Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Red Hat, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_alloc.h"
 15#include "xfs_btree.h"
 16#include "xfs_btree_staging.h"
 17#include "xfs_rmap.h"
 18#include "xfs_rmap_btree.h"
 19#include "xfs_trace.h"
 20#include "xfs_error.h"
 21#include "xfs_extent_busy.h"
 22#include "xfs_ag.h"
 23#include "xfs_ag_resv.h"
 24
 25static struct kmem_cache	*xfs_rmapbt_cur_cache;
 26
 27/*
 28 * Reverse map btree.
 29 *
 30 * This is a per-ag tree used to track the owner(s) of a given extent. With
 31 * reflink it is possible for there to be multiple owners, which is a departure
 32 * from classic XFS. Owner records for data extents are inserted when the
 33 * extent is mapped and removed when an extent is unmapped.  Owner records for
 34 * all other block types (i.e. metadata) are inserted when an extent is
 35 * allocated and removed when an extent is freed. There can only be one owner
 36 * of a metadata extent, usually an inode or some other metadata structure like
 37 * an AG btree.
 38 *
 39 * The rmap btree is part of the free space management, so blocks for the tree
 40 * are sourced from the agfl. Hence we need transaction reservation support for
 41 * this tree so that the freelist is always large enough. This also impacts on
 42 * the minimum space we need to leave free in the AG.
 43 *
 44 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 45 * but it is the only way to enforce unique keys when a block can be owned by
 46 * multiple files at any offset. There's no need to order/search by extent
 47 * size for online updating/management of the tree. It is intended that most
 48 * reverse lookups will be to find the owner(s) of a particular block, or to
 49 * try to recover tree and file data from corrupt primary metadata.
 50 */
 51
 52static struct xfs_btree_cur *
 53xfs_rmapbt_dup_cursor(
 54	struct xfs_btree_cur	*cur)
 55{
 56	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 57				cur->bc_ag.agbp, cur->bc_ag.pag);
 58}
 59
 60STATIC void
 61xfs_rmapbt_set_root(
 62	struct xfs_btree_cur		*cur,
 63	const union xfs_btree_ptr	*ptr,
 64	int				inc)
 65{
 66	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 67	struct xfs_agf		*agf = agbp->b_addr;
 
 68	int			btnum = cur->bc_btnum;
 
 69
 70	ASSERT(ptr->s != 0);
 71
 72	agf->agf_roots[btnum] = ptr->s;
 73	be32_add_cpu(&agf->agf_levels[btnum], inc);
 74	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 
 75
 76	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 77}
 78
 79STATIC int
 80xfs_rmapbt_alloc_block(
 81	struct xfs_btree_cur		*cur,
 82	const union xfs_btree_ptr	*start,
 83	union xfs_btree_ptr		*new,
 84	int				*stat)
 85{
 86	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 87	struct xfs_agf		*agf = agbp->b_addr;
 88	struct xfs_perag	*pag = cur->bc_ag.pag;
 89	int			error;
 90	xfs_agblock_t		bno;
 91
 92	/* Allocate the new block from the freelist. If we can't, give up.  */
 93	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
 94				       &bno, 1);
 95	if (error)
 96		return error;
 97
 98	trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
 
 99	if (bno == NULLAGBLOCK) {
100		*stat = 0;
101		return 0;
102	}
103
104	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
 
105
 
106	new->s = cpu_to_be32(bno);
107	be32_add_cpu(&agf->agf_rmap_blocks, 1);
108	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
109
110	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
111
112	*stat = 1;
113	return 0;
114}
115
116STATIC int
117xfs_rmapbt_free_block(
118	struct xfs_btree_cur	*cur,
119	struct xfs_buf		*bp)
120{
121	struct xfs_buf		*agbp = cur->bc_ag.agbp;
122	struct xfs_agf		*agf = agbp->b_addr;
123	struct xfs_perag	*pag = cur->bc_ag.pag;
124	xfs_agblock_t		bno;
125	int			error;
126
127	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
128	trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
129			bno, 1);
130	be32_add_cpu(&agf->agf_rmap_blocks, -1);
131	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
132	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
133	if (error)
134		return error;
135
136	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
137			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 
 
 
138
139	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
140	return 0;
141}
142
143STATIC int
144xfs_rmapbt_get_minrecs(
145	struct xfs_btree_cur	*cur,
146	int			level)
147{
148	return cur->bc_mp->m_rmap_mnr[level != 0];
149}
150
151STATIC int
152xfs_rmapbt_get_maxrecs(
153	struct xfs_btree_cur	*cur,
154	int			level)
155{
156	return cur->bc_mp->m_rmap_mxr[level != 0];
157}
158
159/*
160 * Convert the ondisk record's offset field into the ondisk key's offset field.
161 * Fork and bmbt are significant parts of the rmap record key, but written
162 * status is merely a record attribute.
163 */
164static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
165{
166	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
167}
168
169STATIC void
170xfs_rmapbt_init_key_from_rec(
171	union xfs_btree_key		*key,
172	const union xfs_btree_rec	*rec)
173{
174	key->rmap.rm_startblock = rec->rmap.rm_startblock;
175	key->rmap.rm_owner = rec->rmap.rm_owner;
176	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
177}
178
179/*
180 * The high key for a reverse mapping record can be computed by shifting
181 * the startblock and offset to the highest value that would still map
182 * to that record.  In practice this means that we add blockcount-1 to
183 * the startblock for all records, and if the record is for a data/attr
184 * fork mapping, we add blockcount-1 to the offset too.
185 */
186STATIC void
187xfs_rmapbt_init_high_key_from_rec(
188	union xfs_btree_key		*key,
189	const union xfs_btree_rec	*rec)
190{
191	uint64_t			off;
192	int				adj;
193
194	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
195
196	key->rmap.rm_startblock = rec->rmap.rm_startblock;
197	be32_add_cpu(&key->rmap.rm_startblock, adj);
198	key->rmap.rm_owner = rec->rmap.rm_owner;
199	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
200	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
201	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
202		return;
203	off = be64_to_cpu(key->rmap.rm_offset);
204	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
205	key->rmap.rm_offset = cpu_to_be64(off);
206}
207
208STATIC void
209xfs_rmapbt_init_rec_from_cur(
210	struct xfs_btree_cur	*cur,
211	union xfs_btree_rec	*rec)
212{
213	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
214	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
215	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
216	rec->rmap.rm_offset = cpu_to_be64(
217			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
218}
219
220STATIC void
221xfs_rmapbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232/*
233 * Mask the appropriate parts of the ondisk key field for a key comparison.
234 * Fork and bmbt are significant parts of the rmap record key, but written
235 * status is merely a record attribute.
236 */
237static inline uint64_t offset_keymask(uint64_t offset)
238{
239	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
240}
241
242STATIC int64_t
243xfs_rmapbt_key_diff(
244	struct xfs_btree_cur		*cur,
245	const union xfs_btree_key	*key)
246{
247	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
248	const struct xfs_rmap_key	*kp = &key->rmap;
249	__u64				x, y;
250	int64_t				d;
251
252	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
253	if (d)
254		return d;
255
256	x = be64_to_cpu(kp->rm_owner);
257	y = rec->rm_owner;
258	if (x > y)
259		return 1;
260	else if (y > x)
261		return -1;
262
263	x = offset_keymask(be64_to_cpu(kp->rm_offset));
264	y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
265	if (x > y)
266		return 1;
267	else if (y > x)
268		return -1;
269	return 0;
270}
271
272STATIC int64_t
273xfs_rmapbt_diff_two_keys(
274	struct xfs_btree_cur		*cur,
275	const union xfs_btree_key	*k1,
276	const union xfs_btree_key	*k2,
277	const union xfs_btree_key	*mask)
278{
279	const struct xfs_rmap_key	*kp1 = &k1->rmap;
280	const struct xfs_rmap_key	*kp2 = &k2->rmap;
281	int64_t				d;
282	__u64				x, y;
283
284	/* Doesn't make sense to mask off the physical space part */
285	ASSERT(!mask || mask->rmap.rm_startblock);
286
287	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
288		     be32_to_cpu(kp2->rm_startblock);
289	if (d)
290		return d;
291
292	if (!mask || mask->rmap.rm_owner) {
293		x = be64_to_cpu(kp1->rm_owner);
294		y = be64_to_cpu(kp2->rm_owner);
295		if (x > y)
296			return 1;
297		else if (y > x)
298			return -1;
299	}
300
301	if (!mask || mask->rmap.rm_offset) {
302		/* Doesn't make sense to allow offset but not owner */
303		ASSERT(!mask || mask->rmap.rm_owner);
304
305		x = offset_keymask(be64_to_cpu(kp1->rm_offset));
306		y = offset_keymask(be64_to_cpu(kp2->rm_offset));
307		if (x > y)
308			return 1;
309		else if (y > x)
310			return -1;
311	}
312
 
 
 
 
 
 
313	return 0;
314}
315
316static xfs_failaddr_t
317xfs_rmapbt_verify(
318	struct xfs_buf		*bp)
319{
320	struct xfs_mount	*mp = bp->b_mount;
321	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
322	struct xfs_perag	*pag = bp->b_pag;
323	xfs_failaddr_t		fa;
324	unsigned int		level;
325
326	/*
327	 * magic number and level verification
328	 *
329	 * During growfs operations, we can't verify the exact level or owner as
330	 * the perag is not fully initialised and hence not attached to the
331	 * buffer.  In this case, check against the maximum tree depth.
332	 *
333	 * Similarly, during log recovery we will have a perag structure
334	 * attached, but the agf information will not yet have been initialised
335	 * from the on disk AGF. Again, we can only check against maximum limits
336	 * in this case.
337	 */
338	if (!xfs_verify_magic(bp, block->bb_magic))
339		return __this_address;
340
341	if (!xfs_has_rmapbt(mp))
342		return __this_address;
343	fa = xfs_btree_sblock_v5hdr_verify(bp);
344	if (fa)
345		return fa;
346
347	level = be16_to_cpu(block->bb_level);
348	if (pag && xfs_perag_initialised_agf(pag)) {
349		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
350			return __this_address;
351	} else if (level >= mp->m_rmap_maxlevels)
352		return __this_address;
353
354	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
355}
356
357static void
358xfs_rmapbt_read_verify(
359	struct xfs_buf	*bp)
360{
361	xfs_failaddr_t	fa;
362
363	if (!xfs_btree_sblock_verify_crc(bp))
364		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
365	else {
366		fa = xfs_rmapbt_verify(bp);
367		if (fa)
368			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
369	}
370
371	if (bp->b_error)
372		trace_xfs_btree_corrupt(bp, _RET_IP_);
373}
374
375static void
376xfs_rmapbt_write_verify(
377	struct xfs_buf	*bp)
378{
379	xfs_failaddr_t	fa;
380
381	fa = xfs_rmapbt_verify(bp);
382	if (fa) {
383		trace_xfs_btree_corrupt(bp, _RET_IP_);
384		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
385		return;
386	}
387	xfs_btree_sblock_calc_crc(bp);
388
389}
390
391const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
392	.name			= "xfs_rmapbt",
393	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
394	.verify_read		= xfs_rmapbt_read_verify,
395	.verify_write		= xfs_rmapbt_write_verify,
396	.verify_struct		= xfs_rmapbt_verify,
397};
398
399STATIC int
400xfs_rmapbt_keys_inorder(
401	struct xfs_btree_cur		*cur,
402	const union xfs_btree_key	*k1,
403	const union xfs_btree_key	*k2)
404{
405	uint32_t		x;
406	uint32_t		y;
407	uint64_t		a;
408	uint64_t		b;
409
410	x = be32_to_cpu(k1->rmap.rm_startblock);
411	y = be32_to_cpu(k2->rmap.rm_startblock);
412	if (x < y)
413		return 1;
414	else if (x > y)
415		return 0;
416	a = be64_to_cpu(k1->rmap.rm_owner);
417	b = be64_to_cpu(k2->rmap.rm_owner);
418	if (a < b)
419		return 1;
420	else if (a > b)
421		return 0;
422	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
423	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
424	if (a <= b)
425		return 1;
426	return 0;
427}
428
429STATIC int
430xfs_rmapbt_recs_inorder(
431	struct xfs_btree_cur		*cur,
432	const union xfs_btree_rec	*r1,
433	const union xfs_btree_rec	*r2)
434{
435	uint32_t		x;
436	uint32_t		y;
437	uint64_t		a;
438	uint64_t		b;
439
440	x = be32_to_cpu(r1->rmap.rm_startblock);
441	y = be32_to_cpu(r2->rmap.rm_startblock);
442	if (x < y)
443		return 1;
444	else if (x > y)
445		return 0;
446	a = be64_to_cpu(r1->rmap.rm_owner);
447	b = be64_to_cpu(r2->rmap.rm_owner);
448	if (a < b)
449		return 1;
450	else if (a > b)
451		return 0;
452	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
453	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
454	if (a <= b)
455		return 1;
456	return 0;
457}
458
459STATIC enum xbtree_key_contig
460xfs_rmapbt_keys_contiguous(
461	struct xfs_btree_cur		*cur,
462	const union xfs_btree_key	*key1,
463	const union xfs_btree_key	*key2,
464	const union xfs_btree_key	*mask)
465{
466	ASSERT(!mask || mask->rmap.rm_startblock);
467
468	/*
469	 * We only support checking contiguity of the physical space component.
470	 * If any callers ever need more specificity than that, they'll have to
471	 * implement it here.
472	 */
473	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
474
475	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
476				 be32_to_cpu(key2->rmap.rm_startblock));
477}
478
479static const struct xfs_btree_ops xfs_rmapbt_ops = {
480	.rec_len		= sizeof(struct xfs_rmap_rec),
481	.key_len		= 2 * sizeof(struct xfs_rmap_key),
482
483	.dup_cursor		= xfs_rmapbt_dup_cursor,
484	.set_root		= xfs_rmapbt_set_root,
485	.alloc_block		= xfs_rmapbt_alloc_block,
486	.free_block		= xfs_rmapbt_free_block,
487	.get_minrecs		= xfs_rmapbt_get_minrecs,
488	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
489	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
490	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
491	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
492	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
493	.key_diff		= xfs_rmapbt_key_diff,
494	.buf_ops		= &xfs_rmapbt_buf_ops,
495	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
496	.keys_inorder		= xfs_rmapbt_keys_inorder,
497	.recs_inorder		= xfs_rmapbt_recs_inorder,
498	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
499};
500
501static struct xfs_btree_cur *
502xfs_rmapbt_init_common(
503	struct xfs_mount	*mp,
504	struct xfs_trans	*tp,
505	struct xfs_perag	*pag)
506{
507	struct xfs_btree_cur	*cur;
508
509	/* Overlapping btree; 2 keys per pointer. */
510	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RMAP,
511			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
512	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
513	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
514	cur->bc_ops = &xfs_rmapbt_ops;
515
516	cur->bc_ag.pag = xfs_perag_hold(pag);
517	return cur;
518}
519
520/* Create a new reverse mapping btree cursor. */
521struct xfs_btree_cur *
522xfs_rmapbt_init_cursor(
523	struct xfs_mount	*mp,
524	struct xfs_trans	*tp,
525	struct xfs_buf		*agbp,
526	struct xfs_perag	*pag)
527{
528	struct xfs_agf		*agf = agbp->b_addr;
529	struct xfs_btree_cur	*cur;
530
531	cur = xfs_rmapbt_init_common(mp, tp, pag);
 
 
 
 
 
 
 
532	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
533	cur->bc_ag.agbp = agbp;
534	return cur;
535}
536
537/* Create a new reverse mapping btree cursor with a fake root for staging. */
538struct xfs_btree_cur *
539xfs_rmapbt_stage_cursor(
540	struct xfs_mount	*mp,
541	struct xbtree_afakeroot	*afake,
542	struct xfs_perag	*pag)
543{
544	struct xfs_btree_cur	*cur;
545
546	cur = xfs_rmapbt_init_common(mp, NULL, pag);
547	xfs_btree_stage_afakeroot(cur, afake);
548	return cur;
549}
550
551/*
552 * Install a new reverse mapping btree root.  Caller is responsible for
553 * invalidating and freeing the old btree blocks.
554 */
555void
556xfs_rmapbt_commit_staged_btree(
557	struct xfs_btree_cur	*cur,
558	struct xfs_trans	*tp,
559	struct xfs_buf		*agbp)
560{
561	struct xfs_agf		*agf = agbp->b_addr;
562	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
563
564	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
565
566	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
567	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
568	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
569	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
570				    XFS_AGF_RMAP_BLOCKS);
571	xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
572}
573
574/* Calculate number of records in a reverse mapping btree block. */
575static inline unsigned int
576xfs_rmapbt_block_maxrecs(
577	unsigned int		blocklen,
578	bool			leaf)
579{
580	if (leaf)
581		return blocklen / sizeof(struct xfs_rmap_rec);
582	return blocklen /
583		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
584}
585
586/*
587 * Calculate number of records in an rmap btree block.
588 */
589int
590xfs_rmapbt_maxrecs(
591	int			blocklen,
592	int			leaf)
593{
594	blocklen -= XFS_RMAP_BLOCK_LEN;
595	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
596}
597
598/* Compute the max possible height for reverse mapping btrees. */
599unsigned int
600xfs_rmapbt_maxlevels_ondisk(void)
601{
602	unsigned int		minrecs[2];
603	unsigned int		blocklen;
604
605	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
606
607	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
608	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
609
610	/*
611	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
612	 *
613	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
614	 * refcount record format) owners, which means that theoretically we
615	 * could face up to 2^64 rmap records.  However, we're likely to run
616	 * out of blocks in the AG long before that happens, which means that
617	 * we must compute the max height based on what the btree will look
618	 * like if it consumes almost all the blocks in the AG due to maximal
619	 * sharing factor.
620	 */
621	return xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS);
622}
623
624/* Compute the maximum height of an rmap btree. */
625void
626xfs_rmapbt_compute_maxlevels(
627	struct xfs_mount		*mp)
628{
629	if (!xfs_has_rmapbt(mp)) {
630		mp->m_rmap_maxlevels = 0;
631		return;
632	}
633
634	if (xfs_has_reflink(mp)) {
635		/*
636		 * Compute the asymptotic maxlevels for an rmap btree on a
637		 * filesystem that supports reflink.
638		 *
639		 * On a reflink filesystem, each AG block can have up to 2^32
640		 * (per the refcount record format) owners, which means that
641		 * theoretically we could face up to 2^64 rmap records.
642		 * However, we're likely to run out of blocks in the AG long
643		 * before that happens, which means that we must compute the
644		 * max height based on what the btree will look like if it
645		 * consumes almost all the blocks in the AG due to maximal
646		 * sharing factor.
647		 */
648		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
649				mp->m_sb.sb_agblocks);
650	} else {
651		/*
652		 * If there's no block sharing, compute the maximum rmapbt
653		 * height assuming one rmap record per AG block.
654		 */
655		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
656				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
657	}
658	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
659}
660
661/* Calculate the refcount btree size for some records. */
662xfs_extlen_t
663xfs_rmapbt_calc_size(
664	struct xfs_mount	*mp,
665	unsigned long long	len)
666{
667	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
668}
669
670/*
671 * Calculate the maximum refcount btree size.
672 */
673xfs_extlen_t
674xfs_rmapbt_max_size(
675	struct xfs_mount	*mp,
676	xfs_agblock_t		agblocks)
677{
678	/* Bail out if we're uninitialized, which can happen in mkfs. */
679	if (mp->m_rmap_mxr[0] == 0)
680		return 0;
681
682	return xfs_rmapbt_calc_size(mp, agblocks);
683}
684
685/*
686 * Figure out how many blocks to reserve and how many are used by this btree.
687 */
688int
689xfs_rmapbt_calc_reserves(
690	struct xfs_mount	*mp,
691	struct xfs_trans	*tp,
692	struct xfs_perag	*pag,
693	xfs_extlen_t		*ask,
694	xfs_extlen_t		*used)
695{
696	struct xfs_buf		*agbp;
697	struct xfs_agf		*agf;
698	xfs_agblock_t		agblocks;
699	xfs_extlen_t		tree_len;
700	int			error;
701
702	if (!xfs_has_rmapbt(mp))
703		return 0;
704
705	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
706	if (error)
707		return error;
708
709	agf = agbp->b_addr;
710	agblocks = be32_to_cpu(agf->agf_length);
711	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
712	xfs_trans_brelse(tp, agbp);
713
714	/*
715	 * The log is permanently allocated, so the space it occupies will
716	 * never be available for the kinds of things that would require btree
717	 * expansion.  We therefore can pretend the space isn't there.
718	 */
719	if (xfs_ag_contains_log(mp, pag->pag_agno))
 
720		agblocks -= mp->m_sb.sb_logblocks;
721
722	/* Reserve 1% of the AG or enough for 1 block per record. */
723	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
724	*used += tree_len;
725
726	return error;
727}
728
729int __init
730xfs_rmapbt_init_cur_cache(void)
731{
732	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
733			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
734			0, 0, NULL);
735
736	if (!xfs_rmapbt_cur_cache)
737		return -ENOMEM;
738	return 0;
739}
740
741void
742xfs_rmapbt_destroy_cur_cache(void)
743{
744	kmem_cache_destroy(xfs_rmapbt_cur_cache);
745	xfs_rmapbt_cur_cache = NULL;
746}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Red Hat, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_sb.h"
 13#include "xfs_mount.h"
 14#include "xfs_trans.h"
 15#include "xfs_alloc.h"
 16#include "xfs_btree.h"
 
 17#include "xfs_rmap.h"
 18#include "xfs_rmap_btree.h"
 19#include "xfs_trace.h"
 20#include "xfs_error.h"
 21#include "xfs_extent_busy.h"
 
 22#include "xfs_ag_resv.h"
 23
 
 
 24/*
 25 * Reverse map btree.
 26 *
 27 * This is a per-ag tree used to track the owner(s) of a given extent. With
 28 * reflink it is possible for there to be multiple owners, which is a departure
 29 * from classic XFS. Owner records for data extents are inserted when the
 30 * extent is mapped and removed when an extent is unmapped.  Owner records for
 31 * all other block types (i.e. metadata) are inserted when an extent is
 32 * allocated and removed when an extent is freed. There can only be one owner
 33 * of a metadata extent, usually an inode or some other metadata structure like
 34 * an AG btree.
 35 *
 36 * The rmap btree is part of the free space management, so blocks for the tree
 37 * are sourced from the agfl. Hence we need transaction reservation support for
 38 * this tree so that the freelist is always large enough. This also impacts on
 39 * the minimum space we need to leave free in the AG.
 40 *
 41 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 42 * but it is the only way to enforce unique keys when a block can be owned by
 43 * multiple files at any offset. There's no need to order/search by extent
 44 * size for online updating/management of the tree. It is intended that most
 45 * reverse lookups will be to find the owner(s) of a particular block, or to
 46 * try to recover tree and file data from corrupt primary metadata.
 47 */
 48
 49static struct xfs_btree_cur *
 50xfs_rmapbt_dup_cursor(
 51	struct xfs_btree_cur	*cur)
 52{
 53	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 54			cur->bc_private.a.agbp, cur->bc_private.a.agno);
 55}
 56
 57STATIC void
 58xfs_rmapbt_set_root(
 59	struct xfs_btree_cur	*cur,
 60	union xfs_btree_ptr	*ptr,
 61	int			inc)
 62{
 63	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 64	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 65	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
 66	int			btnum = cur->bc_btnum;
 67	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
 68
 69	ASSERT(ptr->s != 0);
 70
 71	agf->agf_roots[btnum] = ptr->s;
 72	be32_add_cpu(&agf->agf_levels[btnum], inc);
 73	pag->pagf_levels[btnum] += inc;
 74	xfs_perag_put(pag);
 75
 76	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 77}
 78
 79STATIC int
 80xfs_rmapbt_alloc_block(
 81	struct xfs_btree_cur	*cur,
 82	union xfs_btree_ptr	*start,
 83	union xfs_btree_ptr	*new,
 84	int			*stat)
 85{
 86	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 87	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 
 88	int			error;
 89	xfs_agblock_t		bno;
 90
 91	/* Allocate the new block from the freelist. If we can't, give up.  */
 92	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
 93				       &bno, 1);
 94	if (error)
 95		return error;
 96
 97	trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
 98			bno, 1);
 99	if (bno == NULLAGBLOCK) {
100		*stat = 0;
101		return 0;
102	}
103
104	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
105			false);
106
107	xfs_trans_agbtree_delta(cur->bc_tp, 1);
108	new->s = cpu_to_be32(bno);
109	be32_add_cpu(&agf->agf_rmap_blocks, 1);
110	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
111
112	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_private.a.agno);
113
114	*stat = 1;
115	return 0;
116}
117
118STATIC int
119xfs_rmapbt_free_block(
120	struct xfs_btree_cur	*cur,
121	struct xfs_buf		*bp)
122{
123	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
124	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 
125	xfs_agblock_t		bno;
126	int			error;
127
128	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
129	trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
130			bno, 1);
131	be32_add_cpu(&agf->agf_rmap_blocks, -1);
132	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
133	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
134	if (error)
135		return error;
136
137	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
138			      XFS_EXTENT_BUSY_SKIP_DISCARD);
139	xfs_trans_agbtree_delta(cur->bc_tp, -1);
140
141	xfs_ag_resv_rmapbt_free(cur->bc_mp, cur->bc_private.a.agno);
142
 
143	return 0;
144}
145
146STATIC int
147xfs_rmapbt_get_minrecs(
148	struct xfs_btree_cur	*cur,
149	int			level)
150{
151	return cur->bc_mp->m_rmap_mnr[level != 0];
152}
153
154STATIC int
155xfs_rmapbt_get_maxrecs(
156	struct xfs_btree_cur	*cur,
157	int			level)
158{
159	return cur->bc_mp->m_rmap_mxr[level != 0];
160}
161
 
 
 
 
 
 
 
 
 
 
162STATIC void
163xfs_rmapbt_init_key_from_rec(
164	union xfs_btree_key	*key,
165	union xfs_btree_rec	*rec)
166{
167	key->rmap.rm_startblock = rec->rmap.rm_startblock;
168	key->rmap.rm_owner = rec->rmap.rm_owner;
169	key->rmap.rm_offset = rec->rmap.rm_offset;
170}
171
172/*
173 * The high key for a reverse mapping record can be computed by shifting
174 * the startblock and offset to the highest value that would still map
175 * to that record.  In practice this means that we add blockcount-1 to
176 * the startblock for all records, and if the record is for a data/attr
177 * fork mapping, we add blockcount-1 to the offset too.
178 */
179STATIC void
180xfs_rmapbt_init_high_key_from_rec(
181	union xfs_btree_key	*key,
182	union xfs_btree_rec	*rec)
183{
184	uint64_t		off;
185	int			adj;
186
187	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
188
189	key->rmap.rm_startblock = rec->rmap.rm_startblock;
190	be32_add_cpu(&key->rmap.rm_startblock, adj);
191	key->rmap.rm_owner = rec->rmap.rm_owner;
192	key->rmap.rm_offset = rec->rmap.rm_offset;
193	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
194	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
195		return;
196	off = be64_to_cpu(key->rmap.rm_offset);
197	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
198	key->rmap.rm_offset = cpu_to_be64(off);
199}
200
201STATIC void
202xfs_rmapbt_init_rec_from_cur(
203	struct xfs_btree_cur	*cur,
204	union xfs_btree_rec	*rec)
205{
206	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
207	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
208	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
209	rec->rmap.rm_offset = cpu_to_be64(
210			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
211}
212
213STATIC void
214xfs_rmapbt_init_ptr_from_cur(
215	struct xfs_btree_cur	*cur,
216	union xfs_btree_ptr	*ptr)
217{
218	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
219
220	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
221
222	ptr->s = agf->agf_roots[cur->bc_btnum];
223}
224
 
 
 
 
 
 
 
 
 
 
225STATIC int64_t
226xfs_rmapbt_key_diff(
227	struct xfs_btree_cur	*cur,
228	union xfs_btree_key	*key)
229{
230	struct xfs_rmap_irec	*rec = &cur->bc_rec.r;
231	struct xfs_rmap_key	*kp = &key->rmap;
232	__u64			x, y;
233	int64_t			d;
234
235	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
236	if (d)
237		return d;
238
239	x = be64_to_cpu(kp->rm_owner);
240	y = rec->rm_owner;
241	if (x > y)
242		return 1;
243	else if (y > x)
244		return -1;
245
246	x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
247	y = rec->rm_offset;
248	if (x > y)
249		return 1;
250	else if (y > x)
251		return -1;
252	return 0;
253}
254
255STATIC int64_t
256xfs_rmapbt_diff_two_keys(
257	struct xfs_btree_cur	*cur,
258	union xfs_btree_key	*k1,
259	union xfs_btree_key	*k2)
260{
261	struct xfs_rmap_key	*kp1 = &k1->rmap;
262	struct xfs_rmap_key	*kp2 = &k2->rmap;
263	int64_t			d;
264	__u64			x, y;
 
 
 
 
265
266	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
267		       be32_to_cpu(kp2->rm_startblock);
268	if (d)
269		return d;
270
271	x = be64_to_cpu(kp1->rm_owner);
272	y = be64_to_cpu(kp2->rm_owner);
273	if (x > y)
274		return 1;
275	else if (y > x)
276		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
278	x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
279	y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
280	if (x > y)
281		return 1;
282	else if (y > x)
283		return -1;
284	return 0;
285}
286
287static xfs_failaddr_t
288xfs_rmapbt_verify(
289	struct xfs_buf		*bp)
290{
291	struct xfs_mount	*mp = bp->b_mount;
292	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
293	struct xfs_perag	*pag = bp->b_pag;
294	xfs_failaddr_t		fa;
295	unsigned int		level;
296
297	/*
298	 * magic number and level verification
299	 *
300	 * During growfs operations, we can't verify the exact level or owner as
301	 * the perag is not fully initialised and hence not attached to the
302	 * buffer.  In this case, check against the maximum tree depth.
303	 *
304	 * Similarly, during log recovery we will have a perag structure
305	 * attached, but the agf information will not yet have been initialised
306	 * from the on disk AGF. Again, we can only check against maximum limits
307	 * in this case.
308	 */
309	if (!xfs_verify_magic(bp, block->bb_magic))
310		return __this_address;
311
312	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
313		return __this_address;
314	fa = xfs_btree_sblock_v5hdr_verify(bp);
315	if (fa)
316		return fa;
317
318	level = be16_to_cpu(block->bb_level);
319	if (pag && pag->pagf_init) {
320		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
321			return __this_address;
322	} else if (level >= mp->m_rmap_maxlevels)
323		return __this_address;
324
325	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
326}
327
328static void
329xfs_rmapbt_read_verify(
330	struct xfs_buf	*bp)
331{
332	xfs_failaddr_t	fa;
333
334	if (!xfs_btree_sblock_verify_crc(bp))
335		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
336	else {
337		fa = xfs_rmapbt_verify(bp);
338		if (fa)
339			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340	}
341
342	if (bp->b_error)
343		trace_xfs_btree_corrupt(bp, _RET_IP_);
344}
345
346static void
347xfs_rmapbt_write_verify(
348	struct xfs_buf	*bp)
349{
350	xfs_failaddr_t	fa;
351
352	fa = xfs_rmapbt_verify(bp);
353	if (fa) {
354		trace_xfs_btree_corrupt(bp, _RET_IP_);
355		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
356		return;
357	}
358	xfs_btree_sblock_calc_crc(bp);
359
360}
361
362const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
363	.name			= "xfs_rmapbt",
364	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
365	.verify_read		= xfs_rmapbt_read_verify,
366	.verify_write		= xfs_rmapbt_write_verify,
367	.verify_struct		= xfs_rmapbt_verify,
368};
369
370STATIC int
371xfs_rmapbt_keys_inorder(
372	struct xfs_btree_cur	*cur,
373	union xfs_btree_key	*k1,
374	union xfs_btree_key	*k2)
375{
376	uint32_t		x;
377	uint32_t		y;
378	uint64_t		a;
379	uint64_t		b;
380
381	x = be32_to_cpu(k1->rmap.rm_startblock);
382	y = be32_to_cpu(k2->rmap.rm_startblock);
383	if (x < y)
384		return 1;
385	else if (x > y)
386		return 0;
387	a = be64_to_cpu(k1->rmap.rm_owner);
388	b = be64_to_cpu(k2->rmap.rm_owner);
389	if (a < b)
390		return 1;
391	else if (a > b)
392		return 0;
393	a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
394	b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
395	if (a <= b)
396		return 1;
397	return 0;
398}
399
400STATIC int
401xfs_rmapbt_recs_inorder(
402	struct xfs_btree_cur	*cur,
403	union xfs_btree_rec	*r1,
404	union xfs_btree_rec	*r2)
405{
406	uint32_t		x;
407	uint32_t		y;
408	uint64_t		a;
409	uint64_t		b;
410
411	x = be32_to_cpu(r1->rmap.rm_startblock);
412	y = be32_to_cpu(r2->rmap.rm_startblock);
413	if (x < y)
414		return 1;
415	else if (x > y)
416		return 0;
417	a = be64_to_cpu(r1->rmap.rm_owner);
418	b = be64_to_cpu(r2->rmap.rm_owner);
419	if (a < b)
420		return 1;
421	else if (a > b)
422		return 0;
423	a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
424	b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
425	if (a <= b)
426		return 1;
427	return 0;
428}
429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430static const struct xfs_btree_ops xfs_rmapbt_ops = {
431	.rec_len		= sizeof(struct xfs_rmap_rec),
432	.key_len		= 2 * sizeof(struct xfs_rmap_key),
433
434	.dup_cursor		= xfs_rmapbt_dup_cursor,
435	.set_root		= xfs_rmapbt_set_root,
436	.alloc_block		= xfs_rmapbt_alloc_block,
437	.free_block		= xfs_rmapbt_free_block,
438	.get_minrecs		= xfs_rmapbt_get_minrecs,
439	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
440	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
441	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
442	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
443	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
444	.key_diff		= xfs_rmapbt_key_diff,
445	.buf_ops		= &xfs_rmapbt_buf_ops,
446	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
447	.keys_inorder		= xfs_rmapbt_keys_inorder,
448	.recs_inorder		= xfs_rmapbt_recs_inorder,
 
449};
450
451/*
452 * Allocate a new allocation btree cursor.
453 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454struct xfs_btree_cur *
455xfs_rmapbt_init_cursor(
456	struct xfs_mount	*mp,
457	struct xfs_trans	*tp,
458	struct xfs_buf		*agbp,
459	xfs_agnumber_t		agno)
460{
461	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
462	struct xfs_btree_cur	*cur;
463
464	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
465	cur->bc_tp = tp;
466	cur->bc_mp = mp;
467	/* Overlapping btree; 2 keys per pointer. */
468	cur->bc_btnum = XFS_BTNUM_RMAP;
469	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
470	cur->bc_blocklog = mp->m_sb.sb_blocklog;
471	cur->bc_ops = &xfs_rmapbt_ops;
472	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
473	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
 
 
474
475	cur->bc_private.a.agbp = agbp;
476	cur->bc_private.a.agno = agno;
 
 
 
 
 
 
477
 
 
478	return cur;
479}
480
481/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482 * Calculate number of records in an rmap btree block.
483 */
484int
485xfs_rmapbt_maxrecs(
486	int			blocklen,
487	int			leaf)
488{
489	blocklen -= XFS_RMAP_BLOCK_LEN;
 
 
490
491	if (leaf)
492		return blocklen / sizeof(struct xfs_rmap_rec);
493	return blocklen /
494		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495}
496
497/* Compute the maximum height of an rmap btree. */
498void
499xfs_rmapbt_compute_maxlevels(
500	struct xfs_mount		*mp)
501{
502	/*
503	 * On a non-reflink filesystem, the maximum number of rmap
504	 * records is the number of blocks in the AG, hence the max
505	 * rmapbt height is log_$maxrecs($agblocks).  However, with
506	 * reflink each AG block can have up to 2^32 (per the refcount
507	 * record format) owners, which means that theoretically we
508	 * could face up to 2^64 rmap records.
509	 *
510	 * That effectively means that the max rmapbt height must be
511	 * XFS_BTREE_MAXLEVELS.  "Fortunately" we'll run out of AG
512	 * blocks to feed the rmapbt long before the rmapbt reaches
513	 * maximum height.  The reflink code uses ag_resv_critical to
514	 * disallow reflinking when less than 10% of the per-AG metadata
515	 * block reservation since the fallback is a regular file copy.
516	 */
517	if (xfs_sb_version_hasreflink(&mp->m_sb))
518		mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
519	else
 
 
 
 
 
 
 
 
520		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
521				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
 
 
522}
523
524/* Calculate the refcount btree size for some records. */
525xfs_extlen_t
526xfs_rmapbt_calc_size(
527	struct xfs_mount	*mp,
528	unsigned long long	len)
529{
530	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
531}
532
533/*
534 * Calculate the maximum refcount btree size.
535 */
536xfs_extlen_t
537xfs_rmapbt_max_size(
538	struct xfs_mount	*mp,
539	xfs_agblock_t		agblocks)
540{
541	/* Bail out if we're uninitialized, which can happen in mkfs. */
542	if (mp->m_rmap_mxr[0] == 0)
543		return 0;
544
545	return xfs_rmapbt_calc_size(mp, agblocks);
546}
547
548/*
549 * Figure out how many blocks to reserve and how many are used by this btree.
550 */
551int
552xfs_rmapbt_calc_reserves(
553	struct xfs_mount	*mp,
554	struct xfs_trans	*tp,
555	xfs_agnumber_t		agno,
556	xfs_extlen_t		*ask,
557	xfs_extlen_t		*used)
558{
559	struct xfs_buf		*agbp;
560	struct xfs_agf		*agf;
561	xfs_agblock_t		agblocks;
562	xfs_extlen_t		tree_len;
563	int			error;
564
565	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
566		return 0;
567
568	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
569	if (error)
570		return error;
571
572	agf = XFS_BUF_TO_AGF(agbp);
573	agblocks = be32_to_cpu(agf->agf_length);
574	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
575	xfs_trans_brelse(tp, agbp);
576
577	/*
578	 * The log is permanently allocated, so the space it occupies will
579	 * never be available for the kinds of things that would require btree
580	 * expansion.  We therefore can pretend the space isn't there.
581	 */
582	if (mp->m_sb.sb_logstart &&
583	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
584		agblocks -= mp->m_sb.sb_logblocks;
585
586	/* Reserve 1% of the AG or enough for 1 block per record. */
587	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
588	*used += tree_len;
589
590	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591}