Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
  16#include <linux/idr.h>
  17#include <linux/jiffies.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/rculist.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/timer.h>
  26#include <linux/types.h>
  27#include <linux/workqueue.h>
  28
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
  32
  33#define HEADER_PRI(pri)			((pri) << 0)
  34#define HEADER_TCODE(tcode)		((tcode) << 4)
  35#define HEADER_RETRY(retry)		((retry) << 8)
  36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  37#define HEADER_DESTINATION(destination)	((destination) << 16)
  38#define HEADER_SOURCE(source)		((source) << 16)
  39#define HEADER_RCODE(rcode)		((rcode) << 12)
  40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  41#define HEADER_DATA_LENGTH(length)	((length) << 16)
  42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  43
  44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  52
  53#define HEADER_DESTINATION_IS_BROADCAST(q) \
  54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55
  56#define PHY_PACKET_CONFIG	0x0
  57#define PHY_PACKET_LINK_ON	0x1
  58#define PHY_PACKET_SELF_ID	0x2
  59
  60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  62#define PHY_IDENTIFIER(id)		((id) << 30)
  63
  64/* returns 0 if the split timeout handler is already running */
  65static int try_cancel_split_timeout(struct fw_transaction *t)
  66{
  67	if (t->is_split_transaction)
  68		return del_timer(&t->split_timeout_timer);
  69	else
  70		return 1;
  71}
  72
  73static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
  74			     u32 response_tstamp)
  75{
  76	struct fw_transaction *t = NULL, *iter;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&card->lock, flags);
  80	list_for_each_entry(iter, &card->transaction_list, link) {
  81		if (iter == transaction) {
  82			if (!try_cancel_split_timeout(iter)) {
  83				spin_unlock_irqrestore(&card->lock, flags);
  84				goto timed_out;
  85			}
  86			list_del_init(&iter->link);
  87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
  88			t = iter;
  89			break;
  90		}
  91	}
  92	spin_unlock_irqrestore(&card->lock, flags);
  93
  94	if (t) {
  95		if (!t->with_tstamp) {
  96			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
  97		} else {
  98			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
  99						NULL, 0, t->callback_data);
 100		}
 101		return 0;
 102	}
 103
 104 timed_out:
 105	return -ENOENT;
 106}
 107
 108/*
 109 * Only valid for transactions that are potentially pending (ie have
 110 * been sent).
 111 */
 112int fw_cancel_transaction(struct fw_card *card,
 113			  struct fw_transaction *transaction)
 114{
 115	u32 tstamp;
 116
 117	/*
 118	 * Cancel the packet transmission if it's still queued.  That
 119	 * will call the packet transmission callback which cancels
 120	 * the transaction.
 121	 */
 122
 123	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 124		return 0;
 125
 126	/*
 127	 * If the request packet has already been sent, we need to see
 128	 * if the transaction is still pending and remove it in that case.
 129	 */
 130
 131	if (transaction->packet.ack == 0) {
 132		// The timestamp is reused since it was just read now.
 133		tstamp = transaction->packet.timestamp;
 134	} else {
 135		u32 curr_cycle_time = 0;
 136
 137		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 138		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 139	}
 140
 141	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
 142}
 143EXPORT_SYMBOL(fw_cancel_transaction);
 144
 145static void split_transaction_timeout_callback(struct timer_list *timer)
 146{
 147	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 148	struct fw_card *card = t->card;
 149	unsigned long flags;
 150
 151	spin_lock_irqsave(&card->lock, flags);
 152	if (list_empty(&t->link)) {
 153		spin_unlock_irqrestore(&card->lock, flags);
 154		return;
 155	}
 156	list_del(&t->link);
 157	card->tlabel_mask &= ~(1ULL << t->tlabel);
 158	spin_unlock_irqrestore(&card->lock, flags);
 159
 160	if (!t->with_tstamp) {
 161		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 162	} else {
 163		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
 164					t->split_timeout_cycle, NULL, 0, t->callback_data);
 165	}
 166}
 167
 168static void start_split_transaction_timeout(struct fw_transaction *t,
 169					    struct fw_card *card)
 170{
 171	unsigned long flags;
 172
 173	spin_lock_irqsave(&card->lock, flags);
 174
 175	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 176		spin_unlock_irqrestore(&card->lock, flags);
 177		return;
 178	}
 179
 180	t->is_split_transaction = true;
 181	mod_timer(&t->split_timeout_timer,
 182		  jiffies + card->split_timeout_jiffies);
 183
 184	spin_unlock_irqrestore(&card->lock, flags);
 185}
 186
 187static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
 188
 189static void transmit_complete_callback(struct fw_packet *packet,
 190				       struct fw_card *card, int status)
 191{
 192	struct fw_transaction *t =
 193	    container_of(packet, struct fw_transaction, packet);
 194
 195	switch (status) {
 196	case ACK_COMPLETE:
 197		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
 198		break;
 199	case ACK_PENDING:
 200	{
 201		t->split_timeout_cycle =
 202			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
 203		start_split_transaction_timeout(t, card);
 204		break;
 205	}
 206	case ACK_BUSY_X:
 207	case ACK_BUSY_A:
 208	case ACK_BUSY_B:
 209		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
 210		break;
 211	case ACK_DATA_ERROR:
 212		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
 213		break;
 214	case ACK_TYPE_ERROR:
 215		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
 216		break;
 217	default:
 218		/*
 219		 * In this case the ack is really a juju specific
 220		 * rcode, so just forward that to the callback.
 221		 */
 222		close_transaction(t, card, status, packet->timestamp);
 223		break;
 224	}
 225}
 226
 227static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 228		int destination_id, int source_id, int generation, int speed,
 229		unsigned long long offset, void *payload, size_t length)
 230{
 231	int ext_tcode;
 232
 233	if (tcode == TCODE_STREAM_DATA) {
 234		packet->header[0] =
 235			HEADER_DATA_LENGTH(length) |
 236			destination_id |
 237			HEADER_TCODE(TCODE_STREAM_DATA);
 238		packet->header_length = 4;
 239		packet->payload = payload;
 240		packet->payload_length = length;
 241
 242		goto common;
 243	}
 244
 245	if (tcode > 0x10) {
 246		ext_tcode = tcode & ~0x10;
 247		tcode = TCODE_LOCK_REQUEST;
 248	} else
 249		ext_tcode = 0;
 250
 251	packet->header[0] =
 252		HEADER_RETRY(RETRY_X) |
 253		HEADER_TLABEL(tlabel) |
 254		HEADER_TCODE(tcode) |
 255		HEADER_DESTINATION(destination_id);
 256	packet->header[1] =
 257		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 258	packet->header[2] =
 259		offset;
 260
 261	switch (tcode) {
 262	case TCODE_WRITE_QUADLET_REQUEST:
 263		packet->header[3] = *(u32 *)payload;
 264		packet->header_length = 16;
 265		packet->payload_length = 0;
 266		break;
 267
 268	case TCODE_LOCK_REQUEST:
 269	case TCODE_WRITE_BLOCK_REQUEST:
 270		packet->header[3] =
 271			HEADER_DATA_LENGTH(length) |
 272			HEADER_EXTENDED_TCODE(ext_tcode);
 273		packet->header_length = 16;
 274		packet->payload = payload;
 275		packet->payload_length = length;
 276		break;
 277
 278	case TCODE_READ_QUADLET_REQUEST:
 279		packet->header_length = 12;
 280		packet->payload_length = 0;
 281		break;
 282
 283	case TCODE_READ_BLOCK_REQUEST:
 284		packet->header[3] =
 285			HEADER_DATA_LENGTH(length) |
 286			HEADER_EXTENDED_TCODE(ext_tcode);
 287		packet->header_length = 16;
 288		packet->payload_length = 0;
 289		break;
 290
 291	default:
 292		WARN(1, "wrong tcode %d\n", tcode);
 293	}
 294 common:
 295	packet->speed = speed;
 296	packet->generation = generation;
 297	packet->ack = 0;
 298	packet->payload_mapped = false;
 299}
 300
 301static int allocate_tlabel(struct fw_card *card)
 302{
 303	int tlabel;
 304
 305	tlabel = card->current_tlabel;
 306	while (card->tlabel_mask & (1ULL << tlabel)) {
 307		tlabel = (tlabel + 1) & 0x3f;
 308		if (tlabel == card->current_tlabel)
 309			return -EBUSY;
 310	}
 311
 312	card->current_tlabel = (tlabel + 1) & 0x3f;
 313	card->tlabel_mask |= 1ULL << tlabel;
 314
 315	return tlabel;
 316}
 317
 318/**
 319 * __fw_send_request() - submit a request packet for transmission to generate callback for response
 320 *			 subaction with or without time stamp.
 321 * @card:		interface to send the request at
 322 * @t:			transaction instance to which the request belongs
 323 * @tcode:		transaction code
 324 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 325 * @generation:		bus generation in which request and response are valid
 326 * @speed:		transmission speed
 327 * @offset:		48bit wide offset into destination's address space
 328 * @payload:		data payload for the request subaction
 329 * @length:		length of the payload, in bytes
 330 * @callback:		union of two functions whether to receive time stamp or not for response
 331 *			subaction.
 332 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
 333 * @callback_data:	data to be passed to the transaction completion callback
 334 *
 335 * Submit a request packet into the asynchronous request transmission queue.
 336 * Can be called from atomic context.  If you prefer a blocking API, use
 337 * fw_run_transaction() in a context that can sleep.
 338 *
 339 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 340 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 341 *
 342 * Make sure that the value in @destination_id is not older than the one in
 343 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 344 *
 345 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 346 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 347 * It will contain tag, channel, and sy data instead of a node ID then.
 348 *
 349 * The payload buffer at @data is going to be DMA-mapped except in case of
 350 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 351 * buffer complies with the restrictions of the streaming DMA mapping API.
 352 * @payload must not be freed before the @callback is called.
 353 *
 354 * In case of request types without payload, @data is NULL and @length is 0.
 355 *
 356 * After the transaction is completed successfully or unsuccessfully, the
 357 * @callback will be called.  Among its parameters is the response code which
 358 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 359 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 360 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 361 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 362 * generation, or missing ACK respectively.
 363 *
 364 * Note some timing corner cases:  fw_send_request() may complete much earlier
 365 * than when the request packet actually hits the wire.  On the other hand,
 366 * transaction completion and hence execution of @callback may happen even
 367 * before fw_send_request() returns.
 368 */
 369void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 370		int destination_id, int generation, int speed, unsigned long long offset,
 371		void *payload, size_t length, union fw_transaction_callback callback,
 372		bool with_tstamp, void *callback_data)
 373{
 374	unsigned long flags;
 375	int tlabel;
 376
 377	/*
 378	 * Allocate tlabel from the bitmap and put the transaction on
 379	 * the list while holding the card spinlock.
 380	 */
 381
 382	spin_lock_irqsave(&card->lock, flags);
 383
 384	tlabel = allocate_tlabel(card);
 385	if (tlabel < 0) {
 386		spin_unlock_irqrestore(&card->lock, flags);
 387		if (!with_tstamp) {
 388			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 389		} else {
 390			// Timestamping on behalf of hardware.
 391			u32 curr_cycle_time = 0;
 392			u32 tstamp;
 393
 394			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 395			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 396
 397			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
 398					     callback_data);
 399		}
 400		return;
 401	}
 402
 403	t->node_id = destination_id;
 404	t->tlabel = tlabel;
 405	t->card = card;
 406	t->is_split_transaction = false;
 407	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
 
 408	t->callback = callback;
 409	t->with_tstamp = with_tstamp;
 410	t->callback_data = callback_data;
 411
 412	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
 
 413			speed, offset, payload, length);
 414	t->packet.callback = transmit_complete_callback;
 415
 416	list_add_tail(&t->link, &card->transaction_list);
 417
 418	spin_unlock_irqrestore(&card->lock, flags);
 419
 420	card->driver->send_request(card, &t->packet);
 421}
 422EXPORT_SYMBOL_GPL(__fw_send_request);
 423
 424struct transaction_callback_data {
 425	struct completion done;
 426	void *payload;
 427	int rcode;
 428};
 429
 430static void transaction_callback(struct fw_card *card, int rcode,
 431				 void *payload, size_t length, void *data)
 432{
 433	struct transaction_callback_data *d = data;
 434
 435	if (rcode == RCODE_COMPLETE)
 436		memcpy(d->payload, payload, length);
 437	d->rcode = rcode;
 438	complete(&d->done);
 439}
 440
 441/**
 442 * fw_run_transaction() - send request and sleep until transaction is completed
 443 * @card:		card interface for this request
 444 * @tcode:		transaction code
 445 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 446 * @generation:		bus generation in which request and response are valid
 447 * @speed:		transmission speed
 448 * @offset:		48bit wide offset into destination's address space
 449 * @payload:		data payload for the request subaction
 450 * @length:		length of the payload, in bytes
 451 *
 452 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 453 * Unlike fw_send_request(), @data points to the payload of the request or/and
 454 * to the payload of the response.  DMA mapping restrictions apply to outbound
 455 * request payloads of >= 8 bytes but not to inbound response payloads.
 456 */
 457int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 458		       int generation, int speed, unsigned long long offset,
 459		       void *payload, size_t length)
 460{
 461	struct transaction_callback_data d;
 462	struct fw_transaction t;
 463
 464	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 465	init_completion(&d.done);
 466	d.payload = payload;
 467	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 468			offset, payload, length, transaction_callback, &d);
 469	wait_for_completion(&d.done);
 470	destroy_timer_on_stack(&t.split_timeout_timer);
 471
 472	return d.rcode;
 473}
 474EXPORT_SYMBOL(fw_run_transaction);
 475
 476static DEFINE_MUTEX(phy_config_mutex);
 477static DECLARE_COMPLETION(phy_config_done);
 478
 479static void transmit_phy_packet_callback(struct fw_packet *packet,
 480					 struct fw_card *card, int status)
 481{
 482	complete(&phy_config_done);
 483}
 484
 485static struct fw_packet phy_config_packet = {
 486	.header_length	= 12,
 487	.header[0]	= TCODE_LINK_INTERNAL << 4,
 488	.payload_length	= 0,
 489	.speed		= SCODE_100,
 490	.callback	= transmit_phy_packet_callback,
 491};
 492
 493void fw_send_phy_config(struct fw_card *card,
 494			int node_id, int generation, int gap_count)
 495{
 496	long timeout = DIV_ROUND_UP(HZ, 10);
 497	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 498
 499	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 500		data |= PHY_CONFIG_ROOT_ID(node_id);
 501
 502	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 503		gap_count = card->driver->read_phy_reg(card, 1);
 504		if (gap_count < 0)
 505			return;
 506
 507		gap_count &= 63;
 508		if (gap_count == 63)
 509			return;
 510	}
 511	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 512
 513	mutex_lock(&phy_config_mutex);
 514
 515	phy_config_packet.header[1] = data;
 516	phy_config_packet.header[2] = ~data;
 517	phy_config_packet.generation = generation;
 518	reinit_completion(&phy_config_done);
 519
 520	card->driver->send_request(card, &phy_config_packet);
 521	wait_for_completion_timeout(&phy_config_done, timeout);
 522
 523	mutex_unlock(&phy_config_mutex);
 524}
 525
 526static struct fw_address_handler *lookup_overlapping_address_handler(
 527	struct list_head *list, unsigned long long offset, size_t length)
 528{
 529	struct fw_address_handler *handler;
 530
 531	list_for_each_entry_rcu(handler, list, link) {
 532		if (handler->offset < offset + length &&
 533		    offset < handler->offset + handler->length)
 534			return handler;
 535	}
 536
 537	return NULL;
 538}
 539
 540static bool is_enclosing_handler(struct fw_address_handler *handler,
 541				 unsigned long long offset, size_t length)
 542{
 543	return handler->offset <= offset &&
 544		offset + length <= handler->offset + handler->length;
 545}
 546
 547static struct fw_address_handler *lookup_enclosing_address_handler(
 548	struct list_head *list, unsigned long long offset, size_t length)
 549{
 550	struct fw_address_handler *handler;
 551
 552	list_for_each_entry_rcu(handler, list, link) {
 553		if (is_enclosing_handler(handler, offset, length))
 554			return handler;
 555	}
 556
 557	return NULL;
 558}
 559
 560static DEFINE_SPINLOCK(address_handler_list_lock);
 561static LIST_HEAD(address_handler_list);
 562
 563const struct fw_address_region fw_high_memory_region =
 564	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 565EXPORT_SYMBOL(fw_high_memory_region);
 566
 567static const struct fw_address_region low_memory_region =
 568	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 569
 570#if 0
 571const struct fw_address_region fw_private_region =
 572	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 573const struct fw_address_region fw_csr_region =
 574	{ .start = CSR_REGISTER_BASE,
 575	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 576const struct fw_address_region fw_unit_space_region =
 577	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 578#endif  /*  0  */
 579
 
 
 
 
 
 
 580/**
 581 * fw_core_add_address_handler() - register for incoming requests
 582 * @handler:	callback
 583 * @region:	region in the IEEE 1212 node space address range
 584 *
 585 * region->start, ->end, and handler->length have to be quadlet-aligned.
 586 *
 587 * When a request is received that falls within the specified address range,
 588 * the specified callback is invoked.  The parameters passed to the callback
 589 * give the details of the particular request.
 590 *
 591 * To be called in process context.
 592 * Return value:  0 on success, non-zero otherwise.
 593 *
 594 * The start offset of the handler's address region is determined by
 595 * fw_core_add_address_handler() and is returned in handler->offset.
 596 *
 597 * Address allocations are exclusive, except for the FCP registers.
 598 */
 599int fw_core_add_address_handler(struct fw_address_handler *handler,
 600				const struct fw_address_region *region)
 601{
 602	struct fw_address_handler *other;
 603	int ret = -EBUSY;
 604
 605	if (region->start & 0xffff000000000003ULL ||
 606	    region->start >= region->end ||
 607	    region->end   > 0x0001000000000000ULL ||
 608	    handler->length & 3 ||
 609	    handler->length == 0)
 610		return -EINVAL;
 611
 612	spin_lock(&address_handler_list_lock);
 613
 614	handler->offset = region->start;
 615	while (handler->offset + handler->length <= region->end) {
 616		if (is_in_fcp_region(handler->offset, handler->length))
 617			other = NULL;
 618		else
 619			other = lookup_overlapping_address_handler
 620					(&address_handler_list,
 621					 handler->offset, handler->length);
 622		if (other != NULL) {
 623			handler->offset += other->length;
 624		} else {
 625			list_add_tail_rcu(&handler->link, &address_handler_list);
 626			ret = 0;
 627			break;
 628		}
 629	}
 630
 631	spin_unlock(&address_handler_list_lock);
 632
 633	return ret;
 634}
 635EXPORT_SYMBOL(fw_core_add_address_handler);
 636
 637/**
 638 * fw_core_remove_address_handler() - unregister an address handler
 639 * @handler: callback
 640 *
 641 * To be called in process context.
 642 *
 643 * When fw_core_remove_address_handler() returns, @handler->callback() is
 644 * guaranteed to not run on any CPU anymore.
 645 */
 646void fw_core_remove_address_handler(struct fw_address_handler *handler)
 647{
 648	spin_lock(&address_handler_list_lock);
 649	list_del_rcu(&handler->link);
 650	spin_unlock(&address_handler_list_lock);
 651	synchronize_rcu();
 652}
 653EXPORT_SYMBOL(fw_core_remove_address_handler);
 654
 655struct fw_request {
 656	struct kref kref;
 657	struct fw_packet response;
 658	u32 request_header[4];
 659	int ack;
 660	u32 timestamp;
 661	u32 length;
 662	u32 data[];
 663};
 664
 665void fw_request_get(struct fw_request *request)
 666{
 667	kref_get(&request->kref);
 668}
 669
 670static void release_request(struct kref *kref)
 671{
 672	struct fw_request *request = container_of(kref, struct fw_request, kref);
 673
 674	kfree(request);
 675}
 676
 677void fw_request_put(struct fw_request *request)
 678{
 679	kref_put(&request->kref, release_request);
 680}
 681
 682static void free_response_callback(struct fw_packet *packet,
 683				   struct fw_card *card, int status)
 684{
 685	struct fw_request *request = container_of(packet, struct fw_request, response);
 686
 687	// Decrease the reference count since not at in-flight.
 688	fw_request_put(request);
 689
 690	// Decrease the reference count to release the object.
 691	fw_request_put(request);
 692}
 693
 694int fw_get_response_length(struct fw_request *r)
 695{
 696	int tcode, ext_tcode, data_length;
 697
 698	tcode = HEADER_GET_TCODE(r->request_header[0]);
 699
 700	switch (tcode) {
 701	case TCODE_WRITE_QUADLET_REQUEST:
 702	case TCODE_WRITE_BLOCK_REQUEST:
 703		return 0;
 704
 705	case TCODE_READ_QUADLET_REQUEST:
 706		return 4;
 707
 708	case TCODE_READ_BLOCK_REQUEST:
 709		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 710		return data_length;
 711
 712	case TCODE_LOCK_REQUEST:
 713		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 714		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 715		switch (ext_tcode) {
 716		case EXTCODE_FETCH_ADD:
 717		case EXTCODE_LITTLE_ADD:
 718			return data_length;
 719		default:
 720			return data_length / 2;
 721		}
 722
 723	default:
 724		WARN(1, "wrong tcode %d\n", tcode);
 725		return 0;
 726	}
 727}
 728
 729void fw_fill_response(struct fw_packet *response, u32 *request_header,
 730		      int rcode, void *payload, size_t length)
 731{
 732	int tcode, tlabel, extended_tcode, source, destination;
 733
 734	tcode          = HEADER_GET_TCODE(request_header[0]);
 735	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 736	source         = HEADER_GET_DESTINATION(request_header[0]);
 737	destination    = HEADER_GET_SOURCE(request_header[1]);
 738	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 739
 740	response->header[0] =
 741		HEADER_RETRY(RETRY_1) |
 742		HEADER_TLABEL(tlabel) |
 743		HEADER_DESTINATION(destination);
 744	response->header[1] =
 745		HEADER_SOURCE(source) |
 746		HEADER_RCODE(rcode);
 747	response->header[2] = 0;
 748
 749	switch (tcode) {
 750	case TCODE_WRITE_QUADLET_REQUEST:
 751	case TCODE_WRITE_BLOCK_REQUEST:
 752		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 753		response->header_length = 12;
 754		response->payload_length = 0;
 755		break;
 756
 757	case TCODE_READ_QUADLET_REQUEST:
 758		response->header[0] |=
 759			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 760		if (payload != NULL)
 761			response->header[3] = *(u32 *)payload;
 762		else
 763			response->header[3] = 0;
 764		response->header_length = 16;
 765		response->payload_length = 0;
 766		break;
 767
 768	case TCODE_READ_BLOCK_REQUEST:
 769	case TCODE_LOCK_REQUEST:
 770		response->header[0] |= HEADER_TCODE(tcode + 2);
 771		response->header[3] =
 772			HEADER_DATA_LENGTH(length) |
 773			HEADER_EXTENDED_TCODE(extended_tcode);
 774		response->header_length = 16;
 775		response->payload = payload;
 776		response->payload_length = length;
 777		break;
 778
 779	default:
 780		WARN(1, "wrong tcode %d\n", tcode);
 781	}
 782
 783	response->payload_mapped = false;
 784}
 785EXPORT_SYMBOL(fw_fill_response);
 786
 787static u32 compute_split_timeout_timestamp(struct fw_card *card,
 788					   u32 request_timestamp)
 789{
 790	unsigned int cycles;
 791	u32 timestamp;
 792
 793	cycles = card->split_timeout_cycles;
 794	cycles += request_timestamp & 0x1fff;
 795
 796	timestamp = request_timestamp & ~0x1fff;
 797	timestamp += (cycles / 8000) << 13;
 798	timestamp |= cycles % 8000;
 799
 800	return timestamp;
 801}
 802
 803static struct fw_request *allocate_request(struct fw_card *card,
 804					   struct fw_packet *p)
 805{
 806	struct fw_request *request;
 807	u32 *data, length;
 808	int request_tcode;
 809
 810	request_tcode = HEADER_GET_TCODE(p->header[0]);
 811	switch (request_tcode) {
 812	case TCODE_WRITE_QUADLET_REQUEST:
 813		data = &p->header[3];
 814		length = 4;
 815		break;
 816
 817	case TCODE_WRITE_BLOCK_REQUEST:
 818	case TCODE_LOCK_REQUEST:
 819		data = p->payload;
 820		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 821		break;
 822
 823	case TCODE_READ_QUADLET_REQUEST:
 824		data = NULL;
 825		length = 4;
 826		break;
 827
 828	case TCODE_READ_BLOCK_REQUEST:
 829		data = NULL;
 830		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 831		break;
 832
 833	default:
 834		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 835			 p->header[0], p->header[1], p->header[2]);
 836		return NULL;
 837	}
 838
 839	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 840	if (request == NULL)
 841		return NULL;
 842	kref_init(&request->kref);
 843
 844	request->response.speed = p->speed;
 845	request->response.timestamp =
 846			compute_split_timeout_timestamp(card, p->timestamp);
 847	request->response.generation = p->generation;
 848	request->response.ack = 0;
 849	request->response.callback = free_response_callback;
 850	request->ack = p->ack;
 851	request->timestamp = p->timestamp;
 852	request->length = length;
 853	if (data)
 854		memcpy(request->data, data, length);
 855
 856	memcpy(request->request_header, p->header, sizeof(p->header));
 857
 858	return request;
 859}
 860
 861/**
 862 * fw_send_response: - send response packet for asynchronous transaction.
 863 * @card:	interface to send the response at.
 864 * @request:	firewire request data for the transaction.
 865 * @rcode:	response code to send.
 866 *
 867 * Submit a response packet into the asynchronous response transmission queue. The @request
 868 * is going to be released when the transmission successfully finishes later.
 869 */
 870void fw_send_response(struct fw_card *card,
 871		      struct fw_request *request, int rcode)
 872{
 
 
 
 873	/* unified transaction or broadcast transaction: don't respond */
 874	if (request->ack != ACK_PENDING ||
 875	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 876		fw_request_put(request);
 877		return;
 878	}
 879
 880	if (rcode == RCODE_COMPLETE)
 881		fw_fill_response(&request->response, request->request_header,
 882				 rcode, request->data,
 883				 fw_get_response_length(request));
 884	else
 885		fw_fill_response(&request->response, request->request_header,
 886				 rcode, NULL, 0);
 887
 888	// Increase the reference count so that the object is kept during in-flight.
 889	fw_request_get(request);
 890
 891	card->driver->send_response(card, &request->response);
 892}
 893EXPORT_SYMBOL(fw_send_response);
 894
 895/**
 896 * fw_get_request_speed() - returns speed at which the @request was received
 897 * @request: firewire request data
 898 */
 899int fw_get_request_speed(struct fw_request *request)
 900{
 901	return request->response.speed;
 902}
 903EXPORT_SYMBOL(fw_get_request_speed);
 904
 905/**
 906 * fw_request_get_timestamp: Get timestamp of the request.
 907 * @request: The opaque pointer to request structure.
 908 *
 909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 911 * field of isochronous cycle time register.
 912 *
 913 * Returns: timestamp of the request.
 914 */
 915u32 fw_request_get_timestamp(const struct fw_request *request)
 916{
 917	return request->timestamp;
 918}
 919EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 920
 921static void handle_exclusive_region_request(struct fw_card *card,
 922					    struct fw_packet *p,
 923					    struct fw_request *request,
 924					    unsigned long long offset)
 925{
 926	struct fw_address_handler *handler;
 927	int tcode, destination, source;
 928
 929	destination = HEADER_GET_DESTINATION(p->header[0]);
 930	source      = HEADER_GET_SOURCE(p->header[1]);
 931	tcode       = HEADER_GET_TCODE(p->header[0]);
 932	if (tcode == TCODE_LOCK_REQUEST)
 933		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 934
 935	rcu_read_lock();
 936	handler = lookup_enclosing_address_handler(&address_handler_list,
 937						   offset, request->length);
 938	if (handler)
 939		handler->address_callback(card, request,
 940					  tcode, destination, source,
 941					  p->generation, offset,
 942					  request->data, request->length,
 943					  handler->callback_data);
 944	rcu_read_unlock();
 945
 946	if (!handler)
 947		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 948}
 949
 950static void handle_fcp_region_request(struct fw_card *card,
 951				      struct fw_packet *p,
 952				      struct fw_request *request,
 953				      unsigned long long offset)
 954{
 955	struct fw_address_handler *handler;
 956	int tcode, destination, source;
 957
 958	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 959	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 960	    request->length > 0x200) {
 961		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 962
 963		return;
 964	}
 965
 966	tcode       = HEADER_GET_TCODE(p->header[0]);
 967	destination = HEADER_GET_DESTINATION(p->header[0]);
 968	source      = HEADER_GET_SOURCE(p->header[1]);
 969
 970	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 971	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 972		fw_send_response(card, request, RCODE_TYPE_ERROR);
 973
 974		return;
 975	}
 976
 977	rcu_read_lock();
 978	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 979		if (is_enclosing_handler(handler, offset, request->length))
 980			handler->address_callback(card, request, tcode,
 981						  destination, source,
 982						  p->generation, offset,
 983						  request->data,
 984						  request->length,
 985						  handler->callback_data);
 986	}
 987	rcu_read_unlock();
 988
 989	fw_send_response(card, request, RCODE_COMPLETE);
 990}
 991
 992void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 993{
 994	struct fw_request *request;
 995	unsigned long long offset;
 996
 997	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 998		return;
 999
1000	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
1001		fw_cdev_handle_phy_packet(card, p);
1002		return;
1003	}
1004
1005	request = allocate_request(card, p);
1006	if (request == NULL) {
1007		/* FIXME: send statically allocated busy packet. */
1008		return;
1009	}
1010
1011	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012		p->header[2];
1013
1014	if (!is_in_fcp_region(offset, request->length))
1015		handle_exclusive_region_request(card, p, request, offset);
1016	else
1017		handle_fcp_region_request(card, p, request, offset);
1018
1019}
1020EXPORT_SYMBOL(fw_core_handle_request);
1021
1022void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023{
1024	struct fw_transaction *t = NULL, *iter;
1025	unsigned long flags;
1026	u32 *data;
1027	size_t data_length;
1028	int tcode, tlabel, source, rcode;
1029
1030	tcode	= HEADER_GET_TCODE(p->header[0]);
1031	tlabel	= HEADER_GET_TLABEL(p->header[0]);
1032	source	= HEADER_GET_SOURCE(p->header[1]);
1033	rcode	= HEADER_GET_RCODE(p->header[1]);
1034
1035	spin_lock_irqsave(&card->lock, flags);
1036	list_for_each_entry(iter, &card->transaction_list, link) {
1037		if (iter->node_id == source && iter->tlabel == tlabel) {
1038			if (!try_cancel_split_timeout(iter)) {
1039				spin_unlock_irqrestore(&card->lock, flags);
1040				goto timed_out;
1041			}
1042			list_del_init(&iter->link);
1043			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044			t = iter;
1045			break;
1046		}
1047	}
1048	spin_unlock_irqrestore(&card->lock, flags);
1049
1050	if (!t) {
1051 timed_out:
1052		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053			  source, tlabel);
1054		return;
1055	}
1056
1057	/*
1058	 * FIXME: sanity check packet, is length correct, does tcodes
1059	 * and addresses match.
1060	 */
1061
1062	switch (tcode) {
1063	case TCODE_READ_QUADLET_RESPONSE:
1064		data = (u32 *) &p->header[3];
1065		data_length = 4;
1066		break;
1067
1068	case TCODE_WRITE_RESPONSE:
1069		data = NULL;
1070		data_length = 0;
1071		break;
1072
1073	case TCODE_READ_BLOCK_RESPONSE:
1074	case TCODE_LOCK_RESPONSE:
1075		data = p->payload;
1076		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077		break;
1078
1079	default:
1080		/* Should never happen, this is just to shut up gcc. */
1081		data = NULL;
1082		data_length = 0;
1083		break;
1084	}
1085
1086	/*
1087	 * The response handler may be executed while the request handler
1088	 * is still pending.  Cancel the request handler.
1089	 */
1090	card->driver->cancel_packet(card, &t->packet);
1091
1092	if (!t->with_tstamp) {
1093		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094	} else {
1095		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096					data_length, t->callback_data);
1097	}
1098}
1099EXPORT_SYMBOL(fw_core_handle_response);
1100
1101/**
1102 * fw_rcode_string - convert a firewire result code to an error description
1103 * @rcode: the result code
1104 */
1105const char *fw_rcode_string(int rcode)
1106{
1107	static const char *const names[] = {
1108		[RCODE_COMPLETE]       = "no error",
1109		[RCODE_CONFLICT_ERROR] = "conflict error",
1110		[RCODE_DATA_ERROR]     = "data error",
1111		[RCODE_TYPE_ERROR]     = "type error",
1112		[RCODE_ADDRESS_ERROR]  = "address error",
1113		[RCODE_SEND_ERROR]     = "send error",
1114		[RCODE_CANCELLED]      = "timeout",
1115		[RCODE_BUSY]           = "busy",
1116		[RCODE_GENERATION]     = "bus reset",
1117		[RCODE_NO_ACK]         = "no ack",
1118	};
1119
1120	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121		return names[rcode];
1122	else
1123		return "unknown";
1124}
1125EXPORT_SYMBOL(fw_rcode_string);
1126
1127static const struct fw_address_region topology_map_region =
1128	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130
1131static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132		int tcode, int destination, int source, int generation,
1133		unsigned long long offset, void *payload, size_t length,
1134		void *callback_data)
1135{
1136	int start;
1137
1138	if (!TCODE_IS_READ_REQUEST(tcode)) {
1139		fw_send_response(card, request, RCODE_TYPE_ERROR);
1140		return;
1141	}
1142
1143	if ((offset & 3) > 0 || (length & 3) > 0) {
1144		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145		return;
1146	}
1147
1148	start = (offset - topology_map_region.start) / 4;
1149	memcpy(payload, &card->topology_map[start], length);
1150
1151	fw_send_response(card, request, RCODE_COMPLETE);
1152}
1153
1154static struct fw_address_handler topology_map = {
1155	.length			= 0x400,
1156	.address_callback	= handle_topology_map,
1157};
1158
1159static const struct fw_address_region registers_region =
1160	{ .start = CSR_REGISTER_BASE,
1161	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162
1163static void update_split_timeout(struct fw_card *card)
1164{
1165	unsigned int cycles;
1166
1167	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168
1169	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170	cycles = clamp(cycles, 800u, 3u * 8000u);
1171
1172	card->split_timeout_cycles = cycles;
1173	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174}
1175
1176static void handle_registers(struct fw_card *card, struct fw_request *request,
1177		int tcode, int destination, int source, int generation,
1178		unsigned long long offset, void *payload, size_t length,
1179		void *callback_data)
1180{
1181	int reg = offset & ~CSR_REGISTER_BASE;
1182	__be32 *data = payload;
1183	int rcode = RCODE_COMPLETE;
1184	unsigned long flags;
1185
1186	switch (reg) {
1187	case CSR_PRIORITY_BUDGET:
1188		if (!card->priority_budget_implemented) {
1189			rcode = RCODE_ADDRESS_ERROR;
1190			break;
1191		}
1192		fallthrough;
1193
1194	case CSR_NODE_IDS:
1195		/*
1196		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198		 */
1199		fallthrough;
1200
1201	case CSR_STATE_CLEAR:
1202	case CSR_STATE_SET:
1203	case CSR_CYCLE_TIME:
1204	case CSR_BUS_TIME:
1205	case CSR_BUSY_TIMEOUT:
1206		if (tcode == TCODE_READ_QUADLET_REQUEST)
1207			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1208		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210		else
1211			rcode = RCODE_TYPE_ERROR;
1212		break;
1213
1214	case CSR_RESET_START:
1215		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216			card->driver->write_csr(card, CSR_STATE_CLEAR,
1217						CSR_STATE_BIT_ABDICATE);
1218		else
1219			rcode = RCODE_TYPE_ERROR;
1220		break;
1221
1222	case CSR_SPLIT_TIMEOUT_HI:
1223		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224			*data = cpu_to_be32(card->split_timeout_hi);
1225		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226			spin_lock_irqsave(&card->lock, flags);
1227			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228			update_split_timeout(card);
1229			spin_unlock_irqrestore(&card->lock, flags);
1230		} else {
1231			rcode = RCODE_TYPE_ERROR;
1232		}
1233		break;
1234
1235	case CSR_SPLIT_TIMEOUT_LO:
1236		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237			*data = cpu_to_be32(card->split_timeout_lo);
1238		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239			spin_lock_irqsave(&card->lock, flags);
1240			card->split_timeout_lo =
1241					be32_to_cpu(*data) & 0xfff80000;
1242			update_split_timeout(card);
1243			spin_unlock_irqrestore(&card->lock, flags);
1244		} else {
1245			rcode = RCODE_TYPE_ERROR;
1246		}
1247		break;
1248
1249	case CSR_MAINT_UTILITY:
1250		if (tcode == TCODE_READ_QUADLET_REQUEST)
1251			*data = card->maint_utility_register;
1252		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253			card->maint_utility_register = *data;
1254		else
1255			rcode = RCODE_TYPE_ERROR;
1256		break;
1257
1258	case CSR_BROADCAST_CHANNEL:
1259		if (tcode == TCODE_READ_QUADLET_REQUEST)
1260			*data = cpu_to_be32(card->broadcast_channel);
1261		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262			card->broadcast_channel =
1263			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264			    BROADCAST_CHANNEL_INITIAL;
1265		else
1266			rcode = RCODE_TYPE_ERROR;
1267		break;
1268
1269	case CSR_BUS_MANAGER_ID:
1270	case CSR_BANDWIDTH_AVAILABLE:
1271	case CSR_CHANNELS_AVAILABLE_HI:
1272	case CSR_CHANNELS_AVAILABLE_LO:
1273		/*
1274		 * FIXME: these are handled by the OHCI hardware and
1275		 * the stack never sees these request. If we add
1276		 * support for a new type of controller that doesn't
1277		 * handle this in hardware we need to deal with these
1278		 * transactions.
1279		 */
1280		BUG();
1281		break;
1282
1283	default:
1284		rcode = RCODE_ADDRESS_ERROR;
1285		break;
1286	}
1287
1288	fw_send_response(card, request, rcode);
1289}
1290
1291static struct fw_address_handler registers = {
1292	.length			= 0x400,
1293	.address_callback	= handle_registers,
1294};
1295
1296static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297		int tcode, int destination, int source, int generation,
1298		unsigned long long offset, void *payload, size_t length,
1299		void *callback_data)
1300{
1301	/*
1302	 * This catches requests not handled by the physical DMA unit,
1303	 * i.e., wrong transaction types or unauthorized source nodes.
1304	 */
1305	fw_send_response(card, request, RCODE_TYPE_ERROR);
1306}
1307
1308static struct fw_address_handler low_memory = {
1309	.length			= FW_MAX_PHYSICAL_RANGE,
1310	.address_callback	= handle_low_memory,
1311};
1312
1313MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315MODULE_LICENSE("GPL");
1316
1317static const u32 vendor_textual_descriptor[] = {
1318	/* textual descriptor leaf () */
1319	0x00060000,
1320	0x00000000,
1321	0x00000000,
1322	0x4c696e75,		/* L i n u */
1323	0x78204669,		/* x   F i */
1324	0x72657769,		/* r e w i */
1325	0x72650000,		/* r e     */
1326};
1327
1328static const u32 model_textual_descriptor[] = {
1329	/* model descriptor leaf () */
1330	0x00030000,
1331	0x00000000,
1332	0x00000000,
1333	0x4a756a75,		/* J u j u */
1334};
1335
1336static struct fw_descriptor vendor_id_descriptor = {
1337	.length = ARRAY_SIZE(vendor_textual_descriptor),
1338	.immediate = 0x03001f11,
1339	.key = 0x81000000,
1340	.data = vendor_textual_descriptor,
1341};
1342
1343static struct fw_descriptor model_id_descriptor = {
1344	.length = ARRAY_SIZE(model_textual_descriptor),
1345	.immediate = 0x17023901,
1346	.key = 0x81000000,
1347	.data = model_textual_descriptor,
1348};
1349
1350static int __init fw_core_init(void)
1351{
1352	int ret;
1353
1354	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1355	if (!fw_workqueue)
1356		return -ENOMEM;
1357
1358	ret = bus_register(&fw_bus_type);
1359	if (ret < 0) {
1360		destroy_workqueue(fw_workqueue);
1361		return ret;
1362	}
1363
1364	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365	if (fw_cdev_major < 0) {
1366		bus_unregister(&fw_bus_type);
1367		destroy_workqueue(fw_workqueue);
1368		return fw_cdev_major;
1369	}
1370
1371	fw_core_add_address_handler(&topology_map, &topology_map_region);
1372	fw_core_add_address_handler(&registers, &registers_region);
1373	fw_core_add_address_handler(&low_memory, &low_memory_region);
1374	fw_core_add_descriptor(&vendor_id_descriptor);
1375	fw_core_add_descriptor(&model_id_descriptor);
1376
1377	return 0;
1378}
1379
1380static void __exit fw_core_cleanup(void)
1381{
1382	unregister_chrdev(fw_cdev_major, "firewire");
1383	bus_unregister(&fw_bus_type);
1384	destroy_workqueue(fw_workqueue);
1385	idr_destroy(&fw_device_idr);
1386}
1387
1388module_init(fw_core_init);
1389module_exit(fw_core_cleanup);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
  16#include <linux/idr.h>
  17#include <linux/jiffies.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/rculist.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/timer.h>
  26#include <linux/types.h>
  27#include <linux/workqueue.h>
  28
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
  32
  33#define HEADER_PRI(pri)			((pri) << 0)
  34#define HEADER_TCODE(tcode)		((tcode) << 4)
  35#define HEADER_RETRY(retry)		((retry) << 8)
  36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  37#define HEADER_DESTINATION(destination)	((destination) << 16)
  38#define HEADER_SOURCE(source)		((source) << 16)
  39#define HEADER_RCODE(rcode)		((rcode) << 12)
  40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  41#define HEADER_DATA_LENGTH(length)	((length) << 16)
  42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  43
  44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  52
  53#define HEADER_DESTINATION_IS_BROADCAST(q) \
  54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55
  56#define PHY_PACKET_CONFIG	0x0
  57#define PHY_PACKET_LINK_ON	0x1
  58#define PHY_PACKET_SELF_ID	0x2
  59
  60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  62#define PHY_IDENTIFIER(id)		((id) << 30)
  63
  64/* returns 0 if the split timeout handler is already running */
  65static int try_cancel_split_timeout(struct fw_transaction *t)
  66{
  67	if (t->is_split_transaction)
  68		return del_timer(&t->split_timeout_timer);
  69	else
  70		return 1;
  71}
  72
  73static int close_transaction(struct fw_transaction *transaction,
  74			     struct fw_card *card, int rcode)
  75{
  76	struct fw_transaction *t;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&card->lock, flags);
  80	list_for_each_entry(t, &card->transaction_list, link) {
  81		if (t == transaction) {
  82			if (!try_cancel_split_timeout(t)) {
  83				spin_unlock_irqrestore(&card->lock, flags);
  84				goto timed_out;
  85			}
  86			list_del_init(&t->link);
  87			card->tlabel_mask &= ~(1ULL << t->tlabel);
 
  88			break;
  89		}
  90	}
  91	spin_unlock_irqrestore(&card->lock, flags);
  92
  93	if (&t->link != &card->transaction_list) {
  94		t->callback(card, rcode, NULL, 0, t->callback_data);
 
 
 
 
 
  95		return 0;
  96	}
  97
  98 timed_out:
  99	return -ENOENT;
 100}
 101
 102/*
 103 * Only valid for transactions that are potentially pending (ie have
 104 * been sent).
 105 */
 106int fw_cancel_transaction(struct fw_card *card,
 107			  struct fw_transaction *transaction)
 108{
 
 
 109	/*
 110	 * Cancel the packet transmission if it's still queued.  That
 111	 * will call the packet transmission callback which cancels
 112	 * the transaction.
 113	 */
 114
 115	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 116		return 0;
 117
 118	/*
 119	 * If the request packet has already been sent, we need to see
 120	 * if the transaction is still pending and remove it in that case.
 121	 */
 122
 123	return close_transaction(transaction, card, RCODE_CANCELLED);
 
 
 
 
 
 
 
 
 
 
 124}
 125EXPORT_SYMBOL(fw_cancel_transaction);
 126
 127static void split_transaction_timeout_callback(struct timer_list *timer)
 128{
 129	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 130	struct fw_card *card = t->card;
 131	unsigned long flags;
 132
 133	spin_lock_irqsave(&card->lock, flags);
 134	if (list_empty(&t->link)) {
 135		spin_unlock_irqrestore(&card->lock, flags);
 136		return;
 137	}
 138	list_del(&t->link);
 139	card->tlabel_mask &= ~(1ULL << t->tlabel);
 140	spin_unlock_irqrestore(&card->lock, flags);
 141
 142	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 
 
 
 
 
 143}
 144
 145static void start_split_transaction_timeout(struct fw_transaction *t,
 146					    struct fw_card *card)
 147{
 148	unsigned long flags;
 149
 150	spin_lock_irqsave(&card->lock, flags);
 151
 152	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 153		spin_unlock_irqrestore(&card->lock, flags);
 154		return;
 155	}
 156
 157	t->is_split_transaction = true;
 158	mod_timer(&t->split_timeout_timer,
 159		  jiffies + card->split_timeout_jiffies);
 160
 161	spin_unlock_irqrestore(&card->lock, flags);
 162}
 163
 
 
 164static void transmit_complete_callback(struct fw_packet *packet,
 165				       struct fw_card *card, int status)
 166{
 167	struct fw_transaction *t =
 168	    container_of(packet, struct fw_transaction, packet);
 169
 170	switch (status) {
 171	case ACK_COMPLETE:
 172		close_transaction(t, card, RCODE_COMPLETE);
 173		break;
 174	case ACK_PENDING:
 
 
 
 175		start_split_transaction_timeout(t, card);
 176		break;
 
 177	case ACK_BUSY_X:
 178	case ACK_BUSY_A:
 179	case ACK_BUSY_B:
 180		close_transaction(t, card, RCODE_BUSY);
 181		break;
 182	case ACK_DATA_ERROR:
 183		close_transaction(t, card, RCODE_DATA_ERROR);
 184		break;
 185	case ACK_TYPE_ERROR:
 186		close_transaction(t, card, RCODE_TYPE_ERROR);
 187		break;
 188	default:
 189		/*
 190		 * In this case the ack is really a juju specific
 191		 * rcode, so just forward that to the callback.
 192		 */
 193		close_transaction(t, card, status);
 194		break;
 195	}
 196}
 197
 198static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 199		int destination_id, int source_id, int generation, int speed,
 200		unsigned long long offset, void *payload, size_t length)
 201{
 202	int ext_tcode;
 203
 204	if (tcode == TCODE_STREAM_DATA) {
 205		packet->header[0] =
 206			HEADER_DATA_LENGTH(length) |
 207			destination_id |
 208			HEADER_TCODE(TCODE_STREAM_DATA);
 209		packet->header_length = 4;
 210		packet->payload = payload;
 211		packet->payload_length = length;
 212
 213		goto common;
 214	}
 215
 216	if (tcode > 0x10) {
 217		ext_tcode = tcode & ~0x10;
 218		tcode = TCODE_LOCK_REQUEST;
 219	} else
 220		ext_tcode = 0;
 221
 222	packet->header[0] =
 223		HEADER_RETRY(RETRY_X) |
 224		HEADER_TLABEL(tlabel) |
 225		HEADER_TCODE(tcode) |
 226		HEADER_DESTINATION(destination_id);
 227	packet->header[1] =
 228		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 229	packet->header[2] =
 230		offset;
 231
 232	switch (tcode) {
 233	case TCODE_WRITE_QUADLET_REQUEST:
 234		packet->header[3] = *(u32 *)payload;
 235		packet->header_length = 16;
 236		packet->payload_length = 0;
 237		break;
 238
 239	case TCODE_LOCK_REQUEST:
 240	case TCODE_WRITE_BLOCK_REQUEST:
 241		packet->header[3] =
 242			HEADER_DATA_LENGTH(length) |
 243			HEADER_EXTENDED_TCODE(ext_tcode);
 244		packet->header_length = 16;
 245		packet->payload = payload;
 246		packet->payload_length = length;
 247		break;
 248
 249	case TCODE_READ_QUADLET_REQUEST:
 250		packet->header_length = 12;
 251		packet->payload_length = 0;
 252		break;
 253
 254	case TCODE_READ_BLOCK_REQUEST:
 255		packet->header[3] =
 256			HEADER_DATA_LENGTH(length) |
 257			HEADER_EXTENDED_TCODE(ext_tcode);
 258		packet->header_length = 16;
 259		packet->payload_length = 0;
 260		break;
 261
 262	default:
 263		WARN(1, "wrong tcode %d\n", tcode);
 264	}
 265 common:
 266	packet->speed = speed;
 267	packet->generation = generation;
 268	packet->ack = 0;
 269	packet->payload_mapped = false;
 270}
 271
 272static int allocate_tlabel(struct fw_card *card)
 273{
 274	int tlabel;
 275
 276	tlabel = card->current_tlabel;
 277	while (card->tlabel_mask & (1ULL << tlabel)) {
 278		tlabel = (tlabel + 1) & 0x3f;
 279		if (tlabel == card->current_tlabel)
 280			return -EBUSY;
 281	}
 282
 283	card->current_tlabel = (tlabel + 1) & 0x3f;
 284	card->tlabel_mask |= 1ULL << tlabel;
 285
 286	return tlabel;
 287}
 288
 289/**
 290 * fw_send_request() - submit a request packet for transmission
 
 291 * @card:		interface to send the request at
 292 * @t:			transaction instance to which the request belongs
 293 * @tcode:		transaction code
 294 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 295 * @generation:		bus generation in which request and response are valid
 296 * @speed:		transmission speed
 297 * @offset:		48bit wide offset into destination's address space
 298 * @payload:		data payload for the request subaction
 299 * @length:		length of the payload, in bytes
 300 * @callback:		function to be called when the transaction is completed
 
 
 301 * @callback_data:	data to be passed to the transaction completion callback
 302 *
 303 * Submit a request packet into the asynchronous request transmission queue.
 304 * Can be called from atomic context.  If you prefer a blocking API, use
 305 * fw_run_transaction() in a context that can sleep.
 306 *
 307 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 308 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 309 *
 310 * Make sure that the value in @destination_id is not older than the one in
 311 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 312 *
 313 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 314 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 315 * It will contain tag, channel, and sy data instead of a node ID then.
 316 *
 317 * The payload buffer at @data is going to be DMA-mapped except in case of
 318 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 319 * buffer complies with the restrictions of the streaming DMA mapping API.
 320 * @payload must not be freed before the @callback is called.
 321 *
 322 * In case of request types without payload, @data is NULL and @length is 0.
 323 *
 324 * After the transaction is completed successfully or unsuccessfully, the
 325 * @callback will be called.  Among its parameters is the response code which
 326 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 327 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 328 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 329 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 330 * generation, or missing ACK respectively.
 331 *
 332 * Note some timing corner cases:  fw_send_request() may complete much earlier
 333 * than when the request packet actually hits the wire.  On the other hand,
 334 * transaction completion and hence execution of @callback may happen even
 335 * before fw_send_request() returns.
 336 */
 337void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 338		     int destination_id, int generation, int speed,
 339		     unsigned long long offset, void *payload, size_t length,
 340		     fw_transaction_callback_t callback, void *callback_data)
 341{
 342	unsigned long flags;
 343	int tlabel;
 344
 345	/*
 346	 * Allocate tlabel from the bitmap and put the transaction on
 347	 * the list while holding the card spinlock.
 348	 */
 349
 350	spin_lock_irqsave(&card->lock, flags);
 351
 352	tlabel = allocate_tlabel(card);
 353	if (tlabel < 0) {
 354		spin_unlock_irqrestore(&card->lock, flags);
 355		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 
 
 
 
 
 
 
 
 
 
 
 
 356		return;
 357	}
 358
 359	t->node_id = destination_id;
 360	t->tlabel = tlabel;
 361	t->card = card;
 362	t->is_split_transaction = false;
 363	timer_setup(&t->split_timeout_timer,
 364		    split_transaction_timeout_callback, 0);
 365	t->callback = callback;
 
 366	t->callback_data = callback_data;
 367
 368	fw_fill_request(&t->packet, tcode, t->tlabel,
 369			destination_id, card->node_id, generation,
 370			speed, offset, payload, length);
 371	t->packet.callback = transmit_complete_callback;
 372
 373	list_add_tail(&t->link, &card->transaction_list);
 374
 375	spin_unlock_irqrestore(&card->lock, flags);
 376
 377	card->driver->send_request(card, &t->packet);
 378}
 379EXPORT_SYMBOL(fw_send_request);
 380
 381struct transaction_callback_data {
 382	struct completion done;
 383	void *payload;
 384	int rcode;
 385};
 386
 387static void transaction_callback(struct fw_card *card, int rcode,
 388				 void *payload, size_t length, void *data)
 389{
 390	struct transaction_callback_data *d = data;
 391
 392	if (rcode == RCODE_COMPLETE)
 393		memcpy(d->payload, payload, length);
 394	d->rcode = rcode;
 395	complete(&d->done);
 396}
 397
 398/**
 399 * fw_run_transaction() - send request and sleep until transaction is completed
 400 * @card:		card interface for this request
 401 * @tcode:		transaction code
 402 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 403 * @generation:		bus generation in which request and response are valid
 404 * @speed:		transmission speed
 405 * @offset:		48bit wide offset into destination's address space
 406 * @payload:		data payload for the request subaction
 407 * @length:		length of the payload, in bytes
 408 *
 409 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 410 * Unlike fw_send_request(), @data points to the payload of the request or/and
 411 * to the payload of the response.  DMA mapping restrictions apply to outbound
 412 * request payloads of >= 8 bytes but not to inbound response payloads.
 413 */
 414int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 415		       int generation, int speed, unsigned long long offset,
 416		       void *payload, size_t length)
 417{
 418	struct transaction_callback_data d;
 419	struct fw_transaction t;
 420
 421	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 422	init_completion(&d.done);
 423	d.payload = payload;
 424	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 425			offset, payload, length, transaction_callback, &d);
 426	wait_for_completion(&d.done);
 427	destroy_timer_on_stack(&t.split_timeout_timer);
 428
 429	return d.rcode;
 430}
 431EXPORT_SYMBOL(fw_run_transaction);
 432
 433static DEFINE_MUTEX(phy_config_mutex);
 434static DECLARE_COMPLETION(phy_config_done);
 435
 436static void transmit_phy_packet_callback(struct fw_packet *packet,
 437					 struct fw_card *card, int status)
 438{
 439	complete(&phy_config_done);
 440}
 441
 442static struct fw_packet phy_config_packet = {
 443	.header_length	= 12,
 444	.header[0]	= TCODE_LINK_INTERNAL << 4,
 445	.payload_length	= 0,
 446	.speed		= SCODE_100,
 447	.callback	= transmit_phy_packet_callback,
 448};
 449
 450void fw_send_phy_config(struct fw_card *card,
 451			int node_id, int generation, int gap_count)
 452{
 453	long timeout = DIV_ROUND_UP(HZ, 10);
 454	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 455
 456	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 457		data |= PHY_CONFIG_ROOT_ID(node_id);
 458
 459	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 460		gap_count = card->driver->read_phy_reg(card, 1);
 461		if (gap_count < 0)
 462			return;
 463
 464		gap_count &= 63;
 465		if (gap_count == 63)
 466			return;
 467	}
 468	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 469
 470	mutex_lock(&phy_config_mutex);
 471
 472	phy_config_packet.header[1] = data;
 473	phy_config_packet.header[2] = ~data;
 474	phy_config_packet.generation = generation;
 475	reinit_completion(&phy_config_done);
 476
 477	card->driver->send_request(card, &phy_config_packet);
 478	wait_for_completion_timeout(&phy_config_done, timeout);
 479
 480	mutex_unlock(&phy_config_mutex);
 481}
 482
 483static struct fw_address_handler *lookup_overlapping_address_handler(
 484	struct list_head *list, unsigned long long offset, size_t length)
 485{
 486	struct fw_address_handler *handler;
 487
 488	list_for_each_entry_rcu(handler, list, link) {
 489		if (handler->offset < offset + length &&
 490		    offset < handler->offset + handler->length)
 491			return handler;
 492	}
 493
 494	return NULL;
 495}
 496
 497static bool is_enclosing_handler(struct fw_address_handler *handler,
 498				 unsigned long long offset, size_t length)
 499{
 500	return handler->offset <= offset &&
 501		offset + length <= handler->offset + handler->length;
 502}
 503
 504static struct fw_address_handler *lookup_enclosing_address_handler(
 505	struct list_head *list, unsigned long long offset, size_t length)
 506{
 507	struct fw_address_handler *handler;
 508
 509	list_for_each_entry_rcu(handler, list, link) {
 510		if (is_enclosing_handler(handler, offset, length))
 511			return handler;
 512	}
 513
 514	return NULL;
 515}
 516
 517static DEFINE_SPINLOCK(address_handler_list_lock);
 518static LIST_HEAD(address_handler_list);
 519
 520const struct fw_address_region fw_high_memory_region =
 521	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 522EXPORT_SYMBOL(fw_high_memory_region);
 523
 524static const struct fw_address_region low_memory_region =
 525	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 526
 527#if 0
 528const struct fw_address_region fw_private_region =
 529	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 530const struct fw_address_region fw_csr_region =
 531	{ .start = CSR_REGISTER_BASE,
 532	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 533const struct fw_address_region fw_unit_space_region =
 534	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 535#endif  /*  0  */
 536
 537static bool is_in_fcp_region(u64 offset, size_t length)
 538{
 539	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 540		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 541}
 542
 543/**
 544 * fw_core_add_address_handler() - register for incoming requests
 545 * @handler:	callback
 546 * @region:	region in the IEEE 1212 node space address range
 547 *
 548 * region->start, ->end, and handler->length have to be quadlet-aligned.
 549 *
 550 * When a request is received that falls within the specified address range,
 551 * the specified callback is invoked.  The parameters passed to the callback
 552 * give the details of the particular request.
 553 *
 554 * To be called in process context.
 555 * Return value:  0 on success, non-zero otherwise.
 556 *
 557 * The start offset of the handler's address region is determined by
 558 * fw_core_add_address_handler() and is returned in handler->offset.
 559 *
 560 * Address allocations are exclusive, except for the FCP registers.
 561 */
 562int fw_core_add_address_handler(struct fw_address_handler *handler,
 563				const struct fw_address_region *region)
 564{
 565	struct fw_address_handler *other;
 566	int ret = -EBUSY;
 567
 568	if (region->start & 0xffff000000000003ULL ||
 569	    region->start >= region->end ||
 570	    region->end   > 0x0001000000000000ULL ||
 571	    handler->length & 3 ||
 572	    handler->length == 0)
 573		return -EINVAL;
 574
 575	spin_lock(&address_handler_list_lock);
 576
 577	handler->offset = region->start;
 578	while (handler->offset + handler->length <= region->end) {
 579		if (is_in_fcp_region(handler->offset, handler->length))
 580			other = NULL;
 581		else
 582			other = lookup_overlapping_address_handler
 583					(&address_handler_list,
 584					 handler->offset, handler->length);
 585		if (other != NULL) {
 586			handler->offset += other->length;
 587		} else {
 588			list_add_tail_rcu(&handler->link, &address_handler_list);
 589			ret = 0;
 590			break;
 591		}
 592	}
 593
 594	spin_unlock(&address_handler_list_lock);
 595
 596	return ret;
 597}
 598EXPORT_SYMBOL(fw_core_add_address_handler);
 599
 600/**
 601 * fw_core_remove_address_handler() - unregister an address handler
 602 * @handler: callback
 603 *
 604 * To be called in process context.
 605 *
 606 * When fw_core_remove_address_handler() returns, @handler->callback() is
 607 * guaranteed to not run on any CPU anymore.
 608 */
 609void fw_core_remove_address_handler(struct fw_address_handler *handler)
 610{
 611	spin_lock(&address_handler_list_lock);
 612	list_del_rcu(&handler->link);
 613	spin_unlock(&address_handler_list_lock);
 614	synchronize_rcu();
 615}
 616EXPORT_SYMBOL(fw_core_remove_address_handler);
 617
 618struct fw_request {
 
 619	struct fw_packet response;
 620	u32 request_header[4];
 621	int ack;
 
 622	u32 length;
 623	u32 data[0];
 624};
 625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626static void free_response_callback(struct fw_packet *packet,
 627				   struct fw_card *card, int status)
 628{
 629	struct fw_request *request;
 
 
 
 630
 631	request = container_of(packet, struct fw_request, response);
 632	kfree(request);
 633}
 634
 635int fw_get_response_length(struct fw_request *r)
 636{
 637	int tcode, ext_tcode, data_length;
 638
 639	tcode = HEADER_GET_TCODE(r->request_header[0]);
 640
 641	switch (tcode) {
 642	case TCODE_WRITE_QUADLET_REQUEST:
 643	case TCODE_WRITE_BLOCK_REQUEST:
 644		return 0;
 645
 646	case TCODE_READ_QUADLET_REQUEST:
 647		return 4;
 648
 649	case TCODE_READ_BLOCK_REQUEST:
 650		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 651		return data_length;
 652
 653	case TCODE_LOCK_REQUEST:
 654		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 655		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 656		switch (ext_tcode) {
 657		case EXTCODE_FETCH_ADD:
 658		case EXTCODE_LITTLE_ADD:
 659			return data_length;
 660		default:
 661			return data_length / 2;
 662		}
 663
 664	default:
 665		WARN(1, "wrong tcode %d\n", tcode);
 666		return 0;
 667	}
 668}
 669
 670void fw_fill_response(struct fw_packet *response, u32 *request_header,
 671		      int rcode, void *payload, size_t length)
 672{
 673	int tcode, tlabel, extended_tcode, source, destination;
 674
 675	tcode          = HEADER_GET_TCODE(request_header[0]);
 676	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 677	source         = HEADER_GET_DESTINATION(request_header[0]);
 678	destination    = HEADER_GET_SOURCE(request_header[1]);
 679	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 680
 681	response->header[0] =
 682		HEADER_RETRY(RETRY_1) |
 683		HEADER_TLABEL(tlabel) |
 684		HEADER_DESTINATION(destination);
 685	response->header[1] =
 686		HEADER_SOURCE(source) |
 687		HEADER_RCODE(rcode);
 688	response->header[2] = 0;
 689
 690	switch (tcode) {
 691	case TCODE_WRITE_QUADLET_REQUEST:
 692	case TCODE_WRITE_BLOCK_REQUEST:
 693		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 694		response->header_length = 12;
 695		response->payload_length = 0;
 696		break;
 697
 698	case TCODE_READ_QUADLET_REQUEST:
 699		response->header[0] |=
 700			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 701		if (payload != NULL)
 702			response->header[3] = *(u32 *)payload;
 703		else
 704			response->header[3] = 0;
 705		response->header_length = 16;
 706		response->payload_length = 0;
 707		break;
 708
 709	case TCODE_READ_BLOCK_REQUEST:
 710	case TCODE_LOCK_REQUEST:
 711		response->header[0] |= HEADER_TCODE(tcode + 2);
 712		response->header[3] =
 713			HEADER_DATA_LENGTH(length) |
 714			HEADER_EXTENDED_TCODE(extended_tcode);
 715		response->header_length = 16;
 716		response->payload = payload;
 717		response->payload_length = length;
 718		break;
 719
 720	default:
 721		WARN(1, "wrong tcode %d\n", tcode);
 722	}
 723
 724	response->payload_mapped = false;
 725}
 726EXPORT_SYMBOL(fw_fill_response);
 727
 728static u32 compute_split_timeout_timestamp(struct fw_card *card,
 729					   u32 request_timestamp)
 730{
 731	unsigned int cycles;
 732	u32 timestamp;
 733
 734	cycles = card->split_timeout_cycles;
 735	cycles += request_timestamp & 0x1fff;
 736
 737	timestamp = request_timestamp & ~0x1fff;
 738	timestamp += (cycles / 8000) << 13;
 739	timestamp |= cycles % 8000;
 740
 741	return timestamp;
 742}
 743
 744static struct fw_request *allocate_request(struct fw_card *card,
 745					   struct fw_packet *p)
 746{
 747	struct fw_request *request;
 748	u32 *data, length;
 749	int request_tcode;
 750
 751	request_tcode = HEADER_GET_TCODE(p->header[0]);
 752	switch (request_tcode) {
 753	case TCODE_WRITE_QUADLET_REQUEST:
 754		data = &p->header[3];
 755		length = 4;
 756		break;
 757
 758	case TCODE_WRITE_BLOCK_REQUEST:
 759	case TCODE_LOCK_REQUEST:
 760		data = p->payload;
 761		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 762		break;
 763
 764	case TCODE_READ_QUADLET_REQUEST:
 765		data = NULL;
 766		length = 4;
 767		break;
 768
 769	case TCODE_READ_BLOCK_REQUEST:
 770		data = NULL;
 771		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 772		break;
 773
 774	default:
 775		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 776			 p->header[0], p->header[1], p->header[2]);
 777		return NULL;
 778	}
 779
 780	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 781	if (request == NULL)
 782		return NULL;
 
 783
 784	request->response.speed = p->speed;
 785	request->response.timestamp =
 786			compute_split_timeout_timestamp(card, p->timestamp);
 787	request->response.generation = p->generation;
 788	request->response.ack = 0;
 789	request->response.callback = free_response_callback;
 790	request->ack = p->ack;
 
 791	request->length = length;
 792	if (data)
 793		memcpy(request->data, data, length);
 794
 795	memcpy(request->request_header, p->header, sizeof(p->header));
 796
 797	return request;
 798}
 799
 
 
 
 
 
 
 
 
 
 800void fw_send_response(struct fw_card *card,
 801		      struct fw_request *request, int rcode)
 802{
 803	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 804		return;
 805
 806	/* unified transaction or broadcast transaction: don't respond */
 807	if (request->ack != ACK_PENDING ||
 808	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 809		kfree(request);
 810		return;
 811	}
 812
 813	if (rcode == RCODE_COMPLETE)
 814		fw_fill_response(&request->response, request->request_header,
 815				 rcode, request->data,
 816				 fw_get_response_length(request));
 817	else
 818		fw_fill_response(&request->response, request->request_header,
 819				 rcode, NULL, 0);
 820
 
 
 
 821	card->driver->send_response(card, &request->response);
 822}
 823EXPORT_SYMBOL(fw_send_response);
 824
 825/**
 826 * fw_get_request_speed() - returns speed at which the @request was received
 827 * @request: firewire request data
 828 */
 829int fw_get_request_speed(struct fw_request *request)
 830{
 831	return request->response.speed;
 832}
 833EXPORT_SYMBOL(fw_get_request_speed);
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835static void handle_exclusive_region_request(struct fw_card *card,
 836					    struct fw_packet *p,
 837					    struct fw_request *request,
 838					    unsigned long long offset)
 839{
 840	struct fw_address_handler *handler;
 841	int tcode, destination, source;
 842
 843	destination = HEADER_GET_DESTINATION(p->header[0]);
 844	source      = HEADER_GET_SOURCE(p->header[1]);
 845	tcode       = HEADER_GET_TCODE(p->header[0]);
 846	if (tcode == TCODE_LOCK_REQUEST)
 847		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 848
 849	rcu_read_lock();
 850	handler = lookup_enclosing_address_handler(&address_handler_list,
 851						   offset, request->length);
 852	if (handler)
 853		handler->address_callback(card, request,
 854					  tcode, destination, source,
 855					  p->generation, offset,
 856					  request->data, request->length,
 857					  handler->callback_data);
 858	rcu_read_unlock();
 859
 860	if (!handler)
 861		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 862}
 863
 864static void handle_fcp_region_request(struct fw_card *card,
 865				      struct fw_packet *p,
 866				      struct fw_request *request,
 867				      unsigned long long offset)
 868{
 869	struct fw_address_handler *handler;
 870	int tcode, destination, source;
 871
 872	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 873	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 874	    request->length > 0x200) {
 875		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 876
 877		return;
 878	}
 879
 880	tcode       = HEADER_GET_TCODE(p->header[0]);
 881	destination = HEADER_GET_DESTINATION(p->header[0]);
 882	source      = HEADER_GET_SOURCE(p->header[1]);
 883
 884	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 885	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 886		fw_send_response(card, request, RCODE_TYPE_ERROR);
 887
 888		return;
 889	}
 890
 891	rcu_read_lock();
 892	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 893		if (is_enclosing_handler(handler, offset, request->length))
 894			handler->address_callback(card, NULL, tcode,
 895						  destination, source,
 896						  p->generation, offset,
 897						  request->data,
 898						  request->length,
 899						  handler->callback_data);
 900	}
 901	rcu_read_unlock();
 902
 903	fw_send_response(card, request, RCODE_COMPLETE);
 904}
 905
 906void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 907{
 908	struct fw_request *request;
 909	unsigned long long offset;
 910
 911	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 912		return;
 913
 914	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 915		fw_cdev_handle_phy_packet(card, p);
 916		return;
 917	}
 918
 919	request = allocate_request(card, p);
 920	if (request == NULL) {
 921		/* FIXME: send statically allocated busy packet. */
 922		return;
 923	}
 924
 925	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 926		p->header[2];
 927
 928	if (!is_in_fcp_region(offset, request->length))
 929		handle_exclusive_region_request(card, p, request, offset);
 930	else
 931		handle_fcp_region_request(card, p, request, offset);
 932
 933}
 934EXPORT_SYMBOL(fw_core_handle_request);
 935
 936void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 937{
 938	struct fw_transaction *t;
 939	unsigned long flags;
 940	u32 *data;
 941	size_t data_length;
 942	int tcode, tlabel, source, rcode;
 943
 944	tcode	= HEADER_GET_TCODE(p->header[0]);
 945	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 946	source	= HEADER_GET_SOURCE(p->header[1]);
 947	rcode	= HEADER_GET_RCODE(p->header[1]);
 948
 949	spin_lock_irqsave(&card->lock, flags);
 950	list_for_each_entry(t, &card->transaction_list, link) {
 951		if (t->node_id == source && t->tlabel == tlabel) {
 952			if (!try_cancel_split_timeout(t)) {
 953				spin_unlock_irqrestore(&card->lock, flags);
 954				goto timed_out;
 955			}
 956			list_del_init(&t->link);
 957			card->tlabel_mask &= ~(1ULL << t->tlabel);
 
 958			break;
 959		}
 960	}
 961	spin_unlock_irqrestore(&card->lock, flags);
 962
 963	if (&t->link == &card->transaction_list) {
 964 timed_out:
 965		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 966			  source, tlabel);
 967		return;
 968	}
 969
 970	/*
 971	 * FIXME: sanity check packet, is length correct, does tcodes
 972	 * and addresses match.
 973	 */
 974
 975	switch (tcode) {
 976	case TCODE_READ_QUADLET_RESPONSE:
 977		data = (u32 *) &p->header[3];
 978		data_length = 4;
 979		break;
 980
 981	case TCODE_WRITE_RESPONSE:
 982		data = NULL;
 983		data_length = 0;
 984		break;
 985
 986	case TCODE_READ_BLOCK_RESPONSE:
 987	case TCODE_LOCK_RESPONSE:
 988		data = p->payload;
 989		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 990		break;
 991
 992	default:
 993		/* Should never happen, this is just to shut up gcc. */
 994		data = NULL;
 995		data_length = 0;
 996		break;
 997	}
 998
 999	/*
1000	 * The response handler may be executed while the request handler
1001	 * is still pending.  Cancel the request handler.
1002	 */
1003	card->driver->cancel_packet(card, &t->packet);
1004
1005	t->callback(card, rcode, data, data_length, t->callback_data);
 
 
 
 
 
1006}
1007EXPORT_SYMBOL(fw_core_handle_response);
1008
1009/**
1010 * fw_rcode_string - convert a firewire result code to an error description
1011 * @rcode: the result code
1012 */
1013const char *fw_rcode_string(int rcode)
1014{
1015	static const char *const names[] = {
1016		[RCODE_COMPLETE]       = "no error",
1017		[RCODE_CONFLICT_ERROR] = "conflict error",
1018		[RCODE_DATA_ERROR]     = "data error",
1019		[RCODE_TYPE_ERROR]     = "type error",
1020		[RCODE_ADDRESS_ERROR]  = "address error",
1021		[RCODE_SEND_ERROR]     = "send error",
1022		[RCODE_CANCELLED]      = "timeout",
1023		[RCODE_BUSY]           = "busy",
1024		[RCODE_GENERATION]     = "bus reset",
1025		[RCODE_NO_ACK]         = "no ack",
1026	};
1027
1028	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1029		return names[rcode];
1030	else
1031		return "unknown";
1032}
1033EXPORT_SYMBOL(fw_rcode_string);
1034
1035static const struct fw_address_region topology_map_region =
1036	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1037	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1038
1039static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1040		int tcode, int destination, int source, int generation,
1041		unsigned long long offset, void *payload, size_t length,
1042		void *callback_data)
1043{
1044	int start;
1045
1046	if (!TCODE_IS_READ_REQUEST(tcode)) {
1047		fw_send_response(card, request, RCODE_TYPE_ERROR);
1048		return;
1049	}
1050
1051	if ((offset & 3) > 0 || (length & 3) > 0) {
1052		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1053		return;
1054	}
1055
1056	start = (offset - topology_map_region.start) / 4;
1057	memcpy(payload, &card->topology_map[start], length);
1058
1059	fw_send_response(card, request, RCODE_COMPLETE);
1060}
1061
1062static struct fw_address_handler topology_map = {
1063	.length			= 0x400,
1064	.address_callback	= handle_topology_map,
1065};
1066
1067static const struct fw_address_region registers_region =
1068	{ .start = CSR_REGISTER_BASE,
1069	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1070
1071static void update_split_timeout(struct fw_card *card)
1072{
1073	unsigned int cycles;
1074
1075	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1076
1077	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1078	cycles = clamp(cycles, 800u, 3u * 8000u);
1079
1080	card->split_timeout_cycles = cycles;
1081	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1082}
1083
1084static void handle_registers(struct fw_card *card, struct fw_request *request,
1085		int tcode, int destination, int source, int generation,
1086		unsigned long long offset, void *payload, size_t length,
1087		void *callback_data)
1088{
1089	int reg = offset & ~CSR_REGISTER_BASE;
1090	__be32 *data = payload;
1091	int rcode = RCODE_COMPLETE;
1092	unsigned long flags;
1093
1094	switch (reg) {
1095	case CSR_PRIORITY_BUDGET:
1096		if (!card->priority_budget_implemented) {
1097			rcode = RCODE_ADDRESS_ERROR;
1098			break;
1099		}
1100		/* else fall through */
1101
1102	case CSR_NODE_IDS:
1103		/*
1104		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1105		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1106		 */
1107		/* fall through */
1108
1109	case CSR_STATE_CLEAR:
1110	case CSR_STATE_SET:
1111	case CSR_CYCLE_TIME:
1112	case CSR_BUS_TIME:
1113	case CSR_BUSY_TIMEOUT:
1114		if (tcode == TCODE_READ_QUADLET_REQUEST)
1115			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1116		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1117			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1118		else
1119			rcode = RCODE_TYPE_ERROR;
1120		break;
1121
1122	case CSR_RESET_START:
1123		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1124			card->driver->write_csr(card, CSR_STATE_CLEAR,
1125						CSR_STATE_BIT_ABDICATE);
1126		else
1127			rcode = RCODE_TYPE_ERROR;
1128		break;
1129
1130	case CSR_SPLIT_TIMEOUT_HI:
1131		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1132			*data = cpu_to_be32(card->split_timeout_hi);
1133		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1134			spin_lock_irqsave(&card->lock, flags);
1135			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1136			update_split_timeout(card);
1137			spin_unlock_irqrestore(&card->lock, flags);
1138		} else {
1139			rcode = RCODE_TYPE_ERROR;
1140		}
1141		break;
1142
1143	case CSR_SPLIT_TIMEOUT_LO:
1144		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145			*data = cpu_to_be32(card->split_timeout_lo);
1146		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147			spin_lock_irqsave(&card->lock, flags);
1148			card->split_timeout_lo =
1149					be32_to_cpu(*data) & 0xfff80000;
1150			update_split_timeout(card);
1151			spin_unlock_irqrestore(&card->lock, flags);
1152		} else {
1153			rcode = RCODE_TYPE_ERROR;
1154		}
1155		break;
1156
1157	case CSR_MAINT_UTILITY:
1158		if (tcode == TCODE_READ_QUADLET_REQUEST)
1159			*data = card->maint_utility_register;
1160		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1161			card->maint_utility_register = *data;
1162		else
1163			rcode = RCODE_TYPE_ERROR;
1164		break;
1165
1166	case CSR_BROADCAST_CHANNEL:
1167		if (tcode == TCODE_READ_QUADLET_REQUEST)
1168			*data = cpu_to_be32(card->broadcast_channel);
1169		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1170			card->broadcast_channel =
1171			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1172			    BROADCAST_CHANNEL_INITIAL;
1173		else
1174			rcode = RCODE_TYPE_ERROR;
1175		break;
1176
1177	case CSR_BUS_MANAGER_ID:
1178	case CSR_BANDWIDTH_AVAILABLE:
1179	case CSR_CHANNELS_AVAILABLE_HI:
1180	case CSR_CHANNELS_AVAILABLE_LO:
1181		/*
1182		 * FIXME: these are handled by the OHCI hardware and
1183		 * the stack never sees these request. If we add
1184		 * support for a new type of controller that doesn't
1185		 * handle this in hardware we need to deal with these
1186		 * transactions.
1187		 */
1188		BUG();
1189		break;
1190
1191	default:
1192		rcode = RCODE_ADDRESS_ERROR;
1193		break;
1194	}
1195
1196	fw_send_response(card, request, rcode);
1197}
1198
1199static struct fw_address_handler registers = {
1200	.length			= 0x400,
1201	.address_callback	= handle_registers,
1202};
1203
1204static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1205		int tcode, int destination, int source, int generation,
1206		unsigned long long offset, void *payload, size_t length,
1207		void *callback_data)
1208{
1209	/*
1210	 * This catches requests not handled by the physical DMA unit,
1211	 * i.e., wrong transaction types or unauthorized source nodes.
1212	 */
1213	fw_send_response(card, request, RCODE_TYPE_ERROR);
1214}
1215
1216static struct fw_address_handler low_memory = {
1217	.length			= FW_MAX_PHYSICAL_RANGE,
1218	.address_callback	= handle_low_memory,
1219};
1220
1221MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1222MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1223MODULE_LICENSE("GPL");
1224
1225static const u32 vendor_textual_descriptor[] = {
1226	/* textual descriptor leaf () */
1227	0x00060000,
1228	0x00000000,
1229	0x00000000,
1230	0x4c696e75,		/* L i n u */
1231	0x78204669,		/* x   F i */
1232	0x72657769,		/* r e w i */
1233	0x72650000,		/* r e     */
1234};
1235
1236static const u32 model_textual_descriptor[] = {
1237	/* model descriptor leaf () */
1238	0x00030000,
1239	0x00000000,
1240	0x00000000,
1241	0x4a756a75,		/* J u j u */
1242};
1243
1244static struct fw_descriptor vendor_id_descriptor = {
1245	.length = ARRAY_SIZE(vendor_textual_descriptor),
1246	.immediate = 0x03001f11,
1247	.key = 0x81000000,
1248	.data = vendor_textual_descriptor,
1249};
1250
1251static struct fw_descriptor model_id_descriptor = {
1252	.length = ARRAY_SIZE(model_textual_descriptor),
1253	.immediate = 0x17023901,
1254	.key = 0x81000000,
1255	.data = model_textual_descriptor,
1256};
1257
1258static int __init fw_core_init(void)
1259{
1260	int ret;
1261
1262	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1263	if (!fw_workqueue)
1264		return -ENOMEM;
1265
1266	ret = bus_register(&fw_bus_type);
1267	if (ret < 0) {
1268		destroy_workqueue(fw_workqueue);
1269		return ret;
1270	}
1271
1272	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1273	if (fw_cdev_major < 0) {
1274		bus_unregister(&fw_bus_type);
1275		destroy_workqueue(fw_workqueue);
1276		return fw_cdev_major;
1277	}
1278
1279	fw_core_add_address_handler(&topology_map, &topology_map_region);
1280	fw_core_add_address_handler(&registers, &registers_region);
1281	fw_core_add_address_handler(&low_memory, &low_memory_region);
1282	fw_core_add_descriptor(&vendor_id_descriptor);
1283	fw_core_add_descriptor(&model_id_descriptor);
1284
1285	return 0;
1286}
1287
1288static void __exit fw_core_cleanup(void)
1289{
1290	unregister_chrdev(fw_cdev_major, "firewire");
1291	bus_unregister(&fw_bus_type);
1292	destroy_workqueue(fw_workqueue);
1293	idr_destroy(&fw_device_idr);
1294}
1295
1296module_init(fw_core_init);
1297module_exit(fw_core_cleanup);