3342	 * Now, it is fully initialized, so remove this flag here.
3343	 */
3344	clear_vm_uninitialized_flag(area);
3345
3346	size = PAGE_ALIGN(size);
3347	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3348		kmemleak_vmalloc(area, size, gfp_mask);
3349
3350	return area->addr;
3351
3352fail:
3353	if (shift > PAGE_SHIFT) {
3354		shift = PAGE_SHIFT;
3355		align = real_align;
3356		size = real_size;
3357		goto again;
3358	}
3359
3360	return NULL;
3361}
3362
 
 
 
 
 
 
 
 
 
3363/**
3364 * __vmalloc_node - allocate virtually contiguous memory
3365 * @size:	    allocation size
3366 * @align:	    desired alignment
3367 * @gfp_mask:	    flags for the page level allocator
 
3368 * @node:	    node to use for allocation or NUMA_NO_NODE
3369 * @caller:	    caller's return address
3370 *
3371 * Allocate enough pages to cover @size from the page level allocator with
3372 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
 
3373 *
3374 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3375 * and __GFP_NOFAIL are not supported
3376 *
3377 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3378 * with mm people.
3379 *
3380 * Return: pointer to the allocated memory or %NULL on error
3381 */
3382void *__vmalloc_node(unsigned long size, unsigned long align,
3383			    gfp_t gfp_mask, int node, const void *caller)
 
3384{
3385	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3386				gfp_mask, PAGE_KERNEL, 0, node, caller);
3387}
3388/*
3389 * This is only for performance analysis of vmalloc and stress purpose.
3390 * It is required by vmalloc test module, therefore do not use it other
3391 * than that.
3392 */
3393#ifdef CONFIG_TEST_VMALLOC_MODULE
3394EXPORT_SYMBOL_GPL(__vmalloc_node);
3395#endif
3396
3397void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3398{
3399	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3400				__builtin_return_address(0));
3401}
3402EXPORT_SYMBOL(__vmalloc);
3403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3404/**
3405 * vmalloc - allocate virtually contiguous memory
3406 * @size:    allocation size
3407 *
3408 * Allocate enough pages to cover @size from the page level
3409 * allocator and map them into contiguous kernel virtual space.
3410 *
3411 * For tight control over page level allocator and protection flags
3412 * use __vmalloc() instead.
3413 *
3414 * Return: pointer to the allocated memory or %NULL on error
3415 */
3416void *vmalloc(unsigned long size)
3417{
3418	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3419				__builtin_return_address(0));
3420}
3421EXPORT_SYMBOL(vmalloc);
3422
3423/**
3424 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3425 * @size:      allocation size
3426 * @gfp_mask:  flags for the page level allocator
3427 *
3428 * Allocate enough pages to cover @size from the page level
3429 * allocator and map them into contiguous kernel virtual space.
3430 * If @size is greater than or equal to PMD_SIZE, allow using
3431 * huge pages for the memory
3432 *
3433 * Return: pointer to the allocated memory or %NULL on error
3434 */
3435void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3436{
3437	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3438				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3439				    NUMA_NO_NODE, __builtin_return_address(0));
3440}
3441EXPORT_SYMBOL_GPL(vmalloc_huge);
3442
3443/**
3444 * vzalloc - allocate virtually contiguous memory with zero fill
3445 * @size:    allocation size
3446 *
3447 * Allocate enough pages to cover @size from the page level
3448 * allocator and map them into contiguous kernel virtual space.
3449 * The memory allocated is set to zero.
3450 *
3451 * For tight control over page level allocator and protection flags
3452 * use __vmalloc() instead.
3453 *
3454 * Return: pointer to the allocated memory or %NULL on error
3455 */
3456void *vzalloc(unsigned long size)
3457{
3458	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3459				__builtin_return_address(0));
3460}
3461EXPORT_SYMBOL(vzalloc);
3462
3463/**
3464 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3465 * @size: allocation size
3466 *
3467 * The resulting memory area is zeroed so it can be mapped to userspace
3468 * without leaking data.
3469 *
3470 * Return: pointer to the allocated memory or %NULL on error
3471 */
3472void *vmalloc_user(unsigned long size)
3473{
3474	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3475				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3476				    VM_USERMAP, NUMA_NO_NODE,
3477				    __builtin_return_address(0));
3478}
3479EXPORT_SYMBOL(vmalloc_user);
3480
3481/**
3482 * vmalloc_node - allocate memory on a specific node
3483 * @size:	  allocation size
3484 * @node:	  numa node
3485 *
3486 * Allocate enough pages to cover @size from the page level
3487 * allocator and map them into contiguous kernel virtual space.
3488 *
3489 * For tight control over page level allocator and protection flags
3490 * use __vmalloc() instead.
3491 *
3492 * Return: pointer to the allocated memory or %NULL on error
3493 */
3494void *vmalloc_node(unsigned long size, int node)
3495{
3496	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3497			__builtin_return_address(0));
3498}
3499EXPORT_SYMBOL(vmalloc_node);
3500
3501/**
3502 * vzalloc_node - allocate memory on a specific node with zero fill
3503 * @size:	allocation size
3504 * @node:	numa node
3505 *
3506 * Allocate enough pages to cover @size from the page level
3507 * allocator and map them into contiguous kernel virtual space.
3508 * The memory allocated is set to zero.
3509 *
 
 
 
3510 * Return: pointer to the allocated memory or %NULL on error
3511 */
3512void *vzalloc_node(unsigned long size, int node)
3513{
3514	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3515				__builtin_return_address(0));
3516}
3517EXPORT_SYMBOL(vzalloc_node);
3518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3520#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3521#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3522#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3523#else
3524/*
3525 * 64b systems should always have either DMA or DMA32 zones. For others
3526 * GFP_DMA32 should do the right thing and use the normal zone.
3527 */
3528#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3529#endif
3530
3531/**
3532 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3533 * @size:	allocation size
3534 *
3535 * Allocate enough 32bit PA addressable pages to cover @size from the
3536 * page level allocator and map them into contiguous kernel virtual space.
3537 *
3538 * Return: pointer to the allocated memory or %NULL on error
3539 */
3540void *vmalloc_32(unsigned long size)
3541{
3542	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3543			__builtin_return_address(0));
3544}
3545EXPORT_SYMBOL(vmalloc_32);
3546
3547/**
3548 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3549 * @size:	     allocation size
3550 *
3551 * The resulting memory area is 32bit addressable and zeroed so it can be
3552 * mapped to userspace without leaking data.
3553 *
3554 * Return: pointer to the allocated memory or %NULL on error
3555 */
3556void *vmalloc_32_user(unsigned long size)
3557{
3558	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3559				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3560				    VM_USERMAP, NUMA_NO_NODE,
3561				    __builtin_return_address(0));
3562}
3563EXPORT_SYMBOL(vmalloc_32_user);
3564
3565/*
3566 * Atomically zero bytes in the iterator.
3567 *
3568 * Returns the number of zeroed bytes.
3569 */
3570static size_t zero_iter(struct iov_iter *iter, size_t count)
3571{
3572	size_t remains = count;
3573
3574	while (remains > 0) {
3575		size_t num, copied;
3576
3577		num = min_t(size_t, remains, PAGE_SIZE);
3578		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3579		remains -= copied;
3580
3581		if (copied < num)
3582			break;
3583	}
3584
3585	return count - remains;
3586}
3587
3588/*
3589 * small helper routine, copy contents to iter from addr.
3590 * If the page is not present, fill zero.
3591 *
3592 * Returns the number of copied bytes.
3593 */
3594static size_t aligned_vread_iter(struct iov_iter *iter,
3595				 const char *addr, size_t count)
3596{
3597	size_t remains = count;
3598	struct page *page;
3599
3600	while (remains > 0) {
3601		unsigned long offset, length;
3602		size_t copied = 0;
3603
3604		offset = offset_in_page(addr);
3605		length = PAGE_SIZE - offset;
3606		if (length > remains)
3607			length = remains;
3608		page = vmalloc_to_page(addr);
3609		/*
3610		 * To do safe access to this _mapped_ area, we need lock. But
3611		 * adding lock here means that we need to add overhead of
3612		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3613		 * used. Instead of that, we'll use an local mapping via
3614		 * copy_page_to_iter_nofault() and accept a small overhead in
3615		 * this access function.
3616		 */
3617		if (page)
3618			copied = copy_page_to_iter_nofault(page, offset,
3619							   length, iter);
3620		else
3621			copied = zero_iter(iter, length);
3622
3623		addr += copied;
3624		remains -= copied;
 
 
3625
3626		if (copied != length)
3627			break;
 
 
3628	}
3629
3630	return count - remains;
3631}
3632
3633/*
3634 * Read from a vm_map_ram region of memory.
3635 *
3636 * Returns the number of copied bytes.
3637 */
3638static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3639				  size_t count, unsigned long flags)
3640{
3641	char *start;
3642	struct vmap_block *vb;
3643	struct xarray *xa;
3644	unsigned long offset;
3645	unsigned int rs, re;
3646	size_t remains, n;
3647
3648	/*
3649	 * If it's area created by vm_map_ram() interface directly, but
3650	 * not further subdividing and delegating management to vmap_block,
3651	 * handle it here.
3652	 */
3653	if (!(flags & VMAP_BLOCK))
3654		return aligned_vread_iter(iter, addr, count);
3655
3656	remains = count;
3657
3658	/*
3659	 * Area is split into regions and tracked with vmap_block, read out
3660	 * each region and zero fill the hole between regions.
3661	 */
3662	xa = addr_to_vb_xa((unsigned long) addr);
3663	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3664	if (!vb)
3665		goto finished_zero;
3666
3667	spin_lock(&vb->lock);
3668	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3669		spin_unlock(&vb->lock);
3670		goto finished_zero;
3671	}
3672
3673	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3674		size_t copied;
3675
3676		if (remains == 0)
3677			goto finished;
3678
3679		start = vmap_block_vaddr(vb->va->va_start, rs);
3680
3681		if (addr < start) {
3682			size_t to_zero = min_t(size_t, start - addr, remains);
3683			size_t zeroed = zero_iter(iter, to_zero);
3684
3685			addr += zeroed;
3686			remains -= zeroed;
3687
3688			if (remains == 0 || zeroed != to_zero)
3689				goto finished;
3690		}
3691
3692		/*it could start reading from the middle of used region*/
3693		offset = offset_in_page(addr);
3694		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3695		if (n > remains)
3696			n = remains;
3697
3698		copied = aligned_vread_iter(iter, start + offset, n);
3699
3700		addr += copied;
3701		remains -= copied;
3702
3703		if (copied != n)
3704			goto finished;
 
 
 
 
 
 
 
 
 
 
 
 
 
3705	}
3706
3707	spin_unlock(&vb->lock);
3708
3709finished_zero:
3710	/* zero-fill the left dirty or free regions */
3711	return count - remains + zero_iter(iter, remains);
3712finished:
3713	/* We couldn't copy/zero everything */
3714	spin_unlock(&vb->lock);
3715	return count - remains;
3716}
3717
3718/**
3719 * vread_iter() - read vmalloc area in a safe way to an iterator.
3720 * @iter:         the iterator to which data should be written.
3721 * @addr:         vm address.
3722 * @count:        number of bytes to be read.
3723 *
3724 * This function checks that addr is a valid vmalloc'ed area, and
3725 * copy data from that area to a given buffer. If the given memory range
3726 * of [addr...addr+count) includes some valid address, data is copied to
3727 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3728 * IOREMAP area is treated as memory hole and no copy is done.
3729 *
3730 * If [addr...addr+count) doesn't includes any intersects with alive
3731 * vm_struct area, returns 0. @buf should be kernel's buffer.
3732 *
3733 * Note: In usual ops, vread() is never necessary because the caller
3734 * should know vmalloc() area is valid and can use memcpy().
3735 * This is for routines which have to access vmalloc area without
3736 * any information, as /proc/kcore.
3737 *
3738 * Return: number of bytes for which addr and buf should be increased
3739 * (same number as @count) or %0 if [addr...addr+count) doesn't
3740 * include any intersection with valid vmalloc area
3741 */
3742long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3743{
3744	struct vmap_area *va;
3745	struct vm_struct *vm;
3746	char *vaddr;
3747	size_t n, size, flags, remains;
3748
3749	addr = kasan_reset_tag(addr);
3750
3751	/* Don't allow overflow */
3752	if ((unsigned long) addr + count < count)
3753		count = -(unsigned long) addr;
3754
3755	remains = count;
3756
3757	spin_lock(&vmap_area_lock);
3758	va = find_vmap_area_exceed_addr((unsigned long)addr);
3759	if (!va)
3760		goto finished_zero;
3761
3762	/* no intersects with alive vmap_area */
3763	if ((unsigned long)addr + remains <= va->va_start)
3764		goto finished_zero;
3765
3766	list_for_each_entry_from(va, &vmap_area_list, list) {
3767		size_t copied;
3768
3769		if (remains == 0)
3770			goto finished;
3771
3772		vm = va->vm;
3773		flags = va->flags & VMAP_FLAGS_MASK;
3774		/*
3775		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3776		 * be set together with VMAP_RAM.
3777		 */
3778		WARN_ON(flags == VMAP_BLOCK);
3779
3780		if (!vm && !flags)
3781			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3782
3783		if (vm && (vm->flags & VM_UNINITIALIZED))
3784			continue;
 
 
 
3785
3786		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3787		smp_rmb();
3788
3789		vaddr = (char *) va->va_start;
3790		size = vm ? get_vm_area_size(vm) : va_size(va);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3791
3792		if (addr >= vaddr + size)
3793			continue;
 
 
3794
3795		if (addr < vaddr) {
3796			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3797			size_t zeroed = zero_iter(iter, to_zero);
 
3798
3799			addr += zeroed;
3800			remains -= zeroed;
3801
3802			if (remains == 0 || zeroed != to_zero)
 
 
 
 
 
3803				goto finished;
3804		}
3805
3806		n = vaddr + size - addr;
3807		if (n > remains)
3808			n = remains;
3809
3810		if (flags & VMAP_RAM)
3811			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3812		else if (!(vm && (vm->flags & VM_IOREMAP)))
3813			copied = aligned_vread_iter(iter, addr, n);
3814		else /* IOREMAP area is treated as memory hole */
3815			copied = zero_iter(iter, n);
3816
3817		addr += copied;
3818		remains -= copied;
3819
3820		if (copied != n)
3821			goto finished;
3822	}
3823
3824finished_zero:
3825	spin_unlock(&vmap_area_lock);
3826	/* zero-fill memory holes */
3827	return count - remains + zero_iter(iter, remains);
3828finished:
3829	/* Nothing remains, or We couldn't copy/zero everything. */
3830	spin_unlock(&vmap_area_lock);
3831
3832	return count - remains;
 
3833}
3834
3835/**
3836 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3837 * @vma:		vma to cover
3838 * @uaddr:		target user address to start at
3839 * @kaddr:		virtual address of vmalloc kernel memory
3840 * @pgoff:		offset from @kaddr to start at
3841 * @size:		size of map area
3842 *
3843 * Returns:	0 for success, -Exxx on failure
3844 *
3845 * This function checks that @kaddr is a valid vmalloc'ed area,
3846 * and that it is big enough to cover the range starting at
3847 * @uaddr in @vma. Will return failure if that criteria isn't
3848 * met.
3849 *
3850 * Similar to remap_pfn_range() (see mm/memory.c)
3851 */
3852int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3853				void *kaddr, unsigned long pgoff,
3854				unsigned long size)
3855{
3856	struct vm_struct *area;
3857	unsigned long off;
3858	unsigned long end_index;
3859
3860	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3861		return -EINVAL;
3862
3863	size = PAGE_ALIGN(size);
3864
3865	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3866		return -EINVAL;
3867
3868	area = find_vm_area(kaddr);
3869	if (!area)
3870		return -EINVAL;
3871
3872	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3873		return -EINVAL;
3874
3875	if (check_add_overflow(size, off, &end_index) ||
3876	    end_index > get_vm_area_size(area))
3877		return -EINVAL;
3878	kaddr += off;
3879
3880	do {
3881		struct page *page = vmalloc_to_page(kaddr);
3882		int ret;
3883
3884		ret = vm_insert_page(vma, uaddr, page);
3885		if (ret)
3886			return ret;
3887
3888		uaddr += PAGE_SIZE;
3889		kaddr += PAGE_SIZE;
3890		size -= PAGE_SIZE;
3891	} while (size > 0);
3892
3893	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3894
3895	return 0;
3896}
 
3897
3898/**
3899 * remap_vmalloc_range - map vmalloc pages to userspace
3900 * @vma:		vma to cover (map full range of vma)
3901 * @addr:		vmalloc memory
3902 * @pgoff:		number of pages into addr before first page to map
3903 *
3904 * Returns:	0 for success, -Exxx on failure
3905 *
3906 * This function checks that addr is a valid vmalloc'ed area, and
3907 * that it is big enough to cover the vma. Will return failure if
3908 * that criteria isn't met.
3909 *
3910 * Similar to remap_pfn_range() (see mm/memory.c)
3911 */
3912int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3913						unsigned long pgoff)
3914{
3915	return remap_vmalloc_range_partial(vma, vma->vm_start,
3916					   addr, pgoff,
3917					   vma->vm_end - vma->vm_start);
3918}
3919EXPORT_SYMBOL(remap_vmalloc_range);
3920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3921void free_vm_area(struct vm_struct *area)
3922{
3923	struct vm_struct *ret;
3924	ret = remove_vm_area(area->addr);
3925	BUG_ON(ret != area);
3926	kfree(area);
3927}
3928EXPORT_SYMBOL_GPL(free_vm_area);
3929
3930#ifdef CONFIG_SMP
3931static struct vmap_area *node_to_va(struct rb_node *n)
3932{
3933	return rb_entry_safe(n, struct vmap_area, rb_node);
3934}
3935
3936/**
3937 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3938 * @addr: target address
3939 *
3940 * Returns: vmap_area if it is found. If there is no such area
3941 *   the first highest(reverse order) vmap_area is returned
3942 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3943 *   if there are no any areas before @addr.
3944 */
3945static struct vmap_area *
3946pvm_find_va_enclose_addr(unsigned long addr)
3947{
3948	struct vmap_area *va, *tmp;
3949	struct rb_node *n;
3950
3951	n = free_vmap_area_root.rb_node;
3952	va = NULL;
3953
3954	while (n) {
3955		tmp = rb_entry(n, struct vmap_area, rb_node);
3956		if (tmp->va_start <= addr) {
3957			va = tmp;
3958			if (tmp->va_end >= addr)
3959				break;
3960
3961			n = n->rb_right;
3962		} else {
3963			n = n->rb_left;
3964		}
3965	}
3966
3967	return va;
3968}
3969
3970/**
3971 * pvm_determine_end_from_reverse - find the highest aligned address
3972 * of free block below VMALLOC_END
3973 * @va:
3974 *   in - the VA we start the search(reverse order);
3975 *   out - the VA with the highest aligned end address.
3976 * @align: alignment for required highest address
3977 *
3978 * Returns: determined end address within vmap_area
3979 */
3980static unsigned long
3981pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3982{
3983	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3984	unsigned long addr;
3985
3986	if (likely(*va)) {
3987		list_for_each_entry_from_reverse((*va),
3988				&free_vmap_area_list, list) {
3989			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3990			if ((*va)->va_start < addr)
3991				return addr;
3992		}
3993	}
3994
3995	return 0;
3996}
3997
3998/**
3999 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4000 * @offsets: array containing offset of each area
4001 * @sizes: array containing size of each area
4002 * @nr_vms: the number of areas to allocate
4003 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4004 *
4005 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4006 *	    vm_structs on success, %NULL on failure
4007 *
4008 * Percpu allocator wants to use congruent vm areas so that it can
4009 * maintain the offsets among percpu areas.  This function allocates
4010 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4011 * be scattered pretty far, distance between two areas easily going up
4012 * to gigabytes.  To avoid interacting with regular vmallocs, these
4013 * areas are allocated from top.
4014 *
4015 * Despite its complicated look, this allocator is rather simple. It
4016 * does everything top-down and scans free blocks from the end looking
4017 * for matching base. While scanning, if any of the areas do not fit the
4018 * base address is pulled down to fit the area. Scanning is repeated till
4019 * all the areas fit and then all necessary data structures are inserted
4020 * and the result is returned.
4021 */
4022struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4023				     const size_t *sizes, int nr_vms,
4024				     size_t align)
4025{
4026	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4027	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4028	struct vmap_area **vas, *va;
4029	struct vm_struct **vms;
4030	int area, area2, last_area, term_area;
4031	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4032	bool purged = false;
 
4033
4034	/* verify parameters and allocate data structures */
4035	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4036	for (last_area = 0, area = 0; area < nr_vms; area++) {
4037		start = offsets[area];
4038		end = start + sizes[area];
4039
4040		/* is everything aligned properly? */
4041		BUG_ON(!IS_ALIGNED(offsets[area], align));
4042		BUG_ON(!IS_ALIGNED(sizes[area], align));
4043
4044		/* detect the area with the highest address */
4045		if (start > offsets[last_area])
4046			last_area = area;
4047
4048		for (area2 = area + 1; area2 < nr_vms; area2++) {
4049			unsigned long start2 = offsets[area2];
4050			unsigned long end2 = start2 + sizes[area2];
4051
4052			BUG_ON(start2 < end && start < end2);
4053		}
4054	}
4055	last_end = offsets[last_area] + sizes[last_area];
4056
4057	if (vmalloc_end - vmalloc_start < last_end) {
4058		WARN_ON(true);
4059		return NULL;
4060	}
4061
4062	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4063	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4064	if (!vas || !vms)
4065		goto err_free2;
4066
4067	for (area = 0; area < nr_vms; area++) {
4068		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4069		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4070		if (!vas[area] || !vms[area])
4071			goto err_free;
4072	}
4073retry:
4074	spin_lock(&free_vmap_area_lock);
4075
4076	/* start scanning - we scan from the top, begin with the last area */
4077	area = term_area = last_area;
4078	start = offsets[area];
4079	end = start + sizes[area];
4080
4081	va = pvm_find_va_enclose_addr(vmalloc_end);
4082	base = pvm_determine_end_from_reverse(&va, align) - end;
4083
4084	while (true) {
4085		/*
4086		 * base might have underflowed, add last_end before
4087		 * comparing.
4088		 */
4089		if (base + last_end < vmalloc_start + last_end)
4090			goto overflow;
4091
4092		/*
4093		 * Fitting base has not been found.
4094		 */
4095		if (va == NULL)
4096			goto overflow;
4097
4098		/*
4099		 * If required width exceeds current VA block, move
4100		 * base downwards and then recheck.
4101		 */
4102		if (base + end > va->va_end) {
4103			base = pvm_determine_end_from_reverse(&va, align) - end;
4104			term_area = area;
4105			continue;
4106		}
4107
4108		/*
4109		 * If this VA does not fit, move base downwards and recheck.
4110		 */
4111		if (base + start < va->va_start) {
4112			va = node_to_va(rb_prev(&va->rb_node));
4113			base = pvm_determine_end_from_reverse(&va, align) - end;
4114			term_area = area;
4115			continue;
4116		}
4117
4118		/*
4119		 * This area fits, move on to the previous one.  If
4120		 * the previous one is the terminal one, we're done.
4121		 */
4122		area = (area + nr_vms - 1) % nr_vms;
4123		if (area == term_area)
4124			break;
4125
4126		start = offsets[area];
4127		end = start + sizes[area];
4128		va = pvm_find_va_enclose_addr(base + end);
4129	}
4130
4131	/* we've found a fitting base, insert all va's */
4132	for (area = 0; area < nr_vms; area++) {
4133		int ret;
4134
4135		start = base + offsets[area];
4136		size = sizes[area];
4137
4138		va = pvm_find_va_enclose_addr(start);
4139		if (WARN_ON_ONCE(va == NULL))
4140			/* It is a BUG(), but trigger recovery instead. */
4141			goto recovery;
4142
4143		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4144					    &free_vmap_area_list,
4145					    va, start, size);
4146		if (WARN_ON_ONCE(unlikely(ret)))
4147			/* It is a BUG(), but trigger recovery instead. */
4148			goto recovery;
4149
 
 
 
 
4150		/* Allocated area. */
4151		va = vas[area];
4152		va->va_start = start;
4153		va->va_end = start + size;
4154	}
4155
4156	spin_unlock(&free_vmap_area_lock);
4157
4158	/* populate the kasan shadow space */
4159	for (area = 0; area < nr_vms; area++) {
4160		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4161			goto err_free_shadow;
4162	}
4163
4164	/* insert all vm's */
4165	spin_lock(&vmap_area_lock);
4166	for (area = 0; area < nr_vms; area++) {
4167		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4168
4169		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4170				 pcpu_get_vm_areas);
4171	}
4172	spin_unlock(&vmap_area_lock);
4173
4174	/*
4175	 * Mark allocated areas as accessible. Do it now as a best-effort
4176	 * approach, as they can be mapped outside of vmalloc code.
4177	 * With hardware tag-based KASAN, marking is skipped for
4178	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4179	 */
4180	for (area = 0; area < nr_vms; area++)
4181		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4182				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4183
4184	kfree(vas);
4185	return vms;
4186
4187recovery:
4188	/*
4189	 * Remove previously allocated areas. There is no
4190	 * need in removing these areas from the busy tree,
4191	 * because they are inserted only on the final step
4192	 * and when pcpu_get_vm_areas() is success.
4193	 */
4194	while (area--) {
4195		orig_start = vas[area]->va_start;
4196		orig_end = vas[area]->va_end;
4197		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4198				&free_vmap_area_list);
4199		if (va)
4200			kasan_release_vmalloc(orig_start, orig_end,
4201				va->va_start, va->va_end);
4202		vas[area] = NULL;
4203	}
4204
4205overflow:
4206	spin_unlock(&free_vmap_area_lock);
4207	if (!purged) {
4208		reclaim_and_purge_vmap_areas();
4209		purged = true;
4210
4211		/* Before "retry", check if we recover. */
4212		for (area = 0; area < nr_vms; area++) {
4213			if (vas[area])
4214				continue;
4215
4216			vas[area] = kmem_cache_zalloc(
4217				vmap_area_cachep, GFP_KERNEL);
4218			if (!vas[area])
4219				goto err_free;
4220		}
4221
4222		goto retry;
4223	}
4224
4225err_free:
4226	for (area = 0; area < nr_vms; area++) {
4227		if (vas[area])
4228			kmem_cache_free(vmap_area_cachep, vas[area]);
4229
4230		kfree(vms[area]);
4231	}
4232err_free2:
4233	kfree(vas);
4234	kfree(vms);
4235	return NULL;
4236
4237err_free_shadow:
4238	spin_lock(&free_vmap_area_lock);
4239	/*
4240	 * We release all the vmalloc shadows, even the ones for regions that
4241	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4242	 * being able to tolerate this case.
4243	 */
4244	for (area = 0; area < nr_vms; area++) {
4245		orig_start = vas[area]->va_start;
4246		orig_end = vas[area]->va_end;
4247		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4248				&free_vmap_area_list);
4249		if (va)
4250			kasan_release_vmalloc(orig_start, orig_end,
4251				va->va_start, va->va_end);
4252		vas[area] = NULL;
4253		kfree(vms[area]);
4254	}
4255	spin_unlock(&free_vmap_area_lock);
4256	kfree(vas);
4257	kfree(vms);
4258	return NULL;
4259}
4260
4261/**
4262 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4263 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4264 * @nr_vms: the number of allocated areas
4265 *
4266 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4267 */
4268void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4269{
4270	int i;
4271
4272	for (i = 0; i < nr_vms; i++)
4273		free_vm_area(vms[i]);
4274	kfree(vms);
4275}
4276#endif	/* CONFIG_SMP */
4277
4278#ifdef CONFIG_PRINTK
4279bool vmalloc_dump_obj(void *object)
4280{
4281	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4282	const void *caller;
4283	struct vm_struct *vm;
4284	struct vmap_area *va;
4285	unsigned long addr;
4286	unsigned int nr_pages;
4287
4288	if (!spin_trylock(&vmap_area_lock))
4289		return false;
4290	va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
4291	if (!va) {
4292		spin_unlock(&vmap_area_lock);
4293		return false;
4294	}
4295
4296	vm = va->vm;
4297	if (!vm) {
4298		spin_unlock(&vmap_area_lock);
4299		return false;
4300	}
4301	addr = (unsigned long)vm->addr;
4302	caller = vm->caller;
4303	nr_pages = vm->nr_pages;
4304	spin_unlock(&vmap_area_lock);
4305	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4306		nr_pages, addr, caller);
4307	return true;
4308}
4309#endif
4310
4311#ifdef CONFIG_PROC_FS
4312static void *s_start(struct seq_file *m, loff_t *pos)
4313	__acquires(&vmap_purge_lock)
4314	__acquires(&vmap_area_lock)
4315{
4316	mutex_lock(&vmap_purge_lock);
4317	spin_lock(&vmap_area_lock);
4318
4319	return seq_list_start(&vmap_area_list, *pos);
4320}
4321
4322static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4323{
4324	return seq_list_next(p, &vmap_area_list, pos);
4325}
4326
4327static void s_stop(struct seq_file *m, void *p)
4328	__releases(&vmap_area_lock)
4329	__releases(&vmap_purge_lock)
4330{
4331	spin_unlock(&vmap_area_lock);
4332	mutex_unlock(&vmap_purge_lock);
4333}
4334
4335static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4336{
4337	if (IS_ENABLED(CONFIG_NUMA)) {
4338		unsigned int nr, *counters = m->private;
4339		unsigned int step = 1U << vm_area_page_order(v);
4340
4341		if (!counters)
4342			return;
4343
4344		if (v->flags & VM_UNINITIALIZED)
4345			return;
4346		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4347		smp_rmb();
4348
4349		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4350
4351		for (nr = 0; nr < v->nr_pages; nr += step)
4352			counters[page_to_nid(v->pages[nr])] += step;
 
4353		for_each_node_state(nr, N_HIGH_MEMORY)
4354			if (counters[nr])
4355				seq_printf(m, " N%u=%u", nr, counters[nr]);
4356	}
4357}
4358
4359static void show_purge_info(struct seq_file *m)
4360{
 
4361	struct vmap_area *va;
4362
4363	spin_lock(&purge_vmap_area_lock);
4364	list_for_each_entry(va, &purge_vmap_area_list, list) {
 
 
 
4365		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4366			(void *)va->va_start, (void *)va->va_end,
4367			va->va_end - va->va_start);
4368	}
4369	spin_unlock(&purge_vmap_area_lock);
4370}
4371
4372static int s_show(struct seq_file *m, void *p)
4373{
4374	struct vmap_area *va;
4375	struct vm_struct *v;
4376
4377	va = list_entry(p, struct vmap_area, list);
4378
 
 
 
 
4379	if (!va->vm) {
4380		if (va->flags & VMAP_RAM)
4381			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4382				(void *)va->va_start, (void *)va->va_end,
4383				va->va_end - va->va_start);
4384
4385		goto final;
4386	}
4387
4388	v = va->vm;
4389
4390	seq_printf(m, "0x%pK-0x%pK %7ld",
4391		v->addr, v->addr + v->size, v->size);
4392
4393	if (v->caller)
4394		seq_printf(m, " %pS", v->caller);
4395
4396	if (v->nr_pages)
4397		seq_printf(m, " pages=%d", v->nr_pages);
4398
4399	if (v->phys_addr)
4400		seq_printf(m, " phys=%pa", &v->phys_addr);
4401
4402	if (v->flags & VM_IOREMAP)
4403		seq_puts(m, " ioremap");
4404
4405	if (v->flags & VM_ALLOC)
4406		seq_puts(m, " vmalloc");
4407
4408	if (v->flags & VM_MAP)
4409		seq_puts(m, " vmap");
4410
4411	if (v->flags & VM_USERMAP)
4412		seq_puts(m, " user");
4413
4414	if (v->flags & VM_DMA_COHERENT)
4415		seq_puts(m, " dma-coherent");
4416
4417	if (is_vmalloc_addr(v->pages))
4418		seq_puts(m, " vpages");
4419
4420	show_numa_info(m, v);
4421	seq_putc(m, '\n');
4422
4423	/*
4424	 * As a final step, dump "unpurged" areas.
 
 
 
4425	 */
4426final:
4427	if (list_is_last(&va->list, &vmap_area_list))
4428		show_purge_info(m);
4429
4430	return 0;
4431}
4432
4433static const struct seq_operations vmalloc_op = {
4434	.start = s_start,
4435	.next = s_next,
4436	.stop = s_stop,
4437	.show = s_show,
4438};
4439
4440static int __init proc_vmalloc_init(void)
4441{
4442	if (IS_ENABLED(CONFIG_NUMA))
4443		proc_create_seq_private("vmallocinfo", 0400, NULL,
4444				&vmalloc_op,
4445				nr_node_ids * sizeof(unsigned int), NULL);
4446	else
4447		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4448	return 0;
4449}
4450module_init(proc_vmalloc_init);
4451
4452#endif
4453
4454void __init vmalloc_init(void)
4455{
4456	struct vmap_area *va;
4457	struct vm_struct *tmp;
4458	int i;
4459
4460	/*
4461	 * Create the cache for vmap_area objects.
4462	 */
4463	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4464
4465	for_each_possible_cpu(i) {
4466		struct vmap_block_queue *vbq;
4467		struct vfree_deferred *p;
4468
4469		vbq = &per_cpu(vmap_block_queue, i);
4470		spin_lock_init(&vbq->lock);
4471		INIT_LIST_HEAD(&vbq->free);
4472		p = &per_cpu(vfree_deferred, i);
4473		init_llist_head(&p->list);
4474		INIT_WORK(&p->wq, delayed_vfree_work);
4475		xa_init(&vbq->vmap_blocks);
4476	}
4477
4478	/* Import existing vmlist entries. */
4479	for (tmp = vmlist; tmp; tmp = tmp->next) {
4480		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4481		if (WARN_ON_ONCE(!va))
4482			continue;
4483
4484		va->va_start = (unsigned long)tmp->addr;
4485		va->va_end = va->va_start + tmp->size;
4486		va->vm = tmp;
4487		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4488	}
4489
4490	/*
4491	 * Now we can initialize a free vmap space.
4492	 */
4493	vmap_init_free_space();
4494	vmap_initialized = true;
4495}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
 
  10 */
  11
  12#include <linux/vmalloc.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/sched/signal.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/set_memory.h>
  23#include <linux/debugobjects.h>
  24#include <linux/kallsyms.h>
  25#include <linux/list.h>
  26#include <linux/notifier.h>
  27#include <linux/rbtree.h>
  28#include <linux/radix-tree.h>
 
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
 
  34#include <linux/llist.h>
 
  35#include <linux/bitops.h>
  36#include <linux/rbtree_augmented.h>
  37
  38#include <linux/uaccess.h>
 
 
  39#include <asm/tlbflush.h>
  40#include <asm/shmparam.h>
  41
 
 
 
  42#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43
  44struct vfree_deferred {
  45	struct llist_head list;
  46	struct work_struct wq;
  47};
  48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  49
  50static void __vunmap(const void *, int);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52static void free_work(struct work_struct *w)
 
 
  53{
  54	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  55	struct llist_node *t, *llnode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  58		__vunmap((void *)llnode, 1);
  59}
  60
  61/*** Page table manipulation functions ***/
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 
  64{
  65	pte_t *pte;
  66
  67	pte = pte_offset_kernel(pmd, addr);
  68	do {
  69		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  70		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  71	} while (pte++, addr += PAGE_SIZE, addr != end);
 
  72}
  73
  74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 
  75{
  76	pmd_t *pmd;
  77	unsigned long next;
 
  78
  79	pmd = pmd_offset(pud, addr);
  80	do {
  81		next = pmd_addr_end(addr, end);
  82		if (pmd_clear_huge(pmd))
 
 
 
 
 
  83			continue;
  84		if (pmd_none_or_clear_bad(pmd))
  85			continue;
  86		vunmap_pte_range(pmd, addr, next);
 
 
  87	} while (pmd++, addr = next, addr != end);
  88}
  89
  90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
 
  91{
  92	pud_t *pud;
  93	unsigned long next;
 
  94
  95	pud = pud_offset(p4d, addr);
  96	do {
  97		next = pud_addr_end(addr, end);
  98		if (pud_clear_huge(pud))
 
 
 
 
 
  99			continue;
 100		if (pud_none_or_clear_bad(pud))
 101			continue;
 102		vunmap_pmd_range(pud, addr, next);
 103	} while (pud++, addr = next, addr != end);
 104}
 105
 106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 
 107{
 108	p4d_t *p4d;
 109	unsigned long next;
 110
 111	p4d = p4d_offset(pgd, addr);
 112	do {
 113		next = p4d_addr_end(addr, end);
 114		if (p4d_clear_huge(p4d))
 115			continue;
 
 
 
 116		if (p4d_none_or_clear_bad(p4d))
 117			continue;
 118		vunmap_pud_range(p4d, addr, next);
 119	} while (p4d++, addr = next, addr != end);
 120}
 121
 122static void vunmap_page_range(unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 123{
 
 124	pgd_t *pgd;
 125	unsigned long next;
 
 126
 127	BUG_ON(addr >= end);
 128	pgd = pgd_offset_k(addr);
 129	do {
 130		next = pgd_addr_end(addr, end);
 
 
 131		if (pgd_none_or_clear_bad(pgd))
 132			continue;
 133		vunmap_p4d_range(pgd, addr, next);
 134	} while (pgd++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135}
 136
 137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 138		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 139{
 140	pte_t *pte;
 141
 142	/*
 143	 * nr is a running index into the array which helps higher level
 144	 * callers keep track of where we're up to.
 145	 */
 146
 147	pte = pte_alloc_kernel(pmd, addr);
 148	if (!pte)
 149		return -ENOMEM;
 150	do {
 151		struct page *page = pages[*nr];
 152
 153		if (WARN_ON(!pte_none(*pte)))
 154			return -EBUSY;
 155		if (WARN_ON(!page))
 156			return -ENOMEM;
 
 
 
 157		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 158		(*nr)++;
 159	} while (pte++, addr += PAGE_SIZE, addr != end);
 
 160	return 0;
 161}
 162
 163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 164		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 165{
 166	pmd_t *pmd;
 167	unsigned long next;
 168
 169	pmd = pmd_alloc(&init_mm, pud, addr);
 170	if (!pmd)
 171		return -ENOMEM;
 172	do {
 173		next = pmd_addr_end(addr, end);
 174		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 175			return -ENOMEM;
 176	} while (pmd++, addr = next, addr != end);
 177	return 0;
 178}
 179
 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 181		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 182{
 183	pud_t *pud;
 184	unsigned long next;
 185
 186	pud = pud_alloc(&init_mm, p4d, addr);
 187	if (!pud)
 188		return -ENOMEM;
 189	do {
 190		next = pud_addr_end(addr, end);
 191		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 192			return -ENOMEM;
 193	} while (pud++, addr = next, addr != end);
 194	return 0;
 195}
 196
 197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 198		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 199{
 200	p4d_t *p4d;
 201	unsigned long next;
 202
 203	p4d = p4d_alloc(&init_mm, pgd, addr);
 204	if (!p4d)
 205		return -ENOMEM;
 206	do {
 207		next = p4d_addr_end(addr, end);
 208		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 209			return -ENOMEM;
 210	} while (p4d++, addr = next, addr != end);
 211	return 0;
 212}
 213
 214/*
 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 216 * will have pfns corresponding to the "pages" array.
 217 *
 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 219 */
 220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 221				   pgprot_t prot, struct page **pages)
 222{
 
 223	pgd_t *pgd;
 224	unsigned long next;
 225	unsigned long addr = start;
 226	int err = 0;
 227	int nr = 0;
 
 228
 229	BUG_ON(addr >= end);
 230	pgd = pgd_offset_k(addr);
 231	do {
 232		next = pgd_addr_end(addr, end);
 233		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 
 
 234		if (err)
 235			return err;
 236	} while (pgd++, addr = next, addr != end);
 237
 238	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239}
 240
 241static int vmap_page_range(unsigned long start, unsigned long end,
 242			   pgprot_t prot, struct page **pages)
 
 
 
 
 
 
 
 
 
 
 
 
 243{
 244	int ret;
 245
 246	ret = vmap_page_range_noflush(start, end, prot, pages);
 247	flush_cache_vmap(start, end);
 248	return ret;
 249}
 250
 251int is_vmalloc_or_module_addr(const void *x)
 252{
 253	/*
 254	 * ARM, x86-64 and sparc64 put modules in a special place,
 255	 * and fall back on vmalloc() if that fails. Others
 256	 * just put it in the vmalloc space.
 257	 */
 258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 259	unsigned long addr = (unsigned long)x;
 260	if (addr >= MODULES_VADDR && addr < MODULES_END)
 261		return 1;
 262#endif
 263	return is_vmalloc_addr(x);
 264}
 
 265
 266/*
 267 * Walk a vmap address to the struct page it maps.
 
 
 268 */
 269struct page *vmalloc_to_page(const void *vmalloc_addr)
 270{
 271	unsigned long addr = (unsigned long) vmalloc_addr;
 272	struct page *page = NULL;
 273	pgd_t *pgd = pgd_offset_k(addr);
 274	p4d_t *p4d;
 275	pud_t *pud;
 276	pmd_t *pmd;
 277	pte_t *ptep, pte;
 278
 279	/*
 280	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 281	 * architectures that do not vmalloc module space
 282	 */
 283	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 284
 285	if (pgd_none(*pgd))
 286		return NULL;
 
 
 
 
 
 287	p4d = p4d_offset(pgd, addr);
 288	if (p4d_none(*p4d))
 289		return NULL;
 
 
 
 
 
 290	pud = pud_offset(p4d, addr);
 
 
 
 
 
 
 291
 292	/*
 293	 * Don't dereference bad PUD or PMD (below) entries. This will also
 294	 * identify huge mappings, which we may encounter on architectures
 295	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 296	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 297	 * not [unambiguously] associated with a struct page, so there is
 298	 * no correct value to return for them.
 299	 */
 300	WARN_ON_ONCE(pud_bad(*pud));
 301	if (pud_none(*pud) || pud_bad(*pud))
 302		return NULL;
 303	pmd = pmd_offset(pud, addr);
 304	WARN_ON_ONCE(pmd_bad(*pmd));
 305	if (pmd_none(*pmd) || pmd_bad(*pmd))
 306		return NULL;
 307
 308	ptep = pte_offset_map(pmd, addr);
 309	pte = *ptep;
 310	if (pte_present(pte))
 311		page = pte_page(pte);
 312	pte_unmap(ptep);
 313	return page;
 314}
 315EXPORT_SYMBOL(vmalloc_to_page);
 316
 317/*
 318 * Map a vmalloc()-space virtual address to the physical page frame number.
 319 */
 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 321{
 322	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 323}
 324EXPORT_SYMBOL(vmalloc_to_pfn);
 325
 326
 327/*** Global kva allocator ***/
 328
 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 331
 332
 333static DEFINE_SPINLOCK(vmap_area_lock);
 
 334/* Export for kexec only */
 335LIST_HEAD(vmap_area_list);
 336static LLIST_HEAD(vmap_purge_list);
 337static struct rb_root vmap_area_root = RB_ROOT;
 338static bool vmap_initialized __read_mostly;
 339
 
 
 
 
 340/*
 341 * This kmem_cache is used for vmap_area objects. Instead of
 342 * allocating from slab we reuse an object from this cache to
 343 * make things faster. Especially in "no edge" splitting of
 344 * free block.
 345 */
 346static struct kmem_cache *vmap_area_cachep;
 347
 348/*
 349 * This linked list is used in pair with free_vmap_area_root.
 350 * It gives O(1) access to prev/next to perform fast coalescing.
 351 */
 352static LIST_HEAD(free_vmap_area_list);
 353
 354/*
 355 * This augment red-black tree represents the free vmap space.
 356 * All vmap_area objects in this tree are sorted by va->va_start
 357 * address. It is used for allocation and merging when a vmap
 358 * object is released.
 359 *
 360 * Each vmap_area node contains a maximum available free block
 361 * of its sub-tree, right or left. Therefore it is possible to
 362 * find a lowest match of free area.
 363 */
 364static struct rb_root free_vmap_area_root = RB_ROOT;
 365
 366/*
 367 * Preload a CPU with one object for "no edge" split case. The
 368 * aim is to get rid of allocations from the atomic context, thus
 369 * to use more permissive allocation masks.
 370 */
 371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 372
 373static __always_inline unsigned long
 374va_size(struct vmap_area *va)
 375{
 376	return (va->va_end - va->va_start);
 377}
 378
 379static __always_inline unsigned long
 380get_subtree_max_size(struct rb_node *node)
 381{
 382	struct vmap_area *va;
 383
 384	va = rb_entry_safe(node, struct vmap_area, rb_node);
 385	return va ? va->subtree_max_size : 0;
 386}
 387
 388/*
 389 * Gets called when remove the node and rotate.
 390 */
 391static __always_inline unsigned long
 392compute_subtree_max_size(struct vmap_area *va)
 393{
 394	return max3(va_size(va),
 395		get_subtree_max_size(va->rb_node.rb_left),
 396		get_subtree_max_size(va->rb_node.rb_right));
 397}
 398
 399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 400	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 401
 402static void purge_vmap_area_lazy(void);
 403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 404static unsigned long lazy_max_pages(void);
 
 405
 406static atomic_long_t nr_vmalloc_pages;
 407
 408unsigned long vmalloc_nr_pages(void)
 409{
 410	return atomic_long_read(&nr_vmalloc_pages);
 411}
 412
 413static struct vmap_area *__find_vmap_area(unsigned long addr)
 
 414{
 
 415	struct rb_node *n = vmap_area_root.rb_node;
 416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417	while (n) {
 418		struct vmap_area *va;
 419
 420		va = rb_entry(n, struct vmap_area, rb_node);
 421		if (addr < va->va_start)
 422			n = n->rb_left;
 423		else if (addr >= va->va_end)
 424			n = n->rb_right;
 425		else
 426			return va;
 427	}
 428
 429	return NULL;
 430}
 431
 432/*
 433 * This function returns back addresses of parent node
 434 * and its left or right link for further processing.
 
 
 
 
 435 */
 436static __always_inline struct rb_node **
 437find_va_links(struct vmap_area *va,
 438	struct rb_root *root, struct rb_node *from,
 439	struct rb_node **parent)
 440{
 441	struct vmap_area *tmp_va;
 442	struct rb_node **link;
 443
 444	if (root) {
 445		link = &root->rb_node;
 446		if (unlikely(!*link)) {
 447			*parent = NULL;
 448			return link;
 449		}
 450	} else {
 451		link = &from;
 452	}
 453
 454	/*
 455	 * Go to the bottom of the tree. When we hit the last point
 456	 * we end up with parent rb_node and correct direction, i name
 457	 * it link, where the new va->rb_node will be attached to.
 458	 */
 459	do {
 460		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 461
 462		/*
 463		 * During the traversal we also do some sanity check.
 464		 * Trigger the BUG() if there are sides(left/right)
 465		 * or full overlaps.
 466		 */
 467		if (va->va_start < tmp_va->va_end &&
 468				va->va_end <= tmp_va->va_start)
 469			link = &(*link)->rb_left;
 470		else if (va->va_end > tmp_va->va_start &&
 471				va->va_start >= tmp_va->va_end)
 472			link = &(*link)->rb_right;
 473		else
 474			BUG();
 
 
 
 
 475	} while (*link);
 476
 477	*parent = &tmp_va->rb_node;
 478	return link;
 479}
 480
 481static __always_inline struct list_head *
 482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 483{
 484	struct list_head *list;
 485
 486	if (unlikely(!parent))
 487		/*
 488		 * The red-black tree where we try to find VA neighbors
 489		 * before merging or inserting is empty, i.e. it means
 490		 * there is no free vmap space. Normally it does not
 491		 * happen but we handle this case anyway.
 492		 */
 493		return NULL;
 494
 495	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 496	return (&parent->rb_right == link ? list->next : list);
 497}
 498
 499static __always_inline void
 500link_va(struct vmap_area *va, struct rb_root *root,
 501	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 
 502{
 503	/*
 504	 * VA is still not in the list, but we can
 505	 * identify its future previous list_head node.
 506	 */
 507	if (likely(parent)) {
 508		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 509		if (&parent->rb_right != link)
 510			head = head->prev;
 511	}
 512
 513	/* Insert to the rb-tree */
 514	rb_link_node(&va->rb_node, parent, link);
 515	if (root == &free_vmap_area_root) {
 516		/*
 517		 * Some explanation here. Just perform simple insertion
 518		 * to the tree. We do not set va->subtree_max_size to
 519		 * its current size before calling rb_insert_augmented().
 520		 * It is because of we populate the tree from the bottom
 521		 * to parent levels when the node _is_ in the tree.
 522		 *
 523		 * Therefore we set subtree_max_size to zero after insertion,
 524		 * to let __augment_tree_propagate_from() puts everything to
 525		 * the correct order later on.
 526		 */
 527		rb_insert_augmented(&va->rb_node,
 528			root, &free_vmap_area_rb_augment_cb);
 529		va->subtree_max_size = 0;
 530	} else {
 531		rb_insert_color(&va->rb_node, root);
 532	}
 533
 534	/* Address-sort this list */
 535	list_add(&va->list, head);
 536}
 537
 538static __always_inline void
 539unlink_va(struct vmap_area *va, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540{
 541	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 542		return;
 543
 544	if (root == &free_vmap_area_root)
 545		rb_erase_augmented(&va->rb_node,
 546			root, &free_vmap_area_rb_augment_cb);
 547	else
 548		rb_erase(&va->rb_node, root);
 549
 550	list_del(&va->list);
 551	RB_CLEAR_NODE(&va->rb_node);
 552}
 553
 
 
 
 
 
 
 
 
 
 
 
 
 554#if DEBUG_AUGMENT_PROPAGATE_CHECK
 
 
 
 
 
 
 
 
 
 
 
 555static void
 556augment_tree_propagate_check(struct rb_node *n)
 557{
 558	struct vmap_area *va;
 559	struct rb_node *node;
 560	unsigned long size;
 561	bool found = false;
 562
 563	if (n == NULL)
 564		return;
 565
 566	va = rb_entry(n, struct vmap_area, rb_node);
 567	size = va->subtree_max_size;
 568	node = n;
 569
 570	while (node) {
 571		va = rb_entry(node, struct vmap_area, rb_node);
 572
 573		if (get_subtree_max_size(node->rb_left) == size) {
 574			node = node->rb_left;
 575		} else {
 576			if (va_size(va) == size) {
 577				found = true;
 578				break;
 579			}
 580
 581			node = node->rb_right;
 582		}
 583	}
 584
 585	if (!found) {
 586		va = rb_entry(n, struct vmap_area, rb_node);
 587		pr_emerg("tree is corrupted: %lu, %lu\n",
 588			va_size(va), va->subtree_max_size);
 589	}
 590
 591	augment_tree_propagate_check(n->rb_left);
 592	augment_tree_propagate_check(n->rb_right);
 593}
 594#endif
 595
 596/*
 597 * This function populates subtree_max_size from bottom to upper
 598 * levels starting from VA point. The propagation must be done
 599 * when VA size is modified by changing its va_start/va_end. Or
 600 * in case of newly inserting of VA to the tree.
 601 *
 602 * It means that __augment_tree_propagate_from() must be called:
 603 * - After VA has been inserted to the tree(free path);
 604 * - After VA has been shrunk(allocation path);
 605 * - After VA has been increased(merging path).
 606 *
 607 * Please note that, it does not mean that upper parent nodes
 608 * and their subtree_max_size are recalculated all the time up
 609 * to the root node.
 610 *
 611 *       4--8
 612 *        /\
 613 *       /  \
 614 *      /    \
 615 *    2--2  8--8
 616 *
 617 * For example if we modify the node 4, shrinking it to 2, then
 618 * no any modification is required. If we shrink the node 2 to 1
 619 * its subtree_max_size is updated only, and set to 1. If we shrink
 620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 621 * node becomes 4--6.
 622 */
 623static __always_inline void
 624augment_tree_propagate_from(struct vmap_area *va)
 625{
 626	struct rb_node *node = &va->rb_node;
 627	unsigned long new_va_sub_max_size;
 628
 629	while (node) {
 630		va = rb_entry(node, struct vmap_area, rb_node);
 631		new_va_sub_max_size = compute_subtree_max_size(va);
 632
 633		/*
 634		 * If the newly calculated maximum available size of the
 635		 * subtree is equal to the current one, then it means that
 636		 * the tree is propagated correctly. So we have to stop at
 637		 * this point to save cycles.
 638		 */
 639		if (va->subtree_max_size == new_va_sub_max_size)
 640			break;
 641
 642		va->subtree_max_size = new_va_sub_max_size;
 643		node = rb_parent(&va->rb_node);
 644	}
 645
 646#if DEBUG_AUGMENT_PROPAGATE_CHECK
 647	augment_tree_propagate_check(free_vmap_area_root.rb_node);
 648#endif
 649}
 650
 651static void
 652insert_vmap_area(struct vmap_area *va,
 653	struct rb_root *root, struct list_head *head)
 654{
 655	struct rb_node **link;
 656	struct rb_node *parent;
 657
 658	link = find_va_links(va, root, NULL, &parent);
 659	link_va(va, root, parent, link, head);
 
 660}
 661
 662static void
 663insert_vmap_area_augment(struct vmap_area *va,
 664	struct rb_node *from, struct rb_root *root,
 665	struct list_head *head)
 666{
 667	struct rb_node **link;
 668	struct rb_node *parent;
 669
 670	if (from)
 671		link = find_va_links(va, NULL, from, &parent);
 672	else
 673		link = find_va_links(va, root, NULL, &parent);
 674
 675	link_va(va, root, parent, link, head);
 676	augment_tree_propagate_from(va);
 
 
 677}
 678
 679/*
 680 * Merge de-allocated chunk of VA memory with previous
 681 * and next free blocks. If coalesce is not done a new
 682 * free area is inserted. If VA has been merged, it is
 683 * freed.
 
 
 
 
 
 684 */
 685static __always_inline void
 686merge_or_add_vmap_area(struct vmap_area *va,
 687	struct rb_root *root, struct list_head *head)
 688{
 689	struct vmap_area *sibling;
 690	struct list_head *next;
 691	struct rb_node **link;
 692	struct rb_node *parent;
 693	bool merged = false;
 694
 695	/*
 696	 * Find a place in the tree where VA potentially will be
 697	 * inserted, unless it is merged with its sibling/siblings.
 698	 */
 699	link = find_va_links(va, root, NULL, &parent);
 
 
 700
 701	/*
 702	 * Get next node of VA to check if merging can be done.
 703	 */
 704	next = get_va_next_sibling(parent, link);
 705	if (unlikely(next == NULL))
 706		goto insert;
 707
 708	/*
 709	 * start            end
 710	 * |                |
 711	 * |<------VA------>|<-----Next----->|
 712	 *                  |                |
 713	 *                  start            end
 714	 */
 715	if (next != head) {
 716		sibling = list_entry(next, struct vmap_area, list);
 717		if (sibling->va_start == va->va_end) {
 718			sibling->va_start = va->va_start;
 719
 720			/* Check and update the tree if needed. */
 721			augment_tree_propagate_from(sibling);
 722
 723			/* Free vmap_area object. */
 724			kmem_cache_free(vmap_area_cachep, va);
 725
 726			/* Point to the new merged area. */
 727			va = sibling;
 728			merged = true;
 729		}
 730	}
 731
 732	/*
 733	 * start            end
 734	 * |                |
 735	 * |<-----Prev----->|<------VA------>|
 736	 *                  |                |
 737	 *                  start            end
 738	 */
 739	if (next->prev != head) {
 740		sibling = list_entry(next->prev, struct vmap_area, list);
 741		if (sibling->va_end == va->va_start) {
 
 
 
 
 
 
 
 
 
 
 742			sibling->va_end = va->va_end;
 743
 744			/* Check and update the tree if needed. */
 745			augment_tree_propagate_from(sibling);
 746
 747			if (merged)
 748				unlink_va(va, root);
 749
 750			/* Free vmap_area object. */
 751			kmem_cache_free(vmap_area_cachep, va);
 752			return;
 
 
 
 753		}
 754	}
 755
 756insert:
 757	if (!merged) {
 758		link_va(va, root, parent, link, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759		augment_tree_propagate_from(va);
 760	}
 
 761}
 762
 763static __always_inline bool
 764is_within_this_va(struct vmap_area *va, unsigned long size,
 765	unsigned long align, unsigned long vstart)
 766{
 767	unsigned long nva_start_addr;
 768
 769	if (va->va_start > vstart)
 770		nva_start_addr = ALIGN(va->va_start, align);
 771	else
 772		nva_start_addr = ALIGN(vstart, align);
 773
 774	/* Can be overflowed due to big size or alignment. */
 775	if (nva_start_addr + size < nva_start_addr ||
 776			nva_start_addr < vstart)
 777		return false;
 778
 779	return (nva_start_addr + size <= va->va_end);
 780}
 781
 782/*
 783 * Find the first free block(lowest start address) in the tree,
 784 * that will accomplish the request corresponding to passing
 785 * parameters.
 
 
 786 */
 787static __always_inline struct vmap_area *
 788find_vmap_lowest_match(unsigned long size,
 789	unsigned long align, unsigned long vstart)
 790{
 791	struct vmap_area *va;
 792	struct rb_node *node;
 793	unsigned long length;
 794
 795	/* Start from the root. */
 796	node = free_vmap_area_root.rb_node;
 797
 798	/* Adjust the search size for alignment overhead. */
 799	length = size + align - 1;
 800
 801	while (node) {
 802		va = rb_entry(node, struct vmap_area, rb_node);
 803
 804		if (get_subtree_max_size(node->rb_left) >= length &&
 805				vstart < va->va_start) {
 806			node = node->rb_left;
 807		} else {
 808			if (is_within_this_va(va, size, align, vstart))
 809				return va;
 810
 811			/*
 812			 * Does not make sense to go deeper towards the right
 813			 * sub-tree if it does not have a free block that is
 814			 * equal or bigger to the requested search length.
 815			 */
 816			if (get_subtree_max_size(node->rb_right) >= length) {
 817				node = node->rb_right;
 818				continue;
 819			}
 820
 821			/*
 822			 * OK. We roll back and find the first right sub-tree,
 823			 * that will satisfy the search criteria. It can happen
 824			 * only once due to "vstart" restriction.
 
 825			 */
 826			while ((node = rb_parent(node))) {
 827				va = rb_entry(node, struct vmap_area, rb_node);
 828				if (is_within_this_va(va, size, align, vstart))
 829					return va;
 830
 831				if (get_subtree_max_size(node->rb_right) >= length &&
 832						vstart <= va->va_start) {
 
 
 
 
 
 
 
 833					node = node->rb_right;
 834					break;
 835				}
 836			}
 837		}
 838	}
 839
 840	return NULL;
 841}
 842
 843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 844#include <linux/random.h>
 845
 846static struct vmap_area *
 847find_vmap_lowest_linear_match(unsigned long size,
 848	unsigned long align, unsigned long vstart)
 849{
 850	struct vmap_area *va;
 851
 852	list_for_each_entry(va, &free_vmap_area_list, list) {
 853		if (!is_within_this_va(va, size, align, vstart))
 854			continue;
 855
 856		return va;
 857	}
 858
 859	return NULL;
 860}
 861
 862static void
 863find_vmap_lowest_match_check(unsigned long size)
 
 864{
 865	struct vmap_area *va_1, *va_2;
 866	unsigned long vstart;
 867	unsigned int rnd;
 868
 869	get_random_bytes(&rnd, sizeof(rnd));
 870	vstart = VMALLOC_START + rnd;
 871
 872	va_1 = find_vmap_lowest_match(size, 1, vstart);
 873	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 874
 875	if (va_1 != va_2)
 876		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 877			va_1, va_2, vstart);
 878}
 879#endif
 880
 881enum fit_type {
 882	NOTHING_FIT = 0,
 883	FL_FIT_TYPE = 1,	/* full fit */
 884	LE_FIT_TYPE = 2,	/* left edge fit */
 885	RE_FIT_TYPE = 3,	/* right edge fit */
 886	NE_FIT_TYPE = 4		/* no edge fit */
 887};
 888
 889static __always_inline enum fit_type
 890classify_va_fit_type(struct vmap_area *va,
 891	unsigned long nva_start_addr, unsigned long size)
 892{
 893	enum fit_type type;
 894
 895	/* Check if it is within VA. */
 896	if (nva_start_addr < va->va_start ||
 897			nva_start_addr + size > va->va_end)
 898		return NOTHING_FIT;
 899
 900	/* Now classify. */
 901	if (va->va_start == nva_start_addr) {
 902		if (va->va_end == nva_start_addr + size)
 903			type = FL_FIT_TYPE;
 904		else
 905			type = LE_FIT_TYPE;
 906	} else if (va->va_end == nva_start_addr + size) {
 907		type = RE_FIT_TYPE;
 908	} else {
 909		type = NE_FIT_TYPE;
 910	}
 911
 912	return type;
 913}
 914
 915static __always_inline int
 916adjust_va_to_fit_type(struct vmap_area *va,
 917	unsigned long nva_start_addr, unsigned long size,
 918	enum fit_type type)
 919{
 920	struct vmap_area *lva = NULL;
 
 921
 922	if (type == FL_FIT_TYPE) {
 923		/*
 924		 * No need to split VA, it fully fits.
 925		 *
 926		 * |               |
 927		 * V      NVA      V
 928		 * |---------------|
 929		 */
 930		unlink_va(va, &free_vmap_area_root);
 931		kmem_cache_free(vmap_area_cachep, va);
 932	} else if (type == LE_FIT_TYPE) {
 933		/*
 934		 * Split left edge of fit VA.
 935		 *
 936		 * |       |
 937		 * V  NVA  V   R
 938		 * |-------|-------|
 939		 */
 940		va->va_start += size;
 941	} else if (type == RE_FIT_TYPE) {
 942		/*
 943		 * Split right edge of fit VA.
 944		 *
 945		 *         |       |
 946		 *     L   V  NVA  V
 947		 * |-------|-------|
 948		 */
 949		va->va_end = nva_start_addr;
 950	} else if (type == NE_FIT_TYPE) {
 951		/*
 952		 * Split no edge of fit VA.
 953		 *
 954		 *     |       |
 955		 *   L V  NVA  V R
 956		 * |---|-------|---|
 957		 */
 958		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
 959		if (unlikely(!lva)) {
 960			/*
 961			 * For percpu allocator we do not do any pre-allocation
 962			 * and leave it as it is. The reason is it most likely
 963			 * never ends up with NE_FIT_TYPE splitting. In case of
 964			 * percpu allocations offsets and sizes are aligned to
 965			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
 966			 * are its main fitting cases.
 967			 *
 968			 * There are a few exceptions though, as an example it is
 969			 * a first allocation (early boot up) when we have "one"
 970			 * big free space that has to be split.
 
 
 
 
 
 
 
 
 
 
 
 
 
 971			 */
 972			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 973			if (!lva)
 974				return -1;
 975		}
 976
 977		/*
 978		 * Build the remainder.
 979		 */
 980		lva->va_start = va->va_start;
 981		lva->va_end = nva_start_addr;
 982
 983		/*
 984		 * Shrink this VA to remaining size.
 985		 */
 986		va->va_start = nva_start_addr + size;
 987	} else {
 988		return -1;
 989	}
 990
 991	if (type != FL_FIT_TYPE) {
 992		augment_tree_propagate_from(va);
 993
 994		if (lva)	/* type == NE_FIT_TYPE */
 995			insert_vmap_area_augment(lva, &va->rb_node,
 996				&free_vmap_area_root, &free_vmap_area_list);
 997	}
 998
 999	return 0;
1000}
1001
1002/*
1003 * Returns a start address of the newly allocated area, if success.
1004 * Otherwise a vend is returned that indicates failure.
1005 */
1006static __always_inline unsigned long
1007__alloc_vmap_area(unsigned long size, unsigned long align,
 
1008	unsigned long vstart, unsigned long vend)
1009{
 
1010	unsigned long nva_start_addr;
1011	struct vmap_area *va;
1012	enum fit_type type;
1013	int ret;
1014
1015	va = find_vmap_lowest_match(size, align, vstart);
 
 
 
 
 
 
 
 
 
 
 
 
1016	if (unlikely(!va))
1017		return vend;
1018
1019	if (va->va_start > vstart)
1020		nva_start_addr = ALIGN(va->va_start, align);
1021	else
1022		nva_start_addr = ALIGN(vstart, align);
1023
1024	/* Check the "vend" restriction. */
1025	if (nva_start_addr + size > vend)
1026		return vend;
1027
1028	/* Classify what we have found. */
1029	type = classify_va_fit_type(va, nva_start_addr, size);
1030	if (WARN_ON_ONCE(type == NOTHING_FIT))
1031		return vend;
1032
1033	/* Update the free vmap_area. */
1034	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035	if (ret)
1036		return vend;
1037
1038#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039	find_vmap_lowest_match_check(size);
1040#endif
1041
1042	return nva_start_addr;
1043}
1044
1045/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046 * Allocate a region of KVA of the specified size and alignment, within the
1047 * vstart and vend.
1048 */
1049static struct vmap_area *alloc_vmap_area(unsigned long size,
1050				unsigned long align,
1051				unsigned long vstart, unsigned long vend,
1052				int node, gfp_t gfp_mask)
 
1053{
1054	struct vmap_area *va, *pva;
 
1055	unsigned long addr;
1056	int purged = 0;
 
1057
1058	BUG_ON(!size);
1059	BUG_ON(offset_in_page(size));
1060	BUG_ON(!is_power_of_2(align));
1061
1062	if (unlikely(!vmap_initialized))
1063		return ERR_PTR(-EBUSY);
1064
1065	might_sleep();
 
1066
1067	va = kmem_cache_alloc_node(vmap_area_cachep,
1068			gfp_mask & GFP_RECLAIM_MASK, node);
1069	if (unlikely(!va))
1070		return ERR_PTR(-ENOMEM);
1071
1072	/*
1073	 * Only scan the relevant parts containing pointers to other objects
1074	 * to avoid false negatives.
1075	 */
1076	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1077
1078retry:
1079	/*
1080	 * Preload this CPU with one extra vmap_area object to ensure
1081	 * that we have it available when fit type of free area is
1082	 * NE_FIT_TYPE.
1083	 *
1084	 * The preload is done in non-atomic context, thus it allows us
1085	 * to use more permissive allocation masks to be more stable under
1086	 * low memory condition and high memory pressure.
1087	 *
1088	 * Even if it fails we do not really care about that. Just proceed
1089	 * as it is. "overflow" path will refill the cache we allocate from.
1090	 */
1091	preempt_disable();
1092	if (!__this_cpu_read(ne_fit_preload_node)) {
1093		preempt_enable();
1094		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1095		preempt_disable();
1096
1097		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1098			if (pva)
1099				kmem_cache_free(vmap_area_cachep, pva);
1100		}
1101	}
1102
1103	spin_lock(&vmap_area_lock);
1104	preempt_enable();
1105
1106	/*
1107	 * If an allocation fails, the "vend" address is
1108	 * returned. Therefore trigger the overflow path.
1109	 */
1110	addr = __alloc_vmap_area(size, align, vstart, vend);
1111	if (unlikely(addr == vend))
1112		goto overflow;
1113
1114	va->va_start = addr;
1115	va->va_end = addr + size;
1116	va->vm = NULL;
 
 
 
1117	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1118
1119	spin_unlock(&vmap_area_lock);
1120
1121	BUG_ON(!IS_ALIGNED(va->va_start, align));
1122	BUG_ON(va->va_start < vstart);
1123	BUG_ON(va->va_end > vend);
1124
 
 
 
 
 
 
1125	return va;
1126
1127overflow:
1128	spin_unlock(&vmap_area_lock);
1129	if (!purged) {
1130		purge_vmap_area_lazy();
1131		purged = 1;
1132		goto retry;
1133	}
1134
1135	if (gfpflags_allow_blocking(gfp_mask)) {
1136		unsigned long freed = 0;
1137		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1138		if (freed > 0) {
1139			purged = 0;
1140			goto retry;
1141		}
1142	}
1143
1144	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1145		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1146			size);
1147
1148	kmem_cache_free(vmap_area_cachep, va);
1149	return ERR_PTR(-EBUSY);
1150}
1151
1152int register_vmap_purge_notifier(struct notifier_block *nb)
1153{
1154	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1155}
1156EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1157
1158int unregister_vmap_purge_notifier(struct notifier_block *nb)
1159{
1160	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1161}
1162EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1163
1164static void __free_vmap_area(struct vmap_area *va)
1165{
1166	/*
1167	 * Remove from the busy tree/list.
1168	 */
1169	unlink_va(va, &vmap_area_root);
1170
1171	/*
1172	 * Merge VA with its neighbors, otherwise just add it.
1173	 */
1174	merge_or_add_vmap_area(va,
1175		&free_vmap_area_root, &free_vmap_area_list);
1176}
1177
1178/*
1179 * Free a region of KVA allocated by alloc_vmap_area
1180 */
1181static void free_vmap_area(struct vmap_area *va)
1182{
1183	spin_lock(&vmap_area_lock);
1184	__free_vmap_area(va);
1185	spin_unlock(&vmap_area_lock);
1186}
1187
1188/*
1189 * Clear the pagetable entries of a given vmap_area
1190 */
1191static void unmap_vmap_area(struct vmap_area *va)
1192{
1193	vunmap_page_range(va->va_start, va->va_end);
1194}
1195
1196/*
1197 * lazy_max_pages is the maximum amount of virtual address space we gather up
1198 * before attempting to purge with a TLB flush.
1199 *
1200 * There is a tradeoff here: a larger number will cover more kernel page tables
1201 * and take slightly longer to purge, but it will linearly reduce the number of
1202 * global TLB flushes that must be performed. It would seem natural to scale
1203 * this number up linearly with the number of CPUs (because vmapping activity
1204 * could also scale linearly with the number of CPUs), however it is likely
1205 * that in practice, workloads might be constrained in other ways that mean
1206 * vmap activity will not scale linearly with CPUs. Also, I want to be
1207 * conservative and not introduce a big latency on huge systems, so go with
1208 * a less aggressive log scale. It will still be an improvement over the old
1209 * code, and it will be simple to change the scale factor if we find that it
1210 * becomes a problem on bigger systems.
1211 */
1212static unsigned long lazy_max_pages(void)
1213{
1214	unsigned int log;
1215
1216	log = fls(num_online_cpus());
1217
1218	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1219}
1220
1221static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1222
1223/*
1224 * Serialize vmap purging.  There is no actual criticial section protected
1225 * by this look, but we want to avoid concurrent calls for performance
1226 * reasons and to make the pcpu_get_vm_areas more deterministic.
1227 */
1228static DEFINE_MUTEX(vmap_purge_lock);
1229
1230/* for per-CPU blocks */
1231static void purge_fragmented_blocks_allcpus(void);
1232
1233/*
1234 * called before a call to iounmap() if the caller wants vm_area_struct's
1235 * immediately freed.
1236 */
1237void set_iounmap_nonlazy(void)
1238{
1239	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1240}
1241
1242/*
1243 * Purges all lazily-freed vmap areas.
1244 */
1245static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1246{
1247	unsigned long resched_threshold;
1248	struct llist_node *valist;
1249	struct vmap_area *va;
1250	struct vmap_area *n_va;
1251
1252	lockdep_assert_held(&vmap_purge_lock);
1253
1254	valist = llist_del_all(&vmap_purge_list);
1255	if (unlikely(valist == NULL))
1256		return false;
1257
1258	/*
1259	 * First make sure the mappings are removed from all page-tables
1260	 * before they are freed.
1261	 */
1262	vmalloc_sync_all();
1263
1264	/*
1265	 * TODO: to calculate a flush range without looping.
1266	 * The list can be up to lazy_max_pages() elements.
1267	 */
1268	llist_for_each_entry(va, valist, purge_list) {
1269		if (va->va_start < start)
1270			start = va->va_start;
1271		if (va->va_end > end)
1272			end = va->va_end;
1273	}
1274
1275	flush_tlb_kernel_range(start, end);
1276	resched_threshold = lazy_max_pages() << 1;
1277
1278	spin_lock(&vmap_area_lock);
1279	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1280		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 
 
1281
1282		/*
1283		 * Finally insert or merge lazily-freed area. It is
1284		 * detached and there is no need to "unlink" it from
1285		 * anything.
1286		 */
1287		merge_or_add_vmap_area(va,
1288			&free_vmap_area_root, &free_vmap_area_list);
 
 
 
 
 
 
 
1289
1290		atomic_long_sub(nr, &vmap_lazy_nr);
 
1291
1292		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1293			cond_resched_lock(&vmap_area_lock);
1294	}
1295	spin_unlock(&vmap_area_lock);
1296	return true;
 
 
 
1297}
1298
1299/*
1300 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1301 * is already purging.
1302 */
1303static void try_purge_vmap_area_lazy(void)
1304{
1305	if (mutex_trylock(&vmap_purge_lock)) {
1306		__purge_vmap_area_lazy(ULONG_MAX, 0);
1307		mutex_unlock(&vmap_purge_lock);
1308	}
1309}
1310
1311/*
1312 * Kick off a purge of the outstanding lazy areas.
1313 */
1314static void purge_vmap_area_lazy(void)
1315{
1316	mutex_lock(&vmap_purge_lock);
1317	purge_fragmented_blocks_allcpus();
1318	__purge_vmap_area_lazy(ULONG_MAX, 0);
1319	mutex_unlock(&vmap_purge_lock);
1320}
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322/*
1323 * Free a vmap area, caller ensuring that the area has been unmapped
1324 * and flush_cache_vunmap had been called for the correct range
1325 * previously.
1326 */
1327static void free_vmap_area_noflush(struct vmap_area *va)
1328{
 
 
1329	unsigned long nr_lazy;
1330
1331	spin_lock(&vmap_area_lock);
1332	unlink_va(va, &vmap_area_root);
1333	spin_unlock(&vmap_area_lock);
1334
1335	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1336				PAGE_SHIFT, &vmap_lazy_nr);
1337
 
 
 
 
 
 
 
 
 
 
1338	/* After this point, we may free va at any time */
1339	llist_add(&va->purge_list, &vmap_purge_list);
1340
1341	if (unlikely(nr_lazy > lazy_max_pages()))
1342		try_purge_vmap_area_lazy();
1343}
1344
1345/*
1346 * Free and unmap a vmap area
1347 */
1348static void free_unmap_vmap_area(struct vmap_area *va)
1349{
1350	flush_cache_vunmap(va->va_start, va->va_end);
1351	unmap_vmap_area(va);
1352	if (debug_pagealloc_enabled())
1353		flush_tlb_kernel_range(va->va_start, va->va_end);
1354
1355	free_vmap_area_noflush(va);
1356}
1357
1358static struct vmap_area *find_vmap_area(unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
1359{
1360	struct vmap_area *va;
1361
1362	spin_lock(&vmap_area_lock);
1363	va = __find_vmap_area(addr);
 
 
1364	spin_unlock(&vmap_area_lock);
1365
1366	return va;
1367}
1368
1369/*** Per cpu kva allocator ***/
1370
1371/*
1372 * vmap space is limited especially on 32 bit architectures. Ensure there is
1373 * room for at least 16 percpu vmap blocks per CPU.
1374 */
1375/*
1376 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1377 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1378 * instead (we just need a rough idea)
1379 */
1380#if BITS_PER_LONG == 32
1381#define VMALLOC_SPACE		(128UL*1024*1024)
1382#else
1383#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1384#endif
1385
1386#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1387#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1388#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1389#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1390#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1391#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1392#define VMAP_BBMAP_BITS		\
1393		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1394		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1395			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1396
1397#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1398
 
 
 
 
 
 
 
 
 
 
1399struct vmap_block_queue {
1400	spinlock_t lock;
1401	struct list_head free;
 
 
 
 
 
 
 
1402};
1403
1404struct vmap_block {
1405	spinlock_t lock;
1406	struct vmap_area *va;
1407	unsigned long free, dirty;
 
1408	unsigned long dirty_min, dirty_max; /*< dirty range */
1409	struct list_head free_list;
1410	struct rcu_head rcu_head;
1411	struct list_head purge;
1412};
1413
1414/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1415static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1416
1417/*
1418 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1419 * in the free path. Could get rid of this if we change the API to return a
1420 * "cookie" from alloc, to be passed to free. But no big deal yet.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421 */
1422static DEFINE_SPINLOCK(vmap_block_tree_lock);
1423static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 
 
 
 
 
1424
1425/*
1426 * We should probably have a fallback mechanism to allocate virtual memory
1427 * out of partially filled vmap blocks. However vmap block sizing should be
1428 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1429 * big problem.
1430 */
1431
1432static unsigned long addr_to_vb_idx(unsigned long addr)
1433{
1434	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1435	addr /= VMAP_BLOCK_SIZE;
1436	return addr;
1437}
1438
1439static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1440{
1441	unsigned long addr;
1442
1443	addr = va_start + (pages_off << PAGE_SHIFT);
1444	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1445	return (void *)addr;
1446}
1447
1448/**
1449 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1450 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1451 * @order:    how many 2^order pages should be occupied in newly allocated block
1452 * @gfp_mask: flags for the page level allocator
1453 *
1454 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1455 */
1456static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1457{
1458	struct vmap_block_queue *vbq;
1459	struct vmap_block *vb;
1460	struct vmap_area *va;
 
1461	unsigned long vb_idx;
1462	int node, err;
1463	void *vaddr;
1464
1465	node = numa_node_id();
1466
1467	vb = kmalloc_node(sizeof(struct vmap_block),
1468			gfp_mask & GFP_RECLAIM_MASK, node);
1469	if (unlikely(!vb))
1470		return ERR_PTR(-ENOMEM);
1471
1472	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1473					VMALLOC_START, VMALLOC_END,
1474					node, gfp_mask);
 
1475	if (IS_ERR(va)) {
1476		kfree(vb);
1477		return ERR_CAST(va);
1478	}
1479
1480	err = radix_tree_preload(gfp_mask);
1481	if (unlikely(err)) {
1482		kfree(vb);
1483		free_vmap_area(va);
1484		return ERR_PTR(err);
1485	}
1486
1487	vaddr = vmap_block_vaddr(va->va_start, 0);
1488	spin_lock_init(&vb->lock);
1489	vb->va = va;
1490	/* At least something should be left free */
1491	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 
1492	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1493	vb->dirty = 0;
1494	vb->dirty_min = VMAP_BBMAP_BITS;
1495	vb->dirty_max = 0;
 
1496	INIT_LIST_HEAD(&vb->free_list);
1497
 
1498	vb_idx = addr_to_vb_idx(va->va_start);
1499	spin_lock(&vmap_block_tree_lock);
1500	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1501	spin_unlock(&vmap_block_tree_lock);
1502	BUG_ON(err);
1503	radix_tree_preload_end();
 
1504
1505	vbq = &get_cpu_var(vmap_block_queue);
1506	spin_lock(&vbq->lock);
1507	list_add_tail_rcu(&vb->free_list, &vbq->free);
1508	spin_unlock(&vbq->lock);
1509	put_cpu_var(vmap_block_queue);
1510
1511	return vaddr;
1512}
1513
1514static void free_vmap_block(struct vmap_block *vb)
1515{
1516	struct vmap_block *tmp;
1517	unsigned long vb_idx;
1518
1519	vb_idx = addr_to_vb_idx(vb->va->va_start);
1520	spin_lock(&vmap_block_tree_lock);
1521	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1522	spin_unlock(&vmap_block_tree_lock);
1523	BUG_ON(tmp != vb);
1524
 
 
 
 
1525	free_vmap_area_noflush(vb->va);
1526	kfree_rcu(vb, rcu_head);
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529static void purge_fragmented_blocks(int cpu)
1530{
1531	LIST_HEAD(purge);
1532	struct vmap_block *vb;
1533	struct vmap_block *n_vb;
1534	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1535
1536	rcu_read_lock();
1537	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1538
1539		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 
1540			continue;
1541
1542		spin_lock(&vb->lock);
1543		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1544			vb->free = 0; /* prevent further allocs after releasing lock */
1545			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1546			vb->dirty_min = 0;
1547			vb->dirty_max = VMAP_BBMAP_BITS;
1548			spin_lock(&vbq->lock);
1549			list_del_rcu(&vb->free_list);
1550			spin_unlock(&vbq->lock);
1551			spin_unlock(&vb->lock);
1552			list_add_tail(&vb->purge, &purge);
1553		} else
1554			spin_unlock(&vb->lock);
1555	}
1556	rcu_read_unlock();
1557
1558	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1559		list_del(&vb->purge);
1560		free_vmap_block(vb);
1561	}
1562}
1563
1564static void purge_fragmented_blocks_allcpus(void)
1565{
1566	int cpu;
1567
1568	for_each_possible_cpu(cpu)
1569		purge_fragmented_blocks(cpu);
1570}
1571
1572static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1573{
1574	struct vmap_block_queue *vbq;
1575	struct vmap_block *vb;
1576	void *vaddr = NULL;
1577	unsigned int order;
1578
1579	BUG_ON(offset_in_page(size));
1580	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1581	if (WARN_ON(size == 0)) {
1582		/*
1583		 * Allocating 0 bytes isn't what caller wants since
1584		 * get_order(0) returns funny result. Just warn and terminate
1585		 * early.
1586		 */
1587		return NULL;
1588	}
1589	order = get_order(size);
1590
1591	rcu_read_lock();
1592	vbq = &get_cpu_var(vmap_block_queue);
1593	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1594		unsigned long pages_off;
1595
 
 
 
1596		spin_lock(&vb->lock);
1597		if (vb->free < (1UL << order)) {
1598			spin_unlock(&vb->lock);
1599			continue;
1600		}
1601
1602		pages_off = VMAP_BBMAP_BITS - vb->free;
1603		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1604		vb->free -= 1UL << order;
 
1605		if (vb->free == 0) {
1606			spin_lock(&vbq->lock);
1607			list_del_rcu(&vb->free_list);
1608			spin_unlock(&vbq->lock);
1609		}
1610
1611		spin_unlock(&vb->lock);
1612		break;
1613	}
1614
1615	put_cpu_var(vmap_block_queue);
1616	rcu_read_unlock();
1617
1618	/* Allocate new block if nothing was found */
1619	if (!vaddr)
1620		vaddr = new_vmap_block(order, gfp_mask);
1621
1622	return vaddr;
1623}
1624
1625static void vb_free(const void *addr, unsigned long size)
1626{
1627	unsigned long offset;
1628	unsigned long vb_idx;
1629	unsigned int order;
1630	struct vmap_block *vb;
 
1631
1632	BUG_ON(offset_in_page(size));
1633	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1634
1635	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1636
1637	order = get_order(size);
 
1638
1639	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1640	offset >>= PAGE_SHIFT;
1641
1642	vb_idx = addr_to_vb_idx((unsigned long)addr);
1643	rcu_read_lock();
1644	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1645	rcu_read_unlock();
1646	BUG_ON(!vb);
1647
1648	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1649
1650	if (debug_pagealloc_enabled())
1651		flush_tlb_kernel_range((unsigned long)addr,
1652					(unsigned long)addr + size);
1653
1654	spin_lock(&vb->lock);
1655
1656	/* Expand dirty range */
1657	vb->dirty_min = min(vb->dirty_min, offset);
1658	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1659
1660	vb->dirty += 1UL << order;
1661	if (vb->dirty == VMAP_BBMAP_BITS) {
1662		BUG_ON(vb->free);
1663		spin_unlock(&vb->lock);
1664		free_vmap_block(vb);
1665	} else
1666		spin_unlock(&vb->lock);
1667}
1668
1669static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1670{
 
1671	int cpu;
1672
1673	if (unlikely(!vmap_initialized))
1674		return;
1675
1676	might_sleep();
1677
1678	for_each_possible_cpu(cpu) {
1679		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1680		struct vmap_block *vb;
 
1681
1682		rcu_read_lock();
1683		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1684			spin_lock(&vb->lock);
1685			if (vb->dirty) {
 
 
 
 
 
 
 
1686				unsigned long va_start = vb->va->va_start;
1687				unsigned long s, e;
1688
1689				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1690				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1691
1692				start = min(s, start);
1693				end   = max(e, end);
1694
 
 
 
 
1695				flush = 1;
1696			}
1697			spin_unlock(&vb->lock);
1698		}
1699		rcu_read_unlock();
1700	}
 
1701
1702	mutex_lock(&vmap_purge_lock);
1703	purge_fragmented_blocks_allcpus();
1704	if (!__purge_vmap_area_lazy(start, end) && flush)
1705		flush_tlb_kernel_range(start, end);
1706	mutex_unlock(&vmap_purge_lock);
1707}
1708
1709/**
1710 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1711 *
1712 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1713 * to amortize TLB flushing overheads. What this means is that any page you
1714 * have now, may, in a former life, have been mapped into kernel virtual
1715 * address by the vmap layer and so there might be some CPUs with TLB entries
1716 * still referencing that page (additional to the regular 1:1 kernel mapping).
1717 *
1718 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1719 * be sure that none of the pages we have control over will have any aliases
1720 * from the vmap layer.
1721 */
1722void vm_unmap_aliases(void)
1723{
1724	unsigned long start = ULONG_MAX, end = 0;
1725	int flush = 0;
1726
1727	_vm_unmap_aliases(start, end, flush);
1728}
1729EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1730
1731/**
1732 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1733 * @mem: the pointer returned by vm_map_ram
1734 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1735 */
1736void vm_unmap_ram(const void *mem, unsigned int count)
1737{
1738	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1739	unsigned long addr = (unsigned long)mem;
1740	struct vmap_area *va;
1741
1742	might_sleep();
1743	BUG_ON(!addr);
1744	BUG_ON(addr < VMALLOC_START);
1745	BUG_ON(addr > VMALLOC_END);
1746	BUG_ON(!PAGE_ALIGNED(addr));
1747
 
 
1748	if (likely(count <= VMAP_MAX_ALLOC)) {
1749		debug_check_no_locks_freed(mem, size);
1750		vb_free(mem, size);
1751		return;
1752	}
1753
1754	va = find_vmap_area(addr);
1755	BUG_ON(!va);
 
 
1756	debug_check_no_locks_freed((void *)va->va_start,
1757				    (va->va_end - va->va_start));
1758	free_unmap_vmap_area(va);
1759}
1760EXPORT_SYMBOL(vm_unmap_ram);
1761
1762/**
1763 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1764 * @pages: an array of pointers to the pages to be mapped
1765 * @count: number of pages
1766 * @node: prefer to allocate data structures on this node
1767 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1768 *
1769 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1770 * faster than vmap so it's good.  But if you mix long-life and short-life
1771 * objects with vm_map_ram(), it could consume lots of address space through
1772 * fragmentation (especially on a 32bit machine).  You could see failures in
1773 * the end.  Please use this function for short-lived objects.
1774 *
1775 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1776 */
1777void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1778{
1779	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1780	unsigned long addr;
1781	void *mem;
1782
1783	if (likely(count <= VMAP_MAX_ALLOC)) {
1784		mem = vb_alloc(size, GFP_KERNEL);
1785		if (IS_ERR(mem))
1786			return NULL;
1787		addr = (unsigned long)mem;
1788	} else {
1789		struct vmap_area *va;
1790		va = alloc_vmap_area(size, PAGE_SIZE,
1791				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 
1792		if (IS_ERR(va))
1793			return NULL;
1794
1795		addr = va->va_start;
1796		mem = (void *)addr;
1797	}
1798	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 
 
1799		vm_unmap_ram(mem, count);
1800		return NULL;
1801	}
 
 
 
 
 
 
 
 
1802	return mem;
1803}
1804EXPORT_SYMBOL(vm_map_ram);
1805
1806static struct vm_struct *vmlist __initdata;
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808/**
1809 * vm_area_add_early - add vmap area early during boot
1810 * @vm: vm_struct to add
1811 *
1812 * This function is used to add fixed kernel vm area to vmlist before
1813 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1814 * should contain proper values and the other fields should be zero.
1815 *
1816 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1817 */
1818void __init vm_area_add_early(struct vm_struct *vm)
1819{
1820	struct vm_struct *tmp, **p;
1821
1822	BUG_ON(vmap_initialized);
1823	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1824		if (tmp->addr >= vm->addr) {
1825			BUG_ON(tmp->addr < vm->addr + vm->size);
1826			break;
1827		} else
1828			BUG_ON(tmp->addr + tmp->size > vm->addr);
1829	}
1830	vm->next = *p;
1831	*p = vm;
1832}
1833
1834/**
1835 * vm_area_register_early - register vmap area early during boot
1836 * @vm: vm_struct to register
1837 * @align: requested alignment
1838 *
1839 * This function is used to register kernel vm area before
1840 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1841 * proper values on entry and other fields should be zero.  On return,
1842 * vm->addr contains the allocated address.
1843 *
1844 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1845 */
1846void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1847{
1848	static size_t vm_init_off __initdata;
1849	unsigned long addr;
 
 
1850
1851	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1852	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
 
 
 
1853
 
1854	vm->addr = (void *)addr;
1855
1856	vm_area_add_early(vm);
 
1857}
1858
1859static void vmap_init_free_space(void)
1860{
1861	unsigned long vmap_start = 1;
1862	const unsigned long vmap_end = ULONG_MAX;
1863	struct vmap_area *busy, *free;
1864
1865	/*
1866	 *     B     F     B     B     B     F
1867	 * -|-----|.....|-----|-----|-----|.....|-
1868	 *  |           The KVA space           |
1869	 *  |<--------------------------------->|
1870	 */
1871	list_for_each_entry(busy, &vmap_area_list, list) {
1872		if (busy->va_start - vmap_start > 0) {
1873			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1874			if (!WARN_ON_ONCE(!free)) {
1875				free->va_start = vmap_start;
1876				free->va_end = busy->va_start;
1877
1878				insert_vmap_area_augment(free, NULL,
1879					&free_vmap_area_root,
1880						&free_vmap_area_list);
1881			}
1882		}
1883
1884		vmap_start = busy->va_end;
1885	}
1886
1887	if (vmap_end - vmap_start > 0) {
1888		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1889		if (!WARN_ON_ONCE(!free)) {
1890			free->va_start = vmap_start;
1891			free->va_end = vmap_end;
1892
1893			insert_vmap_area_augment(free, NULL,
1894				&free_vmap_area_root,
1895					&free_vmap_area_list);
1896		}
1897	}
1898}
1899
1900void __init vmalloc_init(void)
 
1901{
1902	struct vmap_area *va;
1903	struct vm_struct *tmp;
1904	int i;
1905
1906	/*
1907	 * Create the cache for vmap_area objects.
1908	 */
1909	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1910
1911	for_each_possible_cpu(i) {
1912		struct vmap_block_queue *vbq;
1913		struct vfree_deferred *p;
1914
1915		vbq = &per_cpu(vmap_block_queue, i);
1916		spin_lock_init(&vbq->lock);
1917		INIT_LIST_HEAD(&vbq->free);
1918		p = &per_cpu(vfree_deferred, i);
1919		init_llist_head(&p->list);
1920		INIT_WORK(&p->wq, free_work);
1921	}
1922
1923	/* Import existing vmlist entries. */
1924	for (tmp = vmlist; tmp; tmp = tmp->next) {
1925		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1926		if (WARN_ON_ONCE(!va))
1927			continue;
1928
1929		va->va_start = (unsigned long)tmp->addr;
1930		va->va_end = va->va_start + tmp->size;
1931		va->vm = tmp;
1932		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1933	}
1934
1935	/*
1936	 * Now we can initialize a free vmap space.
1937	 */
1938	vmap_init_free_space();
1939	vmap_initialized = true;
1940}
1941
1942/**
1943 * map_kernel_range_noflush - map kernel VM area with the specified pages
1944 * @addr: start of the VM area to map
1945 * @size: size of the VM area to map
1946 * @prot: page protection flags to use
1947 * @pages: pages to map
1948 *
1949 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1950 * specify should have been allocated using get_vm_area() and its
1951 * friends.
1952 *
1953 * NOTE:
1954 * This function does NOT do any cache flushing.  The caller is
1955 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1956 * before calling this function.
1957 *
1958 * RETURNS:
1959 * The number of pages mapped on success, -errno on failure.
1960 */
1961int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1962			     pgprot_t prot, struct page **pages)
1963{
1964	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1965}
1966
1967/**
1968 * unmap_kernel_range_noflush - unmap kernel VM area
1969 * @addr: start of the VM area to unmap
1970 * @size: size of the VM area to unmap
1971 *
1972 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1973 * specify should have been allocated using get_vm_area() and its
1974 * friends.
1975 *
1976 * NOTE:
1977 * This function does NOT do any cache flushing.  The caller is
1978 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1979 * before calling this function and flush_tlb_kernel_range() after.
1980 */
1981void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1982{
1983	vunmap_page_range(addr, addr + size);
1984}
1985EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1986
1987/**
1988 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1989 * @addr: start of the VM area to unmap
1990 * @size: size of the VM area to unmap
1991 *
1992 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1993 * the unmapping and tlb after.
1994 */
1995void unmap_kernel_range(unsigned long addr, unsigned long size)
1996{
1997	unsigned long end = addr + size;
1998
1999	flush_cache_vunmap(addr, end);
2000	vunmap_page_range(addr, end);
2001	flush_tlb_kernel_range(addr, end);
2002}
2003EXPORT_SYMBOL_GPL(unmap_kernel_range);
2004
2005int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2006{
2007	unsigned long addr = (unsigned long)area->addr;
2008	unsigned long end = addr + get_vm_area_size(area);
2009	int err;
2010
2011	err = vmap_page_range(addr, end, prot, pages);
2012
2013	return err > 0 ? 0 : err;
2014}
2015EXPORT_SYMBOL_GPL(map_vm_area);
2016
2017static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2018			      unsigned long flags, const void *caller)
2019{
2020	spin_lock(&vmap_area_lock);
2021	vm->flags = flags;
2022	vm->addr = (void *)va->va_start;
2023	vm->size = va->va_end - va->va_start;
2024	vm->caller = caller;
2025	va->vm = vm;
2026	spin_unlock(&vmap_area_lock);
2027}
2028
2029static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2030{
2031	/*
2032	 * Before removing VM_UNINITIALIZED,
2033	 * we should make sure that vm has proper values.
2034	 * Pair with smp_rmb() in show_numa_info().
2035	 */
2036	smp_wmb();
2037	vm->flags &= ~VM_UNINITIALIZED;
2038}
2039
2040static struct vm_struct *__get_vm_area_node(unsigned long size,
2041		unsigned long align, unsigned long flags, unsigned long start,
2042		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
 
2043{
2044	struct vmap_area *va;
2045	struct vm_struct *area;
 
2046
2047	BUG_ON(in_interrupt());
2048	size = PAGE_ALIGN(size);
2049	if (unlikely(!size))
2050		return NULL;
2051
2052	if (flags & VM_IOREMAP)
2053		align = 1ul << clamp_t(int, get_count_order_long(size),
2054				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2055
2056	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2057	if (unlikely(!area))
2058		return NULL;
2059
2060	if (!(flags & VM_NO_GUARD))
2061		size += PAGE_SIZE;
2062
2063	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2064	if (IS_ERR(va)) {
2065		kfree(area);
2066		return NULL;
2067	}
2068
2069	setup_vmalloc_vm(area, va, flags, caller);
2070
 
 
 
 
 
 
 
 
 
 
 
 
2071	return area;
2072}
2073
2074struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2075				unsigned long start, unsigned long end)
2076{
2077	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2078				  GFP_KERNEL, __builtin_return_address(0));
2079}
2080EXPORT_SYMBOL_GPL(__get_vm_area);
2081
2082struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2083				       unsigned long start, unsigned long end,
2084				       const void *caller)
2085{
2086	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087				  GFP_KERNEL, caller);
2088}
2089
2090/**
2091 * get_vm_area - reserve a contiguous kernel virtual area
2092 * @size:	 size of the area
2093 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2094 *
2095 * Search an area of @size in the kernel virtual mapping area,
2096 * and reserved it for out purposes.  Returns the area descriptor
2097 * on success or %NULL on failure.
2098 *
2099 * Return: the area descriptor on success or %NULL on failure.
2100 */
2101struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2102{
2103	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 
2104				  NUMA_NO_NODE, GFP_KERNEL,
2105				  __builtin_return_address(0));
2106}
2107
2108struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2109				const void *caller)
2110{
2111	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 
2112				  NUMA_NO_NODE, GFP_KERNEL, caller);
2113}
2114
2115/**
2116 * find_vm_area - find a continuous kernel virtual area
2117 * @addr:	  base address
2118 *
2119 * Search for the kernel VM area starting at @addr, and return it.
2120 * It is up to the caller to do all required locking to keep the returned
2121 * pointer valid.
2122 *
2123 * Return: pointer to the found area or %NULL on faulure
2124 */
2125struct vm_struct *find_vm_area(const void *addr)
2126{
2127	struct vmap_area *va;
2128
2129	va = find_vmap_area((unsigned long)addr);
2130	if (!va)
2131		return NULL;
2132
2133	return va->vm;
2134}
2135
2136/**
2137 * remove_vm_area - find and remove a continuous kernel virtual area
2138 * @addr:	    base address
2139 *
2140 * Search for the kernel VM area starting at @addr, and remove it.
2141 * This function returns the found VM area, but using it is NOT safe
2142 * on SMP machines, except for its size or flags.
2143 *
2144 * Return: pointer to the found area or %NULL on faulure
2145 */
2146struct vm_struct *remove_vm_area(const void *addr)
2147{
2148	struct vmap_area *va;
 
2149
2150	might_sleep();
2151
2152	spin_lock(&vmap_area_lock);
2153	va = __find_vmap_area((unsigned long)addr);
2154	if (va && va->vm) {
2155		struct vm_struct *vm = va->vm;
2156
2157		va->vm = NULL;
2158		spin_unlock(&vmap_area_lock);
 
 
2159
2160		kasan_free_shadow(vm);
2161		free_unmap_vmap_area(va);
 
 
2162
2163		return vm;
2164	}
2165
2166	spin_unlock(&vmap_area_lock);
2167	return NULL;
2168}
2169
2170static inline void set_area_direct_map(const struct vm_struct *area,
2171				       int (*set_direct_map)(struct page *page))
2172{
2173	int i;
2174
 
2175	for (i = 0; i < area->nr_pages; i++)
2176		if (page_address(area->pages[i]))
2177			set_direct_map(area->pages[i]);
2178}
2179
2180/* Handle removing and resetting vm mappings related to the vm_struct. */
2181static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
 
 
2182{
2183	unsigned long start = ULONG_MAX, end = 0;
2184	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2185	int flush_dmap = 0;
2186	int i;
2187
2188	remove_vm_area(area->addr);
2189
2190	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2191	if (!flush_reset)
2192		return;
2193
2194	/*
2195	 * If not deallocating pages, just do the flush of the VM area and
2196	 * return.
2197	 */
2198	if (!deallocate_pages) {
2199		vm_unmap_aliases();
2200		return;
2201	}
2202
2203	/*
2204	 * If execution gets here, flush the vm mapping and reset the direct
2205	 * map. Find the start and end range of the direct mappings to make sure
2206	 * the vm_unmap_aliases() flush includes the direct map.
2207	 */
2208	for (i = 0; i < area->nr_pages; i++) {
2209		unsigned long addr = (unsigned long)page_address(area->pages[i]);
 
2210		if (addr) {
 
 
 
2211			start = min(addr, start);
2212			end = max(addr + PAGE_SIZE, end);
2213			flush_dmap = 1;
2214		}
2215	}
2216
2217	/*
2218	 * Set direct map to something invalid so that it won't be cached if
2219	 * there are any accesses after the TLB flush, then flush the TLB and
2220	 * reset the direct map permissions to the default.
2221	 */
2222	set_area_direct_map(area, set_direct_map_invalid_noflush);
2223	_vm_unmap_aliases(start, end, flush_dmap);
2224	set_area_direct_map(area, set_direct_map_default_noflush);
2225}
2226
2227static void __vunmap(const void *addr, int deallocate_pages)
2228{
2229	struct vm_struct *area;
 
2230
2231	if (!addr)
2232		return;
2233
2234	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2235			addr))
2236		return;
2237
2238	area = find_vm_area(addr);
2239	if (unlikely(!area)) {
2240		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2241				addr);
2242		return;
2243	}
2244
2245	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2246	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2247
2248	vm_remove_mappings(area, deallocate_pages);
2249
2250	if (deallocate_pages) {
2251		int i;
2252
2253		for (i = 0; i < area->nr_pages; i++) {
2254			struct page *page = area->pages[i];
2255
2256			BUG_ON(!page);
2257			__free_pages(page, 0);
2258		}
2259		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2260
2261		kvfree(area->pages);
2262	}
2263
2264	kfree(area);
2265	return;
2266}
2267
2268static inline void __vfree_deferred(const void *addr)
2269{
2270	/*
2271	 * Use raw_cpu_ptr() because this can be called from preemptible
2272	 * context. Preemption is absolutely fine here, because the llist_add()
2273	 * implementation is lockless, so it works even if we are adding to
2274	 * nother cpu's list.  schedule_work() should be fine with this too.
2275	 */
2276	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2277
2278	if (llist_add((struct llist_node *)addr, &p->list))
2279		schedule_work(&p->wq);
2280}
2281
2282/**
2283 * vfree_atomic - release memory allocated by vmalloc()
2284 * @addr:	  memory base address
2285 *
2286 * This one is just like vfree() but can be called in any atomic context
2287 * except NMIs.
2288 */
2289void vfree_atomic(const void *addr)
2290{
 
 
2291	BUG_ON(in_nmi());
2292
2293	kmemleak_free(addr);
2294
2295	if (!addr)
2296		return;
2297	__vfree_deferred(addr);
2298}
2299
2300static void __vfree(const void *addr)
2301{
2302	if (unlikely(in_interrupt()))
2303		__vfree_deferred(addr);
2304	else
2305		__vunmap(addr, 1);
2306}
2307
2308/**
2309 * vfree - release memory allocated by vmalloc()
2310 * @addr:  memory base address
2311 *
2312 * Free the virtually continuous memory area starting at @addr, as
2313 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2314 * NULL, no operation is performed.
 
2315 *
2316 * Must not be called in NMI context (strictly speaking, only if we don't
2317 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2318 * conventions for vfree() arch-depenedent would be a really bad idea)
2319 *
 
2320 * May sleep if called *not* from interrupt context.
2321 *
2322 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
 
2323 */
2324void vfree(const void *addr)
2325{
 
 
 
 
 
 
 
 
2326	BUG_ON(in_nmi());
2327
2328	kmemleak_free(addr);
 
2329
2330	might_sleep_if(!in_interrupt());
 
2331
2332	if (!addr)
 
 
 
2333		return;
 
 
 
 
 
 
2334
2335	__vfree(addr);
 
 
 
 
 
 
 
 
 
 
 
2336}
2337EXPORT_SYMBOL(vfree);
2338
2339/**
2340 * vunmap - release virtual mapping obtained by vmap()
2341 * @addr:   memory base address
2342 *
2343 * Free the virtually contiguous memory area starting at @addr,
2344 * which was created from the page array passed to vmap().
2345 *
2346 * Must not be called in interrupt context.
2347 */
2348void vunmap(const void *addr)
2349{
 
 
2350	BUG_ON(in_interrupt());
2351	might_sleep();
2352	if (addr)
2353		__vunmap(addr, 0);
 
 
 
 
 
 
 
 
2354}
2355EXPORT_SYMBOL(vunmap);
2356
2357/**
2358 * vmap - map an array of pages into virtually contiguous space
2359 * @pages: array of page pointers
2360 * @count: number of pages to map
2361 * @flags: vm_area->flags
2362 * @prot: page protection for the mapping
2363 *
2364 * Maps @count pages from @pages into contiguous kernel virtual
2365 * space.
 
 
 
2366 *
2367 * Return: the address of the area or %NULL on failure
2368 */
2369void *vmap(struct page **pages, unsigned int count,
2370	   unsigned long flags, pgprot_t prot)
2371{
2372	struct vm_struct *area;
 
2373	unsigned long size;		/* In bytes */
2374
2375	might_sleep();
2376
 
 
 
 
 
 
 
 
 
 
2377	if (count > totalram_pages())
2378		return NULL;
2379
2380	size = (unsigned long)count << PAGE_SHIFT;
2381	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2382	if (!area)
2383		return NULL;
2384
2385	if (map_vm_area(area, prot, pages)) {
 
 
2386		vunmap(area->addr);
2387		return NULL;
2388	}
2389
 
 
 
 
2390	return area->addr;
2391}
2392EXPORT_SYMBOL(vmap);
2393
2394static void *__vmalloc_node(unsigned long size, unsigned long align,
2395			    gfp_t gfp_mask, pgprot_t prot,
2396			    int node, const void *caller);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2398				 pgprot_t prot, int node)
 
2399{
2400	struct page **pages;
2401	unsigned int nr_pages, array_size, i;
2402	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2403	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2404	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2405					0 :
2406					__GFP_HIGHMEM;
 
 
 
 
 
 
2407
2408	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2409	array_size = (nr_pages * sizeof(struct page *));
2410
2411	/* Please note that the recursion is strictly bounded. */
2412	if (array_size > PAGE_SIZE) {
2413		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2414				PAGE_KERNEL, node, area->caller);
2415	} else {
2416		pages = kmalloc_node(array_size, nested_gfp, node);
2417	}
2418
2419	if (!pages) {
2420		remove_vm_area(area->addr);
2421		kfree(area);
 
 
2422		return NULL;
2423	}
2424
2425	area->pages = pages;
2426	area->nr_pages = nr_pages;
2427
2428	for (i = 0; i < area->nr_pages; i++) {
2429		struct page *page;
2430
2431		if (node == NUMA_NO_NODE)
2432			page = alloc_page(alloc_mask|highmem_mask);
2433		else
2434			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2435
2436		if (unlikely(!page)) {
2437			/* Successfully allocated i pages, free them in __vunmap() */
2438			area->nr_pages = i;
2439			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2440			goto fail;
2441		}
2442		area->pages[i] = page;
2443		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2444			cond_resched();
2445	}
2446	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2447
2448	if (map_vm_area(area, prot, pages))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450	return area->addr;
2451
2452fail:
2453	warn_alloc(gfp_mask, NULL,
2454			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2455			  (area->nr_pages*PAGE_SIZE), area->size);
2456	__vfree(area->addr);
2457	return NULL;
2458}
2459
2460/**
2461 * __vmalloc_node_range - allocate virtually contiguous memory
2462 * @size:		  allocation size
2463 * @align:		  desired alignment
2464 * @start:		  vm area range start
2465 * @end:		  vm area range end
2466 * @gfp_mask:		  flags for the page level allocator
2467 * @prot:		  protection mask for the allocated pages
2468 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2469 * @node:		  node to use for allocation or NUMA_NO_NODE
2470 * @caller:		  caller's return address
2471 *
2472 * Allocate enough pages to cover @size from the page level
2473 * allocator with @gfp_mask flags.  Map them into contiguous
2474 * kernel virtual space, using a pagetable protection of @prot.
 
 
 
 
 
 
 
 
 
 
2475 *
2476 * Return: the address of the area or %NULL on failure
2477 */
2478void *__vmalloc_node_range(unsigned long size, unsigned long align,
2479			unsigned long start, unsigned long end, gfp_t gfp_mask,
2480			pgprot_t prot, unsigned long vm_flags, int node,
2481			const void *caller)
2482{
2483	struct vm_struct *area;
2484	void *addr;
 
2485	unsigned long real_size = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486
2487	size = PAGE_ALIGN(size);
2488	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
 
 
 
 
 
 
 
 
 
 
 
2489		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
2490
2491	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2492				vm_flags, start, end, node, gfp_mask, caller);
2493	if (!area)
 
 
 
 
 
 
 
 
 
 
 
 
2494		goto fail;
2495
2496	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2497	if (!addr)
2498		return NULL;
 
 
 
 
 
 
 
 
 
 
 
2499
2500	/*
2501	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2502	 * flag. It means that vm_struct is not fully initialized.
2503	 * Now, it is fully initialized, so remove this flag here.
2504	 */
2505	clear_vm_uninitialized_flag(area);
2506
2507	kmemleak_vmalloc(area, size, gfp_mask);
 
 
2508
2509	return addr;
2510
2511fail:
2512	warn_alloc(gfp_mask, NULL,
2513			  "vmalloc: allocation failure: %lu bytes", real_size);
 
 
 
 
 
2514	return NULL;
2515}
2516
2517/*
2518 * This is only for performance analysis of vmalloc and stress purpose.
2519 * It is required by vmalloc test module, therefore do not use it other
2520 * than that.
2521 */
2522#ifdef CONFIG_TEST_VMALLOC_MODULE
2523EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2524#endif
2525
2526/**
2527 * __vmalloc_node - allocate virtually contiguous memory
2528 * @size:	    allocation size
2529 * @align:	    desired alignment
2530 * @gfp_mask:	    flags for the page level allocator
2531 * @prot:	    protection mask for the allocated pages
2532 * @node:	    node to use for allocation or NUMA_NO_NODE
2533 * @caller:	    caller's return address
2534 *
2535 * Allocate enough pages to cover @size from the page level
2536 * allocator with @gfp_mask flags.  Map them into contiguous
2537 * kernel virtual space, using a pagetable protection of @prot.
2538 *
2539 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2540 * and __GFP_NOFAIL are not supported
2541 *
2542 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2543 * with mm people.
2544 *
2545 * Return: pointer to the allocated memory or %NULL on error
2546 */
2547static void *__vmalloc_node(unsigned long size, unsigned long align,
2548			    gfp_t gfp_mask, pgprot_t prot,
2549			    int node, const void *caller)
2550{
2551	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2552				gfp_mask, prot, 0, node, caller);
2553}
 
 
 
 
 
 
 
 
2554
2555void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2556{
2557	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2558				__builtin_return_address(0));
2559}
2560EXPORT_SYMBOL(__vmalloc);
2561
2562static inline void *__vmalloc_node_flags(unsigned long size,
2563					int node, gfp_t flags)
2564{
2565	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2566					node, __builtin_return_address(0));
2567}
2568
2569
2570void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2571				  void *caller)
2572{
2573	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2574}
2575
2576/**
2577 * vmalloc - allocate virtually contiguous memory
2578 * @size:    allocation size
2579 *
2580 * Allocate enough pages to cover @size from the page level
2581 * allocator and map them into contiguous kernel virtual space.
2582 *
2583 * For tight control over page level allocator and protection flags
2584 * use __vmalloc() instead.
2585 *
2586 * Return: pointer to the allocated memory or %NULL on error
2587 */
2588void *vmalloc(unsigned long size)
2589{
2590	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2591				    GFP_KERNEL);
2592}
2593EXPORT_SYMBOL(vmalloc);
2594
2595/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2596 * vzalloc - allocate virtually contiguous memory with zero fill
2597 * @size:    allocation size
2598 *
2599 * Allocate enough pages to cover @size from the page level
2600 * allocator and map them into contiguous kernel virtual space.
2601 * The memory allocated is set to zero.
2602 *
2603 * For tight control over page level allocator and protection flags
2604 * use __vmalloc() instead.
2605 *
2606 * Return: pointer to the allocated memory or %NULL on error
2607 */
2608void *vzalloc(unsigned long size)
2609{
2610	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2611				GFP_KERNEL | __GFP_ZERO);
2612}
2613EXPORT_SYMBOL(vzalloc);
2614
2615/**
2616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2617 * @size: allocation size
2618 *
2619 * The resulting memory area is zeroed so it can be mapped to userspace
2620 * without leaking data.
2621 *
2622 * Return: pointer to the allocated memory or %NULL on error
2623 */
2624void *vmalloc_user(unsigned long size)
2625{
2626	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2627				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2628				    VM_USERMAP, NUMA_NO_NODE,
2629				    __builtin_return_address(0));
2630}
2631EXPORT_SYMBOL(vmalloc_user);
2632
2633/**
2634 * vmalloc_node - allocate memory on a specific node
2635 * @size:	  allocation size
2636 * @node:	  numa node
2637 *
2638 * Allocate enough pages to cover @size from the page level
2639 * allocator and map them into contiguous kernel virtual space.
2640 *
2641 * For tight control over page level allocator and protection flags
2642 * use __vmalloc() instead.
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
2645 */
2646void *vmalloc_node(unsigned long size, int node)
2647{
2648	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2649					node, __builtin_return_address(0));
2650}
2651EXPORT_SYMBOL(vmalloc_node);
2652
2653/**
2654 * vzalloc_node - allocate memory on a specific node with zero fill
2655 * @size:	allocation size
2656 * @node:	numa node
2657 *
2658 * Allocate enough pages to cover @size from the page level
2659 * allocator and map them into contiguous kernel virtual space.
2660 * The memory allocated is set to zero.
2661 *
2662 * For tight control over page level allocator and protection flags
2663 * use __vmalloc_node() instead.
2664 *
2665 * Return: pointer to the allocated memory or %NULL on error
2666 */
2667void *vzalloc_node(unsigned long size, int node)
2668{
2669	return __vmalloc_node_flags(size, node,
2670			 GFP_KERNEL | __GFP_ZERO);
2671}
2672EXPORT_SYMBOL(vzalloc_node);
2673
2674/**
2675 * vmalloc_exec - allocate virtually contiguous, executable memory
2676 * @size:	  allocation size
2677 *
2678 * Kernel-internal function to allocate enough pages to cover @size
2679 * the page level allocator and map them into contiguous and
2680 * executable kernel virtual space.
2681 *
2682 * For tight control over page level allocator and protection flags
2683 * use __vmalloc() instead.
2684 *
2685 * Return: pointer to the allocated memory or %NULL on error
2686 */
2687void *vmalloc_exec(unsigned long size)
2688{
2689	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2690			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2691			NUMA_NO_NODE, __builtin_return_address(0));
2692}
2693
2694#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2695#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2696#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2697#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2698#else
2699/*
2700 * 64b systems should always have either DMA or DMA32 zones. For others
2701 * GFP_DMA32 should do the right thing and use the normal zone.
2702 */
2703#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2704#endif
2705
2706/**
2707 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2708 * @size:	allocation size
2709 *
2710 * Allocate enough 32bit PA addressable pages to cover @size from the
2711 * page level allocator and map them into contiguous kernel virtual space.
2712 *
2713 * Return: pointer to the allocated memory or %NULL on error
2714 */
2715void *vmalloc_32(unsigned long size)
2716{
2717	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2718			      NUMA_NO_NODE, __builtin_return_address(0));
2719}
2720EXPORT_SYMBOL(vmalloc_32);
2721
2722/**
2723 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2724 * @size:	     allocation size
2725 *
2726 * The resulting memory area is 32bit addressable and zeroed so it can be
2727 * mapped to userspace without leaking data.
2728 *
2729 * Return: pointer to the allocated memory or %NULL on error
2730 */
2731void *vmalloc_32_user(unsigned long size)
2732{
2733	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2734				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2735				    VM_USERMAP, NUMA_NO_NODE,
2736				    __builtin_return_address(0));
2737}
2738EXPORT_SYMBOL(vmalloc_32_user);
2739
2740/*
2741 * small helper routine , copy contents to buf from addr.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742 * If the page is not present, fill zero.
 
 
2743 */
2744
2745static int aligned_vread(char *buf, char *addr, unsigned long count)
2746{
2747	struct page *p;
2748	int copied = 0;
2749
2750	while (count) {
2751		unsigned long offset, length;
 
2752
2753		offset = offset_in_page(addr);
2754		length = PAGE_SIZE - offset;
2755		if (length > count)
2756			length = count;
2757		p = vmalloc_to_page(addr);
2758		/*
2759		 * To do safe access to this _mapped_ area, we need
2760		 * lock. But adding lock here means that we need to add
2761		 * overhead of vmalloc()/vfree() calles for this _debug_
2762		 * interface, rarely used. Instead of that, we'll use
2763		 * kmap() and get small overhead in this access function.
 
2764		 */
2765		if (p) {
2766			/*
2767			 * we can expect USER0 is not used (see vread/vwrite's
2768			 * function description)
2769			 */
2770			void *map = kmap_atomic(p);
2771			memcpy(buf, map + offset, length);
2772			kunmap_atomic(map);
2773		} else
2774			memset(buf, 0, length);
2775
2776		addr += length;
2777		buf += length;
2778		copied += length;
2779		count -= length;
2780	}
2781	return copied;
 
2782}
2783
2784static int aligned_vwrite(char *buf, char *addr, unsigned long count)
 
 
 
 
 
 
2785{
2786	struct page *p;
2787	int copied = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788
2789	while (count) {
2790		unsigned long offset, length;
 
 
 
 
 
 
 
 
 
 
2791
 
2792		offset = offset_in_page(addr);
2793		length = PAGE_SIZE - offset;
2794		if (length > count)
2795			length = count;
2796		p = vmalloc_to_page(addr);
2797		/*
2798		 * To do safe access to this _mapped_ area, we need
2799		 * lock. But adding lock here means that we need to add
2800		 * overhead of vmalloc()/vfree() calles for this _debug_
2801		 * interface, rarely used. Instead of that, we'll use
2802		 * kmap() and get small overhead in this access function.
2803		 */
2804		if (p) {
2805			/*
2806			 * we can expect USER0 is not used (see vread/vwrite's
2807			 * function description)
2808			 */
2809			void *map = kmap_atomic(p);
2810			memcpy(map + offset, buf, length);
2811			kunmap_atomic(map);
2812		}
2813		addr += length;
2814		buf += length;
2815		copied += length;
2816		count -= length;
2817	}
2818	return copied;
 
 
 
 
 
 
 
 
 
2819}
2820
2821/**
2822 * vread() - read vmalloc area in a safe way.
2823 * @buf:     buffer for reading data
2824 * @addr:    vm address.
2825 * @count:   number of bytes to be read.
2826 *
2827 * This function checks that addr is a valid vmalloc'ed area, and
2828 * copy data from that area to a given buffer. If the given memory range
2829 * of [addr...addr+count) includes some valid address, data is copied to
2830 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2831 * IOREMAP area is treated as memory hole and no copy is done.
2832 *
2833 * If [addr...addr+count) doesn't includes any intersects with alive
2834 * vm_struct area, returns 0. @buf should be kernel's buffer.
2835 *
2836 * Note: In usual ops, vread() is never necessary because the caller
2837 * should know vmalloc() area is valid and can use memcpy().
2838 * This is for routines which have to access vmalloc area without
2839 * any information, as /dev/kmem.
2840 *
2841 * Return: number of bytes for which addr and buf should be increased
2842 * (same number as @count) or %0 if [addr...addr+count) doesn't
2843 * include any intersection with valid vmalloc area
2844 */
2845long vread(char *buf, char *addr, unsigned long count)
2846{
2847	struct vmap_area *va;
2848	struct vm_struct *vm;
2849	char *vaddr, *buf_start = buf;
2850	unsigned long buflen = count;
2851	unsigned long n;
 
2852
2853	/* Don't allow overflow */
2854	if ((unsigned long) addr + count < count)
2855		count = -(unsigned long) addr;
2856
 
 
2857	spin_lock(&vmap_area_lock);
2858	list_for_each_entry(va, &vmap_area_list, list) {
2859		if (!count)
2860			break;
 
 
 
 
 
 
 
2861
2862		if (!va->vm)
2863			continue;
2864
2865		vm = va->vm;
2866		vaddr = (char *) vm->addr;
2867		if (addr >= vaddr + get_vm_area_size(vm))
 
 
 
 
 
 
2868			continue;
2869		while (addr < vaddr) {
2870			if (count == 0)
2871				goto finished;
2872			*buf = '\0';
2873			buf++;
2874			addr++;
2875			count--;
2876		}
2877		n = vaddr + get_vm_area_size(vm) - addr;
2878		if (n > count)
2879			n = count;
2880		if (!(vm->flags & VM_IOREMAP))
2881			aligned_vread(buf, addr, n);
2882		else /* IOREMAP area is treated as memory hole */
2883			memset(buf, 0, n);
2884		buf += n;
2885		addr += n;
2886		count -= n;
2887	}
2888finished:
2889	spin_unlock(&vmap_area_lock);
2890
2891	if (buf == buf_start)
2892		return 0;
2893	/* zero-fill memory holes */
2894	if (buf != buf_start + buflen)
2895		memset(buf, 0, buflen - (buf - buf_start));
2896
2897	return buflen;
2898}
2899
2900/**
2901 * vwrite() - write vmalloc area in a safe way.
2902 * @buf:      buffer for source data
2903 * @addr:     vm address.
2904 * @count:    number of bytes to be read.
2905 *
2906 * This function checks that addr is a valid vmalloc'ed area, and
2907 * copy data from a buffer to the given addr. If specified range of
2908 * [addr...addr+count) includes some valid address, data is copied from
2909 * proper area of @buf. If there are memory holes, no copy to hole.
2910 * IOREMAP area is treated as memory hole and no copy is done.
2911 *
2912 * If [addr...addr+count) doesn't includes any intersects with alive
2913 * vm_struct area, returns 0. @buf should be kernel's buffer.
2914 *
2915 * Note: In usual ops, vwrite() is never necessary because the caller
2916 * should know vmalloc() area is valid and can use memcpy().
2917 * This is for routines which have to access vmalloc area without
2918 * any information, as /dev/kmem.
2919 *
2920 * Return: number of bytes for which addr and buf should be
2921 * increased (same number as @count) or %0 if [addr...addr+count)
2922 * doesn't include any intersection with valid vmalloc area
2923 */
2924long vwrite(char *buf, char *addr, unsigned long count)
2925{
2926	struct vmap_area *va;
2927	struct vm_struct *vm;
2928	char *vaddr;
2929	unsigned long n, buflen;
2930	int copied = 0;
2931
2932	/* Don't allow overflow */
2933	if ((unsigned long) addr + count < count)
2934		count = -(unsigned long) addr;
2935	buflen = count;
2936
2937	spin_lock(&vmap_area_lock);
2938	list_for_each_entry(va, &vmap_area_list, list) {
2939		if (!count)
2940			break;
2941
2942		if (!va->vm)
2943			continue;
2944
2945		vm = va->vm;
2946		vaddr = (char *) vm->addr;
2947		if (addr >= vaddr + get_vm_area_size(vm))
2948			continue;
2949		while (addr < vaddr) {
2950			if (count == 0)
2951				goto finished;
2952			buf++;
2953			addr++;
2954			count--;
2955		}
2956		n = vaddr + get_vm_area_size(vm) - addr;
2957		if (n > count)
2958			n = count;
2959		if (!(vm->flags & VM_IOREMAP)) {
2960			aligned_vwrite(buf, addr, n);
2961			copied++;
2962		}
2963		buf += n;
2964		addr += n;
2965		count -= n;
 
 
 
 
2966	}
 
 
 
 
 
2967finished:
 
2968	spin_unlock(&vmap_area_lock);
2969	if (!copied)
2970		return 0;
2971	return buflen;
2972}
2973
2974/**
2975 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2976 * @vma:		vma to cover
2977 * @uaddr:		target user address to start at
2978 * @kaddr:		virtual address of vmalloc kernel memory
 
2979 * @size:		size of map area
2980 *
2981 * Returns:	0 for success, -Exxx on failure
2982 *
2983 * This function checks that @kaddr is a valid vmalloc'ed area,
2984 * and that it is big enough to cover the range starting at
2985 * @uaddr in @vma. Will return failure if that criteria isn't
2986 * met.
2987 *
2988 * Similar to remap_pfn_range() (see mm/memory.c)
2989 */
2990int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2991				void *kaddr, unsigned long size)
 
2992{
2993	struct vm_struct *area;
 
 
 
 
 
2994
2995	size = PAGE_ALIGN(size);
2996
2997	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2998		return -EINVAL;
2999
3000	area = find_vm_area(kaddr);
3001	if (!area)
3002		return -EINVAL;
3003
3004	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3005		return -EINVAL;
3006
3007	if (kaddr + size > area->addr + get_vm_area_size(area))
 
3008		return -EINVAL;
 
3009
3010	do {
3011		struct page *page = vmalloc_to_page(kaddr);
3012		int ret;
3013
3014		ret = vm_insert_page(vma, uaddr, page);
3015		if (ret)
3016			return ret;
3017
3018		uaddr += PAGE_SIZE;
3019		kaddr += PAGE_SIZE;
3020		size -= PAGE_SIZE;
3021	} while (size > 0);
3022
3023	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3024
3025	return 0;
3026}
3027EXPORT_SYMBOL(remap_vmalloc_range_partial);
3028
3029/**
3030 * remap_vmalloc_range - map vmalloc pages to userspace
3031 * @vma:		vma to cover (map full range of vma)
3032 * @addr:		vmalloc memory
3033 * @pgoff:		number of pages into addr before first page to map
3034 *
3035 * Returns:	0 for success, -Exxx on failure
3036 *
3037 * This function checks that addr is a valid vmalloc'ed area, and
3038 * that it is big enough to cover the vma. Will return failure if
3039 * that criteria isn't met.
3040 *
3041 * Similar to remap_pfn_range() (see mm/memory.c)
3042 */
3043int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3044						unsigned long pgoff)
3045{
3046	return remap_vmalloc_range_partial(vma, vma->vm_start,
3047					   addr + (pgoff << PAGE_SHIFT),
3048					   vma->vm_end - vma->vm_start);
3049}
3050EXPORT_SYMBOL(remap_vmalloc_range);
3051
3052/*
3053 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3054 * have one.
3055 *
3056 * The purpose of this function is to make sure the vmalloc area
3057 * mappings are identical in all page-tables in the system.
3058 */
3059void __weak vmalloc_sync_all(void)
3060{
3061}
3062
3063
3064static int f(pte_t *pte, unsigned long addr, void *data)
3065{
3066	pte_t ***p = data;
3067
3068	if (p) {
3069		*(*p) = pte;
3070		(*p)++;
3071	}
3072	return 0;
3073}
3074
3075/**
3076 * alloc_vm_area - allocate a range of kernel address space
3077 * @size:	   size of the area
3078 * @ptes:	   returns the PTEs for the address space
3079 *
3080 * Returns:	NULL on failure, vm_struct on success
3081 *
3082 * This function reserves a range of kernel address space, and
3083 * allocates pagetables to map that range.  No actual mappings
3084 * are created.
3085 *
3086 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3087 * allocated for the VM area are returned.
3088 */
3089struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3090{
3091	struct vm_struct *area;
3092
3093	area = get_vm_area_caller(size, VM_IOREMAP,
3094				__builtin_return_address(0));
3095	if (area == NULL)
3096		return NULL;
3097
3098	/*
3099	 * This ensures that page tables are constructed for this region
3100	 * of kernel virtual address space and mapped into init_mm.
3101	 */
3102	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3103				size, f, ptes ? &ptes : NULL)) {
3104		free_vm_area(area);
3105		return NULL;
3106	}
3107
3108	return area;
3109}
3110EXPORT_SYMBOL_GPL(alloc_vm_area);
3111
3112void free_vm_area(struct vm_struct *area)
3113{
3114	struct vm_struct *ret;
3115	ret = remove_vm_area(area->addr);
3116	BUG_ON(ret != area);
3117	kfree(area);
3118}
3119EXPORT_SYMBOL_GPL(free_vm_area);
3120
3121#ifdef CONFIG_SMP
3122static struct vmap_area *node_to_va(struct rb_node *n)
3123{
3124	return rb_entry_safe(n, struct vmap_area, rb_node);
3125}
3126
3127/**
3128 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3129 * @addr: target address
3130 *
3131 * Returns: vmap_area if it is found. If there is no such area
3132 *   the first highest(reverse order) vmap_area is returned
3133 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3134 *   if there are no any areas before @addr.
3135 */
3136static struct vmap_area *
3137pvm_find_va_enclose_addr(unsigned long addr)
3138{
3139	struct vmap_area *va, *tmp;
3140	struct rb_node *n;
3141
3142	n = free_vmap_area_root.rb_node;
3143	va = NULL;
3144
3145	while (n) {
3146		tmp = rb_entry(n, struct vmap_area, rb_node);
3147		if (tmp->va_start <= addr) {
3148			va = tmp;
3149			if (tmp->va_end >= addr)
3150				break;
3151
3152			n = n->rb_right;
3153		} else {
3154			n = n->rb_left;
3155		}
3156	}
3157
3158	return va;
3159}
3160
3161/**
3162 * pvm_determine_end_from_reverse - find the highest aligned address
3163 * of free block below VMALLOC_END
3164 * @va:
3165 *   in - the VA we start the search(reverse order);
3166 *   out - the VA with the highest aligned end address.
 
3167 *
3168 * Returns: determined end address within vmap_area
3169 */
3170static unsigned long
3171pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3172{
3173	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3174	unsigned long addr;
3175
3176	if (likely(*va)) {
3177		list_for_each_entry_from_reverse((*va),
3178				&free_vmap_area_list, list) {
3179			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3180			if ((*va)->va_start < addr)
3181				return addr;
3182		}
3183	}
3184
3185	return 0;
3186}
3187
3188/**
3189 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3190 * @offsets: array containing offset of each area
3191 * @sizes: array containing size of each area
3192 * @nr_vms: the number of areas to allocate
3193 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3194 *
3195 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3196 *	    vm_structs on success, %NULL on failure
3197 *
3198 * Percpu allocator wants to use congruent vm areas so that it can
3199 * maintain the offsets among percpu areas.  This function allocates
3200 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3201 * be scattered pretty far, distance between two areas easily going up
3202 * to gigabytes.  To avoid interacting with regular vmallocs, these
3203 * areas are allocated from top.
3204 *
3205 * Despite its complicated look, this allocator is rather simple. It
3206 * does everything top-down and scans free blocks from the end looking
3207 * for matching base. While scanning, if any of the areas do not fit the
3208 * base address is pulled down to fit the area. Scanning is repeated till
3209 * all the areas fit and then all necessary data structures are inserted
3210 * and the result is returned.
3211 */
3212struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3213				     const size_t *sizes, int nr_vms,
3214				     size_t align)
3215{
3216	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3217	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3218	struct vmap_area **vas, *va;
3219	struct vm_struct **vms;
3220	int area, area2, last_area, term_area;
3221	unsigned long base, start, size, end, last_end;
3222	bool purged = false;
3223	enum fit_type type;
3224
3225	/* verify parameters and allocate data structures */
3226	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3227	for (last_area = 0, area = 0; area < nr_vms; area++) {
3228		start = offsets[area];
3229		end = start + sizes[area];
3230
3231		/* is everything aligned properly? */
3232		BUG_ON(!IS_ALIGNED(offsets[area], align));
3233		BUG_ON(!IS_ALIGNED(sizes[area], align));
3234
3235		/* detect the area with the highest address */
3236		if (start > offsets[last_area])
3237			last_area = area;
3238
3239		for (area2 = area + 1; area2 < nr_vms; area2++) {
3240			unsigned long start2 = offsets[area2];
3241			unsigned long end2 = start2 + sizes[area2];
3242
3243			BUG_ON(start2 < end && start < end2);
3244		}
3245	}
3246	last_end = offsets[last_area] + sizes[last_area];
3247
3248	if (vmalloc_end - vmalloc_start < last_end) {
3249		WARN_ON(true);
3250		return NULL;
3251	}
3252
3253	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3254	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3255	if (!vas || !vms)
3256		goto err_free2;
3257
3258	for (area = 0; area < nr_vms; area++) {
3259		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3260		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3261		if (!vas[area] || !vms[area])
3262			goto err_free;
3263	}
3264retry:
3265	spin_lock(&vmap_area_lock);
3266
3267	/* start scanning - we scan from the top, begin with the last area */
3268	area = term_area = last_area;
3269	start = offsets[area];
3270	end = start + sizes[area];
3271
3272	va = pvm_find_va_enclose_addr(vmalloc_end);
3273	base = pvm_determine_end_from_reverse(&va, align) - end;
3274
3275	while (true) {
3276		/*
3277		 * base might have underflowed, add last_end before
3278		 * comparing.
3279		 */
3280		if (base + last_end < vmalloc_start + last_end)
3281			goto overflow;
3282
3283		/*
3284		 * Fitting base has not been found.
3285		 */
3286		if (va == NULL)
3287			goto overflow;
3288
3289		/*
3290		 * If required width exeeds current VA block, move
3291		 * base downwards and then recheck.
3292		 */
3293		if (base + end > va->va_end) {
3294			base = pvm_determine_end_from_reverse(&va, align) - end;
3295			term_area = area;
3296			continue;
3297		}
3298
3299		/*
3300		 * If this VA does not fit, move base downwards and recheck.
3301		 */
3302		if (base + start < va->va_start) {
3303			va = node_to_va(rb_prev(&va->rb_node));
3304			base = pvm_determine_end_from_reverse(&va, align) - end;
3305			term_area = area;
3306			continue;
3307		}
3308
3309		/*
3310		 * This area fits, move on to the previous one.  If
3311		 * the previous one is the terminal one, we're done.
3312		 */
3313		area = (area + nr_vms - 1) % nr_vms;
3314		if (area == term_area)
3315			break;
3316
3317		start = offsets[area];
3318		end = start + sizes[area];
3319		va = pvm_find_va_enclose_addr(base + end);
3320	}
3321
3322	/* we've found a fitting base, insert all va's */
3323	for (area = 0; area < nr_vms; area++) {
3324		int ret;
3325
3326		start = base + offsets[area];
3327		size = sizes[area];
3328
3329		va = pvm_find_va_enclose_addr(start);
3330		if (WARN_ON_ONCE(va == NULL))
3331			/* It is a BUG(), but trigger recovery instead. */
3332			goto recovery;
3333
3334		type = classify_va_fit_type(va, start, size);
3335		if (WARN_ON_ONCE(type == NOTHING_FIT))
 
 
3336			/* It is a BUG(), but trigger recovery instead. */
3337			goto recovery;
3338
3339		ret = adjust_va_to_fit_type(va, start, size, type);
3340		if (unlikely(ret))
3341			goto recovery;
3342
3343		/* Allocated area. */
3344		va = vas[area];
3345		va->va_start = start;
3346		va->va_end = start + size;
 
3347
3348		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 
 
 
 
 
3349	}
3350
 
 
 
 
 
 
 
 
3351	spin_unlock(&vmap_area_lock);
3352
3353	/* insert all vm's */
 
 
 
 
 
3354	for (area = 0; area < nr_vms; area++)
3355		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3356				 pcpu_get_vm_areas);
3357
3358	kfree(vas);
3359	return vms;
3360
3361recovery:
3362	/* Remove previously inserted areas. */
 
 
 
 
 
3363	while (area--) {
3364		__free_vmap_area(vas[area]);
 
 
 
 
 
 
3365		vas[area] = NULL;
3366	}
3367
3368overflow:
3369	spin_unlock(&vmap_area_lock);
3370	if (!purged) {
3371		purge_vmap_area_lazy();
3372		purged = true;
3373
3374		/* Before "retry", check if we recover. */
3375		for (area = 0; area < nr_vms; area++) {
3376			if (vas[area])
3377				continue;
3378
3379			vas[area] = kmem_cache_zalloc(
3380				vmap_area_cachep, GFP_KERNEL);
3381			if (!vas[area])
3382				goto err_free;
3383		}
3384
3385		goto retry;
3386	}
3387
3388err_free:
3389	for (area = 0; area < nr_vms; area++) {
3390		if (vas[area])
3391			kmem_cache_free(vmap_area_cachep, vas[area]);
3392
3393		kfree(vms[area]);
3394	}
3395err_free2:
3396	kfree(vas);
3397	kfree(vms);
3398	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399}
3400
3401/**
3402 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3403 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3404 * @nr_vms: the number of allocated areas
3405 *
3406 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3407 */
3408void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3409{
3410	int i;
3411
3412	for (i = 0; i < nr_vms; i++)
3413		free_vm_area(vms[i]);
3414	kfree(vms);
3415}
3416#endif	/* CONFIG_SMP */
3417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418#ifdef CONFIG_PROC_FS
3419static void *s_start(struct seq_file *m, loff_t *pos)
 
3420	__acquires(&vmap_area_lock)
3421{
 
3422	spin_lock(&vmap_area_lock);
 
3423	return seq_list_start(&vmap_area_list, *pos);
3424}
3425
3426static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3427{
3428	return seq_list_next(p, &vmap_area_list, pos);
3429}
3430
3431static void s_stop(struct seq_file *m, void *p)
3432	__releases(&vmap_area_lock)
 
3433{
3434	spin_unlock(&vmap_area_lock);
 
3435}
3436
3437static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3438{
3439	if (IS_ENABLED(CONFIG_NUMA)) {
3440		unsigned int nr, *counters = m->private;
 
3441
3442		if (!counters)
3443			return;
3444
3445		if (v->flags & VM_UNINITIALIZED)
3446			return;
3447		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3448		smp_rmb();
3449
3450		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3451
3452		for (nr = 0; nr < v->nr_pages; nr++)
3453			counters[page_to_nid(v->pages[nr])]++;
3454
3455		for_each_node_state(nr, N_HIGH_MEMORY)
3456			if (counters[nr])
3457				seq_printf(m, " N%u=%u", nr, counters[nr]);
3458	}
3459}
3460
3461static void show_purge_info(struct seq_file *m)
3462{
3463	struct llist_node *head;
3464	struct vmap_area *va;
3465
3466	head = READ_ONCE(vmap_purge_list.first);
3467	if (head == NULL)
3468		return;
3469
3470	llist_for_each_entry(va, head, purge_list) {
3471		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3472			(void *)va->va_start, (void *)va->va_end,
3473			va->va_end - va->va_start);
3474	}
 
3475}
3476
3477static int s_show(struct seq_file *m, void *p)
3478{
3479	struct vmap_area *va;
3480	struct vm_struct *v;
3481
3482	va = list_entry(p, struct vmap_area, list);
3483
3484	/*
3485	 * s_show can encounter race with remove_vm_area, !vm on behalf
3486	 * of vmap area is being tear down or vm_map_ram allocation.
3487	 */
3488	if (!va->vm) {
3489		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3490			(void *)va->va_start, (void *)va->va_end,
3491			va->va_end - va->va_start);
 
3492
3493		return 0;
3494	}
3495
3496	v = va->vm;
3497
3498	seq_printf(m, "0x%pK-0x%pK %7ld",
3499		v->addr, v->addr + v->size, v->size);
3500
3501	if (v->caller)
3502		seq_printf(m, " %pS", v->caller);
3503
3504	if (v->nr_pages)
3505		seq_printf(m, " pages=%d", v->nr_pages);
3506
3507	if (v->phys_addr)
3508		seq_printf(m, " phys=%pa", &v->phys_addr);
3509
3510	if (v->flags & VM_IOREMAP)
3511		seq_puts(m, " ioremap");
3512
3513	if (v->flags & VM_ALLOC)
3514		seq_puts(m, " vmalloc");
3515
3516	if (v->flags & VM_MAP)
3517		seq_puts(m, " vmap");
3518
3519	if (v->flags & VM_USERMAP)
3520		seq_puts(m, " user");
3521
3522	if (v->flags & VM_DMA_COHERENT)
3523		seq_puts(m, " dma-coherent");
3524
3525	if (is_vmalloc_addr(v->pages))
3526		seq_puts(m, " vpages");
3527
3528	show_numa_info(m, v);
3529	seq_putc(m, '\n');
3530
3531	/*
3532	 * As a final step, dump "unpurged" areas. Note,
3533	 * that entire "/proc/vmallocinfo" output will not
3534	 * be address sorted, because the purge list is not
3535	 * sorted.
3536	 */
 
3537	if (list_is_last(&va->list, &vmap_area_list))
3538		show_purge_info(m);
3539
3540	return 0;
3541}
3542
3543static const struct seq_operations vmalloc_op = {
3544	.start = s_start,
3545	.next = s_next,
3546	.stop = s_stop,
3547	.show = s_show,
3548};
3549
3550static int __init proc_vmalloc_init(void)
3551{
3552	if (IS_ENABLED(CONFIG_NUMA))
3553		proc_create_seq_private("vmallocinfo", 0400, NULL,
3554				&vmalloc_op,
3555				nr_node_ids * sizeof(unsigned int), NULL);
3556	else
3557		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3558	return 0;
3559}
3560module_init(proc_vmalloc_init);
3561
3562#endif