Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Simple synchronous userspace interface to SPI devices
4 *
5 * Copyright (C) 2006 SWAPP
6 * Andrea Paterniani <a.paterniani@swapp-eng.it>
7 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 */
9
10#include <linux/init.h>
11#include <linux/ioctl.h>
12#include <linux/fs.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/list.h>
16#include <linux/errno.h>
17#include <linux/mod_devicetable.h>
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/property.h>
21#include <linux/slab.h>
22#include <linux/compat.h>
23
24#include <linux/spi/spi.h>
25#include <linux/spi/spidev.h>
26
27#include <linux/uaccess.h>
28
29
30/*
31 * This supports access to SPI devices using normal userspace I/O calls.
32 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
33 * and often mask message boundaries, full SPI support requires full duplex
34 * transfers. There are several kinds of internal message boundaries to
35 * handle chipselect management and other protocol options.
36 *
37 * SPI has a character major number assigned. We allocate minor numbers
38 * dynamically using a bitmask. You must use hotplug tools, such as udev
39 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
40 * nodes, since there is no fixed association of minor numbers with any
41 * particular SPI bus or device.
42 */
43#define SPIDEV_MAJOR 153 /* assigned */
44#define N_SPI_MINORS 32 /* ... up to 256 */
45
46static DECLARE_BITMAP(minors, N_SPI_MINORS);
47
48static_assert(N_SPI_MINORS > 0 && N_SPI_MINORS <= 256);
49
50/* Bit masks for spi_device.mode management. Note that incorrect
51 * settings for some settings can cause *lots* of trouble for other
52 * devices on a shared bus:
53 *
54 * - CS_HIGH ... this device will be active when it shouldn't be
55 * - 3WIRE ... when active, it won't behave as it should
56 * - NO_CS ... there will be no explicit message boundaries; this
57 * is completely incompatible with the shared bus model
58 * - READY ... transfers may proceed when they shouldn't.
59 *
60 * REVISIT should changing those flags be privileged?
61 */
62#define SPI_MODE_MASK (SPI_MODE_X_MASK | SPI_CS_HIGH \
63 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
64 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
65 | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL \
66 | SPI_RX_QUAD | SPI_RX_OCTAL \
67 | SPI_RX_CPHA_FLIP | SPI_3WIRE_HIZ \
68 | SPI_MOSI_IDLE_LOW)
69
70struct spidev_data {
71 dev_t devt;
72 struct mutex spi_lock;
73 struct spi_device *spi;
74 struct list_head device_entry;
75
76 /* TX/RX buffers are NULL unless this device is open (users > 0) */
77 struct mutex buf_lock;
78 unsigned users;
79 u8 *tx_buffer;
80 u8 *rx_buffer;
81 u32 speed_hz;
82};
83
84static LIST_HEAD(device_list);
85static DEFINE_MUTEX(device_list_lock);
86
87static unsigned bufsiz = 4096;
88module_param(bufsiz, uint, S_IRUGO);
89MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
90
91/*-------------------------------------------------------------------------*/
92
93static ssize_t
94spidev_sync_unlocked(struct spi_device *spi, struct spi_message *message)
95{
96 ssize_t status;
97
98 status = spi_sync(spi, message);
99 if (status == 0)
100 status = message->actual_length;
101
102 return status;
103}
104
105static ssize_t
106spidev_sync(struct spidev_data *spidev, struct spi_message *message)
107{
108 ssize_t status;
109 struct spi_device *spi;
110
111 mutex_lock(&spidev->spi_lock);
112 spi = spidev->spi;
113
114 if (spi == NULL)
115 status = -ESHUTDOWN;
116 else
117 status = spidev_sync_unlocked(spi, message);
118
119 mutex_unlock(&spidev->spi_lock);
120 return status;
121}
122
123static inline ssize_t
124spidev_sync_write(struct spidev_data *spidev, size_t len)
125{
126 struct spi_transfer t = {
127 .tx_buf = spidev->tx_buffer,
128 .len = len,
129 .speed_hz = spidev->speed_hz,
130 };
131 struct spi_message m;
132
133 spi_message_init(&m);
134 spi_message_add_tail(&t, &m);
135 return spidev_sync(spidev, &m);
136}
137
138static inline ssize_t
139spidev_sync_read(struct spidev_data *spidev, size_t len)
140{
141 struct spi_transfer t = {
142 .rx_buf = spidev->rx_buffer,
143 .len = len,
144 .speed_hz = spidev->speed_hz,
145 };
146 struct spi_message m;
147
148 spi_message_init(&m);
149 spi_message_add_tail(&t, &m);
150 return spidev_sync(spidev, &m);
151}
152
153/*-------------------------------------------------------------------------*/
154
155/* Read-only message with current device setup */
156static ssize_t
157spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
158{
159 struct spidev_data *spidev;
160 ssize_t status;
161
162 /* chipselect only toggles at start or end of operation */
163 if (count > bufsiz)
164 return -EMSGSIZE;
165
166 spidev = filp->private_data;
167
168 mutex_lock(&spidev->buf_lock);
169 status = spidev_sync_read(spidev, count);
170 if (status > 0) {
171 unsigned long missing;
172
173 missing = copy_to_user(buf, spidev->rx_buffer, status);
174 if (missing == status)
175 status = -EFAULT;
176 else
177 status = status - missing;
178 }
179 mutex_unlock(&spidev->buf_lock);
180
181 return status;
182}
183
184/* Write-only message with current device setup */
185static ssize_t
186spidev_write(struct file *filp, const char __user *buf,
187 size_t count, loff_t *f_pos)
188{
189 struct spidev_data *spidev;
190 ssize_t status;
191 unsigned long missing;
192
193 /* chipselect only toggles at start or end of operation */
194 if (count > bufsiz)
195 return -EMSGSIZE;
196
197 spidev = filp->private_data;
198
199 mutex_lock(&spidev->buf_lock);
200 missing = copy_from_user(spidev->tx_buffer, buf, count);
201 if (missing == 0)
202 status = spidev_sync_write(spidev, count);
203 else
204 status = -EFAULT;
205 mutex_unlock(&spidev->buf_lock);
206
207 return status;
208}
209
210static int spidev_message(struct spidev_data *spidev,
211 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
212{
213 struct spi_message msg;
214 struct spi_transfer *k_xfers;
215 struct spi_transfer *k_tmp;
216 struct spi_ioc_transfer *u_tmp;
217 unsigned n, total, tx_total, rx_total;
218 u8 *tx_buf, *rx_buf;
219 int status = -EFAULT;
220
221 spi_message_init(&msg);
222 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
223 if (k_xfers == NULL)
224 return -ENOMEM;
225
226 /* Construct spi_message, copying any tx data to bounce buffer.
227 * We walk the array of user-provided transfers, using each one
228 * to initialize a kernel version of the same transfer.
229 */
230 tx_buf = spidev->tx_buffer;
231 rx_buf = spidev->rx_buffer;
232 total = 0;
233 tx_total = 0;
234 rx_total = 0;
235 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
236 n;
237 n--, k_tmp++, u_tmp++) {
238 /* Ensure that also following allocations from rx_buf/tx_buf will meet
239 * DMA alignment requirements.
240 */
241 unsigned int len_aligned = ALIGN(u_tmp->len, ARCH_DMA_MINALIGN);
242
243 k_tmp->len = u_tmp->len;
244
245 total += k_tmp->len;
246 /* Since the function returns the total length of transfers
247 * on success, restrict the total to positive int values to
248 * avoid the return value looking like an error. Also check
249 * each transfer length to avoid arithmetic overflow.
250 */
251 if (total > INT_MAX || k_tmp->len > INT_MAX) {
252 status = -EMSGSIZE;
253 goto done;
254 }
255
256 if (u_tmp->rx_buf) {
257 /* this transfer needs space in RX bounce buffer */
258 rx_total += len_aligned;
259 if (rx_total > bufsiz) {
260 status = -EMSGSIZE;
261 goto done;
262 }
263 k_tmp->rx_buf = rx_buf;
264 rx_buf += len_aligned;
265 }
266 if (u_tmp->tx_buf) {
267 /* this transfer needs space in TX bounce buffer */
268 tx_total += len_aligned;
269 if (tx_total > bufsiz) {
270 status = -EMSGSIZE;
271 goto done;
272 }
273 k_tmp->tx_buf = tx_buf;
274 if (copy_from_user(tx_buf, (const u8 __user *)
275 (uintptr_t) u_tmp->tx_buf,
276 u_tmp->len))
277 goto done;
278 tx_buf += len_aligned;
279 }
280
281 k_tmp->cs_change = !!u_tmp->cs_change;
282 k_tmp->tx_nbits = u_tmp->tx_nbits;
283 k_tmp->rx_nbits = u_tmp->rx_nbits;
284 k_tmp->bits_per_word = u_tmp->bits_per_word;
285 k_tmp->delay.value = u_tmp->delay_usecs;
286 k_tmp->delay.unit = SPI_DELAY_UNIT_USECS;
287 k_tmp->speed_hz = u_tmp->speed_hz;
288 k_tmp->word_delay.value = u_tmp->word_delay_usecs;
289 k_tmp->word_delay.unit = SPI_DELAY_UNIT_USECS;
290 if (!k_tmp->speed_hz)
291 k_tmp->speed_hz = spidev->speed_hz;
292#ifdef VERBOSE
293 dev_dbg(&spidev->spi->dev,
294 " xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
295 k_tmp->len,
296 k_tmp->rx_buf ? "rx " : "",
297 k_tmp->tx_buf ? "tx " : "",
298 k_tmp->cs_change ? "cs " : "",
299 k_tmp->bits_per_word ? : spidev->spi->bits_per_word,
300 k_tmp->delay.value,
301 k_tmp->word_delay.value,
302 k_tmp->speed_hz ? : spidev->spi->max_speed_hz);
303#endif
304 spi_message_add_tail(k_tmp, &msg);
305 }
306
307 status = spidev_sync_unlocked(spidev->spi, &msg);
308 if (status < 0)
309 goto done;
310
311 /* copy any rx data out of bounce buffer */
312 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
313 n;
314 n--, k_tmp++, u_tmp++) {
315 if (u_tmp->rx_buf) {
316 if (copy_to_user((u8 __user *)
317 (uintptr_t) u_tmp->rx_buf, k_tmp->rx_buf,
318 u_tmp->len)) {
319 status = -EFAULT;
320 goto done;
321 }
322 }
323 }
324 status = total;
325
326done:
327 kfree(k_xfers);
328 return status;
329}
330
331static struct spi_ioc_transfer *
332spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
333 unsigned *n_ioc)
334{
335 u32 tmp;
336
337 /* Check type, command number and direction */
338 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
339 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
340 || _IOC_DIR(cmd) != _IOC_WRITE)
341 return ERR_PTR(-ENOTTY);
342
343 tmp = _IOC_SIZE(cmd);
344 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
345 return ERR_PTR(-EINVAL);
346 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
347 if (*n_ioc == 0)
348 return NULL;
349
350 /* copy into scratch area */
351 return memdup_user(u_ioc, tmp);
352}
353
354static long
355spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
356{
357 int retval = 0;
358 struct spidev_data *spidev;
359 struct spi_device *spi;
360 struct spi_controller *ctlr;
361 u32 tmp;
362 unsigned n_ioc;
363 struct spi_ioc_transfer *ioc;
364
365 /* Check type and command number */
366 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
367 return -ENOTTY;
368
369 /* guard against device removal before, or while,
370 * we issue this ioctl.
371 */
372 spidev = filp->private_data;
373 mutex_lock(&spidev->spi_lock);
374 spi = spi_dev_get(spidev->spi);
375 if (spi == NULL) {
376 mutex_unlock(&spidev->spi_lock);
377 return -ESHUTDOWN;
378 }
379
380 ctlr = spi->controller;
381
382 /* use the buffer lock here for triple duty:
383 * - prevent I/O (from us) so calling spi_setup() is safe;
384 * - prevent concurrent SPI_IOC_WR_* from morphing
385 * data fields while SPI_IOC_RD_* reads them;
386 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
387 */
388 mutex_lock(&spidev->buf_lock);
389
390 switch (cmd) {
391 /* read requests */
392 case SPI_IOC_RD_MODE:
393 case SPI_IOC_RD_MODE32:
394 tmp = spi->mode & SPI_MODE_MASK;
395
396 if (ctlr->use_gpio_descriptors && spi_get_csgpiod(spi, 0))
397 tmp &= ~SPI_CS_HIGH;
398
399 if (cmd == SPI_IOC_RD_MODE)
400 retval = put_user(tmp, (__u8 __user *)arg);
401 else
402 retval = put_user(tmp, (__u32 __user *)arg);
403 break;
404 case SPI_IOC_RD_LSB_FIRST:
405 retval = put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
406 (__u8 __user *)arg);
407 break;
408 case SPI_IOC_RD_BITS_PER_WORD:
409 retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
410 break;
411 case SPI_IOC_RD_MAX_SPEED_HZ:
412 retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
413 break;
414
415 /* write requests */
416 case SPI_IOC_WR_MODE:
417 case SPI_IOC_WR_MODE32:
418 if (cmd == SPI_IOC_WR_MODE)
419 retval = get_user(tmp, (u8 __user *)arg);
420 else
421 retval = get_user(tmp, (u32 __user *)arg);
422 if (retval == 0) {
423 u32 save = spi->mode;
424
425 if (tmp & ~SPI_MODE_MASK) {
426 retval = -EINVAL;
427 break;
428 }
429
430 if (ctlr->use_gpio_descriptors && spi_get_csgpiod(spi, 0))
431 tmp |= SPI_CS_HIGH;
432
433 tmp |= spi->mode & ~SPI_MODE_MASK;
434 spi->mode = tmp & SPI_MODE_USER_MASK;
435 retval = spi_setup(spi);
436 if (retval < 0)
437 spi->mode = save;
438 else
439 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
440 }
441 break;
442 case SPI_IOC_WR_LSB_FIRST:
443 retval = get_user(tmp, (__u8 __user *)arg);
444 if (retval == 0) {
445 u32 save = spi->mode;
446
447 if (tmp)
448 spi->mode |= SPI_LSB_FIRST;
449 else
450 spi->mode &= ~SPI_LSB_FIRST;
451 retval = spi_setup(spi);
452 if (retval < 0)
453 spi->mode = save;
454 else
455 dev_dbg(&spi->dev, "%csb first\n",
456 tmp ? 'l' : 'm');
457 }
458 break;
459 case SPI_IOC_WR_BITS_PER_WORD:
460 retval = get_user(tmp, (__u8 __user *)arg);
461 if (retval == 0) {
462 u8 save = spi->bits_per_word;
463
464 spi->bits_per_word = tmp;
465 retval = spi_setup(spi);
466 if (retval < 0)
467 spi->bits_per_word = save;
468 else
469 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
470 }
471 break;
472 case SPI_IOC_WR_MAX_SPEED_HZ: {
473 u32 save;
474
475 retval = get_user(tmp, (__u32 __user *)arg);
476 if (retval)
477 break;
478 if (tmp == 0) {
479 retval = -EINVAL;
480 break;
481 }
482
483 save = spi->max_speed_hz;
484
485 spi->max_speed_hz = tmp;
486 retval = spi_setup(spi);
487 if (retval == 0) {
488 spidev->speed_hz = tmp;
489 dev_dbg(&spi->dev, "%d Hz (max)\n", spidev->speed_hz);
490 }
491
492 spi->max_speed_hz = save;
493 break;
494 }
495 default:
496 /* segmented and/or full-duplex I/O request */
497 /* Check message and copy into scratch area */
498 ioc = spidev_get_ioc_message(cmd,
499 (struct spi_ioc_transfer __user *)arg, &n_ioc);
500 if (IS_ERR(ioc)) {
501 retval = PTR_ERR(ioc);
502 break;
503 }
504 if (!ioc)
505 break; /* n_ioc is also 0 */
506
507 /* translate to spi_message, execute */
508 retval = spidev_message(spidev, ioc, n_ioc);
509 kfree(ioc);
510 break;
511 }
512
513 mutex_unlock(&spidev->buf_lock);
514 spi_dev_put(spi);
515 mutex_unlock(&spidev->spi_lock);
516 return retval;
517}
518
519#ifdef CONFIG_COMPAT
520static long
521spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
522 unsigned long arg)
523{
524 struct spi_ioc_transfer __user *u_ioc;
525 int retval = 0;
526 struct spidev_data *spidev;
527 struct spi_device *spi;
528 unsigned n_ioc, n;
529 struct spi_ioc_transfer *ioc;
530
531 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
532
533 /* guard against device removal before, or while,
534 * we issue this ioctl.
535 */
536 spidev = filp->private_data;
537 mutex_lock(&spidev->spi_lock);
538 spi = spi_dev_get(spidev->spi);
539 if (spi == NULL) {
540 mutex_unlock(&spidev->spi_lock);
541 return -ESHUTDOWN;
542 }
543
544 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
545 mutex_lock(&spidev->buf_lock);
546
547 /* Check message and copy into scratch area */
548 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
549 if (IS_ERR(ioc)) {
550 retval = PTR_ERR(ioc);
551 goto done;
552 }
553 if (!ioc)
554 goto done; /* n_ioc is also 0 */
555
556 /* Convert buffer pointers */
557 for (n = 0; n < n_ioc; n++) {
558 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
559 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
560 }
561
562 /* translate to spi_message, execute */
563 retval = spidev_message(spidev, ioc, n_ioc);
564 kfree(ioc);
565
566done:
567 mutex_unlock(&spidev->buf_lock);
568 spi_dev_put(spi);
569 mutex_unlock(&spidev->spi_lock);
570 return retval;
571}
572
573static long
574spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
575{
576 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
577 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
578 && _IOC_DIR(cmd) == _IOC_WRITE)
579 return spidev_compat_ioc_message(filp, cmd, arg);
580
581 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
582}
583#else
584#define spidev_compat_ioctl NULL
585#endif /* CONFIG_COMPAT */
586
587static int spidev_open(struct inode *inode, struct file *filp)
588{
589 struct spidev_data *spidev = NULL, *iter;
590 int status = -ENXIO;
591
592 mutex_lock(&device_list_lock);
593
594 list_for_each_entry(iter, &device_list, device_entry) {
595 if (iter->devt == inode->i_rdev) {
596 status = 0;
597 spidev = iter;
598 break;
599 }
600 }
601
602 if (!spidev) {
603 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
604 goto err_find_dev;
605 }
606
607 if (!spidev->tx_buffer) {
608 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
609 if (!spidev->tx_buffer) {
610 status = -ENOMEM;
611 goto err_find_dev;
612 }
613 }
614
615 if (!spidev->rx_buffer) {
616 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
617 if (!spidev->rx_buffer) {
618 status = -ENOMEM;
619 goto err_alloc_rx_buf;
620 }
621 }
622
623 spidev->users++;
624 filp->private_data = spidev;
625 stream_open(inode, filp);
626
627 mutex_unlock(&device_list_lock);
628 return 0;
629
630err_alloc_rx_buf:
631 kfree(spidev->tx_buffer);
632 spidev->tx_buffer = NULL;
633err_find_dev:
634 mutex_unlock(&device_list_lock);
635 return status;
636}
637
638static int spidev_release(struct inode *inode, struct file *filp)
639{
640 struct spidev_data *spidev;
641 int dofree;
642
643 mutex_lock(&device_list_lock);
644 spidev = filp->private_data;
645 filp->private_data = NULL;
646
647 mutex_lock(&spidev->spi_lock);
648 /* ... after we unbound from the underlying device? */
649 dofree = (spidev->spi == NULL);
650 mutex_unlock(&spidev->spi_lock);
651
652 /* last close? */
653 spidev->users--;
654 if (!spidev->users) {
655
656 kfree(spidev->tx_buffer);
657 spidev->tx_buffer = NULL;
658
659 kfree(spidev->rx_buffer);
660 spidev->rx_buffer = NULL;
661
662 if (dofree)
663 kfree(spidev);
664 else
665 spidev->speed_hz = spidev->spi->max_speed_hz;
666 }
667#ifdef CONFIG_SPI_SLAVE
668 if (!dofree)
669 spi_slave_abort(spidev->spi);
670#endif
671 mutex_unlock(&device_list_lock);
672
673 return 0;
674}
675
676static const struct file_operations spidev_fops = {
677 .owner = THIS_MODULE,
678 /* REVISIT switch to aio primitives, so that userspace
679 * gets more complete API coverage. It'll simplify things
680 * too, except for the locking.
681 */
682 .write = spidev_write,
683 .read = spidev_read,
684 .unlocked_ioctl = spidev_ioctl,
685 .compat_ioctl = spidev_compat_ioctl,
686 .open = spidev_open,
687 .release = spidev_release,
688 .llseek = no_llseek,
689};
690
691/*-------------------------------------------------------------------------*/
692
693/* The main reason to have this class is to make mdev/udev create the
694 * /dev/spidevB.C character device nodes exposing our userspace API.
695 * It also simplifies memory management.
696 */
697
698static const struct class spidev_class = {
699 .name = "spidev",
700};
701
702static const struct spi_device_id spidev_spi_ids[] = {
703 { .name = "dh2228fv" },
704 { .name = "ltc2488" },
705 { .name = "sx1301" },
706 { .name = "bk4" },
707 { .name = "dhcom-board" },
708 { .name = "m53cpld" },
709 { .name = "spi-petra" },
710 { .name = "spi-authenta" },
711 { .name = "em3581" },
712 { .name = "si3210" },
713 {},
714};
715MODULE_DEVICE_TABLE(spi, spidev_spi_ids);
716
717/*
718 * spidev should never be referenced in DT without a specific compatible string,
719 * it is a Linux implementation thing rather than a description of the hardware.
720 */
721static int spidev_of_check(struct device *dev)
722{
723 if (device_property_match_string(dev, "compatible", "spidev") < 0)
724 return 0;
725
726 dev_err(dev, "spidev listed directly in DT is not supported\n");
727 return -EINVAL;
728}
729
730static const struct of_device_id spidev_dt_ids[] = {
731 { .compatible = "cisco,spi-petra", .data = &spidev_of_check },
732 { .compatible = "dh,dhcom-board", .data = &spidev_of_check },
733 { .compatible = "lineartechnology,ltc2488", .data = &spidev_of_check },
734 { .compatible = "lwn,bk4", .data = &spidev_of_check },
735 { .compatible = "menlo,m53cpld", .data = &spidev_of_check },
736 { .compatible = "micron,spi-authenta", .data = &spidev_of_check },
737 { .compatible = "rohm,dh2228fv", .data = &spidev_of_check },
738 { .compatible = "semtech,sx1301", .data = &spidev_of_check },
739 { .compatible = "silabs,em3581", .data = &spidev_of_check },
740 { .compatible = "silabs,si3210", .data = &spidev_of_check },
741 {},
742};
743MODULE_DEVICE_TABLE(of, spidev_dt_ids);
744
745/* Dummy SPI devices not to be used in production systems */
746static int spidev_acpi_check(struct device *dev)
747{
748 dev_warn(dev, "do not use this driver in production systems!\n");
749 return 0;
750}
751
752static const struct acpi_device_id spidev_acpi_ids[] = {
753 /*
754 * The ACPI SPT000* devices are only meant for development and
755 * testing. Systems used in production should have a proper ACPI
756 * description of the connected peripheral and they should also use
757 * a proper driver instead of poking directly to the SPI bus.
758 */
759 { "SPT0001", (kernel_ulong_t)&spidev_acpi_check },
760 { "SPT0002", (kernel_ulong_t)&spidev_acpi_check },
761 { "SPT0003", (kernel_ulong_t)&spidev_acpi_check },
762 {},
763};
764MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
765
766/*-------------------------------------------------------------------------*/
767
768static int spidev_probe(struct spi_device *spi)
769{
770 int (*match)(struct device *dev);
771 struct spidev_data *spidev;
772 int status;
773 unsigned long minor;
774
775 match = device_get_match_data(&spi->dev);
776 if (match) {
777 status = match(&spi->dev);
778 if (status)
779 return status;
780 }
781
782 /* Allocate driver data */
783 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
784 if (!spidev)
785 return -ENOMEM;
786
787 /* Initialize the driver data */
788 spidev->spi = spi;
789 mutex_init(&spidev->spi_lock);
790 mutex_init(&spidev->buf_lock);
791
792 INIT_LIST_HEAD(&spidev->device_entry);
793
794 /* If we can allocate a minor number, hook up this device.
795 * Reusing minors is fine so long as udev or mdev is working.
796 */
797 mutex_lock(&device_list_lock);
798 minor = find_first_zero_bit(minors, N_SPI_MINORS);
799 if (minor < N_SPI_MINORS) {
800 struct device *dev;
801
802 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
803 dev = device_create(&spidev_class, &spi->dev, spidev->devt,
804 spidev, "spidev%d.%d",
805 spi->master->bus_num, spi_get_chipselect(spi, 0));
806 status = PTR_ERR_OR_ZERO(dev);
807 } else {
808 dev_dbg(&spi->dev, "no minor number available!\n");
809 status = -ENODEV;
810 }
811 if (status == 0) {
812 set_bit(minor, minors);
813 list_add(&spidev->device_entry, &device_list);
814 }
815 mutex_unlock(&device_list_lock);
816
817 spidev->speed_hz = spi->max_speed_hz;
818
819 if (status == 0)
820 spi_set_drvdata(spi, spidev);
821 else
822 kfree(spidev);
823
824 return status;
825}
826
827static void spidev_remove(struct spi_device *spi)
828{
829 struct spidev_data *spidev = spi_get_drvdata(spi);
830
831 /* prevent new opens */
832 mutex_lock(&device_list_lock);
833 /* make sure ops on existing fds can abort cleanly */
834 mutex_lock(&spidev->spi_lock);
835 spidev->spi = NULL;
836 mutex_unlock(&spidev->spi_lock);
837
838 list_del(&spidev->device_entry);
839 device_destroy(&spidev_class, spidev->devt);
840 clear_bit(MINOR(spidev->devt), minors);
841 if (spidev->users == 0)
842 kfree(spidev);
843 mutex_unlock(&device_list_lock);
844}
845
846static struct spi_driver spidev_spi_driver = {
847 .driver = {
848 .name = "spidev",
849 .of_match_table = spidev_dt_ids,
850 .acpi_match_table = spidev_acpi_ids,
851 },
852 .probe = spidev_probe,
853 .remove = spidev_remove,
854 .id_table = spidev_spi_ids,
855
856 /* NOTE: suspend/resume methods are not necessary here.
857 * We don't do anything except pass the requests to/from
858 * the underlying controller. The refrigerator handles
859 * most issues; the controller driver handles the rest.
860 */
861};
862
863/*-------------------------------------------------------------------------*/
864
865static int __init spidev_init(void)
866{
867 int status;
868
869 /* Claim our 256 reserved device numbers. Then register a class
870 * that will key udev/mdev to add/remove /dev nodes. Last, register
871 * the driver which manages those device numbers.
872 */
873 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
874 if (status < 0)
875 return status;
876
877 status = class_register(&spidev_class);
878 if (status) {
879 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
880 return status;
881 }
882
883 status = spi_register_driver(&spidev_spi_driver);
884 if (status < 0) {
885 class_unregister(&spidev_class);
886 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
887 }
888 return status;
889}
890module_init(spidev_init);
891
892static void __exit spidev_exit(void)
893{
894 spi_unregister_driver(&spidev_spi_driver);
895 class_unregister(&spidev_class);
896 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
897}
898module_exit(spidev_exit);
899
900MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
901MODULE_DESCRIPTION("User mode SPI device interface");
902MODULE_LICENSE("GPL");
903MODULE_ALIAS("spi:spidev");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Simple synchronous userspace interface to SPI devices
4 *
5 * Copyright (C) 2006 SWAPP
6 * Andrea Paterniani <a.paterniani@swapp-eng.it>
7 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 */
9
10#include <linux/init.h>
11#include <linux/module.h>
12#include <linux/ioctl.h>
13#include <linux/fs.h>
14#include <linux/device.h>
15#include <linux/err.h>
16#include <linux/list.h>
17#include <linux/errno.h>
18#include <linux/mutex.h>
19#include <linux/slab.h>
20#include <linux/compat.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/acpi.h>
24
25#include <linux/spi/spi.h>
26#include <linux/spi/spidev.h>
27
28#include <linux/uaccess.h>
29
30
31/*
32 * This supports access to SPI devices using normal userspace I/O calls.
33 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
34 * and often mask message boundaries, full SPI support requires full duplex
35 * transfers. There are several kinds of internal message boundaries to
36 * handle chipselect management and other protocol options.
37 *
38 * SPI has a character major number assigned. We allocate minor numbers
39 * dynamically using a bitmask. You must use hotplug tools, such as udev
40 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
41 * nodes, since there is no fixed association of minor numbers with any
42 * particular SPI bus or device.
43 */
44#define SPIDEV_MAJOR 153 /* assigned */
45#define N_SPI_MINORS 32 /* ... up to 256 */
46
47static DECLARE_BITMAP(minors, N_SPI_MINORS);
48
49
50/* Bit masks for spi_device.mode management. Note that incorrect
51 * settings for some settings can cause *lots* of trouble for other
52 * devices on a shared bus:
53 *
54 * - CS_HIGH ... this device will be active when it shouldn't be
55 * - 3WIRE ... when active, it won't behave as it should
56 * - NO_CS ... there will be no explicit message boundaries; this
57 * is completely incompatible with the shared bus model
58 * - READY ... transfers may proceed when they shouldn't.
59 *
60 * REVISIT should changing those flags be privileged?
61 */
62#define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
63 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
64 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
65 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
66
67struct spidev_data {
68 dev_t devt;
69 spinlock_t spi_lock;
70 struct spi_device *spi;
71 struct list_head device_entry;
72
73 /* TX/RX buffers are NULL unless this device is open (users > 0) */
74 struct mutex buf_lock;
75 unsigned users;
76 u8 *tx_buffer;
77 u8 *rx_buffer;
78 u32 speed_hz;
79};
80
81static LIST_HEAD(device_list);
82static DEFINE_MUTEX(device_list_lock);
83
84static unsigned bufsiz = 4096;
85module_param(bufsiz, uint, S_IRUGO);
86MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
87
88/*-------------------------------------------------------------------------*/
89
90static ssize_t
91spidev_sync(struct spidev_data *spidev, struct spi_message *message)
92{
93 int status;
94 struct spi_device *spi;
95
96 spin_lock_irq(&spidev->spi_lock);
97 spi = spidev->spi;
98 spin_unlock_irq(&spidev->spi_lock);
99
100 if (spi == NULL)
101 status = -ESHUTDOWN;
102 else
103 status = spi_sync(spi, message);
104
105 if (status == 0)
106 status = message->actual_length;
107
108 return status;
109}
110
111static inline ssize_t
112spidev_sync_write(struct spidev_data *spidev, size_t len)
113{
114 struct spi_transfer t = {
115 .tx_buf = spidev->tx_buffer,
116 .len = len,
117 .speed_hz = spidev->speed_hz,
118 };
119 struct spi_message m;
120
121 spi_message_init(&m);
122 spi_message_add_tail(&t, &m);
123 return spidev_sync(spidev, &m);
124}
125
126static inline ssize_t
127spidev_sync_read(struct spidev_data *spidev, size_t len)
128{
129 struct spi_transfer t = {
130 .rx_buf = spidev->rx_buffer,
131 .len = len,
132 .speed_hz = spidev->speed_hz,
133 };
134 struct spi_message m;
135
136 spi_message_init(&m);
137 spi_message_add_tail(&t, &m);
138 return spidev_sync(spidev, &m);
139}
140
141/*-------------------------------------------------------------------------*/
142
143/* Read-only message with current device setup */
144static ssize_t
145spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
146{
147 struct spidev_data *spidev;
148 ssize_t status = 0;
149
150 /* chipselect only toggles at start or end of operation */
151 if (count > bufsiz)
152 return -EMSGSIZE;
153
154 spidev = filp->private_data;
155
156 mutex_lock(&spidev->buf_lock);
157 status = spidev_sync_read(spidev, count);
158 if (status > 0) {
159 unsigned long missing;
160
161 missing = copy_to_user(buf, spidev->rx_buffer, status);
162 if (missing == status)
163 status = -EFAULT;
164 else
165 status = status - missing;
166 }
167 mutex_unlock(&spidev->buf_lock);
168
169 return status;
170}
171
172/* Write-only message with current device setup */
173static ssize_t
174spidev_write(struct file *filp, const char __user *buf,
175 size_t count, loff_t *f_pos)
176{
177 struct spidev_data *spidev;
178 ssize_t status = 0;
179 unsigned long missing;
180
181 /* chipselect only toggles at start or end of operation */
182 if (count > bufsiz)
183 return -EMSGSIZE;
184
185 spidev = filp->private_data;
186
187 mutex_lock(&spidev->buf_lock);
188 missing = copy_from_user(spidev->tx_buffer, buf, count);
189 if (missing == 0)
190 status = spidev_sync_write(spidev, count);
191 else
192 status = -EFAULT;
193 mutex_unlock(&spidev->buf_lock);
194
195 return status;
196}
197
198static int spidev_message(struct spidev_data *spidev,
199 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
200{
201 struct spi_message msg;
202 struct spi_transfer *k_xfers;
203 struct spi_transfer *k_tmp;
204 struct spi_ioc_transfer *u_tmp;
205 unsigned n, total, tx_total, rx_total;
206 u8 *tx_buf, *rx_buf;
207 int status = -EFAULT;
208
209 spi_message_init(&msg);
210 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
211 if (k_xfers == NULL)
212 return -ENOMEM;
213
214 /* Construct spi_message, copying any tx data to bounce buffer.
215 * We walk the array of user-provided transfers, using each one
216 * to initialize a kernel version of the same transfer.
217 */
218 tx_buf = spidev->tx_buffer;
219 rx_buf = spidev->rx_buffer;
220 total = 0;
221 tx_total = 0;
222 rx_total = 0;
223 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
224 n;
225 n--, k_tmp++, u_tmp++) {
226 k_tmp->len = u_tmp->len;
227
228 total += k_tmp->len;
229 /* Since the function returns the total length of transfers
230 * on success, restrict the total to positive int values to
231 * avoid the return value looking like an error. Also check
232 * each transfer length to avoid arithmetic overflow.
233 */
234 if (total > INT_MAX || k_tmp->len > INT_MAX) {
235 status = -EMSGSIZE;
236 goto done;
237 }
238
239 if (u_tmp->rx_buf) {
240 /* this transfer needs space in RX bounce buffer */
241 rx_total += k_tmp->len;
242 if (rx_total > bufsiz) {
243 status = -EMSGSIZE;
244 goto done;
245 }
246 k_tmp->rx_buf = rx_buf;
247 rx_buf += k_tmp->len;
248 }
249 if (u_tmp->tx_buf) {
250 /* this transfer needs space in TX bounce buffer */
251 tx_total += k_tmp->len;
252 if (tx_total > bufsiz) {
253 status = -EMSGSIZE;
254 goto done;
255 }
256 k_tmp->tx_buf = tx_buf;
257 if (copy_from_user(tx_buf, (const u8 __user *)
258 (uintptr_t) u_tmp->tx_buf,
259 u_tmp->len))
260 goto done;
261 tx_buf += k_tmp->len;
262 }
263
264 k_tmp->cs_change = !!u_tmp->cs_change;
265 k_tmp->tx_nbits = u_tmp->tx_nbits;
266 k_tmp->rx_nbits = u_tmp->rx_nbits;
267 k_tmp->bits_per_word = u_tmp->bits_per_word;
268 k_tmp->delay_usecs = u_tmp->delay_usecs;
269 k_tmp->speed_hz = u_tmp->speed_hz;
270 k_tmp->word_delay_usecs = u_tmp->word_delay_usecs;
271 if (!k_tmp->speed_hz)
272 k_tmp->speed_hz = spidev->speed_hz;
273#ifdef VERBOSE
274 dev_dbg(&spidev->spi->dev,
275 " xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
276 u_tmp->len,
277 u_tmp->rx_buf ? "rx " : "",
278 u_tmp->tx_buf ? "tx " : "",
279 u_tmp->cs_change ? "cs " : "",
280 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
281 u_tmp->delay_usecs,
282 u_tmp->word_delay_usecs,
283 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
284#endif
285 spi_message_add_tail(k_tmp, &msg);
286 }
287
288 status = spidev_sync(spidev, &msg);
289 if (status < 0)
290 goto done;
291
292 /* copy any rx data out of bounce buffer */
293 rx_buf = spidev->rx_buffer;
294 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
295 if (u_tmp->rx_buf) {
296 if (copy_to_user((u8 __user *)
297 (uintptr_t) u_tmp->rx_buf, rx_buf,
298 u_tmp->len)) {
299 status = -EFAULT;
300 goto done;
301 }
302 rx_buf += u_tmp->len;
303 }
304 }
305 status = total;
306
307done:
308 kfree(k_xfers);
309 return status;
310}
311
312static struct spi_ioc_transfer *
313spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
314 unsigned *n_ioc)
315{
316 u32 tmp;
317
318 /* Check type, command number and direction */
319 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
320 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
321 || _IOC_DIR(cmd) != _IOC_WRITE)
322 return ERR_PTR(-ENOTTY);
323
324 tmp = _IOC_SIZE(cmd);
325 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
326 return ERR_PTR(-EINVAL);
327 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
328 if (*n_ioc == 0)
329 return NULL;
330
331 /* copy into scratch area */
332 return memdup_user(u_ioc, tmp);
333}
334
335static long
336spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
337{
338 int retval = 0;
339 struct spidev_data *spidev;
340 struct spi_device *spi;
341 u32 tmp;
342 unsigned n_ioc;
343 struct spi_ioc_transfer *ioc;
344
345 /* Check type and command number */
346 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
347 return -ENOTTY;
348
349 /* guard against device removal before, or while,
350 * we issue this ioctl.
351 */
352 spidev = filp->private_data;
353 spin_lock_irq(&spidev->spi_lock);
354 spi = spi_dev_get(spidev->spi);
355 spin_unlock_irq(&spidev->spi_lock);
356
357 if (spi == NULL)
358 return -ESHUTDOWN;
359
360 /* use the buffer lock here for triple duty:
361 * - prevent I/O (from us) so calling spi_setup() is safe;
362 * - prevent concurrent SPI_IOC_WR_* from morphing
363 * data fields while SPI_IOC_RD_* reads them;
364 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
365 */
366 mutex_lock(&spidev->buf_lock);
367
368 switch (cmd) {
369 /* read requests */
370 case SPI_IOC_RD_MODE:
371 retval = put_user(spi->mode & SPI_MODE_MASK,
372 (__u8 __user *)arg);
373 break;
374 case SPI_IOC_RD_MODE32:
375 retval = put_user(spi->mode & SPI_MODE_MASK,
376 (__u32 __user *)arg);
377 break;
378 case SPI_IOC_RD_LSB_FIRST:
379 retval = put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
380 (__u8 __user *)arg);
381 break;
382 case SPI_IOC_RD_BITS_PER_WORD:
383 retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
384 break;
385 case SPI_IOC_RD_MAX_SPEED_HZ:
386 retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
387 break;
388
389 /* write requests */
390 case SPI_IOC_WR_MODE:
391 case SPI_IOC_WR_MODE32:
392 if (cmd == SPI_IOC_WR_MODE)
393 retval = get_user(tmp, (u8 __user *)arg);
394 else
395 retval = get_user(tmp, (u32 __user *)arg);
396 if (retval == 0) {
397 u32 save = spi->mode;
398
399 if (tmp & ~SPI_MODE_MASK) {
400 retval = -EINVAL;
401 break;
402 }
403
404 tmp |= spi->mode & ~SPI_MODE_MASK;
405 spi->mode = (u16)tmp;
406 retval = spi_setup(spi);
407 if (retval < 0)
408 spi->mode = save;
409 else
410 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
411 }
412 break;
413 case SPI_IOC_WR_LSB_FIRST:
414 retval = get_user(tmp, (__u8 __user *)arg);
415 if (retval == 0) {
416 u32 save = spi->mode;
417
418 if (tmp)
419 spi->mode |= SPI_LSB_FIRST;
420 else
421 spi->mode &= ~SPI_LSB_FIRST;
422 retval = spi_setup(spi);
423 if (retval < 0)
424 spi->mode = save;
425 else
426 dev_dbg(&spi->dev, "%csb first\n",
427 tmp ? 'l' : 'm');
428 }
429 break;
430 case SPI_IOC_WR_BITS_PER_WORD:
431 retval = get_user(tmp, (__u8 __user *)arg);
432 if (retval == 0) {
433 u8 save = spi->bits_per_word;
434
435 spi->bits_per_word = tmp;
436 retval = spi_setup(spi);
437 if (retval < 0)
438 spi->bits_per_word = save;
439 else
440 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
441 }
442 break;
443 case SPI_IOC_WR_MAX_SPEED_HZ:
444 retval = get_user(tmp, (__u32 __user *)arg);
445 if (retval == 0) {
446 u32 save = spi->max_speed_hz;
447
448 spi->max_speed_hz = tmp;
449 retval = spi_setup(spi);
450 if (retval >= 0)
451 spidev->speed_hz = tmp;
452 else
453 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
454 spi->max_speed_hz = save;
455 }
456 break;
457
458 default:
459 /* segmented and/or full-duplex I/O request */
460 /* Check message and copy into scratch area */
461 ioc = spidev_get_ioc_message(cmd,
462 (struct spi_ioc_transfer __user *)arg, &n_ioc);
463 if (IS_ERR(ioc)) {
464 retval = PTR_ERR(ioc);
465 break;
466 }
467 if (!ioc)
468 break; /* n_ioc is also 0 */
469
470 /* translate to spi_message, execute */
471 retval = spidev_message(spidev, ioc, n_ioc);
472 kfree(ioc);
473 break;
474 }
475
476 mutex_unlock(&spidev->buf_lock);
477 spi_dev_put(spi);
478 return retval;
479}
480
481#ifdef CONFIG_COMPAT
482static long
483spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
484 unsigned long arg)
485{
486 struct spi_ioc_transfer __user *u_ioc;
487 int retval = 0;
488 struct spidev_data *spidev;
489 struct spi_device *spi;
490 unsigned n_ioc, n;
491 struct spi_ioc_transfer *ioc;
492
493 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
494
495 /* guard against device removal before, or while,
496 * we issue this ioctl.
497 */
498 spidev = filp->private_data;
499 spin_lock_irq(&spidev->spi_lock);
500 spi = spi_dev_get(spidev->spi);
501 spin_unlock_irq(&spidev->spi_lock);
502
503 if (spi == NULL)
504 return -ESHUTDOWN;
505
506 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
507 mutex_lock(&spidev->buf_lock);
508
509 /* Check message and copy into scratch area */
510 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
511 if (IS_ERR(ioc)) {
512 retval = PTR_ERR(ioc);
513 goto done;
514 }
515 if (!ioc)
516 goto done; /* n_ioc is also 0 */
517
518 /* Convert buffer pointers */
519 for (n = 0; n < n_ioc; n++) {
520 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
521 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
522 }
523
524 /* translate to spi_message, execute */
525 retval = spidev_message(spidev, ioc, n_ioc);
526 kfree(ioc);
527
528done:
529 mutex_unlock(&spidev->buf_lock);
530 spi_dev_put(spi);
531 return retval;
532}
533
534static long
535spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
536{
537 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
538 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
539 && _IOC_DIR(cmd) == _IOC_WRITE)
540 return spidev_compat_ioc_message(filp, cmd, arg);
541
542 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
543}
544#else
545#define spidev_compat_ioctl NULL
546#endif /* CONFIG_COMPAT */
547
548static int spidev_open(struct inode *inode, struct file *filp)
549{
550 struct spidev_data *spidev;
551 int status = -ENXIO;
552
553 mutex_lock(&device_list_lock);
554
555 list_for_each_entry(spidev, &device_list, device_entry) {
556 if (spidev->devt == inode->i_rdev) {
557 status = 0;
558 break;
559 }
560 }
561
562 if (status) {
563 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
564 goto err_find_dev;
565 }
566
567 if (!spidev->tx_buffer) {
568 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
569 if (!spidev->tx_buffer) {
570 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
571 status = -ENOMEM;
572 goto err_find_dev;
573 }
574 }
575
576 if (!spidev->rx_buffer) {
577 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
578 if (!spidev->rx_buffer) {
579 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
580 status = -ENOMEM;
581 goto err_alloc_rx_buf;
582 }
583 }
584
585 spidev->users++;
586 filp->private_data = spidev;
587 stream_open(inode, filp);
588
589 mutex_unlock(&device_list_lock);
590 return 0;
591
592err_alloc_rx_buf:
593 kfree(spidev->tx_buffer);
594 spidev->tx_buffer = NULL;
595err_find_dev:
596 mutex_unlock(&device_list_lock);
597 return status;
598}
599
600static int spidev_release(struct inode *inode, struct file *filp)
601{
602 struct spidev_data *spidev;
603
604 mutex_lock(&device_list_lock);
605 spidev = filp->private_data;
606 filp->private_data = NULL;
607
608 /* last close? */
609 spidev->users--;
610 if (!spidev->users) {
611 int dofree;
612
613 kfree(spidev->tx_buffer);
614 spidev->tx_buffer = NULL;
615
616 kfree(spidev->rx_buffer);
617 spidev->rx_buffer = NULL;
618
619 spin_lock_irq(&spidev->spi_lock);
620 if (spidev->spi)
621 spidev->speed_hz = spidev->spi->max_speed_hz;
622
623 /* ... after we unbound from the underlying device? */
624 dofree = (spidev->spi == NULL);
625 spin_unlock_irq(&spidev->spi_lock);
626
627 if (dofree)
628 kfree(spidev);
629 }
630 mutex_unlock(&device_list_lock);
631
632 return 0;
633}
634
635static const struct file_operations spidev_fops = {
636 .owner = THIS_MODULE,
637 /* REVISIT switch to aio primitives, so that userspace
638 * gets more complete API coverage. It'll simplify things
639 * too, except for the locking.
640 */
641 .write = spidev_write,
642 .read = spidev_read,
643 .unlocked_ioctl = spidev_ioctl,
644 .compat_ioctl = spidev_compat_ioctl,
645 .open = spidev_open,
646 .release = spidev_release,
647 .llseek = no_llseek,
648};
649
650/*-------------------------------------------------------------------------*/
651
652/* The main reason to have this class is to make mdev/udev create the
653 * /dev/spidevB.C character device nodes exposing our userspace API.
654 * It also simplifies memory management.
655 */
656
657static struct class *spidev_class;
658
659#ifdef CONFIG_OF
660static const struct of_device_id spidev_dt_ids[] = {
661 { .compatible = "rohm,dh2228fv" },
662 { .compatible = "lineartechnology,ltc2488" },
663 { .compatible = "ge,achc" },
664 { .compatible = "semtech,sx1301" },
665 { .compatible = "lwn,bk4" },
666 { .compatible = "dh,dhcom-board" },
667 { .compatible = "menlo,m53cpld" },
668 {},
669};
670MODULE_DEVICE_TABLE(of, spidev_dt_ids);
671#endif
672
673#ifdef CONFIG_ACPI
674
675/* Dummy SPI devices not to be used in production systems */
676#define SPIDEV_ACPI_DUMMY 1
677
678static const struct acpi_device_id spidev_acpi_ids[] = {
679 /*
680 * The ACPI SPT000* devices are only meant for development and
681 * testing. Systems used in production should have a proper ACPI
682 * description of the connected peripheral and they should also use
683 * a proper driver instead of poking directly to the SPI bus.
684 */
685 { "SPT0001", SPIDEV_ACPI_DUMMY },
686 { "SPT0002", SPIDEV_ACPI_DUMMY },
687 { "SPT0003", SPIDEV_ACPI_DUMMY },
688 {},
689};
690MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
691
692static void spidev_probe_acpi(struct spi_device *spi)
693{
694 const struct acpi_device_id *id;
695
696 if (!has_acpi_companion(&spi->dev))
697 return;
698
699 id = acpi_match_device(spidev_acpi_ids, &spi->dev);
700 if (WARN_ON(!id))
701 return;
702
703 if (id->driver_data == SPIDEV_ACPI_DUMMY)
704 dev_warn(&spi->dev, "do not use this driver in production systems!\n");
705}
706#else
707static inline void spidev_probe_acpi(struct spi_device *spi) {}
708#endif
709
710/*-------------------------------------------------------------------------*/
711
712static int spidev_probe(struct spi_device *spi)
713{
714 struct spidev_data *spidev;
715 int status;
716 unsigned long minor;
717
718 /*
719 * spidev should never be referenced in DT without a specific
720 * compatible string, it is a Linux implementation thing
721 * rather than a description of the hardware.
722 */
723 WARN(spi->dev.of_node &&
724 of_device_is_compatible(spi->dev.of_node, "spidev"),
725 "%pOF: buggy DT: spidev listed directly in DT\n", spi->dev.of_node);
726
727 spidev_probe_acpi(spi);
728
729 /* Allocate driver data */
730 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
731 if (!spidev)
732 return -ENOMEM;
733
734 /* Initialize the driver data */
735 spidev->spi = spi;
736 spin_lock_init(&spidev->spi_lock);
737 mutex_init(&spidev->buf_lock);
738
739 INIT_LIST_HEAD(&spidev->device_entry);
740
741 /* If we can allocate a minor number, hook up this device.
742 * Reusing minors is fine so long as udev or mdev is working.
743 */
744 mutex_lock(&device_list_lock);
745 minor = find_first_zero_bit(minors, N_SPI_MINORS);
746 if (minor < N_SPI_MINORS) {
747 struct device *dev;
748
749 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
750 dev = device_create(spidev_class, &spi->dev, spidev->devt,
751 spidev, "spidev%d.%d",
752 spi->master->bus_num, spi->chip_select);
753 status = PTR_ERR_OR_ZERO(dev);
754 } else {
755 dev_dbg(&spi->dev, "no minor number available!\n");
756 status = -ENODEV;
757 }
758 if (status == 0) {
759 set_bit(minor, minors);
760 list_add(&spidev->device_entry, &device_list);
761 }
762 mutex_unlock(&device_list_lock);
763
764 spidev->speed_hz = spi->max_speed_hz;
765
766 if (status == 0)
767 spi_set_drvdata(spi, spidev);
768 else
769 kfree(spidev);
770
771 return status;
772}
773
774static int spidev_remove(struct spi_device *spi)
775{
776 struct spidev_data *spidev = spi_get_drvdata(spi);
777
778 /* make sure ops on existing fds can abort cleanly */
779 spin_lock_irq(&spidev->spi_lock);
780 spidev->spi = NULL;
781 spin_unlock_irq(&spidev->spi_lock);
782
783 /* prevent new opens */
784 mutex_lock(&device_list_lock);
785 list_del(&spidev->device_entry);
786 device_destroy(spidev_class, spidev->devt);
787 clear_bit(MINOR(spidev->devt), minors);
788 if (spidev->users == 0)
789 kfree(spidev);
790 mutex_unlock(&device_list_lock);
791
792 return 0;
793}
794
795static struct spi_driver spidev_spi_driver = {
796 .driver = {
797 .name = "spidev",
798 .of_match_table = of_match_ptr(spidev_dt_ids),
799 .acpi_match_table = ACPI_PTR(spidev_acpi_ids),
800 },
801 .probe = spidev_probe,
802 .remove = spidev_remove,
803
804 /* NOTE: suspend/resume methods are not necessary here.
805 * We don't do anything except pass the requests to/from
806 * the underlying controller. The refrigerator handles
807 * most issues; the controller driver handles the rest.
808 */
809};
810
811/*-------------------------------------------------------------------------*/
812
813static int __init spidev_init(void)
814{
815 int status;
816
817 /* Claim our 256 reserved device numbers. Then register a class
818 * that will key udev/mdev to add/remove /dev nodes. Last, register
819 * the driver which manages those device numbers.
820 */
821 BUILD_BUG_ON(N_SPI_MINORS > 256);
822 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
823 if (status < 0)
824 return status;
825
826 spidev_class = class_create(THIS_MODULE, "spidev");
827 if (IS_ERR(spidev_class)) {
828 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
829 return PTR_ERR(spidev_class);
830 }
831
832 status = spi_register_driver(&spidev_spi_driver);
833 if (status < 0) {
834 class_destroy(spidev_class);
835 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
836 }
837 return status;
838}
839module_init(spidev_init);
840
841static void __exit spidev_exit(void)
842{
843 spi_unregister_driver(&spidev_spi_driver);
844 class_destroy(spidev_class);
845 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
846}
847module_exit(spidev_exit);
848
849MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
850MODULE_DESCRIPTION("User mode SPI device interface");
851MODULE_LICENSE("GPL");
852MODULE_ALIAS("spi:spidev");