Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2009 - 2018 Intel Corporation. */
  3
  4#include <linux/etherdevice.h>
  5
  6#include "vf.h"
  7
  8static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
  9static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 10				     u16 *duplex);
 11static s32 e1000_init_hw_vf(struct e1000_hw *hw);
 12static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
 13
 14static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
 15					 u32, u32, u32);
 16static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
 17static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
 18static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
 19static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
 20
 21/**
 22 *  e1000_init_mac_params_vf - Inits MAC params
 23 *  @hw: pointer to the HW structure
 24 **/
 25static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
 26{
 27	struct e1000_mac_info *mac = &hw->mac;
 28
 29	/* VF's have no MTA Registers - PF feature only */
 30	mac->mta_reg_count = 128;
 31	/* VF's have no access to RAR entries  */
 32	mac->rar_entry_count = 1;
 33
 34	/* Function pointers */
 35	/* reset */
 36	mac->ops.reset_hw = e1000_reset_hw_vf;
 37	/* hw initialization */
 38	mac->ops.init_hw = e1000_init_hw_vf;
 39	/* check for link */
 40	mac->ops.check_for_link = e1000_check_for_link_vf;
 41	/* link info */
 42	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
 43	/* multicast address update */
 44	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
 45	/* set mac address */
 46	mac->ops.rar_set = e1000_rar_set_vf;
 47	/* read mac address */
 48	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
 49	/* set mac filter */
 50	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
 51	/* set vlan filter table array */
 52	mac->ops.set_vfta = e1000_set_vfta_vf;
 53
 54	return E1000_SUCCESS;
 55}
 56
 57/**
 58 *  e1000_init_function_pointers_vf - Inits function pointers
 59 *  @hw: pointer to the HW structure
 60 **/
 61void e1000_init_function_pointers_vf(struct e1000_hw *hw)
 62{
 63	hw->mac.ops.init_params = e1000_init_mac_params_vf;
 64	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
 65}
 66
 67/**
 68 *  e1000_get_link_up_info_vf - Gets link info.
 69 *  @hw: pointer to the HW structure
 70 *  @speed: pointer to 16 bit value to store link speed.
 71 *  @duplex: pointer to 16 bit value to store duplex.
 72 *
 73 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 74 *  the status register's data which is often stale and inaccurate.
 75 **/
 76static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 77				     u16 *duplex)
 78{
 79	s32 status;
 80
 81	status = er32(STATUS);
 82	if (status & E1000_STATUS_SPEED_1000)
 83		*speed = SPEED_1000;
 84	else if (status & E1000_STATUS_SPEED_100)
 85		*speed = SPEED_100;
 86	else
 87		*speed = SPEED_10;
 88
 89	if (status & E1000_STATUS_FD)
 90		*duplex = FULL_DUPLEX;
 91	else
 92		*duplex = HALF_DUPLEX;
 93
 94	return E1000_SUCCESS;
 95}
 96
 97/**
 98 *  e1000_reset_hw_vf - Resets the HW
 99 *  @hw: pointer to the HW structure
100 *
101 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
102 *  This is all the reset we can perform on a VF.
103 **/
104static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
105{
106	struct e1000_mbx_info *mbx = &hw->mbx;
107	u32 timeout = E1000_VF_INIT_TIMEOUT;
108	u32 ret_val = -E1000_ERR_MAC_INIT;
109	u32 msgbuf[3];
110	u8 *addr = (u8 *)(&msgbuf[1]);
111	u32 ctrl;
112
113	/* assert VF queue/interrupt reset */
114	ctrl = er32(CTRL);
115	ew32(CTRL, ctrl | E1000_CTRL_RST);
116
117	/* we cannot initialize while the RSTI / RSTD bits are asserted */
118	while (!mbx->ops.check_for_rst(hw) && timeout) {
119		timeout--;
120		udelay(5);
121	}
122
123	if (timeout) {
124		/* mailbox timeout can now become active */
125		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
126
127		/* notify PF of VF reset completion */
128		msgbuf[0] = E1000_VF_RESET;
129		mbx->ops.write_posted(hw, msgbuf, 1);
130
131		mdelay(10);
132
133		/* set our "perm_addr" based on info provided by PF */
134		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
135		if (!ret_val) {
136			switch (msgbuf[0]) {
137			case E1000_VF_RESET | E1000_VT_MSGTYPE_ACK:
138				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
139				break;
140			case E1000_VF_RESET | E1000_VT_MSGTYPE_NACK:
141				eth_zero_addr(hw->mac.perm_addr);
142				break;
143			default:
144				ret_val = -E1000_ERR_MAC_INIT;
145			}
146		}
147	}
148
149	return ret_val;
150}
151
152/**
153 *  e1000_init_hw_vf - Inits the HW
154 *  @hw: pointer to the HW structure
155 *
156 *  Not much to do here except clear the PF Reset indication if there is one.
157 **/
158static s32 e1000_init_hw_vf(struct e1000_hw *hw)
159{
160	/* attempt to set and restore our mac address */
161	e1000_rar_set_vf(hw, hw->mac.addr, 0);
162
163	return E1000_SUCCESS;
164}
165
166/**
167 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
168 *  @hw: pointer to the HW structure
169 *  @mc_addr: pointer to a multicast address
170 *
171 *  Generates a multicast address hash value which is used to determine
172 *  the multicast filter table array address and new table value.  See
173 *  e1000_mta_set_generic()
174 **/
175static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
176{
177	u32 hash_value, hash_mask;
178	u8 bit_shift = 0;
179
180	/* Register count multiplied by bits per register */
181	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
182
183	/* The bit_shift is the number of left-shifts
184	 * where 0xFF would still fall within the hash mask.
185	 */
186	while (hash_mask >> bit_shift != 0xFF)
187		bit_shift++;
188
189	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
190				  (((u16)mc_addr[5]) << bit_shift)));
191
192	return hash_value;
193}
194
195/**
196 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
197 *  @hw: pointer to the HW structure
198 *  @mc_addr_list: array of multicast addresses to program
199 *  @mc_addr_count: number of multicast addresses to program
200 *  @rar_used_count: the first RAR register free to program
201 *  @rar_count: total number of supported Receive Address Registers
202 *
203 *  Updates the Receive Address Registers and Multicast Table Array.
204 *  The caller must have a packed mc_addr_list of multicast addresses.
205 *  The parameter rar_count will usually be hw->mac.rar_entry_count
206 *  unless there are workarounds that change this.
207 **/
208static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
209					 u8 *mc_addr_list, u32 mc_addr_count,
210					 u32 rar_used_count, u32 rar_count)
211{
212	struct e1000_mbx_info *mbx = &hw->mbx;
213	u32 msgbuf[E1000_VFMAILBOX_SIZE];
214	u16 *hash_list = (u16 *)&msgbuf[1];
215	u32 hash_value;
216	u32 cnt, i;
217	s32 ret_val;
218
219	/* Each entry in the list uses 1 16 bit word.  We have 30
220	 * 16 bit words available in our HW msg buffer (minus 1 for the
221	 * msg type).  That's 30 hash values if we pack 'em right.  If
222	 * there are more than 30 MC addresses to add then punt the
223	 * extras for now and then add code to handle more than 30 later.
224	 * It would be unusual for a server to request that many multi-cast
225	 * addresses except for in large enterprise network environments.
226	 */
227
228	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
229	msgbuf[0] = E1000_VF_SET_MULTICAST;
230	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
231
232	for (i = 0; i < cnt; i++) {
233		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
234		hash_list[i] = hash_value & 0x0FFFF;
235		mc_addr_list += ETH_ALEN;
236	}
237
238	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
239	if (!ret_val)
240		mbx->ops.read_posted(hw, msgbuf, 1);
241}
242
243/**
244 *  e1000_set_vfta_vf - Set/Unset vlan filter table address
245 *  @hw: pointer to the HW structure
246 *  @vid: determines the vfta register and bit to set/unset
247 *  @set: if true then set bit, else clear bit
248 **/
249static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
250{
251	struct e1000_mbx_info *mbx = &hw->mbx;
252	u32 msgbuf[2];
253	s32 err;
254
255	msgbuf[0] = E1000_VF_SET_VLAN;
256	msgbuf[1] = vid;
257	/* Setting the 8 bit field MSG INFO to true indicates "add" */
258	if (set)
259		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
260
261	mbx->ops.write_posted(hw, msgbuf, 2);
262
263	err = mbx->ops.read_posted(hw, msgbuf, 2);
264
265	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
266
267	/* if nacked the vlan was rejected */
268	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
269		err = -E1000_ERR_MAC_INIT;
270
271	return err;
272}
273
274/**
275 *  e1000_rlpml_set_vf - Set the maximum receive packet length
276 *  @hw: pointer to the HW structure
277 *  @max_size: value to assign to max frame size
278 **/
279void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
280{
281	struct e1000_mbx_info *mbx = &hw->mbx;
282	u32 msgbuf[2];
283	s32 ret_val;
284
285	msgbuf[0] = E1000_VF_SET_LPE;
286	msgbuf[1] = max_size;
287
288	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
289	if (!ret_val)
290		mbx->ops.read_posted(hw, msgbuf, 1);
291}
292
293/**
294 *  e1000_rar_set_vf - set device MAC address
295 *  @hw: pointer to the HW structure
296 *  @addr: pointer to the receive address
297 *  @index: receive address array register
298 **/
299static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
300{
301	struct e1000_mbx_info *mbx = &hw->mbx;
302	u32 msgbuf[3];
303	u8 *msg_addr = (u8 *)(&msgbuf[1]);
304	s32 ret_val;
305
306	memset(msgbuf, 0, 12);
307	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
308	memcpy(msg_addr, addr, ETH_ALEN);
309	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
310
311	if (!ret_val)
312		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
313
314	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
315
316	/* if nacked the address was rejected, use "perm_addr" */
317	if (!ret_val &&
318	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
319		e1000_read_mac_addr_vf(hw);
320}
321
322/**
323 *  e1000_read_mac_addr_vf - Read device MAC address
324 *  @hw: pointer to the HW structure
325 **/
326static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
327{
328	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
329
330	return E1000_SUCCESS;
331}
332
333/**
334 *  e1000_set_uc_addr_vf - Set or clear unicast filters
335 *  @hw: pointer to the HW structure
336 *  @sub_cmd: add or clear filters
337 *  @addr: pointer to the filter MAC address
338 **/
339static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
340{
341	struct e1000_mbx_info *mbx = &hw->mbx;
342	u32 msgbuf[3], msgbuf_chk;
343	u8 *msg_addr = (u8 *)(&msgbuf[1]);
344	s32 ret_val;
345
346	memset(msgbuf, 0, sizeof(msgbuf));
347	msgbuf[0] |= sub_cmd;
348	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
349	msgbuf_chk = msgbuf[0];
350
351	if (addr)
352		memcpy(msg_addr, addr, ETH_ALEN);
353
354	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
355
356	if (!ret_val)
357		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
358
359	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
360
361	if (!ret_val) {
362		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
363
364		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
365			return -ENOSPC;
366	}
367
368	return ret_val;
369}
370
371/**
372 *  e1000_check_for_link_vf - Check for link for a virtual interface
373 *  @hw: pointer to the HW structure
374 *
375 *  Checks to see if the underlying PF is still talking to the VF and
376 *  if it is then it reports the link state to the hardware, otherwise
377 *  it reports link down and returns an error.
378 **/
379static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
380{
381	struct e1000_mbx_info *mbx = &hw->mbx;
382	struct e1000_mac_info *mac = &hw->mac;
383	s32 ret_val = E1000_SUCCESS;
384	u32 in_msg = 0;
385
386	/* We only want to run this if there has been a rst asserted.
387	 * in this case that could mean a link change, device reset,
388	 * or a virtual function reset
389	 */
390
391	/* If we were hit with a reset or timeout drop the link */
392	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
393		mac->get_link_status = true;
394
395	if (!mac->get_link_status)
396		goto out;
397
398	/* if link status is down no point in checking to see if PF is up */
399	if (!(er32(STATUS) & E1000_STATUS_LU))
400		goto out;
401
402	/* if the read failed it could just be a mailbox collision, best wait
403	 * until we are called again and don't report an error
404	 */
405	if (mbx->ops.read(hw, &in_msg, 1))
406		goto out;
407
408	/* if incoming message isn't clear to send we are waiting on response */
409	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
410		/* msg is not CTS and is NACK we must have lost CTS status */
411		if (in_msg & E1000_VT_MSGTYPE_NACK)
412			ret_val = -E1000_ERR_MAC_INIT;
413		goto out;
414	}
415
416	/* the PF is talking, if we timed out in the past we reinit */
417	if (!mbx->timeout) {
418		ret_val = -E1000_ERR_MAC_INIT;
419		goto out;
420	}
421
422	/* if we passed all the tests above then the link is up and we no
423	 * longer need to check for link
424	 */
425	mac->get_link_status = false;
426
427out:
428	return ret_val;
429}
430
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2009 - 2018 Intel Corporation. */
  3
 
 
  4#include "vf.h"
  5
  6static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
  7static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  8				     u16 *duplex);
  9static s32 e1000_init_hw_vf(struct e1000_hw *hw);
 10static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
 11
 12static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
 13					 u32, u32, u32);
 14static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
 15static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
 16static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
 17static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
 18
 19/**
 20 *  e1000_init_mac_params_vf - Inits MAC params
 21 *  @hw: pointer to the HW structure
 22 **/
 23static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
 24{
 25	struct e1000_mac_info *mac = &hw->mac;
 26
 27	/* VF's have no MTA Registers - PF feature only */
 28	mac->mta_reg_count = 128;
 29	/* VF's have no access to RAR entries  */
 30	mac->rar_entry_count = 1;
 31
 32	/* Function pointers */
 33	/* reset */
 34	mac->ops.reset_hw = e1000_reset_hw_vf;
 35	/* hw initialization */
 36	mac->ops.init_hw = e1000_init_hw_vf;
 37	/* check for link */
 38	mac->ops.check_for_link = e1000_check_for_link_vf;
 39	/* link info */
 40	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
 41	/* multicast address update */
 42	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
 43	/* set mac address */
 44	mac->ops.rar_set = e1000_rar_set_vf;
 45	/* read mac address */
 46	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
 47	/* set mac filter */
 48	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
 49	/* set vlan filter table array */
 50	mac->ops.set_vfta = e1000_set_vfta_vf;
 51
 52	return E1000_SUCCESS;
 53}
 54
 55/**
 56 *  e1000_init_function_pointers_vf - Inits function pointers
 57 *  @hw: pointer to the HW structure
 58 **/
 59void e1000_init_function_pointers_vf(struct e1000_hw *hw)
 60{
 61	hw->mac.ops.init_params = e1000_init_mac_params_vf;
 62	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
 63}
 64
 65/**
 66 *  e1000_get_link_up_info_vf - Gets link info.
 67 *  @hw: pointer to the HW structure
 68 *  @speed: pointer to 16 bit value to store link speed.
 69 *  @duplex: pointer to 16 bit value to store duplex.
 70 *
 71 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 72 *  the status register's data which is often stale and inaccurate.
 73 **/
 74static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 75				     u16 *duplex)
 76{
 77	s32 status;
 78
 79	status = er32(STATUS);
 80	if (status & E1000_STATUS_SPEED_1000)
 81		*speed = SPEED_1000;
 82	else if (status & E1000_STATUS_SPEED_100)
 83		*speed = SPEED_100;
 84	else
 85		*speed = SPEED_10;
 86
 87	if (status & E1000_STATUS_FD)
 88		*duplex = FULL_DUPLEX;
 89	else
 90		*duplex = HALF_DUPLEX;
 91
 92	return E1000_SUCCESS;
 93}
 94
 95/**
 96 *  e1000_reset_hw_vf - Resets the HW
 97 *  @hw: pointer to the HW structure
 98 *
 99 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
100 *  This is all the reset we can perform on a VF.
101 **/
102static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
103{
104	struct e1000_mbx_info *mbx = &hw->mbx;
105	u32 timeout = E1000_VF_INIT_TIMEOUT;
106	u32 ret_val = -E1000_ERR_MAC_INIT;
107	u32 msgbuf[3];
108	u8 *addr = (u8 *)(&msgbuf[1]);
109	u32 ctrl;
110
111	/* assert VF queue/interrupt reset */
112	ctrl = er32(CTRL);
113	ew32(CTRL, ctrl | E1000_CTRL_RST);
114
115	/* we cannot initialize while the RSTI / RSTD bits are asserted */
116	while (!mbx->ops.check_for_rst(hw) && timeout) {
117		timeout--;
118		udelay(5);
119	}
120
121	if (timeout) {
122		/* mailbox timeout can now become active */
123		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
124
125		/* notify PF of VF reset completion */
126		msgbuf[0] = E1000_VF_RESET;
127		mbx->ops.write_posted(hw, msgbuf, 1);
128
129		mdelay(10);
130
131		/* set our "perm_addr" based on info provided by PF */
132		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
133		if (!ret_val) {
134			if (msgbuf[0] == (E1000_VF_RESET |
135					  E1000_VT_MSGTYPE_ACK))
136				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
137			else
 
 
 
 
138				ret_val = -E1000_ERR_MAC_INIT;
 
139		}
140	}
141
142	return ret_val;
143}
144
145/**
146 *  e1000_init_hw_vf - Inits the HW
147 *  @hw: pointer to the HW structure
148 *
149 *  Not much to do here except clear the PF Reset indication if there is one.
150 **/
151static s32 e1000_init_hw_vf(struct e1000_hw *hw)
152{
153	/* attempt to set and restore our mac address */
154	e1000_rar_set_vf(hw, hw->mac.addr, 0);
155
156	return E1000_SUCCESS;
157}
158
159/**
160 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
161 *  @hw: pointer to the HW structure
162 *  @mc_addr: pointer to a multicast address
163 *
164 *  Generates a multicast address hash value which is used to determine
165 *  the multicast filter table array address and new table value.  See
166 *  e1000_mta_set_generic()
167 **/
168static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
169{
170	u32 hash_value, hash_mask;
171	u8 bit_shift = 0;
172
173	/* Register count multiplied by bits per register */
174	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
175
176	/* The bit_shift is the number of left-shifts
177	 * where 0xFF would still fall within the hash mask.
178	 */
179	while (hash_mask >> bit_shift != 0xFF)
180		bit_shift++;
181
182	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
183				  (((u16)mc_addr[5]) << bit_shift)));
184
185	return hash_value;
186}
187
188/**
189 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
190 *  @hw: pointer to the HW structure
191 *  @mc_addr_list: array of multicast addresses to program
192 *  @mc_addr_count: number of multicast addresses to program
193 *  @rar_used_count: the first RAR register free to program
194 *  @rar_count: total number of supported Receive Address Registers
195 *
196 *  Updates the Receive Address Registers and Multicast Table Array.
197 *  The caller must have a packed mc_addr_list of multicast addresses.
198 *  The parameter rar_count will usually be hw->mac.rar_entry_count
199 *  unless there are workarounds that change this.
200 **/
201static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
202					 u8 *mc_addr_list, u32 mc_addr_count,
203					 u32 rar_used_count, u32 rar_count)
204{
205	struct e1000_mbx_info *mbx = &hw->mbx;
206	u32 msgbuf[E1000_VFMAILBOX_SIZE];
207	u16 *hash_list = (u16 *)&msgbuf[1];
208	u32 hash_value;
209	u32 cnt, i;
210	s32 ret_val;
211
212	/* Each entry in the list uses 1 16 bit word.  We have 30
213	 * 16 bit words available in our HW msg buffer (minus 1 for the
214	 * msg type).  That's 30 hash values if we pack 'em right.  If
215	 * there are more than 30 MC addresses to add then punt the
216	 * extras for now and then add code to handle more than 30 later.
217	 * It would be unusual for a server to request that many multi-cast
218	 * addresses except for in large enterprise network environments.
219	 */
220
221	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
222	msgbuf[0] = E1000_VF_SET_MULTICAST;
223	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
224
225	for (i = 0; i < cnt; i++) {
226		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
227		hash_list[i] = hash_value & 0x0FFFF;
228		mc_addr_list += ETH_ALEN;
229	}
230
231	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
232	if (!ret_val)
233		mbx->ops.read_posted(hw, msgbuf, 1);
234}
235
236/**
237 *  e1000_set_vfta_vf - Set/Unset vlan filter table address
238 *  @hw: pointer to the HW structure
239 *  @vid: determines the vfta register and bit to set/unset
240 *  @set: if true then set bit, else clear bit
241 **/
242static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
243{
244	struct e1000_mbx_info *mbx = &hw->mbx;
245	u32 msgbuf[2];
246	s32 err;
247
248	msgbuf[0] = E1000_VF_SET_VLAN;
249	msgbuf[1] = vid;
250	/* Setting the 8 bit field MSG INFO to true indicates "add" */
251	if (set)
252		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
253
254	mbx->ops.write_posted(hw, msgbuf, 2);
255
256	err = mbx->ops.read_posted(hw, msgbuf, 2);
257
258	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
259
260	/* if nacked the vlan was rejected */
261	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
262		err = -E1000_ERR_MAC_INIT;
263
264	return err;
265}
266
267/**
268 *  e1000_rlpml_set_vf - Set the maximum receive packet length
269 *  @hw: pointer to the HW structure
270 *  @max_size: value to assign to max frame size
271 **/
272void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
273{
274	struct e1000_mbx_info *mbx = &hw->mbx;
275	u32 msgbuf[2];
276	s32 ret_val;
277
278	msgbuf[0] = E1000_VF_SET_LPE;
279	msgbuf[1] = max_size;
280
281	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
282	if (!ret_val)
283		mbx->ops.read_posted(hw, msgbuf, 1);
284}
285
286/**
287 *  e1000_rar_set_vf - set device MAC address
288 *  @hw: pointer to the HW structure
289 *  @addr: pointer to the receive address
290 *  @index: receive address array register
291 **/
292static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
293{
294	struct e1000_mbx_info *mbx = &hw->mbx;
295	u32 msgbuf[3];
296	u8 *msg_addr = (u8 *)(&msgbuf[1]);
297	s32 ret_val;
298
299	memset(msgbuf, 0, 12);
300	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
301	memcpy(msg_addr, addr, ETH_ALEN);
302	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
303
304	if (!ret_val)
305		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
306
307	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
308
309	/* if nacked the address was rejected, use "perm_addr" */
310	if (!ret_val &&
311	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
312		e1000_read_mac_addr_vf(hw);
313}
314
315/**
316 *  e1000_read_mac_addr_vf - Read device MAC address
317 *  @hw: pointer to the HW structure
318 **/
319static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
320{
321	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
322
323	return E1000_SUCCESS;
324}
325
326/**
327 *  e1000_set_uc_addr_vf - Set or clear unicast filters
328 *  @hw: pointer to the HW structure
329 *  @sub_cmd: add or clear filters
330 *  @addr: pointer to the filter MAC address
331 **/
332static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
333{
334	struct e1000_mbx_info *mbx = &hw->mbx;
335	u32 msgbuf[3], msgbuf_chk;
336	u8 *msg_addr = (u8 *)(&msgbuf[1]);
337	s32 ret_val;
338
339	memset(msgbuf, 0, sizeof(msgbuf));
340	msgbuf[0] |= sub_cmd;
341	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
342	msgbuf_chk = msgbuf[0];
343
344	if (addr)
345		memcpy(msg_addr, addr, ETH_ALEN);
346
347	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
348
349	if (!ret_val)
350		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
351
352	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
353
354	if (!ret_val) {
355		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
356
357		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
358			return -ENOSPC;
359	}
360
361	return ret_val;
362}
363
364/**
365 *  e1000_check_for_link_vf - Check for link for a virtual interface
366 *  @hw: pointer to the HW structure
367 *
368 *  Checks to see if the underlying PF is still talking to the VF and
369 *  if it is then it reports the link state to the hardware, otherwise
370 *  it reports link down and returns an error.
371 **/
372static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
373{
374	struct e1000_mbx_info *mbx = &hw->mbx;
375	struct e1000_mac_info *mac = &hw->mac;
376	s32 ret_val = E1000_SUCCESS;
377	u32 in_msg = 0;
378
379	/* We only want to run this if there has been a rst asserted.
380	 * in this case that could mean a link change, device reset,
381	 * or a virtual function reset
382	 */
383
384	/* If we were hit with a reset or timeout drop the link */
385	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
386		mac->get_link_status = true;
387
388	if (!mac->get_link_status)
389		goto out;
390
391	/* if link status is down no point in checking to see if PF is up */
392	if (!(er32(STATUS) & E1000_STATUS_LU))
393		goto out;
394
395	/* if the read failed it could just be a mailbox collision, best wait
396	 * until we are called again and don't report an error
397	 */
398	if (mbx->ops.read(hw, &in_msg, 1))
399		goto out;
400
401	/* if incoming message isn't clear to send we are waiting on response */
402	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
403		/* msg is not CTS and is NACK we must have lost CTS status */
404		if (in_msg & E1000_VT_MSGTYPE_NACK)
405			ret_val = -E1000_ERR_MAC_INIT;
406		goto out;
407	}
408
409	/* the PF is talking, if we timed out in the past we reinit */
410	if (!mbx->timeout) {
411		ret_val = -E1000_ERR_MAC_INIT;
412		goto out;
413	}
414
415	/* if we passed all the tests above then the link is up and we no
416	 * longer need to check for link
417	 */
418	mac->get_link_status = false;
419
420out:
421	return ret_val;
422}
423