Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/locks.c
   4 *
   5 * We implement four types of file locks: BSD locks, posix locks, open
   6 * file description locks, and leases.  For details about BSD locks,
   7 * see the flock(2) man page; for details about the other three, see
   8 * fcntl(2).
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 *
  11 * Locking conflicts and dependencies:
  12 * If multiple threads attempt to lock the same byte (or flock the same file)
  13 * only one can be granted the lock, and other must wait their turn.
  14 * The first lock has been "applied" or "granted", the others are "waiting"
  15 * and are "blocked" by the "applied" lock..
  16 *
  17 * Waiting and applied locks are all kept in trees whose properties are:
  18 *
  19 *	- the root of a tree may be an applied or waiting lock.
  20 *	- every other node in the tree is a waiting lock that
  21 *	  conflicts with every ancestor of that node.
  22 *
  23 * Every such tree begins life as a waiting singleton which obviously
  24 * satisfies the above properties.
  25 *
  26 * The only ways we modify trees preserve these properties:
  27 *
  28 *	1. We may add a new leaf node, but only after first verifying that it
  29 *	   conflicts with all of its ancestors.
  30 *	2. We may remove the root of a tree, creating a new singleton
  31 *	   tree from the root and N new trees rooted in the immediate
  32 *	   children.
  33 *	3. If the root of a tree is not currently an applied lock, we may
  34 *	   apply it (if possible).
  35 *	4. We may upgrade the root of the tree (either extend its range,
  36 *	   or upgrade its entire range from read to write).
  37 *
  38 * When an applied lock is modified in a way that reduces or downgrades any
  39 * part of its range, we remove all its children (2 above).  This particularly
  40 * happens when a lock is unlocked.
  41 *
  42 * For each of those child trees we "wake up" the thread which is
  43 * waiting for the lock so it can continue handling as follows: if the
  44 * root of the tree applies, we do so (3).  If it doesn't, it must
  45 * conflict with some applied lock.  We remove (wake up) all of its children
  46 * (2), and add it is a new leaf to the tree rooted in the applied
  47 * lock (1).  We then repeat the process recursively with those
  48 * children.
  49 *
  50 */
  51
  52#include <linux/capability.h>
  53#include <linux/file.h>
  54#include <linux/fdtable.h>
  55#include <linux/filelock.h>
  56#include <linux/fs.h>
  57#include <linux/init.h>
  58#include <linux/security.h>
  59#include <linux/slab.h>
  60#include <linux/syscalls.h>
  61#include <linux/time.h>
  62#include <linux/rcupdate.h>
  63#include <linux/pid_namespace.h>
  64#include <linux/hashtable.h>
  65#include <linux/percpu.h>
  66#include <linux/sysctl.h>
  67
  68#define CREATE_TRACE_POINTS
  69#include <trace/events/filelock.h>
  70
  71#include <linux/uaccess.h>
  72
  73#define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
  74#define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
  75#define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
  76#define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
  77#define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
  78
  79static bool lease_breaking(struct file_lock *fl)
  80{
  81	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
  82}
  83
  84static int target_leasetype(struct file_lock *fl)
  85{
  86	if (fl->fl_flags & FL_UNLOCK_PENDING)
  87		return F_UNLCK;
  88	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
  89		return F_RDLCK;
  90	return fl->fl_type;
  91}
  92
  93static int leases_enable = 1;
  94static int lease_break_time = 45;
  95
  96#ifdef CONFIG_SYSCTL
  97static struct ctl_table locks_sysctls[] = {
  98	{
  99		.procname	= "leases-enable",
 100		.data		= &leases_enable,
 101		.maxlen		= sizeof(int),
 102		.mode		= 0644,
 103		.proc_handler	= proc_dointvec,
 104	},
 105#ifdef CONFIG_MMU
 106	{
 107		.procname	= "lease-break-time",
 108		.data		= &lease_break_time,
 109		.maxlen		= sizeof(int),
 110		.mode		= 0644,
 111		.proc_handler	= proc_dointvec,
 112	},
 113#endif /* CONFIG_MMU */
 114};
 115
 116static int __init init_fs_locks_sysctls(void)
 117{
 118	register_sysctl_init("fs", locks_sysctls);
 119	return 0;
 120}
 121early_initcall(init_fs_locks_sysctls);
 122#endif /* CONFIG_SYSCTL */
 123
 124/*
 125 * The global file_lock_list is only used for displaying /proc/locks, so we
 126 * keep a list on each CPU, with each list protected by its own spinlock.
 127 * Global serialization is done using file_rwsem.
 128 *
 129 * Note that alterations to the list also require that the relevant flc_lock is
 130 * held.
 131 */
 132struct file_lock_list_struct {
 133	spinlock_t		lock;
 134	struct hlist_head	hlist;
 135};
 136static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
 137DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
 138
 139
 140/*
 141 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
 142 * It is protected by blocked_lock_lock.
 143 *
 144 * We hash locks by lockowner in order to optimize searching for the lock a
 145 * particular lockowner is waiting on.
 146 *
 147 * FIXME: make this value scale via some heuristic? We generally will want more
 148 * buckets when we have more lockowners holding locks, but that's a little
 149 * difficult to determine without knowing what the workload will look like.
 150 */
 151#define BLOCKED_HASH_BITS	7
 152static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
 153
 154/*
 155 * This lock protects the blocked_hash. Generally, if you're accessing it, you
 156 * want to be holding this lock.
 157 *
 158 * In addition, it also protects the fl->fl_blocked_requests list, and the
 159 * fl->fl_blocker pointer for file_lock structures that are acting as lock
 160 * requests (in contrast to those that are acting as records of acquired locks).
 161 *
 162 * Note that when we acquire this lock in order to change the above fields,
 163 * we often hold the flc_lock as well. In certain cases, when reading the fields
 164 * protected by this lock, we can skip acquiring it iff we already hold the
 165 * flc_lock.
 166 */
 167static DEFINE_SPINLOCK(blocked_lock_lock);
 168
 169static struct kmem_cache *flctx_cache __ro_after_init;
 170static struct kmem_cache *filelock_cache __ro_after_init;
 171
 172static struct file_lock_context *
 173locks_get_lock_context(struct inode *inode, int type)
 174{
 175	struct file_lock_context *ctx;
 176
 177	/* paired with cmpxchg() below */
 178	ctx = locks_inode_context(inode);
 179	if (likely(ctx) || type == F_UNLCK)
 180		goto out;
 181
 182	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
 183	if (!ctx)
 184		goto out;
 185
 186	spin_lock_init(&ctx->flc_lock);
 187	INIT_LIST_HEAD(&ctx->flc_flock);
 188	INIT_LIST_HEAD(&ctx->flc_posix);
 189	INIT_LIST_HEAD(&ctx->flc_lease);
 190
 191	/*
 192	 * Assign the pointer if it's not already assigned. If it is, then
 193	 * free the context we just allocated.
 194	 */
 195	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
 196		kmem_cache_free(flctx_cache, ctx);
 197		ctx = locks_inode_context(inode);
 198	}
 199out:
 200	trace_locks_get_lock_context(inode, type, ctx);
 201	return ctx;
 202}
 203
 204static void
 205locks_dump_ctx_list(struct list_head *list, char *list_type)
 206{
 207	struct file_lock *fl;
 208
 209	list_for_each_entry(fl, list, fl_list) {
 210		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 211	}
 212}
 213
 214static void
 215locks_check_ctx_lists(struct inode *inode)
 216{
 217	struct file_lock_context *ctx = inode->i_flctx;
 218
 219	if (unlikely(!list_empty(&ctx->flc_flock) ||
 220		     !list_empty(&ctx->flc_posix) ||
 221		     !list_empty(&ctx->flc_lease))) {
 222		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
 223			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
 224			inode->i_ino);
 225		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
 226		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
 227		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
 228	}
 229}
 230
 231static void
 232locks_check_ctx_file_list(struct file *filp, struct list_head *list,
 233				char *list_type)
 234{
 235	struct file_lock *fl;
 236	struct inode *inode = file_inode(filp);
 237
 238	list_for_each_entry(fl, list, fl_list)
 239		if (fl->fl_file == filp)
 240			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
 241				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
 242				list_type, MAJOR(inode->i_sb->s_dev),
 243				MINOR(inode->i_sb->s_dev), inode->i_ino,
 244				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 245}
 246
 247void
 248locks_free_lock_context(struct inode *inode)
 249{
 250	struct file_lock_context *ctx = locks_inode_context(inode);
 251
 252	if (unlikely(ctx)) {
 253		locks_check_ctx_lists(inode);
 254		kmem_cache_free(flctx_cache, ctx);
 255	}
 256}
 257
 258static void locks_init_lock_heads(struct file_lock *fl)
 259{
 260	INIT_HLIST_NODE(&fl->fl_link);
 261	INIT_LIST_HEAD(&fl->fl_list);
 262	INIT_LIST_HEAD(&fl->fl_blocked_requests);
 263	INIT_LIST_HEAD(&fl->fl_blocked_member);
 264	init_waitqueue_head(&fl->fl_wait);
 265}
 266
 267/* Allocate an empty lock structure. */
 268struct file_lock *locks_alloc_lock(void)
 269{
 270	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
 271
 272	if (fl)
 273		locks_init_lock_heads(fl);
 274
 275	return fl;
 276}
 277EXPORT_SYMBOL_GPL(locks_alloc_lock);
 278
 279void locks_release_private(struct file_lock *fl)
 280{
 281	BUG_ON(waitqueue_active(&fl->fl_wait));
 282	BUG_ON(!list_empty(&fl->fl_list));
 283	BUG_ON(!list_empty(&fl->fl_blocked_requests));
 284	BUG_ON(!list_empty(&fl->fl_blocked_member));
 285	BUG_ON(!hlist_unhashed(&fl->fl_link));
 286
 287	if (fl->fl_ops) {
 288		if (fl->fl_ops->fl_release_private)
 289			fl->fl_ops->fl_release_private(fl);
 290		fl->fl_ops = NULL;
 291	}
 292
 293	if (fl->fl_lmops) {
 294		if (fl->fl_lmops->lm_put_owner) {
 295			fl->fl_lmops->lm_put_owner(fl->fl_owner);
 296			fl->fl_owner = NULL;
 297		}
 298		fl->fl_lmops = NULL;
 299	}
 300}
 301EXPORT_SYMBOL_GPL(locks_release_private);
 302
 303/**
 304 * locks_owner_has_blockers - Check for blocking lock requests
 305 * @flctx: file lock context
 306 * @owner: lock owner
 307 *
 308 * Return values:
 309 *   %true: @owner has at least one blocker
 310 *   %false: @owner has no blockers
 311 */
 312bool locks_owner_has_blockers(struct file_lock_context *flctx,
 313		fl_owner_t owner)
 314{
 315	struct file_lock *fl;
 316
 317	spin_lock(&flctx->flc_lock);
 318	list_for_each_entry(fl, &flctx->flc_posix, fl_list) {
 319		if (fl->fl_owner != owner)
 320			continue;
 321		if (!list_empty(&fl->fl_blocked_requests)) {
 322			spin_unlock(&flctx->flc_lock);
 323			return true;
 324		}
 325	}
 326	spin_unlock(&flctx->flc_lock);
 327	return false;
 328}
 329EXPORT_SYMBOL_GPL(locks_owner_has_blockers);
 330
 331/* Free a lock which is not in use. */
 332void locks_free_lock(struct file_lock *fl)
 333{
 334	locks_release_private(fl);
 335	kmem_cache_free(filelock_cache, fl);
 336}
 337EXPORT_SYMBOL(locks_free_lock);
 338
 339static void
 340locks_dispose_list(struct list_head *dispose)
 341{
 342	struct file_lock *fl;
 343
 344	while (!list_empty(dispose)) {
 345		fl = list_first_entry(dispose, struct file_lock, fl_list);
 346		list_del_init(&fl->fl_list);
 347		locks_free_lock(fl);
 348	}
 349}
 350
 351void locks_init_lock(struct file_lock *fl)
 352{
 353	memset(fl, 0, sizeof(struct file_lock));
 354	locks_init_lock_heads(fl);
 355}
 356EXPORT_SYMBOL(locks_init_lock);
 357
 358/*
 359 * Initialize a new lock from an existing file_lock structure.
 360 */
 361void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
 362{
 363	new->fl_owner = fl->fl_owner;
 364	new->fl_pid = fl->fl_pid;
 365	new->fl_file = NULL;
 366	new->fl_flags = fl->fl_flags;
 367	new->fl_type = fl->fl_type;
 368	new->fl_start = fl->fl_start;
 369	new->fl_end = fl->fl_end;
 370	new->fl_lmops = fl->fl_lmops;
 371	new->fl_ops = NULL;
 372
 373	if (fl->fl_lmops) {
 374		if (fl->fl_lmops->lm_get_owner)
 375			fl->fl_lmops->lm_get_owner(fl->fl_owner);
 376	}
 377}
 378EXPORT_SYMBOL(locks_copy_conflock);
 379
 380void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
 381{
 382	/* "new" must be a freshly-initialized lock */
 383	WARN_ON_ONCE(new->fl_ops);
 384
 385	locks_copy_conflock(new, fl);
 386
 387	new->fl_file = fl->fl_file;
 388	new->fl_ops = fl->fl_ops;
 389
 390	if (fl->fl_ops) {
 391		if (fl->fl_ops->fl_copy_lock)
 392			fl->fl_ops->fl_copy_lock(new, fl);
 393	}
 394}
 395EXPORT_SYMBOL(locks_copy_lock);
 396
 397static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
 398{
 399	struct file_lock *f;
 400
 401	/*
 402	 * As ctx->flc_lock is held, new requests cannot be added to
 403	 * ->fl_blocked_requests, so we don't need a lock to check if it
 404	 * is empty.
 405	 */
 406	if (list_empty(&fl->fl_blocked_requests))
 407		return;
 408	spin_lock(&blocked_lock_lock);
 409	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
 410	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
 411		f->fl_blocker = new;
 412	spin_unlock(&blocked_lock_lock);
 413}
 414
 415static inline int flock_translate_cmd(int cmd) {
 
 
 416	switch (cmd) {
 417	case LOCK_SH:
 418		return F_RDLCK;
 419	case LOCK_EX:
 420		return F_WRLCK;
 421	case LOCK_UN:
 422		return F_UNLCK;
 423	}
 424	return -EINVAL;
 425}
 426
 427/* Fill in a file_lock structure with an appropriate FLOCK lock. */
 428static void flock_make_lock(struct file *filp, struct file_lock *fl, int type)
 
 429{
 430	locks_init_lock(fl);
 
 
 
 
 
 
 
 
 
 
 
 431
 432	fl->fl_file = filp;
 433	fl->fl_owner = filp;
 434	fl->fl_pid = current->tgid;
 435	fl->fl_flags = FL_FLOCK;
 436	fl->fl_type = type;
 437	fl->fl_end = OFFSET_MAX;
 
 
 438}
 439
 440static int assign_type(struct file_lock *fl, int type)
 441{
 442	switch (type) {
 443	case F_RDLCK:
 444	case F_WRLCK:
 445	case F_UNLCK:
 446		fl->fl_type = type;
 447		break;
 448	default:
 449		return -EINVAL;
 450	}
 451	return 0;
 452}
 453
 454static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
 455				 struct flock64 *l)
 456{
 457	switch (l->l_whence) {
 458	case SEEK_SET:
 459		fl->fl_start = 0;
 460		break;
 461	case SEEK_CUR:
 462		fl->fl_start = filp->f_pos;
 463		break;
 464	case SEEK_END:
 465		fl->fl_start = i_size_read(file_inode(filp));
 466		break;
 467	default:
 468		return -EINVAL;
 469	}
 470	if (l->l_start > OFFSET_MAX - fl->fl_start)
 471		return -EOVERFLOW;
 472	fl->fl_start += l->l_start;
 473	if (fl->fl_start < 0)
 474		return -EINVAL;
 475
 476	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
 477	   POSIX-2001 defines it. */
 478	if (l->l_len > 0) {
 479		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
 480			return -EOVERFLOW;
 481		fl->fl_end = fl->fl_start + (l->l_len - 1);
 482
 483	} else if (l->l_len < 0) {
 484		if (fl->fl_start + l->l_len < 0)
 485			return -EINVAL;
 486		fl->fl_end = fl->fl_start - 1;
 487		fl->fl_start += l->l_len;
 488	} else
 489		fl->fl_end = OFFSET_MAX;
 490
 491	fl->fl_owner = current->files;
 492	fl->fl_pid = current->tgid;
 493	fl->fl_file = filp;
 494	fl->fl_flags = FL_POSIX;
 495	fl->fl_ops = NULL;
 496	fl->fl_lmops = NULL;
 497
 498	return assign_type(fl, l->l_type);
 499}
 500
 501/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
 502 * style lock.
 503 */
 504static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
 505			       struct flock *l)
 506{
 507	struct flock64 ll = {
 508		.l_type = l->l_type,
 509		.l_whence = l->l_whence,
 510		.l_start = l->l_start,
 511		.l_len = l->l_len,
 512	};
 513
 514	return flock64_to_posix_lock(filp, fl, &ll);
 515}
 516
 517/* default lease lock manager operations */
 518static bool
 519lease_break_callback(struct file_lock *fl)
 520{
 521	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
 522	return false;
 523}
 524
 525static void
 526lease_setup(struct file_lock *fl, void **priv)
 527{
 528	struct file *filp = fl->fl_file;
 529	struct fasync_struct *fa = *priv;
 530
 531	/*
 532	 * fasync_insert_entry() returns the old entry if any. If there was no
 533	 * old entry, then it used "priv" and inserted it into the fasync list.
 534	 * Clear the pointer to indicate that it shouldn't be freed.
 535	 */
 536	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
 537		*priv = NULL;
 538
 539	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
 540}
 541
 542static const struct lock_manager_operations lease_manager_ops = {
 543	.lm_break = lease_break_callback,
 544	.lm_change = lease_modify,
 545	.lm_setup = lease_setup,
 546};
 547
 548/*
 549 * Initialize a lease, use the default lock manager operations
 550 */
 551static int lease_init(struct file *filp, int type, struct file_lock *fl)
 552{
 553	if (assign_type(fl, type) != 0)
 554		return -EINVAL;
 555
 556	fl->fl_owner = filp;
 557	fl->fl_pid = current->tgid;
 558
 559	fl->fl_file = filp;
 560	fl->fl_flags = FL_LEASE;
 561	fl->fl_start = 0;
 562	fl->fl_end = OFFSET_MAX;
 563	fl->fl_ops = NULL;
 564	fl->fl_lmops = &lease_manager_ops;
 565	return 0;
 566}
 567
 568/* Allocate a file_lock initialised to this type of lease */
 569static struct file_lock *lease_alloc(struct file *filp, int type)
 570{
 571	struct file_lock *fl = locks_alloc_lock();
 572	int error = -ENOMEM;
 573
 574	if (fl == NULL)
 575		return ERR_PTR(error);
 576
 577	error = lease_init(filp, type, fl);
 578	if (error) {
 579		locks_free_lock(fl);
 580		return ERR_PTR(error);
 581	}
 582	return fl;
 583}
 584
 585/* Check if two locks overlap each other.
 586 */
 587static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
 588{
 589	return ((fl1->fl_end >= fl2->fl_start) &&
 590		(fl2->fl_end >= fl1->fl_start));
 591}
 592
 593/*
 594 * Check whether two locks have the same owner.
 595 */
 596static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
 597{
 598	return fl1->fl_owner == fl2->fl_owner;
 599}
 600
 601/* Must be called with the flc_lock held! */
 602static void locks_insert_global_locks(struct file_lock *fl)
 603{
 604	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
 605
 606	percpu_rwsem_assert_held(&file_rwsem);
 607
 608	spin_lock(&fll->lock);
 609	fl->fl_link_cpu = smp_processor_id();
 610	hlist_add_head(&fl->fl_link, &fll->hlist);
 611	spin_unlock(&fll->lock);
 612}
 613
 614/* Must be called with the flc_lock held! */
 615static void locks_delete_global_locks(struct file_lock *fl)
 616{
 617	struct file_lock_list_struct *fll;
 618
 619	percpu_rwsem_assert_held(&file_rwsem);
 620
 621	/*
 622	 * Avoid taking lock if already unhashed. This is safe since this check
 623	 * is done while holding the flc_lock, and new insertions into the list
 624	 * also require that it be held.
 625	 */
 626	if (hlist_unhashed(&fl->fl_link))
 627		return;
 628
 629	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
 630	spin_lock(&fll->lock);
 631	hlist_del_init(&fl->fl_link);
 632	spin_unlock(&fll->lock);
 633}
 634
 635static unsigned long
 636posix_owner_key(struct file_lock *fl)
 637{
 638	return (unsigned long)fl->fl_owner;
 639}
 640
 641static void locks_insert_global_blocked(struct file_lock *waiter)
 642{
 643	lockdep_assert_held(&blocked_lock_lock);
 644
 645	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
 646}
 647
 648static void locks_delete_global_blocked(struct file_lock *waiter)
 649{
 650	lockdep_assert_held(&blocked_lock_lock);
 651
 652	hash_del(&waiter->fl_link);
 653}
 654
 655/* Remove waiter from blocker's block list.
 656 * When blocker ends up pointing to itself then the list is empty.
 657 *
 658 * Must be called with blocked_lock_lock held.
 659 */
 660static void __locks_delete_block(struct file_lock *waiter)
 661{
 662	locks_delete_global_blocked(waiter);
 663	list_del_init(&waiter->fl_blocked_member);
 
 664}
 665
 666static void __locks_wake_up_blocks(struct file_lock *blocker)
 667{
 668	while (!list_empty(&blocker->fl_blocked_requests)) {
 669		struct file_lock *waiter;
 670
 671		waiter = list_first_entry(&blocker->fl_blocked_requests,
 672					  struct file_lock, fl_blocked_member);
 673		__locks_delete_block(waiter);
 674		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
 675			waiter->fl_lmops->lm_notify(waiter);
 676		else
 677			wake_up(&waiter->fl_wait);
 678
 679		/*
 680		 * The setting of fl_blocker to NULL marks the "done"
 681		 * point in deleting a block. Paired with acquire at the top
 682		 * of locks_delete_block().
 683		 */
 684		smp_store_release(&waiter->fl_blocker, NULL);
 685	}
 686}
 687
 688/**
 689 *	locks_delete_block - stop waiting for a file lock
 690 *	@waiter: the lock which was waiting
 691 *
 692 *	lockd/nfsd need to disconnect the lock while working on it.
 693 */
 694int locks_delete_block(struct file_lock *waiter)
 695{
 696	int status = -ENOENT;
 697
 698	/*
 699	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
 700	 * the lock and is the only one that might try to claim the lock.
 701	 *
 702	 * We use acquire/release to manage fl_blocker so that we can
 703	 * optimize away taking the blocked_lock_lock in many cases.
 704	 *
 705	 * The smp_load_acquire guarantees two things:
 706	 *
 707	 * 1/ that fl_blocked_requests can be tested locklessly. If something
 708	 * was recently added to that list it must have been in a locked region
 709	 * *before* the locked region when fl_blocker was set to NULL.
 710	 *
 711	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
 712	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
 713	 * fl_blocker is released.
 714	 *
 715	 * If a lockless check of fl_blocker shows it to be NULL, we know that
 716	 * no new locks can be inserted into its fl_blocked_requests list, and
 717	 * can avoid doing anything further if the list is empty.
 718	 */
 719	if (!smp_load_acquire(&waiter->fl_blocker) &&
 720	    list_empty(&waiter->fl_blocked_requests))
 721		return status;
 722
 723	spin_lock(&blocked_lock_lock);
 724	if (waiter->fl_blocker)
 725		status = 0;
 726	__locks_wake_up_blocks(waiter);
 727	__locks_delete_block(waiter);
 728
 729	/*
 730	 * The setting of fl_blocker to NULL marks the "done" point in deleting
 731	 * a block. Paired with acquire at the top of this function.
 732	 */
 733	smp_store_release(&waiter->fl_blocker, NULL);
 734	spin_unlock(&blocked_lock_lock);
 735	return status;
 736}
 737EXPORT_SYMBOL(locks_delete_block);
 738
 739/* Insert waiter into blocker's block list.
 740 * We use a circular list so that processes can be easily woken up in
 741 * the order they blocked. The documentation doesn't require this but
 742 * it seems like the reasonable thing to do.
 743 *
 744 * Must be called with both the flc_lock and blocked_lock_lock held. The
 745 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
 746 * but by ensuring that the flc_lock is also held on insertions we can avoid
 747 * taking the blocked_lock_lock in some cases when we see that the
 748 * fl_blocked_requests list is empty.
 749 *
 750 * Rather than just adding to the list, we check for conflicts with any existing
 751 * waiters, and add beneath any waiter that blocks the new waiter.
 752 * Thus wakeups don't happen until needed.
 753 */
 754static void __locks_insert_block(struct file_lock *blocker,
 755				 struct file_lock *waiter,
 756				 bool conflict(struct file_lock *,
 757					       struct file_lock *))
 758{
 759	struct file_lock *fl;
 760	BUG_ON(!list_empty(&waiter->fl_blocked_member));
 761
 762new_blocker:
 763	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
 764		if (conflict(fl, waiter)) {
 765			blocker =  fl;
 766			goto new_blocker;
 767		}
 768	waiter->fl_blocker = blocker;
 769	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
 770	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
 771		locks_insert_global_blocked(waiter);
 772
 773	/* The requests in waiter->fl_blocked are known to conflict with
 774	 * waiter, but might not conflict with blocker, or the requests
 775	 * and lock which block it.  So they all need to be woken.
 776	 */
 777	__locks_wake_up_blocks(waiter);
 778}
 779
 780/* Must be called with flc_lock held. */
 781static void locks_insert_block(struct file_lock *blocker,
 782			       struct file_lock *waiter,
 783			       bool conflict(struct file_lock *,
 784					     struct file_lock *))
 785{
 786	spin_lock(&blocked_lock_lock);
 787	__locks_insert_block(blocker, waiter, conflict);
 788	spin_unlock(&blocked_lock_lock);
 789}
 790
 791/*
 792 * Wake up processes blocked waiting for blocker.
 793 *
 794 * Must be called with the inode->flc_lock held!
 795 */
 796static void locks_wake_up_blocks(struct file_lock *blocker)
 797{
 798	/*
 799	 * Avoid taking global lock if list is empty. This is safe since new
 800	 * blocked requests are only added to the list under the flc_lock, and
 801	 * the flc_lock is always held here. Note that removal from the
 802	 * fl_blocked_requests list does not require the flc_lock, so we must
 803	 * recheck list_empty() after acquiring the blocked_lock_lock.
 804	 */
 805	if (list_empty(&blocker->fl_blocked_requests))
 806		return;
 807
 808	spin_lock(&blocked_lock_lock);
 809	__locks_wake_up_blocks(blocker);
 810	spin_unlock(&blocked_lock_lock);
 811}
 812
 813static void
 814locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
 815{
 816	list_add_tail(&fl->fl_list, before);
 817	locks_insert_global_locks(fl);
 818}
 819
 820static void
 821locks_unlink_lock_ctx(struct file_lock *fl)
 822{
 823	locks_delete_global_locks(fl);
 824	list_del_init(&fl->fl_list);
 825	locks_wake_up_blocks(fl);
 826}
 827
 828static void
 829locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
 830{
 831	locks_unlink_lock_ctx(fl);
 832	if (dispose)
 833		list_add(&fl->fl_list, dispose);
 834	else
 835		locks_free_lock(fl);
 836}
 837
 838/* Determine if lock sys_fl blocks lock caller_fl. Common functionality
 839 * checks for shared/exclusive status of overlapping locks.
 840 */
 841static bool locks_conflict(struct file_lock *caller_fl,
 842			   struct file_lock *sys_fl)
 843{
 844	if (sys_fl->fl_type == F_WRLCK)
 845		return true;
 846	if (caller_fl->fl_type == F_WRLCK)
 847		return true;
 848	return false;
 849}
 850
 851/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
 852 * checking before calling the locks_conflict().
 853 */
 854static bool posix_locks_conflict(struct file_lock *caller_fl,
 855				 struct file_lock *sys_fl)
 856{
 857	/* POSIX locks owned by the same process do not conflict with
 858	 * each other.
 859	 */
 860	if (posix_same_owner(caller_fl, sys_fl))
 861		return false;
 862
 863	/* Check whether they overlap */
 864	if (!locks_overlap(caller_fl, sys_fl))
 865		return false;
 866
 867	return locks_conflict(caller_fl, sys_fl);
 868}
 869
 870/* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK
 871 * path so checks for additional GETLK-specific things like F_UNLCK.
 872 */
 873static bool posix_test_locks_conflict(struct file_lock *caller_fl,
 874				      struct file_lock *sys_fl)
 875{
 876	/* F_UNLCK checks any locks on the same fd. */
 877	if (caller_fl->fl_type == F_UNLCK) {
 878		if (!posix_same_owner(caller_fl, sys_fl))
 879			return false;
 880		return locks_overlap(caller_fl, sys_fl);
 881	}
 882	return posix_locks_conflict(caller_fl, sys_fl);
 883}
 884
 885/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
 886 * checking before calling the locks_conflict().
 887 */
 888static bool flock_locks_conflict(struct file_lock *caller_fl,
 889				 struct file_lock *sys_fl)
 890{
 891	/* FLOCK locks referring to the same filp do not conflict with
 892	 * each other.
 893	 */
 894	if (caller_fl->fl_file == sys_fl->fl_file)
 895		return false;
 
 
 896
 897	return locks_conflict(caller_fl, sys_fl);
 898}
 899
 900void
 901posix_test_lock(struct file *filp, struct file_lock *fl)
 902{
 903	struct file_lock *cfl;
 904	struct file_lock_context *ctx;
 905	struct inode *inode = file_inode(filp);
 906	void *owner;
 907	void (*func)(void);
 908
 909	ctx = locks_inode_context(inode);
 910	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
 911		fl->fl_type = F_UNLCK;
 912		return;
 913	}
 914
 915retry:
 916	spin_lock(&ctx->flc_lock);
 917	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
 918		if (!posix_test_locks_conflict(fl, cfl))
 919			continue;
 920		if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable
 921			&& (*cfl->fl_lmops->lm_lock_expirable)(cfl)) {
 922			owner = cfl->fl_lmops->lm_mod_owner;
 923			func = cfl->fl_lmops->lm_expire_lock;
 924			__module_get(owner);
 925			spin_unlock(&ctx->flc_lock);
 926			(*func)();
 927			module_put(owner);
 928			goto retry;
 929		}
 930		locks_copy_conflock(fl, cfl);
 931		goto out;
 932	}
 933	fl->fl_type = F_UNLCK;
 934out:
 935	spin_unlock(&ctx->flc_lock);
 936	return;
 937}
 938EXPORT_SYMBOL(posix_test_lock);
 939
 940/*
 941 * Deadlock detection:
 942 *
 943 * We attempt to detect deadlocks that are due purely to posix file
 944 * locks.
 945 *
 946 * We assume that a task can be waiting for at most one lock at a time.
 947 * So for any acquired lock, the process holding that lock may be
 948 * waiting on at most one other lock.  That lock in turns may be held by
 949 * someone waiting for at most one other lock.  Given a requested lock
 950 * caller_fl which is about to wait for a conflicting lock block_fl, we
 951 * follow this chain of waiters to ensure we are not about to create a
 952 * cycle.
 953 *
 954 * Since we do this before we ever put a process to sleep on a lock, we
 955 * are ensured that there is never a cycle; that is what guarantees that
 956 * the while() loop in posix_locks_deadlock() eventually completes.
 957 *
 958 * Note: the above assumption may not be true when handling lock
 959 * requests from a broken NFS client. It may also fail in the presence
 960 * of tasks (such as posix threads) sharing the same open file table.
 961 * To handle those cases, we just bail out after a few iterations.
 962 *
 963 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
 964 * Because the owner is not even nominally tied to a thread of
 965 * execution, the deadlock detection below can't reasonably work well. Just
 966 * skip it for those.
 967 *
 968 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
 969 * locks that just checks for the case where two tasks are attempting to
 970 * upgrade from read to write locks on the same inode.
 971 */
 972
 973#define MAX_DEADLK_ITERATIONS 10
 974
 975/* Find a lock that the owner of the given block_fl is blocking on. */
 976static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
 977{
 978	struct file_lock *fl;
 979
 980	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
 981		if (posix_same_owner(fl, block_fl)) {
 982			while (fl->fl_blocker)
 983				fl = fl->fl_blocker;
 984			return fl;
 985		}
 986	}
 987	return NULL;
 988}
 989
 990/* Must be called with the blocked_lock_lock held! */
 991static int posix_locks_deadlock(struct file_lock *caller_fl,
 992				struct file_lock *block_fl)
 993{
 994	int i = 0;
 995
 996	lockdep_assert_held(&blocked_lock_lock);
 997
 998	/*
 999	 * This deadlock detector can't reasonably detect deadlocks with
1000	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1001	 */
1002	if (IS_OFDLCK(caller_fl))
1003		return 0;
1004
1005	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1006		if (i++ > MAX_DEADLK_ITERATIONS)
1007			return 0;
1008		if (posix_same_owner(caller_fl, block_fl))
1009			return 1;
1010	}
1011	return 0;
1012}
1013
1014/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1015 * after any leases, but before any posix locks.
1016 *
1017 * Note that if called with an FL_EXISTS argument, the caller may determine
1018 * whether or not a lock was successfully freed by testing the return
1019 * value for -ENOENT.
1020 */
1021static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1022{
1023	struct file_lock *new_fl = NULL;
1024	struct file_lock *fl;
1025	struct file_lock_context *ctx;
1026	int error = 0;
1027	bool found = false;
1028	LIST_HEAD(dispose);
1029
1030	ctx = locks_get_lock_context(inode, request->fl_type);
1031	if (!ctx) {
1032		if (request->fl_type != F_UNLCK)
1033			return -ENOMEM;
1034		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1035	}
1036
1037	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1038		new_fl = locks_alloc_lock();
1039		if (!new_fl)
1040			return -ENOMEM;
1041	}
1042
1043	percpu_down_read(&file_rwsem);
1044	spin_lock(&ctx->flc_lock);
1045	if (request->fl_flags & FL_ACCESS)
1046		goto find_conflict;
1047
1048	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1049		if (request->fl_file != fl->fl_file)
1050			continue;
1051		if (request->fl_type == fl->fl_type)
1052			goto out;
1053		found = true;
1054		locks_delete_lock_ctx(fl, &dispose);
1055		break;
1056	}
1057
1058	if (request->fl_type == F_UNLCK) {
1059		if ((request->fl_flags & FL_EXISTS) && !found)
1060			error = -ENOENT;
1061		goto out;
1062	}
1063
1064find_conflict:
1065	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1066		if (!flock_locks_conflict(request, fl))
1067			continue;
1068		error = -EAGAIN;
1069		if (!(request->fl_flags & FL_SLEEP))
1070			goto out;
1071		error = FILE_LOCK_DEFERRED;
1072		locks_insert_block(fl, request, flock_locks_conflict);
1073		goto out;
1074	}
1075	if (request->fl_flags & FL_ACCESS)
1076		goto out;
1077	locks_copy_lock(new_fl, request);
1078	locks_move_blocks(new_fl, request);
1079	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1080	new_fl = NULL;
1081	error = 0;
1082
1083out:
1084	spin_unlock(&ctx->flc_lock);
1085	percpu_up_read(&file_rwsem);
1086	if (new_fl)
1087		locks_free_lock(new_fl);
1088	locks_dispose_list(&dispose);
1089	trace_flock_lock_inode(inode, request, error);
1090	return error;
1091}
1092
1093static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1094			    struct file_lock *conflock)
1095{
1096	struct file_lock *fl, *tmp;
1097	struct file_lock *new_fl = NULL;
1098	struct file_lock *new_fl2 = NULL;
1099	struct file_lock *left = NULL;
1100	struct file_lock *right = NULL;
1101	struct file_lock_context *ctx;
1102	int error;
1103	bool added = false;
1104	LIST_HEAD(dispose);
1105	void *owner;
1106	void (*func)(void);
1107
1108	ctx = locks_get_lock_context(inode, request->fl_type);
1109	if (!ctx)
1110		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1111
1112	/*
1113	 * We may need two file_lock structures for this operation,
1114	 * so we get them in advance to avoid races.
1115	 *
1116	 * In some cases we can be sure, that no new locks will be needed
1117	 */
1118	if (!(request->fl_flags & FL_ACCESS) &&
1119	    (request->fl_type != F_UNLCK ||
1120	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1121		new_fl = locks_alloc_lock();
1122		new_fl2 = locks_alloc_lock();
1123	}
1124
1125retry:
1126	percpu_down_read(&file_rwsem);
1127	spin_lock(&ctx->flc_lock);
1128	/*
1129	 * New lock request. Walk all POSIX locks and look for conflicts. If
1130	 * there are any, either return error or put the request on the
1131	 * blocker's list of waiters and the global blocked_hash.
1132	 */
1133	if (request->fl_type != F_UNLCK) {
1134		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1135			if (!posix_locks_conflict(request, fl))
1136				continue;
1137			if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable
1138				&& (*fl->fl_lmops->lm_lock_expirable)(fl)) {
1139				owner = fl->fl_lmops->lm_mod_owner;
1140				func = fl->fl_lmops->lm_expire_lock;
1141				__module_get(owner);
1142				spin_unlock(&ctx->flc_lock);
1143				percpu_up_read(&file_rwsem);
1144				(*func)();
1145				module_put(owner);
1146				goto retry;
1147			}
1148			if (conflock)
1149				locks_copy_conflock(conflock, fl);
1150			error = -EAGAIN;
1151			if (!(request->fl_flags & FL_SLEEP))
1152				goto out;
1153			/*
1154			 * Deadlock detection and insertion into the blocked
1155			 * locks list must be done while holding the same lock!
1156			 */
1157			error = -EDEADLK;
1158			spin_lock(&blocked_lock_lock);
1159			/*
1160			 * Ensure that we don't find any locks blocked on this
1161			 * request during deadlock detection.
1162			 */
1163			__locks_wake_up_blocks(request);
1164			if (likely(!posix_locks_deadlock(request, fl))) {
1165				error = FILE_LOCK_DEFERRED;
1166				__locks_insert_block(fl, request,
1167						     posix_locks_conflict);
1168			}
1169			spin_unlock(&blocked_lock_lock);
1170			goto out;
1171		}
1172	}
1173
1174	/* If we're just looking for a conflict, we're done. */
1175	error = 0;
1176	if (request->fl_flags & FL_ACCESS)
1177		goto out;
1178
1179	/* Find the first old lock with the same owner as the new lock */
1180	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1181		if (posix_same_owner(request, fl))
1182			break;
1183	}
1184
1185	/* Process locks with this owner. */
1186	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1187		if (!posix_same_owner(request, fl))
1188			break;
1189
1190		/* Detect adjacent or overlapping regions (if same lock type) */
1191		if (request->fl_type == fl->fl_type) {
1192			/* In all comparisons of start vs end, use
1193			 * "start - 1" rather than "end + 1". If end
1194			 * is OFFSET_MAX, end + 1 will become negative.
1195			 */
1196			if (fl->fl_end < request->fl_start - 1)
1197				continue;
1198			/* If the next lock in the list has entirely bigger
1199			 * addresses than the new one, insert the lock here.
1200			 */
1201			if (fl->fl_start - 1 > request->fl_end)
1202				break;
1203
1204			/* If we come here, the new and old lock are of the
1205			 * same type and adjacent or overlapping. Make one
1206			 * lock yielding from the lower start address of both
1207			 * locks to the higher end address.
1208			 */
1209			if (fl->fl_start > request->fl_start)
1210				fl->fl_start = request->fl_start;
1211			else
1212				request->fl_start = fl->fl_start;
1213			if (fl->fl_end < request->fl_end)
1214				fl->fl_end = request->fl_end;
1215			else
1216				request->fl_end = fl->fl_end;
1217			if (added) {
1218				locks_delete_lock_ctx(fl, &dispose);
1219				continue;
1220			}
1221			request = fl;
1222			added = true;
1223		} else {
1224			/* Processing for different lock types is a bit
1225			 * more complex.
1226			 */
1227			if (fl->fl_end < request->fl_start)
1228				continue;
1229			if (fl->fl_start > request->fl_end)
1230				break;
1231			if (request->fl_type == F_UNLCK)
1232				added = true;
1233			if (fl->fl_start < request->fl_start)
1234				left = fl;
1235			/* If the next lock in the list has a higher end
1236			 * address than the new one, insert the new one here.
1237			 */
1238			if (fl->fl_end > request->fl_end) {
1239				right = fl;
1240				break;
1241			}
1242			if (fl->fl_start >= request->fl_start) {
1243				/* The new lock completely replaces an old
1244				 * one (This may happen several times).
1245				 */
1246				if (added) {
1247					locks_delete_lock_ctx(fl, &dispose);
1248					continue;
1249				}
1250				/*
1251				 * Replace the old lock with new_fl, and
1252				 * remove the old one. It's safe to do the
1253				 * insert here since we know that we won't be
1254				 * using new_fl later, and that the lock is
1255				 * just replacing an existing lock.
1256				 */
1257				error = -ENOLCK;
1258				if (!new_fl)
1259					goto out;
1260				locks_copy_lock(new_fl, request);
1261				locks_move_blocks(new_fl, request);
1262				request = new_fl;
1263				new_fl = NULL;
1264				locks_insert_lock_ctx(request, &fl->fl_list);
1265				locks_delete_lock_ctx(fl, &dispose);
1266				added = true;
1267			}
1268		}
1269	}
1270
1271	/*
1272	 * The above code only modifies existing locks in case of merging or
1273	 * replacing. If new lock(s) need to be inserted all modifications are
1274	 * done below this, so it's safe yet to bail out.
1275	 */
1276	error = -ENOLCK; /* "no luck" */
1277	if (right && left == right && !new_fl2)
1278		goto out;
1279
1280	error = 0;
1281	if (!added) {
1282		if (request->fl_type == F_UNLCK) {
1283			if (request->fl_flags & FL_EXISTS)
1284				error = -ENOENT;
1285			goto out;
1286		}
1287
1288		if (!new_fl) {
1289			error = -ENOLCK;
1290			goto out;
1291		}
1292		locks_copy_lock(new_fl, request);
1293		locks_move_blocks(new_fl, request);
1294		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1295		fl = new_fl;
1296		new_fl = NULL;
1297	}
1298	if (right) {
1299		if (left == right) {
1300			/* The new lock breaks the old one in two pieces,
1301			 * so we have to use the second new lock.
1302			 */
1303			left = new_fl2;
1304			new_fl2 = NULL;
1305			locks_copy_lock(left, right);
1306			locks_insert_lock_ctx(left, &fl->fl_list);
1307		}
1308		right->fl_start = request->fl_end + 1;
1309		locks_wake_up_blocks(right);
1310	}
1311	if (left) {
1312		left->fl_end = request->fl_start - 1;
1313		locks_wake_up_blocks(left);
1314	}
1315 out:
1316	spin_unlock(&ctx->flc_lock);
1317	percpu_up_read(&file_rwsem);
1318	trace_posix_lock_inode(inode, request, error);
1319	/*
1320	 * Free any unused locks.
1321	 */
1322	if (new_fl)
1323		locks_free_lock(new_fl);
1324	if (new_fl2)
1325		locks_free_lock(new_fl2);
1326	locks_dispose_list(&dispose);
 
1327
1328	return error;
1329}
1330
1331/**
1332 * posix_lock_file - Apply a POSIX-style lock to a file
1333 * @filp: The file to apply the lock to
1334 * @fl: The lock to be applied
1335 * @conflock: Place to return a copy of the conflicting lock, if found.
1336 *
1337 * Add a POSIX style lock to a file.
1338 * We merge adjacent & overlapping locks whenever possible.
1339 * POSIX locks are sorted by owner task, then by starting address
1340 *
1341 * Note that if called with an FL_EXISTS argument, the caller may determine
1342 * whether or not a lock was successfully freed by testing the return
1343 * value for -ENOENT.
1344 */
1345int posix_lock_file(struct file *filp, struct file_lock *fl,
1346			struct file_lock *conflock)
1347{
1348	return posix_lock_inode(file_inode(filp), fl, conflock);
1349}
1350EXPORT_SYMBOL(posix_lock_file);
1351
1352/**
1353 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1354 * @inode: inode of file to which lock request should be applied
1355 * @fl: The lock to be applied
1356 *
1357 * Apply a POSIX style lock request to an inode.
1358 */
1359static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1360{
1361	int error;
1362	might_sleep ();
1363	for (;;) {
1364		error = posix_lock_inode(inode, fl, NULL);
1365		if (error != FILE_LOCK_DEFERRED)
1366			break;
1367		error = wait_event_interruptible(fl->fl_wait,
1368					list_empty(&fl->fl_blocked_member));
1369		if (error)
1370			break;
1371	}
1372	locks_delete_block(fl);
1373	return error;
1374}
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376static void lease_clear_pending(struct file_lock *fl, int arg)
1377{
1378	switch (arg) {
1379	case F_UNLCK:
1380		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1381		fallthrough;
1382	case F_RDLCK:
1383		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1384	}
1385}
1386
1387/* We already had a lease on this file; just change its type */
1388int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1389{
1390	int error = assign_type(fl, arg);
1391
1392	if (error)
1393		return error;
1394	lease_clear_pending(fl, arg);
1395	locks_wake_up_blocks(fl);
1396	if (arg == F_UNLCK) {
1397		struct file *filp = fl->fl_file;
1398
1399		f_delown(filp);
1400		filp->f_owner.signum = 0;
1401		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1402		if (fl->fl_fasync != NULL) {
1403			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1404			fl->fl_fasync = NULL;
1405		}
1406		locks_delete_lock_ctx(fl, dispose);
1407	}
1408	return 0;
1409}
1410EXPORT_SYMBOL(lease_modify);
1411
1412static bool past_time(unsigned long then)
1413{
1414	if (!then)
1415		/* 0 is a special value meaning "this never expires": */
1416		return false;
1417	return time_after(jiffies, then);
1418}
1419
1420static void time_out_leases(struct inode *inode, struct list_head *dispose)
1421{
1422	struct file_lock_context *ctx = inode->i_flctx;
1423	struct file_lock *fl, *tmp;
1424
1425	lockdep_assert_held(&ctx->flc_lock);
1426
1427	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1428		trace_time_out_leases(inode, fl);
1429		if (past_time(fl->fl_downgrade_time))
1430			lease_modify(fl, F_RDLCK, dispose);
1431		if (past_time(fl->fl_break_time))
1432			lease_modify(fl, F_UNLCK, dispose);
1433	}
1434}
1435
1436static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1437{
1438	bool rc;
1439
1440	if (lease->fl_lmops->lm_breaker_owns_lease
1441			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1442		return false;
1443	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1444		rc = false;
1445		goto trace;
1446	}
1447	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1448		rc = false;
1449		goto trace;
1450	}
1451
1452	rc = locks_conflict(breaker, lease);
1453trace:
1454	trace_leases_conflict(rc, lease, breaker);
1455	return rc;
1456}
1457
1458static bool
1459any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1460{
1461	struct file_lock_context *ctx = inode->i_flctx;
1462	struct file_lock *fl;
1463
1464	lockdep_assert_held(&ctx->flc_lock);
1465
1466	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1467		if (leases_conflict(fl, breaker))
1468			return true;
1469	}
1470	return false;
1471}
1472
1473/**
1474 *	__break_lease	-	revoke all outstanding leases on file
1475 *	@inode: the inode of the file to return
1476 *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1477 *	    break all leases
1478 *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1479 *	    only delegations
1480 *
1481 *	break_lease (inlined for speed) has checked there already is at least
1482 *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1483 *	a call to open() or truncate().  This function can sleep unless you
1484 *	specified %O_NONBLOCK to your open().
1485 */
1486int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1487{
1488	int error = 0;
1489	struct file_lock_context *ctx;
1490	struct file_lock *new_fl, *fl, *tmp;
1491	unsigned long break_time;
1492	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1493	LIST_HEAD(dispose);
1494
1495	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1496	if (IS_ERR(new_fl))
1497		return PTR_ERR(new_fl);
1498	new_fl->fl_flags = type;
1499
1500	/* typically we will check that ctx is non-NULL before calling */
1501	ctx = locks_inode_context(inode);
1502	if (!ctx) {
1503		WARN_ON_ONCE(1);
1504		goto free_lock;
1505	}
1506
1507	percpu_down_read(&file_rwsem);
1508	spin_lock(&ctx->flc_lock);
1509
1510	time_out_leases(inode, &dispose);
1511
1512	if (!any_leases_conflict(inode, new_fl))
1513		goto out;
1514
1515	break_time = 0;
1516	if (lease_break_time > 0) {
1517		break_time = jiffies + lease_break_time * HZ;
1518		if (break_time == 0)
1519			break_time++;	/* so that 0 means no break time */
1520	}
1521
1522	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1523		if (!leases_conflict(fl, new_fl))
1524			continue;
1525		if (want_write) {
1526			if (fl->fl_flags & FL_UNLOCK_PENDING)
1527				continue;
1528			fl->fl_flags |= FL_UNLOCK_PENDING;
1529			fl->fl_break_time = break_time;
1530		} else {
1531			if (lease_breaking(fl))
1532				continue;
1533			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1534			fl->fl_downgrade_time = break_time;
1535		}
1536		if (fl->fl_lmops->lm_break(fl))
1537			locks_delete_lock_ctx(fl, &dispose);
1538	}
1539
1540	if (list_empty(&ctx->flc_lease))
1541		goto out;
1542
1543	if (mode & O_NONBLOCK) {
1544		trace_break_lease_noblock(inode, new_fl);
1545		error = -EWOULDBLOCK;
1546		goto out;
1547	}
1548
1549restart:
1550	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1551	break_time = fl->fl_break_time;
1552	if (break_time != 0)
1553		break_time -= jiffies;
1554	if (break_time == 0)
1555		break_time++;
1556	locks_insert_block(fl, new_fl, leases_conflict);
1557	trace_break_lease_block(inode, new_fl);
1558	spin_unlock(&ctx->flc_lock);
1559	percpu_up_read(&file_rwsem);
1560
1561	locks_dispose_list(&dispose);
1562	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1563					list_empty(&new_fl->fl_blocked_member),
1564					break_time);
1565
1566	percpu_down_read(&file_rwsem);
1567	spin_lock(&ctx->flc_lock);
1568	trace_break_lease_unblock(inode, new_fl);
1569	locks_delete_block(new_fl);
1570	if (error >= 0) {
1571		/*
1572		 * Wait for the next conflicting lease that has not been
1573		 * broken yet
1574		 */
1575		if (error == 0)
1576			time_out_leases(inode, &dispose);
1577		if (any_leases_conflict(inode, new_fl))
1578			goto restart;
1579		error = 0;
1580	}
1581out:
1582	spin_unlock(&ctx->flc_lock);
1583	percpu_up_read(&file_rwsem);
1584	locks_dispose_list(&dispose);
1585free_lock:
1586	locks_free_lock(new_fl);
1587	return error;
1588}
1589EXPORT_SYMBOL(__break_lease);
1590
1591/**
1592 *	lease_get_mtime - update modified time of an inode with exclusive lease
1593 *	@inode: the inode
1594 *      @time:  pointer to a timespec which contains the last modified time
1595 *
1596 * This is to force NFS clients to flush their caches for files with
1597 * exclusive leases.  The justification is that if someone has an
1598 * exclusive lease, then they could be modifying it.
1599 */
1600void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1601{
1602	bool has_lease = false;
1603	struct file_lock_context *ctx;
1604	struct file_lock *fl;
1605
1606	ctx = locks_inode_context(inode);
1607	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1608		spin_lock(&ctx->flc_lock);
1609		fl = list_first_entry_or_null(&ctx->flc_lease,
1610					      struct file_lock, fl_list);
1611		if (fl && (fl->fl_type == F_WRLCK))
1612			has_lease = true;
1613		spin_unlock(&ctx->flc_lock);
1614	}
1615
1616	if (has_lease)
1617		*time = current_time(inode);
1618}
1619EXPORT_SYMBOL(lease_get_mtime);
1620
1621/**
1622 *	fcntl_getlease - Enquire what lease is currently active
1623 *	@filp: the file
1624 *
1625 *	The value returned by this function will be one of
1626 *	(if no lease break is pending):
1627 *
1628 *	%F_RDLCK to indicate a shared lease is held.
1629 *
1630 *	%F_WRLCK to indicate an exclusive lease is held.
1631 *
1632 *	%F_UNLCK to indicate no lease is held.
1633 *
1634 *	(if a lease break is pending):
1635 *
1636 *	%F_RDLCK to indicate an exclusive lease needs to be
1637 *		changed to a shared lease (or removed).
1638 *
1639 *	%F_UNLCK to indicate the lease needs to be removed.
1640 *
1641 *	XXX: sfr & willy disagree over whether F_INPROGRESS
1642 *	should be returned to userspace.
1643 */
1644int fcntl_getlease(struct file *filp)
1645{
1646	struct file_lock *fl;
1647	struct inode *inode = file_inode(filp);
1648	struct file_lock_context *ctx;
1649	int type = F_UNLCK;
1650	LIST_HEAD(dispose);
1651
1652	ctx = locks_inode_context(inode);
1653	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1654		percpu_down_read(&file_rwsem);
1655		spin_lock(&ctx->flc_lock);
1656		time_out_leases(inode, &dispose);
1657		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1658			if (fl->fl_file != filp)
1659				continue;
1660			type = target_leasetype(fl);
1661			break;
1662		}
1663		spin_unlock(&ctx->flc_lock);
1664		percpu_up_read(&file_rwsem);
1665
1666		locks_dispose_list(&dispose);
1667	}
1668	return type;
1669}
1670
1671/**
1672 * check_conflicting_open - see if the given file points to an inode that has
1673 *			    an existing open that would conflict with the
1674 *			    desired lease.
1675 * @filp:	file to check
1676 * @arg:	type of lease that we're trying to acquire
1677 * @flags:	current lock flags
1678 *
1679 * Check to see if there's an existing open fd on this file that would
1680 * conflict with the lease we're trying to set.
1681 */
1682static int
1683check_conflicting_open(struct file *filp, const int arg, int flags)
1684{
1685	struct inode *inode = file_inode(filp);
1686	int self_wcount = 0, self_rcount = 0;
1687
1688	if (flags & FL_LAYOUT)
1689		return 0;
1690	if (flags & FL_DELEG)
1691		/* We leave these checks to the caller */
1692		return 0;
1693
1694	if (arg == F_RDLCK)
1695		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1696	else if (arg != F_WRLCK)
1697		return 0;
1698
1699	/*
1700	 * Make sure that only read/write count is from lease requestor.
1701	 * Note that this will result in denying write leases when i_writecount
1702	 * is negative, which is what we want.  (We shouldn't grant write leases
1703	 * on files open for execution.)
1704	 */
1705	if (filp->f_mode & FMODE_WRITE)
1706		self_wcount = 1;
1707	else if (filp->f_mode & FMODE_READ)
1708		self_rcount = 1;
1709
1710	if (atomic_read(&inode->i_writecount) != self_wcount ||
1711	    atomic_read(&inode->i_readcount) != self_rcount)
1712		return -EAGAIN;
1713
1714	return 0;
1715}
1716
1717static int
1718generic_add_lease(struct file *filp, int arg, struct file_lock **flp, void **priv)
1719{
1720	struct file_lock *fl, *my_fl = NULL, *lease;
1721	struct inode *inode = file_inode(filp);
1722	struct file_lock_context *ctx;
1723	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1724	int error;
1725	LIST_HEAD(dispose);
1726
1727	lease = *flp;
1728	trace_generic_add_lease(inode, lease);
1729
1730	/* Note that arg is never F_UNLCK here */
1731	ctx = locks_get_lock_context(inode, arg);
1732	if (!ctx)
1733		return -ENOMEM;
1734
1735	/*
1736	 * In the delegation case we need mutual exclusion with
1737	 * a number of operations that take the i_mutex.  We trylock
1738	 * because delegations are an optional optimization, and if
1739	 * there's some chance of a conflict--we'd rather not
1740	 * bother, maybe that's a sign this just isn't a good file to
1741	 * hand out a delegation on.
1742	 */
1743	if (is_deleg && !inode_trylock(inode))
1744		return -EAGAIN;
1745
 
 
 
 
 
 
 
1746	percpu_down_read(&file_rwsem);
1747	spin_lock(&ctx->flc_lock);
1748	time_out_leases(inode, &dispose);
1749	error = check_conflicting_open(filp, arg, lease->fl_flags);
1750	if (error)
1751		goto out;
1752
1753	/*
1754	 * At this point, we know that if there is an exclusive
1755	 * lease on this file, then we hold it on this filp
1756	 * (otherwise our open of this file would have blocked).
1757	 * And if we are trying to acquire an exclusive lease,
1758	 * then the file is not open by anyone (including us)
1759	 * except for this filp.
1760	 */
1761	error = -EAGAIN;
1762	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1763		if (fl->fl_file == filp &&
1764		    fl->fl_owner == lease->fl_owner) {
1765			my_fl = fl;
1766			continue;
1767		}
1768
1769		/*
1770		 * No exclusive leases if someone else has a lease on
1771		 * this file:
1772		 */
1773		if (arg == F_WRLCK)
1774			goto out;
1775		/*
1776		 * Modifying our existing lease is OK, but no getting a
1777		 * new lease if someone else is opening for write:
1778		 */
1779		if (fl->fl_flags & FL_UNLOCK_PENDING)
1780			goto out;
1781	}
1782
1783	if (my_fl != NULL) {
1784		lease = my_fl;
1785		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1786		if (error)
1787			goto out;
1788		goto out_setup;
1789	}
1790
1791	error = -EINVAL;
1792	if (!leases_enable)
1793		goto out;
1794
1795	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1796	/*
1797	 * The check in break_lease() is lockless. It's possible for another
1798	 * open to race in after we did the earlier check for a conflicting
1799	 * open but before the lease was inserted. Check again for a
1800	 * conflicting open and cancel the lease if there is one.
1801	 *
1802	 * We also add a barrier here to ensure that the insertion of the lock
1803	 * precedes these checks.
1804	 */
1805	smp_mb();
1806	error = check_conflicting_open(filp, arg, lease->fl_flags);
1807	if (error) {
1808		locks_unlink_lock_ctx(lease);
1809		goto out;
1810	}
1811
1812out_setup:
1813	if (lease->fl_lmops->lm_setup)
1814		lease->fl_lmops->lm_setup(lease, priv);
1815out:
1816	spin_unlock(&ctx->flc_lock);
1817	percpu_up_read(&file_rwsem);
1818	locks_dispose_list(&dispose);
1819	if (is_deleg)
1820		inode_unlock(inode);
1821	if (!error && !my_fl)
1822		*flp = NULL;
1823	return error;
1824}
1825
1826static int generic_delete_lease(struct file *filp, void *owner)
1827{
1828	int error = -EAGAIN;
1829	struct file_lock *fl, *victim = NULL;
1830	struct inode *inode = file_inode(filp);
1831	struct file_lock_context *ctx;
1832	LIST_HEAD(dispose);
1833
1834	ctx = locks_inode_context(inode);
1835	if (!ctx) {
1836		trace_generic_delete_lease(inode, NULL);
1837		return error;
1838	}
1839
1840	percpu_down_read(&file_rwsem);
1841	spin_lock(&ctx->flc_lock);
1842	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1843		if (fl->fl_file == filp &&
1844		    fl->fl_owner == owner) {
1845			victim = fl;
1846			break;
1847		}
1848	}
1849	trace_generic_delete_lease(inode, victim);
1850	if (victim)
1851		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1852	spin_unlock(&ctx->flc_lock);
1853	percpu_up_read(&file_rwsem);
1854	locks_dispose_list(&dispose);
1855	return error;
1856}
1857
1858/**
1859 *	generic_setlease	-	sets a lease on an open file
1860 *	@filp:	file pointer
1861 *	@arg:	type of lease to obtain
1862 *	@flp:	input - file_lock to use, output - file_lock inserted
1863 *	@priv:	private data for lm_setup (may be NULL if lm_setup
1864 *		doesn't require it)
1865 *
1866 *	The (input) flp->fl_lmops->lm_break function is required
1867 *	by break_lease().
1868 */
1869int generic_setlease(struct file *filp, int arg, struct file_lock **flp,
1870			void **priv)
1871{
1872	struct inode *inode = file_inode(filp);
1873	vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode);
1874	int error;
1875
1876	if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE))
1877		return -EACCES;
1878	if (!S_ISREG(inode->i_mode))
1879		return -EINVAL;
1880	error = security_file_lock(filp, arg);
1881	if (error)
1882		return error;
1883
1884	switch (arg) {
1885	case F_UNLCK:
1886		return generic_delete_lease(filp, *priv);
1887	case F_RDLCK:
1888	case F_WRLCK:
1889		if (!(*flp)->fl_lmops->lm_break) {
1890			WARN_ON_ONCE(1);
1891			return -ENOLCK;
1892		}
1893
1894		return generic_add_lease(filp, arg, flp, priv);
1895	default:
1896		return -EINVAL;
1897	}
1898}
1899EXPORT_SYMBOL(generic_setlease);
1900
 
1901/*
1902 * Kernel subsystems can register to be notified on any attempt to set
1903 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1904 * to close files that it may have cached when there is an attempt to set a
1905 * conflicting lease.
1906 */
1907static struct srcu_notifier_head lease_notifier_chain;
1908
1909static inline void
1910lease_notifier_chain_init(void)
1911{
1912	srcu_init_notifier_head(&lease_notifier_chain);
1913}
1914
1915static inline void
1916setlease_notifier(int arg, struct file_lock *lease)
1917{
1918	if (arg != F_UNLCK)
1919		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1920}
1921
1922int lease_register_notifier(struct notifier_block *nb)
1923{
1924	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
1925}
1926EXPORT_SYMBOL_GPL(lease_register_notifier);
1927
1928void lease_unregister_notifier(struct notifier_block *nb)
1929{
1930	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
1931}
1932EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934/**
1935 * vfs_setlease        -       sets a lease on an open file
1936 * @filp:	file pointer
1937 * @arg:	type of lease to obtain
1938 * @lease:	file_lock to use when adding a lease
1939 * @priv:	private info for lm_setup when adding a lease (may be
1940 *		NULL if lm_setup doesn't require it)
1941 *
1942 * Call this to establish a lease on the file. The "lease" argument is not
1943 * used for F_UNLCK requests and may be NULL. For commands that set or alter
1944 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1945 * set; if not, this function will return -ENOLCK (and generate a scary-looking
1946 * stack trace).
1947 *
1948 * The "priv" pointer is passed directly to the lm_setup function as-is. It
1949 * may be NULL if the lm_setup operation doesn't require it.
1950 */
1951int
1952vfs_setlease(struct file *filp, int arg, struct file_lock **lease, void **priv)
1953{
1954	if (lease)
1955		setlease_notifier(arg, *lease);
1956	if (filp->f_op->setlease)
1957		return filp->f_op->setlease(filp, arg, lease, priv);
1958	else
1959		return generic_setlease(filp, arg, lease, priv);
1960}
1961EXPORT_SYMBOL_GPL(vfs_setlease);
1962
1963static int do_fcntl_add_lease(unsigned int fd, struct file *filp, int arg)
1964{
1965	struct file_lock *fl;
1966	struct fasync_struct *new;
1967	int error;
1968
1969	fl = lease_alloc(filp, arg);
1970	if (IS_ERR(fl))
1971		return PTR_ERR(fl);
1972
1973	new = fasync_alloc();
1974	if (!new) {
1975		locks_free_lock(fl);
1976		return -ENOMEM;
1977	}
1978	new->fa_fd = fd;
1979
1980	error = vfs_setlease(filp, arg, &fl, (void **)&new);
1981	if (fl)
1982		locks_free_lock(fl);
1983	if (new)
1984		fasync_free(new);
1985	return error;
1986}
1987
1988/**
1989 *	fcntl_setlease	-	sets a lease on an open file
1990 *	@fd: open file descriptor
1991 *	@filp: file pointer
1992 *	@arg: type of lease to obtain
1993 *
1994 *	Call this fcntl to establish a lease on the file.
1995 *	Note that you also need to call %F_SETSIG to
1996 *	receive a signal when the lease is broken.
1997 */
1998int fcntl_setlease(unsigned int fd, struct file *filp, int arg)
1999{
2000	if (arg == F_UNLCK)
2001		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2002	return do_fcntl_add_lease(fd, filp, arg);
2003}
2004
2005/**
2006 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2007 * @inode: inode of the file to apply to
2008 * @fl: The lock to be applied
2009 *
2010 * Apply a FLOCK style lock request to an inode.
2011 */
2012static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2013{
2014	int error;
2015	might_sleep();
2016	for (;;) {
2017		error = flock_lock_inode(inode, fl);
2018		if (error != FILE_LOCK_DEFERRED)
2019			break;
2020		error = wait_event_interruptible(fl->fl_wait,
2021				list_empty(&fl->fl_blocked_member));
2022		if (error)
2023			break;
2024	}
2025	locks_delete_block(fl);
2026	return error;
2027}
2028
2029/**
2030 * locks_lock_inode_wait - Apply a lock to an inode
2031 * @inode: inode of the file to apply to
2032 * @fl: The lock to be applied
2033 *
2034 * Apply a POSIX or FLOCK style lock request to an inode.
2035 */
2036int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2037{
2038	int res = 0;
2039	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2040		case FL_POSIX:
2041			res = posix_lock_inode_wait(inode, fl);
2042			break;
2043		case FL_FLOCK:
2044			res = flock_lock_inode_wait(inode, fl);
2045			break;
2046		default:
2047			BUG();
2048	}
2049	return res;
2050}
2051EXPORT_SYMBOL(locks_lock_inode_wait);
2052
2053/**
2054 *	sys_flock: - flock() system call.
2055 *	@fd: the file descriptor to lock.
2056 *	@cmd: the type of lock to apply.
2057 *
2058 *	Apply a %FL_FLOCK style lock to an open file descriptor.
2059 *	The @cmd can be one of:
2060 *
2061 *	- %LOCK_SH -- a shared lock.
2062 *	- %LOCK_EX -- an exclusive lock.
2063 *	- %LOCK_UN -- remove an existing lock.
2064 *	- %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
 
2065 *
2066 *	%LOCK_MAND support has been removed from the kernel.
 
2067 */
2068SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2069{
2070	int can_sleep, error, type;
2071	struct file_lock fl;
2072	struct fd f;
2073
2074	/*
2075	 * LOCK_MAND locks were broken for a long time in that they never
2076	 * conflicted with one another and didn't prevent any sort of open,
2077	 * read or write activity.
2078	 *
2079	 * Just ignore these requests now, to preserve legacy behavior, but
2080	 * throw a warning to let people know that they don't actually work.
2081	 */
2082	if (cmd & LOCK_MAND) {
2083		pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid);
2084		return 0;
2085	}
2086
2087	type = flock_translate_cmd(cmd & ~LOCK_NB);
2088	if (type < 0)
2089		return type;
2090
2091	error = -EBADF;
2092	f = fdget(fd);
2093	if (!f.file)
2094		return error;
2095
2096	if (type != F_UNLCK && !(f.file->f_mode & (FMODE_READ | FMODE_WRITE)))
2097		goto out_putf;
 
2098
2099	flock_make_lock(f.file, &fl, type);
 
 
2100
2101	error = security_file_lock(f.file, fl.fl_type);
2102	if (error)
 
2103		goto out_putf;
 
2104
2105	can_sleep = !(cmd & LOCK_NB);
2106	if (can_sleep)
2107		fl.fl_flags |= FL_SLEEP;
 
 
 
 
2108
2109	if (f.file->f_op->flock)
2110		error = f.file->f_op->flock(f.file,
2111					    (can_sleep) ? F_SETLKW : F_SETLK,
2112					    &fl);
2113	else
2114		error = locks_lock_file_wait(f.file, &fl);
 
 
 
2115
2116	locks_release_private(&fl);
2117 out_putf:
2118	fdput(f);
2119
2120	return error;
2121}
2122
2123/**
2124 * vfs_test_lock - test file byte range lock
2125 * @filp: The file to test lock for
2126 * @fl: The lock to test; also used to hold result
2127 *
2128 * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2129 * setting conf->fl_type to something other than F_UNLCK.
2130 */
2131int vfs_test_lock(struct file *filp, struct file_lock *fl)
2132{
2133	WARN_ON_ONCE(filp != fl->fl_file);
2134	if (filp->f_op->lock)
2135		return filp->f_op->lock(filp, F_GETLK, fl);
2136	posix_test_lock(filp, fl);
2137	return 0;
2138}
2139EXPORT_SYMBOL_GPL(vfs_test_lock);
2140
2141/**
2142 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2143 * @fl: The file_lock who's fl_pid should be translated
2144 * @ns: The namespace into which the pid should be translated
2145 *
2146 * Used to translate a fl_pid into a namespace virtual pid number
2147 */
2148static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2149{
2150	pid_t vnr;
2151	struct pid *pid;
2152
2153	if (IS_OFDLCK(fl))
2154		return -1;
2155	if (IS_REMOTELCK(fl))
2156		return fl->fl_pid;
2157	/*
2158	 * If the flock owner process is dead and its pid has been already
2159	 * freed, the translation below won't work, but we still want to show
2160	 * flock owner pid number in init pidns.
2161	 */
2162	if (ns == &init_pid_ns)
2163		return (pid_t)fl->fl_pid;
2164
2165	rcu_read_lock();
2166	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2167	vnr = pid_nr_ns(pid, ns);
2168	rcu_read_unlock();
2169	return vnr;
2170}
2171
2172static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2173{
2174	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2175#if BITS_PER_LONG == 32
2176	/*
2177	 * Make sure we can represent the posix lock via
2178	 * legacy 32bit flock.
2179	 */
2180	if (fl->fl_start > OFFT_OFFSET_MAX)
2181		return -EOVERFLOW;
2182	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2183		return -EOVERFLOW;
2184#endif
2185	flock->l_start = fl->fl_start;
2186	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2187		fl->fl_end - fl->fl_start + 1;
2188	flock->l_whence = 0;
2189	flock->l_type = fl->fl_type;
2190	return 0;
2191}
2192
2193#if BITS_PER_LONG == 32
2194static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2195{
2196	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2197	flock->l_start = fl->fl_start;
2198	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2199		fl->fl_end - fl->fl_start + 1;
2200	flock->l_whence = 0;
2201	flock->l_type = fl->fl_type;
2202}
2203#endif
2204
2205/* Report the first existing lock that would conflict with l.
2206 * This implements the F_GETLK command of fcntl().
2207 */
2208int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2209{
2210	struct file_lock *fl;
2211	int error;
2212
2213	fl = locks_alloc_lock();
2214	if (fl == NULL)
2215		return -ENOMEM;
2216	error = -EINVAL;
2217	if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2218			&& flock->l_type != F_WRLCK)
2219		goto out;
2220
2221	error = flock_to_posix_lock(filp, fl, flock);
2222	if (error)
2223		goto out;
2224
2225	if (cmd == F_OFD_GETLK) {
2226		error = -EINVAL;
2227		if (flock->l_pid != 0)
2228			goto out;
2229
 
2230		fl->fl_flags |= FL_OFDLCK;
2231		fl->fl_owner = filp;
2232	}
2233
2234	error = vfs_test_lock(filp, fl);
2235	if (error)
2236		goto out;
2237
2238	flock->l_type = fl->fl_type;
2239	if (fl->fl_type != F_UNLCK) {
2240		error = posix_lock_to_flock(flock, fl);
2241		if (error)
2242			goto out;
2243	}
2244out:
2245	locks_free_lock(fl);
2246	return error;
2247}
2248
2249/**
2250 * vfs_lock_file - file byte range lock
2251 * @filp: The file to apply the lock to
2252 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2253 * @fl: The lock to be applied
2254 * @conf: Place to return a copy of the conflicting lock, if found.
2255 *
2256 * A caller that doesn't care about the conflicting lock may pass NULL
2257 * as the final argument.
2258 *
2259 * If the filesystem defines a private ->lock() method, then @conf will
2260 * be left unchanged; so a caller that cares should initialize it to
2261 * some acceptable default.
2262 *
2263 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2264 * locks, the ->lock() interface may return asynchronously, before the lock has
2265 * been granted or denied by the underlying filesystem, if (and only if)
2266 * lm_grant is set. Additionally EXPORT_OP_ASYNC_LOCK in export_operations
2267 * flags need to be set.
2268 *
2269 * Callers expecting ->lock() to return asynchronously will only use F_SETLK,
2270 * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a
2271 * blocking lock. When ->lock() does return asynchronously, it must return
2272 * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes.
2273 * If the request is for non-blocking lock the file system should return
2274 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2275 * with the result. If the request timed out the callback routine will return a
2276 * nonzero return code and the file system should release the lock. The file
2277 * system is also responsible to keep a corresponding posix lock when it
2278 * grants a lock so the VFS can find out which locks are locally held and do
2279 * the correct lock cleanup when required.
2280 * The underlying filesystem must not drop the kernel lock or call
2281 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2282 * return code.
2283 */
2284int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2285{
2286	WARN_ON_ONCE(filp != fl->fl_file);
2287	if (filp->f_op->lock)
2288		return filp->f_op->lock(filp, cmd, fl);
2289	else
2290		return posix_lock_file(filp, fl, conf);
2291}
2292EXPORT_SYMBOL_GPL(vfs_lock_file);
2293
2294static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2295			     struct file_lock *fl)
2296{
2297	int error;
2298
2299	error = security_file_lock(filp, fl->fl_type);
2300	if (error)
2301		return error;
2302
2303	for (;;) {
2304		error = vfs_lock_file(filp, cmd, fl, NULL);
2305		if (error != FILE_LOCK_DEFERRED)
2306			break;
2307		error = wait_event_interruptible(fl->fl_wait,
2308					list_empty(&fl->fl_blocked_member));
2309		if (error)
2310			break;
2311	}
2312	locks_delete_block(fl);
2313
2314	return error;
2315}
2316
2317/* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2318static int
2319check_fmode_for_setlk(struct file_lock *fl)
2320{
2321	switch (fl->fl_type) {
2322	case F_RDLCK:
2323		if (!(fl->fl_file->f_mode & FMODE_READ))
2324			return -EBADF;
2325		break;
2326	case F_WRLCK:
2327		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2328			return -EBADF;
2329	}
2330	return 0;
2331}
2332
2333/* Apply the lock described by l to an open file descriptor.
2334 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2335 */
2336int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2337		struct flock *flock)
2338{
2339	struct file_lock *file_lock = locks_alloc_lock();
2340	struct inode *inode = file_inode(filp);
2341	struct file *f;
2342	int error;
2343
2344	if (file_lock == NULL)
2345		return -ENOLCK;
2346
 
 
 
 
 
 
 
 
2347	error = flock_to_posix_lock(filp, file_lock, flock);
2348	if (error)
2349		goto out;
2350
2351	error = check_fmode_for_setlk(file_lock);
2352	if (error)
2353		goto out;
2354
2355	/*
2356	 * If the cmd is requesting file-private locks, then set the
2357	 * FL_OFDLCK flag and override the owner.
2358	 */
2359	switch (cmd) {
2360	case F_OFD_SETLK:
2361		error = -EINVAL;
2362		if (flock->l_pid != 0)
2363			goto out;
2364
2365		cmd = F_SETLK;
2366		file_lock->fl_flags |= FL_OFDLCK;
2367		file_lock->fl_owner = filp;
2368		break;
2369	case F_OFD_SETLKW:
2370		error = -EINVAL;
2371		if (flock->l_pid != 0)
2372			goto out;
2373
2374		cmd = F_SETLKW;
2375		file_lock->fl_flags |= FL_OFDLCK;
2376		file_lock->fl_owner = filp;
2377		fallthrough;
2378	case F_SETLKW:
2379		file_lock->fl_flags |= FL_SLEEP;
2380	}
2381
2382	error = do_lock_file_wait(filp, cmd, file_lock);
2383
2384	/*
2385	 * Attempt to detect a close/fcntl race and recover by releasing the
2386	 * lock that was just acquired. There is no need to do that when we're
2387	 * unlocking though, or for OFD locks.
2388	 */
2389	if (!error && file_lock->fl_type != F_UNLCK &&
2390	    !(file_lock->fl_flags & FL_OFDLCK)) {
2391		struct files_struct *files = current->files;
2392		/*
2393		 * We need that spin_lock here - it prevents reordering between
2394		 * update of i_flctx->flc_posix and check for it done in
2395		 * close(). rcu_read_lock() wouldn't do.
2396		 */
2397		spin_lock(&files->file_lock);
2398		f = files_lookup_fd_locked(files, fd);
2399		spin_unlock(&files->file_lock);
2400		if (f != filp) {
2401			file_lock->fl_type = F_UNLCK;
2402			error = do_lock_file_wait(filp, cmd, file_lock);
2403			WARN_ON_ONCE(error);
2404			error = -EBADF;
2405		}
2406	}
2407out:
2408	trace_fcntl_setlk(inode, file_lock, error);
2409	locks_free_lock(file_lock);
2410	return error;
2411}
2412
2413#if BITS_PER_LONG == 32
2414/* Report the first existing lock that would conflict with l.
2415 * This implements the F_GETLK command of fcntl().
2416 */
2417int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2418{
2419	struct file_lock *fl;
2420	int error;
2421
2422	fl = locks_alloc_lock();
2423	if (fl == NULL)
2424		return -ENOMEM;
2425
2426	error = -EINVAL;
2427	if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2428			&& flock->l_type != F_WRLCK)
2429		goto out;
2430
2431	error = flock64_to_posix_lock(filp, fl, flock);
2432	if (error)
2433		goto out;
2434
2435	if (cmd == F_OFD_GETLK) {
2436		error = -EINVAL;
2437		if (flock->l_pid != 0)
2438			goto out;
2439
 
2440		fl->fl_flags |= FL_OFDLCK;
2441		fl->fl_owner = filp;
2442	}
2443
2444	error = vfs_test_lock(filp, fl);
2445	if (error)
2446		goto out;
2447
2448	flock->l_type = fl->fl_type;
2449	if (fl->fl_type != F_UNLCK)
2450		posix_lock_to_flock64(flock, fl);
2451
2452out:
2453	locks_free_lock(fl);
2454	return error;
2455}
2456
2457/* Apply the lock described by l to an open file descriptor.
2458 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2459 */
2460int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2461		struct flock64 *flock)
2462{
2463	struct file_lock *file_lock = locks_alloc_lock();
 
2464	struct file *f;
2465	int error;
2466
2467	if (file_lock == NULL)
2468		return -ENOLCK;
2469
 
 
 
 
 
 
 
 
2470	error = flock64_to_posix_lock(filp, file_lock, flock);
2471	if (error)
2472		goto out;
2473
2474	error = check_fmode_for_setlk(file_lock);
2475	if (error)
2476		goto out;
2477
2478	/*
2479	 * If the cmd is requesting file-private locks, then set the
2480	 * FL_OFDLCK flag and override the owner.
2481	 */
2482	switch (cmd) {
2483	case F_OFD_SETLK:
2484		error = -EINVAL;
2485		if (flock->l_pid != 0)
2486			goto out;
2487
2488		cmd = F_SETLK64;
2489		file_lock->fl_flags |= FL_OFDLCK;
2490		file_lock->fl_owner = filp;
2491		break;
2492	case F_OFD_SETLKW:
2493		error = -EINVAL;
2494		if (flock->l_pid != 0)
2495			goto out;
2496
2497		cmd = F_SETLKW64;
2498		file_lock->fl_flags |= FL_OFDLCK;
2499		file_lock->fl_owner = filp;
2500		fallthrough;
2501	case F_SETLKW64:
2502		file_lock->fl_flags |= FL_SLEEP;
2503	}
2504
2505	error = do_lock_file_wait(filp, cmd, file_lock);
2506
2507	/*
2508	 * Attempt to detect a close/fcntl race and recover by releasing the
2509	 * lock that was just acquired. There is no need to do that when we're
2510	 * unlocking though, or for OFD locks.
2511	 */
2512	if (!error && file_lock->fl_type != F_UNLCK &&
2513	    !(file_lock->fl_flags & FL_OFDLCK)) {
2514		struct files_struct *files = current->files;
2515		/*
2516		 * We need that spin_lock here - it prevents reordering between
2517		 * update of i_flctx->flc_posix and check for it done in
2518		 * close(). rcu_read_lock() wouldn't do.
2519		 */
2520		spin_lock(&files->file_lock);
2521		f = files_lookup_fd_locked(files, fd);
2522		spin_unlock(&files->file_lock);
2523		if (f != filp) {
2524			file_lock->fl_type = F_UNLCK;
2525			error = do_lock_file_wait(filp, cmd, file_lock);
2526			WARN_ON_ONCE(error);
2527			error = -EBADF;
2528		}
2529	}
2530out:
2531	locks_free_lock(file_lock);
2532	return error;
2533}
2534#endif /* BITS_PER_LONG == 32 */
2535
2536/*
2537 * This function is called when the file is being removed
2538 * from the task's fd array.  POSIX locks belonging to this task
2539 * are deleted at this time.
2540 */
2541void locks_remove_posix(struct file *filp, fl_owner_t owner)
2542{
2543	int error;
2544	struct inode *inode = file_inode(filp);
2545	struct file_lock lock;
2546	struct file_lock_context *ctx;
2547
2548	/*
2549	 * If there are no locks held on this file, we don't need to call
2550	 * posix_lock_file().  Another process could be setting a lock on this
2551	 * file at the same time, but we wouldn't remove that lock anyway.
2552	 */
2553	ctx = locks_inode_context(inode);
2554	if (!ctx || list_empty(&ctx->flc_posix))
2555		return;
2556
2557	locks_init_lock(&lock);
2558	lock.fl_type = F_UNLCK;
2559	lock.fl_flags = FL_POSIX | FL_CLOSE;
2560	lock.fl_start = 0;
2561	lock.fl_end = OFFSET_MAX;
2562	lock.fl_owner = owner;
2563	lock.fl_pid = current->tgid;
2564	lock.fl_file = filp;
2565	lock.fl_ops = NULL;
2566	lock.fl_lmops = NULL;
2567
2568	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2569
2570	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2571		lock.fl_ops->fl_release_private(&lock);
2572	trace_locks_remove_posix(inode, &lock, error);
2573}
2574EXPORT_SYMBOL(locks_remove_posix);
2575
2576/* The i_flctx must be valid when calling into here */
2577static void
2578locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2579{
2580	struct file_lock fl;
2581	struct inode *inode = file_inode(filp);
2582
2583	if (list_empty(&flctx->flc_flock))
2584		return;
2585
2586	flock_make_lock(filp, &fl, F_UNLCK);
2587	fl.fl_flags |= FL_CLOSE;
2588
2589	if (filp->f_op->flock)
2590		filp->f_op->flock(filp, F_SETLKW, &fl);
2591	else
2592		flock_lock_inode(inode, &fl);
2593
2594	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2595		fl.fl_ops->fl_release_private(&fl);
2596}
2597
2598/* The i_flctx must be valid when calling into here */
2599static void
2600locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2601{
2602	struct file_lock *fl, *tmp;
2603	LIST_HEAD(dispose);
2604
2605	if (list_empty(&ctx->flc_lease))
2606		return;
2607
2608	percpu_down_read(&file_rwsem);
2609	spin_lock(&ctx->flc_lock);
2610	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2611		if (filp == fl->fl_file)
2612			lease_modify(fl, F_UNLCK, &dispose);
2613	spin_unlock(&ctx->flc_lock);
2614	percpu_up_read(&file_rwsem);
2615
2616	locks_dispose_list(&dispose);
2617}
2618
2619/*
2620 * This function is called on the last close of an open file.
2621 */
2622void locks_remove_file(struct file *filp)
2623{
2624	struct file_lock_context *ctx;
2625
2626	ctx = locks_inode_context(file_inode(filp));
2627	if (!ctx)
2628		return;
2629
2630	/* remove any OFD locks */
2631	locks_remove_posix(filp, filp);
2632
2633	/* remove flock locks */
2634	locks_remove_flock(filp, ctx);
2635
2636	/* remove any leases */
2637	locks_remove_lease(filp, ctx);
2638
2639	spin_lock(&ctx->flc_lock);
2640	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2641	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2642	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2643	spin_unlock(&ctx->flc_lock);
2644}
2645
2646/**
2647 * vfs_cancel_lock - file byte range unblock lock
2648 * @filp: The file to apply the unblock to
2649 * @fl: The lock to be unblocked
2650 *
2651 * Used by lock managers to cancel blocked requests
2652 */
2653int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2654{
2655	WARN_ON_ONCE(filp != fl->fl_file);
2656	if (filp->f_op->lock)
2657		return filp->f_op->lock(filp, F_CANCELLK, fl);
2658	return 0;
2659}
2660EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2661
2662/**
2663 * vfs_inode_has_locks - are any file locks held on @inode?
2664 * @inode: inode to check for locks
2665 *
2666 * Return true if there are any FL_POSIX or FL_FLOCK locks currently
2667 * set on @inode.
2668 */
2669bool vfs_inode_has_locks(struct inode *inode)
2670{
2671	struct file_lock_context *ctx;
2672	bool ret;
2673
2674	ctx = locks_inode_context(inode);
2675	if (!ctx)
2676		return false;
2677
2678	spin_lock(&ctx->flc_lock);
2679	ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock);
2680	spin_unlock(&ctx->flc_lock);
2681	return ret;
2682}
2683EXPORT_SYMBOL_GPL(vfs_inode_has_locks);
2684
2685#ifdef CONFIG_PROC_FS
2686#include <linux/proc_fs.h>
2687#include <linux/seq_file.h>
2688
2689struct locks_iterator {
2690	int	li_cpu;
2691	loff_t	li_pos;
2692};
2693
2694static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2695			    loff_t id, char *pfx, int repeat)
2696{
2697	struct inode *inode = NULL;
2698	unsigned int fl_pid;
2699	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2700	int type;
2701
2702	fl_pid = locks_translate_pid(fl, proc_pidns);
2703	/*
2704	 * If lock owner is dead (and pid is freed) or not visible in current
2705	 * pidns, zero is shown as a pid value. Check lock info from
2706	 * init_pid_ns to get saved lock pid value.
2707	 */
2708
2709	if (fl->fl_file != NULL)
2710		inode = file_inode(fl->fl_file);
2711
2712	seq_printf(f, "%lld: ", id);
2713
2714	if (repeat)
2715		seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2716
 
2717	if (IS_POSIX(fl)) {
2718		if (fl->fl_flags & FL_ACCESS)
2719			seq_puts(f, "ACCESS");
2720		else if (IS_OFDLCK(fl))
2721			seq_puts(f, "OFDLCK");
2722		else
2723			seq_puts(f, "POSIX ");
2724
2725		seq_printf(f, " %s ",
2726			     (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
 
2727	} else if (IS_FLOCK(fl)) {
2728		seq_puts(f, "FLOCK  ADVISORY  ");
 
 
 
 
2729	} else if (IS_LEASE(fl)) {
2730		if (fl->fl_flags & FL_DELEG)
2731			seq_puts(f, "DELEG  ");
2732		else
2733			seq_puts(f, "LEASE  ");
2734
2735		if (lease_breaking(fl))
2736			seq_puts(f, "BREAKING  ");
2737		else if (fl->fl_file)
2738			seq_puts(f, "ACTIVE    ");
2739		else
2740			seq_puts(f, "BREAKER   ");
2741	} else {
2742		seq_puts(f, "UNKNOWN UNKNOWN  ");
2743	}
2744	type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
 
 
 
 
 
 
2745
2746	seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2747			     (type == F_RDLCK) ? "READ" : "UNLCK");
 
2748	if (inode) {
2749		/* userspace relies on this representation of dev_t */
2750		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2751				MAJOR(inode->i_sb->s_dev),
2752				MINOR(inode->i_sb->s_dev), inode->i_ino);
2753	} else {
2754		seq_printf(f, "%d <none>:0 ", fl_pid);
2755	}
2756	if (IS_POSIX(fl)) {
2757		if (fl->fl_end == OFFSET_MAX)
2758			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2759		else
2760			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2761	} else {
2762		seq_puts(f, "0 EOF\n");
2763	}
2764}
2765
2766static struct file_lock *get_next_blocked_member(struct file_lock *node)
2767{
2768	struct file_lock *tmp;
2769
2770	/* NULL node or root node */
2771	if (node == NULL || node->fl_blocker == NULL)
2772		return NULL;
2773
2774	/* Next member in the linked list could be itself */
2775	tmp = list_next_entry(node, fl_blocked_member);
2776	if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member)
2777		|| tmp == node) {
2778		return NULL;
2779	}
2780
2781	return tmp;
2782}
2783
2784static int locks_show(struct seq_file *f, void *v)
2785{
2786	struct locks_iterator *iter = f->private;
2787	struct file_lock *cur, *tmp;
2788	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2789	int level = 0;
2790
2791	cur = hlist_entry(v, struct file_lock, fl_link);
2792
2793	if (locks_translate_pid(cur, proc_pidns) == 0)
2794		return 0;
2795
2796	/* View this crossed linked list as a binary tree, the first member of fl_blocked_requests
2797	 * is the left child of current node, the next silibing in fl_blocked_member is the
2798	 * right child, we can alse get the parent of current node from fl_blocker, so this
2799	 * question becomes traversal of a binary tree
2800	 */
2801	while (cur != NULL) {
2802		if (level)
2803			lock_get_status(f, cur, iter->li_pos, "-> ", level);
2804		else
2805			lock_get_status(f, cur, iter->li_pos, "", level);
2806
2807		if (!list_empty(&cur->fl_blocked_requests)) {
2808			/* Turn left */
2809			cur = list_first_entry_or_null(&cur->fl_blocked_requests,
2810				struct file_lock, fl_blocked_member);
2811			level++;
2812		} else {
2813			/* Turn right */
2814			tmp = get_next_blocked_member(cur);
2815			/* Fall back to parent node */
2816			while (tmp == NULL && cur->fl_blocker != NULL) {
2817				cur = cur->fl_blocker;
2818				level--;
2819				tmp = get_next_blocked_member(cur);
2820			}
2821			cur = tmp;
2822		}
2823	}
2824
2825	return 0;
2826}
2827
2828static void __show_fd_locks(struct seq_file *f,
2829			struct list_head *head, int *id,
2830			struct file *filp, struct files_struct *files)
2831{
2832	struct file_lock *fl;
2833
2834	list_for_each_entry(fl, head, fl_list) {
2835
2836		if (filp != fl->fl_file)
2837			continue;
2838		if (fl->fl_owner != files &&
2839		    fl->fl_owner != filp)
2840			continue;
2841
2842		(*id)++;
2843		seq_puts(f, "lock:\t");
2844		lock_get_status(f, fl, *id, "", 0);
2845	}
2846}
2847
2848void show_fd_locks(struct seq_file *f,
2849		  struct file *filp, struct files_struct *files)
2850{
2851	struct inode *inode = file_inode(filp);
2852	struct file_lock_context *ctx;
2853	int id = 0;
2854
2855	ctx = locks_inode_context(inode);
2856	if (!ctx)
2857		return;
2858
2859	spin_lock(&ctx->flc_lock);
2860	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2861	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2862	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2863	spin_unlock(&ctx->flc_lock);
2864}
2865
2866static void *locks_start(struct seq_file *f, loff_t *pos)
2867	__acquires(&blocked_lock_lock)
2868{
2869	struct locks_iterator *iter = f->private;
2870
2871	iter->li_pos = *pos + 1;
2872	percpu_down_write(&file_rwsem);
2873	spin_lock(&blocked_lock_lock);
2874	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2875}
2876
2877static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2878{
2879	struct locks_iterator *iter = f->private;
2880
2881	++iter->li_pos;
2882	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2883}
2884
2885static void locks_stop(struct seq_file *f, void *v)
2886	__releases(&blocked_lock_lock)
2887{
2888	spin_unlock(&blocked_lock_lock);
2889	percpu_up_write(&file_rwsem);
2890}
2891
2892static const struct seq_operations locks_seq_operations = {
2893	.start	= locks_start,
2894	.next	= locks_next,
2895	.stop	= locks_stop,
2896	.show	= locks_show,
2897};
2898
2899static int __init proc_locks_init(void)
2900{
2901	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2902			sizeof(struct locks_iterator), NULL);
2903	return 0;
2904}
2905fs_initcall(proc_locks_init);
2906#endif
2907
2908static int __init filelock_init(void)
2909{
2910	int i;
2911
2912	flctx_cache = kmem_cache_create("file_lock_ctx",
2913			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2914
2915	filelock_cache = kmem_cache_create("file_lock_cache",
2916			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2917
2918	for_each_possible_cpu(i) {
2919		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2920
2921		spin_lock_init(&fll->lock);
2922		INIT_HLIST_HEAD(&fll->hlist);
2923	}
2924
2925	lease_notifier_chain_init();
2926	return 0;
2927}
2928core_initcall(filelock_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/locks.c
   4 *
   5 *  Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
   6 *  Doug Evans (dje@spiff.uucp), August 07, 1992
 
 
   7 *
   8 *  Deadlock detection added.
   9 *  FIXME: one thing isn't handled yet:
  10 *	- mandatory locks (requires lots of changes elsewhere)
  11 *  Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
  12 *
  13 *  Miscellaneous edits, and a total rewrite of posix_lock_file() code.
  14 *  Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
  15 *
  16 *  Converted file_lock_table to a linked list from an array, which eliminates
  17 *  the limits on how many active file locks are open.
  18 *  Chad Page (pageone@netcom.com), November 27, 1994
  19 *
  20 *  Removed dependency on file descriptors. dup()'ed file descriptors now
  21 *  get the same locks as the original file descriptors, and a close() on
  22 *  any file descriptor removes ALL the locks on the file for the current
  23 *  process. Since locks still depend on the process id, locks are inherited
  24 *  after an exec() but not after a fork(). This agrees with POSIX, and both
  25 *  BSD and SVR4 practice.
  26 *  Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
  27 *
  28 *  Scrapped free list which is redundant now that we allocate locks
  29 *  dynamically with kmalloc()/kfree().
  30 *  Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
  31 *
  32 *  Implemented two lock personalities - FL_FLOCK and FL_POSIX.
  33 *
  34 *  FL_POSIX locks are created with calls to fcntl() and lockf() through the
  35 *  fcntl() system call. They have the semantics described above.
  36 *
  37 *  FL_FLOCK locks are created with calls to flock(), through the flock()
  38 *  system call, which is new. Old C libraries implement flock() via fcntl()
  39 *  and will continue to use the old, broken implementation.
  40 *
  41 *  FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
  42 *  with a file pointer (filp). As a result they can be shared by a parent
  43 *  process and its children after a fork(). They are removed when the last
  44 *  file descriptor referring to the file pointer is closed (unless explicitly
  45 *  unlocked).
  46 *
  47 *  FL_FLOCK locks never deadlock, an existing lock is always removed before
  48 *  upgrading from shared to exclusive (or vice versa). When this happens
  49 *  any processes blocked by the current lock are woken up and allowed to
  50 *  run before the new lock is applied.
  51 *  Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
  52 *
  53 *  Removed some race conditions in flock_lock_file(), marked other possible
  54 *  races. Just grep for FIXME to see them.
  55 *  Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
  56 *
  57 *  Addressed Dmitry's concerns. Deadlock checking no longer recursive.
  58 *  Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
  59 *  once we've checked for blocking and deadlocking.
  60 *  Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
  61 *
  62 *  Initial implementation of mandatory locks. SunOS turned out to be
  63 *  a rotten model, so I implemented the "obvious" semantics.
  64 *  See 'Documentation/filesystems/mandatory-locking.txt' for details.
  65 *  Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
  66 *
  67 *  Don't allow mandatory locks on mmap()'ed files. Added simple functions to
  68 *  check if a file has mandatory locks, used by mmap(), open() and creat() to
  69 *  see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
  70 *  Manual, Section 2.
  71 *  Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
  72 *
  73 *  Tidied up block list handling. Added '/proc/locks' interface.
  74 *  Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
  75 *
  76 *  Fixed deadlock condition for pathological code that mixes calls to
  77 *  flock() and fcntl().
  78 *  Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
  79 *
  80 *  Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
  81 *  for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
  82 *  guarantee sensible behaviour in the case where file system modules might
  83 *  be compiled with different options than the kernel itself.
  84 *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
  85 *
  86 *  Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
  87 *  (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
  88 *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
  89 *
  90 *  Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
  91 *  locks. Changed process synchronisation to avoid dereferencing locks that
  92 *  have already been freed.
  93 *  Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
  94 *
  95 *  Made the block list a circular list to minimise searching in the list.
  96 *  Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
  97 *
  98 *  Made mandatory locking a mount option. Default is not to allow mandatory
  99 *  locking.
 100 *  Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
 101 *
 102 *  Some adaptations for NFS support.
 103 *  Olaf Kirch (okir@monad.swb.de), Dec 1996,
 104 *
 105 *  Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
 106 *  Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
 107 *
 108 *  Use slab allocator instead of kmalloc/kfree.
 109 *  Use generic list implementation from <linux/list.h>.
 110 *  Sped up posix_locks_deadlock by only considering blocked locks.
 111 *  Matthew Wilcox <willy@debian.org>, March, 2000.
 112 *
 113 *  Leases and LOCK_MAND
 114 *  Matthew Wilcox <willy@debian.org>, June, 2000.
 115 *  Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
 116 *
 117 * Locking conflicts and dependencies:
 118 * If multiple threads attempt to lock the same byte (or flock the same file)
 119 * only one can be granted the lock, and other must wait their turn.
 120 * The first lock has been "applied" or "granted", the others are "waiting"
 121 * and are "blocked" by the "applied" lock..
 122 *
 123 * Waiting and applied locks are all kept in trees whose properties are:
 124 *
 125 *	- the root of a tree may be an applied or waiting lock.
 126 *	- every other node in the tree is a waiting lock that
 127 *	  conflicts with every ancestor of that node.
 128 *
 129 * Every such tree begins life as a waiting singleton which obviously
 130 * satisfies the above properties.
 131 *
 132 * The only ways we modify trees preserve these properties:
 133 *
 134 *	1. We may add a new leaf node, but only after first verifying that it
 135 *	   conflicts with all of its ancestors.
 136 *	2. We may remove the root of a tree, creating a new singleton
 137 *	   tree from the root and N new trees rooted in the immediate
 138 *	   children.
 139 *	3. If the root of a tree is not currently an applied lock, we may
 140 *	   apply it (if possible).
 141 *	4. We may upgrade the root of the tree (either extend its range,
 142 *	   or upgrade its entire range from read to write).
 143 *
 144 * When an applied lock is modified in a way that reduces or downgrades any
 145 * part of its range, we remove all its children (2 above).  This particularly
 146 * happens when a lock is unlocked.
 147 *
 148 * For each of those child trees we "wake up" the thread which is
 149 * waiting for the lock so it can continue handling as follows: if the
 150 * root of the tree applies, we do so (3).  If it doesn't, it must
 151 * conflict with some applied lock.  We remove (wake up) all of its children
 152 * (2), and add it is a new leaf to the tree rooted in the applied
 153 * lock (1).  We then repeat the process recursively with those
 154 * children.
 155 *
 156 */
 157
 158#include <linux/capability.h>
 159#include <linux/file.h>
 160#include <linux/fdtable.h>
 
 161#include <linux/fs.h>
 162#include <linux/init.h>
 163#include <linux/security.h>
 164#include <linux/slab.h>
 165#include <linux/syscalls.h>
 166#include <linux/time.h>
 167#include <linux/rcupdate.h>
 168#include <linux/pid_namespace.h>
 169#include <linux/hashtable.h>
 170#include <linux/percpu.h>
 
 171
 172#define CREATE_TRACE_POINTS
 173#include <trace/events/filelock.h>
 174
 175#include <linux/uaccess.h>
 176
 177#define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
 178#define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
 179#define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
 180#define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
 181#define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
 182
 183static bool lease_breaking(struct file_lock *fl)
 184{
 185	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
 186}
 187
 188static int target_leasetype(struct file_lock *fl)
 189{
 190	if (fl->fl_flags & FL_UNLOCK_PENDING)
 191		return F_UNLCK;
 192	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
 193		return F_RDLCK;
 194	return fl->fl_type;
 195}
 196
 197int leases_enable = 1;
 198int lease_break_time = 45;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200/*
 201 * The global file_lock_list is only used for displaying /proc/locks, so we
 202 * keep a list on each CPU, with each list protected by its own spinlock.
 203 * Global serialization is done using file_rwsem.
 204 *
 205 * Note that alterations to the list also require that the relevant flc_lock is
 206 * held.
 207 */
 208struct file_lock_list_struct {
 209	spinlock_t		lock;
 210	struct hlist_head	hlist;
 211};
 212static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
 213DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
 214
 215
 216/*
 217 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
 218 * It is protected by blocked_lock_lock.
 219 *
 220 * We hash locks by lockowner in order to optimize searching for the lock a
 221 * particular lockowner is waiting on.
 222 *
 223 * FIXME: make this value scale via some heuristic? We generally will want more
 224 * buckets when we have more lockowners holding locks, but that's a little
 225 * difficult to determine without knowing what the workload will look like.
 226 */
 227#define BLOCKED_HASH_BITS	7
 228static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
 229
 230/*
 231 * This lock protects the blocked_hash. Generally, if you're accessing it, you
 232 * want to be holding this lock.
 233 *
 234 * In addition, it also protects the fl->fl_blocked_requests list, and the
 235 * fl->fl_blocker pointer for file_lock structures that are acting as lock
 236 * requests (in contrast to those that are acting as records of acquired locks).
 237 *
 238 * Note that when we acquire this lock in order to change the above fields,
 239 * we often hold the flc_lock as well. In certain cases, when reading the fields
 240 * protected by this lock, we can skip acquiring it iff we already hold the
 241 * flc_lock.
 242 */
 243static DEFINE_SPINLOCK(blocked_lock_lock);
 244
 245static struct kmem_cache *flctx_cache __read_mostly;
 246static struct kmem_cache *filelock_cache __read_mostly;
 247
 248static struct file_lock_context *
 249locks_get_lock_context(struct inode *inode, int type)
 250{
 251	struct file_lock_context *ctx;
 252
 253	/* paired with cmpxchg() below */
 254	ctx = smp_load_acquire(&inode->i_flctx);
 255	if (likely(ctx) || type == F_UNLCK)
 256		goto out;
 257
 258	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
 259	if (!ctx)
 260		goto out;
 261
 262	spin_lock_init(&ctx->flc_lock);
 263	INIT_LIST_HEAD(&ctx->flc_flock);
 264	INIT_LIST_HEAD(&ctx->flc_posix);
 265	INIT_LIST_HEAD(&ctx->flc_lease);
 266
 267	/*
 268	 * Assign the pointer if it's not already assigned. If it is, then
 269	 * free the context we just allocated.
 270	 */
 271	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
 272		kmem_cache_free(flctx_cache, ctx);
 273		ctx = smp_load_acquire(&inode->i_flctx);
 274	}
 275out:
 276	trace_locks_get_lock_context(inode, type, ctx);
 277	return ctx;
 278}
 279
 280static void
 281locks_dump_ctx_list(struct list_head *list, char *list_type)
 282{
 283	struct file_lock *fl;
 284
 285	list_for_each_entry(fl, list, fl_list) {
 286		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 287	}
 288}
 289
 290static void
 291locks_check_ctx_lists(struct inode *inode)
 292{
 293	struct file_lock_context *ctx = inode->i_flctx;
 294
 295	if (unlikely(!list_empty(&ctx->flc_flock) ||
 296		     !list_empty(&ctx->flc_posix) ||
 297		     !list_empty(&ctx->flc_lease))) {
 298		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
 299			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
 300			inode->i_ino);
 301		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
 302		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
 303		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
 304	}
 305}
 306
 307static void
 308locks_check_ctx_file_list(struct file *filp, struct list_head *list,
 309				char *list_type)
 310{
 311	struct file_lock *fl;
 312	struct inode *inode = locks_inode(filp);
 313
 314	list_for_each_entry(fl, list, fl_list)
 315		if (fl->fl_file == filp)
 316			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
 317				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
 318				list_type, MAJOR(inode->i_sb->s_dev),
 319				MINOR(inode->i_sb->s_dev), inode->i_ino,
 320				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
 321}
 322
 323void
 324locks_free_lock_context(struct inode *inode)
 325{
 326	struct file_lock_context *ctx = inode->i_flctx;
 327
 328	if (unlikely(ctx)) {
 329		locks_check_ctx_lists(inode);
 330		kmem_cache_free(flctx_cache, ctx);
 331	}
 332}
 333
 334static void locks_init_lock_heads(struct file_lock *fl)
 335{
 336	INIT_HLIST_NODE(&fl->fl_link);
 337	INIT_LIST_HEAD(&fl->fl_list);
 338	INIT_LIST_HEAD(&fl->fl_blocked_requests);
 339	INIT_LIST_HEAD(&fl->fl_blocked_member);
 340	init_waitqueue_head(&fl->fl_wait);
 341}
 342
 343/* Allocate an empty lock structure. */
 344struct file_lock *locks_alloc_lock(void)
 345{
 346	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
 347
 348	if (fl)
 349		locks_init_lock_heads(fl);
 350
 351	return fl;
 352}
 353EXPORT_SYMBOL_GPL(locks_alloc_lock);
 354
 355void locks_release_private(struct file_lock *fl)
 356{
 357	BUG_ON(waitqueue_active(&fl->fl_wait));
 358	BUG_ON(!list_empty(&fl->fl_list));
 359	BUG_ON(!list_empty(&fl->fl_blocked_requests));
 360	BUG_ON(!list_empty(&fl->fl_blocked_member));
 361	BUG_ON(!hlist_unhashed(&fl->fl_link));
 362
 363	if (fl->fl_ops) {
 364		if (fl->fl_ops->fl_release_private)
 365			fl->fl_ops->fl_release_private(fl);
 366		fl->fl_ops = NULL;
 367	}
 368
 369	if (fl->fl_lmops) {
 370		if (fl->fl_lmops->lm_put_owner) {
 371			fl->fl_lmops->lm_put_owner(fl->fl_owner);
 372			fl->fl_owner = NULL;
 373		}
 374		fl->fl_lmops = NULL;
 375	}
 376}
 377EXPORT_SYMBOL_GPL(locks_release_private);
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379/* Free a lock which is not in use. */
 380void locks_free_lock(struct file_lock *fl)
 381{
 382	locks_release_private(fl);
 383	kmem_cache_free(filelock_cache, fl);
 384}
 385EXPORT_SYMBOL(locks_free_lock);
 386
 387static void
 388locks_dispose_list(struct list_head *dispose)
 389{
 390	struct file_lock *fl;
 391
 392	while (!list_empty(dispose)) {
 393		fl = list_first_entry(dispose, struct file_lock, fl_list);
 394		list_del_init(&fl->fl_list);
 395		locks_free_lock(fl);
 396	}
 397}
 398
 399void locks_init_lock(struct file_lock *fl)
 400{
 401	memset(fl, 0, sizeof(struct file_lock));
 402	locks_init_lock_heads(fl);
 403}
 404EXPORT_SYMBOL(locks_init_lock);
 405
 406/*
 407 * Initialize a new lock from an existing file_lock structure.
 408 */
 409void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
 410{
 411	new->fl_owner = fl->fl_owner;
 412	new->fl_pid = fl->fl_pid;
 413	new->fl_file = NULL;
 414	new->fl_flags = fl->fl_flags;
 415	new->fl_type = fl->fl_type;
 416	new->fl_start = fl->fl_start;
 417	new->fl_end = fl->fl_end;
 418	new->fl_lmops = fl->fl_lmops;
 419	new->fl_ops = NULL;
 420
 421	if (fl->fl_lmops) {
 422		if (fl->fl_lmops->lm_get_owner)
 423			fl->fl_lmops->lm_get_owner(fl->fl_owner);
 424	}
 425}
 426EXPORT_SYMBOL(locks_copy_conflock);
 427
 428void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
 429{
 430	/* "new" must be a freshly-initialized lock */
 431	WARN_ON_ONCE(new->fl_ops);
 432
 433	locks_copy_conflock(new, fl);
 434
 435	new->fl_file = fl->fl_file;
 436	new->fl_ops = fl->fl_ops;
 437
 438	if (fl->fl_ops) {
 439		if (fl->fl_ops->fl_copy_lock)
 440			fl->fl_ops->fl_copy_lock(new, fl);
 441	}
 442}
 443EXPORT_SYMBOL(locks_copy_lock);
 444
 445static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
 446{
 447	struct file_lock *f;
 448
 449	/*
 450	 * As ctx->flc_lock is held, new requests cannot be added to
 451	 * ->fl_blocked_requests, so we don't need a lock to check if it
 452	 * is empty.
 453	 */
 454	if (list_empty(&fl->fl_blocked_requests))
 455		return;
 456	spin_lock(&blocked_lock_lock);
 457	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
 458	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
 459		f->fl_blocker = new;
 460	spin_unlock(&blocked_lock_lock);
 461}
 462
 463static inline int flock_translate_cmd(int cmd) {
 464	if (cmd & LOCK_MAND)
 465		return cmd & (LOCK_MAND | LOCK_RW);
 466	switch (cmd) {
 467	case LOCK_SH:
 468		return F_RDLCK;
 469	case LOCK_EX:
 470		return F_WRLCK;
 471	case LOCK_UN:
 472		return F_UNLCK;
 473	}
 474	return -EINVAL;
 475}
 476
 477/* Fill in a file_lock structure with an appropriate FLOCK lock. */
 478static struct file_lock *
 479flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
 480{
 481	int type = flock_translate_cmd(cmd);
 482
 483	if (type < 0)
 484		return ERR_PTR(type);
 485
 486	if (fl == NULL) {
 487		fl = locks_alloc_lock();
 488		if (fl == NULL)
 489			return ERR_PTR(-ENOMEM);
 490	} else {
 491		locks_init_lock(fl);
 492	}
 493
 494	fl->fl_file = filp;
 495	fl->fl_owner = filp;
 496	fl->fl_pid = current->tgid;
 497	fl->fl_flags = FL_FLOCK;
 498	fl->fl_type = type;
 499	fl->fl_end = OFFSET_MAX;
 500
 501	return fl;
 502}
 503
 504static int assign_type(struct file_lock *fl, long type)
 505{
 506	switch (type) {
 507	case F_RDLCK:
 508	case F_WRLCK:
 509	case F_UNLCK:
 510		fl->fl_type = type;
 511		break;
 512	default:
 513		return -EINVAL;
 514	}
 515	return 0;
 516}
 517
 518static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
 519				 struct flock64 *l)
 520{
 521	switch (l->l_whence) {
 522	case SEEK_SET:
 523		fl->fl_start = 0;
 524		break;
 525	case SEEK_CUR:
 526		fl->fl_start = filp->f_pos;
 527		break;
 528	case SEEK_END:
 529		fl->fl_start = i_size_read(file_inode(filp));
 530		break;
 531	default:
 532		return -EINVAL;
 533	}
 534	if (l->l_start > OFFSET_MAX - fl->fl_start)
 535		return -EOVERFLOW;
 536	fl->fl_start += l->l_start;
 537	if (fl->fl_start < 0)
 538		return -EINVAL;
 539
 540	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
 541	   POSIX-2001 defines it. */
 542	if (l->l_len > 0) {
 543		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
 544			return -EOVERFLOW;
 545		fl->fl_end = fl->fl_start + l->l_len - 1;
 546
 547	} else if (l->l_len < 0) {
 548		if (fl->fl_start + l->l_len < 0)
 549			return -EINVAL;
 550		fl->fl_end = fl->fl_start - 1;
 551		fl->fl_start += l->l_len;
 552	} else
 553		fl->fl_end = OFFSET_MAX;
 554
 555	fl->fl_owner = current->files;
 556	fl->fl_pid = current->tgid;
 557	fl->fl_file = filp;
 558	fl->fl_flags = FL_POSIX;
 559	fl->fl_ops = NULL;
 560	fl->fl_lmops = NULL;
 561
 562	return assign_type(fl, l->l_type);
 563}
 564
 565/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
 566 * style lock.
 567 */
 568static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
 569			       struct flock *l)
 570{
 571	struct flock64 ll = {
 572		.l_type = l->l_type,
 573		.l_whence = l->l_whence,
 574		.l_start = l->l_start,
 575		.l_len = l->l_len,
 576	};
 577
 578	return flock64_to_posix_lock(filp, fl, &ll);
 579}
 580
 581/* default lease lock manager operations */
 582static bool
 583lease_break_callback(struct file_lock *fl)
 584{
 585	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
 586	return false;
 587}
 588
 589static void
 590lease_setup(struct file_lock *fl, void **priv)
 591{
 592	struct file *filp = fl->fl_file;
 593	struct fasync_struct *fa = *priv;
 594
 595	/*
 596	 * fasync_insert_entry() returns the old entry if any. If there was no
 597	 * old entry, then it used "priv" and inserted it into the fasync list.
 598	 * Clear the pointer to indicate that it shouldn't be freed.
 599	 */
 600	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
 601		*priv = NULL;
 602
 603	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
 604}
 605
 606static const struct lock_manager_operations lease_manager_ops = {
 607	.lm_break = lease_break_callback,
 608	.lm_change = lease_modify,
 609	.lm_setup = lease_setup,
 610};
 611
 612/*
 613 * Initialize a lease, use the default lock manager operations
 614 */
 615static int lease_init(struct file *filp, long type, struct file_lock *fl)
 616{
 617	if (assign_type(fl, type) != 0)
 618		return -EINVAL;
 619
 620	fl->fl_owner = filp;
 621	fl->fl_pid = current->tgid;
 622
 623	fl->fl_file = filp;
 624	fl->fl_flags = FL_LEASE;
 625	fl->fl_start = 0;
 626	fl->fl_end = OFFSET_MAX;
 627	fl->fl_ops = NULL;
 628	fl->fl_lmops = &lease_manager_ops;
 629	return 0;
 630}
 631
 632/* Allocate a file_lock initialised to this type of lease */
 633static struct file_lock *lease_alloc(struct file *filp, long type)
 634{
 635	struct file_lock *fl = locks_alloc_lock();
 636	int error = -ENOMEM;
 637
 638	if (fl == NULL)
 639		return ERR_PTR(error);
 640
 641	error = lease_init(filp, type, fl);
 642	if (error) {
 643		locks_free_lock(fl);
 644		return ERR_PTR(error);
 645	}
 646	return fl;
 647}
 648
 649/* Check if two locks overlap each other.
 650 */
 651static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
 652{
 653	return ((fl1->fl_end >= fl2->fl_start) &&
 654		(fl2->fl_end >= fl1->fl_start));
 655}
 656
 657/*
 658 * Check whether two locks have the same owner.
 659 */
 660static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
 661{
 662	return fl1->fl_owner == fl2->fl_owner;
 663}
 664
 665/* Must be called with the flc_lock held! */
 666static void locks_insert_global_locks(struct file_lock *fl)
 667{
 668	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
 669
 670	percpu_rwsem_assert_held(&file_rwsem);
 671
 672	spin_lock(&fll->lock);
 673	fl->fl_link_cpu = smp_processor_id();
 674	hlist_add_head(&fl->fl_link, &fll->hlist);
 675	spin_unlock(&fll->lock);
 676}
 677
 678/* Must be called with the flc_lock held! */
 679static void locks_delete_global_locks(struct file_lock *fl)
 680{
 681	struct file_lock_list_struct *fll;
 682
 683	percpu_rwsem_assert_held(&file_rwsem);
 684
 685	/*
 686	 * Avoid taking lock if already unhashed. This is safe since this check
 687	 * is done while holding the flc_lock, and new insertions into the list
 688	 * also require that it be held.
 689	 */
 690	if (hlist_unhashed(&fl->fl_link))
 691		return;
 692
 693	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
 694	spin_lock(&fll->lock);
 695	hlist_del_init(&fl->fl_link);
 696	spin_unlock(&fll->lock);
 697}
 698
 699static unsigned long
 700posix_owner_key(struct file_lock *fl)
 701{
 702	return (unsigned long)fl->fl_owner;
 703}
 704
 705static void locks_insert_global_blocked(struct file_lock *waiter)
 706{
 707	lockdep_assert_held(&blocked_lock_lock);
 708
 709	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
 710}
 711
 712static void locks_delete_global_blocked(struct file_lock *waiter)
 713{
 714	lockdep_assert_held(&blocked_lock_lock);
 715
 716	hash_del(&waiter->fl_link);
 717}
 718
 719/* Remove waiter from blocker's block list.
 720 * When blocker ends up pointing to itself then the list is empty.
 721 *
 722 * Must be called with blocked_lock_lock held.
 723 */
 724static void __locks_delete_block(struct file_lock *waiter)
 725{
 726	locks_delete_global_blocked(waiter);
 727	list_del_init(&waiter->fl_blocked_member);
 728	waiter->fl_blocker = NULL;
 729}
 730
 731static void __locks_wake_up_blocks(struct file_lock *blocker)
 732{
 733	while (!list_empty(&blocker->fl_blocked_requests)) {
 734		struct file_lock *waiter;
 735
 736		waiter = list_first_entry(&blocker->fl_blocked_requests,
 737					  struct file_lock, fl_blocked_member);
 738		__locks_delete_block(waiter);
 739		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
 740			waiter->fl_lmops->lm_notify(waiter);
 741		else
 742			wake_up(&waiter->fl_wait);
 
 
 
 
 
 
 
 743	}
 744}
 745
 746/**
 747 *	locks_delete_lock - stop waiting for a file lock
 748 *	@waiter: the lock which was waiting
 749 *
 750 *	lockd/nfsd need to disconnect the lock while working on it.
 751 */
 752int locks_delete_block(struct file_lock *waiter)
 753{
 754	int status = -ENOENT;
 755
 756	/*
 757	 * If fl_blocker is NULL, it won't be set again as this thread
 758	 * "owns" the lock and is the only one that might try to claim
 759	 * the lock.  So it is safe to test fl_blocker locklessly.
 760	 * Also if fl_blocker is NULL, this waiter is not listed on
 761	 * fl_blocked_requests for some lock, so no other request can
 762	 * be added to the list of fl_blocked_requests for this
 763	 * request.  So if fl_blocker is NULL, it is safe to
 764	 * locklessly check if fl_blocked_requests is empty.  If both
 765	 * of these checks succeed, there is no need to take the lock.
 
 
 
 
 
 
 
 
 
 
 766	 */
 767	if (waiter->fl_blocker == NULL &&
 768	    list_empty(&waiter->fl_blocked_requests))
 769		return status;
 
 770	spin_lock(&blocked_lock_lock);
 771	if (waiter->fl_blocker)
 772		status = 0;
 773	__locks_wake_up_blocks(waiter);
 774	__locks_delete_block(waiter);
 
 
 
 
 
 
 775	spin_unlock(&blocked_lock_lock);
 776	return status;
 777}
 778EXPORT_SYMBOL(locks_delete_block);
 779
 780/* Insert waiter into blocker's block list.
 781 * We use a circular list so that processes can be easily woken up in
 782 * the order they blocked. The documentation doesn't require this but
 783 * it seems like the reasonable thing to do.
 784 *
 785 * Must be called with both the flc_lock and blocked_lock_lock held. The
 786 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
 787 * but by ensuring that the flc_lock is also held on insertions we can avoid
 788 * taking the blocked_lock_lock in some cases when we see that the
 789 * fl_blocked_requests list is empty.
 790 *
 791 * Rather than just adding to the list, we check for conflicts with any existing
 792 * waiters, and add beneath any waiter that blocks the new waiter.
 793 * Thus wakeups don't happen until needed.
 794 */
 795static void __locks_insert_block(struct file_lock *blocker,
 796				 struct file_lock *waiter,
 797				 bool conflict(struct file_lock *,
 798					       struct file_lock *))
 799{
 800	struct file_lock *fl;
 801	BUG_ON(!list_empty(&waiter->fl_blocked_member));
 802
 803new_blocker:
 804	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
 805		if (conflict(fl, waiter)) {
 806			blocker =  fl;
 807			goto new_blocker;
 808		}
 809	waiter->fl_blocker = blocker;
 810	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
 811	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
 812		locks_insert_global_blocked(waiter);
 813
 814	/* The requests in waiter->fl_blocked are known to conflict with
 815	 * waiter, but might not conflict with blocker, or the requests
 816	 * and lock which block it.  So they all need to be woken.
 817	 */
 818	__locks_wake_up_blocks(waiter);
 819}
 820
 821/* Must be called with flc_lock held. */
 822static void locks_insert_block(struct file_lock *blocker,
 823			       struct file_lock *waiter,
 824			       bool conflict(struct file_lock *,
 825					     struct file_lock *))
 826{
 827	spin_lock(&blocked_lock_lock);
 828	__locks_insert_block(blocker, waiter, conflict);
 829	spin_unlock(&blocked_lock_lock);
 830}
 831
 832/*
 833 * Wake up processes blocked waiting for blocker.
 834 *
 835 * Must be called with the inode->flc_lock held!
 836 */
 837static void locks_wake_up_blocks(struct file_lock *blocker)
 838{
 839	/*
 840	 * Avoid taking global lock if list is empty. This is safe since new
 841	 * blocked requests are only added to the list under the flc_lock, and
 842	 * the flc_lock is always held here. Note that removal from the
 843	 * fl_blocked_requests list does not require the flc_lock, so we must
 844	 * recheck list_empty() after acquiring the blocked_lock_lock.
 845	 */
 846	if (list_empty(&blocker->fl_blocked_requests))
 847		return;
 848
 849	spin_lock(&blocked_lock_lock);
 850	__locks_wake_up_blocks(blocker);
 851	spin_unlock(&blocked_lock_lock);
 852}
 853
 854static void
 855locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
 856{
 857	list_add_tail(&fl->fl_list, before);
 858	locks_insert_global_locks(fl);
 859}
 860
 861static void
 862locks_unlink_lock_ctx(struct file_lock *fl)
 863{
 864	locks_delete_global_locks(fl);
 865	list_del_init(&fl->fl_list);
 866	locks_wake_up_blocks(fl);
 867}
 868
 869static void
 870locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
 871{
 872	locks_unlink_lock_ctx(fl);
 873	if (dispose)
 874		list_add(&fl->fl_list, dispose);
 875	else
 876		locks_free_lock(fl);
 877}
 878
 879/* Determine if lock sys_fl blocks lock caller_fl. Common functionality
 880 * checks for shared/exclusive status of overlapping locks.
 881 */
 882static bool locks_conflict(struct file_lock *caller_fl,
 883			   struct file_lock *sys_fl)
 884{
 885	if (sys_fl->fl_type == F_WRLCK)
 886		return true;
 887	if (caller_fl->fl_type == F_WRLCK)
 888		return true;
 889	return false;
 890}
 891
 892/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
 893 * checking before calling the locks_conflict().
 894 */
 895static bool posix_locks_conflict(struct file_lock *caller_fl,
 896				 struct file_lock *sys_fl)
 897{
 898	/* POSIX locks owned by the same process do not conflict with
 899	 * each other.
 900	 */
 901	if (posix_same_owner(caller_fl, sys_fl))
 902		return false;
 903
 904	/* Check whether they overlap */
 905	if (!locks_overlap(caller_fl, sys_fl))
 906		return false;
 907
 908	return locks_conflict(caller_fl, sys_fl);
 909}
 910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
 912 * checking before calling the locks_conflict().
 913 */
 914static bool flock_locks_conflict(struct file_lock *caller_fl,
 915				 struct file_lock *sys_fl)
 916{
 917	/* FLOCK locks referring to the same filp do not conflict with
 918	 * each other.
 919	 */
 920	if (caller_fl->fl_file == sys_fl->fl_file)
 921		return false;
 922	if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
 923		return false;
 924
 925	return locks_conflict(caller_fl, sys_fl);
 926}
 927
 928void
 929posix_test_lock(struct file *filp, struct file_lock *fl)
 930{
 931	struct file_lock *cfl;
 932	struct file_lock_context *ctx;
 933	struct inode *inode = locks_inode(filp);
 
 
 934
 935	ctx = smp_load_acquire(&inode->i_flctx);
 936	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
 937		fl->fl_type = F_UNLCK;
 938		return;
 939	}
 940
 
 941	spin_lock(&ctx->flc_lock);
 942	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
 943		if (posix_locks_conflict(fl, cfl)) {
 944			locks_copy_conflock(fl, cfl);
 945			goto out;
 
 
 
 
 
 
 
 
 946		}
 
 
 947	}
 948	fl->fl_type = F_UNLCK;
 949out:
 950	spin_unlock(&ctx->flc_lock);
 951	return;
 952}
 953EXPORT_SYMBOL(posix_test_lock);
 954
 955/*
 956 * Deadlock detection:
 957 *
 958 * We attempt to detect deadlocks that are due purely to posix file
 959 * locks.
 960 *
 961 * We assume that a task can be waiting for at most one lock at a time.
 962 * So for any acquired lock, the process holding that lock may be
 963 * waiting on at most one other lock.  That lock in turns may be held by
 964 * someone waiting for at most one other lock.  Given a requested lock
 965 * caller_fl which is about to wait for a conflicting lock block_fl, we
 966 * follow this chain of waiters to ensure we are not about to create a
 967 * cycle.
 968 *
 969 * Since we do this before we ever put a process to sleep on a lock, we
 970 * are ensured that there is never a cycle; that is what guarantees that
 971 * the while() loop in posix_locks_deadlock() eventually completes.
 972 *
 973 * Note: the above assumption may not be true when handling lock
 974 * requests from a broken NFS client. It may also fail in the presence
 975 * of tasks (such as posix threads) sharing the same open file table.
 976 * To handle those cases, we just bail out after a few iterations.
 977 *
 978 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
 979 * Because the owner is not even nominally tied to a thread of
 980 * execution, the deadlock detection below can't reasonably work well. Just
 981 * skip it for those.
 982 *
 983 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
 984 * locks that just checks for the case where two tasks are attempting to
 985 * upgrade from read to write locks on the same inode.
 986 */
 987
 988#define MAX_DEADLK_ITERATIONS 10
 989
 990/* Find a lock that the owner of the given block_fl is blocking on. */
 991static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
 992{
 993	struct file_lock *fl;
 994
 995	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
 996		if (posix_same_owner(fl, block_fl)) {
 997			while (fl->fl_blocker)
 998				fl = fl->fl_blocker;
 999			return fl;
1000		}
1001	}
1002	return NULL;
1003}
1004
1005/* Must be called with the blocked_lock_lock held! */
1006static int posix_locks_deadlock(struct file_lock *caller_fl,
1007				struct file_lock *block_fl)
1008{
1009	int i = 0;
1010
1011	lockdep_assert_held(&blocked_lock_lock);
1012
1013	/*
1014	 * This deadlock detector can't reasonably detect deadlocks with
1015	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1016	 */
1017	if (IS_OFDLCK(caller_fl))
1018		return 0;
1019
1020	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1021		if (i++ > MAX_DEADLK_ITERATIONS)
1022			return 0;
1023		if (posix_same_owner(caller_fl, block_fl))
1024			return 1;
1025	}
1026	return 0;
1027}
1028
1029/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1030 * after any leases, but before any posix locks.
1031 *
1032 * Note that if called with an FL_EXISTS argument, the caller may determine
1033 * whether or not a lock was successfully freed by testing the return
1034 * value for -ENOENT.
1035 */
1036static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1037{
1038	struct file_lock *new_fl = NULL;
1039	struct file_lock *fl;
1040	struct file_lock_context *ctx;
1041	int error = 0;
1042	bool found = false;
1043	LIST_HEAD(dispose);
1044
1045	ctx = locks_get_lock_context(inode, request->fl_type);
1046	if (!ctx) {
1047		if (request->fl_type != F_UNLCK)
1048			return -ENOMEM;
1049		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1050	}
1051
1052	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1053		new_fl = locks_alloc_lock();
1054		if (!new_fl)
1055			return -ENOMEM;
1056	}
1057
1058	percpu_down_read(&file_rwsem);
1059	spin_lock(&ctx->flc_lock);
1060	if (request->fl_flags & FL_ACCESS)
1061		goto find_conflict;
1062
1063	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1064		if (request->fl_file != fl->fl_file)
1065			continue;
1066		if (request->fl_type == fl->fl_type)
1067			goto out;
1068		found = true;
1069		locks_delete_lock_ctx(fl, &dispose);
1070		break;
1071	}
1072
1073	if (request->fl_type == F_UNLCK) {
1074		if ((request->fl_flags & FL_EXISTS) && !found)
1075			error = -ENOENT;
1076		goto out;
1077	}
1078
1079find_conflict:
1080	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1081		if (!flock_locks_conflict(request, fl))
1082			continue;
1083		error = -EAGAIN;
1084		if (!(request->fl_flags & FL_SLEEP))
1085			goto out;
1086		error = FILE_LOCK_DEFERRED;
1087		locks_insert_block(fl, request, flock_locks_conflict);
1088		goto out;
1089	}
1090	if (request->fl_flags & FL_ACCESS)
1091		goto out;
1092	locks_copy_lock(new_fl, request);
1093	locks_move_blocks(new_fl, request);
1094	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1095	new_fl = NULL;
1096	error = 0;
1097
1098out:
1099	spin_unlock(&ctx->flc_lock);
1100	percpu_up_read(&file_rwsem);
1101	if (new_fl)
1102		locks_free_lock(new_fl);
1103	locks_dispose_list(&dispose);
1104	trace_flock_lock_inode(inode, request, error);
1105	return error;
1106}
1107
1108static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1109			    struct file_lock *conflock)
1110{
1111	struct file_lock *fl, *tmp;
1112	struct file_lock *new_fl = NULL;
1113	struct file_lock *new_fl2 = NULL;
1114	struct file_lock *left = NULL;
1115	struct file_lock *right = NULL;
1116	struct file_lock_context *ctx;
1117	int error;
1118	bool added = false;
1119	LIST_HEAD(dispose);
 
 
1120
1121	ctx = locks_get_lock_context(inode, request->fl_type);
1122	if (!ctx)
1123		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1124
1125	/*
1126	 * We may need two file_lock structures for this operation,
1127	 * so we get them in advance to avoid races.
1128	 *
1129	 * In some cases we can be sure, that no new locks will be needed
1130	 */
1131	if (!(request->fl_flags & FL_ACCESS) &&
1132	    (request->fl_type != F_UNLCK ||
1133	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1134		new_fl = locks_alloc_lock();
1135		new_fl2 = locks_alloc_lock();
1136	}
1137
 
1138	percpu_down_read(&file_rwsem);
1139	spin_lock(&ctx->flc_lock);
1140	/*
1141	 * New lock request. Walk all POSIX locks and look for conflicts. If
1142	 * there are any, either return error or put the request on the
1143	 * blocker's list of waiters and the global blocked_hash.
1144	 */
1145	if (request->fl_type != F_UNLCK) {
1146		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1147			if (!posix_locks_conflict(request, fl))
1148				continue;
 
 
 
 
 
 
 
 
 
 
 
1149			if (conflock)
1150				locks_copy_conflock(conflock, fl);
1151			error = -EAGAIN;
1152			if (!(request->fl_flags & FL_SLEEP))
1153				goto out;
1154			/*
1155			 * Deadlock detection and insertion into the blocked
1156			 * locks list must be done while holding the same lock!
1157			 */
1158			error = -EDEADLK;
1159			spin_lock(&blocked_lock_lock);
1160			/*
1161			 * Ensure that we don't find any locks blocked on this
1162			 * request during deadlock detection.
1163			 */
1164			__locks_wake_up_blocks(request);
1165			if (likely(!posix_locks_deadlock(request, fl))) {
1166				error = FILE_LOCK_DEFERRED;
1167				__locks_insert_block(fl, request,
1168						     posix_locks_conflict);
1169			}
1170			spin_unlock(&blocked_lock_lock);
1171			goto out;
1172		}
1173	}
1174
1175	/* If we're just looking for a conflict, we're done. */
1176	error = 0;
1177	if (request->fl_flags & FL_ACCESS)
1178		goto out;
1179
1180	/* Find the first old lock with the same owner as the new lock */
1181	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1182		if (posix_same_owner(request, fl))
1183			break;
1184	}
1185
1186	/* Process locks with this owner. */
1187	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1188		if (!posix_same_owner(request, fl))
1189			break;
1190
1191		/* Detect adjacent or overlapping regions (if same lock type) */
1192		if (request->fl_type == fl->fl_type) {
1193			/* In all comparisons of start vs end, use
1194			 * "start - 1" rather than "end + 1". If end
1195			 * is OFFSET_MAX, end + 1 will become negative.
1196			 */
1197			if (fl->fl_end < request->fl_start - 1)
1198				continue;
1199			/* If the next lock in the list has entirely bigger
1200			 * addresses than the new one, insert the lock here.
1201			 */
1202			if (fl->fl_start - 1 > request->fl_end)
1203				break;
1204
1205			/* If we come here, the new and old lock are of the
1206			 * same type and adjacent or overlapping. Make one
1207			 * lock yielding from the lower start address of both
1208			 * locks to the higher end address.
1209			 */
1210			if (fl->fl_start > request->fl_start)
1211				fl->fl_start = request->fl_start;
1212			else
1213				request->fl_start = fl->fl_start;
1214			if (fl->fl_end < request->fl_end)
1215				fl->fl_end = request->fl_end;
1216			else
1217				request->fl_end = fl->fl_end;
1218			if (added) {
1219				locks_delete_lock_ctx(fl, &dispose);
1220				continue;
1221			}
1222			request = fl;
1223			added = true;
1224		} else {
1225			/* Processing for different lock types is a bit
1226			 * more complex.
1227			 */
1228			if (fl->fl_end < request->fl_start)
1229				continue;
1230			if (fl->fl_start > request->fl_end)
1231				break;
1232			if (request->fl_type == F_UNLCK)
1233				added = true;
1234			if (fl->fl_start < request->fl_start)
1235				left = fl;
1236			/* If the next lock in the list has a higher end
1237			 * address than the new one, insert the new one here.
1238			 */
1239			if (fl->fl_end > request->fl_end) {
1240				right = fl;
1241				break;
1242			}
1243			if (fl->fl_start >= request->fl_start) {
1244				/* The new lock completely replaces an old
1245				 * one (This may happen several times).
1246				 */
1247				if (added) {
1248					locks_delete_lock_ctx(fl, &dispose);
1249					continue;
1250				}
1251				/*
1252				 * Replace the old lock with new_fl, and
1253				 * remove the old one. It's safe to do the
1254				 * insert here since we know that we won't be
1255				 * using new_fl later, and that the lock is
1256				 * just replacing an existing lock.
1257				 */
1258				error = -ENOLCK;
1259				if (!new_fl)
1260					goto out;
1261				locks_copy_lock(new_fl, request);
 
1262				request = new_fl;
1263				new_fl = NULL;
1264				locks_insert_lock_ctx(request, &fl->fl_list);
1265				locks_delete_lock_ctx(fl, &dispose);
1266				added = true;
1267			}
1268		}
1269	}
1270
1271	/*
1272	 * The above code only modifies existing locks in case of merging or
1273	 * replacing. If new lock(s) need to be inserted all modifications are
1274	 * done below this, so it's safe yet to bail out.
1275	 */
1276	error = -ENOLCK; /* "no luck" */
1277	if (right && left == right && !new_fl2)
1278		goto out;
1279
1280	error = 0;
1281	if (!added) {
1282		if (request->fl_type == F_UNLCK) {
1283			if (request->fl_flags & FL_EXISTS)
1284				error = -ENOENT;
1285			goto out;
1286		}
1287
1288		if (!new_fl) {
1289			error = -ENOLCK;
1290			goto out;
1291		}
1292		locks_copy_lock(new_fl, request);
1293		locks_move_blocks(new_fl, request);
1294		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1295		fl = new_fl;
1296		new_fl = NULL;
1297	}
1298	if (right) {
1299		if (left == right) {
1300			/* The new lock breaks the old one in two pieces,
1301			 * so we have to use the second new lock.
1302			 */
1303			left = new_fl2;
1304			new_fl2 = NULL;
1305			locks_copy_lock(left, right);
1306			locks_insert_lock_ctx(left, &fl->fl_list);
1307		}
1308		right->fl_start = request->fl_end + 1;
1309		locks_wake_up_blocks(right);
1310	}
1311	if (left) {
1312		left->fl_end = request->fl_start - 1;
1313		locks_wake_up_blocks(left);
1314	}
1315 out:
1316	spin_unlock(&ctx->flc_lock);
1317	percpu_up_read(&file_rwsem);
 
1318	/*
1319	 * Free any unused locks.
1320	 */
1321	if (new_fl)
1322		locks_free_lock(new_fl);
1323	if (new_fl2)
1324		locks_free_lock(new_fl2);
1325	locks_dispose_list(&dispose);
1326	trace_posix_lock_inode(inode, request, error);
1327
1328	return error;
1329}
1330
1331/**
1332 * posix_lock_file - Apply a POSIX-style lock to a file
1333 * @filp: The file to apply the lock to
1334 * @fl: The lock to be applied
1335 * @conflock: Place to return a copy of the conflicting lock, if found.
1336 *
1337 * Add a POSIX style lock to a file.
1338 * We merge adjacent & overlapping locks whenever possible.
1339 * POSIX locks are sorted by owner task, then by starting address
1340 *
1341 * Note that if called with an FL_EXISTS argument, the caller may determine
1342 * whether or not a lock was successfully freed by testing the return
1343 * value for -ENOENT.
1344 */
1345int posix_lock_file(struct file *filp, struct file_lock *fl,
1346			struct file_lock *conflock)
1347{
1348	return posix_lock_inode(locks_inode(filp), fl, conflock);
1349}
1350EXPORT_SYMBOL(posix_lock_file);
1351
1352/**
1353 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1354 * @inode: inode of file to which lock request should be applied
1355 * @fl: The lock to be applied
1356 *
1357 * Apply a POSIX style lock request to an inode.
1358 */
1359static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1360{
1361	int error;
1362	might_sleep ();
1363	for (;;) {
1364		error = posix_lock_inode(inode, fl, NULL);
1365		if (error != FILE_LOCK_DEFERRED)
1366			break;
1367		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
 
1368		if (error)
1369			break;
1370	}
1371	locks_delete_block(fl);
1372	return error;
1373}
1374
1375#ifdef CONFIG_MANDATORY_FILE_LOCKING
1376/**
1377 * locks_mandatory_locked - Check for an active lock
1378 * @file: the file to check
1379 *
1380 * Searches the inode's list of locks to find any POSIX locks which conflict.
1381 * This function is called from locks_verify_locked() only.
1382 */
1383int locks_mandatory_locked(struct file *file)
1384{
1385	int ret;
1386	struct inode *inode = locks_inode(file);
1387	struct file_lock_context *ctx;
1388	struct file_lock *fl;
1389
1390	ctx = smp_load_acquire(&inode->i_flctx);
1391	if (!ctx || list_empty_careful(&ctx->flc_posix))
1392		return 0;
1393
1394	/*
1395	 * Search the lock list for this inode for any POSIX locks.
1396	 */
1397	spin_lock(&ctx->flc_lock);
1398	ret = 0;
1399	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1400		if (fl->fl_owner != current->files &&
1401		    fl->fl_owner != file) {
1402			ret = -EAGAIN;
1403			break;
1404		}
1405	}
1406	spin_unlock(&ctx->flc_lock);
1407	return ret;
1408}
1409
1410/**
1411 * locks_mandatory_area - Check for a conflicting lock
1412 * @inode:	the file to check
1413 * @filp:       how the file was opened (if it was)
1414 * @start:	first byte in the file to check
1415 * @end:	lastbyte in the file to check
1416 * @type:	%F_WRLCK for a write lock, else %F_RDLCK
1417 *
1418 * Searches the inode's list of locks to find any POSIX locks which conflict.
1419 */
1420int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start,
1421			 loff_t end, unsigned char type)
1422{
1423	struct file_lock fl;
1424	int error;
1425	bool sleep = false;
1426
1427	locks_init_lock(&fl);
1428	fl.fl_pid = current->tgid;
1429	fl.fl_file = filp;
1430	fl.fl_flags = FL_POSIX | FL_ACCESS;
1431	if (filp && !(filp->f_flags & O_NONBLOCK))
1432		sleep = true;
1433	fl.fl_type = type;
1434	fl.fl_start = start;
1435	fl.fl_end = end;
1436
1437	for (;;) {
1438		if (filp) {
1439			fl.fl_owner = filp;
1440			fl.fl_flags &= ~FL_SLEEP;
1441			error = posix_lock_inode(inode, &fl, NULL);
1442			if (!error)
1443				break;
1444		}
1445
1446		if (sleep)
1447			fl.fl_flags |= FL_SLEEP;
1448		fl.fl_owner = current->files;
1449		error = posix_lock_inode(inode, &fl, NULL);
1450		if (error != FILE_LOCK_DEFERRED)
1451			break;
1452		error = wait_event_interruptible(fl.fl_wait, !fl.fl_blocker);
1453		if (!error) {
1454			/*
1455			 * If we've been sleeping someone might have
1456			 * changed the permissions behind our back.
1457			 */
1458			if (__mandatory_lock(inode))
1459				continue;
1460		}
1461
1462		break;
1463	}
1464	locks_delete_block(&fl);
1465
1466	return error;
1467}
1468EXPORT_SYMBOL(locks_mandatory_area);
1469#endif /* CONFIG_MANDATORY_FILE_LOCKING */
1470
1471static void lease_clear_pending(struct file_lock *fl, int arg)
1472{
1473	switch (arg) {
1474	case F_UNLCK:
1475		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1476		/* fall through */
1477	case F_RDLCK:
1478		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1479	}
1480}
1481
1482/* We already had a lease on this file; just change its type */
1483int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1484{
1485	int error = assign_type(fl, arg);
1486
1487	if (error)
1488		return error;
1489	lease_clear_pending(fl, arg);
1490	locks_wake_up_blocks(fl);
1491	if (arg == F_UNLCK) {
1492		struct file *filp = fl->fl_file;
1493
1494		f_delown(filp);
1495		filp->f_owner.signum = 0;
1496		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1497		if (fl->fl_fasync != NULL) {
1498			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1499			fl->fl_fasync = NULL;
1500		}
1501		locks_delete_lock_ctx(fl, dispose);
1502	}
1503	return 0;
1504}
1505EXPORT_SYMBOL(lease_modify);
1506
1507static bool past_time(unsigned long then)
1508{
1509	if (!then)
1510		/* 0 is a special value meaning "this never expires": */
1511		return false;
1512	return time_after(jiffies, then);
1513}
1514
1515static void time_out_leases(struct inode *inode, struct list_head *dispose)
1516{
1517	struct file_lock_context *ctx = inode->i_flctx;
1518	struct file_lock *fl, *tmp;
1519
1520	lockdep_assert_held(&ctx->flc_lock);
1521
1522	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1523		trace_time_out_leases(inode, fl);
1524		if (past_time(fl->fl_downgrade_time))
1525			lease_modify(fl, F_RDLCK, dispose);
1526		if (past_time(fl->fl_break_time))
1527			lease_modify(fl, F_UNLCK, dispose);
1528	}
1529}
1530
1531static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1532{
1533	bool rc;
1534
 
 
 
1535	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1536		rc = false;
1537		goto trace;
1538	}
1539	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1540		rc = false;
1541		goto trace;
1542	}
1543
1544	rc = locks_conflict(breaker, lease);
1545trace:
1546	trace_leases_conflict(rc, lease, breaker);
1547	return rc;
1548}
1549
1550static bool
1551any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1552{
1553	struct file_lock_context *ctx = inode->i_flctx;
1554	struct file_lock *fl;
1555
1556	lockdep_assert_held(&ctx->flc_lock);
1557
1558	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1559		if (leases_conflict(fl, breaker))
1560			return true;
1561	}
1562	return false;
1563}
1564
1565/**
1566 *	__break_lease	-	revoke all outstanding leases on file
1567 *	@inode: the inode of the file to return
1568 *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1569 *	    break all leases
1570 *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1571 *	    only delegations
1572 *
1573 *	break_lease (inlined for speed) has checked there already is at least
1574 *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1575 *	a call to open() or truncate().  This function can sleep unless you
1576 *	specified %O_NONBLOCK to your open().
1577 */
1578int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1579{
1580	int error = 0;
1581	struct file_lock_context *ctx;
1582	struct file_lock *new_fl, *fl, *tmp;
1583	unsigned long break_time;
1584	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1585	LIST_HEAD(dispose);
1586
1587	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1588	if (IS_ERR(new_fl))
1589		return PTR_ERR(new_fl);
1590	new_fl->fl_flags = type;
1591
1592	/* typically we will check that ctx is non-NULL before calling */
1593	ctx = smp_load_acquire(&inode->i_flctx);
1594	if (!ctx) {
1595		WARN_ON_ONCE(1);
1596		goto free_lock;
1597	}
1598
1599	percpu_down_read(&file_rwsem);
1600	spin_lock(&ctx->flc_lock);
1601
1602	time_out_leases(inode, &dispose);
1603
1604	if (!any_leases_conflict(inode, new_fl))
1605		goto out;
1606
1607	break_time = 0;
1608	if (lease_break_time > 0) {
1609		break_time = jiffies + lease_break_time * HZ;
1610		if (break_time == 0)
1611			break_time++;	/* so that 0 means no break time */
1612	}
1613
1614	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1615		if (!leases_conflict(fl, new_fl))
1616			continue;
1617		if (want_write) {
1618			if (fl->fl_flags & FL_UNLOCK_PENDING)
1619				continue;
1620			fl->fl_flags |= FL_UNLOCK_PENDING;
1621			fl->fl_break_time = break_time;
1622		} else {
1623			if (lease_breaking(fl))
1624				continue;
1625			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1626			fl->fl_downgrade_time = break_time;
1627		}
1628		if (fl->fl_lmops->lm_break(fl))
1629			locks_delete_lock_ctx(fl, &dispose);
1630	}
1631
1632	if (list_empty(&ctx->flc_lease))
1633		goto out;
1634
1635	if (mode & O_NONBLOCK) {
1636		trace_break_lease_noblock(inode, new_fl);
1637		error = -EWOULDBLOCK;
1638		goto out;
1639	}
1640
1641restart:
1642	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1643	break_time = fl->fl_break_time;
1644	if (break_time != 0)
1645		break_time -= jiffies;
1646	if (break_time == 0)
1647		break_time++;
1648	locks_insert_block(fl, new_fl, leases_conflict);
1649	trace_break_lease_block(inode, new_fl);
1650	spin_unlock(&ctx->flc_lock);
1651	percpu_up_read(&file_rwsem);
1652
1653	locks_dispose_list(&dispose);
1654	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1655						!new_fl->fl_blocker, break_time);
 
1656
1657	percpu_down_read(&file_rwsem);
1658	spin_lock(&ctx->flc_lock);
1659	trace_break_lease_unblock(inode, new_fl);
1660	locks_delete_block(new_fl);
1661	if (error >= 0) {
1662		/*
1663		 * Wait for the next conflicting lease that has not been
1664		 * broken yet
1665		 */
1666		if (error == 0)
1667			time_out_leases(inode, &dispose);
1668		if (any_leases_conflict(inode, new_fl))
1669			goto restart;
1670		error = 0;
1671	}
1672out:
1673	spin_unlock(&ctx->flc_lock);
1674	percpu_up_read(&file_rwsem);
1675	locks_dispose_list(&dispose);
1676free_lock:
1677	locks_free_lock(new_fl);
1678	return error;
1679}
1680EXPORT_SYMBOL(__break_lease);
1681
1682/**
1683 *	lease_get_mtime - update modified time of an inode with exclusive lease
1684 *	@inode: the inode
1685 *      @time:  pointer to a timespec which contains the last modified time
1686 *
1687 * This is to force NFS clients to flush their caches for files with
1688 * exclusive leases.  The justification is that if someone has an
1689 * exclusive lease, then they could be modifying it.
1690 */
1691void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1692{
1693	bool has_lease = false;
1694	struct file_lock_context *ctx;
1695	struct file_lock *fl;
1696
1697	ctx = smp_load_acquire(&inode->i_flctx);
1698	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1699		spin_lock(&ctx->flc_lock);
1700		fl = list_first_entry_or_null(&ctx->flc_lease,
1701					      struct file_lock, fl_list);
1702		if (fl && (fl->fl_type == F_WRLCK))
1703			has_lease = true;
1704		spin_unlock(&ctx->flc_lock);
1705	}
1706
1707	if (has_lease)
1708		*time = current_time(inode);
1709}
1710EXPORT_SYMBOL(lease_get_mtime);
1711
1712/**
1713 *	fcntl_getlease - Enquire what lease is currently active
1714 *	@filp: the file
1715 *
1716 *	The value returned by this function will be one of
1717 *	(if no lease break is pending):
1718 *
1719 *	%F_RDLCK to indicate a shared lease is held.
1720 *
1721 *	%F_WRLCK to indicate an exclusive lease is held.
1722 *
1723 *	%F_UNLCK to indicate no lease is held.
1724 *
1725 *	(if a lease break is pending):
1726 *
1727 *	%F_RDLCK to indicate an exclusive lease needs to be
1728 *		changed to a shared lease (or removed).
1729 *
1730 *	%F_UNLCK to indicate the lease needs to be removed.
1731 *
1732 *	XXX: sfr & willy disagree over whether F_INPROGRESS
1733 *	should be returned to userspace.
1734 */
1735int fcntl_getlease(struct file *filp)
1736{
1737	struct file_lock *fl;
1738	struct inode *inode = locks_inode(filp);
1739	struct file_lock_context *ctx;
1740	int type = F_UNLCK;
1741	LIST_HEAD(dispose);
1742
1743	ctx = smp_load_acquire(&inode->i_flctx);
1744	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1745		percpu_down_read(&file_rwsem);
1746		spin_lock(&ctx->flc_lock);
1747		time_out_leases(inode, &dispose);
1748		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1749			if (fl->fl_file != filp)
1750				continue;
1751			type = target_leasetype(fl);
1752			break;
1753		}
1754		spin_unlock(&ctx->flc_lock);
1755		percpu_up_read(&file_rwsem);
1756
1757		locks_dispose_list(&dispose);
1758	}
1759	return type;
1760}
1761
1762/**
1763 * check_conflicting_open - see if the given file points to an inode that has
1764 *			    an existing open that would conflict with the
1765 *			    desired lease.
1766 * @filp:	file to check
1767 * @arg:	type of lease that we're trying to acquire
1768 * @flags:	current lock flags
1769 *
1770 * Check to see if there's an existing open fd on this file that would
1771 * conflict with the lease we're trying to set.
1772 */
1773static int
1774check_conflicting_open(struct file *filp, const long arg, int flags)
1775{
1776	struct inode *inode = locks_inode(filp);
1777	int self_wcount = 0, self_rcount = 0;
1778
1779	if (flags & FL_LAYOUT)
1780		return 0;
 
 
 
1781
1782	if (arg == F_RDLCK)
1783		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1784	else if (arg != F_WRLCK)
1785		return 0;
1786
1787	/*
1788	 * Make sure that only read/write count is from lease requestor.
1789	 * Note that this will result in denying write leases when i_writecount
1790	 * is negative, which is what we want.  (We shouldn't grant write leases
1791	 * on files open for execution.)
1792	 */
1793	if (filp->f_mode & FMODE_WRITE)
1794		self_wcount = 1;
1795	else if (filp->f_mode & FMODE_READ)
1796		self_rcount = 1;
1797
1798	if (atomic_read(&inode->i_writecount) != self_wcount ||
1799	    atomic_read(&inode->i_readcount) != self_rcount)
1800		return -EAGAIN;
1801
1802	return 0;
1803}
1804
1805static int
1806generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1807{
1808	struct file_lock *fl, *my_fl = NULL, *lease;
1809	struct inode *inode = locks_inode(filp);
1810	struct file_lock_context *ctx;
1811	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1812	int error;
1813	LIST_HEAD(dispose);
1814
1815	lease = *flp;
1816	trace_generic_add_lease(inode, lease);
1817
1818	/* Note that arg is never F_UNLCK here */
1819	ctx = locks_get_lock_context(inode, arg);
1820	if (!ctx)
1821		return -ENOMEM;
1822
1823	/*
1824	 * In the delegation case we need mutual exclusion with
1825	 * a number of operations that take the i_mutex.  We trylock
1826	 * because delegations are an optional optimization, and if
1827	 * there's some chance of a conflict--we'd rather not
1828	 * bother, maybe that's a sign this just isn't a good file to
1829	 * hand out a delegation on.
1830	 */
1831	if (is_deleg && !inode_trylock(inode))
1832		return -EAGAIN;
1833
1834	if (is_deleg && arg == F_WRLCK) {
1835		/* Write delegations are not currently supported: */
1836		inode_unlock(inode);
1837		WARN_ON_ONCE(1);
1838		return -EINVAL;
1839	}
1840
1841	percpu_down_read(&file_rwsem);
1842	spin_lock(&ctx->flc_lock);
1843	time_out_leases(inode, &dispose);
1844	error = check_conflicting_open(filp, arg, lease->fl_flags);
1845	if (error)
1846		goto out;
1847
1848	/*
1849	 * At this point, we know that if there is an exclusive
1850	 * lease on this file, then we hold it on this filp
1851	 * (otherwise our open of this file would have blocked).
1852	 * And if we are trying to acquire an exclusive lease,
1853	 * then the file is not open by anyone (including us)
1854	 * except for this filp.
1855	 */
1856	error = -EAGAIN;
1857	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1858		if (fl->fl_file == filp &&
1859		    fl->fl_owner == lease->fl_owner) {
1860			my_fl = fl;
1861			continue;
1862		}
1863
1864		/*
1865		 * No exclusive leases if someone else has a lease on
1866		 * this file:
1867		 */
1868		if (arg == F_WRLCK)
1869			goto out;
1870		/*
1871		 * Modifying our existing lease is OK, but no getting a
1872		 * new lease if someone else is opening for write:
1873		 */
1874		if (fl->fl_flags & FL_UNLOCK_PENDING)
1875			goto out;
1876	}
1877
1878	if (my_fl != NULL) {
1879		lease = my_fl;
1880		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1881		if (error)
1882			goto out;
1883		goto out_setup;
1884	}
1885
1886	error = -EINVAL;
1887	if (!leases_enable)
1888		goto out;
1889
1890	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1891	/*
1892	 * The check in break_lease() is lockless. It's possible for another
1893	 * open to race in after we did the earlier check for a conflicting
1894	 * open but before the lease was inserted. Check again for a
1895	 * conflicting open and cancel the lease if there is one.
1896	 *
1897	 * We also add a barrier here to ensure that the insertion of the lock
1898	 * precedes these checks.
1899	 */
1900	smp_mb();
1901	error = check_conflicting_open(filp, arg, lease->fl_flags);
1902	if (error) {
1903		locks_unlink_lock_ctx(lease);
1904		goto out;
1905	}
1906
1907out_setup:
1908	if (lease->fl_lmops->lm_setup)
1909		lease->fl_lmops->lm_setup(lease, priv);
1910out:
1911	spin_unlock(&ctx->flc_lock);
1912	percpu_up_read(&file_rwsem);
1913	locks_dispose_list(&dispose);
1914	if (is_deleg)
1915		inode_unlock(inode);
1916	if (!error && !my_fl)
1917		*flp = NULL;
1918	return error;
1919}
1920
1921static int generic_delete_lease(struct file *filp, void *owner)
1922{
1923	int error = -EAGAIN;
1924	struct file_lock *fl, *victim = NULL;
1925	struct inode *inode = locks_inode(filp);
1926	struct file_lock_context *ctx;
1927	LIST_HEAD(dispose);
1928
1929	ctx = smp_load_acquire(&inode->i_flctx);
1930	if (!ctx) {
1931		trace_generic_delete_lease(inode, NULL);
1932		return error;
1933	}
1934
1935	percpu_down_read(&file_rwsem);
1936	spin_lock(&ctx->flc_lock);
1937	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1938		if (fl->fl_file == filp &&
1939		    fl->fl_owner == owner) {
1940			victim = fl;
1941			break;
1942		}
1943	}
1944	trace_generic_delete_lease(inode, victim);
1945	if (victim)
1946		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1947	spin_unlock(&ctx->flc_lock);
1948	percpu_up_read(&file_rwsem);
1949	locks_dispose_list(&dispose);
1950	return error;
1951}
1952
1953/**
1954 *	generic_setlease	-	sets a lease on an open file
1955 *	@filp:	file pointer
1956 *	@arg:	type of lease to obtain
1957 *	@flp:	input - file_lock to use, output - file_lock inserted
1958 *	@priv:	private data for lm_setup (may be NULL if lm_setup
1959 *		doesn't require it)
1960 *
1961 *	The (input) flp->fl_lmops->lm_break function is required
1962 *	by break_lease().
1963 */
1964int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1965			void **priv)
1966{
1967	struct inode *inode = locks_inode(filp);
 
1968	int error;
1969
1970	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1971		return -EACCES;
1972	if (!S_ISREG(inode->i_mode))
1973		return -EINVAL;
1974	error = security_file_lock(filp, arg);
1975	if (error)
1976		return error;
1977
1978	switch (arg) {
1979	case F_UNLCK:
1980		return generic_delete_lease(filp, *priv);
1981	case F_RDLCK:
1982	case F_WRLCK:
1983		if (!(*flp)->fl_lmops->lm_break) {
1984			WARN_ON_ONCE(1);
1985			return -ENOLCK;
1986		}
1987
1988		return generic_add_lease(filp, arg, flp, priv);
1989	default:
1990		return -EINVAL;
1991	}
1992}
1993EXPORT_SYMBOL(generic_setlease);
1994
1995#if IS_ENABLED(CONFIG_SRCU)
1996/*
1997 * Kernel subsystems can register to be notified on any attempt to set
1998 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1999 * to close files that it may have cached when there is an attempt to set a
2000 * conflicting lease.
2001 */
2002static struct srcu_notifier_head lease_notifier_chain;
2003
2004static inline void
2005lease_notifier_chain_init(void)
2006{
2007	srcu_init_notifier_head(&lease_notifier_chain);
2008}
2009
2010static inline void
2011setlease_notifier(long arg, struct file_lock *lease)
2012{
2013	if (arg != F_UNLCK)
2014		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
2015}
2016
2017int lease_register_notifier(struct notifier_block *nb)
2018{
2019	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
2020}
2021EXPORT_SYMBOL_GPL(lease_register_notifier);
2022
2023void lease_unregister_notifier(struct notifier_block *nb)
2024{
2025	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
2026}
2027EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2028
2029#else /* !IS_ENABLED(CONFIG_SRCU) */
2030static inline void
2031lease_notifier_chain_init(void)
2032{
2033}
2034
2035static inline void
2036setlease_notifier(long arg, struct file_lock *lease)
2037{
2038}
2039
2040int lease_register_notifier(struct notifier_block *nb)
2041{
2042	return 0;
2043}
2044EXPORT_SYMBOL_GPL(lease_register_notifier);
2045
2046void lease_unregister_notifier(struct notifier_block *nb)
2047{
2048}
2049EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2050
2051#endif /* IS_ENABLED(CONFIG_SRCU) */
2052
2053/**
2054 * vfs_setlease        -       sets a lease on an open file
2055 * @filp:	file pointer
2056 * @arg:	type of lease to obtain
2057 * @lease:	file_lock to use when adding a lease
2058 * @priv:	private info for lm_setup when adding a lease (may be
2059 *		NULL if lm_setup doesn't require it)
2060 *
2061 * Call this to establish a lease on the file. The "lease" argument is not
2062 * used for F_UNLCK requests and may be NULL. For commands that set or alter
2063 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2064 * set; if not, this function will return -ENOLCK (and generate a scary-looking
2065 * stack trace).
2066 *
2067 * The "priv" pointer is passed directly to the lm_setup function as-is. It
2068 * may be NULL if the lm_setup operation doesn't require it.
2069 */
2070int
2071vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
2072{
2073	if (lease)
2074		setlease_notifier(arg, *lease);
2075	if (filp->f_op->setlease)
2076		return filp->f_op->setlease(filp, arg, lease, priv);
2077	else
2078		return generic_setlease(filp, arg, lease, priv);
2079}
2080EXPORT_SYMBOL_GPL(vfs_setlease);
2081
2082static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
2083{
2084	struct file_lock *fl;
2085	struct fasync_struct *new;
2086	int error;
2087
2088	fl = lease_alloc(filp, arg);
2089	if (IS_ERR(fl))
2090		return PTR_ERR(fl);
2091
2092	new = fasync_alloc();
2093	if (!new) {
2094		locks_free_lock(fl);
2095		return -ENOMEM;
2096	}
2097	new->fa_fd = fd;
2098
2099	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2100	if (fl)
2101		locks_free_lock(fl);
2102	if (new)
2103		fasync_free(new);
2104	return error;
2105}
2106
2107/**
2108 *	fcntl_setlease	-	sets a lease on an open file
2109 *	@fd: open file descriptor
2110 *	@filp: file pointer
2111 *	@arg: type of lease to obtain
2112 *
2113 *	Call this fcntl to establish a lease on the file.
2114 *	Note that you also need to call %F_SETSIG to
2115 *	receive a signal when the lease is broken.
2116 */
2117int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2118{
2119	if (arg == F_UNLCK)
2120		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2121	return do_fcntl_add_lease(fd, filp, arg);
2122}
2123
2124/**
2125 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2126 * @inode: inode of the file to apply to
2127 * @fl: The lock to be applied
2128 *
2129 * Apply a FLOCK style lock request to an inode.
2130 */
2131static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2132{
2133	int error;
2134	might_sleep();
2135	for (;;) {
2136		error = flock_lock_inode(inode, fl);
2137		if (error != FILE_LOCK_DEFERRED)
2138			break;
2139		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
 
2140		if (error)
2141			break;
2142	}
2143	locks_delete_block(fl);
2144	return error;
2145}
2146
2147/**
2148 * locks_lock_inode_wait - Apply a lock to an inode
2149 * @inode: inode of the file to apply to
2150 * @fl: The lock to be applied
2151 *
2152 * Apply a POSIX or FLOCK style lock request to an inode.
2153 */
2154int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2155{
2156	int res = 0;
2157	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2158		case FL_POSIX:
2159			res = posix_lock_inode_wait(inode, fl);
2160			break;
2161		case FL_FLOCK:
2162			res = flock_lock_inode_wait(inode, fl);
2163			break;
2164		default:
2165			BUG();
2166	}
2167	return res;
2168}
2169EXPORT_SYMBOL(locks_lock_inode_wait);
2170
2171/**
2172 *	sys_flock: - flock() system call.
2173 *	@fd: the file descriptor to lock.
2174 *	@cmd: the type of lock to apply.
2175 *
2176 *	Apply a %FL_FLOCK style lock to an open file descriptor.
2177 *	The @cmd can be one of:
2178 *
2179 *	- %LOCK_SH -- a shared lock.
2180 *	- %LOCK_EX -- an exclusive lock.
2181 *	- %LOCK_UN -- remove an existing lock.
2182 *	- %LOCK_MAND -- a 'mandatory' flock.
2183 *	  This exists to emulate Windows Share Modes.
2184 *
2185 *	%LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
2186 *	processes read and write access respectively.
2187 */
2188SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2189{
2190	struct fd f = fdget(fd);
2191	struct file_lock *lock;
2192	int can_sleep, unlock;
2193	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194
2195	error = -EBADF;
 
2196	if (!f.file)
2197		goto out;
2198
2199	can_sleep = !(cmd & LOCK_NB);
2200	cmd &= ~LOCK_NB;
2201	unlock = (cmd == LOCK_UN);
2202
2203	if (!unlock && !(cmd & LOCK_MAND) &&
2204	    !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2205		goto out_putf;
2206
2207	lock = flock_make_lock(f.file, cmd, NULL);
2208	if (IS_ERR(lock)) {
2209		error = PTR_ERR(lock);
2210		goto out_putf;
2211	}
2212
 
2213	if (can_sleep)
2214		lock->fl_flags |= FL_SLEEP;
2215
2216	error = security_file_lock(f.file, lock->fl_type);
2217	if (error)
2218		goto out_free;
2219
2220	if (f.file->f_op->flock)
2221		error = f.file->f_op->flock(f.file,
2222					  (can_sleep) ? F_SETLKW : F_SETLK,
2223					  lock);
2224	else
2225		error = locks_lock_file_wait(f.file, lock);
2226
2227 out_free:
2228	locks_free_lock(lock);
2229
 
2230 out_putf:
2231	fdput(f);
2232 out:
2233	return error;
2234}
2235
2236/**
2237 * vfs_test_lock - test file byte range lock
2238 * @filp: The file to test lock for
2239 * @fl: The lock to test; also used to hold result
2240 *
2241 * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2242 * setting conf->fl_type to something other than F_UNLCK.
2243 */
2244int vfs_test_lock(struct file *filp, struct file_lock *fl)
2245{
 
2246	if (filp->f_op->lock)
2247		return filp->f_op->lock(filp, F_GETLK, fl);
2248	posix_test_lock(filp, fl);
2249	return 0;
2250}
2251EXPORT_SYMBOL_GPL(vfs_test_lock);
2252
2253/**
2254 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2255 * @fl: The file_lock who's fl_pid should be translated
2256 * @ns: The namespace into which the pid should be translated
2257 *
2258 * Used to tranlate a fl_pid into a namespace virtual pid number
2259 */
2260static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2261{
2262	pid_t vnr;
2263	struct pid *pid;
2264
2265	if (IS_OFDLCK(fl))
2266		return -1;
2267	if (IS_REMOTELCK(fl))
2268		return fl->fl_pid;
2269	/*
2270	 * If the flock owner process is dead and its pid has been already
2271	 * freed, the translation below won't work, but we still want to show
2272	 * flock owner pid number in init pidns.
2273	 */
2274	if (ns == &init_pid_ns)
2275		return (pid_t)fl->fl_pid;
2276
2277	rcu_read_lock();
2278	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2279	vnr = pid_nr_ns(pid, ns);
2280	rcu_read_unlock();
2281	return vnr;
2282}
2283
2284static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2285{
2286	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2287#if BITS_PER_LONG == 32
2288	/*
2289	 * Make sure we can represent the posix lock via
2290	 * legacy 32bit flock.
2291	 */
2292	if (fl->fl_start > OFFT_OFFSET_MAX)
2293		return -EOVERFLOW;
2294	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2295		return -EOVERFLOW;
2296#endif
2297	flock->l_start = fl->fl_start;
2298	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2299		fl->fl_end - fl->fl_start + 1;
2300	flock->l_whence = 0;
2301	flock->l_type = fl->fl_type;
2302	return 0;
2303}
2304
2305#if BITS_PER_LONG == 32
2306static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2307{
2308	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2309	flock->l_start = fl->fl_start;
2310	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2311		fl->fl_end - fl->fl_start + 1;
2312	flock->l_whence = 0;
2313	flock->l_type = fl->fl_type;
2314}
2315#endif
2316
2317/* Report the first existing lock that would conflict with l.
2318 * This implements the F_GETLK command of fcntl().
2319 */
2320int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2321{
2322	struct file_lock *fl;
2323	int error;
2324
2325	fl = locks_alloc_lock();
2326	if (fl == NULL)
2327		return -ENOMEM;
2328	error = -EINVAL;
2329	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
 
2330		goto out;
2331
2332	error = flock_to_posix_lock(filp, fl, flock);
2333	if (error)
2334		goto out;
2335
2336	if (cmd == F_OFD_GETLK) {
2337		error = -EINVAL;
2338		if (flock->l_pid != 0)
2339			goto out;
2340
2341		cmd = F_GETLK;
2342		fl->fl_flags |= FL_OFDLCK;
2343		fl->fl_owner = filp;
2344	}
2345
2346	error = vfs_test_lock(filp, fl);
2347	if (error)
2348		goto out;
2349
2350	flock->l_type = fl->fl_type;
2351	if (fl->fl_type != F_UNLCK) {
2352		error = posix_lock_to_flock(flock, fl);
2353		if (error)
2354			goto out;
2355	}
2356out:
2357	locks_free_lock(fl);
2358	return error;
2359}
2360
2361/**
2362 * vfs_lock_file - file byte range lock
2363 * @filp: The file to apply the lock to
2364 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2365 * @fl: The lock to be applied
2366 * @conf: Place to return a copy of the conflicting lock, if found.
2367 *
2368 * A caller that doesn't care about the conflicting lock may pass NULL
2369 * as the final argument.
2370 *
2371 * If the filesystem defines a private ->lock() method, then @conf will
2372 * be left unchanged; so a caller that cares should initialize it to
2373 * some acceptable default.
2374 *
2375 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2376 * locks, the ->lock() interface may return asynchronously, before the lock has
2377 * been granted or denied by the underlying filesystem, if (and only if)
2378 * lm_grant is set. Callers expecting ->lock() to return asynchronously
2379 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2380 * the request is for a blocking lock. When ->lock() does return asynchronously,
2381 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2382 * request completes.
 
 
2383 * If the request is for non-blocking lock the file system should return
2384 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2385 * with the result. If the request timed out the callback routine will return a
2386 * nonzero return code and the file system should release the lock. The file
2387 * system is also responsible to keep a corresponding posix lock when it
2388 * grants a lock so the VFS can find out which locks are locally held and do
2389 * the correct lock cleanup when required.
2390 * The underlying filesystem must not drop the kernel lock or call
2391 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2392 * return code.
2393 */
2394int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2395{
 
2396	if (filp->f_op->lock)
2397		return filp->f_op->lock(filp, cmd, fl);
2398	else
2399		return posix_lock_file(filp, fl, conf);
2400}
2401EXPORT_SYMBOL_GPL(vfs_lock_file);
2402
2403static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2404			     struct file_lock *fl)
2405{
2406	int error;
2407
2408	error = security_file_lock(filp, fl->fl_type);
2409	if (error)
2410		return error;
2411
2412	for (;;) {
2413		error = vfs_lock_file(filp, cmd, fl, NULL);
2414		if (error != FILE_LOCK_DEFERRED)
2415			break;
2416		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
 
2417		if (error)
2418			break;
2419	}
2420	locks_delete_block(fl);
2421
2422	return error;
2423}
2424
2425/* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2426static int
2427check_fmode_for_setlk(struct file_lock *fl)
2428{
2429	switch (fl->fl_type) {
2430	case F_RDLCK:
2431		if (!(fl->fl_file->f_mode & FMODE_READ))
2432			return -EBADF;
2433		break;
2434	case F_WRLCK:
2435		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2436			return -EBADF;
2437	}
2438	return 0;
2439}
2440
2441/* Apply the lock described by l to an open file descriptor.
2442 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2443 */
2444int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2445		struct flock *flock)
2446{
2447	struct file_lock *file_lock = locks_alloc_lock();
2448	struct inode *inode = locks_inode(filp);
2449	struct file *f;
2450	int error;
2451
2452	if (file_lock == NULL)
2453		return -ENOLCK;
2454
2455	/* Don't allow mandatory locks on files that may be memory mapped
2456	 * and shared.
2457	 */
2458	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2459		error = -EAGAIN;
2460		goto out;
2461	}
2462
2463	error = flock_to_posix_lock(filp, file_lock, flock);
2464	if (error)
2465		goto out;
2466
2467	error = check_fmode_for_setlk(file_lock);
2468	if (error)
2469		goto out;
2470
2471	/*
2472	 * If the cmd is requesting file-private locks, then set the
2473	 * FL_OFDLCK flag and override the owner.
2474	 */
2475	switch (cmd) {
2476	case F_OFD_SETLK:
2477		error = -EINVAL;
2478		if (flock->l_pid != 0)
2479			goto out;
2480
2481		cmd = F_SETLK;
2482		file_lock->fl_flags |= FL_OFDLCK;
2483		file_lock->fl_owner = filp;
2484		break;
2485	case F_OFD_SETLKW:
2486		error = -EINVAL;
2487		if (flock->l_pid != 0)
2488			goto out;
2489
2490		cmd = F_SETLKW;
2491		file_lock->fl_flags |= FL_OFDLCK;
2492		file_lock->fl_owner = filp;
2493		/* Fallthrough */
2494	case F_SETLKW:
2495		file_lock->fl_flags |= FL_SLEEP;
2496	}
2497
2498	error = do_lock_file_wait(filp, cmd, file_lock);
2499
2500	/*
2501	 * Attempt to detect a close/fcntl race and recover by releasing the
2502	 * lock that was just acquired. There is no need to do that when we're
2503	 * unlocking though, or for OFD locks.
2504	 */
2505	if (!error && file_lock->fl_type != F_UNLCK &&
2506	    !(file_lock->fl_flags & FL_OFDLCK)) {
 
2507		/*
2508		 * We need that spin_lock here - it prevents reordering between
2509		 * update of i_flctx->flc_posix and check for it done in
2510		 * close(). rcu_read_lock() wouldn't do.
2511		 */
2512		spin_lock(&current->files->file_lock);
2513		f = fcheck(fd);
2514		spin_unlock(&current->files->file_lock);
2515		if (f != filp) {
2516			file_lock->fl_type = F_UNLCK;
2517			error = do_lock_file_wait(filp, cmd, file_lock);
2518			WARN_ON_ONCE(error);
2519			error = -EBADF;
2520		}
2521	}
2522out:
2523	trace_fcntl_setlk(inode, file_lock, error);
2524	locks_free_lock(file_lock);
2525	return error;
2526}
2527
2528#if BITS_PER_LONG == 32
2529/* Report the first existing lock that would conflict with l.
2530 * This implements the F_GETLK command of fcntl().
2531 */
2532int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2533{
2534	struct file_lock *fl;
2535	int error;
2536
2537	fl = locks_alloc_lock();
2538	if (fl == NULL)
2539		return -ENOMEM;
2540
2541	error = -EINVAL;
2542	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
 
2543		goto out;
2544
2545	error = flock64_to_posix_lock(filp, fl, flock);
2546	if (error)
2547		goto out;
2548
2549	if (cmd == F_OFD_GETLK) {
2550		error = -EINVAL;
2551		if (flock->l_pid != 0)
2552			goto out;
2553
2554		cmd = F_GETLK64;
2555		fl->fl_flags |= FL_OFDLCK;
2556		fl->fl_owner = filp;
2557	}
2558
2559	error = vfs_test_lock(filp, fl);
2560	if (error)
2561		goto out;
2562
2563	flock->l_type = fl->fl_type;
2564	if (fl->fl_type != F_UNLCK)
2565		posix_lock_to_flock64(flock, fl);
2566
2567out:
2568	locks_free_lock(fl);
2569	return error;
2570}
2571
2572/* Apply the lock described by l to an open file descriptor.
2573 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2574 */
2575int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2576		struct flock64 *flock)
2577{
2578	struct file_lock *file_lock = locks_alloc_lock();
2579	struct inode *inode = locks_inode(filp);
2580	struct file *f;
2581	int error;
2582
2583	if (file_lock == NULL)
2584		return -ENOLCK;
2585
2586	/* Don't allow mandatory locks on files that may be memory mapped
2587	 * and shared.
2588	 */
2589	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2590		error = -EAGAIN;
2591		goto out;
2592	}
2593
2594	error = flock64_to_posix_lock(filp, file_lock, flock);
2595	if (error)
2596		goto out;
2597
2598	error = check_fmode_for_setlk(file_lock);
2599	if (error)
2600		goto out;
2601
2602	/*
2603	 * If the cmd is requesting file-private locks, then set the
2604	 * FL_OFDLCK flag and override the owner.
2605	 */
2606	switch (cmd) {
2607	case F_OFD_SETLK:
2608		error = -EINVAL;
2609		if (flock->l_pid != 0)
2610			goto out;
2611
2612		cmd = F_SETLK64;
2613		file_lock->fl_flags |= FL_OFDLCK;
2614		file_lock->fl_owner = filp;
2615		break;
2616	case F_OFD_SETLKW:
2617		error = -EINVAL;
2618		if (flock->l_pid != 0)
2619			goto out;
2620
2621		cmd = F_SETLKW64;
2622		file_lock->fl_flags |= FL_OFDLCK;
2623		file_lock->fl_owner = filp;
2624		/* Fallthrough */
2625	case F_SETLKW64:
2626		file_lock->fl_flags |= FL_SLEEP;
2627	}
2628
2629	error = do_lock_file_wait(filp, cmd, file_lock);
2630
2631	/*
2632	 * Attempt to detect a close/fcntl race and recover by releasing the
2633	 * lock that was just acquired. There is no need to do that when we're
2634	 * unlocking though, or for OFD locks.
2635	 */
2636	if (!error && file_lock->fl_type != F_UNLCK &&
2637	    !(file_lock->fl_flags & FL_OFDLCK)) {
 
2638		/*
2639		 * We need that spin_lock here - it prevents reordering between
2640		 * update of i_flctx->flc_posix and check for it done in
2641		 * close(). rcu_read_lock() wouldn't do.
2642		 */
2643		spin_lock(&current->files->file_lock);
2644		f = fcheck(fd);
2645		spin_unlock(&current->files->file_lock);
2646		if (f != filp) {
2647			file_lock->fl_type = F_UNLCK;
2648			error = do_lock_file_wait(filp, cmd, file_lock);
2649			WARN_ON_ONCE(error);
2650			error = -EBADF;
2651		}
2652	}
2653out:
2654	locks_free_lock(file_lock);
2655	return error;
2656}
2657#endif /* BITS_PER_LONG == 32 */
2658
2659/*
2660 * This function is called when the file is being removed
2661 * from the task's fd array.  POSIX locks belonging to this task
2662 * are deleted at this time.
2663 */
2664void locks_remove_posix(struct file *filp, fl_owner_t owner)
2665{
2666	int error;
2667	struct inode *inode = locks_inode(filp);
2668	struct file_lock lock;
2669	struct file_lock_context *ctx;
2670
2671	/*
2672	 * If there are no locks held on this file, we don't need to call
2673	 * posix_lock_file().  Another process could be setting a lock on this
2674	 * file at the same time, but we wouldn't remove that lock anyway.
2675	 */
2676	ctx =  smp_load_acquire(&inode->i_flctx);
2677	if (!ctx || list_empty(&ctx->flc_posix))
2678		return;
2679
2680	locks_init_lock(&lock);
2681	lock.fl_type = F_UNLCK;
2682	lock.fl_flags = FL_POSIX | FL_CLOSE;
2683	lock.fl_start = 0;
2684	lock.fl_end = OFFSET_MAX;
2685	lock.fl_owner = owner;
2686	lock.fl_pid = current->tgid;
2687	lock.fl_file = filp;
2688	lock.fl_ops = NULL;
2689	lock.fl_lmops = NULL;
2690
2691	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2692
2693	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2694		lock.fl_ops->fl_release_private(&lock);
2695	trace_locks_remove_posix(inode, &lock, error);
2696}
2697EXPORT_SYMBOL(locks_remove_posix);
2698
2699/* The i_flctx must be valid when calling into here */
2700static void
2701locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2702{
2703	struct file_lock fl;
2704	struct inode *inode = locks_inode(filp);
2705
2706	if (list_empty(&flctx->flc_flock))
2707		return;
2708
2709	flock_make_lock(filp, LOCK_UN, &fl);
2710	fl.fl_flags |= FL_CLOSE;
2711
2712	if (filp->f_op->flock)
2713		filp->f_op->flock(filp, F_SETLKW, &fl);
2714	else
2715		flock_lock_inode(inode, &fl);
2716
2717	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2718		fl.fl_ops->fl_release_private(&fl);
2719}
2720
2721/* The i_flctx must be valid when calling into here */
2722static void
2723locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2724{
2725	struct file_lock *fl, *tmp;
2726	LIST_HEAD(dispose);
2727
2728	if (list_empty(&ctx->flc_lease))
2729		return;
2730
2731	percpu_down_read(&file_rwsem);
2732	spin_lock(&ctx->flc_lock);
2733	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2734		if (filp == fl->fl_file)
2735			lease_modify(fl, F_UNLCK, &dispose);
2736	spin_unlock(&ctx->flc_lock);
2737	percpu_up_read(&file_rwsem);
2738
2739	locks_dispose_list(&dispose);
2740}
2741
2742/*
2743 * This function is called on the last close of an open file.
2744 */
2745void locks_remove_file(struct file *filp)
2746{
2747	struct file_lock_context *ctx;
2748
2749	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2750	if (!ctx)
2751		return;
2752
2753	/* remove any OFD locks */
2754	locks_remove_posix(filp, filp);
2755
2756	/* remove flock locks */
2757	locks_remove_flock(filp, ctx);
2758
2759	/* remove any leases */
2760	locks_remove_lease(filp, ctx);
2761
2762	spin_lock(&ctx->flc_lock);
2763	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2764	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2765	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2766	spin_unlock(&ctx->flc_lock);
2767}
2768
2769/**
2770 * vfs_cancel_lock - file byte range unblock lock
2771 * @filp: The file to apply the unblock to
2772 * @fl: The lock to be unblocked
2773 *
2774 * Used by lock managers to cancel blocked requests
2775 */
2776int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2777{
 
2778	if (filp->f_op->lock)
2779		return filp->f_op->lock(filp, F_CANCELLK, fl);
2780	return 0;
2781}
2782EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784#ifdef CONFIG_PROC_FS
2785#include <linux/proc_fs.h>
2786#include <linux/seq_file.h>
2787
2788struct locks_iterator {
2789	int	li_cpu;
2790	loff_t	li_pos;
2791};
2792
2793static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2794			    loff_t id, char *pfx)
2795{
2796	struct inode *inode = NULL;
2797	unsigned int fl_pid;
2798	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
 
2799
2800	fl_pid = locks_translate_pid(fl, proc_pidns);
2801	/*
2802	 * If lock owner is dead (and pid is freed) or not visible in current
2803	 * pidns, zero is shown as a pid value. Check lock info from
2804	 * init_pid_ns to get saved lock pid value.
2805	 */
2806
2807	if (fl->fl_file != NULL)
2808		inode = locks_inode(fl->fl_file);
 
 
 
 
 
2809
2810	seq_printf(f, "%lld:%s ", id, pfx);
2811	if (IS_POSIX(fl)) {
2812		if (fl->fl_flags & FL_ACCESS)
2813			seq_puts(f, "ACCESS");
2814		else if (IS_OFDLCK(fl))
2815			seq_puts(f, "OFDLCK");
2816		else
2817			seq_puts(f, "POSIX ");
2818
2819		seq_printf(f, " %s ",
2820			     (inode == NULL) ? "*NOINODE*" :
2821			     mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2822	} else if (IS_FLOCK(fl)) {
2823		if (fl->fl_type & LOCK_MAND) {
2824			seq_puts(f, "FLOCK  MSNFS     ");
2825		} else {
2826			seq_puts(f, "FLOCK  ADVISORY  ");
2827		}
2828	} else if (IS_LEASE(fl)) {
2829		if (fl->fl_flags & FL_DELEG)
2830			seq_puts(f, "DELEG  ");
2831		else
2832			seq_puts(f, "LEASE  ");
2833
2834		if (lease_breaking(fl))
2835			seq_puts(f, "BREAKING  ");
2836		else if (fl->fl_file)
2837			seq_puts(f, "ACTIVE    ");
2838		else
2839			seq_puts(f, "BREAKER   ");
2840	} else {
2841		seq_puts(f, "UNKNOWN UNKNOWN  ");
2842	}
2843	if (fl->fl_type & LOCK_MAND) {
2844		seq_printf(f, "%s ",
2845			       (fl->fl_type & LOCK_READ)
2846			       ? (fl->fl_type & LOCK_WRITE) ? "RW   " : "READ "
2847			       : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2848	} else {
2849		int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2850
2851		seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2852				     (type == F_RDLCK) ? "READ" : "UNLCK");
2853	}
2854	if (inode) {
2855		/* userspace relies on this representation of dev_t */
2856		seq_printf(f, "%d %02x:%02x:%ld ", fl_pid,
2857				MAJOR(inode->i_sb->s_dev),
2858				MINOR(inode->i_sb->s_dev), inode->i_ino);
2859	} else {
2860		seq_printf(f, "%d <none>:0 ", fl_pid);
2861	}
2862	if (IS_POSIX(fl)) {
2863		if (fl->fl_end == OFFSET_MAX)
2864			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2865		else
2866			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2867	} else {
2868		seq_puts(f, "0 EOF\n");
2869	}
2870}
2871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2872static int locks_show(struct seq_file *f, void *v)
2873{
2874	struct locks_iterator *iter = f->private;
2875	struct file_lock *fl, *bfl;
2876	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
 
2877
2878	fl = hlist_entry(v, struct file_lock, fl_link);
2879
2880	if (locks_translate_pid(fl, proc_pidns) == 0)
2881		return 0;
2882
2883	lock_get_status(f, fl, iter->li_pos, "");
 
 
 
 
 
 
 
 
 
2884
2885	list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member)
2886		lock_get_status(f, bfl, iter->li_pos, " ->");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2887
2888	return 0;
2889}
2890
2891static void __show_fd_locks(struct seq_file *f,
2892			struct list_head *head, int *id,
2893			struct file *filp, struct files_struct *files)
2894{
2895	struct file_lock *fl;
2896
2897	list_for_each_entry(fl, head, fl_list) {
2898
2899		if (filp != fl->fl_file)
2900			continue;
2901		if (fl->fl_owner != files &&
2902		    fl->fl_owner != filp)
2903			continue;
2904
2905		(*id)++;
2906		seq_puts(f, "lock:\t");
2907		lock_get_status(f, fl, *id, "");
2908	}
2909}
2910
2911void show_fd_locks(struct seq_file *f,
2912		  struct file *filp, struct files_struct *files)
2913{
2914	struct inode *inode = locks_inode(filp);
2915	struct file_lock_context *ctx;
2916	int id = 0;
2917
2918	ctx = smp_load_acquire(&inode->i_flctx);
2919	if (!ctx)
2920		return;
2921
2922	spin_lock(&ctx->flc_lock);
2923	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2924	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2925	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2926	spin_unlock(&ctx->flc_lock);
2927}
2928
2929static void *locks_start(struct seq_file *f, loff_t *pos)
2930	__acquires(&blocked_lock_lock)
2931{
2932	struct locks_iterator *iter = f->private;
2933
2934	iter->li_pos = *pos + 1;
2935	percpu_down_write(&file_rwsem);
2936	spin_lock(&blocked_lock_lock);
2937	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2938}
2939
2940static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2941{
2942	struct locks_iterator *iter = f->private;
2943
2944	++iter->li_pos;
2945	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2946}
2947
2948static void locks_stop(struct seq_file *f, void *v)
2949	__releases(&blocked_lock_lock)
2950{
2951	spin_unlock(&blocked_lock_lock);
2952	percpu_up_write(&file_rwsem);
2953}
2954
2955static const struct seq_operations locks_seq_operations = {
2956	.start	= locks_start,
2957	.next	= locks_next,
2958	.stop	= locks_stop,
2959	.show	= locks_show,
2960};
2961
2962static int __init proc_locks_init(void)
2963{
2964	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2965			sizeof(struct locks_iterator), NULL);
2966	return 0;
2967}
2968fs_initcall(proc_locks_init);
2969#endif
2970
2971static int __init filelock_init(void)
2972{
2973	int i;
2974
2975	flctx_cache = kmem_cache_create("file_lock_ctx",
2976			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2977
2978	filelock_cache = kmem_cache_create("file_lock_cache",
2979			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2980
2981	for_each_possible_cpu(i) {
2982		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2983
2984		spin_lock_init(&fll->lock);
2985		INIT_HLIST_HEAD(&fll->hlist);
2986	}
2987
2988	lease_notifier_chain_init();
2989	return 0;
2990}
2991core_initcall(filelock_init);