Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2018 Intel Corporation.
4 */
5
6#include <linux/spinlock.h>
7#include <linux/seqlock.h>
8#include <linux/netdevice.h>
9#include <linux/moduleparam.h>
10#include <linux/bitops.h>
11#include <linux/timer.h>
12#include <linux/vmalloc.h>
13#include <linux/highmem.h>
14
15#include "hfi.h"
16#include "common.h"
17#include "qp.h"
18#include "sdma.h"
19#include "iowait.h"
20#include "trace.h"
21
22/* must be a power of 2 >= 64 <= 32768 */
23#define SDMA_DESCQ_CNT 2048
24#define SDMA_DESC_INTR 64
25#define INVALID_TAIL 0xffff
26#define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
27
28static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
29module_param(sdma_descq_cnt, uint, S_IRUGO);
30MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
31
32static uint sdma_idle_cnt = 250;
33module_param(sdma_idle_cnt, uint, S_IRUGO);
34MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
35
36uint mod_num_sdma;
37module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
38MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
39
40static uint sdma_desct_intr = SDMA_DESC_INTR;
41module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
42MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
43
44#define SDMA_WAIT_BATCH_SIZE 20
45/* max wait time for a SDMA engine to indicate it has halted */
46#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
47/* all SDMA engine errors that cause a halt */
48
49#define SD(name) SEND_DMA_##name
50#define ALL_SDMA_ENG_HALT_ERRS \
51 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
52 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
53 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
54 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
55 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
56 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
57 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
58 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
59 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
60 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
61 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
62 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
63 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
64 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
65 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
66 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
67 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
68 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
69
70/* sdma_sendctrl operations */
71#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
72#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
73#define SDMA_SENDCTRL_OP_HALT BIT(2)
74#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
75
76/* handle long defines */
77#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
78SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
79#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
80SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
81
82static const char * const sdma_state_names[] = {
83 [sdma_state_s00_hw_down] = "s00_HwDown",
84 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
85 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
86 [sdma_state_s20_idle] = "s20_Idle",
87 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
88 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
89 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
90 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
91 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
92 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
93 [sdma_state_s99_running] = "s99_Running",
94};
95
96#ifdef CONFIG_SDMA_VERBOSITY
97static const char * const sdma_event_names[] = {
98 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
99 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
100 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
101 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
102 [sdma_event_e30_go_running] = "e30_GoRunning",
103 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
104 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
105 [sdma_event_e60_hw_halted] = "e60_HwHalted",
106 [sdma_event_e70_go_idle] = "e70_GoIdle",
107 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
108 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
109 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
110 [sdma_event_e85_link_down] = "e85_LinkDown",
111 [sdma_event_e90_sw_halted] = "e90_SwHalted",
112};
113#endif
114
115static const struct sdma_set_state_action sdma_action_table[] = {
116 [sdma_state_s00_hw_down] = {
117 .go_s99_running_tofalse = 1,
118 .op_enable = 0,
119 .op_intenable = 0,
120 .op_halt = 0,
121 .op_cleanup = 0,
122 },
123 [sdma_state_s10_hw_start_up_halt_wait] = {
124 .op_enable = 0,
125 .op_intenable = 0,
126 .op_halt = 1,
127 .op_cleanup = 0,
128 },
129 [sdma_state_s15_hw_start_up_clean_wait] = {
130 .op_enable = 0,
131 .op_intenable = 1,
132 .op_halt = 0,
133 .op_cleanup = 1,
134 },
135 [sdma_state_s20_idle] = {
136 .op_enable = 0,
137 .op_intenable = 1,
138 .op_halt = 0,
139 .op_cleanup = 0,
140 },
141 [sdma_state_s30_sw_clean_up_wait] = {
142 .op_enable = 0,
143 .op_intenable = 0,
144 .op_halt = 0,
145 .op_cleanup = 0,
146 },
147 [sdma_state_s40_hw_clean_up_wait] = {
148 .op_enable = 0,
149 .op_intenable = 0,
150 .op_halt = 0,
151 .op_cleanup = 1,
152 },
153 [sdma_state_s50_hw_halt_wait] = {
154 .op_enable = 0,
155 .op_intenable = 0,
156 .op_halt = 0,
157 .op_cleanup = 0,
158 },
159 [sdma_state_s60_idle_halt_wait] = {
160 .go_s99_running_tofalse = 1,
161 .op_enable = 0,
162 .op_intenable = 0,
163 .op_halt = 1,
164 .op_cleanup = 0,
165 },
166 [sdma_state_s80_hw_freeze] = {
167 .op_enable = 0,
168 .op_intenable = 0,
169 .op_halt = 0,
170 .op_cleanup = 0,
171 },
172 [sdma_state_s82_freeze_sw_clean] = {
173 .op_enable = 0,
174 .op_intenable = 0,
175 .op_halt = 0,
176 .op_cleanup = 0,
177 },
178 [sdma_state_s99_running] = {
179 .op_enable = 1,
180 .op_intenable = 1,
181 .op_halt = 0,
182 .op_cleanup = 0,
183 .go_s99_running_totrue = 1,
184 },
185};
186
187#define SDMA_TAIL_UPDATE_THRESH 0x1F
188
189/* declare all statics here rather than keep sorting */
190static void sdma_complete(struct kref *);
191static void sdma_finalput(struct sdma_state *);
192static void sdma_get(struct sdma_state *);
193static void sdma_hw_clean_up_task(struct tasklet_struct *);
194static void sdma_put(struct sdma_state *);
195static void sdma_set_state(struct sdma_engine *, enum sdma_states);
196static void sdma_start_hw_clean_up(struct sdma_engine *);
197static void sdma_sw_clean_up_task(struct tasklet_struct *);
198static void sdma_sendctrl(struct sdma_engine *, unsigned);
199static void init_sdma_regs(struct sdma_engine *, u32, uint);
200static void sdma_process_event(
201 struct sdma_engine *sde,
202 enum sdma_events event);
203static void __sdma_process_event(
204 struct sdma_engine *sde,
205 enum sdma_events event);
206static void dump_sdma_state(struct sdma_engine *sde);
207static void sdma_make_progress(struct sdma_engine *sde, u64 status);
208static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
209static void sdma_flush_descq(struct sdma_engine *sde);
210
211/**
212 * sdma_state_name() - return state string from enum
213 * @state: state
214 */
215static const char *sdma_state_name(enum sdma_states state)
216{
217 return sdma_state_names[state];
218}
219
220static void sdma_get(struct sdma_state *ss)
221{
222 kref_get(&ss->kref);
223}
224
225static void sdma_complete(struct kref *kref)
226{
227 struct sdma_state *ss =
228 container_of(kref, struct sdma_state, kref);
229
230 complete(&ss->comp);
231}
232
233static void sdma_put(struct sdma_state *ss)
234{
235 kref_put(&ss->kref, sdma_complete);
236}
237
238static void sdma_finalput(struct sdma_state *ss)
239{
240 sdma_put(ss);
241 wait_for_completion(&ss->comp);
242}
243
244static inline void write_sde_csr(
245 struct sdma_engine *sde,
246 u32 offset0,
247 u64 value)
248{
249 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
250}
251
252static inline u64 read_sde_csr(
253 struct sdma_engine *sde,
254 u32 offset0)
255{
256 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
257}
258
259/*
260 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
261 * sdma engine 'sde' to drop to 0.
262 */
263static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
264 int pause)
265{
266 u64 off = 8 * sde->this_idx;
267 struct hfi1_devdata *dd = sde->dd;
268 int lcnt = 0;
269 u64 reg_prev;
270 u64 reg = 0;
271
272 while (1) {
273 reg_prev = reg;
274 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
275
276 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
277 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
278 if (reg == 0)
279 break;
280 /* counter is reest if accupancy count changes */
281 if (reg != reg_prev)
282 lcnt = 0;
283 if (lcnt++ > 500) {
284 /* timed out - bounce the link */
285 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
286 __func__, sde->this_idx, (u32)reg);
287 queue_work(dd->pport->link_wq,
288 &dd->pport->link_bounce_work);
289 break;
290 }
291 udelay(1);
292 }
293}
294
295/*
296 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
297 * and pause for credit return.
298 */
299void sdma_wait(struct hfi1_devdata *dd)
300{
301 int i;
302
303 for (i = 0; i < dd->num_sdma; i++) {
304 struct sdma_engine *sde = &dd->per_sdma[i];
305
306 sdma_wait_for_packet_egress(sde, 0);
307 }
308}
309
310static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
311{
312 u64 reg;
313
314 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
315 return;
316 reg = cnt;
317 reg &= SD(DESC_CNT_CNT_MASK);
318 reg <<= SD(DESC_CNT_CNT_SHIFT);
319 write_sde_csr(sde, SD(DESC_CNT), reg);
320}
321
322static inline void complete_tx(struct sdma_engine *sde,
323 struct sdma_txreq *tx,
324 int res)
325{
326 /* protect against complete modifying */
327 struct iowait *wait = tx->wait;
328 callback_t complete = tx->complete;
329
330#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
331 trace_hfi1_sdma_out_sn(sde, tx->sn);
332 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
333 dd_dev_err(sde->dd, "expected %llu got %llu\n",
334 sde->head_sn, tx->sn);
335 sde->head_sn++;
336#endif
337 __sdma_txclean(sde->dd, tx);
338 if (complete)
339 (*complete)(tx, res);
340 if (iowait_sdma_dec(wait))
341 iowait_drain_wakeup(wait);
342}
343
344/*
345 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
346 *
347 * Depending on timing there can be txreqs in two places:
348 * - in the descq ring
349 * - in the flush list
350 *
351 * To avoid ordering issues the descq ring needs to be flushed
352 * first followed by the flush list.
353 *
354 * This routine is called from two places
355 * - From a work queue item
356 * - Directly from the state machine just before setting the
357 * state to running
358 *
359 * Must be called with head_lock held
360 *
361 */
362static void sdma_flush(struct sdma_engine *sde)
363{
364 struct sdma_txreq *txp, *txp_next;
365 LIST_HEAD(flushlist);
366 unsigned long flags;
367 uint seq;
368
369 /* flush from head to tail */
370 sdma_flush_descq(sde);
371 spin_lock_irqsave(&sde->flushlist_lock, flags);
372 /* copy flush list */
373 list_splice_init(&sde->flushlist, &flushlist);
374 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
375 /* flush from flush list */
376 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
377 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
378 /* wakeup QPs orphaned on the dmawait list */
379 do {
380 struct iowait *w, *nw;
381
382 seq = read_seqbegin(&sde->waitlock);
383 if (!list_empty(&sde->dmawait)) {
384 write_seqlock(&sde->waitlock);
385 list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
386 if (w->wakeup) {
387 w->wakeup(w, SDMA_AVAIL_REASON);
388 list_del_init(&w->list);
389 }
390 }
391 write_sequnlock(&sde->waitlock);
392 }
393 } while (read_seqretry(&sde->waitlock, seq));
394}
395
396/*
397 * Fields a work request for flushing the descq ring
398 * and the flush list
399 *
400 * If the engine has been brought to running during
401 * the scheduling delay, the flush is ignored, assuming
402 * that the process of bringing the engine to running
403 * would have done this flush prior to going to running.
404 *
405 */
406static void sdma_field_flush(struct work_struct *work)
407{
408 unsigned long flags;
409 struct sdma_engine *sde =
410 container_of(work, struct sdma_engine, flush_worker);
411
412 write_seqlock_irqsave(&sde->head_lock, flags);
413 if (!__sdma_running(sde))
414 sdma_flush(sde);
415 write_sequnlock_irqrestore(&sde->head_lock, flags);
416}
417
418static void sdma_err_halt_wait(struct work_struct *work)
419{
420 struct sdma_engine *sde = container_of(work, struct sdma_engine,
421 err_halt_worker);
422 u64 statuscsr;
423 unsigned long timeout;
424
425 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
426 while (1) {
427 statuscsr = read_sde_csr(sde, SD(STATUS));
428 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
429 if (statuscsr)
430 break;
431 if (time_after(jiffies, timeout)) {
432 dd_dev_err(sde->dd,
433 "SDMA engine %d - timeout waiting for engine to halt\n",
434 sde->this_idx);
435 /*
436 * Continue anyway. This could happen if there was
437 * an uncorrectable error in the wrong spot.
438 */
439 break;
440 }
441 usleep_range(80, 120);
442 }
443
444 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
445}
446
447static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
448{
449 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
450 unsigned index;
451 struct hfi1_devdata *dd = sde->dd;
452
453 for (index = 0; index < dd->num_sdma; index++) {
454 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
455
456 if (curr_sdma != sde)
457 curr_sdma->progress_check_head =
458 curr_sdma->descq_head;
459 }
460 dd_dev_err(sde->dd,
461 "SDMA engine %d - check scheduled\n",
462 sde->this_idx);
463 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
464 }
465}
466
467static void sdma_err_progress_check(struct timer_list *t)
468{
469 unsigned index;
470 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
471
472 dd_dev_err(sde->dd, "SDE progress check event\n");
473 for (index = 0; index < sde->dd->num_sdma; index++) {
474 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
475 unsigned long flags;
476
477 /* check progress on each engine except the current one */
478 if (curr_sde == sde)
479 continue;
480 /*
481 * We must lock interrupts when acquiring sde->lock,
482 * to avoid a deadlock if interrupt triggers and spins on
483 * the same lock on same CPU
484 */
485 spin_lock_irqsave(&curr_sde->tail_lock, flags);
486 write_seqlock(&curr_sde->head_lock);
487
488 /* skip non-running queues */
489 if (curr_sde->state.current_state != sdma_state_s99_running) {
490 write_sequnlock(&curr_sde->head_lock);
491 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
492 continue;
493 }
494
495 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
496 (curr_sde->descq_head ==
497 curr_sde->progress_check_head))
498 __sdma_process_event(curr_sde,
499 sdma_event_e90_sw_halted);
500 write_sequnlock(&curr_sde->head_lock);
501 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
502 }
503 schedule_work(&sde->err_halt_worker);
504}
505
506static void sdma_hw_clean_up_task(struct tasklet_struct *t)
507{
508 struct sdma_engine *sde = from_tasklet(sde, t,
509 sdma_hw_clean_up_task);
510 u64 statuscsr;
511
512 while (1) {
513#ifdef CONFIG_SDMA_VERBOSITY
514 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
515 sde->this_idx, slashstrip(__FILE__), __LINE__,
516 __func__);
517#endif
518 statuscsr = read_sde_csr(sde, SD(STATUS));
519 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
520 if (statuscsr)
521 break;
522 udelay(10);
523 }
524
525 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
526}
527
528static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
529{
530 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
531}
532
533/*
534 * flush ring for recovery
535 */
536static void sdma_flush_descq(struct sdma_engine *sde)
537{
538 u16 head, tail;
539 int progress = 0;
540 struct sdma_txreq *txp = get_txhead(sde);
541
542 /* The reason for some of the complexity of this code is that
543 * not all descriptors have corresponding txps. So, we have to
544 * be able to skip over descs until we wander into the range of
545 * the next txp on the list.
546 */
547 head = sde->descq_head & sde->sdma_mask;
548 tail = sde->descq_tail & sde->sdma_mask;
549 while (head != tail) {
550 /* advance head, wrap if needed */
551 head = ++sde->descq_head & sde->sdma_mask;
552 /* if now past this txp's descs, do the callback */
553 if (txp && txp->next_descq_idx == head) {
554 /* remove from list */
555 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
556 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
557 trace_hfi1_sdma_progress(sde, head, tail, txp);
558 txp = get_txhead(sde);
559 }
560 progress++;
561 }
562 if (progress)
563 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
564}
565
566static void sdma_sw_clean_up_task(struct tasklet_struct *t)
567{
568 struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
569 unsigned long flags;
570
571 spin_lock_irqsave(&sde->tail_lock, flags);
572 write_seqlock(&sde->head_lock);
573
574 /*
575 * At this point, the following should always be true:
576 * - We are halted, so no more descriptors are getting retired.
577 * - We are not running, so no one is submitting new work.
578 * - Only we can send the e40_sw_cleaned, so we can't start
579 * running again until we say so. So, the active list and
580 * descq are ours to play with.
581 */
582
583 /*
584 * In the error clean up sequence, software clean must be called
585 * before the hardware clean so we can use the hardware head in
586 * the progress routine. A hardware clean or SPC unfreeze will
587 * reset the hardware head.
588 *
589 * Process all retired requests. The progress routine will use the
590 * latest physical hardware head - we are not running so speed does
591 * not matter.
592 */
593 sdma_make_progress(sde, 0);
594
595 sdma_flush(sde);
596
597 /*
598 * Reset our notion of head and tail.
599 * Note that the HW registers have been reset via an earlier
600 * clean up.
601 */
602 sde->descq_tail = 0;
603 sde->descq_head = 0;
604 sde->desc_avail = sdma_descq_freecnt(sde);
605 *sde->head_dma = 0;
606
607 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
608
609 write_sequnlock(&sde->head_lock);
610 spin_unlock_irqrestore(&sde->tail_lock, flags);
611}
612
613static void sdma_sw_tear_down(struct sdma_engine *sde)
614{
615 struct sdma_state *ss = &sde->state;
616
617 /* Releasing this reference means the state machine has stopped. */
618 sdma_put(ss);
619
620 /* stop waiting for all unfreeze events to complete */
621 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
622 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
623}
624
625static void sdma_start_hw_clean_up(struct sdma_engine *sde)
626{
627 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
628}
629
630static void sdma_set_state(struct sdma_engine *sde,
631 enum sdma_states next_state)
632{
633 struct sdma_state *ss = &sde->state;
634 const struct sdma_set_state_action *action = sdma_action_table;
635 unsigned op = 0;
636
637 trace_hfi1_sdma_state(
638 sde,
639 sdma_state_names[ss->current_state],
640 sdma_state_names[next_state]);
641
642 /* debugging bookkeeping */
643 ss->previous_state = ss->current_state;
644 ss->previous_op = ss->current_op;
645 ss->current_state = next_state;
646
647 if (ss->previous_state != sdma_state_s99_running &&
648 next_state == sdma_state_s99_running)
649 sdma_flush(sde);
650
651 if (action[next_state].op_enable)
652 op |= SDMA_SENDCTRL_OP_ENABLE;
653
654 if (action[next_state].op_intenable)
655 op |= SDMA_SENDCTRL_OP_INTENABLE;
656
657 if (action[next_state].op_halt)
658 op |= SDMA_SENDCTRL_OP_HALT;
659
660 if (action[next_state].op_cleanup)
661 op |= SDMA_SENDCTRL_OP_CLEANUP;
662
663 if (action[next_state].go_s99_running_tofalse)
664 ss->go_s99_running = 0;
665
666 if (action[next_state].go_s99_running_totrue)
667 ss->go_s99_running = 1;
668
669 ss->current_op = op;
670 sdma_sendctrl(sde, ss->current_op);
671}
672
673/**
674 * sdma_get_descq_cnt() - called when device probed
675 *
676 * Return a validated descq count.
677 *
678 * This is currently only used in the verbs initialization to build the tx
679 * list.
680 *
681 * This will probably be deleted in favor of a more scalable approach to
682 * alloc tx's.
683 *
684 */
685u16 sdma_get_descq_cnt(void)
686{
687 u16 count = sdma_descq_cnt;
688
689 if (!count)
690 return SDMA_DESCQ_CNT;
691 /* count must be a power of 2 greater than 64 and less than
692 * 32768. Otherwise return default.
693 */
694 if (!is_power_of_2(count))
695 return SDMA_DESCQ_CNT;
696 if (count < 64 || count > 32768)
697 return SDMA_DESCQ_CNT;
698 return count;
699}
700
701/**
702 * sdma_engine_get_vl() - return vl for a given sdma engine
703 * @sde: sdma engine
704 *
705 * This function returns the vl mapped to a given engine, or an error if
706 * the mapping can't be found. The mapping fields are protected by RCU.
707 */
708int sdma_engine_get_vl(struct sdma_engine *sde)
709{
710 struct hfi1_devdata *dd = sde->dd;
711 struct sdma_vl_map *m;
712 u8 vl;
713
714 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
715 return -EINVAL;
716
717 rcu_read_lock();
718 m = rcu_dereference(dd->sdma_map);
719 if (unlikely(!m)) {
720 rcu_read_unlock();
721 return -EINVAL;
722 }
723 vl = m->engine_to_vl[sde->this_idx];
724 rcu_read_unlock();
725
726 return vl;
727}
728
729/**
730 * sdma_select_engine_vl() - select sdma engine
731 * @dd: devdata
732 * @selector: a spreading factor
733 * @vl: this vl
734 *
735 *
736 * This function returns an engine based on the selector and a vl. The
737 * mapping fields are protected by RCU.
738 */
739struct sdma_engine *sdma_select_engine_vl(
740 struct hfi1_devdata *dd,
741 u32 selector,
742 u8 vl)
743{
744 struct sdma_vl_map *m;
745 struct sdma_map_elem *e;
746 struct sdma_engine *rval;
747
748 /* NOTE This should only happen if SC->VL changed after the initial
749 * checks on the QP/AH
750 * Default will return engine 0 below
751 */
752 if (vl >= num_vls) {
753 rval = NULL;
754 goto done;
755 }
756
757 rcu_read_lock();
758 m = rcu_dereference(dd->sdma_map);
759 if (unlikely(!m)) {
760 rcu_read_unlock();
761 return &dd->per_sdma[0];
762 }
763 e = m->map[vl & m->mask];
764 rval = e->sde[selector & e->mask];
765 rcu_read_unlock();
766
767done:
768 rval = !rval ? &dd->per_sdma[0] : rval;
769 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
770 return rval;
771}
772
773/**
774 * sdma_select_engine_sc() - select sdma engine
775 * @dd: devdata
776 * @selector: a spreading factor
777 * @sc5: the 5 bit sc
778 *
779 *
780 * This function returns an engine based on the selector and an sc.
781 */
782struct sdma_engine *sdma_select_engine_sc(
783 struct hfi1_devdata *dd,
784 u32 selector,
785 u8 sc5)
786{
787 u8 vl = sc_to_vlt(dd, sc5);
788
789 return sdma_select_engine_vl(dd, selector, vl);
790}
791
792struct sdma_rht_map_elem {
793 u32 mask;
794 u8 ctr;
795 struct sdma_engine *sde[];
796};
797
798struct sdma_rht_node {
799 unsigned long cpu_id;
800 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
801 struct rhash_head node;
802};
803
804#define NR_CPUS_HINT 192
805
806static const struct rhashtable_params sdma_rht_params = {
807 .nelem_hint = NR_CPUS_HINT,
808 .head_offset = offsetof(struct sdma_rht_node, node),
809 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
810 .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
811 .max_size = NR_CPUS,
812 .min_size = 8,
813 .automatic_shrinking = true,
814};
815
816/*
817 * sdma_select_user_engine() - select sdma engine based on user setup
818 * @dd: devdata
819 * @selector: a spreading factor
820 * @vl: this vl
821 *
822 * This function returns an sdma engine for a user sdma request.
823 * User defined sdma engine affinity setting is honored when applicable,
824 * otherwise system default sdma engine mapping is used. To ensure correct
825 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
826 */
827struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
828 u32 selector, u8 vl)
829{
830 struct sdma_rht_node *rht_node;
831 struct sdma_engine *sde = NULL;
832 unsigned long cpu_id;
833
834 /*
835 * To ensure that always the same sdma engine(s) will be
836 * selected make sure the process is pinned to this CPU only.
837 */
838 if (current->nr_cpus_allowed != 1)
839 goto out;
840
841 rcu_read_lock();
842 cpu_id = smp_processor_id();
843 rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
844 sdma_rht_params);
845
846 if (rht_node && rht_node->map[vl]) {
847 struct sdma_rht_map_elem *map = rht_node->map[vl];
848
849 sde = map->sde[selector & map->mask];
850 }
851 rcu_read_unlock();
852
853 if (sde)
854 return sde;
855
856out:
857 return sdma_select_engine_vl(dd, selector, vl);
858}
859
860static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
861{
862 int i;
863
864 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
865 map->sde[map->ctr + i] = map->sde[i];
866}
867
868static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
869 struct sdma_engine *sde)
870{
871 unsigned int i, pow;
872
873 /* only need to check the first ctr entries for a match */
874 for (i = 0; i < map->ctr; i++) {
875 if (map->sde[i] == sde) {
876 memmove(&map->sde[i], &map->sde[i + 1],
877 (map->ctr - i - 1) * sizeof(map->sde[0]));
878 map->ctr--;
879 pow = roundup_pow_of_two(map->ctr ? : 1);
880 map->mask = pow - 1;
881 sdma_populate_sde_map(map);
882 break;
883 }
884 }
885}
886
887/*
888 * Prevents concurrent reads and writes of the sdma engine cpu_mask
889 */
890static DEFINE_MUTEX(process_to_sde_mutex);
891
892ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
893 size_t count)
894{
895 struct hfi1_devdata *dd = sde->dd;
896 cpumask_var_t mask, new_mask;
897 unsigned long cpu;
898 int ret, vl, sz;
899 struct sdma_rht_node *rht_node;
900
901 vl = sdma_engine_get_vl(sde);
902 if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
903 return -EINVAL;
904
905 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
906 if (!ret)
907 return -ENOMEM;
908
909 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
910 if (!ret) {
911 free_cpumask_var(mask);
912 return -ENOMEM;
913 }
914 ret = cpulist_parse(buf, mask);
915 if (ret)
916 goto out_free;
917
918 if (!cpumask_subset(mask, cpu_online_mask)) {
919 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
920 ret = -EINVAL;
921 goto out_free;
922 }
923
924 sz = sizeof(struct sdma_rht_map_elem) +
925 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
926
927 mutex_lock(&process_to_sde_mutex);
928
929 for_each_cpu(cpu, mask) {
930 /* Check if we have this already mapped */
931 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
932 cpumask_set_cpu(cpu, new_mask);
933 continue;
934 }
935
936 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
937 sdma_rht_params);
938 if (!rht_node) {
939 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
940 if (!rht_node) {
941 ret = -ENOMEM;
942 goto out;
943 }
944
945 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
946 if (!rht_node->map[vl]) {
947 kfree(rht_node);
948 ret = -ENOMEM;
949 goto out;
950 }
951 rht_node->cpu_id = cpu;
952 rht_node->map[vl]->mask = 0;
953 rht_node->map[vl]->ctr = 1;
954 rht_node->map[vl]->sde[0] = sde;
955
956 ret = rhashtable_insert_fast(dd->sdma_rht,
957 &rht_node->node,
958 sdma_rht_params);
959 if (ret) {
960 kfree(rht_node->map[vl]);
961 kfree(rht_node);
962 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
963 cpu);
964 goto out;
965 }
966
967 } else {
968 int ctr, pow;
969
970 /* Add new user mappings */
971 if (!rht_node->map[vl])
972 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973
974 if (!rht_node->map[vl]) {
975 ret = -ENOMEM;
976 goto out;
977 }
978
979 rht_node->map[vl]->ctr++;
980 ctr = rht_node->map[vl]->ctr;
981 rht_node->map[vl]->sde[ctr - 1] = sde;
982 pow = roundup_pow_of_two(ctr);
983 rht_node->map[vl]->mask = pow - 1;
984
985 /* Populate the sde map table */
986 sdma_populate_sde_map(rht_node->map[vl]);
987 }
988 cpumask_set_cpu(cpu, new_mask);
989 }
990
991 /* Clean up old mappings */
992 for_each_cpu(cpu, cpu_online_mask) {
993 struct sdma_rht_node *rht_node;
994
995 /* Don't cleanup sdes that are set in the new mask */
996 if (cpumask_test_cpu(cpu, mask))
997 continue;
998
999 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1000 sdma_rht_params);
1001 if (rht_node) {
1002 bool empty = true;
1003 int i;
1004
1005 /* Remove mappings for old sde */
1006 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1007 if (rht_node->map[i])
1008 sdma_cleanup_sde_map(rht_node->map[i],
1009 sde);
1010
1011 /* Free empty hash table entries */
1012 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1013 if (!rht_node->map[i])
1014 continue;
1015
1016 if (rht_node->map[i]->ctr) {
1017 empty = false;
1018 break;
1019 }
1020 }
1021
1022 if (empty) {
1023 ret = rhashtable_remove_fast(dd->sdma_rht,
1024 &rht_node->node,
1025 sdma_rht_params);
1026 WARN_ON(ret);
1027
1028 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1029 kfree(rht_node->map[i]);
1030
1031 kfree(rht_node);
1032 }
1033 }
1034 }
1035
1036 cpumask_copy(&sde->cpu_mask, new_mask);
1037out:
1038 mutex_unlock(&process_to_sde_mutex);
1039out_free:
1040 free_cpumask_var(mask);
1041 free_cpumask_var(new_mask);
1042 return ret ? : strnlen(buf, PAGE_SIZE);
1043}
1044
1045ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1046{
1047 mutex_lock(&process_to_sde_mutex);
1048 if (cpumask_empty(&sde->cpu_mask))
1049 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1050 else
1051 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1052 mutex_unlock(&process_to_sde_mutex);
1053 return strnlen(buf, PAGE_SIZE);
1054}
1055
1056static void sdma_rht_free(void *ptr, void *arg)
1057{
1058 struct sdma_rht_node *rht_node = ptr;
1059 int i;
1060
1061 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062 kfree(rht_node->map[i]);
1063
1064 kfree(rht_node);
1065}
1066
1067/**
1068 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1069 * @s: seq file
1070 * @dd: hfi1_devdata
1071 * @cpuid: cpu id
1072 *
1073 * This routine dumps the process to sde mappings per cpu
1074 */
1075void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1076 struct hfi1_devdata *dd,
1077 unsigned long cpuid)
1078{
1079 struct sdma_rht_node *rht_node;
1080 int i, j;
1081
1082 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1083 sdma_rht_params);
1084 if (!rht_node)
1085 return;
1086
1087 seq_printf(s, "cpu%3lu: ", cpuid);
1088 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1089 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1090 continue;
1091
1092 seq_printf(s, " vl%d: [", i);
1093
1094 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1095 if (!rht_node->map[i]->sde[j])
1096 continue;
1097
1098 if (j > 0)
1099 seq_puts(s, ",");
1100
1101 seq_printf(s, " sdma%2d",
1102 rht_node->map[i]->sde[j]->this_idx);
1103 }
1104 seq_puts(s, " ]");
1105 }
1106
1107 seq_puts(s, "\n");
1108}
1109
1110/*
1111 * Free the indicated map struct
1112 */
1113static void sdma_map_free(struct sdma_vl_map *m)
1114{
1115 int i;
1116
1117 for (i = 0; m && i < m->actual_vls; i++)
1118 kfree(m->map[i]);
1119 kfree(m);
1120}
1121
1122/*
1123 * Handle RCU callback
1124 */
1125static void sdma_map_rcu_callback(struct rcu_head *list)
1126{
1127 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1128
1129 sdma_map_free(m);
1130}
1131
1132/**
1133 * sdma_map_init - called when # vls change
1134 * @dd: hfi1_devdata
1135 * @port: port number
1136 * @num_vls: number of vls
1137 * @vl_engines: per vl engine mapping (optional)
1138 *
1139 * This routine changes the mapping based on the number of vls.
1140 *
1141 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1142 * implies auto computing the loading and giving each VLs a uniform
1143 * distribution of engines per VL.
1144 *
1145 * The auto algorithm computes the sde_per_vl and the number of extra
1146 * engines. Any extra engines are added from the last VL on down.
1147 *
1148 * rcu locking is used here to control access to the mapping fields.
1149 *
1150 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1151 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1152 * up to the next highest power of 2 and the first entry is reused
1153 * in a round robin fashion.
1154 *
1155 * If an error occurs the map change is not done and the mapping is
1156 * not changed.
1157 *
1158 */
1159int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1160{
1161 int i, j;
1162 int extra, sde_per_vl;
1163 int engine = 0;
1164 u8 lvl_engines[OPA_MAX_VLS];
1165 struct sdma_vl_map *oldmap, *newmap;
1166
1167 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1168 return 0;
1169
1170 if (!vl_engines) {
1171 /* truncate divide */
1172 sde_per_vl = dd->num_sdma / num_vls;
1173 /* extras */
1174 extra = dd->num_sdma % num_vls;
1175 vl_engines = lvl_engines;
1176 /* add extras from last vl down */
1177 for (i = num_vls - 1; i >= 0; i--, extra--)
1178 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1179 }
1180 /* build new map */
1181 newmap = kzalloc(
1182 sizeof(struct sdma_vl_map) +
1183 roundup_pow_of_two(num_vls) *
1184 sizeof(struct sdma_map_elem *),
1185 GFP_KERNEL);
1186 if (!newmap)
1187 goto bail;
1188 newmap->actual_vls = num_vls;
1189 newmap->vls = roundup_pow_of_two(num_vls);
1190 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1191 /* initialize back-map */
1192 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1193 newmap->engine_to_vl[i] = -1;
1194 for (i = 0; i < newmap->vls; i++) {
1195 /* save for wrap around */
1196 int first_engine = engine;
1197
1198 if (i < newmap->actual_vls) {
1199 int sz = roundup_pow_of_two(vl_engines[i]);
1200
1201 /* only allocate once */
1202 newmap->map[i] = kzalloc(
1203 sizeof(struct sdma_map_elem) +
1204 sz * sizeof(struct sdma_engine *),
1205 GFP_KERNEL);
1206 if (!newmap->map[i])
1207 goto bail;
1208 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1209 /* assign engines */
1210 for (j = 0; j < sz; j++) {
1211 newmap->map[i]->sde[j] =
1212 &dd->per_sdma[engine];
1213 if (++engine >= first_engine + vl_engines[i])
1214 /* wrap back to first engine */
1215 engine = first_engine;
1216 }
1217 /* assign back-map */
1218 for (j = 0; j < vl_engines[i]; j++)
1219 newmap->engine_to_vl[first_engine + j] = i;
1220 } else {
1221 /* just re-use entry without allocating */
1222 newmap->map[i] = newmap->map[i % num_vls];
1223 }
1224 engine = first_engine + vl_engines[i];
1225 }
1226 /* newmap in hand, save old map */
1227 spin_lock_irq(&dd->sde_map_lock);
1228 oldmap = rcu_dereference_protected(dd->sdma_map,
1229 lockdep_is_held(&dd->sde_map_lock));
1230
1231 /* publish newmap */
1232 rcu_assign_pointer(dd->sdma_map, newmap);
1233
1234 spin_unlock_irq(&dd->sde_map_lock);
1235 /* success, free any old map after grace period */
1236 if (oldmap)
1237 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1238 return 0;
1239bail:
1240 /* free any partial allocation */
1241 sdma_map_free(newmap);
1242 return -ENOMEM;
1243}
1244
1245/**
1246 * sdma_clean - Clean up allocated memory
1247 * @dd: struct hfi1_devdata
1248 * @num_engines: num sdma engines
1249 *
1250 * This routine can be called regardless of the success of
1251 * sdma_init()
1252 */
1253void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1254{
1255 size_t i;
1256 struct sdma_engine *sde;
1257
1258 if (dd->sdma_pad_dma) {
1259 dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1260 (void *)dd->sdma_pad_dma,
1261 dd->sdma_pad_phys);
1262 dd->sdma_pad_dma = NULL;
1263 dd->sdma_pad_phys = 0;
1264 }
1265 if (dd->sdma_heads_dma) {
1266 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1267 (void *)dd->sdma_heads_dma,
1268 dd->sdma_heads_phys);
1269 dd->sdma_heads_dma = NULL;
1270 dd->sdma_heads_phys = 0;
1271 }
1272 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1273 sde = &dd->per_sdma[i];
1274
1275 sde->head_dma = NULL;
1276 sde->head_phys = 0;
1277
1278 if (sde->descq) {
1279 dma_free_coherent(
1280 &dd->pcidev->dev,
1281 sde->descq_cnt * sizeof(u64[2]),
1282 sde->descq,
1283 sde->descq_phys
1284 );
1285 sde->descq = NULL;
1286 sde->descq_phys = 0;
1287 }
1288 kvfree(sde->tx_ring);
1289 sde->tx_ring = NULL;
1290 }
1291 if (rcu_access_pointer(dd->sdma_map)) {
1292 spin_lock_irq(&dd->sde_map_lock);
1293 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1294 RCU_INIT_POINTER(dd->sdma_map, NULL);
1295 spin_unlock_irq(&dd->sde_map_lock);
1296 synchronize_rcu();
1297 }
1298 kfree(dd->per_sdma);
1299 dd->per_sdma = NULL;
1300
1301 if (dd->sdma_rht) {
1302 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1303 kfree(dd->sdma_rht);
1304 dd->sdma_rht = NULL;
1305 }
1306}
1307
1308/**
1309 * sdma_init() - called when device probed
1310 * @dd: hfi1_devdata
1311 * @port: port number (currently only zero)
1312 *
1313 * Initializes each sde and its csrs.
1314 * Interrupts are not required to be enabled.
1315 *
1316 * Returns:
1317 * 0 - success, -errno on failure
1318 */
1319int sdma_init(struct hfi1_devdata *dd, u8 port)
1320{
1321 unsigned this_idx;
1322 struct sdma_engine *sde;
1323 struct rhashtable *tmp_sdma_rht;
1324 u16 descq_cnt;
1325 void *curr_head;
1326 struct hfi1_pportdata *ppd = dd->pport + port;
1327 u32 per_sdma_credits;
1328 uint idle_cnt = sdma_idle_cnt;
1329 size_t num_engines = chip_sdma_engines(dd);
1330 int ret = -ENOMEM;
1331
1332 if (!HFI1_CAP_IS_KSET(SDMA)) {
1333 HFI1_CAP_CLEAR(SDMA_AHG);
1334 return 0;
1335 }
1336 if (mod_num_sdma &&
1337 /* can't exceed chip support */
1338 mod_num_sdma <= chip_sdma_engines(dd) &&
1339 /* count must be >= vls */
1340 mod_num_sdma >= num_vls)
1341 num_engines = mod_num_sdma;
1342
1343 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1344 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1345 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1346 chip_sdma_mem_size(dd));
1347
1348 per_sdma_credits =
1349 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1350
1351 /* set up freeze waitqueue */
1352 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1353 atomic_set(&dd->sdma_unfreeze_count, 0);
1354
1355 descq_cnt = sdma_get_descq_cnt();
1356 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1357 num_engines, descq_cnt);
1358
1359 /* alloc memory for array of send engines */
1360 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1361 GFP_KERNEL, dd->node);
1362 if (!dd->per_sdma)
1363 return ret;
1364
1365 idle_cnt = ns_to_cclock(dd, idle_cnt);
1366 if (idle_cnt)
1367 dd->default_desc1 =
1368 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1369 else
1370 dd->default_desc1 =
1371 SDMA_DESC1_INT_REQ_FLAG;
1372
1373 if (!sdma_desct_intr)
1374 sdma_desct_intr = SDMA_DESC_INTR;
1375
1376 /* Allocate memory for SendDMA descriptor FIFOs */
1377 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1378 sde = &dd->per_sdma[this_idx];
1379 sde->dd = dd;
1380 sde->ppd = ppd;
1381 sde->this_idx = this_idx;
1382 sde->descq_cnt = descq_cnt;
1383 sde->desc_avail = sdma_descq_freecnt(sde);
1384 sde->sdma_shift = ilog2(descq_cnt);
1385 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1386
1387 /* Create a mask specifically for each interrupt source */
1388 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1389 this_idx);
1390 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1391 this_idx);
1392 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1393 this_idx);
1394 /* Create a combined mask to cover all 3 interrupt sources */
1395 sde->imask = sde->int_mask | sde->progress_mask |
1396 sde->idle_mask;
1397
1398 spin_lock_init(&sde->tail_lock);
1399 seqlock_init(&sde->head_lock);
1400 spin_lock_init(&sde->senddmactrl_lock);
1401 spin_lock_init(&sde->flushlist_lock);
1402 seqlock_init(&sde->waitlock);
1403 /* insure there is always a zero bit */
1404 sde->ahg_bits = 0xfffffffe00000000ULL;
1405
1406 sdma_set_state(sde, sdma_state_s00_hw_down);
1407
1408 /* set up reference counting */
1409 kref_init(&sde->state.kref);
1410 init_completion(&sde->state.comp);
1411
1412 INIT_LIST_HEAD(&sde->flushlist);
1413 INIT_LIST_HEAD(&sde->dmawait);
1414
1415 sde->tail_csr =
1416 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1417
1418 tasklet_setup(&sde->sdma_hw_clean_up_task,
1419 sdma_hw_clean_up_task);
1420 tasklet_setup(&sde->sdma_sw_clean_up_task,
1421 sdma_sw_clean_up_task);
1422 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1423 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1424
1425 sde->progress_check_head = 0;
1426
1427 timer_setup(&sde->err_progress_check_timer,
1428 sdma_err_progress_check, 0);
1429
1430 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1431 descq_cnt * sizeof(u64[2]),
1432 &sde->descq_phys, GFP_KERNEL);
1433 if (!sde->descq)
1434 goto bail;
1435 sde->tx_ring =
1436 kvzalloc_node(array_size(descq_cnt,
1437 sizeof(struct sdma_txreq *)),
1438 GFP_KERNEL, dd->node);
1439 if (!sde->tx_ring)
1440 goto bail;
1441 }
1442
1443 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1444 /* Allocate memory for DMA of head registers to memory */
1445 dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1446 dd->sdma_heads_size,
1447 &dd->sdma_heads_phys,
1448 GFP_KERNEL);
1449 if (!dd->sdma_heads_dma) {
1450 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1451 goto bail;
1452 }
1453
1454 /* Allocate memory for pad */
1455 dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1456 &dd->sdma_pad_phys, GFP_KERNEL);
1457 if (!dd->sdma_pad_dma) {
1458 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1459 goto bail;
1460 }
1461
1462 /* assign each engine to different cacheline and init registers */
1463 curr_head = (void *)dd->sdma_heads_dma;
1464 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1465 unsigned long phys_offset;
1466
1467 sde = &dd->per_sdma[this_idx];
1468
1469 sde->head_dma = curr_head;
1470 curr_head += L1_CACHE_BYTES;
1471 phys_offset = (unsigned long)sde->head_dma -
1472 (unsigned long)dd->sdma_heads_dma;
1473 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1474 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1475 }
1476 dd->flags |= HFI1_HAS_SEND_DMA;
1477 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1478 dd->num_sdma = num_engines;
1479 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1480 if (ret < 0)
1481 goto bail;
1482
1483 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1484 if (!tmp_sdma_rht) {
1485 ret = -ENOMEM;
1486 goto bail;
1487 }
1488
1489 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1490 if (ret < 0) {
1491 kfree(tmp_sdma_rht);
1492 goto bail;
1493 }
1494
1495 dd->sdma_rht = tmp_sdma_rht;
1496
1497 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1498 return 0;
1499
1500bail:
1501 sdma_clean(dd, num_engines);
1502 return ret;
1503}
1504
1505/**
1506 * sdma_all_running() - called when the link goes up
1507 * @dd: hfi1_devdata
1508 *
1509 * This routine moves all engines to the running state.
1510 */
1511void sdma_all_running(struct hfi1_devdata *dd)
1512{
1513 struct sdma_engine *sde;
1514 unsigned int i;
1515
1516 /* move all engines to running */
1517 for (i = 0; i < dd->num_sdma; ++i) {
1518 sde = &dd->per_sdma[i];
1519 sdma_process_event(sde, sdma_event_e30_go_running);
1520 }
1521}
1522
1523/**
1524 * sdma_all_idle() - called when the link goes down
1525 * @dd: hfi1_devdata
1526 *
1527 * This routine moves all engines to the idle state.
1528 */
1529void sdma_all_idle(struct hfi1_devdata *dd)
1530{
1531 struct sdma_engine *sde;
1532 unsigned int i;
1533
1534 /* idle all engines */
1535 for (i = 0; i < dd->num_sdma; ++i) {
1536 sde = &dd->per_sdma[i];
1537 sdma_process_event(sde, sdma_event_e70_go_idle);
1538 }
1539}
1540
1541/**
1542 * sdma_start() - called to kick off state processing for all engines
1543 * @dd: hfi1_devdata
1544 *
1545 * This routine is for kicking off the state processing for all required
1546 * sdma engines. Interrupts need to be working at this point.
1547 *
1548 */
1549void sdma_start(struct hfi1_devdata *dd)
1550{
1551 unsigned i;
1552 struct sdma_engine *sde;
1553
1554 /* kick off the engines state processing */
1555 for (i = 0; i < dd->num_sdma; ++i) {
1556 sde = &dd->per_sdma[i];
1557 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1558 }
1559}
1560
1561/**
1562 * sdma_exit() - used when module is removed
1563 * @dd: hfi1_devdata
1564 */
1565void sdma_exit(struct hfi1_devdata *dd)
1566{
1567 unsigned this_idx;
1568 struct sdma_engine *sde;
1569
1570 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1571 ++this_idx) {
1572 sde = &dd->per_sdma[this_idx];
1573 if (!list_empty(&sde->dmawait))
1574 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1575 sde->this_idx);
1576 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1577
1578 del_timer_sync(&sde->err_progress_check_timer);
1579
1580 /*
1581 * This waits for the state machine to exit so it is not
1582 * necessary to kill the sdma_sw_clean_up_task to make sure
1583 * it is not running.
1584 */
1585 sdma_finalput(&sde->state);
1586 }
1587}
1588
1589/*
1590 * unmap the indicated descriptor
1591 */
1592static inline void sdma_unmap_desc(
1593 struct hfi1_devdata *dd,
1594 struct sdma_desc *descp)
1595{
1596 switch (sdma_mapping_type(descp)) {
1597 case SDMA_MAP_SINGLE:
1598 dma_unmap_single(&dd->pcidev->dev, sdma_mapping_addr(descp),
1599 sdma_mapping_len(descp), DMA_TO_DEVICE);
1600 break;
1601 case SDMA_MAP_PAGE:
1602 dma_unmap_page(&dd->pcidev->dev, sdma_mapping_addr(descp),
1603 sdma_mapping_len(descp), DMA_TO_DEVICE);
1604 break;
1605 }
1606
1607 if (descp->pinning_ctx && descp->ctx_put)
1608 descp->ctx_put(descp->pinning_ctx);
1609 descp->pinning_ctx = NULL;
1610}
1611
1612/*
1613 * return the mode as indicated by the first
1614 * descriptor in the tx.
1615 */
1616static inline u8 ahg_mode(struct sdma_txreq *tx)
1617{
1618 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1619 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1620}
1621
1622/**
1623 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1624 * @dd: hfi1_devdata for unmapping
1625 * @tx: tx request to clean
1626 *
1627 * This is used in the progress routine to clean the tx or
1628 * by the ULP to toss an in-process tx build.
1629 *
1630 * The code can be called multiple times without issue.
1631 *
1632 */
1633void __sdma_txclean(
1634 struct hfi1_devdata *dd,
1635 struct sdma_txreq *tx)
1636{
1637 u16 i;
1638
1639 if (tx->num_desc) {
1640 u8 skip = 0, mode = ahg_mode(tx);
1641
1642 /* unmap first */
1643 sdma_unmap_desc(dd, &tx->descp[0]);
1644 /* determine number of AHG descriptors to skip */
1645 if (mode > SDMA_AHG_APPLY_UPDATE1)
1646 skip = mode >> 1;
1647 for (i = 1 + skip; i < tx->num_desc; i++)
1648 sdma_unmap_desc(dd, &tx->descp[i]);
1649 tx->num_desc = 0;
1650 }
1651 kfree(tx->coalesce_buf);
1652 tx->coalesce_buf = NULL;
1653 /* kmalloc'ed descp */
1654 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1655 tx->desc_limit = ARRAY_SIZE(tx->descs);
1656 kfree(tx->descp);
1657 }
1658}
1659
1660static inline u16 sdma_gethead(struct sdma_engine *sde)
1661{
1662 struct hfi1_devdata *dd = sde->dd;
1663 int use_dmahead;
1664 u16 hwhead;
1665
1666#ifdef CONFIG_SDMA_VERBOSITY
1667 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1668 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1669#endif
1670
1671retry:
1672 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1673 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1674 hwhead = use_dmahead ?
1675 (u16)le64_to_cpu(*sde->head_dma) :
1676 (u16)read_sde_csr(sde, SD(HEAD));
1677
1678 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1679 u16 cnt;
1680 u16 swtail;
1681 u16 swhead;
1682 int sane;
1683
1684 swhead = sde->descq_head & sde->sdma_mask;
1685 /* this code is really bad for cache line trading */
1686 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1687 cnt = sde->descq_cnt;
1688
1689 if (swhead < swtail)
1690 /* not wrapped */
1691 sane = (hwhead >= swhead) & (hwhead <= swtail);
1692 else if (swhead > swtail)
1693 /* wrapped around */
1694 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1695 (hwhead <= swtail);
1696 else
1697 /* empty */
1698 sane = (hwhead == swhead);
1699
1700 if (unlikely(!sane)) {
1701 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1702 sde->this_idx,
1703 use_dmahead ? "dma" : "kreg",
1704 hwhead, swhead, swtail, cnt);
1705 if (use_dmahead) {
1706 /* try one more time, using csr */
1707 use_dmahead = 0;
1708 goto retry;
1709 }
1710 /* proceed as if no progress */
1711 hwhead = swhead;
1712 }
1713 }
1714 return hwhead;
1715}
1716
1717/*
1718 * This is called when there are send DMA descriptors that might be
1719 * available.
1720 *
1721 * This is called with head_lock held.
1722 */
1723static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1724{
1725 struct iowait *wait, *nw, *twait;
1726 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1727 uint i, n = 0, seq, tidx = 0;
1728
1729#ifdef CONFIG_SDMA_VERBOSITY
1730 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1731 slashstrip(__FILE__), __LINE__, __func__);
1732 dd_dev_err(sde->dd, "avail: %u\n", avail);
1733#endif
1734
1735 do {
1736 seq = read_seqbegin(&sde->waitlock);
1737 if (!list_empty(&sde->dmawait)) {
1738 /* at least one item */
1739 write_seqlock(&sde->waitlock);
1740 /* Harvest waiters wanting DMA descriptors */
1741 list_for_each_entry_safe(
1742 wait,
1743 nw,
1744 &sde->dmawait,
1745 list) {
1746 u32 num_desc;
1747
1748 if (!wait->wakeup)
1749 continue;
1750 if (n == ARRAY_SIZE(waits))
1751 break;
1752 iowait_init_priority(wait);
1753 num_desc = iowait_get_all_desc(wait);
1754 if (num_desc > avail)
1755 break;
1756 avail -= num_desc;
1757 /* Find the top-priority wait memeber */
1758 if (n) {
1759 twait = waits[tidx];
1760 tidx =
1761 iowait_priority_update_top(wait,
1762 twait,
1763 n,
1764 tidx);
1765 }
1766 list_del_init(&wait->list);
1767 waits[n++] = wait;
1768 }
1769 write_sequnlock(&sde->waitlock);
1770 break;
1771 }
1772 } while (read_seqretry(&sde->waitlock, seq));
1773
1774 /* Schedule the top-priority entry first */
1775 if (n)
1776 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1777
1778 for (i = 0; i < n; i++)
1779 if (i != tidx)
1780 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1781}
1782
1783/* head_lock must be held */
1784static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1785{
1786 struct sdma_txreq *txp = NULL;
1787 int progress = 0;
1788 u16 hwhead, swhead;
1789 int idle_check_done = 0;
1790
1791 hwhead = sdma_gethead(sde);
1792
1793 /* The reason for some of the complexity of this code is that
1794 * not all descriptors have corresponding txps. So, we have to
1795 * be able to skip over descs until we wander into the range of
1796 * the next txp on the list.
1797 */
1798
1799retry:
1800 txp = get_txhead(sde);
1801 swhead = sde->descq_head & sde->sdma_mask;
1802 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1803 while (swhead != hwhead) {
1804 /* advance head, wrap if needed */
1805 swhead = ++sde->descq_head & sde->sdma_mask;
1806
1807 /* if now past this txp's descs, do the callback */
1808 if (txp && txp->next_descq_idx == swhead) {
1809 /* remove from list */
1810 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1811 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1812 /* see if there is another txp */
1813 txp = get_txhead(sde);
1814 }
1815 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1816 progress++;
1817 }
1818
1819 /*
1820 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1821 * to updates to the dma_head location in host memory. The head
1822 * value read might not be fully up to date. If there are pending
1823 * descriptors and the SDMA idle interrupt fired then read from the
1824 * CSR SDMA head instead to get the latest value from the hardware.
1825 * The hardware SDMA head should be read at most once in this invocation
1826 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1827 */
1828 if ((status & sde->idle_mask) && !idle_check_done) {
1829 u16 swtail;
1830
1831 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1832 if (swtail != hwhead) {
1833 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1834 idle_check_done = 1;
1835 goto retry;
1836 }
1837 }
1838
1839 sde->last_status = status;
1840 if (progress)
1841 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1842}
1843
1844/*
1845 * sdma_engine_interrupt() - interrupt handler for engine
1846 * @sde: sdma engine
1847 * @status: sdma interrupt reason
1848 *
1849 * Status is a mask of the 3 possible interrupts for this engine. It will
1850 * contain bits _only_ for this SDMA engine. It will contain at least one
1851 * bit, it may contain more.
1852 */
1853void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1854{
1855 trace_hfi1_sdma_engine_interrupt(sde, status);
1856 write_seqlock(&sde->head_lock);
1857 sdma_set_desc_cnt(sde, sdma_desct_intr);
1858 if (status & sde->idle_mask)
1859 sde->idle_int_cnt++;
1860 else if (status & sde->progress_mask)
1861 sde->progress_int_cnt++;
1862 else if (status & sde->int_mask)
1863 sde->sdma_int_cnt++;
1864 sdma_make_progress(sde, status);
1865 write_sequnlock(&sde->head_lock);
1866}
1867
1868/**
1869 * sdma_engine_error() - error handler for engine
1870 * @sde: sdma engine
1871 * @status: sdma interrupt reason
1872 */
1873void sdma_engine_error(struct sdma_engine *sde, u64 status)
1874{
1875 unsigned long flags;
1876
1877#ifdef CONFIG_SDMA_VERBOSITY
1878 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1879 sde->this_idx,
1880 (unsigned long long)status,
1881 sdma_state_names[sde->state.current_state]);
1882#endif
1883 spin_lock_irqsave(&sde->tail_lock, flags);
1884 write_seqlock(&sde->head_lock);
1885 if (status & ALL_SDMA_ENG_HALT_ERRS)
1886 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1887 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1888 dd_dev_err(sde->dd,
1889 "SDMA (%u) engine error: 0x%llx state %s\n",
1890 sde->this_idx,
1891 (unsigned long long)status,
1892 sdma_state_names[sde->state.current_state]);
1893 dump_sdma_state(sde);
1894 }
1895 write_sequnlock(&sde->head_lock);
1896 spin_unlock_irqrestore(&sde->tail_lock, flags);
1897}
1898
1899static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1900{
1901 u64 set_senddmactrl = 0;
1902 u64 clr_senddmactrl = 0;
1903 unsigned long flags;
1904
1905#ifdef CONFIG_SDMA_VERBOSITY
1906 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1907 sde->this_idx,
1908 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1909 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1910 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1911 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1912#endif
1913
1914 if (op & SDMA_SENDCTRL_OP_ENABLE)
1915 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1916 else
1917 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1918
1919 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1920 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1921 else
1922 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1923
1924 if (op & SDMA_SENDCTRL_OP_HALT)
1925 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1926 else
1927 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1928
1929 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1930
1931 sde->p_senddmactrl |= set_senddmactrl;
1932 sde->p_senddmactrl &= ~clr_senddmactrl;
1933
1934 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1935 write_sde_csr(sde, SD(CTRL),
1936 sde->p_senddmactrl |
1937 SD(CTRL_SDMA_CLEANUP_SMASK));
1938 else
1939 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1940
1941 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1942
1943#ifdef CONFIG_SDMA_VERBOSITY
1944 sdma_dumpstate(sde);
1945#endif
1946}
1947
1948static void sdma_setlengen(struct sdma_engine *sde)
1949{
1950#ifdef CONFIG_SDMA_VERBOSITY
1951 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1952 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1953#endif
1954
1955 /*
1956 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1957 * count to enable generation checking and load the internal
1958 * generation counter.
1959 */
1960 write_sde_csr(sde, SD(LEN_GEN),
1961 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1962 write_sde_csr(sde, SD(LEN_GEN),
1963 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1964 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1965}
1966
1967static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1968{
1969 /* Commit writes to memory and advance the tail on the chip */
1970 smp_wmb(); /* see get_txhead() */
1971 writeq(tail, sde->tail_csr);
1972}
1973
1974/*
1975 * This is called when changing to state s10_hw_start_up_halt_wait as
1976 * a result of send buffer errors or send DMA descriptor errors.
1977 */
1978static void sdma_hw_start_up(struct sdma_engine *sde)
1979{
1980 u64 reg;
1981
1982#ifdef CONFIG_SDMA_VERBOSITY
1983 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1984 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1985#endif
1986
1987 sdma_setlengen(sde);
1988 sdma_update_tail(sde, 0); /* Set SendDmaTail */
1989 *sde->head_dma = 0;
1990
1991 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1992 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1993 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1994}
1995
1996/*
1997 * set_sdma_integrity
1998 *
1999 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2000 */
2001static void set_sdma_integrity(struct sdma_engine *sde)
2002{
2003 struct hfi1_devdata *dd = sde->dd;
2004
2005 write_sde_csr(sde, SD(CHECK_ENABLE),
2006 hfi1_pkt_base_sdma_integrity(dd));
2007}
2008
2009static void init_sdma_regs(
2010 struct sdma_engine *sde,
2011 u32 credits,
2012 uint idle_cnt)
2013{
2014 u8 opval, opmask;
2015#ifdef CONFIG_SDMA_VERBOSITY
2016 struct hfi1_devdata *dd = sde->dd;
2017
2018 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2019 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2020#endif
2021
2022 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2023 sdma_setlengen(sde);
2024 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2025 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2026 write_sde_csr(sde, SD(DESC_CNT), 0);
2027 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2028 write_sde_csr(sde, SD(MEMORY),
2029 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2030 ((u64)(credits * sde->this_idx) <<
2031 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2032 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2033 set_sdma_integrity(sde);
2034 opmask = OPCODE_CHECK_MASK_DISABLED;
2035 opval = OPCODE_CHECK_VAL_DISABLED;
2036 write_sde_csr(sde, SD(CHECK_OPCODE),
2037 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2038 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2039}
2040
2041#ifdef CONFIG_SDMA_VERBOSITY
2042
2043#define sdma_dumpstate_helper0(reg) do { \
2044 csr = read_csr(sde->dd, reg); \
2045 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2046 } while (0)
2047
2048#define sdma_dumpstate_helper(reg) do { \
2049 csr = read_sde_csr(sde, reg); \
2050 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2051 #reg, sde->this_idx, csr); \
2052 } while (0)
2053
2054#define sdma_dumpstate_helper2(reg) do { \
2055 csr = read_csr(sde->dd, reg + (8 * i)); \
2056 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2057 #reg, i, csr); \
2058 } while (0)
2059
2060void sdma_dumpstate(struct sdma_engine *sde)
2061{
2062 u64 csr;
2063 unsigned i;
2064
2065 sdma_dumpstate_helper(SD(CTRL));
2066 sdma_dumpstate_helper(SD(STATUS));
2067 sdma_dumpstate_helper0(SD(ERR_STATUS));
2068 sdma_dumpstate_helper0(SD(ERR_MASK));
2069 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2070 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2071
2072 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2073 sdma_dumpstate_helper2(CCE_INT_STATUS);
2074 sdma_dumpstate_helper2(CCE_INT_MASK);
2075 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2076 }
2077
2078 sdma_dumpstate_helper(SD(TAIL));
2079 sdma_dumpstate_helper(SD(HEAD));
2080 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2081 sdma_dumpstate_helper(SD(IDLE_CNT));
2082 sdma_dumpstate_helper(SD(RELOAD_CNT));
2083 sdma_dumpstate_helper(SD(DESC_CNT));
2084 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2085 sdma_dumpstate_helper(SD(MEMORY));
2086 sdma_dumpstate_helper0(SD(ENGINES));
2087 sdma_dumpstate_helper0(SD(MEM_SIZE));
2088 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2089 sdma_dumpstate_helper(SD(BASE_ADDR));
2090 sdma_dumpstate_helper(SD(LEN_GEN));
2091 sdma_dumpstate_helper(SD(HEAD_ADDR));
2092 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2093 sdma_dumpstate_helper(SD(CHECK_VL));
2094 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2095 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2096 sdma_dumpstate_helper(SD(CHECK_SLID));
2097 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2098}
2099#endif
2100
2101static void dump_sdma_state(struct sdma_engine *sde)
2102{
2103 struct hw_sdma_desc *descqp;
2104 u64 desc[2];
2105 u64 addr;
2106 u8 gen;
2107 u16 len;
2108 u16 head, tail, cnt;
2109
2110 head = sde->descq_head & sde->sdma_mask;
2111 tail = sde->descq_tail & sde->sdma_mask;
2112 cnt = sdma_descq_freecnt(sde);
2113
2114 dd_dev_err(sde->dd,
2115 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2116 sde->this_idx, head, tail, cnt,
2117 !list_empty(&sde->flushlist));
2118
2119 /* print info for each entry in the descriptor queue */
2120 while (head != tail) {
2121 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2122
2123 descqp = &sde->descq[head];
2124 desc[0] = le64_to_cpu(descqp->qw[0]);
2125 desc[1] = le64_to_cpu(descqp->qw[1]);
2126 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2127 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2128 'H' : '-';
2129 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2130 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2131 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2132 & SDMA_DESC0_PHY_ADDR_MASK;
2133 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2134 & SDMA_DESC1_GENERATION_MASK;
2135 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2136 & SDMA_DESC0_BYTE_COUNT_MASK;
2137 dd_dev_err(sde->dd,
2138 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2139 head, flags, addr, gen, len);
2140 dd_dev_err(sde->dd,
2141 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2142 desc[0], desc[1]);
2143 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2144 dd_dev_err(sde->dd,
2145 "\taidx: %u amode: %u alen: %u\n",
2146 (u8)((desc[1] &
2147 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2148 SDMA_DESC1_HEADER_INDEX_SHIFT),
2149 (u8)((desc[1] &
2150 SDMA_DESC1_HEADER_MODE_SMASK) >>
2151 SDMA_DESC1_HEADER_MODE_SHIFT),
2152 (u8)((desc[1] &
2153 SDMA_DESC1_HEADER_DWS_SMASK) >>
2154 SDMA_DESC1_HEADER_DWS_SHIFT));
2155 head++;
2156 head &= sde->sdma_mask;
2157 }
2158}
2159
2160#define SDE_FMT \
2161 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2162/**
2163 * sdma_seqfile_dump_sde() - debugfs dump of sde
2164 * @s: seq file
2165 * @sde: send dma engine to dump
2166 *
2167 * This routine dumps the sde to the indicated seq file.
2168 */
2169void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2170{
2171 u16 head, tail;
2172 struct hw_sdma_desc *descqp;
2173 u64 desc[2];
2174 u64 addr;
2175 u8 gen;
2176 u16 len;
2177
2178 head = sde->descq_head & sde->sdma_mask;
2179 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2180 seq_printf(s, SDE_FMT, sde->this_idx,
2181 sde->cpu,
2182 sdma_state_name(sde->state.current_state),
2183 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2184 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2185 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2186 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2187 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2188 (unsigned long long)le64_to_cpu(*sde->head_dma),
2189 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2190 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2191 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2192 (unsigned long long)sde->last_status,
2193 (unsigned long long)sde->ahg_bits,
2194 sde->tx_tail,
2195 sde->tx_head,
2196 sde->descq_tail,
2197 sde->descq_head,
2198 !list_empty(&sde->flushlist),
2199 sde->descq_full_count,
2200 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2201
2202 /* print info for each entry in the descriptor queue */
2203 while (head != tail) {
2204 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2205
2206 descqp = &sde->descq[head];
2207 desc[0] = le64_to_cpu(descqp->qw[0]);
2208 desc[1] = le64_to_cpu(descqp->qw[1]);
2209 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2210 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2211 'H' : '-';
2212 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2213 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2214 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2215 & SDMA_DESC0_PHY_ADDR_MASK;
2216 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2217 & SDMA_DESC1_GENERATION_MASK;
2218 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2219 & SDMA_DESC0_BYTE_COUNT_MASK;
2220 seq_printf(s,
2221 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2222 head, flags, addr, gen, len);
2223 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2224 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2225 (u8)((desc[1] &
2226 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2227 SDMA_DESC1_HEADER_INDEX_SHIFT),
2228 (u8)((desc[1] &
2229 SDMA_DESC1_HEADER_MODE_SMASK) >>
2230 SDMA_DESC1_HEADER_MODE_SHIFT));
2231 head = (head + 1) & sde->sdma_mask;
2232 }
2233}
2234
2235/*
2236 * add the generation number into
2237 * the qw1 and return
2238 */
2239static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2240{
2241 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2242
2243 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2244 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2245 << SDMA_DESC1_GENERATION_SHIFT;
2246 return qw1;
2247}
2248
2249/*
2250 * This routine submits the indicated tx
2251 *
2252 * Space has already been guaranteed and
2253 * tail side of ring is locked.
2254 *
2255 * The hardware tail update is done
2256 * in the caller and that is facilitated
2257 * by returning the new tail.
2258 *
2259 * There is special case logic for ahg
2260 * to not add the generation number for
2261 * up to 2 descriptors that follow the
2262 * first descriptor.
2263 *
2264 */
2265static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2266{
2267 int i;
2268 u16 tail;
2269 struct sdma_desc *descp = tx->descp;
2270 u8 skip = 0, mode = ahg_mode(tx);
2271
2272 tail = sde->descq_tail & sde->sdma_mask;
2273 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2274 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2275 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2276 tail, &sde->descq[tail]);
2277 tail = ++sde->descq_tail & sde->sdma_mask;
2278 descp++;
2279 if (mode > SDMA_AHG_APPLY_UPDATE1)
2280 skip = mode >> 1;
2281 for (i = 1; i < tx->num_desc; i++, descp++) {
2282 u64 qw1;
2283
2284 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2285 if (skip) {
2286 /* edits don't have generation */
2287 qw1 = descp->qw[1];
2288 skip--;
2289 } else {
2290 /* replace generation with real one for non-edits */
2291 qw1 = add_gen(sde, descp->qw[1]);
2292 }
2293 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2294 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2295 tail, &sde->descq[tail]);
2296 tail = ++sde->descq_tail & sde->sdma_mask;
2297 }
2298 tx->next_descq_idx = tail;
2299#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2300 tx->sn = sde->tail_sn++;
2301 trace_hfi1_sdma_in_sn(sde, tx->sn);
2302 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2303#endif
2304 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2305 sde->desc_avail -= tx->num_desc;
2306 return tail;
2307}
2308
2309/*
2310 * Check for progress
2311 */
2312static int sdma_check_progress(
2313 struct sdma_engine *sde,
2314 struct iowait_work *wait,
2315 struct sdma_txreq *tx,
2316 bool pkts_sent)
2317{
2318 int ret;
2319
2320 sde->desc_avail = sdma_descq_freecnt(sde);
2321 if (tx->num_desc <= sde->desc_avail)
2322 return -EAGAIN;
2323 /* pulse the head_lock */
2324 if (wait && iowait_ioww_to_iow(wait)->sleep) {
2325 unsigned seq;
2326
2327 seq = raw_seqcount_begin(
2328 (const seqcount_t *)&sde->head_lock.seqcount);
2329 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2330 if (ret == -EAGAIN)
2331 sde->desc_avail = sdma_descq_freecnt(sde);
2332 } else {
2333 ret = -EBUSY;
2334 }
2335 return ret;
2336}
2337
2338/**
2339 * sdma_send_txreq() - submit a tx req to ring
2340 * @sde: sdma engine to use
2341 * @wait: SE wait structure to use when full (may be NULL)
2342 * @tx: sdma_txreq to submit
2343 * @pkts_sent: has any packet been sent yet?
2344 *
2345 * The call submits the tx into the ring. If a iowait structure is non-NULL
2346 * the packet will be queued to the list in wait.
2347 *
2348 * Return:
2349 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2350 * ring (wait == NULL)
2351 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2352 */
2353int sdma_send_txreq(struct sdma_engine *sde,
2354 struct iowait_work *wait,
2355 struct sdma_txreq *tx,
2356 bool pkts_sent)
2357{
2358 int ret = 0;
2359 u16 tail;
2360 unsigned long flags;
2361
2362 /* user should have supplied entire packet */
2363 if (unlikely(tx->tlen))
2364 return -EINVAL;
2365 tx->wait = iowait_ioww_to_iow(wait);
2366 spin_lock_irqsave(&sde->tail_lock, flags);
2367retry:
2368 if (unlikely(!__sdma_running(sde)))
2369 goto unlock_noconn;
2370 if (unlikely(tx->num_desc > sde->desc_avail))
2371 goto nodesc;
2372 tail = submit_tx(sde, tx);
2373 if (wait)
2374 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2375 sdma_update_tail(sde, tail);
2376unlock:
2377 spin_unlock_irqrestore(&sde->tail_lock, flags);
2378 return ret;
2379unlock_noconn:
2380 if (wait)
2381 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2382 tx->next_descq_idx = 0;
2383#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2384 tx->sn = sde->tail_sn++;
2385 trace_hfi1_sdma_in_sn(sde, tx->sn);
2386#endif
2387 spin_lock(&sde->flushlist_lock);
2388 list_add_tail(&tx->list, &sde->flushlist);
2389 spin_unlock(&sde->flushlist_lock);
2390 iowait_inc_wait_count(wait, tx->num_desc);
2391 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2392 ret = -ECOMM;
2393 goto unlock;
2394nodesc:
2395 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2396 if (ret == -EAGAIN) {
2397 ret = 0;
2398 goto retry;
2399 }
2400 sde->descq_full_count++;
2401 goto unlock;
2402}
2403
2404/**
2405 * sdma_send_txlist() - submit a list of tx req to ring
2406 * @sde: sdma engine to use
2407 * @wait: SE wait structure to use when full (may be NULL)
2408 * @tx_list: list of sdma_txreqs to submit
2409 * @count_out: pointer to a u16 which, after return will contain the total number of
2410 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2411 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2412 * which are added to SDMA engine flush list if the SDMA engine state is
2413 * not running.
2414 *
2415 * The call submits the list into the ring.
2416 *
2417 * If the iowait structure is non-NULL and not equal to the iowait list
2418 * the unprocessed part of the list will be appended to the list in wait.
2419 *
2420 * In all cases, the tx_list will be updated so the head of the tx_list is
2421 * the list of descriptors that have yet to be transmitted.
2422 *
2423 * The intent of this call is to provide a more efficient
2424 * way of submitting multiple packets to SDMA while holding the tail
2425 * side locking.
2426 *
2427 * Return:
2428 * 0 - Success,
2429 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2430 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2431 */
2432int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2433 struct list_head *tx_list, u16 *count_out)
2434{
2435 struct sdma_txreq *tx, *tx_next;
2436 int ret = 0;
2437 unsigned long flags;
2438 u16 tail = INVALID_TAIL;
2439 u32 submit_count = 0, flush_count = 0, total_count;
2440
2441 spin_lock_irqsave(&sde->tail_lock, flags);
2442retry:
2443 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2444 tx->wait = iowait_ioww_to_iow(wait);
2445 if (unlikely(!__sdma_running(sde)))
2446 goto unlock_noconn;
2447 if (unlikely(tx->num_desc > sde->desc_avail))
2448 goto nodesc;
2449 if (unlikely(tx->tlen)) {
2450 ret = -EINVAL;
2451 goto update_tail;
2452 }
2453 list_del_init(&tx->list);
2454 tail = submit_tx(sde, tx);
2455 submit_count++;
2456 if (tail != INVALID_TAIL &&
2457 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2458 sdma_update_tail(sde, tail);
2459 tail = INVALID_TAIL;
2460 }
2461 }
2462update_tail:
2463 total_count = submit_count + flush_count;
2464 if (wait) {
2465 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2466 iowait_starve_clear(submit_count > 0,
2467 iowait_ioww_to_iow(wait));
2468 }
2469 if (tail != INVALID_TAIL)
2470 sdma_update_tail(sde, tail);
2471 spin_unlock_irqrestore(&sde->tail_lock, flags);
2472 *count_out = total_count;
2473 return ret;
2474unlock_noconn:
2475 spin_lock(&sde->flushlist_lock);
2476 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2477 tx->wait = iowait_ioww_to_iow(wait);
2478 list_del_init(&tx->list);
2479 tx->next_descq_idx = 0;
2480#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2481 tx->sn = sde->tail_sn++;
2482 trace_hfi1_sdma_in_sn(sde, tx->sn);
2483#endif
2484 list_add_tail(&tx->list, &sde->flushlist);
2485 flush_count++;
2486 iowait_inc_wait_count(wait, tx->num_desc);
2487 }
2488 spin_unlock(&sde->flushlist_lock);
2489 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2490 ret = -ECOMM;
2491 goto update_tail;
2492nodesc:
2493 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2494 if (ret == -EAGAIN) {
2495 ret = 0;
2496 goto retry;
2497 }
2498 sde->descq_full_count++;
2499 goto update_tail;
2500}
2501
2502static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2503{
2504 unsigned long flags;
2505
2506 spin_lock_irqsave(&sde->tail_lock, flags);
2507 write_seqlock(&sde->head_lock);
2508
2509 __sdma_process_event(sde, event);
2510
2511 if (sde->state.current_state == sdma_state_s99_running)
2512 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2513
2514 write_sequnlock(&sde->head_lock);
2515 spin_unlock_irqrestore(&sde->tail_lock, flags);
2516}
2517
2518static void __sdma_process_event(struct sdma_engine *sde,
2519 enum sdma_events event)
2520{
2521 struct sdma_state *ss = &sde->state;
2522 int need_progress = 0;
2523
2524 /* CONFIG SDMA temporary */
2525#ifdef CONFIG_SDMA_VERBOSITY
2526 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2527 sdma_state_names[ss->current_state],
2528 sdma_event_names[event]);
2529#endif
2530
2531 switch (ss->current_state) {
2532 case sdma_state_s00_hw_down:
2533 switch (event) {
2534 case sdma_event_e00_go_hw_down:
2535 break;
2536 case sdma_event_e30_go_running:
2537 /*
2538 * If down, but running requested (usually result
2539 * of link up, then we need to start up.
2540 * This can happen when hw down is requested while
2541 * bringing the link up with traffic active on
2542 * 7220, e.g.
2543 */
2544 ss->go_s99_running = 1;
2545 fallthrough; /* and start dma engine */
2546 case sdma_event_e10_go_hw_start:
2547 /* This reference means the state machine is started */
2548 sdma_get(&sde->state);
2549 sdma_set_state(sde,
2550 sdma_state_s10_hw_start_up_halt_wait);
2551 break;
2552 case sdma_event_e15_hw_halt_done:
2553 break;
2554 case sdma_event_e25_hw_clean_up_done:
2555 break;
2556 case sdma_event_e40_sw_cleaned:
2557 sdma_sw_tear_down(sde);
2558 break;
2559 case sdma_event_e50_hw_cleaned:
2560 break;
2561 case sdma_event_e60_hw_halted:
2562 break;
2563 case sdma_event_e70_go_idle:
2564 break;
2565 case sdma_event_e80_hw_freeze:
2566 break;
2567 case sdma_event_e81_hw_frozen:
2568 break;
2569 case sdma_event_e82_hw_unfreeze:
2570 break;
2571 case sdma_event_e85_link_down:
2572 break;
2573 case sdma_event_e90_sw_halted:
2574 break;
2575 }
2576 break;
2577
2578 case sdma_state_s10_hw_start_up_halt_wait:
2579 switch (event) {
2580 case sdma_event_e00_go_hw_down:
2581 sdma_set_state(sde, sdma_state_s00_hw_down);
2582 sdma_sw_tear_down(sde);
2583 break;
2584 case sdma_event_e10_go_hw_start:
2585 break;
2586 case sdma_event_e15_hw_halt_done:
2587 sdma_set_state(sde,
2588 sdma_state_s15_hw_start_up_clean_wait);
2589 sdma_start_hw_clean_up(sde);
2590 break;
2591 case sdma_event_e25_hw_clean_up_done:
2592 break;
2593 case sdma_event_e30_go_running:
2594 ss->go_s99_running = 1;
2595 break;
2596 case sdma_event_e40_sw_cleaned:
2597 break;
2598 case sdma_event_e50_hw_cleaned:
2599 break;
2600 case sdma_event_e60_hw_halted:
2601 schedule_work(&sde->err_halt_worker);
2602 break;
2603 case sdma_event_e70_go_idle:
2604 ss->go_s99_running = 0;
2605 break;
2606 case sdma_event_e80_hw_freeze:
2607 break;
2608 case sdma_event_e81_hw_frozen:
2609 break;
2610 case sdma_event_e82_hw_unfreeze:
2611 break;
2612 case sdma_event_e85_link_down:
2613 break;
2614 case sdma_event_e90_sw_halted:
2615 break;
2616 }
2617 break;
2618
2619 case sdma_state_s15_hw_start_up_clean_wait:
2620 switch (event) {
2621 case sdma_event_e00_go_hw_down:
2622 sdma_set_state(sde, sdma_state_s00_hw_down);
2623 sdma_sw_tear_down(sde);
2624 break;
2625 case sdma_event_e10_go_hw_start:
2626 break;
2627 case sdma_event_e15_hw_halt_done:
2628 break;
2629 case sdma_event_e25_hw_clean_up_done:
2630 sdma_hw_start_up(sde);
2631 sdma_set_state(sde, ss->go_s99_running ?
2632 sdma_state_s99_running :
2633 sdma_state_s20_idle);
2634 break;
2635 case sdma_event_e30_go_running:
2636 ss->go_s99_running = 1;
2637 break;
2638 case sdma_event_e40_sw_cleaned:
2639 break;
2640 case sdma_event_e50_hw_cleaned:
2641 break;
2642 case sdma_event_e60_hw_halted:
2643 break;
2644 case sdma_event_e70_go_idle:
2645 ss->go_s99_running = 0;
2646 break;
2647 case sdma_event_e80_hw_freeze:
2648 break;
2649 case sdma_event_e81_hw_frozen:
2650 break;
2651 case sdma_event_e82_hw_unfreeze:
2652 break;
2653 case sdma_event_e85_link_down:
2654 break;
2655 case sdma_event_e90_sw_halted:
2656 break;
2657 }
2658 break;
2659
2660 case sdma_state_s20_idle:
2661 switch (event) {
2662 case sdma_event_e00_go_hw_down:
2663 sdma_set_state(sde, sdma_state_s00_hw_down);
2664 sdma_sw_tear_down(sde);
2665 break;
2666 case sdma_event_e10_go_hw_start:
2667 break;
2668 case sdma_event_e15_hw_halt_done:
2669 break;
2670 case sdma_event_e25_hw_clean_up_done:
2671 break;
2672 case sdma_event_e30_go_running:
2673 sdma_set_state(sde, sdma_state_s99_running);
2674 ss->go_s99_running = 1;
2675 break;
2676 case sdma_event_e40_sw_cleaned:
2677 break;
2678 case sdma_event_e50_hw_cleaned:
2679 break;
2680 case sdma_event_e60_hw_halted:
2681 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2682 schedule_work(&sde->err_halt_worker);
2683 break;
2684 case sdma_event_e70_go_idle:
2685 break;
2686 case sdma_event_e85_link_down:
2687 case sdma_event_e80_hw_freeze:
2688 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2689 atomic_dec(&sde->dd->sdma_unfreeze_count);
2690 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2691 break;
2692 case sdma_event_e81_hw_frozen:
2693 break;
2694 case sdma_event_e82_hw_unfreeze:
2695 break;
2696 case sdma_event_e90_sw_halted:
2697 break;
2698 }
2699 break;
2700
2701 case sdma_state_s30_sw_clean_up_wait:
2702 switch (event) {
2703 case sdma_event_e00_go_hw_down:
2704 sdma_set_state(sde, sdma_state_s00_hw_down);
2705 break;
2706 case sdma_event_e10_go_hw_start:
2707 break;
2708 case sdma_event_e15_hw_halt_done:
2709 break;
2710 case sdma_event_e25_hw_clean_up_done:
2711 break;
2712 case sdma_event_e30_go_running:
2713 ss->go_s99_running = 1;
2714 break;
2715 case sdma_event_e40_sw_cleaned:
2716 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2717 sdma_start_hw_clean_up(sde);
2718 break;
2719 case sdma_event_e50_hw_cleaned:
2720 break;
2721 case sdma_event_e60_hw_halted:
2722 break;
2723 case sdma_event_e70_go_idle:
2724 ss->go_s99_running = 0;
2725 break;
2726 case sdma_event_e80_hw_freeze:
2727 break;
2728 case sdma_event_e81_hw_frozen:
2729 break;
2730 case sdma_event_e82_hw_unfreeze:
2731 break;
2732 case sdma_event_e85_link_down:
2733 ss->go_s99_running = 0;
2734 break;
2735 case sdma_event_e90_sw_halted:
2736 break;
2737 }
2738 break;
2739
2740 case sdma_state_s40_hw_clean_up_wait:
2741 switch (event) {
2742 case sdma_event_e00_go_hw_down:
2743 sdma_set_state(sde, sdma_state_s00_hw_down);
2744 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2745 break;
2746 case sdma_event_e10_go_hw_start:
2747 break;
2748 case sdma_event_e15_hw_halt_done:
2749 break;
2750 case sdma_event_e25_hw_clean_up_done:
2751 sdma_hw_start_up(sde);
2752 sdma_set_state(sde, ss->go_s99_running ?
2753 sdma_state_s99_running :
2754 sdma_state_s20_idle);
2755 break;
2756 case sdma_event_e30_go_running:
2757 ss->go_s99_running = 1;
2758 break;
2759 case sdma_event_e40_sw_cleaned:
2760 break;
2761 case sdma_event_e50_hw_cleaned:
2762 break;
2763 case sdma_event_e60_hw_halted:
2764 break;
2765 case sdma_event_e70_go_idle:
2766 ss->go_s99_running = 0;
2767 break;
2768 case sdma_event_e80_hw_freeze:
2769 break;
2770 case sdma_event_e81_hw_frozen:
2771 break;
2772 case sdma_event_e82_hw_unfreeze:
2773 break;
2774 case sdma_event_e85_link_down:
2775 ss->go_s99_running = 0;
2776 break;
2777 case sdma_event_e90_sw_halted:
2778 break;
2779 }
2780 break;
2781
2782 case sdma_state_s50_hw_halt_wait:
2783 switch (event) {
2784 case sdma_event_e00_go_hw_down:
2785 sdma_set_state(sde, sdma_state_s00_hw_down);
2786 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2787 break;
2788 case sdma_event_e10_go_hw_start:
2789 break;
2790 case sdma_event_e15_hw_halt_done:
2791 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2792 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2793 break;
2794 case sdma_event_e25_hw_clean_up_done:
2795 break;
2796 case sdma_event_e30_go_running:
2797 ss->go_s99_running = 1;
2798 break;
2799 case sdma_event_e40_sw_cleaned:
2800 break;
2801 case sdma_event_e50_hw_cleaned:
2802 break;
2803 case sdma_event_e60_hw_halted:
2804 schedule_work(&sde->err_halt_worker);
2805 break;
2806 case sdma_event_e70_go_idle:
2807 ss->go_s99_running = 0;
2808 break;
2809 case sdma_event_e80_hw_freeze:
2810 break;
2811 case sdma_event_e81_hw_frozen:
2812 break;
2813 case sdma_event_e82_hw_unfreeze:
2814 break;
2815 case sdma_event_e85_link_down:
2816 ss->go_s99_running = 0;
2817 break;
2818 case sdma_event_e90_sw_halted:
2819 break;
2820 }
2821 break;
2822
2823 case sdma_state_s60_idle_halt_wait:
2824 switch (event) {
2825 case sdma_event_e00_go_hw_down:
2826 sdma_set_state(sde, sdma_state_s00_hw_down);
2827 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2828 break;
2829 case sdma_event_e10_go_hw_start:
2830 break;
2831 case sdma_event_e15_hw_halt_done:
2832 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2833 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2834 break;
2835 case sdma_event_e25_hw_clean_up_done:
2836 break;
2837 case sdma_event_e30_go_running:
2838 ss->go_s99_running = 1;
2839 break;
2840 case sdma_event_e40_sw_cleaned:
2841 break;
2842 case sdma_event_e50_hw_cleaned:
2843 break;
2844 case sdma_event_e60_hw_halted:
2845 schedule_work(&sde->err_halt_worker);
2846 break;
2847 case sdma_event_e70_go_idle:
2848 ss->go_s99_running = 0;
2849 break;
2850 case sdma_event_e80_hw_freeze:
2851 break;
2852 case sdma_event_e81_hw_frozen:
2853 break;
2854 case sdma_event_e82_hw_unfreeze:
2855 break;
2856 case sdma_event_e85_link_down:
2857 break;
2858 case sdma_event_e90_sw_halted:
2859 break;
2860 }
2861 break;
2862
2863 case sdma_state_s80_hw_freeze:
2864 switch (event) {
2865 case sdma_event_e00_go_hw_down:
2866 sdma_set_state(sde, sdma_state_s00_hw_down);
2867 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2868 break;
2869 case sdma_event_e10_go_hw_start:
2870 break;
2871 case sdma_event_e15_hw_halt_done:
2872 break;
2873 case sdma_event_e25_hw_clean_up_done:
2874 break;
2875 case sdma_event_e30_go_running:
2876 ss->go_s99_running = 1;
2877 break;
2878 case sdma_event_e40_sw_cleaned:
2879 break;
2880 case sdma_event_e50_hw_cleaned:
2881 break;
2882 case sdma_event_e60_hw_halted:
2883 break;
2884 case sdma_event_e70_go_idle:
2885 ss->go_s99_running = 0;
2886 break;
2887 case sdma_event_e80_hw_freeze:
2888 break;
2889 case sdma_event_e81_hw_frozen:
2890 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2891 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2892 break;
2893 case sdma_event_e82_hw_unfreeze:
2894 break;
2895 case sdma_event_e85_link_down:
2896 break;
2897 case sdma_event_e90_sw_halted:
2898 break;
2899 }
2900 break;
2901
2902 case sdma_state_s82_freeze_sw_clean:
2903 switch (event) {
2904 case sdma_event_e00_go_hw_down:
2905 sdma_set_state(sde, sdma_state_s00_hw_down);
2906 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2907 break;
2908 case sdma_event_e10_go_hw_start:
2909 break;
2910 case sdma_event_e15_hw_halt_done:
2911 break;
2912 case sdma_event_e25_hw_clean_up_done:
2913 break;
2914 case sdma_event_e30_go_running:
2915 ss->go_s99_running = 1;
2916 break;
2917 case sdma_event_e40_sw_cleaned:
2918 /* notify caller this engine is done cleaning */
2919 atomic_dec(&sde->dd->sdma_unfreeze_count);
2920 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2921 break;
2922 case sdma_event_e50_hw_cleaned:
2923 break;
2924 case sdma_event_e60_hw_halted:
2925 break;
2926 case sdma_event_e70_go_idle:
2927 ss->go_s99_running = 0;
2928 break;
2929 case sdma_event_e80_hw_freeze:
2930 break;
2931 case sdma_event_e81_hw_frozen:
2932 break;
2933 case sdma_event_e82_hw_unfreeze:
2934 sdma_hw_start_up(sde);
2935 sdma_set_state(sde, ss->go_s99_running ?
2936 sdma_state_s99_running :
2937 sdma_state_s20_idle);
2938 break;
2939 case sdma_event_e85_link_down:
2940 break;
2941 case sdma_event_e90_sw_halted:
2942 break;
2943 }
2944 break;
2945
2946 case sdma_state_s99_running:
2947 switch (event) {
2948 case sdma_event_e00_go_hw_down:
2949 sdma_set_state(sde, sdma_state_s00_hw_down);
2950 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2951 break;
2952 case sdma_event_e10_go_hw_start:
2953 break;
2954 case sdma_event_e15_hw_halt_done:
2955 break;
2956 case sdma_event_e25_hw_clean_up_done:
2957 break;
2958 case sdma_event_e30_go_running:
2959 break;
2960 case sdma_event_e40_sw_cleaned:
2961 break;
2962 case sdma_event_e50_hw_cleaned:
2963 break;
2964 case sdma_event_e60_hw_halted:
2965 need_progress = 1;
2966 sdma_err_progress_check_schedule(sde);
2967 fallthrough;
2968 case sdma_event_e90_sw_halted:
2969 /*
2970 * SW initiated halt does not perform engines
2971 * progress check
2972 */
2973 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2974 schedule_work(&sde->err_halt_worker);
2975 break;
2976 case sdma_event_e70_go_idle:
2977 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2978 break;
2979 case sdma_event_e85_link_down:
2980 ss->go_s99_running = 0;
2981 fallthrough;
2982 case sdma_event_e80_hw_freeze:
2983 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2984 atomic_dec(&sde->dd->sdma_unfreeze_count);
2985 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2986 break;
2987 case sdma_event_e81_hw_frozen:
2988 break;
2989 case sdma_event_e82_hw_unfreeze:
2990 break;
2991 }
2992 break;
2993 }
2994
2995 ss->last_event = event;
2996 if (need_progress)
2997 sdma_make_progress(sde, 0);
2998}
2999
3000/*
3001 * _extend_sdma_tx_descs() - helper to extend txreq
3002 *
3003 * This is called once the initial nominal allocation
3004 * of descriptors in the sdma_txreq is exhausted.
3005 *
3006 * The code will bump the allocation up to the max
3007 * of MAX_DESC (64) descriptors. There doesn't seem
3008 * much point in an interim step. The last descriptor
3009 * is reserved for coalesce buffer in order to support
3010 * cases where input packet has >MAX_DESC iovecs.
3011 *
3012 */
3013static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3014{
3015 int i;
3016 struct sdma_desc *descp;
3017
3018 /* Handle last descriptor */
3019 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3020 /* if tlen is 0, it is for padding, release last descriptor */
3021 if (!tx->tlen) {
3022 tx->desc_limit = MAX_DESC;
3023 } else if (!tx->coalesce_buf) {
3024 /* allocate coalesce buffer with space for padding */
3025 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3026 GFP_ATOMIC);
3027 if (!tx->coalesce_buf)
3028 goto enomem;
3029 tx->coalesce_idx = 0;
3030 }
3031 return 0;
3032 }
3033
3034 if (unlikely(tx->num_desc == MAX_DESC))
3035 goto enomem;
3036
3037 descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3038 if (!descp)
3039 goto enomem;
3040 tx->descp = descp;
3041
3042 /* reserve last descriptor for coalescing */
3043 tx->desc_limit = MAX_DESC - 1;
3044 /* copy ones already built */
3045 for (i = 0; i < tx->num_desc; i++)
3046 tx->descp[i] = tx->descs[i];
3047 return 0;
3048enomem:
3049 __sdma_txclean(dd, tx);
3050 return -ENOMEM;
3051}
3052
3053/*
3054 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3055 *
3056 * This is called once the initial nominal allocation of descriptors
3057 * in the sdma_txreq is exhausted.
3058 *
3059 * This function calls _extend_sdma_tx_descs to extend or allocate
3060 * coalesce buffer. If there is a allocated coalesce buffer, it will
3061 * copy the input packet data into the coalesce buffer. It also adds
3062 * coalesce buffer descriptor once when whole packet is received.
3063 *
3064 * Return:
3065 * <0 - error
3066 * 0 - coalescing, don't populate descriptor
3067 * 1 - continue with populating descriptor
3068 */
3069int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3070 int type, void *kvaddr, struct page *page,
3071 unsigned long offset, u16 len)
3072{
3073 int pad_len, rval;
3074 dma_addr_t addr;
3075
3076 rval = _extend_sdma_tx_descs(dd, tx);
3077 if (rval) {
3078 __sdma_txclean(dd, tx);
3079 return rval;
3080 }
3081
3082 /* If coalesce buffer is allocated, copy data into it */
3083 if (tx->coalesce_buf) {
3084 if (type == SDMA_MAP_NONE) {
3085 __sdma_txclean(dd, tx);
3086 return -EINVAL;
3087 }
3088
3089 if (type == SDMA_MAP_PAGE) {
3090 kvaddr = kmap_local_page(page);
3091 kvaddr += offset;
3092 } else if (WARN_ON(!kvaddr)) {
3093 __sdma_txclean(dd, tx);
3094 return -EINVAL;
3095 }
3096
3097 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3098 tx->coalesce_idx += len;
3099 if (type == SDMA_MAP_PAGE)
3100 kunmap_local(kvaddr);
3101
3102 /* If there is more data, return */
3103 if (tx->tlen - tx->coalesce_idx)
3104 return 0;
3105
3106 /* Whole packet is received; add any padding */
3107 pad_len = tx->packet_len & (sizeof(u32) - 1);
3108 if (pad_len) {
3109 pad_len = sizeof(u32) - pad_len;
3110 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3111 /* padding is taken care of for coalescing case */
3112 tx->packet_len += pad_len;
3113 tx->tlen += pad_len;
3114 }
3115
3116 /* dma map the coalesce buffer */
3117 addr = dma_map_single(&dd->pcidev->dev,
3118 tx->coalesce_buf,
3119 tx->tlen,
3120 DMA_TO_DEVICE);
3121
3122 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3123 __sdma_txclean(dd, tx);
3124 return -ENOSPC;
3125 }
3126
3127 /* Add descriptor for coalesce buffer */
3128 tx->desc_limit = MAX_DESC;
3129 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3130 addr, tx->tlen, NULL, NULL, NULL);
3131 }
3132
3133 return 1;
3134}
3135
3136/* Update sdes when the lmc changes */
3137void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3138{
3139 struct sdma_engine *sde;
3140 int i;
3141 u64 sreg;
3142
3143 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3144 SD(CHECK_SLID_MASK_SHIFT)) |
3145 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3146 SD(CHECK_SLID_VALUE_SHIFT));
3147
3148 for (i = 0; i < dd->num_sdma; i++) {
3149 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3150 i, (u32)sreg);
3151 sde = &dd->per_sdma[i];
3152 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3153 }
3154}
3155
3156/* tx not dword sized - pad */
3157int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3158{
3159 int rval = 0;
3160
3161 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3162 rval = _extend_sdma_tx_descs(dd, tx);
3163 if (rval) {
3164 __sdma_txclean(dd, tx);
3165 return rval;
3166 }
3167 }
3168
3169 /* finish the one just added */
3170 make_tx_sdma_desc(
3171 tx,
3172 SDMA_MAP_NONE,
3173 dd->sdma_pad_phys,
3174 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)),
3175 NULL, NULL, NULL);
3176 tx->num_desc++;
3177 _sdma_close_tx(dd, tx);
3178 return rval;
3179}
3180
3181/*
3182 * Add ahg to the sdma_txreq
3183 *
3184 * The logic will consume up to 3
3185 * descriptors at the beginning of
3186 * sdma_txreq.
3187 */
3188void _sdma_txreq_ahgadd(
3189 struct sdma_txreq *tx,
3190 u8 num_ahg,
3191 u8 ahg_entry,
3192 u32 *ahg,
3193 u8 ahg_hlen)
3194{
3195 u32 i, shift = 0, desc = 0;
3196 u8 mode;
3197
3198 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3199 /* compute mode */
3200 if (num_ahg == 1)
3201 mode = SDMA_AHG_APPLY_UPDATE1;
3202 else if (num_ahg <= 5)
3203 mode = SDMA_AHG_APPLY_UPDATE2;
3204 else
3205 mode = SDMA_AHG_APPLY_UPDATE3;
3206 tx->num_desc++;
3207 /* initialize to consumed descriptors to zero */
3208 switch (mode) {
3209 case SDMA_AHG_APPLY_UPDATE3:
3210 tx->num_desc++;
3211 tx->descs[2].qw[0] = 0;
3212 tx->descs[2].qw[1] = 0;
3213 fallthrough;
3214 case SDMA_AHG_APPLY_UPDATE2:
3215 tx->num_desc++;
3216 tx->descs[1].qw[0] = 0;
3217 tx->descs[1].qw[1] = 0;
3218 break;
3219 }
3220 ahg_hlen >>= 2;
3221 tx->descs[0].qw[1] |=
3222 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3223 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3224 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3225 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3226 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3227 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3228 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3229 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3230 for (i = 0; i < (num_ahg - 1); i++) {
3231 if (!shift && !(i & 2))
3232 desc++;
3233 tx->descs[desc].qw[!!(i & 2)] |=
3234 (((u64)ahg[i + 1])
3235 << shift);
3236 shift = (shift + 32) & 63;
3237 }
3238}
3239
3240/**
3241 * sdma_ahg_alloc - allocate an AHG entry
3242 * @sde: engine to allocate from
3243 *
3244 * Return:
3245 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3246 * -ENOSPC if an entry is not available
3247 */
3248int sdma_ahg_alloc(struct sdma_engine *sde)
3249{
3250 int nr;
3251 int oldbit;
3252
3253 if (!sde) {
3254 trace_hfi1_ahg_allocate(sde, -EINVAL);
3255 return -EINVAL;
3256 }
3257 while (1) {
3258 nr = ffz(READ_ONCE(sde->ahg_bits));
3259 if (nr > 31) {
3260 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3261 return -ENOSPC;
3262 }
3263 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3264 if (!oldbit)
3265 break;
3266 cpu_relax();
3267 }
3268 trace_hfi1_ahg_allocate(sde, nr);
3269 return nr;
3270}
3271
3272/**
3273 * sdma_ahg_free - free an AHG entry
3274 * @sde: engine to return AHG entry
3275 * @ahg_index: index to free
3276 *
3277 * This routine frees the indicate AHG entry.
3278 */
3279void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3280{
3281 if (!sde)
3282 return;
3283 trace_hfi1_ahg_deallocate(sde, ahg_index);
3284 if (ahg_index < 0 || ahg_index > 31)
3285 return;
3286 clear_bit(ahg_index, &sde->ahg_bits);
3287}
3288
3289/*
3290 * SPC freeze handling for SDMA engines. Called when the driver knows
3291 * the SPC is going into a freeze but before the freeze is fully
3292 * settled. Generally an error interrupt.
3293 *
3294 * This event will pull the engine out of running so no more entries can be
3295 * added to the engine's queue.
3296 */
3297void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3298{
3299 int i;
3300 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3301 sdma_event_e80_hw_freeze;
3302
3303 /* set up the wait but do not wait here */
3304 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3305
3306 /* tell all engines to stop running and wait */
3307 for (i = 0; i < dd->num_sdma; i++)
3308 sdma_process_event(&dd->per_sdma[i], event);
3309
3310 /* sdma_freeze() will wait for all engines to have stopped */
3311}
3312
3313/*
3314 * SPC freeze handling for SDMA engines. Called when the driver knows
3315 * the SPC is fully frozen.
3316 */
3317void sdma_freeze(struct hfi1_devdata *dd)
3318{
3319 int i;
3320 int ret;
3321
3322 /*
3323 * Make sure all engines have moved out of the running state before
3324 * continuing.
3325 */
3326 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3327 atomic_read(&dd->sdma_unfreeze_count) <=
3328 0);
3329 /* interrupted or count is negative, then unloading - just exit */
3330 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3331 return;
3332
3333 /* set up the count for the next wait */
3334 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3335
3336 /* tell all engines that the SPC is frozen, they can start cleaning */
3337 for (i = 0; i < dd->num_sdma; i++)
3338 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3339
3340 /*
3341 * Wait for everyone to finish software clean before exiting. The
3342 * software clean will read engine CSRs, so must be completed before
3343 * the next step, which will clear the engine CSRs.
3344 */
3345 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3346 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3347 /* no need to check results - done no matter what */
3348}
3349
3350/*
3351 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3352 *
3353 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3354 * that is left is a software clean. We could do it after the SPC is fully
3355 * frozen, but then we'd have to add another state to wait for the unfreeze.
3356 * Instead, just defer the software clean until the unfreeze step.
3357 */
3358void sdma_unfreeze(struct hfi1_devdata *dd)
3359{
3360 int i;
3361
3362 /* tell all engines start freeze clean up */
3363 for (i = 0; i < dd->num_sdma; i++)
3364 sdma_process_event(&dd->per_sdma[i],
3365 sdma_event_e82_hw_unfreeze);
3366}
3367
3368/**
3369 * _sdma_engine_progress_schedule() - schedule progress on engine
3370 * @sde: sdma_engine to schedule progress
3371 *
3372 */
3373void _sdma_engine_progress_schedule(
3374 struct sdma_engine *sde)
3375{
3376 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3377 /* assume we have selected a good cpu */
3378 write_csr(sde->dd,
3379 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3380 sde->progress_mask);
3381}
1/*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/spinlock.h>
49#include <linux/seqlock.h>
50#include <linux/netdevice.h>
51#include <linux/moduleparam.h>
52#include <linux/bitops.h>
53#include <linux/timer.h>
54#include <linux/vmalloc.h>
55#include <linux/highmem.h>
56
57#include "hfi.h"
58#include "common.h"
59#include "qp.h"
60#include "sdma.h"
61#include "iowait.h"
62#include "trace.h"
63
64/* must be a power of 2 >= 64 <= 32768 */
65#define SDMA_DESCQ_CNT 2048
66#define SDMA_DESC_INTR 64
67#define INVALID_TAIL 0xffff
68#define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
69
70static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
71module_param(sdma_descq_cnt, uint, S_IRUGO);
72MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
73
74static uint sdma_idle_cnt = 250;
75module_param(sdma_idle_cnt, uint, S_IRUGO);
76MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
77
78uint mod_num_sdma;
79module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
80MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
81
82static uint sdma_desct_intr = SDMA_DESC_INTR;
83module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
84MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
85
86#define SDMA_WAIT_BATCH_SIZE 20
87/* max wait time for a SDMA engine to indicate it has halted */
88#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
89/* all SDMA engine errors that cause a halt */
90
91#define SD(name) SEND_DMA_##name
92#define ALL_SDMA_ENG_HALT_ERRS \
93 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
110 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
111
112/* sdma_sendctrl operations */
113#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
114#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
115#define SDMA_SENDCTRL_OP_HALT BIT(2)
116#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
117
118/* handle long defines */
119#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
120SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
121#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
122SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
123
124static const char * const sdma_state_names[] = {
125 [sdma_state_s00_hw_down] = "s00_HwDown",
126 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
127 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
128 [sdma_state_s20_idle] = "s20_Idle",
129 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
130 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
131 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
132 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
133 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
134 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
135 [sdma_state_s99_running] = "s99_Running",
136};
137
138#ifdef CONFIG_SDMA_VERBOSITY
139static const char * const sdma_event_names[] = {
140 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
141 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
142 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
143 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
144 [sdma_event_e30_go_running] = "e30_GoRunning",
145 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
146 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
147 [sdma_event_e60_hw_halted] = "e60_HwHalted",
148 [sdma_event_e70_go_idle] = "e70_GoIdle",
149 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
150 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
151 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
152 [sdma_event_e85_link_down] = "e85_LinkDown",
153 [sdma_event_e90_sw_halted] = "e90_SwHalted",
154};
155#endif
156
157static const struct sdma_set_state_action sdma_action_table[] = {
158 [sdma_state_s00_hw_down] = {
159 .go_s99_running_tofalse = 1,
160 .op_enable = 0,
161 .op_intenable = 0,
162 .op_halt = 0,
163 .op_cleanup = 0,
164 },
165 [sdma_state_s10_hw_start_up_halt_wait] = {
166 .op_enable = 0,
167 .op_intenable = 0,
168 .op_halt = 1,
169 .op_cleanup = 0,
170 },
171 [sdma_state_s15_hw_start_up_clean_wait] = {
172 .op_enable = 0,
173 .op_intenable = 1,
174 .op_halt = 0,
175 .op_cleanup = 1,
176 },
177 [sdma_state_s20_idle] = {
178 .op_enable = 0,
179 .op_intenable = 1,
180 .op_halt = 0,
181 .op_cleanup = 0,
182 },
183 [sdma_state_s30_sw_clean_up_wait] = {
184 .op_enable = 0,
185 .op_intenable = 0,
186 .op_halt = 0,
187 .op_cleanup = 0,
188 },
189 [sdma_state_s40_hw_clean_up_wait] = {
190 .op_enable = 0,
191 .op_intenable = 0,
192 .op_halt = 0,
193 .op_cleanup = 1,
194 },
195 [sdma_state_s50_hw_halt_wait] = {
196 .op_enable = 0,
197 .op_intenable = 0,
198 .op_halt = 0,
199 .op_cleanup = 0,
200 },
201 [sdma_state_s60_idle_halt_wait] = {
202 .go_s99_running_tofalse = 1,
203 .op_enable = 0,
204 .op_intenable = 0,
205 .op_halt = 1,
206 .op_cleanup = 0,
207 },
208 [sdma_state_s80_hw_freeze] = {
209 .op_enable = 0,
210 .op_intenable = 0,
211 .op_halt = 0,
212 .op_cleanup = 0,
213 },
214 [sdma_state_s82_freeze_sw_clean] = {
215 .op_enable = 0,
216 .op_intenable = 0,
217 .op_halt = 0,
218 .op_cleanup = 0,
219 },
220 [sdma_state_s99_running] = {
221 .op_enable = 1,
222 .op_intenable = 1,
223 .op_halt = 0,
224 .op_cleanup = 0,
225 .go_s99_running_totrue = 1,
226 },
227};
228
229#define SDMA_TAIL_UPDATE_THRESH 0x1F
230
231/* declare all statics here rather than keep sorting */
232static void sdma_complete(struct kref *);
233static void sdma_finalput(struct sdma_state *);
234static void sdma_get(struct sdma_state *);
235static void sdma_hw_clean_up_task(unsigned long);
236static void sdma_put(struct sdma_state *);
237static void sdma_set_state(struct sdma_engine *, enum sdma_states);
238static void sdma_start_hw_clean_up(struct sdma_engine *);
239static void sdma_sw_clean_up_task(unsigned long);
240static void sdma_sendctrl(struct sdma_engine *, unsigned);
241static void init_sdma_regs(struct sdma_engine *, u32, uint);
242static void sdma_process_event(
243 struct sdma_engine *sde,
244 enum sdma_events event);
245static void __sdma_process_event(
246 struct sdma_engine *sde,
247 enum sdma_events event);
248static void dump_sdma_state(struct sdma_engine *sde);
249static void sdma_make_progress(struct sdma_engine *sde, u64 status);
250static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
251static void sdma_flush_descq(struct sdma_engine *sde);
252
253/**
254 * sdma_state_name() - return state string from enum
255 * @state: state
256 */
257static const char *sdma_state_name(enum sdma_states state)
258{
259 return sdma_state_names[state];
260}
261
262static void sdma_get(struct sdma_state *ss)
263{
264 kref_get(&ss->kref);
265}
266
267static void sdma_complete(struct kref *kref)
268{
269 struct sdma_state *ss =
270 container_of(kref, struct sdma_state, kref);
271
272 complete(&ss->comp);
273}
274
275static void sdma_put(struct sdma_state *ss)
276{
277 kref_put(&ss->kref, sdma_complete);
278}
279
280static void sdma_finalput(struct sdma_state *ss)
281{
282 sdma_put(ss);
283 wait_for_completion(&ss->comp);
284}
285
286static inline void write_sde_csr(
287 struct sdma_engine *sde,
288 u32 offset0,
289 u64 value)
290{
291 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
292}
293
294static inline u64 read_sde_csr(
295 struct sdma_engine *sde,
296 u32 offset0)
297{
298 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
299}
300
301/*
302 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
303 * sdma engine 'sde' to drop to 0.
304 */
305static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
306 int pause)
307{
308 u64 off = 8 * sde->this_idx;
309 struct hfi1_devdata *dd = sde->dd;
310 int lcnt = 0;
311 u64 reg_prev;
312 u64 reg = 0;
313
314 while (1) {
315 reg_prev = reg;
316 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
317
318 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
319 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
320 if (reg == 0)
321 break;
322 /* counter is reest if accupancy count changes */
323 if (reg != reg_prev)
324 lcnt = 0;
325 if (lcnt++ > 500) {
326 /* timed out - bounce the link */
327 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
328 __func__, sde->this_idx, (u32)reg);
329 queue_work(dd->pport->link_wq,
330 &dd->pport->link_bounce_work);
331 break;
332 }
333 udelay(1);
334 }
335}
336
337/*
338 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
339 * and pause for credit return.
340 */
341void sdma_wait(struct hfi1_devdata *dd)
342{
343 int i;
344
345 for (i = 0; i < dd->num_sdma; i++) {
346 struct sdma_engine *sde = &dd->per_sdma[i];
347
348 sdma_wait_for_packet_egress(sde, 0);
349 }
350}
351
352static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
353{
354 u64 reg;
355
356 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
357 return;
358 reg = cnt;
359 reg &= SD(DESC_CNT_CNT_MASK);
360 reg <<= SD(DESC_CNT_CNT_SHIFT);
361 write_sde_csr(sde, SD(DESC_CNT), reg);
362}
363
364static inline void complete_tx(struct sdma_engine *sde,
365 struct sdma_txreq *tx,
366 int res)
367{
368 /* protect against complete modifying */
369 struct iowait *wait = tx->wait;
370 callback_t complete = tx->complete;
371
372#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
373 trace_hfi1_sdma_out_sn(sde, tx->sn);
374 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
375 dd_dev_err(sde->dd, "expected %llu got %llu\n",
376 sde->head_sn, tx->sn);
377 sde->head_sn++;
378#endif
379 __sdma_txclean(sde->dd, tx);
380 if (complete)
381 (*complete)(tx, res);
382 if (iowait_sdma_dec(wait))
383 iowait_drain_wakeup(wait);
384}
385
386/*
387 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
388 *
389 * Depending on timing there can be txreqs in two places:
390 * - in the descq ring
391 * - in the flush list
392 *
393 * To avoid ordering issues the descq ring needs to be flushed
394 * first followed by the flush list.
395 *
396 * This routine is called from two places
397 * - From a work queue item
398 * - Directly from the state machine just before setting the
399 * state to running
400 *
401 * Must be called with head_lock held
402 *
403 */
404static void sdma_flush(struct sdma_engine *sde)
405{
406 struct sdma_txreq *txp, *txp_next;
407 LIST_HEAD(flushlist);
408 unsigned long flags;
409 uint seq;
410
411 /* flush from head to tail */
412 sdma_flush_descq(sde);
413 spin_lock_irqsave(&sde->flushlist_lock, flags);
414 /* copy flush list */
415 list_splice_init(&sde->flushlist, &flushlist);
416 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
417 /* flush from flush list */
418 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
419 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
420 /* wakeup QPs orphaned on the dmawait list */
421 do {
422 struct iowait *w, *nw;
423
424 seq = read_seqbegin(&sde->waitlock);
425 if (!list_empty(&sde->dmawait)) {
426 write_seqlock(&sde->waitlock);
427 list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
428 if (w->wakeup) {
429 w->wakeup(w, SDMA_AVAIL_REASON);
430 list_del_init(&w->list);
431 }
432 }
433 write_sequnlock(&sde->waitlock);
434 }
435 } while (read_seqretry(&sde->waitlock, seq));
436}
437
438/*
439 * Fields a work request for flushing the descq ring
440 * and the flush list
441 *
442 * If the engine has been brought to running during
443 * the scheduling delay, the flush is ignored, assuming
444 * that the process of bringing the engine to running
445 * would have done this flush prior to going to running.
446 *
447 */
448static void sdma_field_flush(struct work_struct *work)
449{
450 unsigned long flags;
451 struct sdma_engine *sde =
452 container_of(work, struct sdma_engine, flush_worker);
453
454 write_seqlock_irqsave(&sde->head_lock, flags);
455 if (!__sdma_running(sde))
456 sdma_flush(sde);
457 write_sequnlock_irqrestore(&sde->head_lock, flags);
458}
459
460static void sdma_err_halt_wait(struct work_struct *work)
461{
462 struct sdma_engine *sde = container_of(work, struct sdma_engine,
463 err_halt_worker);
464 u64 statuscsr;
465 unsigned long timeout;
466
467 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
468 while (1) {
469 statuscsr = read_sde_csr(sde, SD(STATUS));
470 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
471 if (statuscsr)
472 break;
473 if (time_after(jiffies, timeout)) {
474 dd_dev_err(sde->dd,
475 "SDMA engine %d - timeout waiting for engine to halt\n",
476 sde->this_idx);
477 /*
478 * Continue anyway. This could happen if there was
479 * an uncorrectable error in the wrong spot.
480 */
481 break;
482 }
483 usleep_range(80, 120);
484 }
485
486 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
487}
488
489static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
490{
491 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
492 unsigned index;
493 struct hfi1_devdata *dd = sde->dd;
494
495 for (index = 0; index < dd->num_sdma; index++) {
496 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
497
498 if (curr_sdma != sde)
499 curr_sdma->progress_check_head =
500 curr_sdma->descq_head;
501 }
502 dd_dev_err(sde->dd,
503 "SDMA engine %d - check scheduled\n",
504 sde->this_idx);
505 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
506 }
507}
508
509static void sdma_err_progress_check(struct timer_list *t)
510{
511 unsigned index;
512 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
513
514 dd_dev_err(sde->dd, "SDE progress check event\n");
515 for (index = 0; index < sde->dd->num_sdma; index++) {
516 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
517 unsigned long flags;
518
519 /* check progress on each engine except the current one */
520 if (curr_sde == sde)
521 continue;
522 /*
523 * We must lock interrupts when acquiring sde->lock,
524 * to avoid a deadlock if interrupt triggers and spins on
525 * the same lock on same CPU
526 */
527 spin_lock_irqsave(&curr_sde->tail_lock, flags);
528 write_seqlock(&curr_sde->head_lock);
529
530 /* skip non-running queues */
531 if (curr_sde->state.current_state != sdma_state_s99_running) {
532 write_sequnlock(&curr_sde->head_lock);
533 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
534 continue;
535 }
536
537 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
538 (curr_sde->descq_head ==
539 curr_sde->progress_check_head))
540 __sdma_process_event(curr_sde,
541 sdma_event_e90_sw_halted);
542 write_sequnlock(&curr_sde->head_lock);
543 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
544 }
545 schedule_work(&sde->err_halt_worker);
546}
547
548static void sdma_hw_clean_up_task(unsigned long opaque)
549{
550 struct sdma_engine *sde = (struct sdma_engine *)opaque;
551 u64 statuscsr;
552
553 while (1) {
554#ifdef CONFIG_SDMA_VERBOSITY
555 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
556 sde->this_idx, slashstrip(__FILE__), __LINE__,
557 __func__);
558#endif
559 statuscsr = read_sde_csr(sde, SD(STATUS));
560 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
561 if (statuscsr)
562 break;
563 udelay(10);
564 }
565
566 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
567}
568
569static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
570{
571 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
572}
573
574/*
575 * flush ring for recovery
576 */
577static void sdma_flush_descq(struct sdma_engine *sde)
578{
579 u16 head, tail;
580 int progress = 0;
581 struct sdma_txreq *txp = get_txhead(sde);
582
583 /* The reason for some of the complexity of this code is that
584 * not all descriptors have corresponding txps. So, we have to
585 * be able to skip over descs until we wander into the range of
586 * the next txp on the list.
587 */
588 head = sde->descq_head & sde->sdma_mask;
589 tail = sde->descq_tail & sde->sdma_mask;
590 while (head != tail) {
591 /* advance head, wrap if needed */
592 head = ++sde->descq_head & sde->sdma_mask;
593 /* if now past this txp's descs, do the callback */
594 if (txp && txp->next_descq_idx == head) {
595 /* remove from list */
596 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
597 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
598 trace_hfi1_sdma_progress(sde, head, tail, txp);
599 txp = get_txhead(sde);
600 }
601 progress++;
602 }
603 if (progress)
604 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
605}
606
607static void sdma_sw_clean_up_task(unsigned long opaque)
608{
609 struct sdma_engine *sde = (struct sdma_engine *)opaque;
610 unsigned long flags;
611
612 spin_lock_irqsave(&sde->tail_lock, flags);
613 write_seqlock(&sde->head_lock);
614
615 /*
616 * At this point, the following should always be true:
617 * - We are halted, so no more descriptors are getting retired.
618 * - We are not running, so no one is submitting new work.
619 * - Only we can send the e40_sw_cleaned, so we can't start
620 * running again until we say so. So, the active list and
621 * descq are ours to play with.
622 */
623
624 /*
625 * In the error clean up sequence, software clean must be called
626 * before the hardware clean so we can use the hardware head in
627 * the progress routine. A hardware clean or SPC unfreeze will
628 * reset the hardware head.
629 *
630 * Process all retired requests. The progress routine will use the
631 * latest physical hardware head - we are not running so speed does
632 * not matter.
633 */
634 sdma_make_progress(sde, 0);
635
636 sdma_flush(sde);
637
638 /*
639 * Reset our notion of head and tail.
640 * Note that the HW registers have been reset via an earlier
641 * clean up.
642 */
643 sde->descq_tail = 0;
644 sde->descq_head = 0;
645 sde->desc_avail = sdma_descq_freecnt(sde);
646 *sde->head_dma = 0;
647
648 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
649
650 write_sequnlock(&sde->head_lock);
651 spin_unlock_irqrestore(&sde->tail_lock, flags);
652}
653
654static void sdma_sw_tear_down(struct sdma_engine *sde)
655{
656 struct sdma_state *ss = &sde->state;
657
658 /* Releasing this reference means the state machine has stopped. */
659 sdma_put(ss);
660
661 /* stop waiting for all unfreeze events to complete */
662 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
663 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
664}
665
666static void sdma_start_hw_clean_up(struct sdma_engine *sde)
667{
668 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
669}
670
671static void sdma_set_state(struct sdma_engine *sde,
672 enum sdma_states next_state)
673{
674 struct sdma_state *ss = &sde->state;
675 const struct sdma_set_state_action *action = sdma_action_table;
676 unsigned op = 0;
677
678 trace_hfi1_sdma_state(
679 sde,
680 sdma_state_names[ss->current_state],
681 sdma_state_names[next_state]);
682
683 /* debugging bookkeeping */
684 ss->previous_state = ss->current_state;
685 ss->previous_op = ss->current_op;
686 ss->current_state = next_state;
687
688 if (ss->previous_state != sdma_state_s99_running &&
689 next_state == sdma_state_s99_running)
690 sdma_flush(sde);
691
692 if (action[next_state].op_enable)
693 op |= SDMA_SENDCTRL_OP_ENABLE;
694
695 if (action[next_state].op_intenable)
696 op |= SDMA_SENDCTRL_OP_INTENABLE;
697
698 if (action[next_state].op_halt)
699 op |= SDMA_SENDCTRL_OP_HALT;
700
701 if (action[next_state].op_cleanup)
702 op |= SDMA_SENDCTRL_OP_CLEANUP;
703
704 if (action[next_state].go_s99_running_tofalse)
705 ss->go_s99_running = 0;
706
707 if (action[next_state].go_s99_running_totrue)
708 ss->go_s99_running = 1;
709
710 ss->current_op = op;
711 sdma_sendctrl(sde, ss->current_op);
712}
713
714/**
715 * sdma_get_descq_cnt() - called when device probed
716 *
717 * Return a validated descq count.
718 *
719 * This is currently only used in the verbs initialization to build the tx
720 * list.
721 *
722 * This will probably be deleted in favor of a more scalable approach to
723 * alloc tx's.
724 *
725 */
726u16 sdma_get_descq_cnt(void)
727{
728 u16 count = sdma_descq_cnt;
729
730 if (!count)
731 return SDMA_DESCQ_CNT;
732 /* count must be a power of 2 greater than 64 and less than
733 * 32768. Otherwise return default.
734 */
735 if (!is_power_of_2(count))
736 return SDMA_DESCQ_CNT;
737 if (count < 64 || count > 32768)
738 return SDMA_DESCQ_CNT;
739 return count;
740}
741
742/**
743 * sdma_engine_get_vl() - return vl for a given sdma engine
744 * @sde: sdma engine
745 *
746 * This function returns the vl mapped to a given engine, or an error if
747 * the mapping can't be found. The mapping fields are protected by RCU.
748 */
749int sdma_engine_get_vl(struct sdma_engine *sde)
750{
751 struct hfi1_devdata *dd = sde->dd;
752 struct sdma_vl_map *m;
753 u8 vl;
754
755 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
756 return -EINVAL;
757
758 rcu_read_lock();
759 m = rcu_dereference(dd->sdma_map);
760 if (unlikely(!m)) {
761 rcu_read_unlock();
762 return -EINVAL;
763 }
764 vl = m->engine_to_vl[sde->this_idx];
765 rcu_read_unlock();
766
767 return vl;
768}
769
770/**
771 * sdma_select_engine_vl() - select sdma engine
772 * @dd: devdata
773 * @selector: a spreading factor
774 * @vl: this vl
775 *
776 *
777 * This function returns an engine based on the selector and a vl. The
778 * mapping fields are protected by RCU.
779 */
780struct sdma_engine *sdma_select_engine_vl(
781 struct hfi1_devdata *dd,
782 u32 selector,
783 u8 vl)
784{
785 struct sdma_vl_map *m;
786 struct sdma_map_elem *e;
787 struct sdma_engine *rval;
788
789 /* NOTE This should only happen if SC->VL changed after the initial
790 * checks on the QP/AH
791 * Default will return engine 0 below
792 */
793 if (vl >= num_vls) {
794 rval = NULL;
795 goto done;
796 }
797
798 rcu_read_lock();
799 m = rcu_dereference(dd->sdma_map);
800 if (unlikely(!m)) {
801 rcu_read_unlock();
802 return &dd->per_sdma[0];
803 }
804 e = m->map[vl & m->mask];
805 rval = e->sde[selector & e->mask];
806 rcu_read_unlock();
807
808done:
809 rval = !rval ? &dd->per_sdma[0] : rval;
810 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
811 return rval;
812}
813
814/**
815 * sdma_select_engine_sc() - select sdma engine
816 * @dd: devdata
817 * @selector: a spreading factor
818 * @sc5: the 5 bit sc
819 *
820 *
821 * This function returns an engine based on the selector and an sc.
822 */
823struct sdma_engine *sdma_select_engine_sc(
824 struct hfi1_devdata *dd,
825 u32 selector,
826 u8 sc5)
827{
828 u8 vl = sc_to_vlt(dd, sc5);
829
830 return sdma_select_engine_vl(dd, selector, vl);
831}
832
833struct sdma_rht_map_elem {
834 u32 mask;
835 u8 ctr;
836 struct sdma_engine *sde[0];
837};
838
839struct sdma_rht_node {
840 unsigned long cpu_id;
841 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
842 struct rhash_head node;
843};
844
845#define NR_CPUS_HINT 192
846
847static const struct rhashtable_params sdma_rht_params = {
848 .nelem_hint = NR_CPUS_HINT,
849 .head_offset = offsetof(struct sdma_rht_node, node),
850 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
851 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
852 .max_size = NR_CPUS,
853 .min_size = 8,
854 .automatic_shrinking = true,
855};
856
857/*
858 * sdma_select_user_engine() - select sdma engine based on user setup
859 * @dd: devdata
860 * @selector: a spreading factor
861 * @vl: this vl
862 *
863 * This function returns an sdma engine for a user sdma request.
864 * User defined sdma engine affinity setting is honored when applicable,
865 * otherwise system default sdma engine mapping is used. To ensure correct
866 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
867 */
868struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
869 u32 selector, u8 vl)
870{
871 struct sdma_rht_node *rht_node;
872 struct sdma_engine *sde = NULL;
873 unsigned long cpu_id;
874
875 /*
876 * To ensure that always the same sdma engine(s) will be
877 * selected make sure the process is pinned to this CPU only.
878 */
879 if (current->nr_cpus_allowed != 1)
880 goto out;
881
882 cpu_id = smp_processor_id();
883 rcu_read_lock();
884 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
885 sdma_rht_params);
886
887 if (rht_node && rht_node->map[vl]) {
888 struct sdma_rht_map_elem *map = rht_node->map[vl];
889
890 sde = map->sde[selector & map->mask];
891 }
892 rcu_read_unlock();
893
894 if (sde)
895 return sde;
896
897out:
898 return sdma_select_engine_vl(dd, selector, vl);
899}
900
901static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
902{
903 int i;
904
905 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
906 map->sde[map->ctr + i] = map->sde[i];
907}
908
909static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
910 struct sdma_engine *sde)
911{
912 unsigned int i, pow;
913
914 /* only need to check the first ctr entries for a match */
915 for (i = 0; i < map->ctr; i++) {
916 if (map->sde[i] == sde) {
917 memmove(&map->sde[i], &map->sde[i + 1],
918 (map->ctr - i - 1) * sizeof(map->sde[0]));
919 map->ctr--;
920 pow = roundup_pow_of_two(map->ctr ? : 1);
921 map->mask = pow - 1;
922 sdma_populate_sde_map(map);
923 break;
924 }
925 }
926}
927
928/*
929 * Prevents concurrent reads and writes of the sdma engine cpu_mask
930 */
931static DEFINE_MUTEX(process_to_sde_mutex);
932
933ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
934 size_t count)
935{
936 struct hfi1_devdata *dd = sde->dd;
937 cpumask_var_t mask, new_mask;
938 unsigned long cpu;
939 int ret, vl, sz;
940 struct sdma_rht_node *rht_node;
941
942 vl = sdma_engine_get_vl(sde);
943 if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
944 return -EINVAL;
945
946 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
947 if (!ret)
948 return -ENOMEM;
949
950 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
951 if (!ret) {
952 free_cpumask_var(mask);
953 return -ENOMEM;
954 }
955 ret = cpulist_parse(buf, mask);
956 if (ret)
957 goto out_free;
958
959 if (!cpumask_subset(mask, cpu_online_mask)) {
960 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
961 ret = -EINVAL;
962 goto out_free;
963 }
964
965 sz = sizeof(struct sdma_rht_map_elem) +
966 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
967
968 mutex_lock(&process_to_sde_mutex);
969
970 for_each_cpu(cpu, mask) {
971 /* Check if we have this already mapped */
972 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
973 cpumask_set_cpu(cpu, new_mask);
974 continue;
975 }
976
977 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
978 sdma_rht_params);
979 if (!rht_node) {
980 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
981 if (!rht_node) {
982 ret = -ENOMEM;
983 goto out;
984 }
985
986 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
987 if (!rht_node->map[vl]) {
988 kfree(rht_node);
989 ret = -ENOMEM;
990 goto out;
991 }
992 rht_node->cpu_id = cpu;
993 rht_node->map[vl]->mask = 0;
994 rht_node->map[vl]->ctr = 1;
995 rht_node->map[vl]->sde[0] = sde;
996
997 ret = rhashtable_insert_fast(dd->sdma_rht,
998 &rht_node->node,
999 sdma_rht_params);
1000 if (ret) {
1001 kfree(rht_node->map[vl]);
1002 kfree(rht_node);
1003 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1004 cpu);
1005 goto out;
1006 }
1007
1008 } else {
1009 int ctr, pow;
1010
1011 /* Add new user mappings */
1012 if (!rht_node->map[vl])
1013 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1014
1015 if (!rht_node->map[vl]) {
1016 ret = -ENOMEM;
1017 goto out;
1018 }
1019
1020 rht_node->map[vl]->ctr++;
1021 ctr = rht_node->map[vl]->ctr;
1022 rht_node->map[vl]->sde[ctr - 1] = sde;
1023 pow = roundup_pow_of_two(ctr);
1024 rht_node->map[vl]->mask = pow - 1;
1025
1026 /* Populate the sde map table */
1027 sdma_populate_sde_map(rht_node->map[vl]);
1028 }
1029 cpumask_set_cpu(cpu, new_mask);
1030 }
1031
1032 /* Clean up old mappings */
1033 for_each_cpu(cpu, cpu_online_mask) {
1034 struct sdma_rht_node *rht_node;
1035
1036 /* Don't cleanup sdes that are set in the new mask */
1037 if (cpumask_test_cpu(cpu, mask))
1038 continue;
1039
1040 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1041 sdma_rht_params);
1042 if (rht_node) {
1043 bool empty = true;
1044 int i;
1045
1046 /* Remove mappings for old sde */
1047 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1048 if (rht_node->map[i])
1049 sdma_cleanup_sde_map(rht_node->map[i],
1050 sde);
1051
1052 /* Free empty hash table entries */
1053 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1054 if (!rht_node->map[i])
1055 continue;
1056
1057 if (rht_node->map[i]->ctr) {
1058 empty = false;
1059 break;
1060 }
1061 }
1062
1063 if (empty) {
1064 ret = rhashtable_remove_fast(dd->sdma_rht,
1065 &rht_node->node,
1066 sdma_rht_params);
1067 WARN_ON(ret);
1068
1069 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1070 kfree(rht_node->map[i]);
1071
1072 kfree(rht_node);
1073 }
1074 }
1075 }
1076
1077 cpumask_copy(&sde->cpu_mask, new_mask);
1078out:
1079 mutex_unlock(&process_to_sde_mutex);
1080out_free:
1081 free_cpumask_var(mask);
1082 free_cpumask_var(new_mask);
1083 return ret ? : strnlen(buf, PAGE_SIZE);
1084}
1085
1086ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1087{
1088 mutex_lock(&process_to_sde_mutex);
1089 if (cpumask_empty(&sde->cpu_mask))
1090 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1091 else
1092 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1093 mutex_unlock(&process_to_sde_mutex);
1094 return strnlen(buf, PAGE_SIZE);
1095}
1096
1097static void sdma_rht_free(void *ptr, void *arg)
1098{
1099 struct sdma_rht_node *rht_node = ptr;
1100 int i;
1101
1102 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1103 kfree(rht_node->map[i]);
1104
1105 kfree(rht_node);
1106}
1107
1108/**
1109 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1110 * @s: seq file
1111 * @dd: hfi1_devdata
1112 * @cpuid: cpu id
1113 *
1114 * This routine dumps the process to sde mappings per cpu
1115 */
1116void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1117 struct hfi1_devdata *dd,
1118 unsigned long cpuid)
1119{
1120 struct sdma_rht_node *rht_node;
1121 int i, j;
1122
1123 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1124 sdma_rht_params);
1125 if (!rht_node)
1126 return;
1127
1128 seq_printf(s, "cpu%3lu: ", cpuid);
1129 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1130 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1131 continue;
1132
1133 seq_printf(s, " vl%d: [", i);
1134
1135 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1136 if (!rht_node->map[i]->sde[j])
1137 continue;
1138
1139 if (j > 0)
1140 seq_puts(s, ",");
1141
1142 seq_printf(s, " sdma%2d",
1143 rht_node->map[i]->sde[j]->this_idx);
1144 }
1145 seq_puts(s, " ]");
1146 }
1147
1148 seq_puts(s, "\n");
1149}
1150
1151/*
1152 * Free the indicated map struct
1153 */
1154static void sdma_map_free(struct sdma_vl_map *m)
1155{
1156 int i;
1157
1158 for (i = 0; m && i < m->actual_vls; i++)
1159 kfree(m->map[i]);
1160 kfree(m);
1161}
1162
1163/*
1164 * Handle RCU callback
1165 */
1166static void sdma_map_rcu_callback(struct rcu_head *list)
1167{
1168 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1169
1170 sdma_map_free(m);
1171}
1172
1173/**
1174 * sdma_map_init - called when # vls change
1175 * @dd: hfi1_devdata
1176 * @port: port number
1177 * @num_vls: number of vls
1178 * @vl_engines: per vl engine mapping (optional)
1179 *
1180 * This routine changes the mapping based on the number of vls.
1181 *
1182 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1183 * implies auto computing the loading and giving each VLs a uniform
1184 * distribution of engines per VL.
1185 *
1186 * The auto algorithm computes the sde_per_vl and the number of extra
1187 * engines. Any extra engines are added from the last VL on down.
1188 *
1189 * rcu locking is used here to control access to the mapping fields.
1190 *
1191 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1192 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1193 * up to the next highest power of 2 and the first entry is reused
1194 * in a round robin fashion.
1195 *
1196 * If an error occurs the map change is not done and the mapping is
1197 * not changed.
1198 *
1199 */
1200int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1201{
1202 int i, j;
1203 int extra, sde_per_vl;
1204 int engine = 0;
1205 u8 lvl_engines[OPA_MAX_VLS];
1206 struct sdma_vl_map *oldmap, *newmap;
1207
1208 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1209 return 0;
1210
1211 if (!vl_engines) {
1212 /* truncate divide */
1213 sde_per_vl = dd->num_sdma / num_vls;
1214 /* extras */
1215 extra = dd->num_sdma % num_vls;
1216 vl_engines = lvl_engines;
1217 /* add extras from last vl down */
1218 for (i = num_vls - 1; i >= 0; i--, extra--)
1219 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1220 }
1221 /* build new map */
1222 newmap = kzalloc(
1223 sizeof(struct sdma_vl_map) +
1224 roundup_pow_of_two(num_vls) *
1225 sizeof(struct sdma_map_elem *),
1226 GFP_KERNEL);
1227 if (!newmap)
1228 goto bail;
1229 newmap->actual_vls = num_vls;
1230 newmap->vls = roundup_pow_of_two(num_vls);
1231 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1232 /* initialize back-map */
1233 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1234 newmap->engine_to_vl[i] = -1;
1235 for (i = 0; i < newmap->vls; i++) {
1236 /* save for wrap around */
1237 int first_engine = engine;
1238
1239 if (i < newmap->actual_vls) {
1240 int sz = roundup_pow_of_two(vl_engines[i]);
1241
1242 /* only allocate once */
1243 newmap->map[i] = kzalloc(
1244 sizeof(struct sdma_map_elem) +
1245 sz * sizeof(struct sdma_engine *),
1246 GFP_KERNEL);
1247 if (!newmap->map[i])
1248 goto bail;
1249 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1250 /* assign engines */
1251 for (j = 0; j < sz; j++) {
1252 newmap->map[i]->sde[j] =
1253 &dd->per_sdma[engine];
1254 if (++engine >= first_engine + vl_engines[i])
1255 /* wrap back to first engine */
1256 engine = first_engine;
1257 }
1258 /* assign back-map */
1259 for (j = 0; j < vl_engines[i]; j++)
1260 newmap->engine_to_vl[first_engine + j] = i;
1261 } else {
1262 /* just re-use entry without allocating */
1263 newmap->map[i] = newmap->map[i % num_vls];
1264 }
1265 engine = first_engine + vl_engines[i];
1266 }
1267 /* newmap in hand, save old map */
1268 spin_lock_irq(&dd->sde_map_lock);
1269 oldmap = rcu_dereference_protected(dd->sdma_map,
1270 lockdep_is_held(&dd->sde_map_lock));
1271
1272 /* publish newmap */
1273 rcu_assign_pointer(dd->sdma_map, newmap);
1274
1275 spin_unlock_irq(&dd->sde_map_lock);
1276 /* success, free any old map after grace period */
1277 if (oldmap)
1278 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1279 return 0;
1280bail:
1281 /* free any partial allocation */
1282 sdma_map_free(newmap);
1283 return -ENOMEM;
1284}
1285
1286/**
1287 * sdma_clean() Clean up allocated memory
1288 * @dd: struct hfi1_devdata
1289 * @num_engines: num sdma engines
1290 *
1291 * This routine can be called regardless of the success of
1292 * sdma_init()
1293 */
1294void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1295{
1296 size_t i;
1297 struct sdma_engine *sde;
1298
1299 if (dd->sdma_pad_dma) {
1300 dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1301 (void *)dd->sdma_pad_dma,
1302 dd->sdma_pad_phys);
1303 dd->sdma_pad_dma = NULL;
1304 dd->sdma_pad_phys = 0;
1305 }
1306 if (dd->sdma_heads_dma) {
1307 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1308 (void *)dd->sdma_heads_dma,
1309 dd->sdma_heads_phys);
1310 dd->sdma_heads_dma = NULL;
1311 dd->sdma_heads_phys = 0;
1312 }
1313 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1314 sde = &dd->per_sdma[i];
1315
1316 sde->head_dma = NULL;
1317 sde->head_phys = 0;
1318
1319 if (sde->descq) {
1320 dma_free_coherent(
1321 &dd->pcidev->dev,
1322 sde->descq_cnt * sizeof(u64[2]),
1323 sde->descq,
1324 sde->descq_phys
1325 );
1326 sde->descq = NULL;
1327 sde->descq_phys = 0;
1328 }
1329 kvfree(sde->tx_ring);
1330 sde->tx_ring = NULL;
1331 }
1332 spin_lock_irq(&dd->sde_map_lock);
1333 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1334 RCU_INIT_POINTER(dd->sdma_map, NULL);
1335 spin_unlock_irq(&dd->sde_map_lock);
1336 synchronize_rcu();
1337 kfree(dd->per_sdma);
1338 dd->per_sdma = NULL;
1339
1340 if (dd->sdma_rht) {
1341 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1342 kfree(dd->sdma_rht);
1343 dd->sdma_rht = NULL;
1344 }
1345}
1346
1347/**
1348 * sdma_init() - called when device probed
1349 * @dd: hfi1_devdata
1350 * @port: port number (currently only zero)
1351 *
1352 * Initializes each sde and its csrs.
1353 * Interrupts are not required to be enabled.
1354 *
1355 * Returns:
1356 * 0 - success, -errno on failure
1357 */
1358int sdma_init(struct hfi1_devdata *dd, u8 port)
1359{
1360 unsigned this_idx;
1361 struct sdma_engine *sde;
1362 struct rhashtable *tmp_sdma_rht;
1363 u16 descq_cnt;
1364 void *curr_head;
1365 struct hfi1_pportdata *ppd = dd->pport + port;
1366 u32 per_sdma_credits;
1367 uint idle_cnt = sdma_idle_cnt;
1368 size_t num_engines = chip_sdma_engines(dd);
1369 int ret = -ENOMEM;
1370
1371 if (!HFI1_CAP_IS_KSET(SDMA)) {
1372 HFI1_CAP_CLEAR(SDMA_AHG);
1373 return 0;
1374 }
1375 if (mod_num_sdma &&
1376 /* can't exceed chip support */
1377 mod_num_sdma <= chip_sdma_engines(dd) &&
1378 /* count must be >= vls */
1379 mod_num_sdma >= num_vls)
1380 num_engines = mod_num_sdma;
1381
1382 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1383 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1384 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1385 chip_sdma_mem_size(dd));
1386
1387 per_sdma_credits =
1388 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1389
1390 /* set up freeze waitqueue */
1391 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1392 atomic_set(&dd->sdma_unfreeze_count, 0);
1393
1394 descq_cnt = sdma_get_descq_cnt();
1395 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1396 num_engines, descq_cnt);
1397
1398 /* alloc memory for array of send engines */
1399 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1400 GFP_KERNEL, dd->node);
1401 if (!dd->per_sdma)
1402 return ret;
1403
1404 idle_cnt = ns_to_cclock(dd, idle_cnt);
1405 if (idle_cnt)
1406 dd->default_desc1 =
1407 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1408 else
1409 dd->default_desc1 =
1410 SDMA_DESC1_INT_REQ_FLAG;
1411
1412 if (!sdma_desct_intr)
1413 sdma_desct_intr = SDMA_DESC_INTR;
1414
1415 /* Allocate memory for SendDMA descriptor FIFOs */
1416 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1417 sde = &dd->per_sdma[this_idx];
1418 sde->dd = dd;
1419 sde->ppd = ppd;
1420 sde->this_idx = this_idx;
1421 sde->descq_cnt = descq_cnt;
1422 sde->desc_avail = sdma_descq_freecnt(sde);
1423 sde->sdma_shift = ilog2(descq_cnt);
1424 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1425
1426 /* Create a mask specifically for each interrupt source */
1427 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1428 this_idx);
1429 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1430 this_idx);
1431 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1432 this_idx);
1433 /* Create a combined mask to cover all 3 interrupt sources */
1434 sde->imask = sde->int_mask | sde->progress_mask |
1435 sde->idle_mask;
1436
1437 spin_lock_init(&sde->tail_lock);
1438 seqlock_init(&sde->head_lock);
1439 spin_lock_init(&sde->senddmactrl_lock);
1440 spin_lock_init(&sde->flushlist_lock);
1441 seqlock_init(&sde->waitlock);
1442 /* insure there is always a zero bit */
1443 sde->ahg_bits = 0xfffffffe00000000ULL;
1444
1445 sdma_set_state(sde, sdma_state_s00_hw_down);
1446
1447 /* set up reference counting */
1448 kref_init(&sde->state.kref);
1449 init_completion(&sde->state.comp);
1450
1451 INIT_LIST_HEAD(&sde->flushlist);
1452 INIT_LIST_HEAD(&sde->dmawait);
1453
1454 sde->tail_csr =
1455 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1456
1457 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1458 (unsigned long)sde);
1459
1460 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1461 (unsigned long)sde);
1462 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1463 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1464
1465 sde->progress_check_head = 0;
1466
1467 timer_setup(&sde->err_progress_check_timer,
1468 sdma_err_progress_check, 0);
1469
1470 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1471 descq_cnt * sizeof(u64[2]),
1472 &sde->descq_phys, GFP_KERNEL);
1473 if (!sde->descq)
1474 goto bail;
1475 sde->tx_ring =
1476 kvzalloc_node(array_size(descq_cnt,
1477 sizeof(struct sdma_txreq *)),
1478 GFP_KERNEL, dd->node);
1479 if (!sde->tx_ring)
1480 goto bail;
1481 }
1482
1483 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1484 /* Allocate memory for DMA of head registers to memory */
1485 dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1486 dd->sdma_heads_size,
1487 &dd->sdma_heads_phys,
1488 GFP_KERNEL);
1489 if (!dd->sdma_heads_dma) {
1490 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1491 goto bail;
1492 }
1493
1494 /* Allocate memory for pad */
1495 dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1496 &dd->sdma_pad_phys, GFP_KERNEL);
1497 if (!dd->sdma_pad_dma) {
1498 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1499 goto bail;
1500 }
1501
1502 /* assign each engine to different cacheline and init registers */
1503 curr_head = (void *)dd->sdma_heads_dma;
1504 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1505 unsigned long phys_offset;
1506
1507 sde = &dd->per_sdma[this_idx];
1508
1509 sde->head_dma = curr_head;
1510 curr_head += L1_CACHE_BYTES;
1511 phys_offset = (unsigned long)sde->head_dma -
1512 (unsigned long)dd->sdma_heads_dma;
1513 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1514 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515 }
1516 dd->flags |= HFI1_HAS_SEND_DMA;
1517 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1518 dd->num_sdma = num_engines;
1519 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1520 if (ret < 0)
1521 goto bail;
1522
1523 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1524 if (!tmp_sdma_rht) {
1525 ret = -ENOMEM;
1526 goto bail;
1527 }
1528
1529 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1530 if (ret < 0) {
1531 kfree(tmp_sdma_rht);
1532 goto bail;
1533 }
1534
1535 dd->sdma_rht = tmp_sdma_rht;
1536
1537 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1538 return 0;
1539
1540bail:
1541 sdma_clean(dd, num_engines);
1542 return ret;
1543}
1544
1545/**
1546 * sdma_all_running() - called when the link goes up
1547 * @dd: hfi1_devdata
1548 *
1549 * This routine moves all engines to the running state.
1550 */
1551void sdma_all_running(struct hfi1_devdata *dd)
1552{
1553 struct sdma_engine *sde;
1554 unsigned int i;
1555
1556 /* move all engines to running */
1557 for (i = 0; i < dd->num_sdma; ++i) {
1558 sde = &dd->per_sdma[i];
1559 sdma_process_event(sde, sdma_event_e30_go_running);
1560 }
1561}
1562
1563/**
1564 * sdma_all_idle() - called when the link goes down
1565 * @dd: hfi1_devdata
1566 *
1567 * This routine moves all engines to the idle state.
1568 */
1569void sdma_all_idle(struct hfi1_devdata *dd)
1570{
1571 struct sdma_engine *sde;
1572 unsigned int i;
1573
1574 /* idle all engines */
1575 for (i = 0; i < dd->num_sdma; ++i) {
1576 sde = &dd->per_sdma[i];
1577 sdma_process_event(sde, sdma_event_e70_go_idle);
1578 }
1579}
1580
1581/**
1582 * sdma_start() - called to kick off state processing for all engines
1583 * @dd: hfi1_devdata
1584 *
1585 * This routine is for kicking off the state processing for all required
1586 * sdma engines. Interrupts need to be working at this point.
1587 *
1588 */
1589void sdma_start(struct hfi1_devdata *dd)
1590{
1591 unsigned i;
1592 struct sdma_engine *sde;
1593
1594 /* kick off the engines state processing */
1595 for (i = 0; i < dd->num_sdma; ++i) {
1596 sde = &dd->per_sdma[i];
1597 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1598 }
1599}
1600
1601/**
1602 * sdma_exit() - used when module is removed
1603 * @dd: hfi1_devdata
1604 */
1605void sdma_exit(struct hfi1_devdata *dd)
1606{
1607 unsigned this_idx;
1608 struct sdma_engine *sde;
1609
1610 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1611 ++this_idx) {
1612 sde = &dd->per_sdma[this_idx];
1613 if (!list_empty(&sde->dmawait))
1614 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1615 sde->this_idx);
1616 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1617
1618 del_timer_sync(&sde->err_progress_check_timer);
1619
1620 /*
1621 * This waits for the state machine to exit so it is not
1622 * necessary to kill the sdma_sw_clean_up_task to make sure
1623 * it is not running.
1624 */
1625 sdma_finalput(&sde->state);
1626 }
1627}
1628
1629/*
1630 * unmap the indicated descriptor
1631 */
1632static inline void sdma_unmap_desc(
1633 struct hfi1_devdata *dd,
1634 struct sdma_desc *descp)
1635{
1636 switch (sdma_mapping_type(descp)) {
1637 case SDMA_MAP_SINGLE:
1638 dma_unmap_single(
1639 &dd->pcidev->dev,
1640 sdma_mapping_addr(descp),
1641 sdma_mapping_len(descp),
1642 DMA_TO_DEVICE);
1643 break;
1644 case SDMA_MAP_PAGE:
1645 dma_unmap_page(
1646 &dd->pcidev->dev,
1647 sdma_mapping_addr(descp),
1648 sdma_mapping_len(descp),
1649 DMA_TO_DEVICE);
1650 break;
1651 }
1652}
1653
1654/*
1655 * return the mode as indicated by the first
1656 * descriptor in the tx.
1657 */
1658static inline u8 ahg_mode(struct sdma_txreq *tx)
1659{
1660 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1661 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1662}
1663
1664/**
1665 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1666 * @dd: hfi1_devdata for unmapping
1667 * @tx: tx request to clean
1668 *
1669 * This is used in the progress routine to clean the tx or
1670 * by the ULP to toss an in-process tx build.
1671 *
1672 * The code can be called multiple times without issue.
1673 *
1674 */
1675void __sdma_txclean(
1676 struct hfi1_devdata *dd,
1677 struct sdma_txreq *tx)
1678{
1679 u16 i;
1680
1681 if (tx->num_desc) {
1682 u8 skip = 0, mode = ahg_mode(tx);
1683
1684 /* unmap first */
1685 sdma_unmap_desc(dd, &tx->descp[0]);
1686 /* determine number of AHG descriptors to skip */
1687 if (mode > SDMA_AHG_APPLY_UPDATE1)
1688 skip = mode >> 1;
1689 for (i = 1 + skip; i < tx->num_desc; i++)
1690 sdma_unmap_desc(dd, &tx->descp[i]);
1691 tx->num_desc = 0;
1692 }
1693 kfree(tx->coalesce_buf);
1694 tx->coalesce_buf = NULL;
1695 /* kmalloc'ed descp */
1696 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1697 tx->desc_limit = ARRAY_SIZE(tx->descs);
1698 kfree(tx->descp);
1699 }
1700}
1701
1702static inline u16 sdma_gethead(struct sdma_engine *sde)
1703{
1704 struct hfi1_devdata *dd = sde->dd;
1705 int use_dmahead;
1706 u16 hwhead;
1707
1708#ifdef CONFIG_SDMA_VERBOSITY
1709 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1710 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1711#endif
1712
1713retry:
1714 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1715 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1716 hwhead = use_dmahead ?
1717 (u16)le64_to_cpu(*sde->head_dma) :
1718 (u16)read_sde_csr(sde, SD(HEAD));
1719
1720 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1721 u16 cnt;
1722 u16 swtail;
1723 u16 swhead;
1724 int sane;
1725
1726 swhead = sde->descq_head & sde->sdma_mask;
1727 /* this code is really bad for cache line trading */
1728 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1729 cnt = sde->descq_cnt;
1730
1731 if (swhead < swtail)
1732 /* not wrapped */
1733 sane = (hwhead >= swhead) & (hwhead <= swtail);
1734 else if (swhead > swtail)
1735 /* wrapped around */
1736 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1737 (hwhead <= swtail);
1738 else
1739 /* empty */
1740 sane = (hwhead == swhead);
1741
1742 if (unlikely(!sane)) {
1743 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1744 sde->this_idx,
1745 use_dmahead ? "dma" : "kreg",
1746 hwhead, swhead, swtail, cnt);
1747 if (use_dmahead) {
1748 /* try one more time, using csr */
1749 use_dmahead = 0;
1750 goto retry;
1751 }
1752 /* proceed as if no progress */
1753 hwhead = swhead;
1754 }
1755 }
1756 return hwhead;
1757}
1758
1759/*
1760 * This is called when there are send DMA descriptors that might be
1761 * available.
1762 *
1763 * This is called with head_lock held.
1764 */
1765static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1766{
1767 struct iowait *wait, *nw, *twait;
1768 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1769 uint i, n = 0, seq, tidx = 0;
1770
1771#ifdef CONFIG_SDMA_VERBOSITY
1772 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1773 slashstrip(__FILE__), __LINE__, __func__);
1774 dd_dev_err(sde->dd, "avail: %u\n", avail);
1775#endif
1776
1777 do {
1778 seq = read_seqbegin(&sde->waitlock);
1779 if (!list_empty(&sde->dmawait)) {
1780 /* at least one item */
1781 write_seqlock(&sde->waitlock);
1782 /* Harvest waiters wanting DMA descriptors */
1783 list_for_each_entry_safe(
1784 wait,
1785 nw,
1786 &sde->dmawait,
1787 list) {
1788 u32 num_desc;
1789
1790 if (!wait->wakeup)
1791 continue;
1792 if (n == ARRAY_SIZE(waits))
1793 break;
1794 iowait_init_priority(wait);
1795 num_desc = iowait_get_all_desc(wait);
1796 if (num_desc > avail)
1797 break;
1798 avail -= num_desc;
1799 /* Find the top-priority wait memeber */
1800 if (n) {
1801 twait = waits[tidx];
1802 tidx =
1803 iowait_priority_update_top(wait,
1804 twait,
1805 n,
1806 tidx);
1807 }
1808 list_del_init(&wait->list);
1809 waits[n++] = wait;
1810 }
1811 write_sequnlock(&sde->waitlock);
1812 break;
1813 }
1814 } while (read_seqretry(&sde->waitlock, seq));
1815
1816 /* Schedule the top-priority entry first */
1817 if (n)
1818 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1819
1820 for (i = 0; i < n; i++)
1821 if (i != tidx)
1822 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1823}
1824
1825/* head_lock must be held */
1826static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1827{
1828 struct sdma_txreq *txp = NULL;
1829 int progress = 0;
1830 u16 hwhead, swhead;
1831 int idle_check_done = 0;
1832
1833 hwhead = sdma_gethead(sde);
1834
1835 /* The reason for some of the complexity of this code is that
1836 * not all descriptors have corresponding txps. So, we have to
1837 * be able to skip over descs until we wander into the range of
1838 * the next txp on the list.
1839 */
1840
1841retry:
1842 txp = get_txhead(sde);
1843 swhead = sde->descq_head & sde->sdma_mask;
1844 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1845 while (swhead != hwhead) {
1846 /* advance head, wrap if needed */
1847 swhead = ++sde->descq_head & sde->sdma_mask;
1848
1849 /* if now past this txp's descs, do the callback */
1850 if (txp && txp->next_descq_idx == swhead) {
1851 /* remove from list */
1852 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1853 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1854 /* see if there is another txp */
1855 txp = get_txhead(sde);
1856 }
1857 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1858 progress++;
1859 }
1860
1861 /*
1862 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1863 * to updates to the the dma_head location in host memory. The head
1864 * value read might not be fully up to date. If there are pending
1865 * descriptors and the SDMA idle interrupt fired then read from the
1866 * CSR SDMA head instead to get the latest value from the hardware.
1867 * The hardware SDMA head should be read at most once in this invocation
1868 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1869 */
1870 if ((status & sde->idle_mask) && !idle_check_done) {
1871 u16 swtail;
1872
1873 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1874 if (swtail != hwhead) {
1875 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1876 idle_check_done = 1;
1877 goto retry;
1878 }
1879 }
1880
1881 sde->last_status = status;
1882 if (progress)
1883 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1884}
1885
1886/*
1887 * sdma_engine_interrupt() - interrupt handler for engine
1888 * @sde: sdma engine
1889 * @status: sdma interrupt reason
1890 *
1891 * Status is a mask of the 3 possible interrupts for this engine. It will
1892 * contain bits _only_ for this SDMA engine. It will contain at least one
1893 * bit, it may contain more.
1894 */
1895void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1896{
1897 trace_hfi1_sdma_engine_interrupt(sde, status);
1898 write_seqlock(&sde->head_lock);
1899 sdma_set_desc_cnt(sde, sdma_desct_intr);
1900 if (status & sde->idle_mask)
1901 sde->idle_int_cnt++;
1902 else if (status & sde->progress_mask)
1903 sde->progress_int_cnt++;
1904 else if (status & sde->int_mask)
1905 sde->sdma_int_cnt++;
1906 sdma_make_progress(sde, status);
1907 write_sequnlock(&sde->head_lock);
1908}
1909
1910/**
1911 * sdma_engine_error() - error handler for engine
1912 * @sde: sdma engine
1913 * @status: sdma interrupt reason
1914 */
1915void sdma_engine_error(struct sdma_engine *sde, u64 status)
1916{
1917 unsigned long flags;
1918
1919#ifdef CONFIG_SDMA_VERBOSITY
1920 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1921 sde->this_idx,
1922 (unsigned long long)status,
1923 sdma_state_names[sde->state.current_state]);
1924#endif
1925 spin_lock_irqsave(&sde->tail_lock, flags);
1926 write_seqlock(&sde->head_lock);
1927 if (status & ALL_SDMA_ENG_HALT_ERRS)
1928 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1929 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1930 dd_dev_err(sde->dd,
1931 "SDMA (%u) engine error: 0x%llx state %s\n",
1932 sde->this_idx,
1933 (unsigned long long)status,
1934 sdma_state_names[sde->state.current_state]);
1935 dump_sdma_state(sde);
1936 }
1937 write_sequnlock(&sde->head_lock);
1938 spin_unlock_irqrestore(&sde->tail_lock, flags);
1939}
1940
1941static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1942{
1943 u64 set_senddmactrl = 0;
1944 u64 clr_senddmactrl = 0;
1945 unsigned long flags;
1946
1947#ifdef CONFIG_SDMA_VERBOSITY
1948 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1949 sde->this_idx,
1950 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1951 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1952 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1953 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1954#endif
1955
1956 if (op & SDMA_SENDCTRL_OP_ENABLE)
1957 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1958 else
1959 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1960
1961 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1962 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1963 else
1964 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1965
1966 if (op & SDMA_SENDCTRL_OP_HALT)
1967 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1968 else
1969 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1970
1971 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1972
1973 sde->p_senddmactrl |= set_senddmactrl;
1974 sde->p_senddmactrl &= ~clr_senddmactrl;
1975
1976 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1977 write_sde_csr(sde, SD(CTRL),
1978 sde->p_senddmactrl |
1979 SD(CTRL_SDMA_CLEANUP_SMASK));
1980 else
1981 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1982
1983 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1984
1985#ifdef CONFIG_SDMA_VERBOSITY
1986 sdma_dumpstate(sde);
1987#endif
1988}
1989
1990static void sdma_setlengen(struct sdma_engine *sde)
1991{
1992#ifdef CONFIG_SDMA_VERBOSITY
1993 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1994 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1995#endif
1996
1997 /*
1998 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1999 * count to enable generation checking and load the internal
2000 * generation counter.
2001 */
2002 write_sde_csr(sde, SD(LEN_GEN),
2003 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2004 write_sde_csr(sde, SD(LEN_GEN),
2005 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2006 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2007}
2008
2009static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2010{
2011 /* Commit writes to memory and advance the tail on the chip */
2012 smp_wmb(); /* see get_txhead() */
2013 writeq(tail, sde->tail_csr);
2014}
2015
2016/*
2017 * This is called when changing to state s10_hw_start_up_halt_wait as
2018 * a result of send buffer errors or send DMA descriptor errors.
2019 */
2020static void sdma_hw_start_up(struct sdma_engine *sde)
2021{
2022 u64 reg;
2023
2024#ifdef CONFIG_SDMA_VERBOSITY
2025 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2026 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2027#endif
2028
2029 sdma_setlengen(sde);
2030 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2031 *sde->head_dma = 0;
2032
2033 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2034 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2035 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2036}
2037
2038/*
2039 * set_sdma_integrity
2040 *
2041 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2042 */
2043static void set_sdma_integrity(struct sdma_engine *sde)
2044{
2045 struct hfi1_devdata *dd = sde->dd;
2046
2047 write_sde_csr(sde, SD(CHECK_ENABLE),
2048 hfi1_pkt_base_sdma_integrity(dd));
2049}
2050
2051static void init_sdma_regs(
2052 struct sdma_engine *sde,
2053 u32 credits,
2054 uint idle_cnt)
2055{
2056 u8 opval, opmask;
2057#ifdef CONFIG_SDMA_VERBOSITY
2058 struct hfi1_devdata *dd = sde->dd;
2059
2060 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2061 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2062#endif
2063
2064 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2065 sdma_setlengen(sde);
2066 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2067 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2068 write_sde_csr(sde, SD(DESC_CNT), 0);
2069 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2070 write_sde_csr(sde, SD(MEMORY),
2071 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2072 ((u64)(credits * sde->this_idx) <<
2073 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2074 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2075 set_sdma_integrity(sde);
2076 opmask = OPCODE_CHECK_MASK_DISABLED;
2077 opval = OPCODE_CHECK_VAL_DISABLED;
2078 write_sde_csr(sde, SD(CHECK_OPCODE),
2079 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2080 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2081}
2082
2083#ifdef CONFIG_SDMA_VERBOSITY
2084
2085#define sdma_dumpstate_helper0(reg) do { \
2086 csr = read_csr(sde->dd, reg); \
2087 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2088 } while (0)
2089
2090#define sdma_dumpstate_helper(reg) do { \
2091 csr = read_sde_csr(sde, reg); \
2092 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2093 #reg, sde->this_idx, csr); \
2094 } while (0)
2095
2096#define sdma_dumpstate_helper2(reg) do { \
2097 csr = read_csr(sde->dd, reg + (8 * i)); \
2098 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2099 #reg, i, csr); \
2100 } while (0)
2101
2102void sdma_dumpstate(struct sdma_engine *sde)
2103{
2104 u64 csr;
2105 unsigned i;
2106
2107 sdma_dumpstate_helper(SD(CTRL));
2108 sdma_dumpstate_helper(SD(STATUS));
2109 sdma_dumpstate_helper0(SD(ERR_STATUS));
2110 sdma_dumpstate_helper0(SD(ERR_MASK));
2111 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2112 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2113
2114 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2115 sdma_dumpstate_helper2(CCE_INT_STATUS);
2116 sdma_dumpstate_helper2(CCE_INT_MASK);
2117 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2118 }
2119
2120 sdma_dumpstate_helper(SD(TAIL));
2121 sdma_dumpstate_helper(SD(HEAD));
2122 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2123 sdma_dumpstate_helper(SD(IDLE_CNT));
2124 sdma_dumpstate_helper(SD(RELOAD_CNT));
2125 sdma_dumpstate_helper(SD(DESC_CNT));
2126 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2127 sdma_dumpstate_helper(SD(MEMORY));
2128 sdma_dumpstate_helper0(SD(ENGINES));
2129 sdma_dumpstate_helper0(SD(MEM_SIZE));
2130 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2131 sdma_dumpstate_helper(SD(BASE_ADDR));
2132 sdma_dumpstate_helper(SD(LEN_GEN));
2133 sdma_dumpstate_helper(SD(HEAD_ADDR));
2134 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2135 sdma_dumpstate_helper(SD(CHECK_VL));
2136 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2137 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2138 sdma_dumpstate_helper(SD(CHECK_SLID));
2139 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2140}
2141#endif
2142
2143static void dump_sdma_state(struct sdma_engine *sde)
2144{
2145 struct hw_sdma_desc *descqp;
2146 u64 desc[2];
2147 u64 addr;
2148 u8 gen;
2149 u16 len;
2150 u16 head, tail, cnt;
2151
2152 head = sde->descq_head & sde->sdma_mask;
2153 tail = sde->descq_tail & sde->sdma_mask;
2154 cnt = sdma_descq_freecnt(sde);
2155
2156 dd_dev_err(sde->dd,
2157 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2158 sde->this_idx, head, tail, cnt,
2159 !list_empty(&sde->flushlist));
2160
2161 /* print info for each entry in the descriptor queue */
2162 while (head != tail) {
2163 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2164
2165 descqp = &sde->descq[head];
2166 desc[0] = le64_to_cpu(descqp->qw[0]);
2167 desc[1] = le64_to_cpu(descqp->qw[1]);
2168 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2169 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2170 'H' : '-';
2171 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2172 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2173 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2174 & SDMA_DESC0_PHY_ADDR_MASK;
2175 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2176 & SDMA_DESC1_GENERATION_MASK;
2177 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2178 & SDMA_DESC0_BYTE_COUNT_MASK;
2179 dd_dev_err(sde->dd,
2180 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2181 head, flags, addr, gen, len);
2182 dd_dev_err(sde->dd,
2183 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2184 desc[0], desc[1]);
2185 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2186 dd_dev_err(sde->dd,
2187 "\taidx: %u amode: %u alen: %u\n",
2188 (u8)((desc[1] &
2189 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2190 SDMA_DESC1_HEADER_INDEX_SHIFT),
2191 (u8)((desc[1] &
2192 SDMA_DESC1_HEADER_MODE_SMASK) >>
2193 SDMA_DESC1_HEADER_MODE_SHIFT),
2194 (u8)((desc[1] &
2195 SDMA_DESC1_HEADER_DWS_SMASK) >>
2196 SDMA_DESC1_HEADER_DWS_SHIFT));
2197 head++;
2198 head &= sde->sdma_mask;
2199 }
2200}
2201
2202#define SDE_FMT \
2203 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2204/**
2205 * sdma_seqfile_dump_sde() - debugfs dump of sde
2206 * @s: seq file
2207 * @sde: send dma engine to dump
2208 *
2209 * This routine dumps the sde to the indicated seq file.
2210 */
2211void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2212{
2213 u16 head, tail;
2214 struct hw_sdma_desc *descqp;
2215 u64 desc[2];
2216 u64 addr;
2217 u8 gen;
2218 u16 len;
2219
2220 head = sde->descq_head & sde->sdma_mask;
2221 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2222 seq_printf(s, SDE_FMT, sde->this_idx,
2223 sde->cpu,
2224 sdma_state_name(sde->state.current_state),
2225 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2226 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2227 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2228 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2229 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2230 (unsigned long long)le64_to_cpu(*sde->head_dma),
2231 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2232 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2233 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2234 (unsigned long long)sde->last_status,
2235 (unsigned long long)sde->ahg_bits,
2236 sde->tx_tail,
2237 sde->tx_head,
2238 sde->descq_tail,
2239 sde->descq_head,
2240 !list_empty(&sde->flushlist),
2241 sde->descq_full_count,
2242 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2243
2244 /* print info for each entry in the descriptor queue */
2245 while (head != tail) {
2246 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2247
2248 descqp = &sde->descq[head];
2249 desc[0] = le64_to_cpu(descqp->qw[0]);
2250 desc[1] = le64_to_cpu(descqp->qw[1]);
2251 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2252 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2253 'H' : '-';
2254 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2255 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2256 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2257 & SDMA_DESC0_PHY_ADDR_MASK;
2258 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2259 & SDMA_DESC1_GENERATION_MASK;
2260 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2261 & SDMA_DESC0_BYTE_COUNT_MASK;
2262 seq_printf(s,
2263 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2264 head, flags, addr, gen, len);
2265 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2266 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2267 (u8)((desc[1] &
2268 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2269 SDMA_DESC1_HEADER_INDEX_SHIFT),
2270 (u8)((desc[1] &
2271 SDMA_DESC1_HEADER_MODE_SMASK) >>
2272 SDMA_DESC1_HEADER_MODE_SHIFT));
2273 head = (head + 1) & sde->sdma_mask;
2274 }
2275}
2276
2277/*
2278 * add the generation number into
2279 * the qw1 and return
2280 */
2281static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2282{
2283 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2284
2285 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2286 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2287 << SDMA_DESC1_GENERATION_SHIFT;
2288 return qw1;
2289}
2290
2291/*
2292 * This routine submits the indicated tx
2293 *
2294 * Space has already been guaranteed and
2295 * tail side of ring is locked.
2296 *
2297 * The hardware tail update is done
2298 * in the caller and that is facilitated
2299 * by returning the new tail.
2300 *
2301 * There is special case logic for ahg
2302 * to not add the generation number for
2303 * up to 2 descriptors that follow the
2304 * first descriptor.
2305 *
2306 */
2307static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2308{
2309 int i;
2310 u16 tail;
2311 struct sdma_desc *descp = tx->descp;
2312 u8 skip = 0, mode = ahg_mode(tx);
2313
2314 tail = sde->descq_tail & sde->sdma_mask;
2315 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2316 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2317 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2318 tail, &sde->descq[tail]);
2319 tail = ++sde->descq_tail & sde->sdma_mask;
2320 descp++;
2321 if (mode > SDMA_AHG_APPLY_UPDATE1)
2322 skip = mode >> 1;
2323 for (i = 1; i < tx->num_desc; i++, descp++) {
2324 u64 qw1;
2325
2326 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2327 if (skip) {
2328 /* edits don't have generation */
2329 qw1 = descp->qw[1];
2330 skip--;
2331 } else {
2332 /* replace generation with real one for non-edits */
2333 qw1 = add_gen(sde, descp->qw[1]);
2334 }
2335 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2336 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2337 tail, &sde->descq[tail]);
2338 tail = ++sde->descq_tail & sde->sdma_mask;
2339 }
2340 tx->next_descq_idx = tail;
2341#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2342 tx->sn = sde->tail_sn++;
2343 trace_hfi1_sdma_in_sn(sde, tx->sn);
2344 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2345#endif
2346 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2347 sde->desc_avail -= tx->num_desc;
2348 return tail;
2349}
2350
2351/*
2352 * Check for progress
2353 */
2354static int sdma_check_progress(
2355 struct sdma_engine *sde,
2356 struct iowait_work *wait,
2357 struct sdma_txreq *tx,
2358 bool pkts_sent)
2359{
2360 int ret;
2361
2362 sde->desc_avail = sdma_descq_freecnt(sde);
2363 if (tx->num_desc <= sde->desc_avail)
2364 return -EAGAIN;
2365 /* pulse the head_lock */
2366 if (wait && iowait_ioww_to_iow(wait)->sleep) {
2367 unsigned seq;
2368
2369 seq = raw_seqcount_begin(
2370 (const seqcount_t *)&sde->head_lock.seqcount);
2371 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2372 if (ret == -EAGAIN)
2373 sde->desc_avail = sdma_descq_freecnt(sde);
2374 } else {
2375 ret = -EBUSY;
2376 }
2377 return ret;
2378}
2379
2380/**
2381 * sdma_send_txreq() - submit a tx req to ring
2382 * @sde: sdma engine to use
2383 * @wait: SE wait structure to use when full (may be NULL)
2384 * @tx: sdma_txreq to submit
2385 * @pkts_sent: has any packet been sent yet?
2386 *
2387 * The call submits the tx into the ring. If a iowait structure is non-NULL
2388 * the packet will be queued to the list in wait.
2389 *
2390 * Return:
2391 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2392 * ring (wait == NULL)
2393 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2394 */
2395int sdma_send_txreq(struct sdma_engine *sde,
2396 struct iowait_work *wait,
2397 struct sdma_txreq *tx,
2398 bool pkts_sent)
2399{
2400 int ret = 0;
2401 u16 tail;
2402 unsigned long flags;
2403
2404 /* user should have supplied entire packet */
2405 if (unlikely(tx->tlen))
2406 return -EINVAL;
2407 tx->wait = iowait_ioww_to_iow(wait);
2408 spin_lock_irqsave(&sde->tail_lock, flags);
2409retry:
2410 if (unlikely(!__sdma_running(sde)))
2411 goto unlock_noconn;
2412 if (unlikely(tx->num_desc > sde->desc_avail))
2413 goto nodesc;
2414 tail = submit_tx(sde, tx);
2415 if (wait)
2416 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2417 sdma_update_tail(sde, tail);
2418unlock:
2419 spin_unlock_irqrestore(&sde->tail_lock, flags);
2420 return ret;
2421unlock_noconn:
2422 if (wait)
2423 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2424 tx->next_descq_idx = 0;
2425#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2426 tx->sn = sde->tail_sn++;
2427 trace_hfi1_sdma_in_sn(sde, tx->sn);
2428#endif
2429 spin_lock(&sde->flushlist_lock);
2430 list_add_tail(&tx->list, &sde->flushlist);
2431 spin_unlock(&sde->flushlist_lock);
2432 iowait_inc_wait_count(wait, tx->num_desc);
2433 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2434 ret = -ECOMM;
2435 goto unlock;
2436nodesc:
2437 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2438 if (ret == -EAGAIN) {
2439 ret = 0;
2440 goto retry;
2441 }
2442 sde->descq_full_count++;
2443 goto unlock;
2444}
2445
2446/**
2447 * sdma_send_txlist() - submit a list of tx req to ring
2448 * @sde: sdma engine to use
2449 * @wait: SE wait structure to use when full (may be NULL)
2450 * @tx_list: list of sdma_txreqs to submit
2451 * @count: pointer to a u16 which, after return will contain the total number of
2452 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2453 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2454 * which are added to SDMA engine flush list if the SDMA engine state is
2455 * not running.
2456 *
2457 * The call submits the list into the ring.
2458 *
2459 * If the iowait structure is non-NULL and not equal to the iowait list
2460 * the unprocessed part of the list will be appended to the list in wait.
2461 *
2462 * In all cases, the tx_list will be updated so the head of the tx_list is
2463 * the list of descriptors that have yet to be transmitted.
2464 *
2465 * The intent of this call is to provide a more efficient
2466 * way of submitting multiple packets to SDMA while holding the tail
2467 * side locking.
2468 *
2469 * Return:
2470 * 0 - Success,
2471 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2472 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2473 */
2474int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2475 struct list_head *tx_list, u16 *count_out)
2476{
2477 struct sdma_txreq *tx, *tx_next;
2478 int ret = 0;
2479 unsigned long flags;
2480 u16 tail = INVALID_TAIL;
2481 u32 submit_count = 0, flush_count = 0, total_count;
2482
2483 spin_lock_irqsave(&sde->tail_lock, flags);
2484retry:
2485 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2486 tx->wait = iowait_ioww_to_iow(wait);
2487 if (unlikely(!__sdma_running(sde)))
2488 goto unlock_noconn;
2489 if (unlikely(tx->num_desc > sde->desc_avail))
2490 goto nodesc;
2491 if (unlikely(tx->tlen)) {
2492 ret = -EINVAL;
2493 goto update_tail;
2494 }
2495 list_del_init(&tx->list);
2496 tail = submit_tx(sde, tx);
2497 submit_count++;
2498 if (tail != INVALID_TAIL &&
2499 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2500 sdma_update_tail(sde, tail);
2501 tail = INVALID_TAIL;
2502 }
2503 }
2504update_tail:
2505 total_count = submit_count + flush_count;
2506 if (wait) {
2507 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2508 iowait_starve_clear(submit_count > 0,
2509 iowait_ioww_to_iow(wait));
2510 }
2511 if (tail != INVALID_TAIL)
2512 sdma_update_tail(sde, tail);
2513 spin_unlock_irqrestore(&sde->tail_lock, flags);
2514 *count_out = total_count;
2515 return ret;
2516unlock_noconn:
2517 spin_lock(&sde->flushlist_lock);
2518 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519 tx->wait = iowait_ioww_to_iow(wait);
2520 list_del_init(&tx->list);
2521 tx->next_descq_idx = 0;
2522#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523 tx->sn = sde->tail_sn++;
2524 trace_hfi1_sdma_in_sn(sde, tx->sn);
2525#endif
2526 list_add_tail(&tx->list, &sde->flushlist);
2527 flush_count++;
2528 iowait_inc_wait_count(wait, tx->num_desc);
2529 }
2530 spin_unlock(&sde->flushlist_lock);
2531 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2532 ret = -ECOMM;
2533 goto update_tail;
2534nodesc:
2535 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2536 if (ret == -EAGAIN) {
2537 ret = 0;
2538 goto retry;
2539 }
2540 sde->descq_full_count++;
2541 goto update_tail;
2542}
2543
2544static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2545{
2546 unsigned long flags;
2547
2548 spin_lock_irqsave(&sde->tail_lock, flags);
2549 write_seqlock(&sde->head_lock);
2550
2551 __sdma_process_event(sde, event);
2552
2553 if (sde->state.current_state == sdma_state_s99_running)
2554 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2555
2556 write_sequnlock(&sde->head_lock);
2557 spin_unlock_irqrestore(&sde->tail_lock, flags);
2558}
2559
2560static void __sdma_process_event(struct sdma_engine *sde,
2561 enum sdma_events event)
2562{
2563 struct sdma_state *ss = &sde->state;
2564 int need_progress = 0;
2565
2566 /* CONFIG SDMA temporary */
2567#ifdef CONFIG_SDMA_VERBOSITY
2568 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2569 sdma_state_names[ss->current_state],
2570 sdma_event_names[event]);
2571#endif
2572
2573 switch (ss->current_state) {
2574 case sdma_state_s00_hw_down:
2575 switch (event) {
2576 case sdma_event_e00_go_hw_down:
2577 break;
2578 case sdma_event_e30_go_running:
2579 /*
2580 * If down, but running requested (usually result
2581 * of link up, then we need to start up.
2582 * This can happen when hw down is requested while
2583 * bringing the link up with traffic active on
2584 * 7220, e.g.
2585 */
2586 ss->go_s99_running = 1;
2587 /* fall through -- and start dma engine */
2588 case sdma_event_e10_go_hw_start:
2589 /* This reference means the state machine is started */
2590 sdma_get(&sde->state);
2591 sdma_set_state(sde,
2592 sdma_state_s10_hw_start_up_halt_wait);
2593 break;
2594 case sdma_event_e15_hw_halt_done:
2595 break;
2596 case sdma_event_e25_hw_clean_up_done:
2597 break;
2598 case sdma_event_e40_sw_cleaned:
2599 sdma_sw_tear_down(sde);
2600 break;
2601 case sdma_event_e50_hw_cleaned:
2602 break;
2603 case sdma_event_e60_hw_halted:
2604 break;
2605 case sdma_event_e70_go_idle:
2606 break;
2607 case sdma_event_e80_hw_freeze:
2608 break;
2609 case sdma_event_e81_hw_frozen:
2610 break;
2611 case sdma_event_e82_hw_unfreeze:
2612 break;
2613 case sdma_event_e85_link_down:
2614 break;
2615 case sdma_event_e90_sw_halted:
2616 break;
2617 }
2618 break;
2619
2620 case sdma_state_s10_hw_start_up_halt_wait:
2621 switch (event) {
2622 case sdma_event_e00_go_hw_down:
2623 sdma_set_state(sde, sdma_state_s00_hw_down);
2624 sdma_sw_tear_down(sde);
2625 break;
2626 case sdma_event_e10_go_hw_start:
2627 break;
2628 case sdma_event_e15_hw_halt_done:
2629 sdma_set_state(sde,
2630 sdma_state_s15_hw_start_up_clean_wait);
2631 sdma_start_hw_clean_up(sde);
2632 break;
2633 case sdma_event_e25_hw_clean_up_done:
2634 break;
2635 case sdma_event_e30_go_running:
2636 ss->go_s99_running = 1;
2637 break;
2638 case sdma_event_e40_sw_cleaned:
2639 break;
2640 case sdma_event_e50_hw_cleaned:
2641 break;
2642 case sdma_event_e60_hw_halted:
2643 schedule_work(&sde->err_halt_worker);
2644 break;
2645 case sdma_event_e70_go_idle:
2646 ss->go_s99_running = 0;
2647 break;
2648 case sdma_event_e80_hw_freeze:
2649 break;
2650 case sdma_event_e81_hw_frozen:
2651 break;
2652 case sdma_event_e82_hw_unfreeze:
2653 break;
2654 case sdma_event_e85_link_down:
2655 break;
2656 case sdma_event_e90_sw_halted:
2657 break;
2658 }
2659 break;
2660
2661 case sdma_state_s15_hw_start_up_clean_wait:
2662 switch (event) {
2663 case sdma_event_e00_go_hw_down:
2664 sdma_set_state(sde, sdma_state_s00_hw_down);
2665 sdma_sw_tear_down(sde);
2666 break;
2667 case sdma_event_e10_go_hw_start:
2668 break;
2669 case sdma_event_e15_hw_halt_done:
2670 break;
2671 case sdma_event_e25_hw_clean_up_done:
2672 sdma_hw_start_up(sde);
2673 sdma_set_state(sde, ss->go_s99_running ?
2674 sdma_state_s99_running :
2675 sdma_state_s20_idle);
2676 break;
2677 case sdma_event_e30_go_running:
2678 ss->go_s99_running = 1;
2679 break;
2680 case sdma_event_e40_sw_cleaned:
2681 break;
2682 case sdma_event_e50_hw_cleaned:
2683 break;
2684 case sdma_event_e60_hw_halted:
2685 break;
2686 case sdma_event_e70_go_idle:
2687 ss->go_s99_running = 0;
2688 break;
2689 case sdma_event_e80_hw_freeze:
2690 break;
2691 case sdma_event_e81_hw_frozen:
2692 break;
2693 case sdma_event_e82_hw_unfreeze:
2694 break;
2695 case sdma_event_e85_link_down:
2696 break;
2697 case sdma_event_e90_sw_halted:
2698 break;
2699 }
2700 break;
2701
2702 case sdma_state_s20_idle:
2703 switch (event) {
2704 case sdma_event_e00_go_hw_down:
2705 sdma_set_state(sde, sdma_state_s00_hw_down);
2706 sdma_sw_tear_down(sde);
2707 break;
2708 case sdma_event_e10_go_hw_start:
2709 break;
2710 case sdma_event_e15_hw_halt_done:
2711 break;
2712 case sdma_event_e25_hw_clean_up_done:
2713 break;
2714 case sdma_event_e30_go_running:
2715 sdma_set_state(sde, sdma_state_s99_running);
2716 ss->go_s99_running = 1;
2717 break;
2718 case sdma_event_e40_sw_cleaned:
2719 break;
2720 case sdma_event_e50_hw_cleaned:
2721 break;
2722 case sdma_event_e60_hw_halted:
2723 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2724 schedule_work(&sde->err_halt_worker);
2725 break;
2726 case sdma_event_e70_go_idle:
2727 break;
2728 case sdma_event_e85_link_down:
2729 /* fall through */
2730 case sdma_event_e80_hw_freeze:
2731 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2732 atomic_dec(&sde->dd->sdma_unfreeze_count);
2733 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2734 break;
2735 case sdma_event_e81_hw_frozen:
2736 break;
2737 case sdma_event_e82_hw_unfreeze:
2738 break;
2739 case sdma_event_e90_sw_halted:
2740 break;
2741 }
2742 break;
2743
2744 case sdma_state_s30_sw_clean_up_wait:
2745 switch (event) {
2746 case sdma_event_e00_go_hw_down:
2747 sdma_set_state(sde, sdma_state_s00_hw_down);
2748 break;
2749 case sdma_event_e10_go_hw_start:
2750 break;
2751 case sdma_event_e15_hw_halt_done:
2752 break;
2753 case sdma_event_e25_hw_clean_up_done:
2754 break;
2755 case sdma_event_e30_go_running:
2756 ss->go_s99_running = 1;
2757 break;
2758 case sdma_event_e40_sw_cleaned:
2759 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2760 sdma_start_hw_clean_up(sde);
2761 break;
2762 case sdma_event_e50_hw_cleaned:
2763 break;
2764 case sdma_event_e60_hw_halted:
2765 break;
2766 case sdma_event_e70_go_idle:
2767 ss->go_s99_running = 0;
2768 break;
2769 case sdma_event_e80_hw_freeze:
2770 break;
2771 case sdma_event_e81_hw_frozen:
2772 break;
2773 case sdma_event_e82_hw_unfreeze:
2774 break;
2775 case sdma_event_e85_link_down:
2776 ss->go_s99_running = 0;
2777 break;
2778 case sdma_event_e90_sw_halted:
2779 break;
2780 }
2781 break;
2782
2783 case sdma_state_s40_hw_clean_up_wait:
2784 switch (event) {
2785 case sdma_event_e00_go_hw_down:
2786 sdma_set_state(sde, sdma_state_s00_hw_down);
2787 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2788 break;
2789 case sdma_event_e10_go_hw_start:
2790 break;
2791 case sdma_event_e15_hw_halt_done:
2792 break;
2793 case sdma_event_e25_hw_clean_up_done:
2794 sdma_hw_start_up(sde);
2795 sdma_set_state(sde, ss->go_s99_running ?
2796 sdma_state_s99_running :
2797 sdma_state_s20_idle);
2798 break;
2799 case sdma_event_e30_go_running:
2800 ss->go_s99_running = 1;
2801 break;
2802 case sdma_event_e40_sw_cleaned:
2803 break;
2804 case sdma_event_e50_hw_cleaned:
2805 break;
2806 case sdma_event_e60_hw_halted:
2807 break;
2808 case sdma_event_e70_go_idle:
2809 ss->go_s99_running = 0;
2810 break;
2811 case sdma_event_e80_hw_freeze:
2812 break;
2813 case sdma_event_e81_hw_frozen:
2814 break;
2815 case sdma_event_e82_hw_unfreeze:
2816 break;
2817 case sdma_event_e85_link_down:
2818 ss->go_s99_running = 0;
2819 break;
2820 case sdma_event_e90_sw_halted:
2821 break;
2822 }
2823 break;
2824
2825 case sdma_state_s50_hw_halt_wait:
2826 switch (event) {
2827 case sdma_event_e00_go_hw_down:
2828 sdma_set_state(sde, sdma_state_s00_hw_down);
2829 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2830 break;
2831 case sdma_event_e10_go_hw_start:
2832 break;
2833 case sdma_event_e15_hw_halt_done:
2834 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2835 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2836 break;
2837 case sdma_event_e25_hw_clean_up_done:
2838 break;
2839 case sdma_event_e30_go_running:
2840 ss->go_s99_running = 1;
2841 break;
2842 case sdma_event_e40_sw_cleaned:
2843 break;
2844 case sdma_event_e50_hw_cleaned:
2845 break;
2846 case sdma_event_e60_hw_halted:
2847 schedule_work(&sde->err_halt_worker);
2848 break;
2849 case sdma_event_e70_go_idle:
2850 ss->go_s99_running = 0;
2851 break;
2852 case sdma_event_e80_hw_freeze:
2853 break;
2854 case sdma_event_e81_hw_frozen:
2855 break;
2856 case sdma_event_e82_hw_unfreeze:
2857 break;
2858 case sdma_event_e85_link_down:
2859 ss->go_s99_running = 0;
2860 break;
2861 case sdma_event_e90_sw_halted:
2862 break;
2863 }
2864 break;
2865
2866 case sdma_state_s60_idle_halt_wait:
2867 switch (event) {
2868 case sdma_event_e00_go_hw_down:
2869 sdma_set_state(sde, sdma_state_s00_hw_down);
2870 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2871 break;
2872 case sdma_event_e10_go_hw_start:
2873 break;
2874 case sdma_event_e15_hw_halt_done:
2875 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2876 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2877 break;
2878 case sdma_event_e25_hw_clean_up_done:
2879 break;
2880 case sdma_event_e30_go_running:
2881 ss->go_s99_running = 1;
2882 break;
2883 case sdma_event_e40_sw_cleaned:
2884 break;
2885 case sdma_event_e50_hw_cleaned:
2886 break;
2887 case sdma_event_e60_hw_halted:
2888 schedule_work(&sde->err_halt_worker);
2889 break;
2890 case sdma_event_e70_go_idle:
2891 ss->go_s99_running = 0;
2892 break;
2893 case sdma_event_e80_hw_freeze:
2894 break;
2895 case sdma_event_e81_hw_frozen:
2896 break;
2897 case sdma_event_e82_hw_unfreeze:
2898 break;
2899 case sdma_event_e85_link_down:
2900 break;
2901 case sdma_event_e90_sw_halted:
2902 break;
2903 }
2904 break;
2905
2906 case sdma_state_s80_hw_freeze:
2907 switch (event) {
2908 case sdma_event_e00_go_hw_down:
2909 sdma_set_state(sde, sdma_state_s00_hw_down);
2910 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2911 break;
2912 case sdma_event_e10_go_hw_start:
2913 break;
2914 case sdma_event_e15_hw_halt_done:
2915 break;
2916 case sdma_event_e25_hw_clean_up_done:
2917 break;
2918 case sdma_event_e30_go_running:
2919 ss->go_s99_running = 1;
2920 break;
2921 case sdma_event_e40_sw_cleaned:
2922 break;
2923 case sdma_event_e50_hw_cleaned:
2924 break;
2925 case sdma_event_e60_hw_halted:
2926 break;
2927 case sdma_event_e70_go_idle:
2928 ss->go_s99_running = 0;
2929 break;
2930 case sdma_event_e80_hw_freeze:
2931 break;
2932 case sdma_event_e81_hw_frozen:
2933 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2934 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2935 break;
2936 case sdma_event_e82_hw_unfreeze:
2937 break;
2938 case sdma_event_e85_link_down:
2939 break;
2940 case sdma_event_e90_sw_halted:
2941 break;
2942 }
2943 break;
2944
2945 case sdma_state_s82_freeze_sw_clean:
2946 switch (event) {
2947 case sdma_event_e00_go_hw_down:
2948 sdma_set_state(sde, sdma_state_s00_hw_down);
2949 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2950 break;
2951 case sdma_event_e10_go_hw_start:
2952 break;
2953 case sdma_event_e15_hw_halt_done:
2954 break;
2955 case sdma_event_e25_hw_clean_up_done:
2956 break;
2957 case sdma_event_e30_go_running:
2958 ss->go_s99_running = 1;
2959 break;
2960 case sdma_event_e40_sw_cleaned:
2961 /* notify caller this engine is done cleaning */
2962 atomic_dec(&sde->dd->sdma_unfreeze_count);
2963 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2964 break;
2965 case sdma_event_e50_hw_cleaned:
2966 break;
2967 case sdma_event_e60_hw_halted:
2968 break;
2969 case sdma_event_e70_go_idle:
2970 ss->go_s99_running = 0;
2971 break;
2972 case sdma_event_e80_hw_freeze:
2973 break;
2974 case sdma_event_e81_hw_frozen:
2975 break;
2976 case sdma_event_e82_hw_unfreeze:
2977 sdma_hw_start_up(sde);
2978 sdma_set_state(sde, ss->go_s99_running ?
2979 sdma_state_s99_running :
2980 sdma_state_s20_idle);
2981 break;
2982 case sdma_event_e85_link_down:
2983 break;
2984 case sdma_event_e90_sw_halted:
2985 break;
2986 }
2987 break;
2988
2989 case sdma_state_s99_running:
2990 switch (event) {
2991 case sdma_event_e00_go_hw_down:
2992 sdma_set_state(sde, sdma_state_s00_hw_down);
2993 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2994 break;
2995 case sdma_event_e10_go_hw_start:
2996 break;
2997 case sdma_event_e15_hw_halt_done:
2998 break;
2999 case sdma_event_e25_hw_clean_up_done:
3000 break;
3001 case sdma_event_e30_go_running:
3002 break;
3003 case sdma_event_e40_sw_cleaned:
3004 break;
3005 case sdma_event_e50_hw_cleaned:
3006 break;
3007 case sdma_event_e60_hw_halted:
3008 need_progress = 1;
3009 sdma_err_progress_check_schedule(sde);
3010 /* fall through */
3011 case sdma_event_e90_sw_halted:
3012 /*
3013 * SW initiated halt does not perform engines
3014 * progress check
3015 */
3016 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3017 schedule_work(&sde->err_halt_worker);
3018 break;
3019 case sdma_event_e70_go_idle:
3020 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3021 break;
3022 case sdma_event_e85_link_down:
3023 ss->go_s99_running = 0;
3024 /* fall through */
3025 case sdma_event_e80_hw_freeze:
3026 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3027 atomic_dec(&sde->dd->sdma_unfreeze_count);
3028 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3029 break;
3030 case sdma_event_e81_hw_frozen:
3031 break;
3032 case sdma_event_e82_hw_unfreeze:
3033 break;
3034 }
3035 break;
3036 }
3037
3038 ss->last_event = event;
3039 if (need_progress)
3040 sdma_make_progress(sde, 0);
3041}
3042
3043/*
3044 * _extend_sdma_tx_descs() - helper to extend txreq
3045 *
3046 * This is called once the initial nominal allocation
3047 * of descriptors in the sdma_txreq is exhausted.
3048 *
3049 * The code will bump the allocation up to the max
3050 * of MAX_DESC (64) descriptors. There doesn't seem
3051 * much point in an interim step. The last descriptor
3052 * is reserved for coalesce buffer in order to support
3053 * cases where input packet has >MAX_DESC iovecs.
3054 *
3055 */
3056static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3057{
3058 int i;
3059
3060 /* Handle last descriptor */
3061 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3062 /* if tlen is 0, it is for padding, release last descriptor */
3063 if (!tx->tlen) {
3064 tx->desc_limit = MAX_DESC;
3065 } else if (!tx->coalesce_buf) {
3066 /* allocate coalesce buffer with space for padding */
3067 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3068 GFP_ATOMIC);
3069 if (!tx->coalesce_buf)
3070 goto enomem;
3071 tx->coalesce_idx = 0;
3072 }
3073 return 0;
3074 }
3075
3076 if (unlikely(tx->num_desc == MAX_DESC))
3077 goto enomem;
3078
3079 tx->descp = kmalloc_array(
3080 MAX_DESC,
3081 sizeof(struct sdma_desc),
3082 GFP_ATOMIC);
3083 if (!tx->descp)
3084 goto enomem;
3085
3086 /* reserve last descriptor for coalescing */
3087 tx->desc_limit = MAX_DESC - 1;
3088 /* copy ones already built */
3089 for (i = 0; i < tx->num_desc; i++)
3090 tx->descp[i] = tx->descs[i];
3091 return 0;
3092enomem:
3093 __sdma_txclean(dd, tx);
3094 return -ENOMEM;
3095}
3096
3097/*
3098 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3099 *
3100 * This is called once the initial nominal allocation of descriptors
3101 * in the sdma_txreq is exhausted.
3102 *
3103 * This function calls _extend_sdma_tx_descs to extend or allocate
3104 * coalesce buffer. If there is a allocated coalesce buffer, it will
3105 * copy the input packet data into the coalesce buffer. It also adds
3106 * coalesce buffer descriptor once when whole packet is received.
3107 *
3108 * Return:
3109 * <0 - error
3110 * 0 - coalescing, don't populate descriptor
3111 * 1 - continue with populating descriptor
3112 */
3113int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3114 int type, void *kvaddr, struct page *page,
3115 unsigned long offset, u16 len)
3116{
3117 int pad_len, rval;
3118 dma_addr_t addr;
3119
3120 rval = _extend_sdma_tx_descs(dd, tx);
3121 if (rval) {
3122 __sdma_txclean(dd, tx);
3123 return rval;
3124 }
3125
3126 /* If coalesce buffer is allocated, copy data into it */
3127 if (tx->coalesce_buf) {
3128 if (type == SDMA_MAP_NONE) {
3129 __sdma_txclean(dd, tx);
3130 return -EINVAL;
3131 }
3132
3133 if (type == SDMA_MAP_PAGE) {
3134 kvaddr = kmap(page);
3135 kvaddr += offset;
3136 } else if (WARN_ON(!kvaddr)) {
3137 __sdma_txclean(dd, tx);
3138 return -EINVAL;
3139 }
3140
3141 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3142 tx->coalesce_idx += len;
3143 if (type == SDMA_MAP_PAGE)
3144 kunmap(page);
3145
3146 /* If there is more data, return */
3147 if (tx->tlen - tx->coalesce_idx)
3148 return 0;
3149
3150 /* Whole packet is received; add any padding */
3151 pad_len = tx->packet_len & (sizeof(u32) - 1);
3152 if (pad_len) {
3153 pad_len = sizeof(u32) - pad_len;
3154 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3155 /* padding is taken care of for coalescing case */
3156 tx->packet_len += pad_len;
3157 tx->tlen += pad_len;
3158 }
3159
3160 /* dma map the coalesce buffer */
3161 addr = dma_map_single(&dd->pcidev->dev,
3162 tx->coalesce_buf,
3163 tx->tlen,
3164 DMA_TO_DEVICE);
3165
3166 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3167 __sdma_txclean(dd, tx);
3168 return -ENOSPC;
3169 }
3170
3171 /* Add descriptor for coalesce buffer */
3172 tx->desc_limit = MAX_DESC;
3173 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3174 addr, tx->tlen);
3175 }
3176
3177 return 1;
3178}
3179
3180/* Update sdes when the lmc changes */
3181void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3182{
3183 struct sdma_engine *sde;
3184 int i;
3185 u64 sreg;
3186
3187 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3188 SD(CHECK_SLID_MASK_SHIFT)) |
3189 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3190 SD(CHECK_SLID_VALUE_SHIFT));
3191
3192 for (i = 0; i < dd->num_sdma; i++) {
3193 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3194 i, (u32)sreg);
3195 sde = &dd->per_sdma[i];
3196 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3197 }
3198}
3199
3200/* tx not dword sized - pad */
3201int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3202{
3203 int rval = 0;
3204
3205 tx->num_desc++;
3206 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3207 rval = _extend_sdma_tx_descs(dd, tx);
3208 if (rval) {
3209 __sdma_txclean(dd, tx);
3210 return rval;
3211 }
3212 }
3213 /* finish the one just added */
3214 make_tx_sdma_desc(
3215 tx,
3216 SDMA_MAP_NONE,
3217 dd->sdma_pad_phys,
3218 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3219 _sdma_close_tx(dd, tx);
3220 return rval;
3221}
3222
3223/*
3224 * Add ahg to the sdma_txreq
3225 *
3226 * The logic will consume up to 3
3227 * descriptors at the beginning of
3228 * sdma_txreq.
3229 */
3230void _sdma_txreq_ahgadd(
3231 struct sdma_txreq *tx,
3232 u8 num_ahg,
3233 u8 ahg_entry,
3234 u32 *ahg,
3235 u8 ahg_hlen)
3236{
3237 u32 i, shift = 0, desc = 0;
3238 u8 mode;
3239
3240 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3241 /* compute mode */
3242 if (num_ahg == 1)
3243 mode = SDMA_AHG_APPLY_UPDATE1;
3244 else if (num_ahg <= 5)
3245 mode = SDMA_AHG_APPLY_UPDATE2;
3246 else
3247 mode = SDMA_AHG_APPLY_UPDATE3;
3248 tx->num_desc++;
3249 /* initialize to consumed descriptors to zero */
3250 switch (mode) {
3251 case SDMA_AHG_APPLY_UPDATE3:
3252 tx->num_desc++;
3253 tx->descs[2].qw[0] = 0;
3254 tx->descs[2].qw[1] = 0;
3255 /* FALLTHROUGH */
3256 case SDMA_AHG_APPLY_UPDATE2:
3257 tx->num_desc++;
3258 tx->descs[1].qw[0] = 0;
3259 tx->descs[1].qw[1] = 0;
3260 break;
3261 }
3262 ahg_hlen >>= 2;
3263 tx->descs[0].qw[1] |=
3264 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3265 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3266 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3267 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3268 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3269 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3270 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3271 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3272 for (i = 0; i < (num_ahg - 1); i++) {
3273 if (!shift && !(i & 2))
3274 desc++;
3275 tx->descs[desc].qw[!!(i & 2)] |=
3276 (((u64)ahg[i + 1])
3277 << shift);
3278 shift = (shift + 32) & 63;
3279 }
3280}
3281
3282/**
3283 * sdma_ahg_alloc - allocate an AHG entry
3284 * @sde: engine to allocate from
3285 *
3286 * Return:
3287 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3288 * -ENOSPC if an entry is not available
3289 */
3290int sdma_ahg_alloc(struct sdma_engine *sde)
3291{
3292 int nr;
3293 int oldbit;
3294
3295 if (!sde) {
3296 trace_hfi1_ahg_allocate(sde, -EINVAL);
3297 return -EINVAL;
3298 }
3299 while (1) {
3300 nr = ffz(READ_ONCE(sde->ahg_bits));
3301 if (nr > 31) {
3302 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3303 return -ENOSPC;
3304 }
3305 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3306 if (!oldbit)
3307 break;
3308 cpu_relax();
3309 }
3310 trace_hfi1_ahg_allocate(sde, nr);
3311 return nr;
3312}
3313
3314/**
3315 * sdma_ahg_free - free an AHG entry
3316 * @sde: engine to return AHG entry
3317 * @ahg_index: index to free
3318 *
3319 * This routine frees the indicate AHG entry.
3320 */
3321void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3322{
3323 if (!sde)
3324 return;
3325 trace_hfi1_ahg_deallocate(sde, ahg_index);
3326 if (ahg_index < 0 || ahg_index > 31)
3327 return;
3328 clear_bit(ahg_index, &sde->ahg_bits);
3329}
3330
3331/*
3332 * SPC freeze handling for SDMA engines. Called when the driver knows
3333 * the SPC is going into a freeze but before the freeze is fully
3334 * settled. Generally an error interrupt.
3335 *
3336 * This event will pull the engine out of running so no more entries can be
3337 * added to the engine's queue.
3338 */
3339void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3340{
3341 int i;
3342 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3343 sdma_event_e80_hw_freeze;
3344
3345 /* set up the wait but do not wait here */
3346 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3347
3348 /* tell all engines to stop running and wait */
3349 for (i = 0; i < dd->num_sdma; i++)
3350 sdma_process_event(&dd->per_sdma[i], event);
3351
3352 /* sdma_freeze() will wait for all engines to have stopped */
3353}
3354
3355/*
3356 * SPC freeze handling for SDMA engines. Called when the driver knows
3357 * the SPC is fully frozen.
3358 */
3359void sdma_freeze(struct hfi1_devdata *dd)
3360{
3361 int i;
3362 int ret;
3363
3364 /*
3365 * Make sure all engines have moved out of the running state before
3366 * continuing.
3367 */
3368 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3369 atomic_read(&dd->sdma_unfreeze_count) <=
3370 0);
3371 /* interrupted or count is negative, then unloading - just exit */
3372 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3373 return;
3374
3375 /* set up the count for the next wait */
3376 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3377
3378 /* tell all engines that the SPC is frozen, they can start cleaning */
3379 for (i = 0; i < dd->num_sdma; i++)
3380 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3381
3382 /*
3383 * Wait for everyone to finish software clean before exiting. The
3384 * software clean will read engine CSRs, so must be completed before
3385 * the next step, which will clear the engine CSRs.
3386 */
3387 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3388 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3389 /* no need to check results - done no matter what */
3390}
3391
3392/*
3393 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3394 *
3395 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3396 * that is left is a software clean. We could do it after the SPC is fully
3397 * frozen, but then we'd have to add another state to wait for the unfreeze.
3398 * Instead, just defer the software clean until the unfreeze step.
3399 */
3400void sdma_unfreeze(struct hfi1_devdata *dd)
3401{
3402 int i;
3403
3404 /* tell all engines start freeze clean up */
3405 for (i = 0; i < dd->num_sdma; i++)
3406 sdma_process_event(&dd->per_sdma[i],
3407 sdma_event_e82_hw_unfreeze);
3408}
3409
3410/**
3411 * _sdma_engine_progress_schedule() - schedule progress on engine
3412 * @sde: sdma_engine to schedule progress
3413 *
3414 */
3415void _sdma_engine_progress_schedule(
3416 struct sdma_engine *sde)
3417{
3418 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3419 /* assume we have selected a good cpu */
3420 write_csr(sde->dd,
3421 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3422 sde->progress_mask);
3423}