Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   3 * sungem.c: Sun GEM ethernet driver.
   4 *
   5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   6 *
   7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  10 *
  11 * NAPI and NETPOLL support
  12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  13 *
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/fcntl.h>
  22#include <linux/interrupt.h>
  23#include <linux/ioport.h>
  24#include <linux/in.h>
  25#include <linux/sched.h>
  26#include <linux/string.h>
  27#include <linux/delay.h>
  28#include <linux/errno.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36#include <linux/crc32.h>
  37#include <linux/random.h>
  38#include <linux/workqueue.h>
  39#include <linux/if_vlan.h>
  40#include <linux/bitops.h>
  41#include <linux/mm.h>
  42#include <linux/gfp.h>
  43#include <linux/of.h>
  44
  45#include <asm/io.h>
  46#include <asm/byteorder.h>
  47#include <linux/uaccess.h>
  48#include <asm/irq.h>
  49
  50#ifdef CONFIG_SPARC
  51#include <asm/idprom.h>
  52#include <asm/prom.h>
  53#endif
  54
  55#ifdef CONFIG_PPC_PMAC
 
  56#include <asm/machdep.h>
  57#include <asm/pmac_feature.h>
  58#endif
  59
  60#include <linux/sungem_phy.h>
  61#include "sungem.h"
  62
  63#define STRIP_FCS
  64
  65#define DEFAULT_MSG	(NETIF_MSG_DRV		| \
  66			 NETIF_MSG_PROBE	| \
  67			 NETIF_MSG_LINK)
  68
  69#define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  70			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  71			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  72			 SUPPORTED_Pause | SUPPORTED_Autoneg)
  73
  74#define DRV_NAME	"sungem"
  75#define DRV_VERSION	"1.0"
  76#define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
  77
  78static char version[] =
  79        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  80
  81MODULE_AUTHOR(DRV_AUTHOR);
  82MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  83MODULE_LICENSE("GPL");
  84
  85#define GEM_MODULE_NAME	"gem"
  86
  87static const struct pci_device_id gem_pci_tbl[] = {
  88	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  89	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90
  91	/* These models only differ from the original GEM in
  92	 * that their tx/rx fifos are of a different size and
  93	 * they only support 10/100 speeds. -DaveM
  94	 *
  95	 * Apple's GMAC does support gigabit on machines with
  96	 * the BCM54xx PHYs. -BenH
  97	 */
  98	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  99	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 100	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 101	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 102	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 103	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 104	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 105	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 106	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 107	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 108	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 109	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 110	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 111	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 112	{0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 116
 117static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
 118{
 119	u32 cmd;
 120	int limit = 10000;
 121
 122	cmd  = (1 << 30);
 123	cmd |= (2 << 28);
 124	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 125	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 126	cmd |= (MIF_FRAME_TAMSB);
 127	writel(cmd, gp->regs + MIF_FRAME);
 128
 129	while (--limit) {
 130		cmd = readl(gp->regs + MIF_FRAME);
 131		if (cmd & MIF_FRAME_TALSB)
 132			break;
 133
 134		udelay(10);
 135	}
 136
 137	if (!limit)
 138		cmd = 0xffff;
 139
 140	return cmd & MIF_FRAME_DATA;
 141}
 142
 143static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
 144{
 145	struct gem *gp = netdev_priv(dev);
 146	return __sungem_phy_read(gp, mii_id, reg);
 147}
 148
 149static inline u16 sungem_phy_read(struct gem *gp, int reg)
 150{
 151	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
 152}
 153
 154static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 155{
 156	u32 cmd;
 157	int limit = 10000;
 158
 159	cmd  = (1 << 30);
 160	cmd |= (1 << 28);
 161	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 162	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 163	cmd |= (MIF_FRAME_TAMSB);
 164	cmd |= (val & MIF_FRAME_DATA);
 165	writel(cmd, gp->regs + MIF_FRAME);
 166
 167	while (limit--) {
 168		cmd = readl(gp->regs + MIF_FRAME);
 169		if (cmd & MIF_FRAME_TALSB)
 170			break;
 171
 172		udelay(10);
 173	}
 174}
 175
 176static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
 177{
 178	struct gem *gp = netdev_priv(dev);
 179	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
 180}
 181
 182static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
 183{
 184	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
 185}
 186
 187static inline void gem_enable_ints(struct gem *gp)
 188{
 189	/* Enable all interrupts but TXDONE */
 190	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 191}
 192
 193static inline void gem_disable_ints(struct gem *gp)
 194{
 195	/* Disable all interrupts, including TXDONE */
 196	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 197	(void)readl(gp->regs + GREG_IMASK); /* write posting */
 198}
 199
 200static void gem_get_cell(struct gem *gp)
 201{
 202	BUG_ON(gp->cell_enabled < 0);
 203	gp->cell_enabled++;
 204#ifdef CONFIG_PPC_PMAC
 205	if (gp->cell_enabled == 1) {
 206		mb();
 207		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 208		udelay(10);
 209	}
 210#endif /* CONFIG_PPC_PMAC */
 211}
 212
 213/* Turn off the chip's clock */
 214static void gem_put_cell(struct gem *gp)
 215{
 216	BUG_ON(gp->cell_enabled <= 0);
 217	gp->cell_enabled--;
 218#ifdef CONFIG_PPC_PMAC
 219	if (gp->cell_enabled == 0) {
 220		mb();
 221		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 222		udelay(10);
 223	}
 224#endif /* CONFIG_PPC_PMAC */
 225}
 226
 227static inline void gem_netif_stop(struct gem *gp)
 228{
 229	netif_trans_update(gp->dev);	/* prevent tx timeout */
 230	napi_disable(&gp->napi);
 231	netif_tx_disable(gp->dev);
 232}
 233
 234static inline void gem_netif_start(struct gem *gp)
 235{
 236	/* NOTE: unconditional netif_wake_queue is only
 237	 * appropriate so long as all callers are assured to
 238	 * have free tx slots.
 239	 */
 240	netif_wake_queue(gp->dev);
 241	napi_enable(&gp->napi);
 242}
 243
 244static void gem_schedule_reset(struct gem *gp)
 245{
 246	gp->reset_task_pending = 1;
 247	schedule_work(&gp->reset_task);
 248}
 249
 250static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 251{
 252	if (netif_msg_intr(gp))
 253		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 254}
 255
 256static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 257{
 258	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 259	u32 pcs_miistat;
 260
 261	if (netif_msg_intr(gp))
 262		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 263			gp->dev->name, pcs_istat);
 264
 265	if (!(pcs_istat & PCS_ISTAT_LSC)) {
 266		netdev_err(dev, "PCS irq but no link status change???\n");
 267		return 0;
 268	}
 269
 270	/* The link status bit latches on zero, so you must
 271	 * read it twice in such a case to see a transition
 272	 * to the link being up.
 273	 */
 274	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 275	if (!(pcs_miistat & PCS_MIISTAT_LS))
 276		pcs_miistat |=
 277			(readl(gp->regs + PCS_MIISTAT) &
 278			 PCS_MIISTAT_LS);
 279
 280	if (pcs_miistat & PCS_MIISTAT_ANC) {
 281		/* The remote-fault indication is only valid
 282		 * when autoneg has completed.
 283		 */
 284		if (pcs_miistat & PCS_MIISTAT_RF)
 285			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
 286		else
 287			netdev_info(dev, "PCS AutoNEG complete\n");
 288	}
 289
 290	if (pcs_miistat & PCS_MIISTAT_LS) {
 291		netdev_info(dev, "PCS link is now up\n");
 292		netif_carrier_on(gp->dev);
 293	} else {
 294		netdev_info(dev, "PCS link is now down\n");
 295		netif_carrier_off(gp->dev);
 296		/* If this happens and the link timer is not running,
 297		 * reset so we re-negotiate.
 298		 */
 299		if (!timer_pending(&gp->link_timer))
 300			return 1;
 301	}
 302
 303	return 0;
 304}
 305
 306static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 307{
 308	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 309
 310	if (netif_msg_intr(gp))
 311		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 312			gp->dev->name, txmac_stat);
 313
 314	/* Defer timer expiration is quite normal,
 315	 * don't even log the event.
 316	 */
 317	if ((txmac_stat & MAC_TXSTAT_DTE) &&
 318	    !(txmac_stat & ~MAC_TXSTAT_DTE))
 319		return 0;
 320
 321	if (txmac_stat & MAC_TXSTAT_URUN) {
 322		netdev_err(dev, "TX MAC xmit underrun\n");
 323		dev->stats.tx_fifo_errors++;
 324	}
 325
 326	if (txmac_stat & MAC_TXSTAT_MPE) {
 327		netdev_err(dev, "TX MAC max packet size error\n");
 328		dev->stats.tx_errors++;
 329	}
 330
 331	/* The rest are all cases of one of the 16-bit TX
 332	 * counters expiring.
 333	 */
 334	if (txmac_stat & MAC_TXSTAT_NCE)
 335		dev->stats.collisions += 0x10000;
 336
 337	if (txmac_stat & MAC_TXSTAT_ECE) {
 338		dev->stats.tx_aborted_errors += 0x10000;
 339		dev->stats.collisions += 0x10000;
 340	}
 341
 342	if (txmac_stat & MAC_TXSTAT_LCE) {
 343		dev->stats.tx_aborted_errors += 0x10000;
 344		dev->stats.collisions += 0x10000;
 345	}
 346
 347	/* We do not keep track of MAC_TXSTAT_FCE and
 348	 * MAC_TXSTAT_PCE events.
 349	 */
 350	return 0;
 351}
 352
 353/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 354 * so we do the following.
 355 *
 356 * If any part of the reset goes wrong, we return 1 and that causes the
 357 * whole chip to be reset.
 358 */
 359static int gem_rxmac_reset(struct gem *gp)
 360{
 361	struct net_device *dev = gp->dev;
 362	int limit, i;
 363	u64 desc_dma;
 364	u32 val;
 365
 366	/* First, reset & disable MAC RX. */
 367	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 368	for (limit = 0; limit < 5000; limit++) {
 369		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 370			break;
 371		udelay(10);
 372	}
 373	if (limit == 5000) {
 374		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
 375		return 1;
 376	}
 377
 378	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 379	       gp->regs + MAC_RXCFG);
 380	for (limit = 0; limit < 5000; limit++) {
 381		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 382			break;
 383		udelay(10);
 384	}
 385	if (limit == 5000) {
 386		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 387		return 1;
 388	}
 389
 390	/* Second, disable RX DMA. */
 391	writel(0, gp->regs + RXDMA_CFG);
 392	for (limit = 0; limit < 5000; limit++) {
 393		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 394			break;
 395		udelay(10);
 396	}
 397	if (limit == 5000) {
 398		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 399		return 1;
 400	}
 401
 402	mdelay(5);
 403
 404	/* Execute RX reset command. */
 405	writel(gp->swrst_base | GREG_SWRST_RXRST,
 406	       gp->regs + GREG_SWRST);
 407	for (limit = 0; limit < 5000; limit++) {
 408		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 409			break;
 410		udelay(10);
 411	}
 412	if (limit == 5000) {
 413		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 414		return 1;
 415	}
 416
 417	/* Refresh the RX ring. */
 418	for (i = 0; i < RX_RING_SIZE; i++) {
 419		struct gem_rxd *rxd = &gp->init_block->rxd[i];
 420
 421		if (gp->rx_skbs[i] == NULL) {
 422			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
 423			return 1;
 424		}
 425
 426		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 427	}
 428	gp->rx_new = gp->rx_old = 0;
 429
 430	/* Now we must reprogram the rest of RX unit. */
 431	desc_dma = (u64) gp->gblock_dvma;
 432	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 433	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 434	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 435	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 436	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 437	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
 438	writel(val, gp->regs + RXDMA_CFG);
 439	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 440		writel(((5 & RXDMA_BLANK_IPKTS) |
 441			((8 << 12) & RXDMA_BLANK_ITIME)),
 442		       gp->regs + RXDMA_BLANK);
 443	else
 444		writel(((5 & RXDMA_BLANK_IPKTS) |
 445			((4 << 12) & RXDMA_BLANK_ITIME)),
 446		       gp->regs + RXDMA_BLANK);
 447	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 448	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 449	writel(val, gp->regs + RXDMA_PTHRESH);
 450	val = readl(gp->regs + RXDMA_CFG);
 451	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 452	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 453	val = readl(gp->regs + MAC_RXCFG);
 454	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 455
 456	return 0;
 457}
 458
 459static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 460{
 461	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 462	int ret = 0;
 463
 464	if (netif_msg_intr(gp))
 465		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 466			gp->dev->name, rxmac_stat);
 467
 468	if (rxmac_stat & MAC_RXSTAT_OFLW) {
 469		u32 smac = readl(gp->regs + MAC_SMACHINE);
 470
 471		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
 472		dev->stats.rx_over_errors++;
 473		dev->stats.rx_fifo_errors++;
 474
 475		ret = gem_rxmac_reset(gp);
 476	}
 477
 478	if (rxmac_stat & MAC_RXSTAT_ACE)
 479		dev->stats.rx_frame_errors += 0x10000;
 480
 481	if (rxmac_stat & MAC_RXSTAT_CCE)
 482		dev->stats.rx_crc_errors += 0x10000;
 483
 484	if (rxmac_stat & MAC_RXSTAT_LCE)
 485		dev->stats.rx_length_errors += 0x10000;
 486
 487	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 488	 * events.
 489	 */
 490	return ret;
 491}
 492
 493static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 494{
 495	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 496
 497	if (netif_msg_intr(gp))
 498		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 499			gp->dev->name, mac_cstat);
 500
 501	/* This interrupt is just for pause frame and pause
 502	 * tracking.  It is useful for diagnostics and debug
 503	 * but probably by default we will mask these events.
 504	 */
 505	if (mac_cstat & MAC_CSTAT_PS)
 506		gp->pause_entered++;
 507
 508	if (mac_cstat & MAC_CSTAT_PRCV)
 509		gp->pause_last_time_recvd = (mac_cstat >> 16);
 510
 511	return 0;
 512}
 513
 514static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 515{
 516	u32 mif_status = readl(gp->regs + MIF_STATUS);
 517	u32 reg_val, changed_bits;
 518
 519	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 520	changed_bits = (mif_status & MIF_STATUS_STAT);
 521
 522	gem_handle_mif_event(gp, reg_val, changed_bits);
 523
 524	return 0;
 525}
 526
 527static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 528{
 529	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 530
 531	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 532	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 533		netdev_err(dev, "PCI error [%04x]", pci_estat);
 534
 535		if (pci_estat & GREG_PCIESTAT_BADACK)
 536			pr_cont(" <No ACK64# during ABS64 cycle>");
 537		if (pci_estat & GREG_PCIESTAT_DTRTO)
 538			pr_cont(" <Delayed transaction timeout>");
 539		if (pci_estat & GREG_PCIESTAT_OTHER)
 540			pr_cont(" <other>");
 541		pr_cont("\n");
 542	} else {
 543		pci_estat |= GREG_PCIESTAT_OTHER;
 544		netdev_err(dev, "PCI error\n");
 545	}
 546
 547	if (pci_estat & GREG_PCIESTAT_OTHER) {
 548		int pci_errs;
 549
 550		/* Interrogate PCI config space for the
 551		 * true cause.
 552		 */
 553		pci_errs = pci_status_get_and_clear_errors(gp->pdev);
 554		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
 555		if (pci_errs & PCI_STATUS_PARITY)
 
 
 556			netdev_err(dev, "PCI parity error detected\n");
 557		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
 558			netdev_err(dev, "PCI target abort\n");
 559		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
 560			netdev_err(dev, "PCI master acks target abort\n");
 561		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
 562			netdev_err(dev, "PCI master abort\n");
 563		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
 564			netdev_err(dev, "PCI system error SERR#\n");
 565		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
 566			netdev_err(dev, "PCI parity error\n");
 
 
 
 
 
 
 
 
 
 
 567	}
 568
 569	/* For all PCI errors, we should reset the chip. */
 570	return 1;
 571}
 572
 573/* All non-normal interrupt conditions get serviced here.
 574 * Returns non-zero if we should just exit the interrupt
 575 * handler right now (ie. if we reset the card which invalidates
 576 * all of the other original irq status bits).
 577 */
 578static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 579{
 580	if (gem_status & GREG_STAT_RXNOBUF) {
 581		/* Frame arrived, no free RX buffers available. */
 582		if (netif_msg_rx_err(gp))
 583			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 584				gp->dev->name);
 585		dev->stats.rx_dropped++;
 586	}
 587
 588	if (gem_status & GREG_STAT_RXTAGERR) {
 589		/* corrupt RX tag framing */
 590		if (netif_msg_rx_err(gp))
 591			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 592				gp->dev->name);
 593		dev->stats.rx_errors++;
 594
 595		return 1;
 596	}
 597
 598	if (gem_status & GREG_STAT_PCS) {
 599		if (gem_pcs_interrupt(dev, gp, gem_status))
 600			return 1;
 601	}
 602
 603	if (gem_status & GREG_STAT_TXMAC) {
 604		if (gem_txmac_interrupt(dev, gp, gem_status))
 605			return 1;
 606	}
 607
 608	if (gem_status & GREG_STAT_RXMAC) {
 609		if (gem_rxmac_interrupt(dev, gp, gem_status))
 610			return 1;
 611	}
 612
 613	if (gem_status & GREG_STAT_MAC) {
 614		if (gem_mac_interrupt(dev, gp, gem_status))
 615			return 1;
 616	}
 617
 618	if (gem_status & GREG_STAT_MIF) {
 619		if (gem_mif_interrupt(dev, gp, gem_status))
 620			return 1;
 621	}
 622
 623	if (gem_status & GREG_STAT_PCIERR) {
 624		if (gem_pci_interrupt(dev, gp, gem_status))
 625			return 1;
 626	}
 627
 628	return 0;
 629}
 630
 631static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 632{
 633	int entry, limit;
 634
 635	entry = gp->tx_old;
 636	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 637	while (entry != limit) {
 638		struct sk_buff *skb;
 639		struct gem_txd *txd;
 640		dma_addr_t dma_addr;
 641		u32 dma_len;
 642		int frag;
 643
 644		if (netif_msg_tx_done(gp))
 645			printk(KERN_DEBUG "%s: tx done, slot %d\n",
 646				gp->dev->name, entry);
 647		skb = gp->tx_skbs[entry];
 648		if (skb_shinfo(skb)->nr_frags) {
 649			int last = entry + skb_shinfo(skb)->nr_frags;
 650			int walk = entry;
 651			int incomplete = 0;
 652
 653			last &= (TX_RING_SIZE - 1);
 654			for (;;) {
 655				walk = NEXT_TX(walk);
 656				if (walk == limit)
 657					incomplete = 1;
 658				if (walk == last)
 659					break;
 660			}
 661			if (incomplete)
 662				break;
 663		}
 664		gp->tx_skbs[entry] = NULL;
 665		dev->stats.tx_bytes += skb->len;
 666
 667		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 668			txd = &gp->init_block->txd[entry];
 669
 670			dma_addr = le64_to_cpu(txd->buffer);
 671			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 672
 673			dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
 674				       DMA_TO_DEVICE);
 675			entry = NEXT_TX(entry);
 676		}
 677
 678		dev->stats.tx_packets++;
 679		dev_consume_skb_any(skb);
 680	}
 681	gp->tx_old = entry;
 682
 683	/* Need to make the tx_old update visible to gem_start_xmit()
 684	 * before checking for netif_queue_stopped().  Without the
 685	 * memory barrier, there is a small possibility that gem_start_xmit()
 686	 * will miss it and cause the queue to be stopped forever.
 687	 */
 688	smp_mb();
 689
 690	if (unlikely(netif_queue_stopped(dev) &&
 691		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
 692		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 693
 694		__netif_tx_lock(txq, smp_processor_id());
 695		if (netif_queue_stopped(dev) &&
 696		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 697			netif_wake_queue(dev);
 698		__netif_tx_unlock(txq);
 699	}
 700}
 701
 702static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 703{
 704	int cluster_start, curr, count, kick;
 705
 706	cluster_start = curr = (gp->rx_new & ~(4 - 1));
 707	count = 0;
 708	kick = -1;
 709	dma_wmb();
 710	while (curr != limit) {
 711		curr = NEXT_RX(curr);
 712		if (++count == 4) {
 713			struct gem_rxd *rxd =
 714				&gp->init_block->rxd[cluster_start];
 715			for (;;) {
 716				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 717				rxd++;
 718				cluster_start = NEXT_RX(cluster_start);
 719				if (cluster_start == curr)
 720					break;
 721			}
 722			kick = curr;
 723			count = 0;
 724		}
 725	}
 726	if (kick >= 0) {
 727		mb();
 728		writel(kick, gp->regs + RXDMA_KICK);
 729	}
 730}
 731
 732#define ALIGNED_RX_SKB_ADDR(addr) \
 733        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
 734static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
 735						gfp_t gfp_flags)
 736{
 737	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
 738
 739	if (likely(skb)) {
 740		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
 741		skb_reserve(skb, offset);
 742	}
 743	return skb;
 744}
 745
 746static int gem_rx(struct gem *gp, int work_to_do)
 747{
 748	struct net_device *dev = gp->dev;
 749	int entry, drops, work_done = 0;
 750	u32 done;
 751
 752	if (netif_msg_rx_status(gp))
 753		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 754			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 755
 756	entry = gp->rx_new;
 757	drops = 0;
 758	done = readl(gp->regs + RXDMA_DONE);
 759	for (;;) {
 760		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 761		struct sk_buff *skb;
 762		u64 status = le64_to_cpu(rxd->status_word);
 763		dma_addr_t dma_addr;
 764		int len;
 765
 766		if ((status & RXDCTRL_OWN) != 0)
 767			break;
 768
 769		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 770			break;
 771
 772		/* When writing back RX descriptor, GEM writes status
 773		 * then buffer address, possibly in separate transactions.
 774		 * If we don't wait for the chip to write both, we could
 775		 * post a new buffer to this descriptor then have GEM spam
 776		 * on the buffer address.  We sync on the RX completion
 777		 * register to prevent this from happening.
 778		 */
 779		if (entry == done) {
 780			done = readl(gp->regs + RXDMA_DONE);
 781			if (entry == done)
 782				break;
 783		}
 784
 785		/* We can now account for the work we're about to do */
 786		work_done++;
 787
 788		skb = gp->rx_skbs[entry];
 789
 790		len = (status & RXDCTRL_BUFSZ) >> 16;
 791		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 792			dev->stats.rx_errors++;
 793			if (len < ETH_ZLEN)
 794				dev->stats.rx_length_errors++;
 795			if (len & RXDCTRL_BAD)
 796				dev->stats.rx_crc_errors++;
 797
 798			/* We'll just return it to GEM. */
 799		drop_it:
 800			dev->stats.rx_dropped++;
 801			goto next;
 802		}
 803
 804		dma_addr = le64_to_cpu(rxd->buffer);
 805		if (len > RX_COPY_THRESHOLD) {
 806			struct sk_buff *new_skb;
 807
 808			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 809			if (new_skb == NULL) {
 810				drops++;
 811				goto drop_it;
 812			}
 813			dma_unmap_page(&gp->pdev->dev, dma_addr,
 814				       RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
 
 815			gp->rx_skbs[entry] = new_skb;
 816			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 817			rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
 818							       virt_to_page(new_skb->data),
 819							       offset_in_page(new_skb->data),
 820							       RX_BUF_ALLOC_SIZE(gp),
 821							       DMA_FROM_DEVICE));
 822			skb_reserve(new_skb, RX_OFFSET);
 823
 824			/* Trim the original skb for the netif. */
 825			skb_trim(skb, len);
 826		} else {
 827			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 828
 829			if (copy_skb == NULL) {
 830				drops++;
 831				goto drop_it;
 832			}
 833
 834			skb_reserve(copy_skb, 2);
 835			skb_put(copy_skb, len);
 836			dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
 837						DMA_FROM_DEVICE);
 838			skb_copy_from_linear_data(skb, copy_skb->data, len);
 839			dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
 840						   len, DMA_FROM_DEVICE);
 841
 842			/* We'll reuse the original ring buffer. */
 843			skb = copy_skb;
 844		}
 845
 846		if (likely(dev->features & NETIF_F_RXCSUM)) {
 847			__sum16 csum;
 848
 849			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 850			skb->csum = csum_unfold(csum);
 851			skb->ip_summed = CHECKSUM_COMPLETE;
 852		}
 853		skb->protocol = eth_type_trans(skb, gp->dev);
 854
 855		napi_gro_receive(&gp->napi, skb);
 856
 857		dev->stats.rx_packets++;
 858		dev->stats.rx_bytes += len;
 859
 860	next:
 861		entry = NEXT_RX(entry);
 862	}
 863
 864	gem_post_rxds(gp, entry);
 865
 866	gp->rx_new = entry;
 867
 868	if (drops)
 869		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
 870
 871	return work_done;
 872}
 873
 874static int gem_poll(struct napi_struct *napi, int budget)
 875{
 876	struct gem *gp = container_of(napi, struct gem, napi);
 877	struct net_device *dev = gp->dev;
 878	int work_done;
 879
 880	work_done = 0;
 881	do {
 882		/* Handle anomalies */
 883		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
 884			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 885			int reset;
 886
 887			/* We run the abnormal interrupt handling code with
 888			 * the Tx lock. It only resets the Rx portion of the
 889			 * chip, but we need to guard it against DMA being
 890			 * restarted by the link poll timer
 891			 */
 892			__netif_tx_lock(txq, smp_processor_id());
 893			reset = gem_abnormal_irq(dev, gp, gp->status);
 894			__netif_tx_unlock(txq);
 895			if (reset) {
 896				gem_schedule_reset(gp);
 897				napi_complete(napi);
 898				return work_done;
 899			}
 900		}
 901
 902		/* Run TX completion thread */
 903		gem_tx(dev, gp, gp->status);
 904
 905		/* Run RX thread. We don't use any locking here,
 906		 * code willing to do bad things - like cleaning the
 907		 * rx ring - must call napi_disable(), which
 908		 * schedule_timeout()'s if polling is already disabled.
 909		 */
 910		work_done += gem_rx(gp, budget - work_done);
 911
 912		if (work_done >= budget)
 913			return work_done;
 914
 915		gp->status = readl(gp->regs + GREG_STAT);
 916	} while (gp->status & GREG_STAT_NAPI);
 917
 918	napi_complete_done(napi, work_done);
 919	gem_enable_ints(gp);
 920
 921	return work_done;
 922}
 923
 924static irqreturn_t gem_interrupt(int irq, void *dev_id)
 925{
 926	struct net_device *dev = dev_id;
 927	struct gem *gp = netdev_priv(dev);
 928
 929	if (napi_schedule_prep(&gp->napi)) {
 930		u32 gem_status = readl(gp->regs + GREG_STAT);
 931
 932		if (unlikely(gem_status == 0)) {
 933			napi_enable(&gp->napi);
 934			return IRQ_NONE;
 935		}
 936		if (netif_msg_intr(gp))
 937			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
 938			       gp->dev->name, gem_status);
 939
 940		gp->status = gem_status;
 941		gem_disable_ints(gp);
 942		__napi_schedule(&gp->napi);
 943	}
 944
 945	/* If polling was disabled at the time we received that
 946	 * interrupt, we may return IRQ_HANDLED here while we
 947	 * should return IRQ_NONE. No big deal...
 948	 */
 949	return IRQ_HANDLED;
 950}
 951
 952#ifdef CONFIG_NET_POLL_CONTROLLER
 953static void gem_poll_controller(struct net_device *dev)
 954{
 955	struct gem *gp = netdev_priv(dev);
 956
 957	disable_irq(gp->pdev->irq);
 958	gem_interrupt(gp->pdev->irq, dev);
 959	enable_irq(gp->pdev->irq);
 960}
 961#endif
 962
 963static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
 964{
 965	struct gem *gp = netdev_priv(dev);
 966
 967	netdev_err(dev, "transmit timed out, resetting\n");
 968
 969	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
 970		   readl(gp->regs + TXDMA_CFG),
 971		   readl(gp->regs + MAC_TXSTAT),
 972		   readl(gp->regs + MAC_TXCFG));
 973	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 974		   readl(gp->regs + RXDMA_CFG),
 975		   readl(gp->regs + MAC_RXSTAT),
 976		   readl(gp->regs + MAC_RXCFG));
 977
 978	gem_schedule_reset(gp);
 979}
 980
 981static __inline__ int gem_intme(int entry)
 982{
 983	/* Algorithm: IRQ every 1/2 of descriptors. */
 984	if (!(entry & ((TX_RING_SIZE>>1)-1)))
 985		return 1;
 986
 987	return 0;
 988}
 989
 990static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
 991				  struct net_device *dev)
 992{
 993	struct gem *gp = netdev_priv(dev);
 994	int entry;
 995	u64 ctrl;
 996
 997	ctrl = 0;
 998	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 999		const u64 csum_start_off = skb_checksum_start_offset(skb);
1000		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1001
1002		ctrl = (TXDCTRL_CENAB |
1003			(csum_start_off << 15) |
1004			(csum_stuff_off << 21));
1005	}
1006
1007	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1008		/* This is a hard error, log it. */
1009		if (!netif_queue_stopped(dev)) {
1010			netif_stop_queue(dev);
1011			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1012		}
1013		return NETDEV_TX_BUSY;
1014	}
1015
1016	entry = gp->tx_new;
1017	gp->tx_skbs[entry] = skb;
1018
1019	if (skb_shinfo(skb)->nr_frags == 0) {
1020		struct gem_txd *txd = &gp->init_block->txd[entry];
1021		dma_addr_t mapping;
1022		u32 len;
1023
1024		len = skb->len;
1025		mapping = dma_map_page(&gp->pdev->dev,
1026				       virt_to_page(skb->data),
1027				       offset_in_page(skb->data),
1028				       len, DMA_TO_DEVICE);
1029		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1030		if (gem_intme(entry))
1031			ctrl |= TXDCTRL_INTME;
1032		txd->buffer = cpu_to_le64(mapping);
1033		dma_wmb();
1034		txd->control_word = cpu_to_le64(ctrl);
1035		entry = NEXT_TX(entry);
1036	} else {
1037		struct gem_txd *txd;
1038		u32 first_len;
1039		u64 intme;
1040		dma_addr_t first_mapping;
1041		int frag, first_entry = entry;
1042
1043		intme = 0;
1044		if (gem_intme(entry))
1045			intme |= TXDCTRL_INTME;
1046
1047		/* We must give this initial chunk to the device last.
1048		 * Otherwise we could race with the device.
1049		 */
1050		first_len = skb_headlen(skb);
1051		first_mapping = dma_map_page(&gp->pdev->dev,
1052					     virt_to_page(skb->data),
1053					     offset_in_page(skb->data),
1054					     first_len, DMA_TO_DEVICE);
1055		entry = NEXT_TX(entry);
1056
1057		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1058			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1059			u32 len;
1060			dma_addr_t mapping;
1061			u64 this_ctrl;
1062
1063			len = skb_frag_size(this_frag);
1064			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1065						   0, len, DMA_TO_DEVICE);
1066			this_ctrl = ctrl;
1067			if (frag == skb_shinfo(skb)->nr_frags - 1)
1068				this_ctrl |= TXDCTRL_EOF;
1069
1070			txd = &gp->init_block->txd[entry];
1071			txd->buffer = cpu_to_le64(mapping);
1072			dma_wmb();
1073			txd->control_word = cpu_to_le64(this_ctrl | len);
1074
1075			if (gem_intme(entry))
1076				intme |= TXDCTRL_INTME;
1077
1078			entry = NEXT_TX(entry);
1079		}
1080		txd = &gp->init_block->txd[first_entry];
1081		txd->buffer = cpu_to_le64(first_mapping);
1082		dma_wmb();
1083		txd->control_word =
1084			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1085	}
1086
1087	gp->tx_new = entry;
1088	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1089		netif_stop_queue(dev);
1090
1091		/* netif_stop_queue() must be done before checking
1092		 * tx index in TX_BUFFS_AVAIL() below, because
1093		 * in gem_tx(), we update tx_old before checking for
1094		 * netif_queue_stopped().
1095		 */
1096		smp_mb();
1097		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1098			netif_wake_queue(dev);
1099	}
1100	if (netif_msg_tx_queued(gp))
1101		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1102		       dev->name, entry, skb->len);
1103	mb();
1104	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1105
1106	return NETDEV_TX_OK;
1107}
1108
1109static void gem_pcs_reset(struct gem *gp)
1110{
1111	int limit;
1112	u32 val;
1113
1114	/* Reset PCS unit. */
1115	val = readl(gp->regs + PCS_MIICTRL);
1116	val |= PCS_MIICTRL_RST;
1117	writel(val, gp->regs + PCS_MIICTRL);
1118
1119	limit = 32;
1120	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1121		udelay(100);
1122		if (limit-- <= 0)
1123			break;
1124	}
1125	if (limit < 0)
1126		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1127}
1128
1129static void gem_pcs_reinit_adv(struct gem *gp)
1130{
1131	u32 val;
1132
1133	/* Make sure PCS is disabled while changing advertisement
1134	 * configuration.
1135	 */
1136	val = readl(gp->regs + PCS_CFG);
1137	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1138	writel(val, gp->regs + PCS_CFG);
1139
1140	/* Advertise all capabilities except asymmetric
1141	 * pause.
1142	 */
1143	val = readl(gp->regs + PCS_MIIADV);
1144	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1145		PCS_MIIADV_SP | PCS_MIIADV_AP);
1146	writel(val, gp->regs + PCS_MIIADV);
1147
1148	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1149	 * and re-enable PCS.
1150	 */
1151	val = readl(gp->regs + PCS_MIICTRL);
1152	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1153	val &= ~PCS_MIICTRL_WB;
1154	writel(val, gp->regs + PCS_MIICTRL);
1155
1156	val = readl(gp->regs + PCS_CFG);
1157	val |= PCS_CFG_ENABLE;
1158	writel(val, gp->regs + PCS_CFG);
1159
1160	/* Make sure serialink loopback is off.  The meaning
1161	 * of this bit is logically inverted based upon whether
1162	 * you are in Serialink or SERDES mode.
1163	 */
1164	val = readl(gp->regs + PCS_SCTRL);
1165	if (gp->phy_type == phy_serialink)
1166		val &= ~PCS_SCTRL_LOOP;
1167	else
1168		val |= PCS_SCTRL_LOOP;
1169	writel(val, gp->regs + PCS_SCTRL);
1170}
1171
1172#define STOP_TRIES 32
1173
1174static void gem_reset(struct gem *gp)
1175{
1176	int limit;
1177	u32 val;
1178
1179	/* Make sure we won't get any more interrupts */
1180	writel(0xffffffff, gp->regs + GREG_IMASK);
1181
1182	/* Reset the chip */
1183	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1184	       gp->regs + GREG_SWRST);
1185
1186	limit = STOP_TRIES;
1187
1188	do {
1189		udelay(20);
1190		val = readl(gp->regs + GREG_SWRST);
1191		if (limit-- <= 0)
1192			break;
1193	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1194
1195	if (limit < 0)
1196		netdev_err(gp->dev, "SW reset is ghetto\n");
1197
1198	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1199		gem_pcs_reinit_adv(gp);
1200}
1201
1202static void gem_start_dma(struct gem *gp)
1203{
1204	u32 val;
1205
1206	/* We are ready to rock, turn everything on. */
1207	val = readl(gp->regs + TXDMA_CFG);
1208	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209	val = readl(gp->regs + RXDMA_CFG);
1210	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211	val = readl(gp->regs + MAC_TXCFG);
1212	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213	val = readl(gp->regs + MAC_RXCFG);
1214	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1215
1216	(void) readl(gp->regs + MAC_RXCFG);
1217	udelay(100);
1218
1219	gem_enable_ints(gp);
1220
1221	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1222}
1223
1224/* DMA won't be actually stopped before about 4ms tho ...
1225 */
1226static void gem_stop_dma(struct gem *gp)
1227{
1228	u32 val;
1229
1230	/* We are done rocking, turn everything off. */
1231	val = readl(gp->regs + TXDMA_CFG);
1232	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1233	val = readl(gp->regs + RXDMA_CFG);
1234	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1235	val = readl(gp->regs + MAC_TXCFG);
1236	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1237	val = readl(gp->regs + MAC_RXCFG);
1238	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1239
1240	(void) readl(gp->regs + MAC_RXCFG);
1241
1242	/* Need to wait a bit ... done by the caller */
1243}
1244
1245
1246// XXX dbl check what that function should do when called on PCS PHY
1247static void gem_begin_auto_negotiation(struct gem *gp,
1248				       const struct ethtool_link_ksettings *ep)
1249{
1250	u32 advertise, features;
1251	int autoneg;
1252	int speed;
1253	int duplex;
1254	u32 advertising;
1255
1256	if (ep)
1257		ethtool_convert_link_mode_to_legacy_u32(
1258			&advertising, ep->link_modes.advertising);
1259
1260	if (gp->phy_type != phy_mii_mdio0 &&
1261	    gp->phy_type != phy_mii_mdio1)
1262		goto non_mii;
1263
1264	/* Setup advertise */
1265	if (found_mii_phy(gp))
1266		features = gp->phy_mii.def->features;
1267	else
1268		features = 0;
1269
1270	advertise = features & ADVERTISE_MASK;
1271	if (gp->phy_mii.advertising != 0)
1272		advertise &= gp->phy_mii.advertising;
1273
1274	autoneg = gp->want_autoneg;
1275	speed = gp->phy_mii.speed;
1276	duplex = gp->phy_mii.duplex;
1277
1278	/* Setup link parameters */
1279	if (!ep)
1280		goto start_aneg;
1281	if (ep->base.autoneg == AUTONEG_ENABLE) {
1282		advertise = advertising;
1283		autoneg = 1;
1284	} else {
1285		autoneg = 0;
1286		speed = ep->base.speed;
1287		duplex = ep->base.duplex;
1288	}
1289
1290start_aneg:
1291	/* Sanitize settings based on PHY capabilities */
1292	if ((features & SUPPORTED_Autoneg) == 0)
1293		autoneg = 0;
1294	if (speed == SPEED_1000 &&
1295	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1296		speed = SPEED_100;
1297	if (speed == SPEED_100 &&
1298	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1299		speed = SPEED_10;
1300	if (duplex == DUPLEX_FULL &&
1301	    !(features & (SUPPORTED_1000baseT_Full |
1302	    		  SUPPORTED_100baseT_Full |
1303	    		  SUPPORTED_10baseT_Full)))
1304	    	duplex = DUPLEX_HALF;
1305	if (speed == 0)
1306		speed = SPEED_10;
1307
1308	/* If we are asleep, we don't try to actually setup the PHY, we
1309	 * just store the settings
1310	 */
1311	if (!netif_device_present(gp->dev)) {
1312		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1313		gp->phy_mii.speed = speed;
1314		gp->phy_mii.duplex = duplex;
1315		return;
1316	}
1317
1318	/* Configure PHY & start aneg */
1319	gp->want_autoneg = autoneg;
1320	if (autoneg) {
1321		if (found_mii_phy(gp))
1322			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1323		gp->lstate = link_aneg;
1324	} else {
1325		if (found_mii_phy(gp))
1326			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1327		gp->lstate = link_force_ok;
1328	}
1329
1330non_mii:
1331	gp->timer_ticks = 0;
1332	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1333}
1334
1335/* A link-up condition has occurred, initialize and enable the
1336 * rest of the chip.
1337 */
1338static int gem_set_link_modes(struct gem *gp)
1339{
1340	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1341	int full_duplex, speed, pause;
1342	u32 val;
1343
1344	full_duplex = 0;
1345	speed = SPEED_10;
1346	pause = 0;
1347
1348	if (found_mii_phy(gp)) {
1349	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1350	    		return 1;
1351		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1352		speed = gp->phy_mii.speed;
1353		pause = gp->phy_mii.pause;
1354	} else if (gp->phy_type == phy_serialink ||
1355	    	   gp->phy_type == phy_serdes) {
1356		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1357
1358		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1359			full_duplex = 1;
1360		speed = SPEED_1000;
1361	}
1362
1363	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1364		   speed, (full_duplex ? "full" : "half"));
1365
1366
1367	/* We take the tx queue lock to avoid collisions between
1368	 * this code, the tx path and the NAPI-driven error path
1369	 */
1370	__netif_tx_lock(txq, smp_processor_id());
1371
1372	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1373	if (full_duplex) {
1374		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1375	} else {
1376		/* MAC_TXCFG_NBO must be zero. */
1377	}
1378	writel(val, gp->regs + MAC_TXCFG);
1379
1380	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1381	if (!full_duplex &&
1382	    (gp->phy_type == phy_mii_mdio0 ||
1383	     gp->phy_type == phy_mii_mdio1)) {
1384		val |= MAC_XIFCFG_DISE;
1385	} else if (full_duplex) {
1386		val |= MAC_XIFCFG_FLED;
1387	}
1388
1389	if (speed == SPEED_1000)
1390		val |= (MAC_XIFCFG_GMII);
1391
1392	writel(val, gp->regs + MAC_XIFCFG);
1393
1394	/* If gigabit and half-duplex, enable carrier extension
1395	 * mode.  Else, disable it.
1396	 */
1397	if (speed == SPEED_1000 && !full_duplex) {
1398		val = readl(gp->regs + MAC_TXCFG);
1399		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1400
1401		val = readl(gp->regs + MAC_RXCFG);
1402		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1403	} else {
1404		val = readl(gp->regs + MAC_TXCFG);
1405		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406
1407		val = readl(gp->regs + MAC_RXCFG);
1408		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409	}
1410
1411	if (gp->phy_type == phy_serialink ||
1412	    gp->phy_type == phy_serdes) {
1413		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1414
1415		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1416			pause = 1;
1417	}
1418
1419	if (!full_duplex)
1420		writel(512, gp->regs + MAC_STIME);
1421	else
1422		writel(64, gp->regs + MAC_STIME);
1423	val = readl(gp->regs + MAC_MCCFG);
1424	if (pause)
1425		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1426	else
1427		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428	writel(val, gp->regs + MAC_MCCFG);
1429
1430	gem_start_dma(gp);
1431
1432	__netif_tx_unlock(txq);
1433
1434	if (netif_msg_link(gp)) {
1435		if (pause) {
1436			netdev_info(gp->dev,
1437				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1438				    gp->rx_fifo_sz,
1439				    gp->rx_pause_off,
1440				    gp->rx_pause_on);
1441		} else {
1442			netdev_info(gp->dev, "Pause is disabled\n");
1443		}
1444	}
1445
1446	return 0;
1447}
1448
1449static int gem_mdio_link_not_up(struct gem *gp)
1450{
1451	switch (gp->lstate) {
1452	case link_force_ret:
1453		netif_info(gp, link, gp->dev,
1454			   "Autoneg failed again, keeping forced mode\n");
1455		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1456			gp->last_forced_speed, DUPLEX_HALF);
1457		gp->timer_ticks = 5;
1458		gp->lstate = link_force_ok;
1459		return 0;
1460	case link_aneg:
1461		/* We try forced modes after a failed aneg only on PHYs that don't
1462		 * have "magic_aneg" bit set, which means they internally do the
1463		 * while forced-mode thingy. On these, we just restart aneg
1464		 */
1465		if (gp->phy_mii.def->magic_aneg)
1466			return 1;
1467		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1468		/* Try forced modes. */
1469		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1470			DUPLEX_HALF);
1471		gp->timer_ticks = 5;
1472		gp->lstate = link_force_try;
1473		return 0;
1474	case link_force_try:
1475		/* Downgrade from 100 to 10 Mbps if necessary.
1476		 * If already at 10Mbps, warn user about the
1477		 * situation every 10 ticks.
1478		 */
1479		if (gp->phy_mii.speed == SPEED_100) {
1480			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1481				DUPLEX_HALF);
1482			gp->timer_ticks = 5;
1483			netif_info(gp, link, gp->dev,
1484				   "switching to forced 10bt\n");
1485			return 0;
1486		} else
1487			return 1;
1488	default:
1489		return 0;
1490	}
1491}
1492
1493static void gem_link_timer(struct timer_list *t)
1494{
1495	struct gem *gp = from_timer(gp, t, link_timer);
1496	struct net_device *dev = gp->dev;
1497	int restart_aneg = 0;
1498
1499	/* There's no point doing anything if we're going to be reset */
1500	if (gp->reset_task_pending)
1501		return;
1502
1503	if (gp->phy_type == phy_serialink ||
1504	    gp->phy_type == phy_serdes) {
1505		u32 val = readl(gp->regs + PCS_MIISTAT);
1506
1507		if (!(val & PCS_MIISTAT_LS))
1508			val = readl(gp->regs + PCS_MIISTAT);
1509
1510		if ((val & PCS_MIISTAT_LS) != 0) {
1511			if (gp->lstate == link_up)
1512				goto restart;
1513
1514			gp->lstate = link_up;
1515			netif_carrier_on(dev);
1516			(void)gem_set_link_modes(gp);
1517		}
1518		goto restart;
1519	}
1520	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1521		/* Ok, here we got a link. If we had it due to a forced
1522		 * fallback, and we were configured for autoneg, we do
1523		 * retry a short autoneg pass. If you know your hub is
1524		 * broken, use ethtool ;)
1525		 */
1526		if (gp->lstate == link_force_try && gp->want_autoneg) {
1527			gp->lstate = link_force_ret;
1528			gp->last_forced_speed = gp->phy_mii.speed;
1529			gp->timer_ticks = 5;
1530			if (netif_msg_link(gp))
1531				netdev_info(dev,
1532					    "Got link after fallback, retrying autoneg once...\n");
1533			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1534		} else if (gp->lstate != link_up) {
1535			gp->lstate = link_up;
1536			netif_carrier_on(dev);
1537			if (gem_set_link_modes(gp))
1538				restart_aneg = 1;
1539		}
1540	} else {
1541		/* If the link was previously up, we restart the
1542		 * whole process
1543		 */
1544		if (gp->lstate == link_up) {
1545			gp->lstate = link_down;
1546			netif_info(gp, link, dev, "Link down\n");
1547			netif_carrier_off(dev);
1548			gem_schedule_reset(gp);
1549			/* The reset task will restart the timer */
1550			return;
1551		} else if (++gp->timer_ticks > 10) {
1552			if (found_mii_phy(gp))
1553				restart_aneg = gem_mdio_link_not_up(gp);
1554			else
1555				restart_aneg = 1;
1556		}
1557	}
1558	if (restart_aneg) {
1559		gem_begin_auto_negotiation(gp, NULL);
1560		return;
1561	}
1562restart:
1563	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1564}
1565
1566static void gem_clean_rings(struct gem *gp)
1567{
1568	struct gem_init_block *gb = gp->init_block;
1569	struct sk_buff *skb;
1570	int i;
1571	dma_addr_t dma_addr;
1572
1573	for (i = 0; i < RX_RING_SIZE; i++) {
1574		struct gem_rxd *rxd;
1575
1576		rxd = &gb->rxd[i];
1577		if (gp->rx_skbs[i] != NULL) {
1578			skb = gp->rx_skbs[i];
1579			dma_addr = le64_to_cpu(rxd->buffer);
1580			dma_unmap_page(&gp->pdev->dev, dma_addr,
1581				       RX_BUF_ALLOC_SIZE(gp),
1582				       DMA_FROM_DEVICE);
1583			dev_kfree_skb_any(skb);
1584			gp->rx_skbs[i] = NULL;
1585		}
1586		rxd->status_word = 0;
1587		dma_wmb();
1588		rxd->buffer = 0;
1589	}
1590
1591	for (i = 0; i < TX_RING_SIZE; i++) {
1592		if (gp->tx_skbs[i] != NULL) {
1593			struct gem_txd *txd;
1594			int frag;
1595
1596			skb = gp->tx_skbs[i];
1597			gp->tx_skbs[i] = NULL;
1598
1599			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1600				int ent = i & (TX_RING_SIZE - 1);
1601
1602				txd = &gb->txd[ent];
1603				dma_addr = le64_to_cpu(txd->buffer);
1604				dma_unmap_page(&gp->pdev->dev, dma_addr,
1605					       le64_to_cpu(txd->control_word) &
1606					       TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1607
1608				if (frag != skb_shinfo(skb)->nr_frags)
1609					i++;
1610			}
1611			dev_kfree_skb_any(skb);
1612		}
1613	}
1614}
1615
1616static void gem_init_rings(struct gem *gp)
1617{
1618	struct gem_init_block *gb = gp->init_block;
1619	struct net_device *dev = gp->dev;
1620	int i;
1621	dma_addr_t dma_addr;
1622
1623	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1624
1625	gem_clean_rings(gp);
1626
1627	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1628			    (unsigned)VLAN_ETH_FRAME_LEN);
1629
1630	for (i = 0; i < RX_RING_SIZE; i++) {
1631		struct sk_buff *skb;
1632		struct gem_rxd *rxd = &gb->rxd[i];
1633
1634		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1635		if (!skb) {
1636			rxd->buffer = 0;
1637			rxd->status_word = 0;
1638			continue;
1639		}
1640
1641		gp->rx_skbs[i] = skb;
1642		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1643		dma_addr = dma_map_page(&gp->pdev->dev,
1644					virt_to_page(skb->data),
1645					offset_in_page(skb->data),
1646					RX_BUF_ALLOC_SIZE(gp),
1647					DMA_FROM_DEVICE);
1648		rxd->buffer = cpu_to_le64(dma_addr);
1649		dma_wmb();
1650		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1651		skb_reserve(skb, RX_OFFSET);
1652	}
1653
1654	for (i = 0; i < TX_RING_SIZE; i++) {
1655		struct gem_txd *txd = &gb->txd[i];
1656
1657		txd->control_word = 0;
1658		dma_wmb();
1659		txd->buffer = 0;
1660	}
1661	wmb();
1662}
1663
1664/* Init PHY interface and start link poll state machine */
1665static void gem_init_phy(struct gem *gp)
1666{
1667	u32 mifcfg;
1668
1669	/* Revert MIF CFG setting done on stop_phy */
1670	mifcfg = readl(gp->regs + MIF_CFG);
1671	mifcfg &= ~MIF_CFG_BBMODE;
1672	writel(mifcfg, gp->regs + MIF_CFG);
1673
1674	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1675		int i;
1676
1677		/* Those delays sucks, the HW seems to love them though, I'll
1678		 * seriously consider breaking some locks here to be able
1679		 * to schedule instead
1680		 */
1681		for (i = 0; i < 3; i++) {
1682#ifdef CONFIG_PPC_PMAC
1683			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1684			msleep(20);
1685#endif
1686			/* Some PHYs used by apple have problem getting back to us,
1687			 * we do an additional reset here
1688			 */
1689			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1690			msleep(20);
1691			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1692				break;
1693			if (i == 2)
1694				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1695		}
1696	}
1697
1698	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1699	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1700		u32 val;
1701
1702		/* Init datapath mode register. */
1703		if (gp->phy_type == phy_mii_mdio0 ||
1704		    gp->phy_type == phy_mii_mdio1) {
1705			val = PCS_DMODE_MGM;
1706		} else if (gp->phy_type == phy_serialink) {
1707			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1708		} else {
1709			val = PCS_DMODE_ESM;
1710		}
1711
1712		writel(val, gp->regs + PCS_DMODE);
1713	}
1714
1715	if (gp->phy_type == phy_mii_mdio0 ||
1716	    gp->phy_type == phy_mii_mdio1) {
1717		/* Reset and detect MII PHY */
1718		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1719
1720		/* Init PHY */
1721		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1722			gp->phy_mii.def->ops->init(&gp->phy_mii);
1723	} else {
1724		gem_pcs_reset(gp);
1725		gem_pcs_reinit_adv(gp);
1726	}
1727
1728	/* Default aneg parameters */
1729	gp->timer_ticks = 0;
1730	gp->lstate = link_down;
1731	netif_carrier_off(gp->dev);
1732
1733	/* Print things out */
1734	if (gp->phy_type == phy_mii_mdio0 ||
1735	    gp->phy_type == phy_mii_mdio1)
1736		netdev_info(gp->dev, "Found %s PHY\n",
1737			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1738
1739	gem_begin_auto_negotiation(gp, NULL);
1740}
1741
1742static void gem_init_dma(struct gem *gp)
1743{
1744	u64 desc_dma = (u64) gp->gblock_dvma;
1745	u32 val;
1746
1747	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1748	writel(val, gp->regs + TXDMA_CFG);
1749
1750	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1751	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1752	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1753
1754	writel(0, gp->regs + TXDMA_KICK);
1755
1756	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1757	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1758	writel(val, gp->regs + RXDMA_CFG);
1759
1760	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1761	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1762
1763	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1764
1765	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1766	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1767	writel(val, gp->regs + RXDMA_PTHRESH);
1768
1769	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1770		writel(((5 & RXDMA_BLANK_IPKTS) |
1771			((8 << 12) & RXDMA_BLANK_ITIME)),
1772		       gp->regs + RXDMA_BLANK);
1773	else
1774		writel(((5 & RXDMA_BLANK_IPKTS) |
1775			((4 << 12) & RXDMA_BLANK_ITIME)),
1776		       gp->regs + RXDMA_BLANK);
1777}
1778
1779static u32 gem_setup_multicast(struct gem *gp)
1780{
1781	u32 rxcfg = 0;
1782	int i;
1783
1784	if ((gp->dev->flags & IFF_ALLMULTI) ||
1785	    (netdev_mc_count(gp->dev) > 256)) {
1786	    	for (i=0; i<16; i++)
1787			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1788		rxcfg |= MAC_RXCFG_HFE;
1789	} else if (gp->dev->flags & IFF_PROMISC) {
1790		rxcfg |= MAC_RXCFG_PROM;
1791	} else {
1792		u16 hash_table[16];
1793		u32 crc;
1794		struct netdev_hw_addr *ha;
1795		int i;
1796
1797		memset(hash_table, 0, sizeof(hash_table));
1798		netdev_for_each_mc_addr(ha, gp->dev) {
1799			crc = ether_crc_le(6, ha->addr);
1800			crc >>= 24;
1801			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1802		}
1803	    	for (i=0; i<16; i++)
1804			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1805		rxcfg |= MAC_RXCFG_HFE;
1806	}
1807
1808	return rxcfg;
1809}
1810
1811static void gem_init_mac(struct gem *gp)
1812{
1813	const unsigned char *e = &gp->dev->dev_addr[0];
1814
1815	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1816
1817	writel(0x00, gp->regs + MAC_IPG0);
1818	writel(0x08, gp->regs + MAC_IPG1);
1819	writel(0x04, gp->regs + MAC_IPG2);
1820	writel(0x40, gp->regs + MAC_STIME);
1821	writel(0x40, gp->regs + MAC_MINFSZ);
1822
1823	/* Ethernet payload + header + FCS + optional VLAN tag. */
1824	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1825
1826	writel(0x07, gp->regs + MAC_PASIZE);
1827	writel(0x04, gp->regs + MAC_JAMSIZE);
1828	writel(0x10, gp->regs + MAC_ATTLIM);
1829	writel(0x8808, gp->regs + MAC_MCTYPE);
1830
1831	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1832
1833	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1834	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1835	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1836
1837	writel(0, gp->regs + MAC_ADDR3);
1838	writel(0, gp->regs + MAC_ADDR4);
1839	writel(0, gp->regs + MAC_ADDR5);
1840
1841	writel(0x0001, gp->regs + MAC_ADDR6);
1842	writel(0xc200, gp->regs + MAC_ADDR7);
1843	writel(0x0180, gp->regs + MAC_ADDR8);
1844
1845	writel(0, gp->regs + MAC_AFILT0);
1846	writel(0, gp->regs + MAC_AFILT1);
1847	writel(0, gp->regs + MAC_AFILT2);
1848	writel(0, gp->regs + MAC_AF21MSK);
1849	writel(0, gp->regs + MAC_AF0MSK);
1850
1851	gp->mac_rx_cfg = gem_setup_multicast(gp);
1852#ifdef STRIP_FCS
1853	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1854#endif
1855	writel(0, gp->regs + MAC_NCOLL);
1856	writel(0, gp->regs + MAC_FASUCC);
1857	writel(0, gp->regs + MAC_ECOLL);
1858	writel(0, gp->regs + MAC_LCOLL);
1859	writel(0, gp->regs + MAC_DTIMER);
1860	writel(0, gp->regs + MAC_PATMPS);
1861	writel(0, gp->regs + MAC_RFCTR);
1862	writel(0, gp->regs + MAC_LERR);
1863	writel(0, gp->regs + MAC_AERR);
1864	writel(0, gp->regs + MAC_FCSERR);
1865	writel(0, gp->regs + MAC_RXCVERR);
1866
1867	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1868	 * them once a link is established.
1869	 */
1870	writel(0, gp->regs + MAC_TXCFG);
1871	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1872	writel(0, gp->regs + MAC_MCCFG);
1873	writel(0, gp->regs + MAC_XIFCFG);
1874
1875	/* Setup MAC interrupts.  We want to get all of the interesting
1876	 * counter expiration events, but we do not want to hear about
1877	 * normal rx/tx as the DMA engine tells us that.
1878	 */
1879	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1880	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1881
1882	/* Don't enable even the PAUSE interrupts for now, we
1883	 * make no use of those events other than to record them.
1884	 */
1885	writel(0xffffffff, gp->regs + MAC_MCMASK);
1886
1887	/* Don't enable GEM's WOL in normal operations
1888	 */
1889	if (gp->has_wol)
1890		writel(0, gp->regs + WOL_WAKECSR);
1891}
1892
1893static void gem_init_pause_thresholds(struct gem *gp)
1894{
1895	u32 cfg;
1896
1897	/* Calculate pause thresholds.  Setting the OFF threshold to the
1898	 * full RX fifo size effectively disables PAUSE generation which
1899	 * is what we do for 10/100 only GEMs which have FIFOs too small
1900	 * to make real gains from PAUSE.
1901	 */
1902	if (gp->rx_fifo_sz <= (2 * 1024)) {
1903		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1904	} else {
1905		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1906		int off = (gp->rx_fifo_sz - (max_frame * 2));
1907		int on = off - max_frame;
1908
1909		gp->rx_pause_off = off;
1910		gp->rx_pause_on = on;
1911	}
1912
1913
1914	/* Configure the chip "burst" DMA mode & enable some
1915	 * HW bug fixes on Apple version
1916	 */
1917	cfg  = 0;
1918	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1919		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1920#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1921	cfg |= GREG_CFG_IBURST;
1922#endif
1923	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1924	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1925	writel(cfg, gp->regs + GREG_CFG);
1926
1927	/* If Infinite Burst didn't stick, then use different
1928	 * thresholds (and Apple bug fixes don't exist)
1929	 */
1930	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1931		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1932		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1933		writel(cfg, gp->regs + GREG_CFG);
1934	}
1935}
1936
1937static int gem_check_invariants(struct gem *gp)
1938{
1939	struct pci_dev *pdev = gp->pdev;
1940	u32 mif_cfg;
1941
1942	/* On Apple's sungem, we can't rely on registers as the chip
1943	 * was been powered down by the firmware. The PHY is looked
1944	 * up later on.
1945	 */
1946	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1947		gp->phy_type = phy_mii_mdio0;
1948		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1949		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1950		gp->swrst_base = 0;
1951
1952		mif_cfg = readl(gp->regs + MIF_CFG);
1953		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1954		mif_cfg |= MIF_CFG_MDI0;
1955		writel(mif_cfg, gp->regs + MIF_CFG);
1956		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1957		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1958
1959		/* We hard-code the PHY address so we can properly bring it out of
1960		 * reset later on, we can't really probe it at this point, though
1961		 * that isn't an issue.
1962		 */
1963		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1964			gp->mii_phy_addr = 1;
1965		else
1966			gp->mii_phy_addr = 0;
1967
1968		return 0;
1969	}
1970
1971	mif_cfg = readl(gp->regs + MIF_CFG);
1972
1973	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1974	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1975		/* One of the MII PHYs _must_ be present
1976		 * as this chip has no gigabit PHY.
1977		 */
1978		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1979			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1980			       mif_cfg);
1981			return -1;
1982		}
1983	}
1984
1985	/* Determine initial PHY interface type guess.  MDIO1 is the
1986	 * external PHY and thus takes precedence over MDIO0.
1987	 */
1988
1989	if (mif_cfg & MIF_CFG_MDI1) {
1990		gp->phy_type = phy_mii_mdio1;
1991		mif_cfg |= MIF_CFG_PSELECT;
1992		writel(mif_cfg, gp->regs + MIF_CFG);
1993	} else if (mif_cfg & MIF_CFG_MDI0) {
1994		gp->phy_type = phy_mii_mdio0;
1995		mif_cfg &= ~MIF_CFG_PSELECT;
1996		writel(mif_cfg, gp->regs + MIF_CFG);
1997	} else {
1998#ifdef CONFIG_SPARC
1999		const char *p;
2000
2001		p = of_get_property(gp->of_node, "shared-pins", NULL);
2002		if (p && !strcmp(p, "serdes"))
2003			gp->phy_type = phy_serdes;
2004		else
2005#endif
2006			gp->phy_type = phy_serialink;
2007	}
2008	if (gp->phy_type == phy_mii_mdio1 ||
2009	    gp->phy_type == phy_mii_mdio0) {
2010		int i;
2011
2012		for (i = 0; i < 32; i++) {
2013			gp->mii_phy_addr = i;
2014			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2015				break;
2016		}
2017		if (i == 32) {
2018			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2019				pr_err("RIO MII phy will not respond\n");
2020				return -1;
2021			}
2022			gp->phy_type = phy_serdes;
2023		}
2024	}
2025
2026	/* Fetch the FIFO configurations now too. */
2027	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2028	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2029
2030	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2031		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2032			if (gp->tx_fifo_sz != (9 * 1024) ||
2033			    gp->rx_fifo_sz != (20 * 1024)) {
2034				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2035				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2036				return -1;
2037			}
2038			gp->swrst_base = 0;
2039		} else {
2040			if (gp->tx_fifo_sz != (2 * 1024) ||
2041			    gp->rx_fifo_sz != (2 * 1024)) {
2042				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2044				return -1;
2045			}
2046			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2047		}
2048	}
2049
2050	return 0;
2051}
2052
2053static void gem_reinit_chip(struct gem *gp)
2054{
2055	/* Reset the chip */
2056	gem_reset(gp);
2057
2058	/* Make sure ints are disabled */
2059	gem_disable_ints(gp);
2060
2061	/* Allocate & setup ring buffers */
2062	gem_init_rings(gp);
2063
2064	/* Configure pause thresholds */
2065	gem_init_pause_thresholds(gp);
2066
2067	/* Init DMA & MAC engines */
2068	gem_init_dma(gp);
2069	gem_init_mac(gp);
2070}
2071
2072
2073static void gem_stop_phy(struct gem *gp, int wol)
2074{
2075	u32 mifcfg;
2076
2077	/* Let the chip settle down a bit, it seems that helps
2078	 * for sleep mode on some models
2079	 */
2080	msleep(10);
2081
2082	/* Make sure we aren't polling PHY status change. We
2083	 * don't currently use that feature though
2084	 */
2085	mifcfg = readl(gp->regs + MIF_CFG);
2086	mifcfg &= ~MIF_CFG_POLL;
2087	writel(mifcfg, gp->regs + MIF_CFG);
2088
2089	if (wol && gp->has_wol) {
2090		const unsigned char *e = &gp->dev->dev_addr[0];
2091		u32 csr;
2092
2093		/* Setup wake-on-lan for MAGIC packet */
2094		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2095		       gp->regs + MAC_RXCFG);
2096		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2097		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2098		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2099
2100		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2101		csr = WOL_WAKECSR_ENABLE;
2102		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2103			csr |= WOL_WAKECSR_MII;
2104		writel(csr, gp->regs + WOL_WAKECSR);
2105	} else {
2106		writel(0, gp->regs + MAC_RXCFG);
2107		(void)readl(gp->regs + MAC_RXCFG);
2108		/* Machine sleep will die in strange ways if we
2109		 * dont wait a bit here, looks like the chip takes
2110		 * some time to really shut down
2111		 */
2112		msleep(10);
2113	}
2114
2115	writel(0, gp->regs + MAC_TXCFG);
2116	writel(0, gp->regs + MAC_XIFCFG);
2117	writel(0, gp->regs + TXDMA_CFG);
2118	writel(0, gp->regs + RXDMA_CFG);
2119
2120	if (!wol) {
2121		gem_reset(gp);
2122		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2123		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2124
2125		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2126			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2127
2128		/* According to Apple, we must set the MDIO pins to this begnign
2129		 * state or we may 1) eat more current, 2) damage some PHYs
2130		 */
2131		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2132		writel(0, gp->regs + MIF_BBCLK);
2133		writel(0, gp->regs + MIF_BBDATA);
2134		writel(0, gp->regs + MIF_BBOENAB);
2135		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2136		(void) readl(gp->regs + MAC_XIFCFG);
2137	}
2138}
2139
2140static int gem_do_start(struct net_device *dev)
2141{
2142	struct gem *gp = netdev_priv(dev);
2143	int rc;
2144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145	pci_set_master(gp->pdev);
2146
2147	/* Init & setup chip hardware */
2148	gem_reinit_chip(gp);
2149
2150	/* An interrupt might come in handy */
2151	rc = request_irq(gp->pdev->irq, gem_interrupt,
2152			 IRQF_SHARED, dev->name, (void *)dev);
2153	if (rc) {
2154		netdev_err(dev, "failed to request irq !\n");
2155
2156		gem_reset(gp);
2157		gem_clean_rings(gp);
2158		gem_put_cell(gp);
2159		return rc;
2160	}
2161
2162	/* Mark us as attached again if we come from resume(), this has
2163	 * no effect if we weren't detached and needs to be done now.
2164	 */
2165	netif_device_attach(dev);
2166
2167	/* Restart NAPI & queues */
2168	gem_netif_start(gp);
2169
2170	/* Detect & init PHY, start autoneg etc... this will
2171	 * eventually result in starting DMA operations when
2172	 * the link is up
2173	 */
2174	gem_init_phy(gp);
2175
2176	return 0;
2177}
2178
2179static void gem_do_stop(struct net_device *dev, int wol)
2180{
2181	struct gem *gp = netdev_priv(dev);
2182
2183	/* Stop NAPI and stop tx queue */
2184	gem_netif_stop(gp);
2185
2186	/* Make sure ints are disabled. We don't care about
2187	 * synchronizing as NAPI is disabled, thus a stray
2188	 * interrupt will do nothing bad (our irq handler
2189	 * just schedules NAPI)
2190	 */
2191	gem_disable_ints(gp);
2192
2193	/* Stop the link timer */
2194	del_timer_sync(&gp->link_timer);
2195
2196	/* We cannot cancel the reset task while holding the
2197	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2198	 * if we did. This is not an issue however as the reset
2199	 * task is synchronized vs. us (rtnl_lock) and will do
2200	 * nothing if the device is down or suspended. We do
2201	 * still clear reset_task_pending to avoid a spurrious
2202	 * reset later on in case we do resume before it gets
2203	 * scheduled.
2204	 */
2205	gp->reset_task_pending = 0;
2206
2207	/* If we are going to sleep with WOL */
2208	gem_stop_dma(gp);
2209	msleep(10);
2210	if (!wol)
2211		gem_reset(gp);
2212	msleep(10);
2213
2214	/* Get rid of rings */
2215	gem_clean_rings(gp);
2216
2217	/* No irq needed anymore */
2218	free_irq(gp->pdev->irq, (void *) dev);
2219
2220	/* Shut the PHY down eventually and setup WOL */
2221	gem_stop_phy(gp, wol);
 
 
 
 
 
 
 
2222}
2223
2224static void gem_reset_task(struct work_struct *work)
2225{
2226	struct gem *gp = container_of(work, struct gem, reset_task);
2227
2228	/* Lock out the network stack (essentially shield ourselves
2229	 * against a racing open, close, control call, or suspend
2230	 */
2231	rtnl_lock();
2232
2233	/* Skip the reset task if suspended or closed, or if it's
2234	 * been cancelled by gem_do_stop (see comment there)
2235	 */
2236	if (!netif_device_present(gp->dev) ||
2237	    !netif_running(gp->dev) ||
2238	    !gp->reset_task_pending) {
2239		rtnl_unlock();
2240		return;
2241	}
2242
2243	/* Stop the link timer */
2244	del_timer_sync(&gp->link_timer);
2245
2246	/* Stop NAPI and tx */
2247	gem_netif_stop(gp);
2248
2249	/* Reset the chip & rings */
2250	gem_reinit_chip(gp);
2251	if (gp->lstate == link_up)
2252		gem_set_link_modes(gp);
2253
2254	/* Restart NAPI and Tx */
2255	gem_netif_start(gp);
2256
2257	/* We are back ! */
2258	gp->reset_task_pending = 0;
2259
2260	/* If the link is not up, restart autoneg, else restart the
2261	 * polling timer
2262	 */
2263	if (gp->lstate != link_up)
2264		gem_begin_auto_negotiation(gp, NULL);
2265	else
2266		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2267
2268	rtnl_unlock();
2269}
2270
2271static int gem_open(struct net_device *dev)
2272{
2273	struct gem *gp = netdev_priv(dev);
2274	int rc;
2275
2276	/* We allow open while suspended, we just do nothing,
2277	 * the chip will be initialized in resume()
2278	 */
2279	if (netif_device_present(dev)) {
2280		/* Enable the cell */
2281		gem_get_cell(gp);
2282
2283		/* Make sure PCI access and bus master are enabled */
2284		rc = pci_enable_device(gp->pdev);
2285		if (rc) {
2286			netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2287
2288			/* Put cell and forget it for now, it will be considered
2289			 *as still asleep, a new sleep cycle may bring it back
2290			 */
2291			gem_put_cell(gp);
2292			return -ENXIO;
2293		}
2294		return gem_do_start(dev);
2295	}
2296
2297	return 0;
2298}
2299
2300static int gem_close(struct net_device *dev)
2301{
2302	struct gem *gp = netdev_priv(dev);
2303
2304	if (netif_device_present(dev)) {
2305		gem_do_stop(dev, 0);
2306
2307		/* Make sure bus master is disabled */
2308		pci_disable_device(gp->pdev);
2309
2310		/* Cell not needed neither if no WOL */
2311		if (!gp->asleep_wol)
2312			gem_put_cell(gp);
2313	}
2314	return 0;
2315}
2316
2317static int __maybe_unused gem_suspend(struct device *dev_d)
 
2318{
2319	struct net_device *dev = dev_get_drvdata(dev_d);
2320	struct gem *gp = netdev_priv(dev);
2321
2322	/* Lock the network stack first to avoid racing with open/close,
2323	 * reset task and setting calls
2324	 */
2325	rtnl_lock();
2326
2327	/* Not running, mark ourselves non-present, no need for
2328	 * a lock here
2329	 */
2330	if (!netif_running(dev)) {
2331		netif_device_detach(dev);
2332		rtnl_unlock();
2333		return 0;
2334	}
2335	netdev_info(dev, "suspending, WakeOnLan %s\n",
2336		    (gp->wake_on_lan && netif_running(dev)) ?
2337		    "enabled" : "disabled");
2338
2339	/* Tell the network stack we're gone. gem_do_stop() below will
2340	 * synchronize with TX, stop NAPI etc...
2341	 */
2342	netif_device_detach(dev);
2343
2344	/* Switch off chip, remember WOL setting */
2345	gp->asleep_wol = !!gp->wake_on_lan;
2346	gem_do_stop(dev, gp->asleep_wol);
2347
2348	/* Cell not needed neither if no WOL */
2349	if (!gp->asleep_wol)
2350		gem_put_cell(gp);
2351
2352	/* Unlock the network stack */
2353	rtnl_unlock();
2354
2355	return 0;
2356}
2357
2358static int __maybe_unused gem_resume(struct device *dev_d)
2359{
2360	struct net_device *dev = dev_get_drvdata(dev_d);
2361	struct gem *gp = netdev_priv(dev);
2362
2363	/* See locking comment in gem_suspend */
2364	rtnl_lock();
2365
2366	/* Not running, mark ourselves present, no need for
2367	 * a lock here
2368	 */
2369	if (!netif_running(dev)) {
2370		netif_device_attach(dev);
2371		rtnl_unlock();
2372		return 0;
2373	}
2374
2375	/* Enable the cell */
2376	gem_get_cell(gp);
2377
2378	/* Restart chip. If that fails there isn't much we can do, we
2379	 * leave things stopped.
2380	 */
2381	gem_do_start(dev);
2382
2383	/* If we had WOL enabled, the cell clock was never turned off during
2384	 * sleep, so we end up beeing unbalanced. Fix that here
2385	 */
2386	if (gp->asleep_wol)
2387		gem_put_cell(gp);
2388
2389	/* Unlock the network stack */
2390	rtnl_unlock();
2391
2392	return 0;
2393}
 
2394
2395static struct net_device_stats *gem_get_stats(struct net_device *dev)
2396{
2397	struct gem *gp = netdev_priv(dev);
2398
2399	/* I have seen this being called while the PM was in progress,
2400	 * so we shield against this. Let's also not poke at registers
2401	 * while the reset task is going on.
2402	 *
2403	 * TODO: Move stats collection elsewhere (link timer ?) and
2404	 * make this a nop to avoid all those synchro issues
2405	 */
2406	if (!netif_device_present(dev) || !netif_running(dev))
2407		goto bail;
2408
2409	/* Better safe than sorry... */
2410	if (WARN_ON(!gp->cell_enabled))
2411		goto bail;
2412
2413	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2414	writel(0, gp->regs + MAC_FCSERR);
2415
2416	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2417	writel(0, gp->regs + MAC_AERR);
2418
2419	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2420	writel(0, gp->regs + MAC_LERR);
2421
2422	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2423	dev->stats.collisions +=
2424		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2425	writel(0, gp->regs + MAC_ECOLL);
2426	writel(0, gp->regs + MAC_LCOLL);
2427 bail:
2428	return &dev->stats;
2429}
2430
2431static int gem_set_mac_address(struct net_device *dev, void *addr)
2432{
2433	struct sockaddr *macaddr = (struct sockaddr *) addr;
2434	const unsigned char *e = &dev->dev_addr[0];
2435	struct gem *gp = netdev_priv(dev);
 
2436
2437	if (!is_valid_ether_addr(macaddr->sa_data))
2438		return -EADDRNOTAVAIL;
2439
2440	eth_hw_addr_set(dev, macaddr->sa_data);
2441
2442	/* We'll just catch it later when the device is up'd or resumed */
2443	if (!netif_running(dev) || !netif_device_present(dev))
2444		return 0;
2445
2446	/* Better safe than sorry... */
2447	if (WARN_ON(!gp->cell_enabled))
2448		return 0;
2449
2450	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2451	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2452	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2453
2454	return 0;
2455}
2456
2457static void gem_set_multicast(struct net_device *dev)
2458{
2459	struct gem *gp = netdev_priv(dev);
2460	u32 rxcfg, rxcfg_new;
2461	int limit = 10000;
2462
2463	if (!netif_running(dev) || !netif_device_present(dev))
2464		return;
2465
2466	/* Better safe than sorry... */
2467	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2468		return;
2469
2470	rxcfg = readl(gp->regs + MAC_RXCFG);
2471	rxcfg_new = gem_setup_multicast(gp);
2472#ifdef STRIP_FCS
2473	rxcfg_new |= MAC_RXCFG_SFCS;
2474#endif
2475	gp->mac_rx_cfg = rxcfg_new;
2476
2477	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2478	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2479		if (!limit--)
2480			break;
2481		udelay(10);
2482	}
2483
2484	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2485	rxcfg |= rxcfg_new;
2486
2487	writel(rxcfg, gp->regs + MAC_RXCFG);
2488}
2489
2490/* Jumbo-grams don't seem to work :-( */
2491#define GEM_MIN_MTU	ETH_MIN_MTU
2492#if 1
2493#define GEM_MAX_MTU	ETH_DATA_LEN
2494#else
2495#define GEM_MAX_MTU	9000
2496#endif
2497
2498static int gem_change_mtu(struct net_device *dev, int new_mtu)
2499{
2500	struct gem *gp = netdev_priv(dev);
2501
2502	dev->mtu = new_mtu;
2503
2504	/* We'll just catch it later when the device is up'd or resumed */
2505	if (!netif_running(dev) || !netif_device_present(dev))
2506		return 0;
2507
2508	/* Better safe than sorry... */
2509	if (WARN_ON(!gp->cell_enabled))
2510		return 0;
2511
2512	gem_netif_stop(gp);
2513	gem_reinit_chip(gp);
2514	if (gp->lstate == link_up)
2515		gem_set_link_modes(gp);
2516	gem_netif_start(gp);
2517
2518	return 0;
2519}
2520
2521static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2522{
2523	struct gem *gp = netdev_priv(dev);
2524
2525	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2526	strscpy(info->version, DRV_VERSION, sizeof(info->version));
2527	strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2528}
2529
2530static int gem_get_link_ksettings(struct net_device *dev,
2531				  struct ethtool_link_ksettings *cmd)
2532{
2533	struct gem *gp = netdev_priv(dev);
2534	u32 supported, advertising;
2535
2536	if (gp->phy_type == phy_mii_mdio0 ||
2537	    gp->phy_type == phy_mii_mdio1) {
2538		if (gp->phy_mii.def)
2539			supported = gp->phy_mii.def->features;
2540		else
2541			supported = (SUPPORTED_10baseT_Half |
2542					  SUPPORTED_10baseT_Full);
2543
2544		/* XXX hardcoded stuff for now */
2545		cmd->base.port = PORT_MII;
2546		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2547
2548		/* Return current PHY settings */
2549		cmd->base.autoneg = gp->want_autoneg;
2550		cmd->base.speed = gp->phy_mii.speed;
2551		cmd->base.duplex = gp->phy_mii.duplex;
2552		advertising = gp->phy_mii.advertising;
2553
2554		/* If we started with a forced mode, we don't have a default
2555		 * advertise set, we need to return something sensible so
2556		 * userland can re-enable autoneg properly.
2557		 */
2558		if (advertising == 0)
2559			advertising = supported;
2560	} else { // XXX PCS ?
2561		supported =
2562			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2563			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2564			 SUPPORTED_Autoneg);
2565		advertising = supported;
2566		cmd->base.speed = 0;
2567		cmd->base.duplex = 0;
2568		cmd->base.port = 0;
2569		cmd->base.phy_address = 0;
2570		cmd->base.autoneg = 0;
2571
2572		/* serdes means usually a Fibre connector, with most fixed */
2573		if (gp->phy_type == phy_serdes) {
2574			cmd->base.port = PORT_FIBRE;
2575			supported = (SUPPORTED_1000baseT_Half |
2576				SUPPORTED_1000baseT_Full |
2577				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2578				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2579			advertising = supported;
2580			if (gp->lstate == link_up)
2581				cmd->base.speed = SPEED_1000;
2582			cmd->base.duplex = DUPLEX_FULL;
2583			cmd->base.autoneg = 1;
2584		}
2585	}
2586
2587	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2588						supported);
2589	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2590						advertising);
2591
2592	return 0;
2593}
2594
2595static int gem_set_link_ksettings(struct net_device *dev,
2596				  const struct ethtool_link_ksettings *cmd)
2597{
2598	struct gem *gp = netdev_priv(dev);
2599	u32 speed = cmd->base.speed;
2600	u32 advertising;
2601
2602	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2603						cmd->link_modes.advertising);
2604
2605	/* Verify the settings we care about. */
2606	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2607	    cmd->base.autoneg != AUTONEG_DISABLE)
2608		return -EINVAL;
2609
2610	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2611	    advertising == 0)
2612		return -EINVAL;
2613
2614	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2615	    ((speed != SPEED_1000 &&
2616	      speed != SPEED_100 &&
2617	      speed != SPEED_10) ||
2618	     (cmd->base.duplex != DUPLEX_HALF &&
2619	      cmd->base.duplex != DUPLEX_FULL)))
2620		return -EINVAL;
2621
2622	/* Apply settings and restart link process. */
2623	if (netif_device_present(gp->dev)) {
2624		del_timer_sync(&gp->link_timer);
2625		gem_begin_auto_negotiation(gp, cmd);
2626	}
2627
2628	return 0;
2629}
2630
2631static int gem_nway_reset(struct net_device *dev)
2632{
2633	struct gem *gp = netdev_priv(dev);
2634
2635	if (!gp->want_autoneg)
2636		return -EINVAL;
2637
2638	/* Restart link process  */
2639	if (netif_device_present(gp->dev)) {
2640		del_timer_sync(&gp->link_timer);
2641		gem_begin_auto_negotiation(gp, NULL);
2642	}
2643
2644	return 0;
2645}
2646
2647static u32 gem_get_msglevel(struct net_device *dev)
2648{
2649	struct gem *gp = netdev_priv(dev);
2650	return gp->msg_enable;
2651}
2652
2653static void gem_set_msglevel(struct net_device *dev, u32 value)
2654{
2655	struct gem *gp = netdev_priv(dev);
2656	gp->msg_enable = value;
2657}
2658
2659
2660/* Add more when I understand how to program the chip */
2661/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2662
2663#define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2664
2665static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666{
2667	struct gem *gp = netdev_priv(dev);
2668
2669	/* Add more when I understand how to program the chip */
2670	if (gp->has_wol) {
2671		wol->supported = WOL_SUPPORTED_MASK;
2672		wol->wolopts = gp->wake_on_lan;
2673	} else {
2674		wol->supported = 0;
2675		wol->wolopts = 0;
2676	}
2677}
2678
2679static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2680{
2681	struct gem *gp = netdev_priv(dev);
2682
2683	if (!gp->has_wol)
2684		return -EOPNOTSUPP;
2685	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2686	return 0;
2687}
2688
2689static const struct ethtool_ops gem_ethtool_ops = {
2690	.get_drvinfo		= gem_get_drvinfo,
2691	.get_link		= ethtool_op_get_link,
2692	.nway_reset		= gem_nway_reset,
2693	.get_msglevel		= gem_get_msglevel,
2694	.set_msglevel		= gem_set_msglevel,
2695	.get_wol		= gem_get_wol,
2696	.set_wol		= gem_set_wol,
2697	.get_link_ksettings	= gem_get_link_ksettings,
2698	.set_link_ksettings	= gem_set_link_ksettings,
2699};
2700
2701static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2702{
2703	struct gem *gp = netdev_priv(dev);
2704	struct mii_ioctl_data *data = if_mii(ifr);
2705	int rc = -EOPNOTSUPP;
2706
2707	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2708	 * netif_device_present() is true and holds rtnl_lock for us
2709	 * so we have nothing to worry about
2710	 */
2711
2712	switch (cmd) {
2713	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2714		data->phy_id = gp->mii_phy_addr;
2715		fallthrough;
2716
2717	case SIOCGMIIREG:		/* Read MII PHY register. */
2718		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2719					   data->reg_num & 0x1f);
2720		rc = 0;
2721		break;
2722
2723	case SIOCSMIIREG:		/* Write MII PHY register. */
2724		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2725			    data->val_in);
2726		rc = 0;
2727		break;
2728	}
2729	return rc;
2730}
2731
2732#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2733/* Fetch MAC address from vital product data of PCI ROM. */
2734static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2735{
2736	int this_offset;
2737
2738	for (this_offset = 0x20; this_offset < len; this_offset++) {
2739		void __iomem *p = rom_base + this_offset;
2740		int i;
2741
2742		if (readb(p + 0) != 0x90 ||
2743		    readb(p + 1) != 0x00 ||
2744		    readb(p + 2) != 0x09 ||
2745		    readb(p + 3) != 0x4e ||
2746		    readb(p + 4) != 0x41 ||
2747		    readb(p + 5) != 0x06)
2748			continue;
2749
2750		this_offset += 6;
2751		p += 6;
2752
2753		for (i = 0; i < 6; i++)
2754			dev_addr[i] = readb(p + i);
2755		return 1;
2756	}
2757	return 0;
2758}
2759
2760static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2761{
2762	size_t size;
2763	void __iomem *p = pci_map_rom(pdev, &size);
2764
2765	if (p) {
2766		int found;
2767
2768		found = readb(p) == 0x55 &&
2769			readb(p + 1) == 0xaa &&
2770			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2771		pci_unmap_rom(pdev, p);
2772		if (found)
2773			return;
2774	}
2775
2776	/* Sun MAC prefix then 3 random bytes. */
2777	dev_addr[0] = 0x08;
2778	dev_addr[1] = 0x00;
2779	dev_addr[2] = 0x20;
2780	get_random_bytes(dev_addr + 3, 3);
2781}
2782#endif /* not Sparc and not PPC */
2783
2784static int gem_get_device_address(struct gem *gp)
2785{
2786#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2787	struct net_device *dev = gp->dev;
2788	const unsigned char *addr;
2789
2790	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2791	if (addr == NULL) {
2792#ifdef CONFIG_SPARC
2793		addr = idprom->id_ethaddr;
2794#else
2795		printk("\n");
2796		pr_err("%s: can't get mac-address\n", dev->name);
2797		return -1;
2798#endif
2799	}
2800	eth_hw_addr_set(dev, addr);
2801#else
2802	u8 addr[ETH_ALEN];
2803
2804	get_gem_mac_nonobp(gp->pdev, addr);
2805	eth_hw_addr_set(gp->dev, addr);
2806#endif
2807	return 0;
2808}
2809
2810static void gem_remove_one(struct pci_dev *pdev)
2811{
2812	struct net_device *dev = pci_get_drvdata(pdev);
2813
2814	if (dev) {
2815		struct gem *gp = netdev_priv(dev);
2816
2817		unregister_netdev(dev);
2818
2819		/* Ensure reset task is truly gone */
2820		cancel_work_sync(&gp->reset_task);
2821
2822		/* Free resources */
2823		dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2824				  gp->init_block, gp->gblock_dvma);
 
 
2825		iounmap(gp->regs);
2826		pci_release_regions(pdev);
2827		free_netdev(dev);
2828	}
2829}
2830
2831static const struct net_device_ops gem_netdev_ops = {
2832	.ndo_open		= gem_open,
2833	.ndo_stop		= gem_close,
2834	.ndo_start_xmit		= gem_start_xmit,
2835	.ndo_get_stats		= gem_get_stats,
2836	.ndo_set_rx_mode	= gem_set_multicast,
2837	.ndo_eth_ioctl		= gem_ioctl,
2838	.ndo_tx_timeout		= gem_tx_timeout,
2839	.ndo_change_mtu		= gem_change_mtu,
2840	.ndo_validate_addr	= eth_validate_addr,
2841	.ndo_set_mac_address    = gem_set_mac_address,
2842#ifdef CONFIG_NET_POLL_CONTROLLER
2843	.ndo_poll_controller    = gem_poll_controller,
2844#endif
2845};
2846
2847static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2848{
2849	unsigned long gemreg_base, gemreg_len;
2850	struct net_device *dev;
2851	struct gem *gp;
2852	int err, pci_using_dac;
2853
2854	printk_once(KERN_INFO "%s", version);
2855
2856	/* Apple gmac note: during probe, the chip is powered up by
2857	 * the arch code to allow the code below to work (and to let
2858	 * the chip be probed on the config space. It won't stay powered
2859	 * up until the interface is brought up however, so we can't rely
2860	 * on register configuration done at this point.
2861	 */
2862	err = pci_enable_device(pdev);
2863	if (err) {
2864		pr_err("Cannot enable MMIO operation, aborting\n");
2865		return err;
2866	}
2867	pci_set_master(pdev);
2868
2869	/* Configure DMA attributes. */
2870
2871	/* All of the GEM documentation states that 64-bit DMA addressing
2872	 * is fully supported and should work just fine.  However the
2873	 * front end for RIO based GEMs is different and only supports
2874	 * 32-bit addressing.
2875	 *
2876	 * For now we assume the various PPC GEMs are 32-bit only as well.
2877	 */
2878	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2879	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2880	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2881		pci_using_dac = 1;
2882	} else {
2883		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2884		if (err) {
2885			pr_err("No usable DMA configuration, aborting\n");
2886			goto err_disable_device;
2887		}
2888		pci_using_dac = 0;
2889	}
2890
2891	gemreg_base = pci_resource_start(pdev, 0);
2892	gemreg_len = pci_resource_len(pdev, 0);
2893
2894	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2895		pr_err("Cannot find proper PCI device base address, aborting\n");
2896		err = -ENODEV;
2897		goto err_disable_device;
2898	}
2899
2900	dev = alloc_etherdev(sizeof(*gp));
2901	if (!dev) {
2902		err = -ENOMEM;
2903		goto err_disable_device;
2904	}
2905	SET_NETDEV_DEV(dev, &pdev->dev);
2906
2907	gp = netdev_priv(dev);
2908
2909	err = pci_request_regions(pdev, DRV_NAME);
2910	if (err) {
2911		pr_err("Cannot obtain PCI resources, aborting\n");
2912		goto err_out_free_netdev;
2913	}
2914
2915	gp->pdev = pdev;
2916	gp->dev = dev;
2917
2918	gp->msg_enable = DEFAULT_MSG;
2919
2920	timer_setup(&gp->link_timer, gem_link_timer, 0);
2921
2922	INIT_WORK(&gp->reset_task, gem_reset_task);
2923
2924	gp->lstate = link_down;
2925	gp->timer_ticks = 0;
2926	netif_carrier_off(dev);
2927
2928	gp->regs = ioremap(gemreg_base, gemreg_len);
2929	if (!gp->regs) {
2930		pr_err("Cannot map device registers, aborting\n");
2931		err = -EIO;
2932		goto err_out_free_res;
2933	}
2934
2935	/* On Apple, we want a reference to the Open Firmware device-tree
2936	 * node. We use it for clock control.
2937	 */
2938#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2939	gp->of_node = pci_device_to_OF_node(pdev);
2940#endif
2941
2942	/* Only Apple version supports WOL afaik */
2943	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2944		gp->has_wol = 1;
2945
2946	/* Make sure cell is enabled */
2947	gem_get_cell(gp);
2948
2949	/* Make sure everything is stopped and in init state */
2950	gem_reset(gp);
2951
2952	/* Fill up the mii_phy structure (even if we won't use it) */
2953	gp->phy_mii.dev = dev;
2954	gp->phy_mii.mdio_read = _sungem_phy_read;
2955	gp->phy_mii.mdio_write = _sungem_phy_write;
2956#ifdef CONFIG_PPC_PMAC
2957	gp->phy_mii.platform_data = gp->of_node;
2958#endif
2959	/* By default, we start with autoneg */
2960	gp->want_autoneg = 1;
2961
2962	/* Check fifo sizes, PHY type, etc... */
2963	if (gem_check_invariants(gp)) {
2964		err = -ENODEV;
2965		goto err_out_iounmap;
2966	}
2967
2968	/* It is guaranteed that the returned buffer will be at least
2969	 * PAGE_SIZE aligned.
2970	 */
2971	gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2972					    &gp->gblock_dvma, GFP_KERNEL);
 
2973	if (!gp->init_block) {
2974		pr_err("Cannot allocate init block, aborting\n");
2975		err = -ENOMEM;
2976		goto err_out_iounmap;
2977	}
2978
2979	err = gem_get_device_address(gp);
2980	if (err)
2981		goto err_out_free_consistent;
2982
2983	dev->netdev_ops = &gem_netdev_ops;
2984	netif_napi_add(dev, &gp->napi, gem_poll);
2985	dev->ethtool_ops = &gem_ethtool_ops;
2986	dev->watchdog_timeo = 5 * HZ;
2987	dev->dma = 0;
2988
2989	/* Set that now, in case PM kicks in now */
2990	pci_set_drvdata(pdev, dev);
2991
2992	/* We can do scatter/gather and HW checksum */
2993	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2994	dev->features = dev->hw_features;
2995	if (pci_using_dac)
2996		dev->features |= NETIF_F_HIGHDMA;
2997
2998	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2999	dev->min_mtu = GEM_MIN_MTU;
3000	dev->max_mtu = GEM_MAX_MTU;
3001
3002	/* Register with kernel */
3003	if (register_netdev(dev)) {
3004		pr_err("Cannot register net device, aborting\n");
3005		err = -ENOMEM;
3006		goto err_out_free_consistent;
3007	}
3008
3009	/* Undo the get_cell with appropriate locking (we could use
3010	 * ndo_init/uninit but that would be even more clumsy imho)
3011	 */
3012	rtnl_lock();
3013	gem_put_cell(gp);
3014	rtnl_unlock();
3015
3016	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3017		    dev->dev_addr);
3018	return 0;
3019
3020err_out_free_consistent:
3021	gem_remove_one(pdev);
3022err_out_iounmap:
3023	gem_put_cell(gp);
3024	iounmap(gp->regs);
3025
3026err_out_free_res:
3027	pci_release_regions(pdev);
3028
3029err_out_free_netdev:
3030	free_netdev(dev);
3031err_disable_device:
3032	pci_disable_device(pdev);
3033	return err;
3034
3035}
3036
3037static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3038
3039static struct pci_driver gem_driver = {
3040	.name		= GEM_MODULE_NAME,
3041	.id_table	= gem_pci_tbl,
3042	.probe		= gem_init_one,
3043	.remove		= gem_remove_one,
3044	.driver.pm	= &gem_pm_ops,
 
 
 
3045};
3046
3047module_pci_driver(gem_driver);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   3 * sungem.c: Sun GEM ethernet driver.
   4 *
   5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   6 *
   7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  10 *
  11 * NAPI and NETPOLL support
  12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  13 *
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/fcntl.h>
  22#include <linux/interrupt.h>
  23#include <linux/ioport.h>
  24#include <linux/in.h>
  25#include <linux/sched.h>
  26#include <linux/string.h>
  27#include <linux/delay.h>
  28#include <linux/errno.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36#include <linux/crc32.h>
  37#include <linux/random.h>
  38#include <linux/workqueue.h>
  39#include <linux/if_vlan.h>
  40#include <linux/bitops.h>
  41#include <linux/mm.h>
  42#include <linux/gfp.h>
 
  43
  44#include <asm/io.h>
  45#include <asm/byteorder.h>
  46#include <linux/uaccess.h>
  47#include <asm/irq.h>
  48
  49#ifdef CONFIG_SPARC
  50#include <asm/idprom.h>
  51#include <asm/prom.h>
  52#endif
  53
  54#ifdef CONFIG_PPC_PMAC
  55#include <asm/prom.h>
  56#include <asm/machdep.h>
  57#include <asm/pmac_feature.h>
  58#endif
  59
  60#include <linux/sungem_phy.h>
  61#include "sungem.h"
  62
  63#define STRIP_FCS
  64
  65#define DEFAULT_MSG	(NETIF_MSG_DRV		| \
  66			 NETIF_MSG_PROBE	| \
  67			 NETIF_MSG_LINK)
  68
  69#define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  70			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  71			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  72			 SUPPORTED_Pause | SUPPORTED_Autoneg)
  73
  74#define DRV_NAME	"sungem"
  75#define DRV_VERSION	"1.0"
  76#define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
  77
  78static char version[] =
  79        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  80
  81MODULE_AUTHOR(DRV_AUTHOR);
  82MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  83MODULE_LICENSE("GPL");
  84
  85#define GEM_MODULE_NAME	"gem"
  86
  87static const struct pci_device_id gem_pci_tbl[] = {
  88	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  89	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90
  91	/* These models only differ from the original GEM in
  92	 * that their tx/rx fifos are of a different size and
  93	 * they only support 10/100 speeds. -DaveM
  94	 *
  95	 * Apple's GMAC does support gigabit on machines with
  96	 * the BCM54xx PHYs. -BenH
  97	 */
  98	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  99	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 100	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 101	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 102	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 103	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 104	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 105	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 106	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 107	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 108	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 109	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 110	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 111	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 112	{0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 116
 117static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
 118{
 119	u32 cmd;
 120	int limit = 10000;
 121
 122	cmd  = (1 << 30);
 123	cmd |= (2 << 28);
 124	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 125	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 126	cmd |= (MIF_FRAME_TAMSB);
 127	writel(cmd, gp->regs + MIF_FRAME);
 128
 129	while (--limit) {
 130		cmd = readl(gp->regs + MIF_FRAME);
 131		if (cmd & MIF_FRAME_TALSB)
 132			break;
 133
 134		udelay(10);
 135	}
 136
 137	if (!limit)
 138		cmd = 0xffff;
 139
 140	return cmd & MIF_FRAME_DATA;
 141}
 142
 143static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
 144{
 145	struct gem *gp = netdev_priv(dev);
 146	return __sungem_phy_read(gp, mii_id, reg);
 147}
 148
 149static inline u16 sungem_phy_read(struct gem *gp, int reg)
 150{
 151	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
 152}
 153
 154static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 155{
 156	u32 cmd;
 157	int limit = 10000;
 158
 159	cmd  = (1 << 30);
 160	cmd |= (1 << 28);
 161	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 162	cmd |= (reg << 18) & MIF_FRAME_REGAD;
 163	cmd |= (MIF_FRAME_TAMSB);
 164	cmd |= (val & MIF_FRAME_DATA);
 165	writel(cmd, gp->regs + MIF_FRAME);
 166
 167	while (limit--) {
 168		cmd = readl(gp->regs + MIF_FRAME);
 169		if (cmd & MIF_FRAME_TALSB)
 170			break;
 171
 172		udelay(10);
 173	}
 174}
 175
 176static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
 177{
 178	struct gem *gp = netdev_priv(dev);
 179	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
 180}
 181
 182static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
 183{
 184	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
 185}
 186
 187static inline void gem_enable_ints(struct gem *gp)
 188{
 189	/* Enable all interrupts but TXDONE */
 190	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 191}
 192
 193static inline void gem_disable_ints(struct gem *gp)
 194{
 195	/* Disable all interrupts, including TXDONE */
 196	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 197	(void)readl(gp->regs + GREG_IMASK); /* write posting */
 198}
 199
 200static void gem_get_cell(struct gem *gp)
 201{
 202	BUG_ON(gp->cell_enabled < 0);
 203	gp->cell_enabled++;
 204#ifdef CONFIG_PPC_PMAC
 205	if (gp->cell_enabled == 1) {
 206		mb();
 207		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 208		udelay(10);
 209	}
 210#endif /* CONFIG_PPC_PMAC */
 211}
 212
 213/* Turn off the chip's clock */
 214static void gem_put_cell(struct gem *gp)
 215{
 216	BUG_ON(gp->cell_enabled <= 0);
 217	gp->cell_enabled--;
 218#ifdef CONFIG_PPC_PMAC
 219	if (gp->cell_enabled == 0) {
 220		mb();
 221		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 222		udelay(10);
 223	}
 224#endif /* CONFIG_PPC_PMAC */
 225}
 226
 227static inline void gem_netif_stop(struct gem *gp)
 228{
 229	netif_trans_update(gp->dev);	/* prevent tx timeout */
 230	napi_disable(&gp->napi);
 231	netif_tx_disable(gp->dev);
 232}
 233
 234static inline void gem_netif_start(struct gem *gp)
 235{
 236	/* NOTE: unconditional netif_wake_queue is only
 237	 * appropriate so long as all callers are assured to
 238	 * have free tx slots.
 239	 */
 240	netif_wake_queue(gp->dev);
 241	napi_enable(&gp->napi);
 242}
 243
 244static void gem_schedule_reset(struct gem *gp)
 245{
 246	gp->reset_task_pending = 1;
 247	schedule_work(&gp->reset_task);
 248}
 249
 250static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 251{
 252	if (netif_msg_intr(gp))
 253		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 254}
 255
 256static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 257{
 258	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 259	u32 pcs_miistat;
 260
 261	if (netif_msg_intr(gp))
 262		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 263			gp->dev->name, pcs_istat);
 264
 265	if (!(pcs_istat & PCS_ISTAT_LSC)) {
 266		netdev_err(dev, "PCS irq but no link status change???\n");
 267		return 0;
 268	}
 269
 270	/* The link status bit latches on zero, so you must
 271	 * read it twice in such a case to see a transition
 272	 * to the link being up.
 273	 */
 274	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 275	if (!(pcs_miistat & PCS_MIISTAT_LS))
 276		pcs_miistat |=
 277			(readl(gp->regs + PCS_MIISTAT) &
 278			 PCS_MIISTAT_LS);
 279
 280	if (pcs_miistat & PCS_MIISTAT_ANC) {
 281		/* The remote-fault indication is only valid
 282		 * when autoneg has completed.
 283		 */
 284		if (pcs_miistat & PCS_MIISTAT_RF)
 285			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
 286		else
 287			netdev_info(dev, "PCS AutoNEG complete\n");
 288	}
 289
 290	if (pcs_miistat & PCS_MIISTAT_LS) {
 291		netdev_info(dev, "PCS link is now up\n");
 292		netif_carrier_on(gp->dev);
 293	} else {
 294		netdev_info(dev, "PCS link is now down\n");
 295		netif_carrier_off(gp->dev);
 296		/* If this happens and the link timer is not running,
 297		 * reset so we re-negotiate.
 298		 */
 299		if (!timer_pending(&gp->link_timer))
 300			return 1;
 301	}
 302
 303	return 0;
 304}
 305
 306static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 307{
 308	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 309
 310	if (netif_msg_intr(gp))
 311		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 312			gp->dev->name, txmac_stat);
 313
 314	/* Defer timer expiration is quite normal,
 315	 * don't even log the event.
 316	 */
 317	if ((txmac_stat & MAC_TXSTAT_DTE) &&
 318	    !(txmac_stat & ~MAC_TXSTAT_DTE))
 319		return 0;
 320
 321	if (txmac_stat & MAC_TXSTAT_URUN) {
 322		netdev_err(dev, "TX MAC xmit underrun\n");
 323		dev->stats.tx_fifo_errors++;
 324	}
 325
 326	if (txmac_stat & MAC_TXSTAT_MPE) {
 327		netdev_err(dev, "TX MAC max packet size error\n");
 328		dev->stats.tx_errors++;
 329	}
 330
 331	/* The rest are all cases of one of the 16-bit TX
 332	 * counters expiring.
 333	 */
 334	if (txmac_stat & MAC_TXSTAT_NCE)
 335		dev->stats.collisions += 0x10000;
 336
 337	if (txmac_stat & MAC_TXSTAT_ECE) {
 338		dev->stats.tx_aborted_errors += 0x10000;
 339		dev->stats.collisions += 0x10000;
 340	}
 341
 342	if (txmac_stat & MAC_TXSTAT_LCE) {
 343		dev->stats.tx_aborted_errors += 0x10000;
 344		dev->stats.collisions += 0x10000;
 345	}
 346
 347	/* We do not keep track of MAC_TXSTAT_FCE and
 348	 * MAC_TXSTAT_PCE events.
 349	 */
 350	return 0;
 351}
 352
 353/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 354 * so we do the following.
 355 *
 356 * If any part of the reset goes wrong, we return 1 and that causes the
 357 * whole chip to be reset.
 358 */
 359static int gem_rxmac_reset(struct gem *gp)
 360{
 361	struct net_device *dev = gp->dev;
 362	int limit, i;
 363	u64 desc_dma;
 364	u32 val;
 365
 366	/* First, reset & disable MAC RX. */
 367	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 368	for (limit = 0; limit < 5000; limit++) {
 369		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 370			break;
 371		udelay(10);
 372	}
 373	if (limit == 5000) {
 374		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
 375		return 1;
 376	}
 377
 378	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 379	       gp->regs + MAC_RXCFG);
 380	for (limit = 0; limit < 5000; limit++) {
 381		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 382			break;
 383		udelay(10);
 384	}
 385	if (limit == 5000) {
 386		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 387		return 1;
 388	}
 389
 390	/* Second, disable RX DMA. */
 391	writel(0, gp->regs + RXDMA_CFG);
 392	for (limit = 0; limit < 5000; limit++) {
 393		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 394			break;
 395		udelay(10);
 396	}
 397	if (limit == 5000) {
 398		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 399		return 1;
 400	}
 401
 402	mdelay(5);
 403
 404	/* Execute RX reset command. */
 405	writel(gp->swrst_base | GREG_SWRST_RXRST,
 406	       gp->regs + GREG_SWRST);
 407	for (limit = 0; limit < 5000; limit++) {
 408		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 409			break;
 410		udelay(10);
 411	}
 412	if (limit == 5000) {
 413		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 414		return 1;
 415	}
 416
 417	/* Refresh the RX ring. */
 418	for (i = 0; i < RX_RING_SIZE; i++) {
 419		struct gem_rxd *rxd = &gp->init_block->rxd[i];
 420
 421		if (gp->rx_skbs[i] == NULL) {
 422			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
 423			return 1;
 424		}
 425
 426		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 427	}
 428	gp->rx_new = gp->rx_old = 0;
 429
 430	/* Now we must reprogram the rest of RX unit. */
 431	desc_dma = (u64) gp->gblock_dvma;
 432	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 433	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 434	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 435	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 436	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 437	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
 438	writel(val, gp->regs + RXDMA_CFG);
 439	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 440		writel(((5 & RXDMA_BLANK_IPKTS) |
 441			((8 << 12) & RXDMA_BLANK_ITIME)),
 442		       gp->regs + RXDMA_BLANK);
 443	else
 444		writel(((5 & RXDMA_BLANK_IPKTS) |
 445			((4 << 12) & RXDMA_BLANK_ITIME)),
 446		       gp->regs + RXDMA_BLANK);
 447	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 448	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 449	writel(val, gp->regs + RXDMA_PTHRESH);
 450	val = readl(gp->regs + RXDMA_CFG);
 451	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 452	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 453	val = readl(gp->regs + MAC_RXCFG);
 454	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 455
 456	return 0;
 457}
 458
 459static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 460{
 461	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 462	int ret = 0;
 463
 464	if (netif_msg_intr(gp))
 465		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 466			gp->dev->name, rxmac_stat);
 467
 468	if (rxmac_stat & MAC_RXSTAT_OFLW) {
 469		u32 smac = readl(gp->regs + MAC_SMACHINE);
 470
 471		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
 472		dev->stats.rx_over_errors++;
 473		dev->stats.rx_fifo_errors++;
 474
 475		ret = gem_rxmac_reset(gp);
 476	}
 477
 478	if (rxmac_stat & MAC_RXSTAT_ACE)
 479		dev->stats.rx_frame_errors += 0x10000;
 480
 481	if (rxmac_stat & MAC_RXSTAT_CCE)
 482		dev->stats.rx_crc_errors += 0x10000;
 483
 484	if (rxmac_stat & MAC_RXSTAT_LCE)
 485		dev->stats.rx_length_errors += 0x10000;
 486
 487	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 488	 * events.
 489	 */
 490	return ret;
 491}
 492
 493static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 494{
 495	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 496
 497	if (netif_msg_intr(gp))
 498		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 499			gp->dev->name, mac_cstat);
 500
 501	/* This interrupt is just for pause frame and pause
 502	 * tracking.  It is useful for diagnostics and debug
 503	 * but probably by default we will mask these events.
 504	 */
 505	if (mac_cstat & MAC_CSTAT_PS)
 506		gp->pause_entered++;
 507
 508	if (mac_cstat & MAC_CSTAT_PRCV)
 509		gp->pause_last_time_recvd = (mac_cstat >> 16);
 510
 511	return 0;
 512}
 513
 514static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 515{
 516	u32 mif_status = readl(gp->regs + MIF_STATUS);
 517	u32 reg_val, changed_bits;
 518
 519	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 520	changed_bits = (mif_status & MIF_STATUS_STAT);
 521
 522	gem_handle_mif_event(gp, reg_val, changed_bits);
 523
 524	return 0;
 525}
 526
 527static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 528{
 529	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 530
 531	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 532	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 533		netdev_err(dev, "PCI error [%04x]", pci_estat);
 534
 535		if (pci_estat & GREG_PCIESTAT_BADACK)
 536			pr_cont(" <No ACK64# during ABS64 cycle>");
 537		if (pci_estat & GREG_PCIESTAT_DTRTO)
 538			pr_cont(" <Delayed transaction timeout>");
 539		if (pci_estat & GREG_PCIESTAT_OTHER)
 540			pr_cont(" <other>");
 541		pr_cont("\n");
 542	} else {
 543		pci_estat |= GREG_PCIESTAT_OTHER;
 544		netdev_err(dev, "PCI error\n");
 545	}
 546
 547	if (pci_estat & GREG_PCIESTAT_OTHER) {
 548		u16 pci_cfg_stat;
 549
 550		/* Interrogate PCI config space for the
 551		 * true cause.
 552		 */
 553		pci_read_config_word(gp->pdev, PCI_STATUS,
 554				     &pci_cfg_stat);
 555		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
 556			   pci_cfg_stat);
 557		if (pci_cfg_stat & PCI_STATUS_PARITY)
 558			netdev_err(dev, "PCI parity error detected\n");
 559		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
 560			netdev_err(dev, "PCI target abort\n");
 561		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
 562			netdev_err(dev, "PCI master acks target abort\n");
 563		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
 564			netdev_err(dev, "PCI master abort\n");
 565		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
 566			netdev_err(dev, "PCI system error SERR#\n");
 567		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
 568			netdev_err(dev, "PCI parity error\n");
 569
 570		/* Write the error bits back to clear them. */
 571		pci_cfg_stat &= (PCI_STATUS_PARITY |
 572				 PCI_STATUS_SIG_TARGET_ABORT |
 573				 PCI_STATUS_REC_TARGET_ABORT |
 574				 PCI_STATUS_REC_MASTER_ABORT |
 575				 PCI_STATUS_SIG_SYSTEM_ERROR |
 576				 PCI_STATUS_DETECTED_PARITY);
 577		pci_write_config_word(gp->pdev,
 578				      PCI_STATUS, pci_cfg_stat);
 579	}
 580
 581	/* For all PCI errors, we should reset the chip. */
 582	return 1;
 583}
 584
 585/* All non-normal interrupt conditions get serviced here.
 586 * Returns non-zero if we should just exit the interrupt
 587 * handler right now (ie. if we reset the card which invalidates
 588 * all of the other original irq status bits).
 589 */
 590static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 591{
 592	if (gem_status & GREG_STAT_RXNOBUF) {
 593		/* Frame arrived, no free RX buffers available. */
 594		if (netif_msg_rx_err(gp))
 595			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 596				gp->dev->name);
 597		dev->stats.rx_dropped++;
 598	}
 599
 600	if (gem_status & GREG_STAT_RXTAGERR) {
 601		/* corrupt RX tag framing */
 602		if (netif_msg_rx_err(gp))
 603			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 604				gp->dev->name);
 605		dev->stats.rx_errors++;
 606
 607		return 1;
 608	}
 609
 610	if (gem_status & GREG_STAT_PCS) {
 611		if (gem_pcs_interrupt(dev, gp, gem_status))
 612			return 1;
 613	}
 614
 615	if (gem_status & GREG_STAT_TXMAC) {
 616		if (gem_txmac_interrupt(dev, gp, gem_status))
 617			return 1;
 618	}
 619
 620	if (gem_status & GREG_STAT_RXMAC) {
 621		if (gem_rxmac_interrupt(dev, gp, gem_status))
 622			return 1;
 623	}
 624
 625	if (gem_status & GREG_STAT_MAC) {
 626		if (gem_mac_interrupt(dev, gp, gem_status))
 627			return 1;
 628	}
 629
 630	if (gem_status & GREG_STAT_MIF) {
 631		if (gem_mif_interrupt(dev, gp, gem_status))
 632			return 1;
 633	}
 634
 635	if (gem_status & GREG_STAT_PCIERR) {
 636		if (gem_pci_interrupt(dev, gp, gem_status))
 637			return 1;
 638	}
 639
 640	return 0;
 641}
 642
 643static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 644{
 645	int entry, limit;
 646
 647	entry = gp->tx_old;
 648	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 649	while (entry != limit) {
 650		struct sk_buff *skb;
 651		struct gem_txd *txd;
 652		dma_addr_t dma_addr;
 653		u32 dma_len;
 654		int frag;
 655
 656		if (netif_msg_tx_done(gp))
 657			printk(KERN_DEBUG "%s: tx done, slot %d\n",
 658				gp->dev->name, entry);
 659		skb = gp->tx_skbs[entry];
 660		if (skb_shinfo(skb)->nr_frags) {
 661			int last = entry + skb_shinfo(skb)->nr_frags;
 662			int walk = entry;
 663			int incomplete = 0;
 664
 665			last &= (TX_RING_SIZE - 1);
 666			for (;;) {
 667				walk = NEXT_TX(walk);
 668				if (walk == limit)
 669					incomplete = 1;
 670				if (walk == last)
 671					break;
 672			}
 673			if (incomplete)
 674				break;
 675		}
 676		gp->tx_skbs[entry] = NULL;
 677		dev->stats.tx_bytes += skb->len;
 678
 679		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 680			txd = &gp->init_block->txd[entry];
 681
 682			dma_addr = le64_to_cpu(txd->buffer);
 683			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 684
 685			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
 
 686			entry = NEXT_TX(entry);
 687		}
 688
 689		dev->stats.tx_packets++;
 690		dev_consume_skb_any(skb);
 691	}
 692	gp->tx_old = entry;
 693
 694	/* Need to make the tx_old update visible to gem_start_xmit()
 695	 * before checking for netif_queue_stopped().  Without the
 696	 * memory barrier, there is a small possibility that gem_start_xmit()
 697	 * will miss it and cause the queue to be stopped forever.
 698	 */
 699	smp_mb();
 700
 701	if (unlikely(netif_queue_stopped(dev) &&
 702		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
 703		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 704
 705		__netif_tx_lock(txq, smp_processor_id());
 706		if (netif_queue_stopped(dev) &&
 707		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 708			netif_wake_queue(dev);
 709		__netif_tx_unlock(txq);
 710	}
 711}
 712
 713static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 714{
 715	int cluster_start, curr, count, kick;
 716
 717	cluster_start = curr = (gp->rx_new & ~(4 - 1));
 718	count = 0;
 719	kick = -1;
 720	dma_wmb();
 721	while (curr != limit) {
 722		curr = NEXT_RX(curr);
 723		if (++count == 4) {
 724			struct gem_rxd *rxd =
 725				&gp->init_block->rxd[cluster_start];
 726			for (;;) {
 727				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 728				rxd++;
 729				cluster_start = NEXT_RX(cluster_start);
 730				if (cluster_start == curr)
 731					break;
 732			}
 733			kick = curr;
 734			count = 0;
 735		}
 736	}
 737	if (kick >= 0) {
 738		mb();
 739		writel(kick, gp->regs + RXDMA_KICK);
 740	}
 741}
 742
 743#define ALIGNED_RX_SKB_ADDR(addr) \
 744        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
 745static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
 746						gfp_t gfp_flags)
 747{
 748	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
 749
 750	if (likely(skb)) {
 751		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
 752		skb_reserve(skb, offset);
 753	}
 754	return skb;
 755}
 756
 757static int gem_rx(struct gem *gp, int work_to_do)
 758{
 759	struct net_device *dev = gp->dev;
 760	int entry, drops, work_done = 0;
 761	u32 done;
 762
 763	if (netif_msg_rx_status(gp))
 764		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 765			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 766
 767	entry = gp->rx_new;
 768	drops = 0;
 769	done = readl(gp->regs + RXDMA_DONE);
 770	for (;;) {
 771		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 772		struct sk_buff *skb;
 773		u64 status = le64_to_cpu(rxd->status_word);
 774		dma_addr_t dma_addr;
 775		int len;
 776
 777		if ((status & RXDCTRL_OWN) != 0)
 778			break;
 779
 780		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 781			break;
 782
 783		/* When writing back RX descriptor, GEM writes status
 784		 * then buffer address, possibly in separate transactions.
 785		 * If we don't wait for the chip to write both, we could
 786		 * post a new buffer to this descriptor then have GEM spam
 787		 * on the buffer address.  We sync on the RX completion
 788		 * register to prevent this from happening.
 789		 */
 790		if (entry == done) {
 791			done = readl(gp->regs + RXDMA_DONE);
 792			if (entry == done)
 793				break;
 794		}
 795
 796		/* We can now account for the work we're about to do */
 797		work_done++;
 798
 799		skb = gp->rx_skbs[entry];
 800
 801		len = (status & RXDCTRL_BUFSZ) >> 16;
 802		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 803			dev->stats.rx_errors++;
 804			if (len < ETH_ZLEN)
 805				dev->stats.rx_length_errors++;
 806			if (len & RXDCTRL_BAD)
 807				dev->stats.rx_crc_errors++;
 808
 809			/* We'll just return it to GEM. */
 810		drop_it:
 811			dev->stats.rx_dropped++;
 812			goto next;
 813		}
 814
 815		dma_addr = le64_to_cpu(rxd->buffer);
 816		if (len > RX_COPY_THRESHOLD) {
 817			struct sk_buff *new_skb;
 818
 819			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 820			if (new_skb == NULL) {
 821				drops++;
 822				goto drop_it;
 823			}
 824			pci_unmap_page(gp->pdev, dma_addr,
 825				       RX_BUF_ALLOC_SIZE(gp),
 826				       PCI_DMA_FROMDEVICE);
 827			gp->rx_skbs[entry] = new_skb;
 828			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 829			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
 830							       virt_to_page(new_skb->data),
 831							       offset_in_page(new_skb->data),
 832							       RX_BUF_ALLOC_SIZE(gp),
 833							       PCI_DMA_FROMDEVICE));
 834			skb_reserve(new_skb, RX_OFFSET);
 835
 836			/* Trim the original skb for the netif. */
 837			skb_trim(skb, len);
 838		} else {
 839			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 840
 841			if (copy_skb == NULL) {
 842				drops++;
 843				goto drop_it;
 844			}
 845
 846			skb_reserve(copy_skb, 2);
 847			skb_put(copy_skb, len);
 848			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 
 849			skb_copy_from_linear_data(skb, copy_skb->data, len);
 850			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 
 851
 852			/* We'll reuse the original ring buffer. */
 853			skb = copy_skb;
 854		}
 855
 856		if (likely(dev->features & NETIF_F_RXCSUM)) {
 857			__sum16 csum;
 858
 859			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 860			skb->csum = csum_unfold(csum);
 861			skb->ip_summed = CHECKSUM_COMPLETE;
 862		}
 863		skb->protocol = eth_type_trans(skb, gp->dev);
 864
 865		napi_gro_receive(&gp->napi, skb);
 866
 867		dev->stats.rx_packets++;
 868		dev->stats.rx_bytes += len;
 869
 870	next:
 871		entry = NEXT_RX(entry);
 872	}
 873
 874	gem_post_rxds(gp, entry);
 875
 876	gp->rx_new = entry;
 877
 878	if (drops)
 879		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
 880
 881	return work_done;
 882}
 883
 884static int gem_poll(struct napi_struct *napi, int budget)
 885{
 886	struct gem *gp = container_of(napi, struct gem, napi);
 887	struct net_device *dev = gp->dev;
 888	int work_done;
 889
 890	work_done = 0;
 891	do {
 892		/* Handle anomalies */
 893		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
 894			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 895			int reset;
 896
 897			/* We run the abnormal interrupt handling code with
 898			 * the Tx lock. It only resets the Rx portion of the
 899			 * chip, but we need to guard it against DMA being
 900			 * restarted by the link poll timer
 901			 */
 902			__netif_tx_lock(txq, smp_processor_id());
 903			reset = gem_abnormal_irq(dev, gp, gp->status);
 904			__netif_tx_unlock(txq);
 905			if (reset) {
 906				gem_schedule_reset(gp);
 907				napi_complete(napi);
 908				return work_done;
 909			}
 910		}
 911
 912		/* Run TX completion thread */
 913		gem_tx(dev, gp, gp->status);
 914
 915		/* Run RX thread. We don't use any locking here,
 916		 * code willing to do bad things - like cleaning the
 917		 * rx ring - must call napi_disable(), which
 918		 * schedule_timeout()'s if polling is already disabled.
 919		 */
 920		work_done += gem_rx(gp, budget - work_done);
 921
 922		if (work_done >= budget)
 923			return work_done;
 924
 925		gp->status = readl(gp->regs + GREG_STAT);
 926	} while (gp->status & GREG_STAT_NAPI);
 927
 928	napi_complete_done(napi, work_done);
 929	gem_enable_ints(gp);
 930
 931	return work_done;
 932}
 933
 934static irqreturn_t gem_interrupt(int irq, void *dev_id)
 935{
 936	struct net_device *dev = dev_id;
 937	struct gem *gp = netdev_priv(dev);
 938
 939	if (napi_schedule_prep(&gp->napi)) {
 940		u32 gem_status = readl(gp->regs + GREG_STAT);
 941
 942		if (unlikely(gem_status == 0)) {
 943			napi_enable(&gp->napi);
 944			return IRQ_NONE;
 945		}
 946		if (netif_msg_intr(gp))
 947			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
 948			       gp->dev->name, gem_status);
 949
 950		gp->status = gem_status;
 951		gem_disable_ints(gp);
 952		__napi_schedule(&gp->napi);
 953	}
 954
 955	/* If polling was disabled at the time we received that
 956	 * interrupt, we may return IRQ_HANDLED here while we
 957	 * should return IRQ_NONE. No big deal...
 958	 */
 959	return IRQ_HANDLED;
 960}
 961
 962#ifdef CONFIG_NET_POLL_CONTROLLER
 963static void gem_poll_controller(struct net_device *dev)
 964{
 965	struct gem *gp = netdev_priv(dev);
 966
 967	disable_irq(gp->pdev->irq);
 968	gem_interrupt(gp->pdev->irq, dev);
 969	enable_irq(gp->pdev->irq);
 970}
 971#endif
 972
 973static void gem_tx_timeout(struct net_device *dev)
 974{
 975	struct gem *gp = netdev_priv(dev);
 976
 977	netdev_err(dev, "transmit timed out, resetting\n");
 978
 979	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
 980		   readl(gp->regs + TXDMA_CFG),
 981		   readl(gp->regs + MAC_TXSTAT),
 982		   readl(gp->regs + MAC_TXCFG));
 983	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 984		   readl(gp->regs + RXDMA_CFG),
 985		   readl(gp->regs + MAC_RXSTAT),
 986		   readl(gp->regs + MAC_RXCFG));
 987
 988	gem_schedule_reset(gp);
 989}
 990
 991static __inline__ int gem_intme(int entry)
 992{
 993	/* Algorithm: IRQ every 1/2 of descriptors. */
 994	if (!(entry & ((TX_RING_SIZE>>1)-1)))
 995		return 1;
 996
 997	return 0;
 998}
 999
1000static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001				  struct net_device *dev)
1002{
1003	struct gem *gp = netdev_priv(dev);
1004	int entry;
1005	u64 ctrl;
1006
1007	ctrl = 0;
1008	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009		const u64 csum_start_off = skb_checksum_start_offset(skb);
1010		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011
1012		ctrl = (TXDCTRL_CENAB |
1013			(csum_start_off << 15) |
1014			(csum_stuff_off << 21));
1015	}
1016
1017	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018		/* This is a hard error, log it. */
1019		if (!netif_queue_stopped(dev)) {
1020			netif_stop_queue(dev);
1021			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1022		}
1023		return NETDEV_TX_BUSY;
1024	}
1025
1026	entry = gp->tx_new;
1027	gp->tx_skbs[entry] = skb;
1028
1029	if (skb_shinfo(skb)->nr_frags == 0) {
1030		struct gem_txd *txd = &gp->init_block->txd[entry];
1031		dma_addr_t mapping;
1032		u32 len;
1033
1034		len = skb->len;
1035		mapping = pci_map_page(gp->pdev,
1036				       virt_to_page(skb->data),
1037				       offset_in_page(skb->data),
1038				       len, PCI_DMA_TODEVICE);
1039		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040		if (gem_intme(entry))
1041			ctrl |= TXDCTRL_INTME;
1042		txd->buffer = cpu_to_le64(mapping);
1043		dma_wmb();
1044		txd->control_word = cpu_to_le64(ctrl);
1045		entry = NEXT_TX(entry);
1046	} else {
1047		struct gem_txd *txd;
1048		u32 first_len;
1049		u64 intme;
1050		dma_addr_t first_mapping;
1051		int frag, first_entry = entry;
1052
1053		intme = 0;
1054		if (gem_intme(entry))
1055			intme |= TXDCTRL_INTME;
1056
1057		/* We must give this initial chunk to the device last.
1058		 * Otherwise we could race with the device.
1059		 */
1060		first_len = skb_headlen(skb);
1061		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
 
1062					     offset_in_page(skb->data),
1063					     first_len, PCI_DMA_TODEVICE);
1064		entry = NEXT_TX(entry);
1065
1066		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068			u32 len;
1069			dma_addr_t mapping;
1070			u64 this_ctrl;
1071
1072			len = skb_frag_size(this_frag);
1073			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1074						   0, len, DMA_TO_DEVICE);
1075			this_ctrl = ctrl;
1076			if (frag == skb_shinfo(skb)->nr_frags - 1)
1077				this_ctrl |= TXDCTRL_EOF;
1078
1079			txd = &gp->init_block->txd[entry];
1080			txd->buffer = cpu_to_le64(mapping);
1081			dma_wmb();
1082			txd->control_word = cpu_to_le64(this_ctrl | len);
1083
1084			if (gem_intme(entry))
1085				intme |= TXDCTRL_INTME;
1086
1087			entry = NEXT_TX(entry);
1088		}
1089		txd = &gp->init_block->txd[first_entry];
1090		txd->buffer = cpu_to_le64(first_mapping);
1091		dma_wmb();
1092		txd->control_word =
1093			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1094	}
1095
1096	gp->tx_new = entry;
1097	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1098		netif_stop_queue(dev);
1099
1100		/* netif_stop_queue() must be done before checking
1101		 * checking tx index in TX_BUFFS_AVAIL() below, because
1102		 * in gem_tx(), we update tx_old before checking for
1103		 * netif_queue_stopped().
1104		 */
1105		smp_mb();
1106		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1107			netif_wake_queue(dev);
1108	}
1109	if (netif_msg_tx_queued(gp))
1110		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1111		       dev->name, entry, skb->len);
1112	mb();
1113	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1114
1115	return NETDEV_TX_OK;
1116}
1117
1118static void gem_pcs_reset(struct gem *gp)
1119{
1120	int limit;
1121	u32 val;
1122
1123	/* Reset PCS unit. */
1124	val = readl(gp->regs + PCS_MIICTRL);
1125	val |= PCS_MIICTRL_RST;
1126	writel(val, gp->regs + PCS_MIICTRL);
1127
1128	limit = 32;
1129	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1130		udelay(100);
1131		if (limit-- <= 0)
1132			break;
1133	}
1134	if (limit < 0)
1135		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1136}
1137
1138static void gem_pcs_reinit_adv(struct gem *gp)
1139{
1140	u32 val;
1141
1142	/* Make sure PCS is disabled while changing advertisement
1143	 * configuration.
1144	 */
1145	val = readl(gp->regs + PCS_CFG);
1146	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1147	writel(val, gp->regs + PCS_CFG);
1148
1149	/* Advertise all capabilities except asymmetric
1150	 * pause.
1151	 */
1152	val = readl(gp->regs + PCS_MIIADV);
1153	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1154		PCS_MIIADV_SP | PCS_MIIADV_AP);
1155	writel(val, gp->regs + PCS_MIIADV);
1156
1157	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1158	 * and re-enable PCS.
1159	 */
1160	val = readl(gp->regs + PCS_MIICTRL);
1161	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1162	val &= ~PCS_MIICTRL_WB;
1163	writel(val, gp->regs + PCS_MIICTRL);
1164
1165	val = readl(gp->regs + PCS_CFG);
1166	val |= PCS_CFG_ENABLE;
1167	writel(val, gp->regs + PCS_CFG);
1168
1169	/* Make sure serialink loopback is off.  The meaning
1170	 * of this bit is logically inverted based upon whether
1171	 * you are in Serialink or SERDES mode.
1172	 */
1173	val = readl(gp->regs + PCS_SCTRL);
1174	if (gp->phy_type == phy_serialink)
1175		val &= ~PCS_SCTRL_LOOP;
1176	else
1177		val |= PCS_SCTRL_LOOP;
1178	writel(val, gp->regs + PCS_SCTRL);
1179}
1180
1181#define STOP_TRIES 32
1182
1183static void gem_reset(struct gem *gp)
1184{
1185	int limit;
1186	u32 val;
1187
1188	/* Make sure we won't get any more interrupts */
1189	writel(0xffffffff, gp->regs + GREG_IMASK);
1190
1191	/* Reset the chip */
1192	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1193	       gp->regs + GREG_SWRST);
1194
1195	limit = STOP_TRIES;
1196
1197	do {
1198		udelay(20);
1199		val = readl(gp->regs + GREG_SWRST);
1200		if (limit-- <= 0)
1201			break;
1202	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1203
1204	if (limit < 0)
1205		netdev_err(gp->dev, "SW reset is ghetto\n");
1206
1207	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1208		gem_pcs_reinit_adv(gp);
1209}
1210
1211static void gem_start_dma(struct gem *gp)
1212{
1213	u32 val;
1214
1215	/* We are ready to rock, turn everything on. */
1216	val = readl(gp->regs + TXDMA_CFG);
1217	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1218	val = readl(gp->regs + RXDMA_CFG);
1219	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1220	val = readl(gp->regs + MAC_TXCFG);
1221	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1222	val = readl(gp->regs + MAC_RXCFG);
1223	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1224
1225	(void) readl(gp->regs + MAC_RXCFG);
1226	udelay(100);
1227
1228	gem_enable_ints(gp);
1229
1230	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1231}
1232
1233/* DMA won't be actually stopped before about 4ms tho ...
1234 */
1235static void gem_stop_dma(struct gem *gp)
1236{
1237	u32 val;
1238
1239	/* We are done rocking, turn everything off. */
1240	val = readl(gp->regs + TXDMA_CFG);
1241	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1242	val = readl(gp->regs + RXDMA_CFG);
1243	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1244	val = readl(gp->regs + MAC_TXCFG);
1245	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1246	val = readl(gp->regs + MAC_RXCFG);
1247	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1248
1249	(void) readl(gp->regs + MAC_RXCFG);
1250
1251	/* Need to wait a bit ... done by the caller */
1252}
1253
1254
1255// XXX dbl check what that function should do when called on PCS PHY
1256static void gem_begin_auto_negotiation(struct gem *gp,
1257				       const struct ethtool_link_ksettings *ep)
1258{
1259	u32 advertise, features;
1260	int autoneg;
1261	int speed;
1262	int duplex;
1263	u32 advertising;
1264
1265	if (ep)
1266		ethtool_convert_link_mode_to_legacy_u32(
1267			&advertising, ep->link_modes.advertising);
1268
1269	if (gp->phy_type != phy_mii_mdio0 &&
1270     	    gp->phy_type != phy_mii_mdio1)
1271     	    	goto non_mii;
1272
1273	/* Setup advertise */
1274	if (found_mii_phy(gp))
1275		features = gp->phy_mii.def->features;
1276	else
1277		features = 0;
1278
1279	advertise = features & ADVERTISE_MASK;
1280	if (gp->phy_mii.advertising != 0)
1281		advertise &= gp->phy_mii.advertising;
1282
1283	autoneg = gp->want_autoneg;
1284	speed = gp->phy_mii.speed;
1285	duplex = gp->phy_mii.duplex;
1286
1287	/* Setup link parameters */
1288	if (!ep)
1289		goto start_aneg;
1290	if (ep->base.autoneg == AUTONEG_ENABLE) {
1291		advertise = advertising;
1292		autoneg = 1;
1293	} else {
1294		autoneg = 0;
1295		speed = ep->base.speed;
1296		duplex = ep->base.duplex;
1297	}
1298
1299start_aneg:
1300	/* Sanitize settings based on PHY capabilities */
1301	if ((features & SUPPORTED_Autoneg) == 0)
1302		autoneg = 0;
1303	if (speed == SPEED_1000 &&
1304	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1305		speed = SPEED_100;
1306	if (speed == SPEED_100 &&
1307	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1308		speed = SPEED_10;
1309	if (duplex == DUPLEX_FULL &&
1310	    !(features & (SUPPORTED_1000baseT_Full |
1311	    		  SUPPORTED_100baseT_Full |
1312	    		  SUPPORTED_10baseT_Full)))
1313	    	duplex = DUPLEX_HALF;
1314	if (speed == 0)
1315		speed = SPEED_10;
1316
1317	/* If we are asleep, we don't try to actually setup the PHY, we
1318	 * just store the settings
1319	 */
1320	if (!netif_device_present(gp->dev)) {
1321		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1322		gp->phy_mii.speed = speed;
1323		gp->phy_mii.duplex = duplex;
1324		return;
1325	}
1326
1327	/* Configure PHY & start aneg */
1328	gp->want_autoneg = autoneg;
1329	if (autoneg) {
1330		if (found_mii_phy(gp))
1331			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1332		gp->lstate = link_aneg;
1333	} else {
1334		if (found_mii_phy(gp))
1335			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1336		gp->lstate = link_force_ok;
1337	}
1338
1339non_mii:
1340	gp->timer_ticks = 0;
1341	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1342}
1343
1344/* A link-up condition has occurred, initialize and enable the
1345 * rest of the chip.
1346 */
1347static int gem_set_link_modes(struct gem *gp)
1348{
1349	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1350	int full_duplex, speed, pause;
1351	u32 val;
1352
1353	full_duplex = 0;
1354	speed = SPEED_10;
1355	pause = 0;
1356
1357	if (found_mii_phy(gp)) {
1358	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1359	    		return 1;
1360		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1361		speed = gp->phy_mii.speed;
1362		pause = gp->phy_mii.pause;
1363	} else if (gp->phy_type == phy_serialink ||
1364	    	   gp->phy_type == phy_serdes) {
1365		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1366
1367		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1368			full_duplex = 1;
1369		speed = SPEED_1000;
1370	}
1371
1372	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1373		   speed, (full_duplex ? "full" : "half"));
1374
1375
1376	/* We take the tx queue lock to avoid collisions between
1377	 * this code, the tx path and the NAPI-driven error path
1378	 */
1379	__netif_tx_lock(txq, smp_processor_id());
1380
1381	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1382	if (full_duplex) {
1383		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1384	} else {
1385		/* MAC_TXCFG_NBO must be zero. */
1386	}
1387	writel(val, gp->regs + MAC_TXCFG);
1388
1389	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1390	if (!full_duplex &&
1391	    (gp->phy_type == phy_mii_mdio0 ||
1392	     gp->phy_type == phy_mii_mdio1)) {
1393		val |= MAC_XIFCFG_DISE;
1394	} else if (full_duplex) {
1395		val |= MAC_XIFCFG_FLED;
1396	}
1397
1398	if (speed == SPEED_1000)
1399		val |= (MAC_XIFCFG_GMII);
1400
1401	writel(val, gp->regs + MAC_XIFCFG);
1402
1403	/* If gigabit and half-duplex, enable carrier extension
1404	 * mode.  Else, disable it.
1405	 */
1406	if (speed == SPEED_1000 && !full_duplex) {
1407		val = readl(gp->regs + MAC_TXCFG);
1408		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1409
1410		val = readl(gp->regs + MAC_RXCFG);
1411		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412	} else {
1413		val = readl(gp->regs + MAC_TXCFG);
1414		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1415
1416		val = readl(gp->regs + MAC_RXCFG);
1417		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1418	}
1419
1420	if (gp->phy_type == phy_serialink ||
1421	    gp->phy_type == phy_serdes) {
1422 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1423
1424		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1425			pause = 1;
1426	}
1427
1428	if (!full_duplex)
1429		writel(512, gp->regs + MAC_STIME);
1430	else
1431		writel(64, gp->regs + MAC_STIME);
1432	val = readl(gp->regs + MAC_MCCFG);
1433	if (pause)
1434		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1435	else
1436		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1437	writel(val, gp->regs + MAC_MCCFG);
1438
1439	gem_start_dma(gp);
1440
1441	__netif_tx_unlock(txq);
1442
1443	if (netif_msg_link(gp)) {
1444		if (pause) {
1445			netdev_info(gp->dev,
1446				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1447				    gp->rx_fifo_sz,
1448				    gp->rx_pause_off,
1449				    gp->rx_pause_on);
1450		} else {
1451			netdev_info(gp->dev, "Pause is disabled\n");
1452		}
1453	}
1454
1455	return 0;
1456}
1457
1458static int gem_mdio_link_not_up(struct gem *gp)
1459{
1460	switch (gp->lstate) {
1461	case link_force_ret:
1462		netif_info(gp, link, gp->dev,
1463			   "Autoneg failed again, keeping forced mode\n");
1464		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1465			gp->last_forced_speed, DUPLEX_HALF);
1466		gp->timer_ticks = 5;
1467		gp->lstate = link_force_ok;
1468		return 0;
1469	case link_aneg:
1470		/* We try forced modes after a failed aneg only on PHYs that don't
1471		 * have "magic_aneg" bit set, which means they internally do the
1472		 * while forced-mode thingy. On these, we just restart aneg
1473		 */
1474		if (gp->phy_mii.def->magic_aneg)
1475			return 1;
1476		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1477		/* Try forced modes. */
1478		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1479			DUPLEX_HALF);
1480		gp->timer_ticks = 5;
1481		gp->lstate = link_force_try;
1482		return 0;
1483	case link_force_try:
1484		/* Downgrade from 100 to 10 Mbps if necessary.
1485		 * If already at 10Mbps, warn user about the
1486		 * situation every 10 ticks.
1487		 */
1488		if (gp->phy_mii.speed == SPEED_100) {
1489			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1490				DUPLEX_HALF);
1491			gp->timer_ticks = 5;
1492			netif_info(gp, link, gp->dev,
1493				   "switching to forced 10bt\n");
1494			return 0;
1495		} else
1496			return 1;
1497	default:
1498		return 0;
1499	}
1500}
1501
1502static void gem_link_timer(struct timer_list *t)
1503{
1504	struct gem *gp = from_timer(gp, t, link_timer);
1505	struct net_device *dev = gp->dev;
1506	int restart_aneg = 0;
1507
1508	/* There's no point doing anything if we're going to be reset */
1509	if (gp->reset_task_pending)
1510		return;
1511
1512	if (gp->phy_type == phy_serialink ||
1513	    gp->phy_type == phy_serdes) {
1514		u32 val = readl(gp->regs + PCS_MIISTAT);
1515
1516		if (!(val & PCS_MIISTAT_LS))
1517			val = readl(gp->regs + PCS_MIISTAT);
1518
1519		if ((val & PCS_MIISTAT_LS) != 0) {
1520			if (gp->lstate == link_up)
1521				goto restart;
1522
1523			gp->lstate = link_up;
1524			netif_carrier_on(dev);
1525			(void)gem_set_link_modes(gp);
1526		}
1527		goto restart;
1528	}
1529	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1530		/* Ok, here we got a link. If we had it due to a forced
1531		 * fallback, and we were configured for autoneg, we do
1532		 * retry a short autoneg pass. If you know your hub is
1533		 * broken, use ethtool ;)
1534		 */
1535		if (gp->lstate == link_force_try && gp->want_autoneg) {
1536			gp->lstate = link_force_ret;
1537			gp->last_forced_speed = gp->phy_mii.speed;
1538			gp->timer_ticks = 5;
1539			if (netif_msg_link(gp))
1540				netdev_info(dev,
1541					    "Got link after fallback, retrying autoneg once...\n");
1542			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1543		} else if (gp->lstate != link_up) {
1544			gp->lstate = link_up;
1545			netif_carrier_on(dev);
1546			if (gem_set_link_modes(gp))
1547				restart_aneg = 1;
1548		}
1549	} else {
1550		/* If the link was previously up, we restart the
1551		 * whole process
1552		 */
1553		if (gp->lstate == link_up) {
1554			gp->lstate = link_down;
1555			netif_info(gp, link, dev, "Link down\n");
1556			netif_carrier_off(dev);
1557			gem_schedule_reset(gp);
1558			/* The reset task will restart the timer */
1559			return;
1560		} else if (++gp->timer_ticks > 10) {
1561			if (found_mii_phy(gp))
1562				restart_aneg = gem_mdio_link_not_up(gp);
1563			else
1564				restart_aneg = 1;
1565		}
1566	}
1567	if (restart_aneg) {
1568		gem_begin_auto_negotiation(gp, NULL);
1569		return;
1570	}
1571restart:
1572	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1573}
1574
1575static void gem_clean_rings(struct gem *gp)
1576{
1577	struct gem_init_block *gb = gp->init_block;
1578	struct sk_buff *skb;
1579	int i;
1580	dma_addr_t dma_addr;
1581
1582	for (i = 0; i < RX_RING_SIZE; i++) {
1583		struct gem_rxd *rxd;
1584
1585		rxd = &gb->rxd[i];
1586		if (gp->rx_skbs[i] != NULL) {
1587			skb = gp->rx_skbs[i];
1588			dma_addr = le64_to_cpu(rxd->buffer);
1589			pci_unmap_page(gp->pdev, dma_addr,
1590				       RX_BUF_ALLOC_SIZE(gp),
1591				       PCI_DMA_FROMDEVICE);
1592			dev_kfree_skb_any(skb);
1593			gp->rx_skbs[i] = NULL;
1594		}
1595		rxd->status_word = 0;
1596		dma_wmb();
1597		rxd->buffer = 0;
1598	}
1599
1600	for (i = 0; i < TX_RING_SIZE; i++) {
1601		if (gp->tx_skbs[i] != NULL) {
1602			struct gem_txd *txd;
1603			int frag;
1604
1605			skb = gp->tx_skbs[i];
1606			gp->tx_skbs[i] = NULL;
1607
1608			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1609				int ent = i & (TX_RING_SIZE - 1);
1610
1611				txd = &gb->txd[ent];
1612				dma_addr = le64_to_cpu(txd->buffer);
1613				pci_unmap_page(gp->pdev, dma_addr,
1614					       le64_to_cpu(txd->control_word) &
1615					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1616
1617				if (frag != skb_shinfo(skb)->nr_frags)
1618					i++;
1619			}
1620			dev_kfree_skb_any(skb);
1621		}
1622	}
1623}
1624
1625static void gem_init_rings(struct gem *gp)
1626{
1627	struct gem_init_block *gb = gp->init_block;
1628	struct net_device *dev = gp->dev;
1629	int i;
1630	dma_addr_t dma_addr;
1631
1632	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1633
1634	gem_clean_rings(gp);
1635
1636	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1637			    (unsigned)VLAN_ETH_FRAME_LEN);
1638
1639	for (i = 0; i < RX_RING_SIZE; i++) {
1640		struct sk_buff *skb;
1641		struct gem_rxd *rxd = &gb->rxd[i];
1642
1643		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1644		if (!skb) {
1645			rxd->buffer = 0;
1646			rxd->status_word = 0;
1647			continue;
1648		}
1649
1650		gp->rx_skbs[i] = skb;
1651		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1652		dma_addr = pci_map_page(gp->pdev,
1653					virt_to_page(skb->data),
1654					offset_in_page(skb->data),
1655					RX_BUF_ALLOC_SIZE(gp),
1656					PCI_DMA_FROMDEVICE);
1657		rxd->buffer = cpu_to_le64(dma_addr);
1658		dma_wmb();
1659		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1660		skb_reserve(skb, RX_OFFSET);
1661	}
1662
1663	for (i = 0; i < TX_RING_SIZE; i++) {
1664		struct gem_txd *txd = &gb->txd[i];
1665
1666		txd->control_word = 0;
1667		dma_wmb();
1668		txd->buffer = 0;
1669	}
1670	wmb();
1671}
1672
1673/* Init PHY interface and start link poll state machine */
1674static void gem_init_phy(struct gem *gp)
1675{
1676	u32 mifcfg;
1677
1678	/* Revert MIF CFG setting done on stop_phy */
1679	mifcfg = readl(gp->regs + MIF_CFG);
1680	mifcfg &= ~MIF_CFG_BBMODE;
1681	writel(mifcfg, gp->regs + MIF_CFG);
1682
1683	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1684		int i;
1685
1686		/* Those delay sucks, the HW seem to love them though, I'll
1687		 * serisouly consider breaking some locks here to be able
1688		 * to schedule instead
1689		 */
1690		for (i = 0; i < 3; i++) {
1691#ifdef CONFIG_PPC_PMAC
1692			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1693			msleep(20);
1694#endif
1695			/* Some PHYs used by apple have problem getting back to us,
1696			 * we do an additional reset here
1697			 */
1698			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1699			msleep(20);
1700			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1701				break;
1702			if (i == 2)
1703				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1704		}
1705	}
1706
1707	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1708	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1709		u32 val;
1710
1711		/* Init datapath mode register. */
1712		if (gp->phy_type == phy_mii_mdio0 ||
1713		    gp->phy_type == phy_mii_mdio1) {
1714			val = PCS_DMODE_MGM;
1715		} else if (gp->phy_type == phy_serialink) {
1716			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1717		} else {
1718			val = PCS_DMODE_ESM;
1719		}
1720
1721		writel(val, gp->regs + PCS_DMODE);
1722	}
1723
1724	if (gp->phy_type == phy_mii_mdio0 ||
1725	    gp->phy_type == phy_mii_mdio1) {
1726		/* Reset and detect MII PHY */
1727		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1728
1729		/* Init PHY */
1730		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1731			gp->phy_mii.def->ops->init(&gp->phy_mii);
1732	} else {
1733		gem_pcs_reset(gp);
1734		gem_pcs_reinit_adv(gp);
1735	}
1736
1737	/* Default aneg parameters */
1738	gp->timer_ticks = 0;
1739	gp->lstate = link_down;
1740	netif_carrier_off(gp->dev);
1741
1742	/* Print things out */
1743	if (gp->phy_type == phy_mii_mdio0 ||
1744	    gp->phy_type == phy_mii_mdio1)
1745		netdev_info(gp->dev, "Found %s PHY\n",
1746			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1747
1748	gem_begin_auto_negotiation(gp, NULL);
1749}
1750
1751static void gem_init_dma(struct gem *gp)
1752{
1753	u64 desc_dma = (u64) gp->gblock_dvma;
1754	u32 val;
1755
1756	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1757	writel(val, gp->regs + TXDMA_CFG);
1758
1759	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1760	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1761	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1762
1763	writel(0, gp->regs + TXDMA_KICK);
1764
1765	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1766	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1767	writel(val, gp->regs + RXDMA_CFG);
1768
1769	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1770	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1771
1772	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1773
1774	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1775	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1776	writel(val, gp->regs + RXDMA_PTHRESH);
1777
1778	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1779		writel(((5 & RXDMA_BLANK_IPKTS) |
1780			((8 << 12) & RXDMA_BLANK_ITIME)),
1781		       gp->regs + RXDMA_BLANK);
1782	else
1783		writel(((5 & RXDMA_BLANK_IPKTS) |
1784			((4 << 12) & RXDMA_BLANK_ITIME)),
1785		       gp->regs + RXDMA_BLANK);
1786}
1787
1788static u32 gem_setup_multicast(struct gem *gp)
1789{
1790	u32 rxcfg = 0;
1791	int i;
1792
1793	if ((gp->dev->flags & IFF_ALLMULTI) ||
1794	    (netdev_mc_count(gp->dev) > 256)) {
1795	    	for (i=0; i<16; i++)
1796			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1797		rxcfg |= MAC_RXCFG_HFE;
1798	} else if (gp->dev->flags & IFF_PROMISC) {
1799		rxcfg |= MAC_RXCFG_PROM;
1800	} else {
1801		u16 hash_table[16];
1802		u32 crc;
1803		struct netdev_hw_addr *ha;
1804		int i;
1805
1806		memset(hash_table, 0, sizeof(hash_table));
1807		netdev_for_each_mc_addr(ha, gp->dev) {
1808			crc = ether_crc_le(6, ha->addr);
1809			crc >>= 24;
1810			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1811		}
1812	    	for (i=0; i<16; i++)
1813			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1814		rxcfg |= MAC_RXCFG_HFE;
1815	}
1816
1817	return rxcfg;
1818}
1819
1820static void gem_init_mac(struct gem *gp)
1821{
1822	unsigned char *e = &gp->dev->dev_addr[0];
1823
1824	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1825
1826	writel(0x00, gp->regs + MAC_IPG0);
1827	writel(0x08, gp->regs + MAC_IPG1);
1828	writel(0x04, gp->regs + MAC_IPG2);
1829	writel(0x40, gp->regs + MAC_STIME);
1830	writel(0x40, gp->regs + MAC_MINFSZ);
1831
1832	/* Ethernet payload + header + FCS + optional VLAN tag. */
1833	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1834
1835	writel(0x07, gp->regs + MAC_PASIZE);
1836	writel(0x04, gp->regs + MAC_JAMSIZE);
1837	writel(0x10, gp->regs + MAC_ATTLIM);
1838	writel(0x8808, gp->regs + MAC_MCTYPE);
1839
1840	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1841
1842	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1843	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1844	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1845
1846	writel(0, gp->regs + MAC_ADDR3);
1847	writel(0, gp->regs + MAC_ADDR4);
1848	writel(0, gp->regs + MAC_ADDR5);
1849
1850	writel(0x0001, gp->regs + MAC_ADDR6);
1851	writel(0xc200, gp->regs + MAC_ADDR7);
1852	writel(0x0180, gp->regs + MAC_ADDR8);
1853
1854	writel(0, gp->regs + MAC_AFILT0);
1855	writel(0, gp->regs + MAC_AFILT1);
1856	writel(0, gp->regs + MAC_AFILT2);
1857	writel(0, gp->regs + MAC_AF21MSK);
1858	writel(0, gp->regs + MAC_AF0MSK);
1859
1860	gp->mac_rx_cfg = gem_setup_multicast(gp);
1861#ifdef STRIP_FCS
1862	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1863#endif
1864	writel(0, gp->regs + MAC_NCOLL);
1865	writel(0, gp->regs + MAC_FASUCC);
1866	writel(0, gp->regs + MAC_ECOLL);
1867	writel(0, gp->regs + MAC_LCOLL);
1868	writel(0, gp->regs + MAC_DTIMER);
1869	writel(0, gp->regs + MAC_PATMPS);
1870	writel(0, gp->regs + MAC_RFCTR);
1871	writel(0, gp->regs + MAC_LERR);
1872	writel(0, gp->regs + MAC_AERR);
1873	writel(0, gp->regs + MAC_FCSERR);
1874	writel(0, gp->regs + MAC_RXCVERR);
1875
1876	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1877	 * them once a link is established.
1878	 */
1879	writel(0, gp->regs + MAC_TXCFG);
1880	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1881	writel(0, gp->regs + MAC_MCCFG);
1882	writel(0, gp->regs + MAC_XIFCFG);
1883
1884	/* Setup MAC interrupts.  We want to get all of the interesting
1885	 * counter expiration events, but we do not want to hear about
1886	 * normal rx/tx as the DMA engine tells us that.
1887	 */
1888	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1889	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1890
1891	/* Don't enable even the PAUSE interrupts for now, we
1892	 * make no use of those events other than to record them.
1893	 */
1894	writel(0xffffffff, gp->regs + MAC_MCMASK);
1895
1896	/* Don't enable GEM's WOL in normal operations
1897	 */
1898	if (gp->has_wol)
1899		writel(0, gp->regs + WOL_WAKECSR);
1900}
1901
1902static void gem_init_pause_thresholds(struct gem *gp)
1903{
1904       	u32 cfg;
1905
1906	/* Calculate pause thresholds.  Setting the OFF threshold to the
1907	 * full RX fifo size effectively disables PAUSE generation which
1908	 * is what we do for 10/100 only GEMs which have FIFOs too small
1909	 * to make real gains from PAUSE.
1910	 */
1911	if (gp->rx_fifo_sz <= (2 * 1024)) {
1912		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1913	} else {
1914		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1915		int off = (gp->rx_fifo_sz - (max_frame * 2));
1916		int on = off - max_frame;
1917
1918		gp->rx_pause_off = off;
1919		gp->rx_pause_on = on;
1920	}
1921
1922
1923	/* Configure the chip "burst" DMA mode & enable some
1924	 * HW bug fixes on Apple version
1925	 */
1926       	cfg  = 0;
1927       	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1928		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1929#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1930       	cfg |= GREG_CFG_IBURST;
1931#endif
1932       	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1933       	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1934       	writel(cfg, gp->regs + GREG_CFG);
1935
1936	/* If Infinite Burst didn't stick, then use different
1937	 * thresholds (and Apple bug fixes don't exist)
1938	 */
1939	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1940		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1941		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1942		writel(cfg, gp->regs + GREG_CFG);
1943	}
1944}
1945
1946static int gem_check_invariants(struct gem *gp)
1947{
1948	struct pci_dev *pdev = gp->pdev;
1949	u32 mif_cfg;
1950
1951	/* On Apple's sungem, we can't rely on registers as the chip
1952	 * was been powered down by the firmware. The PHY is looked
1953	 * up later on.
1954	 */
1955	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1956		gp->phy_type = phy_mii_mdio0;
1957		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1958		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1959		gp->swrst_base = 0;
1960
1961		mif_cfg = readl(gp->regs + MIF_CFG);
1962		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1963		mif_cfg |= MIF_CFG_MDI0;
1964		writel(mif_cfg, gp->regs + MIF_CFG);
1965		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1966		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1967
1968		/* We hard-code the PHY address so we can properly bring it out of
1969		 * reset later on, we can't really probe it at this point, though
1970		 * that isn't an issue.
1971		 */
1972		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1973			gp->mii_phy_addr = 1;
1974		else
1975			gp->mii_phy_addr = 0;
1976
1977		return 0;
1978	}
1979
1980	mif_cfg = readl(gp->regs + MIF_CFG);
1981
1982	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1983	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1984		/* One of the MII PHYs _must_ be present
1985		 * as this chip has no gigabit PHY.
1986		 */
1987		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1988			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1989			       mif_cfg);
1990			return -1;
1991		}
1992	}
1993
1994	/* Determine initial PHY interface type guess.  MDIO1 is the
1995	 * external PHY and thus takes precedence over MDIO0.
1996	 */
1997
1998	if (mif_cfg & MIF_CFG_MDI1) {
1999		gp->phy_type = phy_mii_mdio1;
2000		mif_cfg |= MIF_CFG_PSELECT;
2001		writel(mif_cfg, gp->regs + MIF_CFG);
2002	} else if (mif_cfg & MIF_CFG_MDI0) {
2003		gp->phy_type = phy_mii_mdio0;
2004		mif_cfg &= ~MIF_CFG_PSELECT;
2005		writel(mif_cfg, gp->regs + MIF_CFG);
2006	} else {
2007#ifdef CONFIG_SPARC
2008		const char *p;
2009
2010		p = of_get_property(gp->of_node, "shared-pins", NULL);
2011		if (p && !strcmp(p, "serdes"))
2012			gp->phy_type = phy_serdes;
2013		else
2014#endif
2015			gp->phy_type = phy_serialink;
2016	}
2017	if (gp->phy_type == phy_mii_mdio1 ||
2018	    gp->phy_type == phy_mii_mdio0) {
2019		int i;
2020
2021		for (i = 0; i < 32; i++) {
2022			gp->mii_phy_addr = i;
2023			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2024				break;
2025		}
2026		if (i == 32) {
2027			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2028				pr_err("RIO MII phy will not respond\n");
2029				return -1;
2030			}
2031			gp->phy_type = phy_serdes;
2032		}
2033	}
2034
2035	/* Fetch the FIFO configurations now too. */
2036	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2037	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2038
2039	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2040		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2041			if (gp->tx_fifo_sz != (9 * 1024) ||
2042			    gp->rx_fifo_sz != (20 * 1024)) {
2043				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2044				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2045				return -1;
2046			}
2047			gp->swrst_base = 0;
2048		} else {
2049			if (gp->tx_fifo_sz != (2 * 1024) ||
2050			    gp->rx_fifo_sz != (2 * 1024)) {
2051				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2052				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2053				return -1;
2054			}
2055			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2056		}
2057	}
2058
2059	return 0;
2060}
2061
2062static void gem_reinit_chip(struct gem *gp)
2063{
2064	/* Reset the chip */
2065	gem_reset(gp);
2066
2067	/* Make sure ints are disabled */
2068	gem_disable_ints(gp);
2069
2070	/* Allocate & setup ring buffers */
2071	gem_init_rings(gp);
2072
2073	/* Configure pause thresholds */
2074	gem_init_pause_thresholds(gp);
2075
2076	/* Init DMA & MAC engines */
2077	gem_init_dma(gp);
2078	gem_init_mac(gp);
2079}
2080
2081
2082static void gem_stop_phy(struct gem *gp, int wol)
2083{
2084	u32 mifcfg;
2085
2086	/* Let the chip settle down a bit, it seems that helps
2087	 * for sleep mode on some models
2088	 */
2089	msleep(10);
2090
2091	/* Make sure we aren't polling PHY status change. We
2092	 * don't currently use that feature though
2093	 */
2094	mifcfg = readl(gp->regs + MIF_CFG);
2095	mifcfg &= ~MIF_CFG_POLL;
2096	writel(mifcfg, gp->regs + MIF_CFG);
2097
2098	if (wol && gp->has_wol) {
2099		unsigned char *e = &gp->dev->dev_addr[0];
2100		u32 csr;
2101
2102		/* Setup wake-on-lan for MAGIC packet */
2103		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2104		       gp->regs + MAC_RXCFG);
2105		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2106		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2107		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2108
2109		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2110		csr = WOL_WAKECSR_ENABLE;
2111		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2112			csr |= WOL_WAKECSR_MII;
2113		writel(csr, gp->regs + WOL_WAKECSR);
2114	} else {
2115		writel(0, gp->regs + MAC_RXCFG);
2116		(void)readl(gp->regs + MAC_RXCFG);
2117		/* Machine sleep will die in strange ways if we
2118		 * dont wait a bit here, looks like the chip takes
2119		 * some time to really shut down
2120		 */
2121		msleep(10);
2122	}
2123
2124	writel(0, gp->regs + MAC_TXCFG);
2125	writel(0, gp->regs + MAC_XIFCFG);
2126	writel(0, gp->regs + TXDMA_CFG);
2127	writel(0, gp->regs + RXDMA_CFG);
2128
2129	if (!wol) {
2130		gem_reset(gp);
2131		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2132		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2133
2134		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2135			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2136
2137		/* According to Apple, we must set the MDIO pins to this begnign
2138		 * state or we may 1) eat more current, 2) damage some PHYs
2139		 */
2140		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2141		writel(0, gp->regs + MIF_BBCLK);
2142		writel(0, gp->regs + MIF_BBDATA);
2143		writel(0, gp->regs + MIF_BBOENAB);
2144		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2145		(void) readl(gp->regs + MAC_XIFCFG);
2146	}
2147}
2148
2149static int gem_do_start(struct net_device *dev)
2150{
2151	struct gem *gp = netdev_priv(dev);
2152	int rc;
2153
2154	/* Enable the cell */
2155	gem_get_cell(gp);
2156
2157	/* Make sure PCI access and bus master are enabled */
2158	rc = pci_enable_device(gp->pdev);
2159	if (rc) {
2160		netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2161
2162		/* Put cell and forget it for now, it will be considered as
2163		 * still asleep, a new sleep cycle may bring it back
2164		 */
2165		gem_put_cell(gp);
2166		return -ENXIO;
2167	}
2168	pci_set_master(gp->pdev);
2169
2170	/* Init & setup chip hardware */
2171	gem_reinit_chip(gp);
2172
2173	/* An interrupt might come in handy */
2174	rc = request_irq(gp->pdev->irq, gem_interrupt,
2175			 IRQF_SHARED, dev->name, (void *)dev);
2176	if (rc) {
2177		netdev_err(dev, "failed to request irq !\n");
2178
2179		gem_reset(gp);
2180		gem_clean_rings(gp);
2181		gem_put_cell(gp);
2182		return rc;
2183	}
2184
2185	/* Mark us as attached again if we come from resume(), this has
2186	 * no effect if we weren't detached and needs to be done now.
2187	 */
2188	netif_device_attach(dev);
2189
2190	/* Restart NAPI & queues */
2191	gem_netif_start(gp);
2192
2193	/* Detect & init PHY, start autoneg etc... this will
2194	 * eventually result in starting DMA operations when
2195	 * the link is up
2196	 */
2197	gem_init_phy(gp);
2198
2199	return 0;
2200}
2201
2202static void gem_do_stop(struct net_device *dev, int wol)
2203{
2204	struct gem *gp = netdev_priv(dev);
2205
2206	/* Stop NAPI and stop tx queue */
2207	gem_netif_stop(gp);
2208
2209	/* Make sure ints are disabled. We don't care about
2210	 * synchronizing as NAPI is disabled, thus a stray
2211	 * interrupt will do nothing bad (our irq handler
2212	 * just schedules NAPI)
2213	 */
2214	gem_disable_ints(gp);
2215
2216	/* Stop the link timer */
2217	del_timer_sync(&gp->link_timer);
2218
2219	/* We cannot cancel the reset task while holding the
2220	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2221	 * if we did. This is not an issue however as the reset
2222	 * task is synchronized vs. us (rtnl_lock) and will do
2223	 * nothing if the device is down or suspended. We do
2224	 * still clear reset_task_pending to avoid a spurrious
2225	 * reset later on in case we do resume before it gets
2226	 * scheduled.
2227	 */
2228	gp->reset_task_pending = 0;
2229
2230	/* If we are going to sleep with WOL */
2231	gem_stop_dma(gp);
2232	msleep(10);
2233	if (!wol)
2234		gem_reset(gp);
2235	msleep(10);
2236
2237	/* Get rid of rings */
2238	gem_clean_rings(gp);
2239
2240	/* No irq needed anymore */
2241	free_irq(gp->pdev->irq, (void *) dev);
2242
2243	/* Shut the PHY down eventually and setup WOL */
2244	gem_stop_phy(gp, wol);
2245
2246	/* Make sure bus master is disabled */
2247	pci_disable_device(gp->pdev);
2248
2249	/* Cell not needed neither if no WOL */
2250	if (!wol)
2251		gem_put_cell(gp);
2252}
2253
2254static void gem_reset_task(struct work_struct *work)
2255{
2256	struct gem *gp = container_of(work, struct gem, reset_task);
2257
2258	/* Lock out the network stack (essentially shield ourselves
2259	 * against a racing open, close, control call, or suspend
2260	 */
2261	rtnl_lock();
2262
2263	/* Skip the reset task if suspended or closed, or if it's
2264	 * been cancelled by gem_do_stop (see comment there)
2265	 */
2266	if (!netif_device_present(gp->dev) ||
2267	    !netif_running(gp->dev) ||
2268	    !gp->reset_task_pending) {
2269		rtnl_unlock();
2270		return;
2271	}
2272
2273	/* Stop the link timer */
2274	del_timer_sync(&gp->link_timer);
2275
2276	/* Stop NAPI and tx */
2277	gem_netif_stop(gp);
2278
2279	/* Reset the chip & rings */
2280	gem_reinit_chip(gp);
2281	if (gp->lstate == link_up)
2282		gem_set_link_modes(gp);
2283
2284	/* Restart NAPI and Tx */
2285	gem_netif_start(gp);
2286
2287	/* We are back ! */
2288	gp->reset_task_pending = 0;
2289
2290	/* If the link is not up, restart autoneg, else restart the
2291	 * polling timer
2292	 */
2293	if (gp->lstate != link_up)
2294		gem_begin_auto_negotiation(gp, NULL);
2295	else
2296		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2297
2298	rtnl_unlock();
2299}
2300
2301static int gem_open(struct net_device *dev)
2302{
 
 
 
2303	/* We allow open while suspended, we just do nothing,
2304	 * the chip will be initialized in resume()
2305	 */
2306	if (netif_device_present(dev))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307		return gem_do_start(dev);
 
 
2308	return 0;
2309}
2310
2311static int gem_close(struct net_device *dev)
2312{
2313	if (netif_device_present(dev))
 
 
2314		gem_do_stop(dev, 0);
2315
 
 
 
 
 
 
 
2316	return 0;
2317}
2318
2319#ifdef CONFIG_PM
2320static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2321{
2322	struct net_device *dev = pci_get_drvdata(pdev);
2323	struct gem *gp = netdev_priv(dev);
2324
2325	/* Lock the network stack first to avoid racing with open/close,
2326	 * reset task and setting calls
2327	 */
2328	rtnl_lock();
2329
2330	/* Not running, mark ourselves non-present, no need for
2331	 * a lock here
2332	 */
2333	if (!netif_running(dev)) {
2334		netif_device_detach(dev);
2335		rtnl_unlock();
2336		return 0;
2337	}
2338	netdev_info(dev, "suspending, WakeOnLan %s\n",
2339		    (gp->wake_on_lan && netif_running(dev)) ?
2340		    "enabled" : "disabled");
2341
2342	/* Tell the network stack we're gone. gem_do_stop() below will
2343	 * synchronize with TX, stop NAPI etc...
2344	 */
2345	netif_device_detach(dev);
2346
2347	/* Switch off chip, remember WOL setting */
2348	gp->asleep_wol = !!gp->wake_on_lan;
2349	gem_do_stop(dev, gp->asleep_wol);
2350
 
 
 
 
2351	/* Unlock the network stack */
2352	rtnl_unlock();
2353
2354	return 0;
2355}
2356
2357static int gem_resume(struct pci_dev *pdev)
2358{
2359	struct net_device *dev = pci_get_drvdata(pdev);
2360	struct gem *gp = netdev_priv(dev);
2361
2362	/* See locking comment in gem_suspend */
2363	rtnl_lock();
2364
2365	/* Not running, mark ourselves present, no need for
2366	 * a lock here
2367	 */
2368	if (!netif_running(dev)) {
2369		netif_device_attach(dev);
2370		rtnl_unlock();
2371		return 0;
2372	}
2373
 
 
 
2374	/* Restart chip. If that fails there isn't much we can do, we
2375	 * leave things stopped.
2376	 */
2377	gem_do_start(dev);
2378
2379	/* If we had WOL enabled, the cell clock was never turned off during
2380	 * sleep, so we end up beeing unbalanced. Fix that here
2381	 */
2382	if (gp->asleep_wol)
2383		gem_put_cell(gp);
2384
2385	/* Unlock the network stack */
2386	rtnl_unlock();
2387
2388	return 0;
2389}
2390#endif /* CONFIG_PM */
2391
2392static struct net_device_stats *gem_get_stats(struct net_device *dev)
2393{
2394	struct gem *gp = netdev_priv(dev);
2395
2396	/* I have seen this being called while the PM was in progress,
2397	 * so we shield against this. Let's also not poke at registers
2398	 * while the reset task is going on.
2399	 *
2400	 * TODO: Move stats collection elsewhere (link timer ?) and
2401	 * make this a nop to avoid all those synchro issues
2402	 */
2403	if (!netif_device_present(dev) || !netif_running(dev))
2404		goto bail;
2405
2406	/* Better safe than sorry... */
2407	if (WARN_ON(!gp->cell_enabled))
2408		goto bail;
2409
2410	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2411	writel(0, gp->regs + MAC_FCSERR);
2412
2413	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2414	writel(0, gp->regs + MAC_AERR);
2415
2416	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2417	writel(0, gp->regs + MAC_LERR);
2418
2419	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2420	dev->stats.collisions +=
2421		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2422	writel(0, gp->regs + MAC_ECOLL);
2423	writel(0, gp->regs + MAC_LCOLL);
2424 bail:
2425	return &dev->stats;
2426}
2427
2428static int gem_set_mac_address(struct net_device *dev, void *addr)
2429{
2430	struct sockaddr *macaddr = (struct sockaddr *) addr;
 
2431	struct gem *gp = netdev_priv(dev);
2432	unsigned char *e = &dev->dev_addr[0];
2433
2434	if (!is_valid_ether_addr(macaddr->sa_data))
2435		return -EADDRNOTAVAIL;
2436
2437	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2438
2439	/* We'll just catch it later when the device is up'd or resumed */
2440	if (!netif_running(dev) || !netif_device_present(dev))
2441		return 0;
2442
2443	/* Better safe than sorry... */
2444	if (WARN_ON(!gp->cell_enabled))
2445		return 0;
2446
2447	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2448	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2449	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2450
2451	return 0;
2452}
2453
2454static void gem_set_multicast(struct net_device *dev)
2455{
2456	struct gem *gp = netdev_priv(dev);
2457	u32 rxcfg, rxcfg_new;
2458	int limit = 10000;
2459
2460	if (!netif_running(dev) || !netif_device_present(dev))
2461		return;
2462
2463	/* Better safe than sorry... */
2464	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2465		return;
2466
2467	rxcfg = readl(gp->regs + MAC_RXCFG);
2468	rxcfg_new = gem_setup_multicast(gp);
2469#ifdef STRIP_FCS
2470	rxcfg_new |= MAC_RXCFG_SFCS;
2471#endif
2472	gp->mac_rx_cfg = rxcfg_new;
2473
2474	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2475	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2476		if (!limit--)
2477			break;
2478		udelay(10);
2479	}
2480
2481	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2482	rxcfg |= rxcfg_new;
2483
2484	writel(rxcfg, gp->regs + MAC_RXCFG);
2485}
2486
2487/* Jumbo-grams don't seem to work :-( */
2488#define GEM_MIN_MTU	ETH_MIN_MTU
2489#if 1
2490#define GEM_MAX_MTU	ETH_DATA_LEN
2491#else
2492#define GEM_MAX_MTU	9000
2493#endif
2494
2495static int gem_change_mtu(struct net_device *dev, int new_mtu)
2496{
2497	struct gem *gp = netdev_priv(dev);
2498
2499	dev->mtu = new_mtu;
2500
2501	/* We'll just catch it later when the device is up'd or resumed */
2502	if (!netif_running(dev) || !netif_device_present(dev))
2503		return 0;
2504
2505	/* Better safe than sorry... */
2506	if (WARN_ON(!gp->cell_enabled))
2507		return 0;
2508
2509	gem_netif_stop(gp);
2510	gem_reinit_chip(gp);
2511	if (gp->lstate == link_up)
2512		gem_set_link_modes(gp);
2513	gem_netif_start(gp);
2514
2515	return 0;
2516}
2517
2518static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2519{
2520	struct gem *gp = netdev_priv(dev);
2521
2522	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2523	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2524	strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2525}
2526
2527static int gem_get_link_ksettings(struct net_device *dev,
2528				  struct ethtool_link_ksettings *cmd)
2529{
2530	struct gem *gp = netdev_priv(dev);
2531	u32 supported, advertising;
2532
2533	if (gp->phy_type == phy_mii_mdio0 ||
2534	    gp->phy_type == phy_mii_mdio1) {
2535		if (gp->phy_mii.def)
2536			supported = gp->phy_mii.def->features;
2537		else
2538			supported = (SUPPORTED_10baseT_Half |
2539					  SUPPORTED_10baseT_Full);
2540
2541		/* XXX hardcoded stuff for now */
2542		cmd->base.port = PORT_MII;
2543		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2544
2545		/* Return current PHY settings */
2546		cmd->base.autoneg = gp->want_autoneg;
2547		cmd->base.speed = gp->phy_mii.speed;
2548		cmd->base.duplex = gp->phy_mii.duplex;
2549		advertising = gp->phy_mii.advertising;
2550
2551		/* If we started with a forced mode, we don't have a default
2552		 * advertise set, we need to return something sensible so
2553		 * userland can re-enable autoneg properly.
2554		 */
2555		if (advertising == 0)
2556			advertising = supported;
2557	} else { // XXX PCS ?
2558		supported =
2559			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2560			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2561			 SUPPORTED_Autoneg);
2562		advertising = supported;
2563		cmd->base.speed = 0;
2564		cmd->base.duplex = 0;
2565		cmd->base.port = 0;
2566		cmd->base.phy_address = 0;
2567		cmd->base.autoneg = 0;
2568
2569		/* serdes means usually a Fibre connector, with most fixed */
2570		if (gp->phy_type == phy_serdes) {
2571			cmd->base.port = PORT_FIBRE;
2572			supported = (SUPPORTED_1000baseT_Half |
2573				SUPPORTED_1000baseT_Full |
2574				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2575				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2576			advertising = supported;
2577			if (gp->lstate == link_up)
2578				cmd->base.speed = SPEED_1000;
2579			cmd->base.duplex = DUPLEX_FULL;
2580			cmd->base.autoneg = 1;
2581		}
2582	}
2583
2584	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2585						supported);
2586	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2587						advertising);
2588
2589	return 0;
2590}
2591
2592static int gem_set_link_ksettings(struct net_device *dev,
2593				  const struct ethtool_link_ksettings *cmd)
2594{
2595	struct gem *gp = netdev_priv(dev);
2596	u32 speed = cmd->base.speed;
2597	u32 advertising;
2598
2599	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2600						cmd->link_modes.advertising);
2601
2602	/* Verify the settings we care about. */
2603	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2604	    cmd->base.autoneg != AUTONEG_DISABLE)
2605		return -EINVAL;
2606
2607	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2608	    advertising == 0)
2609		return -EINVAL;
2610
2611	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2612	    ((speed != SPEED_1000 &&
2613	      speed != SPEED_100 &&
2614	      speed != SPEED_10) ||
2615	     (cmd->base.duplex != DUPLEX_HALF &&
2616	      cmd->base.duplex != DUPLEX_FULL)))
2617		return -EINVAL;
2618
2619	/* Apply settings and restart link process. */
2620	if (netif_device_present(gp->dev)) {
2621		del_timer_sync(&gp->link_timer);
2622		gem_begin_auto_negotiation(gp, cmd);
2623	}
2624
2625	return 0;
2626}
2627
2628static int gem_nway_reset(struct net_device *dev)
2629{
2630	struct gem *gp = netdev_priv(dev);
2631
2632	if (!gp->want_autoneg)
2633		return -EINVAL;
2634
2635	/* Restart link process  */
2636	if (netif_device_present(gp->dev)) {
2637		del_timer_sync(&gp->link_timer);
2638		gem_begin_auto_negotiation(gp, NULL);
2639	}
2640
2641	return 0;
2642}
2643
2644static u32 gem_get_msglevel(struct net_device *dev)
2645{
2646	struct gem *gp = netdev_priv(dev);
2647	return gp->msg_enable;
2648}
2649
2650static void gem_set_msglevel(struct net_device *dev, u32 value)
2651{
2652	struct gem *gp = netdev_priv(dev);
2653	gp->msg_enable = value;
2654}
2655
2656
2657/* Add more when I understand how to program the chip */
2658/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2659
2660#define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2661
2662static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663{
2664	struct gem *gp = netdev_priv(dev);
2665
2666	/* Add more when I understand how to program the chip */
2667	if (gp->has_wol) {
2668		wol->supported = WOL_SUPPORTED_MASK;
2669		wol->wolopts = gp->wake_on_lan;
2670	} else {
2671		wol->supported = 0;
2672		wol->wolopts = 0;
2673	}
2674}
2675
2676static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2677{
2678	struct gem *gp = netdev_priv(dev);
2679
2680	if (!gp->has_wol)
2681		return -EOPNOTSUPP;
2682	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2683	return 0;
2684}
2685
2686static const struct ethtool_ops gem_ethtool_ops = {
2687	.get_drvinfo		= gem_get_drvinfo,
2688	.get_link		= ethtool_op_get_link,
2689	.nway_reset		= gem_nway_reset,
2690	.get_msglevel		= gem_get_msglevel,
2691	.set_msglevel		= gem_set_msglevel,
2692	.get_wol		= gem_get_wol,
2693	.set_wol		= gem_set_wol,
2694	.get_link_ksettings	= gem_get_link_ksettings,
2695	.set_link_ksettings	= gem_set_link_ksettings,
2696};
2697
2698static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2699{
2700	struct gem *gp = netdev_priv(dev);
2701	struct mii_ioctl_data *data = if_mii(ifr);
2702	int rc = -EOPNOTSUPP;
2703
2704	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2705	 * netif_device_present() is true and holds rtnl_lock for us
2706	 * so we have nothing to worry about
2707	 */
2708
2709	switch (cmd) {
2710	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2711		data->phy_id = gp->mii_phy_addr;
2712		/* Fallthrough... */
2713
2714	case SIOCGMIIREG:		/* Read MII PHY register. */
2715		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2716					   data->reg_num & 0x1f);
2717		rc = 0;
2718		break;
2719
2720	case SIOCSMIIREG:		/* Write MII PHY register. */
2721		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2722			    data->val_in);
2723		rc = 0;
2724		break;
2725	}
2726	return rc;
2727}
2728
2729#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2730/* Fetch MAC address from vital product data of PCI ROM. */
2731static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2732{
2733	int this_offset;
2734
2735	for (this_offset = 0x20; this_offset < len; this_offset++) {
2736		void __iomem *p = rom_base + this_offset;
2737		int i;
2738
2739		if (readb(p + 0) != 0x90 ||
2740		    readb(p + 1) != 0x00 ||
2741		    readb(p + 2) != 0x09 ||
2742		    readb(p + 3) != 0x4e ||
2743		    readb(p + 4) != 0x41 ||
2744		    readb(p + 5) != 0x06)
2745			continue;
2746
2747		this_offset += 6;
2748		p += 6;
2749
2750		for (i = 0; i < 6; i++)
2751			dev_addr[i] = readb(p + i);
2752		return 1;
2753	}
2754	return 0;
2755}
2756
2757static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2758{
2759	size_t size;
2760	void __iomem *p = pci_map_rom(pdev, &size);
2761
2762	if (p) {
2763		int found;
2764
2765		found = readb(p) == 0x55 &&
2766			readb(p + 1) == 0xaa &&
2767			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2768		pci_unmap_rom(pdev, p);
2769		if (found)
2770			return;
2771	}
2772
2773	/* Sun MAC prefix then 3 random bytes. */
2774	dev_addr[0] = 0x08;
2775	dev_addr[1] = 0x00;
2776	dev_addr[2] = 0x20;
2777	get_random_bytes(dev_addr + 3, 3);
2778}
2779#endif /* not Sparc and not PPC */
2780
2781static int gem_get_device_address(struct gem *gp)
2782{
2783#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2784	struct net_device *dev = gp->dev;
2785	const unsigned char *addr;
2786
2787	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2788	if (addr == NULL) {
2789#ifdef CONFIG_SPARC
2790		addr = idprom->id_ethaddr;
2791#else
2792		printk("\n");
2793		pr_err("%s: can't get mac-address\n", dev->name);
2794		return -1;
2795#endif
2796	}
2797	memcpy(dev->dev_addr, addr, ETH_ALEN);
2798#else
2799	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
 
 
 
2800#endif
2801	return 0;
2802}
2803
2804static void gem_remove_one(struct pci_dev *pdev)
2805{
2806	struct net_device *dev = pci_get_drvdata(pdev);
2807
2808	if (dev) {
2809		struct gem *gp = netdev_priv(dev);
2810
2811		unregister_netdev(dev);
2812
2813		/* Ensure reset task is truly gone */
2814		cancel_work_sync(&gp->reset_task);
2815
2816		/* Free resources */
2817		pci_free_consistent(pdev,
2818				    sizeof(struct gem_init_block),
2819				    gp->init_block,
2820				    gp->gblock_dvma);
2821		iounmap(gp->regs);
2822		pci_release_regions(pdev);
2823		free_netdev(dev);
2824	}
2825}
2826
2827static const struct net_device_ops gem_netdev_ops = {
2828	.ndo_open		= gem_open,
2829	.ndo_stop		= gem_close,
2830	.ndo_start_xmit		= gem_start_xmit,
2831	.ndo_get_stats		= gem_get_stats,
2832	.ndo_set_rx_mode	= gem_set_multicast,
2833	.ndo_do_ioctl		= gem_ioctl,
2834	.ndo_tx_timeout		= gem_tx_timeout,
2835	.ndo_change_mtu		= gem_change_mtu,
2836	.ndo_validate_addr	= eth_validate_addr,
2837	.ndo_set_mac_address    = gem_set_mac_address,
2838#ifdef CONFIG_NET_POLL_CONTROLLER
2839	.ndo_poll_controller    = gem_poll_controller,
2840#endif
2841};
2842
2843static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2844{
2845	unsigned long gemreg_base, gemreg_len;
2846	struct net_device *dev;
2847	struct gem *gp;
2848	int err, pci_using_dac;
2849
2850	printk_once(KERN_INFO "%s", version);
2851
2852	/* Apple gmac note: during probe, the chip is powered up by
2853	 * the arch code to allow the code below to work (and to let
2854	 * the chip be probed on the config space. It won't stay powered
2855	 * up until the interface is brought up however, so we can't rely
2856	 * on register configuration done at this point.
2857	 */
2858	err = pci_enable_device(pdev);
2859	if (err) {
2860		pr_err("Cannot enable MMIO operation, aborting\n");
2861		return err;
2862	}
2863	pci_set_master(pdev);
2864
2865	/* Configure DMA attributes. */
2866
2867	/* All of the GEM documentation states that 64-bit DMA addressing
2868	 * is fully supported and should work just fine.  However the
2869	 * front end for RIO based GEMs is different and only supports
2870	 * 32-bit addressing.
2871	 *
2872	 * For now we assume the various PPC GEMs are 32-bit only as well.
2873	 */
2874	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2875	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2876	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2877		pci_using_dac = 1;
2878	} else {
2879		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2880		if (err) {
2881			pr_err("No usable DMA configuration, aborting\n");
2882			goto err_disable_device;
2883		}
2884		pci_using_dac = 0;
2885	}
2886
2887	gemreg_base = pci_resource_start(pdev, 0);
2888	gemreg_len = pci_resource_len(pdev, 0);
2889
2890	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2891		pr_err("Cannot find proper PCI device base address, aborting\n");
2892		err = -ENODEV;
2893		goto err_disable_device;
2894	}
2895
2896	dev = alloc_etherdev(sizeof(*gp));
2897	if (!dev) {
2898		err = -ENOMEM;
2899		goto err_disable_device;
2900	}
2901	SET_NETDEV_DEV(dev, &pdev->dev);
2902
2903	gp = netdev_priv(dev);
2904
2905	err = pci_request_regions(pdev, DRV_NAME);
2906	if (err) {
2907		pr_err("Cannot obtain PCI resources, aborting\n");
2908		goto err_out_free_netdev;
2909	}
2910
2911	gp->pdev = pdev;
2912	gp->dev = dev;
2913
2914	gp->msg_enable = DEFAULT_MSG;
2915
2916	timer_setup(&gp->link_timer, gem_link_timer, 0);
2917
2918	INIT_WORK(&gp->reset_task, gem_reset_task);
2919
2920	gp->lstate = link_down;
2921	gp->timer_ticks = 0;
2922	netif_carrier_off(dev);
2923
2924	gp->regs = ioremap(gemreg_base, gemreg_len);
2925	if (!gp->regs) {
2926		pr_err("Cannot map device registers, aborting\n");
2927		err = -EIO;
2928		goto err_out_free_res;
2929	}
2930
2931	/* On Apple, we want a reference to the Open Firmware device-tree
2932	 * node. We use it for clock control.
2933	 */
2934#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2935	gp->of_node = pci_device_to_OF_node(pdev);
2936#endif
2937
2938	/* Only Apple version supports WOL afaik */
2939	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2940		gp->has_wol = 1;
2941
2942	/* Make sure cell is enabled */
2943	gem_get_cell(gp);
2944
2945	/* Make sure everything is stopped and in init state */
2946	gem_reset(gp);
2947
2948	/* Fill up the mii_phy structure (even if we won't use it) */
2949	gp->phy_mii.dev = dev;
2950	gp->phy_mii.mdio_read = _sungem_phy_read;
2951	gp->phy_mii.mdio_write = _sungem_phy_write;
2952#ifdef CONFIG_PPC_PMAC
2953	gp->phy_mii.platform_data = gp->of_node;
2954#endif
2955	/* By default, we start with autoneg */
2956	gp->want_autoneg = 1;
2957
2958	/* Check fifo sizes, PHY type, etc... */
2959	if (gem_check_invariants(gp)) {
2960		err = -ENODEV;
2961		goto err_out_iounmap;
2962	}
2963
2964	/* It is guaranteed that the returned buffer will be at least
2965	 * PAGE_SIZE aligned.
2966	 */
2967	gp->init_block = (struct gem_init_block *)
2968		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2969				     &gp->gblock_dvma);
2970	if (!gp->init_block) {
2971		pr_err("Cannot allocate init block, aborting\n");
2972		err = -ENOMEM;
2973		goto err_out_iounmap;
2974	}
2975
2976	err = gem_get_device_address(gp);
2977	if (err)
2978		goto err_out_free_consistent;
2979
2980	dev->netdev_ops = &gem_netdev_ops;
2981	netif_napi_add(dev, &gp->napi, gem_poll, 64);
2982	dev->ethtool_ops = &gem_ethtool_ops;
2983	dev->watchdog_timeo = 5 * HZ;
2984	dev->dma = 0;
2985
2986	/* Set that now, in case PM kicks in now */
2987	pci_set_drvdata(pdev, dev);
2988
2989	/* We can do scatter/gather and HW checksum */
2990	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2991	dev->features = dev->hw_features;
2992	if (pci_using_dac)
2993		dev->features |= NETIF_F_HIGHDMA;
2994
2995	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2996	dev->min_mtu = GEM_MIN_MTU;
2997	dev->max_mtu = GEM_MAX_MTU;
2998
2999	/* Register with kernel */
3000	if (register_netdev(dev)) {
3001		pr_err("Cannot register net device, aborting\n");
3002		err = -ENOMEM;
3003		goto err_out_free_consistent;
3004	}
3005
3006	/* Undo the get_cell with appropriate locking (we could use
3007	 * ndo_init/uninit but that would be even more clumsy imho)
3008	 */
3009	rtnl_lock();
3010	gem_put_cell(gp);
3011	rtnl_unlock();
3012
3013	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3014		    dev->dev_addr);
3015	return 0;
3016
3017err_out_free_consistent:
3018	gem_remove_one(pdev);
3019err_out_iounmap:
3020	gem_put_cell(gp);
3021	iounmap(gp->regs);
3022
3023err_out_free_res:
3024	pci_release_regions(pdev);
3025
3026err_out_free_netdev:
3027	free_netdev(dev);
3028err_disable_device:
3029	pci_disable_device(pdev);
3030	return err;
3031
3032}
3033
 
3034
3035static struct pci_driver gem_driver = {
3036	.name		= GEM_MODULE_NAME,
3037	.id_table	= gem_pci_tbl,
3038	.probe		= gem_init_one,
3039	.remove		= gem_remove_one,
3040#ifdef CONFIG_PM
3041	.suspend	= gem_suspend,
3042	.resume		= gem_resume,
3043#endif /* CONFIG_PM */
3044};
3045
3046module_pci_driver(gem_driver);