Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * TI EDMA DMA engine driver
   4 *
   5 * Copyright 2012 Texas Instruments
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/dmaengine.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/bitmap.h>
  11#include <linux/err.h>
  12#include <linux/init.h>
  13#include <linux/interrupt.h>
  14#include <linux/list.h>
  15#include <linux/module.h>
  16#include <linux/platform_device.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/of.h>
  20#include <linux/of_dma.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_address.h>
 
  23#include <linux/pm_runtime.h>
  24
  25#include <linux/platform_data/edma.h>
  26
  27#include "../dmaengine.h"
  28#include "../virt-dma.h"
  29
  30/* Offsets matching "struct edmacc_param" */
  31#define PARM_OPT		0x00
  32#define PARM_SRC		0x04
  33#define PARM_A_B_CNT		0x08
  34#define PARM_DST		0x0c
  35#define PARM_SRC_DST_BIDX	0x10
  36#define PARM_LINK_BCNTRLD	0x14
  37#define PARM_SRC_DST_CIDX	0x18
  38#define PARM_CCNT		0x1c
  39
  40#define PARM_SIZE		0x20
  41
  42/* Offsets for EDMA CC global channel registers and their shadows */
  43#define SH_ER			0x00	/* 64 bits */
  44#define SH_ECR			0x08	/* 64 bits */
  45#define SH_ESR			0x10	/* 64 bits */
  46#define SH_CER			0x18	/* 64 bits */
  47#define SH_EER			0x20	/* 64 bits */
  48#define SH_EECR			0x28	/* 64 bits */
  49#define SH_EESR			0x30	/* 64 bits */
  50#define SH_SER			0x38	/* 64 bits */
  51#define SH_SECR			0x40	/* 64 bits */
  52#define SH_IER			0x50	/* 64 bits */
  53#define SH_IECR			0x58	/* 64 bits */
  54#define SH_IESR			0x60	/* 64 bits */
  55#define SH_IPR			0x68	/* 64 bits */
  56#define SH_ICR			0x70	/* 64 bits */
  57#define SH_IEVAL		0x78
  58#define SH_QER			0x80
  59#define SH_QEER			0x84
  60#define SH_QEECR		0x88
  61#define SH_QEESR		0x8c
  62#define SH_QSER			0x90
  63#define SH_QSECR		0x94
  64#define SH_SIZE			0x200
  65
  66/* Offsets for EDMA CC global registers */
  67#define EDMA_REV		0x0000
  68#define EDMA_CCCFG		0x0004
  69#define EDMA_QCHMAP		0x0200	/* 8 registers */
  70#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
  71#define EDMA_QDMAQNUM		0x0260
  72#define EDMA_QUETCMAP		0x0280
  73#define EDMA_QUEPRI		0x0284
  74#define EDMA_EMR		0x0300	/* 64 bits */
  75#define EDMA_EMCR		0x0308	/* 64 bits */
  76#define EDMA_QEMR		0x0310
  77#define EDMA_QEMCR		0x0314
  78#define EDMA_CCERR		0x0318
  79#define EDMA_CCERRCLR		0x031c
  80#define EDMA_EEVAL		0x0320
  81#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
  82#define EDMA_QRAE		0x0380	/* 4 registers */
  83#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
  84#define EDMA_QSTAT		0x0600	/* 2 registers */
  85#define EDMA_QWMTHRA		0x0620
  86#define EDMA_QWMTHRB		0x0624
  87#define EDMA_CCSTAT		0x0640
  88
  89#define EDMA_M			0x1000	/* global channel registers */
  90#define EDMA_ECR		0x1008
  91#define EDMA_ECRH		0x100C
  92#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
  93#define EDMA_PARM		0x4000	/* PaRAM entries */
  94
  95#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
  96
  97#define EDMA_DCHMAP		0x0100  /* 64 registers */
  98
  99/* CCCFG register */
 100#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
 101#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
 102#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
 103#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
 104#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
 105#define CHMAP_EXIST		BIT(24)
 106
 107/* CCSTAT register */
 108#define EDMA_CCSTAT_ACTV	BIT(4)
 109
 110/*
 111 * Max of 20 segments per channel to conserve PaRAM slots
 112 * Also note that MAX_NR_SG should be at least the no.of periods
 113 * that are required for ASoC, otherwise DMA prep calls will
 114 * fail. Today davinci-pcm is the only user of this driver and
 115 * requires at least 17 slots, so we setup the default to 20.
 116 */
 117#define MAX_NR_SG		20
 118#define EDMA_MAX_SLOTS		MAX_NR_SG
 119#define EDMA_DESCRIPTORS	16
 120
 121#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
 122#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
 123#define EDMA_CONT_PARAMS_ANY		 1001
 124#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
 125#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 126
 127/*
 128 * 64bit array registers are split into two 32bit registers:
 129 * reg0: channel/event 0-31
 130 * reg1: channel/event 32-63
 131 *
 132 * bit 5 in the channel number tells the array index (0/1)
 133 * bit 0-4 (0x1f) is the bit offset within the register
 134 */
 135#define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
 136#define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
 137
 138/* PaRAM slots are laid out like this */
 139struct edmacc_param {
 140	u32 opt;
 141	u32 src;
 142	u32 a_b_cnt;
 143	u32 dst;
 144	u32 src_dst_bidx;
 145	u32 link_bcntrld;
 146	u32 src_dst_cidx;
 147	u32 ccnt;
 148} __packed;
 149
 150/* fields in edmacc_param.opt */
 151#define SAM		BIT(0)
 152#define DAM		BIT(1)
 153#define SYNCDIM		BIT(2)
 154#define STATIC		BIT(3)
 155#define EDMA_FWID	(0x07 << 8)
 156#define TCCMODE		BIT(11)
 157#define EDMA_TCC(t)	((t) << 12)
 158#define TCINTEN		BIT(20)
 159#define ITCINTEN	BIT(21)
 160#define TCCHEN		BIT(22)
 161#define ITCCHEN		BIT(23)
 162
 163struct edma_pset {
 164	u32				len;
 165	dma_addr_t			addr;
 166	struct edmacc_param		param;
 167};
 168
 169struct edma_desc {
 170	struct virt_dma_desc		vdesc;
 171	struct list_head		node;
 172	enum dma_transfer_direction	direction;
 173	int				cyclic;
 174	bool				polled;
 175	int				absync;
 176	int				pset_nr;
 177	struct edma_chan		*echan;
 178	int				processed;
 179
 180	/*
 181	 * The following 4 elements are used for residue accounting.
 182	 *
 183	 * - processed_stat: the number of SG elements we have traversed
 184	 * so far to cover accounting. This is updated directly to processed
 185	 * during edma_callback and is always <= processed, because processed
 186	 * refers to the number of pending transfer (programmed to EDMA
 187	 * controller), where as processed_stat tracks number of transfers
 188	 * accounted for so far.
 189	 *
 190	 * - residue: The amount of bytes we have left to transfer for this desc
 191	 *
 192	 * - residue_stat: The residue in bytes of data we have covered
 193	 * so far for accounting. This is updated directly to residue
 194	 * during callbacks to keep it current.
 195	 *
 196	 * - sg_len: Tracks the length of the current intermediate transfer,
 197	 * this is required to update the residue during intermediate transfer
 198	 * completion callback.
 199	 */
 200	int				processed_stat;
 201	u32				sg_len;
 202	u32				residue;
 203	u32				residue_stat;
 204
 205	struct edma_pset		pset[] __counted_by(pset_nr);
 206};
 207
 208struct edma_cc;
 209
 210struct edma_tc {
 211	struct device_node		*node;
 212	u16				id;
 213};
 214
 215struct edma_chan {
 216	struct virt_dma_chan		vchan;
 217	struct list_head		node;
 218	struct edma_desc		*edesc;
 219	struct edma_cc			*ecc;
 220	struct edma_tc			*tc;
 221	int				ch_num;
 222	bool				alloced;
 223	bool				hw_triggered;
 224	int				slot[EDMA_MAX_SLOTS];
 225	int				missed;
 226	struct dma_slave_config		cfg;
 227};
 228
 229struct edma_cc {
 230	struct device			*dev;
 231	struct edma_soc_info		*info;
 232	void __iomem			*base;
 233	int				id;
 234	bool				legacy_mode;
 235
 236	/* eDMA3 resource information */
 237	unsigned			num_channels;
 238	unsigned			num_qchannels;
 239	unsigned			num_region;
 240	unsigned			num_slots;
 241	unsigned			num_tc;
 242	bool				chmap_exist;
 243	enum dma_event_q		default_queue;
 244
 245	unsigned int			ccint;
 246	unsigned int			ccerrint;
 247
 248	/*
 249	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 250	 * in use by Linux or if it is allocated to be used by DSP.
 251	 */
 252	unsigned long *slot_inuse;
 253
 254	/*
 255	 * For tracking reserved channels used by DSP.
 256	 * If the bit is cleared, the channel is allocated to be used by DSP
 257	 * and Linux must not touch it.
 258	 */
 259	unsigned long *channels_mask;
 260
 261	struct dma_device		dma_slave;
 262	struct dma_device		*dma_memcpy;
 263	struct edma_chan		*slave_chans;
 264	struct edma_tc			*tc_list;
 265	int				dummy_slot;
 266};
 267
 268/* dummy param set used to (re)initialize parameter RAM slots */
 269static const struct edmacc_param dummy_paramset = {
 270	.link_bcntrld = 0xffff,
 271	.ccnt = 1,
 272};
 273
 274#define EDMA_BINDING_LEGACY	0
 275#define EDMA_BINDING_TPCC	1
 276static const u32 edma_binding_type[] = {
 277	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
 278	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
 279};
 280
 281static const struct of_device_id edma_of_ids[] = {
 282	{
 283		.compatible = "ti,edma3",
 284		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
 285	},
 286	{
 287		.compatible = "ti,edma3-tpcc",
 288		.data = &edma_binding_type[EDMA_BINDING_TPCC],
 289	},
 290	{}
 291};
 292MODULE_DEVICE_TABLE(of, edma_of_ids);
 293
 294static const struct of_device_id edma_tptc_of_ids[] = {
 295	{ .compatible = "ti,edma3-tptc", },
 296	{}
 297};
 298MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
 299
 300static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 301{
 302	return (unsigned int)__raw_readl(ecc->base + offset);
 303}
 304
 305static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 306{
 307	__raw_writel(val, ecc->base + offset);
 308}
 309
 310static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 311			       unsigned or)
 312{
 313	unsigned val = edma_read(ecc, offset);
 314
 315	val &= and;
 316	val |= or;
 317	edma_write(ecc, offset, val);
 318}
 319
 
 
 
 
 
 
 
 
 320static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 321{
 322	unsigned val = edma_read(ecc, offset);
 323
 324	val |= or;
 325	edma_write(ecc, offset, val);
 326}
 327
 328static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 329					   int i)
 330{
 331	return edma_read(ecc, offset + (i << 2));
 332}
 333
 334static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 335				    unsigned val)
 336{
 337	edma_write(ecc, offset + (i << 2), val);
 338}
 339
 340static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 341				     unsigned and, unsigned or)
 342{
 343	edma_modify(ecc, offset + (i << 2), and, or);
 344}
 345
 
 
 
 
 
 
 346static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 347				  unsigned or)
 348{
 349	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 350}
 351
 352static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 353				     int j, unsigned val)
 354{
 355	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 356}
 357
 
 
 
 
 
 358static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 359						   int offset, int i)
 360{
 361	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 362}
 363
 364static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 365				      unsigned val)
 366{
 367	edma_write(ecc, EDMA_SHADOW0 + offset, val);
 368}
 369
 370static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 371					    int i, unsigned val)
 372{
 373	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 374}
 375
 
 
 
 
 
 
 
 
 
 
 
 
 376static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 377				     int param_no, unsigned and, unsigned or)
 378{
 379	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 380}
 381
 
 
 
 
 
 
 
 
 
 
 
 
 382static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 383					  int priority)
 384{
 385	int bit = queue_no * 4;
 386
 387	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 388}
 389
 390static void edma_set_chmap(struct edma_chan *echan, int slot)
 391{
 392	struct edma_cc *ecc = echan->ecc;
 393	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 394
 395	if (ecc->chmap_exist) {
 396		slot = EDMA_CHAN_SLOT(slot);
 397		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 398	}
 399}
 400
 401static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 402{
 403	struct edma_cc *ecc = echan->ecc;
 404	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 405	int idx = EDMA_REG_ARRAY_INDEX(channel);
 406	int ch_bit = EDMA_CHANNEL_BIT(channel);
 407
 408	if (enable) {
 409		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 410		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
 411	} else {
 412		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
 413	}
 414}
 415
 416/*
 417 * paRAM slot management functions
 418 */
 419static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 420			    const struct edmacc_param *param)
 421{
 422	slot = EDMA_CHAN_SLOT(slot);
 423	if (slot >= ecc->num_slots)
 424		return;
 425	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 426}
 427
 428static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
 429			   struct edmacc_param *param)
 430{
 431	slot = EDMA_CHAN_SLOT(slot);
 432	if (slot >= ecc->num_slots)
 433		return -EINVAL;
 434	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 435
 436	return 0;
 437}
 438
 439/**
 440 * edma_alloc_slot - allocate DMA parameter RAM
 441 * @ecc: pointer to edma_cc struct
 442 * @slot: specific slot to allocate; negative for "any unused slot"
 443 *
 444 * This allocates a parameter RAM slot, initializing it to hold a
 445 * dummy transfer.  Slots allocated using this routine have not been
 446 * mapped to a hardware DMA channel, and will normally be used by
 447 * linking to them from a slot associated with a DMA channel.
 448 *
 449 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 450 * slots may be allocated on behalf of DSP firmware.
 451 *
 452 * Returns the number of the slot, else negative errno.
 453 */
 454static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 455{
 456	if (slot >= 0) {
 457		slot = EDMA_CHAN_SLOT(slot);
 458		/* Requesting entry paRAM slot for a HW triggered channel. */
 459		if (ecc->chmap_exist && slot < ecc->num_channels)
 460			slot = EDMA_SLOT_ANY;
 461	}
 462
 463	if (slot < 0) {
 464		if (ecc->chmap_exist)
 465			slot = 0;
 466		else
 467			slot = ecc->num_channels;
 468		for (;;) {
 469			slot = find_next_zero_bit(ecc->slot_inuse,
 470						  ecc->num_slots,
 471						  slot);
 472			if (slot == ecc->num_slots)
 473				return -ENOMEM;
 474			if (!test_and_set_bit(slot, ecc->slot_inuse))
 475				break;
 476		}
 477	} else if (slot >= ecc->num_slots) {
 478		return -EINVAL;
 479	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 480		return -EBUSY;
 481	}
 482
 483	edma_write_slot(ecc, slot, &dummy_paramset);
 484
 485	return EDMA_CTLR_CHAN(ecc->id, slot);
 486}
 487
 488static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 489{
 490	slot = EDMA_CHAN_SLOT(slot);
 491	if (slot >= ecc->num_slots)
 492		return;
 493
 494	edma_write_slot(ecc, slot, &dummy_paramset);
 495	clear_bit(slot, ecc->slot_inuse);
 496}
 497
 498/**
 499 * edma_link - link one parameter RAM slot to another
 500 * @ecc: pointer to edma_cc struct
 501 * @from: parameter RAM slot originating the link
 502 * @to: parameter RAM slot which is the link target
 503 *
 504 * The originating slot should not be part of any active DMA transfer.
 505 */
 506static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 507{
 508	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 509		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 510
 511	from = EDMA_CHAN_SLOT(from);
 512	to = EDMA_CHAN_SLOT(to);
 513	if (from >= ecc->num_slots || to >= ecc->num_slots)
 514		return;
 515
 516	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 517			  PARM_OFFSET(to));
 518}
 519
 520/**
 521 * edma_get_position - returns the current transfer point
 522 * @ecc: pointer to edma_cc struct
 523 * @slot: parameter RAM slot being examined
 524 * @dst:  true selects the dest position, false the source
 525 *
 526 * Returns the position of the current active slot
 527 */
 528static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 529				    bool dst)
 530{
 531	u32 offs;
 532
 533	slot = EDMA_CHAN_SLOT(slot);
 534	offs = PARM_OFFSET(slot);
 535	offs += dst ? PARM_DST : PARM_SRC;
 536
 537	return edma_read(ecc, offs);
 538}
 539
 540/*
 541 * Channels with event associations will be triggered by their hardware
 542 * events, and channels without such associations will be triggered by
 543 * software.  (At this writing there is no interface for using software
 544 * triggers except with channels that don't support hardware triggers.)
 545 */
 546static void edma_start(struct edma_chan *echan)
 547{
 548	struct edma_cc *ecc = echan->ecc;
 549	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 550	int idx = EDMA_REG_ARRAY_INDEX(channel);
 551	int ch_bit = EDMA_CHANNEL_BIT(channel);
 552
 553	if (!echan->hw_triggered) {
 554		/* EDMA channels without event association */
 555		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 556			edma_shadow0_read_array(ecc, SH_ESR, idx));
 557		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 558	} else {
 559		/* EDMA channel with event association */
 560		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
 561			edma_shadow0_read_array(ecc, SH_ER, idx));
 562		/* Clear any pending event or error */
 563		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
 564		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 565		/* Clear any SER */
 566		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 567		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
 568		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 569			edma_shadow0_read_array(ecc, SH_EER, idx));
 570	}
 571}
 572
 573static void edma_stop(struct edma_chan *echan)
 574{
 575	struct edma_cc *ecc = echan->ecc;
 576	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 577	int idx = EDMA_REG_ARRAY_INDEX(channel);
 578	int ch_bit = EDMA_CHANNEL_BIT(channel);
 579
 580	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
 581	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 582	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 583	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 584
 585	/* clear possibly pending completion interrupt */
 586	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 587
 588	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 589		edma_shadow0_read_array(ecc, SH_EER, idx));
 590
 591	/* REVISIT:  consider guarding against inappropriate event
 592	 * chaining by overwriting with dummy_paramset.
 593	 */
 594}
 595
 596/*
 597 * Temporarily disable EDMA hardware events on the specified channel,
 598 * preventing them from triggering new transfers
 599 */
 600static void edma_pause(struct edma_chan *echan)
 601{
 602	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 603
 604	edma_shadow0_write_array(echan->ecc, SH_EECR,
 605				 EDMA_REG_ARRAY_INDEX(channel),
 606				 EDMA_CHANNEL_BIT(channel));
 607}
 608
 609/* Re-enable EDMA hardware events on the specified channel.  */
 610static void edma_resume(struct edma_chan *echan)
 611{
 612	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 613
 614	edma_shadow0_write_array(echan->ecc, SH_EESR,
 615				 EDMA_REG_ARRAY_INDEX(channel),
 616				 EDMA_CHANNEL_BIT(channel));
 617}
 618
 619static void edma_trigger_channel(struct edma_chan *echan)
 620{
 621	struct edma_cc *ecc = echan->ecc;
 622	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 623	int idx = EDMA_REG_ARRAY_INDEX(channel);
 624	int ch_bit = EDMA_CHANNEL_BIT(channel);
 625
 626	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 627
 628	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 629		edma_shadow0_read_array(ecc, SH_ESR, idx));
 630}
 631
 632static void edma_clean_channel(struct edma_chan *echan)
 633{
 634	struct edma_cc *ecc = echan->ecc;
 635	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 636	int idx = EDMA_REG_ARRAY_INDEX(channel);
 637	int ch_bit = EDMA_CHANNEL_BIT(channel);
 638
 639	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
 640		edma_read_array(ecc, EDMA_EMR, idx));
 641	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 642	/* Clear the corresponding EMR bits */
 643	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 644	/* Clear any SER */
 645	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 646	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 647}
 648
 649/* Move channel to a specific event queue */
 650static void edma_assign_channel_eventq(struct edma_chan *echan,
 651				       enum dma_event_q eventq_no)
 652{
 653	struct edma_cc *ecc = echan->ecc;
 654	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 655	int bit = (channel & 0x7) * 4;
 656
 657	/* default to low priority queue */
 658	if (eventq_no == EVENTQ_DEFAULT)
 659		eventq_no = ecc->default_queue;
 660	if (eventq_no >= ecc->num_tc)
 661		return;
 662
 663	eventq_no &= 7;
 664	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 665			  eventq_no << bit);
 666}
 667
 668static int edma_alloc_channel(struct edma_chan *echan,
 669			      enum dma_event_q eventq_no)
 670{
 671	struct edma_cc *ecc = echan->ecc;
 672	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 673
 674	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
 675		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
 676			echan->ch_num);
 677		return -EINVAL;
 678	}
 679
 680	/* ensure access through shadow region 0 */
 681	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
 682		       EDMA_CHANNEL_BIT(channel));
 683
 684	/* ensure no events are pending */
 685	edma_stop(echan);
 686
 687	edma_setup_interrupt(echan, true);
 688
 689	edma_assign_channel_eventq(echan, eventq_no);
 690
 691	return 0;
 692}
 693
 694static void edma_free_channel(struct edma_chan *echan)
 695{
 696	/* ensure no events are pending */
 697	edma_stop(echan);
 698	/* REVISIT should probably take out of shadow region 0 */
 699	edma_setup_interrupt(echan, false);
 700}
 701
 
 
 
 
 
 702static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 703{
 704	return container_of(c, struct edma_chan, vchan.chan);
 705}
 706
 707static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 708{
 709	return container_of(tx, struct edma_desc, vdesc.tx);
 710}
 711
 712static void edma_desc_free(struct virt_dma_desc *vdesc)
 713{
 714	kfree(container_of(vdesc, struct edma_desc, vdesc));
 715}
 716
 717/* Dispatch a queued descriptor to the controller (caller holds lock) */
 718static void edma_execute(struct edma_chan *echan)
 719{
 720	struct edma_cc *ecc = echan->ecc;
 721	struct virt_dma_desc *vdesc;
 722	struct edma_desc *edesc;
 723	struct device *dev = echan->vchan.chan.device->dev;
 724	int i, j, left, nslots;
 725
 726	if (!echan->edesc) {
 727		/* Setup is needed for the first transfer */
 728		vdesc = vchan_next_desc(&echan->vchan);
 729		if (!vdesc)
 730			return;
 731		list_del(&vdesc->node);
 732		echan->edesc = to_edma_desc(&vdesc->tx);
 733	}
 734
 735	edesc = echan->edesc;
 736
 737	/* Find out how many left */
 738	left = edesc->pset_nr - edesc->processed;
 739	nslots = min(MAX_NR_SG, left);
 740	edesc->sg_len = 0;
 741
 742	/* Write descriptor PaRAM set(s) */
 743	for (i = 0; i < nslots; i++) {
 744		j = i + edesc->processed;
 745		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 746		edesc->sg_len += edesc->pset[j].len;
 747		dev_vdbg(dev,
 748			 "\n pset[%d]:\n"
 749			 "  chnum\t%d\n"
 750			 "  slot\t%d\n"
 751			 "  opt\t%08x\n"
 752			 "  src\t%08x\n"
 753			 "  dst\t%08x\n"
 754			 "  abcnt\t%08x\n"
 755			 "  ccnt\t%08x\n"
 756			 "  bidx\t%08x\n"
 757			 "  cidx\t%08x\n"
 758			 "  lkrld\t%08x\n",
 759			 j, echan->ch_num, echan->slot[i],
 760			 edesc->pset[j].param.opt,
 761			 edesc->pset[j].param.src,
 762			 edesc->pset[j].param.dst,
 763			 edesc->pset[j].param.a_b_cnt,
 764			 edesc->pset[j].param.ccnt,
 765			 edesc->pset[j].param.src_dst_bidx,
 766			 edesc->pset[j].param.src_dst_cidx,
 767			 edesc->pset[j].param.link_bcntrld);
 768		/* Link to the previous slot if not the last set */
 769		if (i != (nslots - 1))
 770			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 771	}
 772
 773	edesc->processed += nslots;
 774
 775	/*
 776	 * If this is either the last set in a set of SG-list transactions
 777	 * then setup a link to the dummy slot, this results in all future
 778	 * events being absorbed and that's OK because we're done
 779	 */
 780	if (edesc->processed == edesc->pset_nr) {
 781		if (edesc->cyclic)
 782			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 783		else
 784			edma_link(ecc, echan->slot[nslots - 1],
 785				  echan->ecc->dummy_slot);
 786	}
 787
 788	if (echan->missed) {
 789		/*
 790		 * This happens due to setup times between intermediate
 791		 * transfers in long SG lists which have to be broken up into
 792		 * transfers of MAX_NR_SG
 793		 */
 794		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 795		edma_clean_channel(echan);
 796		edma_stop(echan);
 797		edma_start(echan);
 798		edma_trigger_channel(echan);
 799		echan->missed = 0;
 800	} else if (edesc->processed <= MAX_NR_SG) {
 801		dev_dbg(dev, "first transfer starting on channel %d\n",
 802			echan->ch_num);
 803		edma_start(echan);
 804	} else {
 805		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 806			echan->ch_num, edesc->processed);
 807		edma_resume(echan);
 808	}
 809}
 810
 811static int edma_terminate_all(struct dma_chan *chan)
 812{
 813	struct edma_chan *echan = to_edma_chan(chan);
 814	unsigned long flags;
 815	LIST_HEAD(head);
 816
 817	spin_lock_irqsave(&echan->vchan.lock, flags);
 818
 819	/*
 820	 * Stop DMA activity: we assume the callback will not be called
 821	 * after edma_dma() returns (even if it does, it will see
 822	 * echan->edesc is NULL and exit.)
 823	 */
 824	if (echan->edesc) {
 825		edma_stop(echan);
 826		/* Move the cyclic channel back to default queue */
 827		if (!echan->tc && echan->edesc->cyclic)
 828			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 829
 830		vchan_terminate_vdesc(&echan->edesc->vdesc);
 831		echan->edesc = NULL;
 832	}
 833
 834	vchan_get_all_descriptors(&echan->vchan, &head);
 835	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 836	vchan_dma_desc_free_list(&echan->vchan, &head);
 837
 838	return 0;
 839}
 840
 841static void edma_synchronize(struct dma_chan *chan)
 842{
 843	struct edma_chan *echan = to_edma_chan(chan);
 844
 845	vchan_synchronize(&echan->vchan);
 846}
 847
 848static int edma_slave_config(struct dma_chan *chan,
 849	struct dma_slave_config *cfg)
 850{
 851	struct edma_chan *echan = to_edma_chan(chan);
 852
 853	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 854	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 855		return -EINVAL;
 856
 857	if (cfg->src_maxburst > chan->device->max_burst ||
 858	    cfg->dst_maxburst > chan->device->max_burst)
 859		return -EINVAL;
 860
 861	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 862
 863	return 0;
 864}
 865
 866static int edma_dma_pause(struct dma_chan *chan)
 867{
 868	struct edma_chan *echan = to_edma_chan(chan);
 869
 870	if (!echan->edesc)
 871		return -EINVAL;
 872
 873	edma_pause(echan);
 874	return 0;
 875}
 876
 877static int edma_dma_resume(struct dma_chan *chan)
 878{
 879	struct edma_chan *echan = to_edma_chan(chan);
 880
 881	edma_resume(echan);
 882	return 0;
 883}
 884
 885/*
 886 * A PaRAM set configuration abstraction used by other modes
 887 * @chan: Channel who's PaRAM set we're configuring
 888 * @pset: PaRAM set to initialize and setup.
 889 * @src_addr: Source address of the DMA
 890 * @dst_addr: Destination address of the DMA
 891 * @burst: In units of dev_width, how much to send
 892 * @dev_width: How much is the dev_width
 893 * @dma_length: Total length of the DMA transfer
 894 * @direction: Direction of the transfer
 895 */
 896static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 897			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 898			    unsigned int acnt, unsigned int dma_length,
 899			    enum dma_transfer_direction direction)
 900{
 901	struct edma_chan *echan = to_edma_chan(chan);
 902	struct device *dev = chan->device->dev;
 903	struct edmacc_param *param = &epset->param;
 904	int bcnt, ccnt, cidx;
 905	int src_bidx, dst_bidx, src_cidx, dst_cidx;
 906	int absync;
 907
 908	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 909	if (!burst)
 910		burst = 1;
 911	/*
 912	 * If the maxburst is equal to the fifo width, use
 913	 * A-synced transfers. This allows for large contiguous
 914	 * buffer transfers using only one PaRAM set.
 915	 */
 916	if (burst == 1) {
 917		/*
 918		 * For the A-sync case, bcnt and ccnt are the remainder
 919		 * and quotient respectively of the division of:
 920		 * (dma_length / acnt) by (SZ_64K -1). This is so
 921		 * that in case bcnt over flows, we have ccnt to use.
 922		 * Note: In A-sync transfer only, bcntrld is used, but it
 923		 * only applies for sg_dma_len(sg) >= SZ_64K.
 924		 * In this case, the best way adopted is- bccnt for the
 925		 * first frame will be the remainder below. Then for
 926		 * every successive frame, bcnt will be SZ_64K-1. This
 927		 * is assured as bcntrld = 0xffff in end of function.
 928		 */
 929		absync = false;
 930		ccnt = dma_length / acnt / (SZ_64K - 1);
 931		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 932		/*
 933		 * If bcnt is non-zero, we have a remainder and hence an
 934		 * extra frame to transfer, so increment ccnt.
 935		 */
 936		if (bcnt)
 937			ccnt++;
 938		else
 939			bcnt = SZ_64K - 1;
 940		cidx = acnt;
 941	} else {
 942		/*
 943		 * If maxburst is greater than the fifo address_width,
 944		 * use AB-synced transfers where A count is the fifo
 945		 * address_width and B count is the maxburst. In this
 946		 * case, we are limited to transfers of C count frames
 947		 * of (address_width * maxburst) where C count is limited
 948		 * to SZ_64K-1. This places an upper bound on the length
 949		 * of an SG segment that can be handled.
 950		 */
 951		absync = true;
 952		bcnt = burst;
 953		ccnt = dma_length / (acnt * bcnt);
 954		if (ccnt > (SZ_64K - 1)) {
 955			dev_err(dev, "Exceeded max SG segment size\n");
 956			return -EINVAL;
 957		}
 958		cidx = acnt * bcnt;
 959	}
 960
 961	epset->len = dma_length;
 962
 963	if (direction == DMA_MEM_TO_DEV) {
 964		src_bidx = acnt;
 965		src_cidx = cidx;
 966		dst_bidx = 0;
 967		dst_cidx = 0;
 968		epset->addr = src_addr;
 969	} else if (direction == DMA_DEV_TO_MEM)  {
 970		src_bidx = 0;
 971		src_cidx = 0;
 972		dst_bidx = acnt;
 973		dst_cidx = cidx;
 974		epset->addr = dst_addr;
 975	} else if (direction == DMA_MEM_TO_MEM)  {
 976		src_bidx = acnt;
 977		src_cidx = cidx;
 978		dst_bidx = acnt;
 979		dst_cidx = cidx;
 980		epset->addr = src_addr;
 981	} else {
 982		dev_err(dev, "%s: direction not implemented yet\n", __func__);
 983		return -EINVAL;
 984	}
 985
 986	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
 987	/* Configure A or AB synchronized transfers */
 988	if (absync)
 989		param->opt |= SYNCDIM;
 990
 991	param->src = src_addr;
 992	param->dst = dst_addr;
 993
 994	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
 995	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
 996
 997	param->a_b_cnt = bcnt << 16 | acnt;
 998	param->ccnt = ccnt;
 999	/*
1000	 * Only time when (bcntrld) auto reload is required is for
1001	 * A-sync case, and in this case, a requirement of reload value
1002	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1003	 * and then later will be populated by edma_execute.
1004	 */
1005	param->link_bcntrld = 0xffffffff;
1006	return absync;
1007}
1008
1009static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1010	struct dma_chan *chan, struct scatterlist *sgl,
1011	unsigned int sg_len, enum dma_transfer_direction direction,
1012	unsigned long tx_flags, void *context)
1013{
1014	struct edma_chan *echan = to_edma_chan(chan);
1015	struct device *dev = chan->device->dev;
1016	struct edma_desc *edesc;
1017	dma_addr_t src_addr = 0, dst_addr = 0;
1018	enum dma_slave_buswidth dev_width;
1019	u32 burst;
1020	struct scatterlist *sg;
1021	int i, nslots, ret;
1022
1023	if (unlikely(!echan || !sgl || !sg_len))
1024		return NULL;
1025
1026	if (direction == DMA_DEV_TO_MEM) {
1027		src_addr = echan->cfg.src_addr;
1028		dev_width = echan->cfg.src_addr_width;
1029		burst = echan->cfg.src_maxburst;
1030	} else if (direction == DMA_MEM_TO_DEV) {
1031		dst_addr = echan->cfg.dst_addr;
1032		dev_width = echan->cfg.dst_addr_width;
1033		burst = echan->cfg.dst_maxburst;
1034	} else {
1035		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1036		return NULL;
1037	}
1038
1039	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1040		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1041		return NULL;
1042	}
1043
1044	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1045	if (!edesc)
1046		return NULL;
1047
1048	edesc->pset_nr = sg_len;
1049	edesc->residue = 0;
1050	edesc->direction = direction;
1051	edesc->echan = echan;
1052
1053	/* Allocate a PaRAM slot, if needed */
1054	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1055
1056	for (i = 0; i < nslots; i++) {
1057		if (echan->slot[i] < 0) {
1058			echan->slot[i] =
1059				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1060			if (echan->slot[i] < 0) {
1061				kfree(edesc);
1062				dev_err(dev, "%s: Failed to allocate slot\n",
1063					__func__);
1064				return NULL;
1065			}
1066		}
1067	}
1068
1069	/* Configure PaRAM sets for each SG */
1070	for_each_sg(sgl, sg, sg_len, i) {
1071		/* Get address for each SG */
1072		if (direction == DMA_DEV_TO_MEM)
1073			dst_addr = sg_dma_address(sg);
1074		else
1075			src_addr = sg_dma_address(sg);
1076
1077		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1078				       dst_addr, burst, dev_width,
1079				       sg_dma_len(sg), direction);
1080		if (ret < 0) {
1081			kfree(edesc);
1082			return NULL;
1083		}
1084
1085		edesc->absync = ret;
1086		edesc->residue += sg_dma_len(sg);
1087
1088		if (i == sg_len - 1)
1089			/* Enable completion interrupt */
1090			edesc->pset[i].param.opt |= TCINTEN;
1091		else if (!((i+1) % MAX_NR_SG))
1092			/*
1093			 * Enable early completion interrupt for the
1094			 * intermediateset. In this case the driver will be
1095			 * notified when the paRAM set is submitted to TC. This
1096			 * will allow more time to set up the next set of slots.
1097			 */
1098			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1099	}
1100	edesc->residue_stat = edesc->residue;
1101
1102	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1103}
1104
1105static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1106	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1107	size_t len, unsigned long tx_flags)
1108{
1109	int ret, nslots;
1110	struct edma_desc *edesc;
1111	struct device *dev = chan->device->dev;
1112	struct edma_chan *echan = to_edma_chan(chan);
1113	unsigned int width, pset_len, array_size;
1114
1115	if (unlikely(!echan || !len))
1116		return NULL;
1117
1118	/* Align the array size (acnt block) with the transfer properties */
1119	switch (__ffs((src | dest | len))) {
1120	case 0:
1121		array_size = SZ_32K - 1;
1122		break;
1123	case 1:
1124		array_size = SZ_32K - 2;
1125		break;
1126	default:
1127		array_size = SZ_32K - 4;
1128		break;
1129	}
1130
1131	if (len < SZ_64K) {
1132		/*
1133		 * Transfer size less than 64K can be handled with one paRAM
1134		 * slot and with one burst.
1135		 * ACNT = length
1136		 */
1137		width = len;
1138		pset_len = len;
1139		nslots = 1;
1140	} else {
1141		/*
1142		 * Transfer size bigger than 64K will be handled with maximum of
1143		 * two paRAM slots.
1144		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1145		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1146		 * slot2: the remaining amount of data after slot1.
1147		 *	  ACNT = full_length - length1, length2 = ACNT
1148		 *
1149		 * When the full_length is a multiple of 32767 one slot can be
1150		 * used to complete the transfer.
1151		 */
1152		width = array_size;
1153		pset_len = rounddown(len, width);
1154		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1155		if (unlikely(pset_len == len))
1156			nslots = 1;
1157		else
1158			nslots = 2;
1159	}
1160
1161	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1162	if (!edesc)
1163		return NULL;
1164
1165	edesc->pset_nr = nslots;
1166	edesc->residue = edesc->residue_stat = len;
1167	edesc->direction = DMA_MEM_TO_MEM;
1168	edesc->echan = echan;
1169
1170	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1171			       width, pset_len, DMA_MEM_TO_MEM);
1172	if (ret < 0) {
1173		kfree(edesc);
1174		return NULL;
1175	}
1176
1177	edesc->absync = ret;
1178
1179	edesc->pset[0].param.opt |= ITCCHEN;
1180	if (nslots == 1) {
1181		/* Enable transfer complete interrupt if requested */
1182		if (tx_flags & DMA_PREP_INTERRUPT)
1183			edesc->pset[0].param.opt |= TCINTEN;
1184	} else {
1185		/* Enable transfer complete chaining for the first slot */
1186		edesc->pset[0].param.opt |= TCCHEN;
1187
1188		if (echan->slot[1] < 0) {
1189			echan->slot[1] = edma_alloc_slot(echan->ecc,
1190							 EDMA_SLOT_ANY);
1191			if (echan->slot[1] < 0) {
1192				kfree(edesc);
1193				dev_err(dev, "%s: Failed to allocate slot\n",
1194					__func__);
1195				return NULL;
1196			}
1197		}
1198		dest += pset_len;
1199		src += pset_len;
1200		pset_len = width = len % array_size;
1201
1202		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1203				       width, pset_len, DMA_MEM_TO_MEM);
1204		if (ret < 0) {
1205			kfree(edesc);
1206			return NULL;
1207		}
1208
1209		edesc->pset[1].param.opt |= ITCCHEN;
1210		/* Enable transfer complete interrupt if requested */
1211		if (tx_flags & DMA_PREP_INTERRUPT)
1212			edesc->pset[1].param.opt |= TCINTEN;
1213	}
1214
1215	if (!(tx_flags & DMA_PREP_INTERRUPT))
1216		edesc->polled = true;
1217
1218	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219}
1220
1221static struct dma_async_tx_descriptor *
1222edma_prep_dma_interleaved(struct dma_chan *chan,
1223			  struct dma_interleaved_template *xt,
1224			  unsigned long tx_flags)
1225{
1226	struct device *dev = chan->device->dev;
1227	struct edma_chan *echan = to_edma_chan(chan);
1228	struct edmacc_param *param;
1229	struct edma_desc *edesc;
1230	size_t src_icg, dst_icg;
1231	int src_bidx, dst_bidx;
1232
1233	/* Slave mode is not supported */
1234	if (is_slave_direction(xt->dir))
1235		return NULL;
1236
1237	if (xt->frame_size != 1 || xt->numf == 0)
1238		return NULL;
1239
1240	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1241		return NULL;
1242
1243	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1244	if (src_icg) {
1245		src_bidx = src_icg + xt->sgl[0].size;
1246	} else if (xt->src_inc) {
1247		src_bidx = xt->sgl[0].size;
1248	} else {
1249		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1250			__func__);
1251		return NULL;
1252	}
1253
1254	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1255	if (dst_icg) {
1256		dst_bidx = dst_icg + xt->sgl[0].size;
1257	} else if (xt->dst_inc) {
1258		dst_bidx = xt->sgl[0].size;
1259	} else {
1260		dev_err(dev, "%s: DST constant addressing is not supported\n",
1261			__func__);
1262		return NULL;
1263	}
1264
1265	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1266		return NULL;
1267
1268	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1269	if (!edesc)
1270		return NULL;
1271
1272	edesc->direction = DMA_MEM_TO_MEM;
1273	edesc->echan = echan;
1274	edesc->pset_nr = 1;
1275
1276	param = &edesc->pset[0].param;
1277
1278	param->src = xt->src_start;
1279	param->dst = xt->dst_start;
1280	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1281	param->ccnt = 1;
1282	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1283	param->src_dst_cidx = 0;
1284
1285	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1286	param->opt |= ITCCHEN;
1287	/* Enable transfer complete interrupt if requested */
1288	if (tx_flags & DMA_PREP_INTERRUPT)
1289		param->opt |= TCINTEN;
1290	else
1291		edesc->polled = true;
1292
1293	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1294}
1295
1296static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1297	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1298	size_t period_len, enum dma_transfer_direction direction,
1299	unsigned long tx_flags)
1300{
1301	struct edma_chan *echan = to_edma_chan(chan);
1302	struct device *dev = chan->device->dev;
1303	struct edma_desc *edesc;
1304	dma_addr_t src_addr, dst_addr;
1305	enum dma_slave_buswidth dev_width;
1306	bool use_intermediate = false;
1307	u32 burst;
1308	int i, ret, nslots;
1309
1310	if (unlikely(!echan || !buf_len || !period_len))
1311		return NULL;
1312
1313	if (direction == DMA_DEV_TO_MEM) {
1314		src_addr = echan->cfg.src_addr;
1315		dst_addr = buf_addr;
1316		dev_width = echan->cfg.src_addr_width;
1317		burst = echan->cfg.src_maxburst;
1318	} else if (direction == DMA_MEM_TO_DEV) {
1319		src_addr = buf_addr;
1320		dst_addr = echan->cfg.dst_addr;
1321		dev_width = echan->cfg.dst_addr_width;
1322		burst = echan->cfg.dst_maxburst;
1323	} else {
1324		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1325		return NULL;
1326	}
1327
1328	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1329		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1330		return NULL;
1331	}
1332
1333	if (unlikely(buf_len % period_len)) {
1334		dev_err(dev, "Period should be multiple of Buffer length\n");
1335		return NULL;
1336	}
1337
1338	nslots = (buf_len / period_len) + 1;
1339
1340	/*
1341	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1342	 * by cases where the number of periods is more than the maximum
1343	 * number of SGs the EDMA driver can handle at a time. For DMA types
1344	 * such as Slave SGs, such delays are tolerable and synchronized,
1345	 * but the synchronization is difficult to achieve with Cyclic and
1346	 * cannot be guaranteed, so we error out early.
1347	 */
1348	if (nslots > MAX_NR_SG) {
1349		/*
1350		 * If the burst and period sizes are the same, we can put
1351		 * the full buffer into a single period and activate
1352		 * intermediate interrupts. This will produce interrupts
1353		 * after each burst, which is also after each desired period.
1354		 */
1355		if (burst == period_len) {
1356			period_len = buf_len;
1357			nslots = 2;
1358			use_intermediate = true;
1359		} else {
1360			return NULL;
1361		}
1362	}
1363
1364	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1365	if (!edesc)
1366		return NULL;
1367
1368	edesc->cyclic = 1;
1369	edesc->pset_nr = nslots;
1370	edesc->residue = edesc->residue_stat = buf_len;
1371	edesc->direction = direction;
1372	edesc->echan = echan;
1373
1374	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1375		__func__, echan->ch_num, nslots, period_len, buf_len);
1376
1377	for (i = 0; i < nslots; i++) {
1378		/* Allocate a PaRAM slot, if needed */
1379		if (echan->slot[i] < 0) {
1380			echan->slot[i] =
1381				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1382			if (echan->slot[i] < 0) {
1383				kfree(edesc);
1384				dev_err(dev, "%s: Failed to allocate slot\n",
1385					__func__);
1386				return NULL;
1387			}
1388		}
1389
1390		if (i == nslots - 1) {
1391			memcpy(&edesc->pset[i], &edesc->pset[0],
1392			       sizeof(edesc->pset[0]));
1393			break;
1394		}
1395
1396		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1397				       dst_addr, burst, dev_width, period_len,
1398				       direction);
1399		if (ret < 0) {
1400			kfree(edesc);
1401			return NULL;
1402		}
1403
1404		if (direction == DMA_DEV_TO_MEM)
1405			dst_addr += period_len;
1406		else
1407			src_addr += period_len;
1408
1409		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1410		dev_vdbg(dev,
1411			"\n pset[%d]:\n"
1412			"  chnum\t%d\n"
1413			"  slot\t%d\n"
1414			"  opt\t%08x\n"
1415			"  src\t%08x\n"
1416			"  dst\t%08x\n"
1417			"  abcnt\t%08x\n"
1418			"  ccnt\t%08x\n"
1419			"  bidx\t%08x\n"
1420			"  cidx\t%08x\n"
1421			"  lkrld\t%08x\n",
1422			i, echan->ch_num, echan->slot[i],
1423			edesc->pset[i].param.opt,
1424			edesc->pset[i].param.src,
1425			edesc->pset[i].param.dst,
1426			edesc->pset[i].param.a_b_cnt,
1427			edesc->pset[i].param.ccnt,
1428			edesc->pset[i].param.src_dst_bidx,
1429			edesc->pset[i].param.src_dst_cidx,
1430			edesc->pset[i].param.link_bcntrld);
1431
1432		edesc->absync = ret;
1433
1434		/*
1435		 * Enable period interrupt only if it is requested
1436		 */
1437		if (tx_flags & DMA_PREP_INTERRUPT) {
1438			edesc->pset[i].param.opt |= TCINTEN;
1439
1440			/* Also enable intermediate interrupts if necessary */
1441			if (use_intermediate)
1442				edesc->pset[i].param.opt |= ITCINTEN;
1443		}
1444	}
1445
1446	/* Place the cyclic channel to highest priority queue */
1447	if (!echan->tc)
1448		edma_assign_channel_eventq(echan, EVENTQ_0);
1449
1450	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1451}
1452
1453static void edma_completion_handler(struct edma_chan *echan)
1454{
1455	struct device *dev = echan->vchan.chan.device->dev;
1456	struct edma_desc *edesc;
1457
1458	spin_lock(&echan->vchan.lock);
1459	edesc = echan->edesc;
1460	if (edesc) {
1461		if (edesc->cyclic) {
1462			vchan_cyclic_callback(&edesc->vdesc);
1463			spin_unlock(&echan->vchan.lock);
1464			return;
1465		} else if (edesc->processed == edesc->pset_nr) {
1466			edesc->residue = 0;
1467			edma_stop(echan);
1468			vchan_cookie_complete(&edesc->vdesc);
1469			echan->edesc = NULL;
1470
1471			dev_dbg(dev, "Transfer completed on channel %d\n",
1472				echan->ch_num);
1473		} else {
1474			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1475				echan->ch_num);
1476
1477			edma_pause(echan);
1478
1479			/* Update statistics for tx_status */
1480			edesc->residue -= edesc->sg_len;
1481			edesc->residue_stat = edesc->residue;
1482			edesc->processed_stat = edesc->processed;
1483		}
1484		edma_execute(echan);
1485	}
1486
1487	spin_unlock(&echan->vchan.lock);
1488}
1489
1490/* eDMA interrupt handler */
1491static irqreturn_t dma_irq_handler(int irq, void *data)
1492{
1493	struct edma_cc *ecc = data;
1494	int ctlr;
1495	u32 sh_ier;
1496	u32 sh_ipr;
1497	u32 bank;
1498
1499	ctlr = ecc->id;
1500	if (ctlr < 0)
1501		return IRQ_NONE;
1502
1503	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1504
1505	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1506	if (!sh_ipr) {
1507		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1508		if (!sh_ipr)
1509			return IRQ_NONE;
1510		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1511		bank = 1;
1512	} else {
1513		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1514		bank = 0;
1515	}
1516
1517	do {
1518		u32 slot;
1519		u32 channel;
1520
1521		slot = __ffs(sh_ipr);
1522		sh_ipr &= ~(BIT(slot));
1523
1524		if (sh_ier & BIT(slot)) {
1525			channel = (bank << 5) | slot;
1526			/* Clear the corresponding IPR bits */
1527			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1528			edma_completion_handler(&ecc->slave_chans[channel]);
1529		}
1530	} while (sh_ipr);
1531
1532	edma_shadow0_write(ecc, SH_IEVAL, 1);
1533	return IRQ_HANDLED;
1534}
1535
1536static void edma_error_handler(struct edma_chan *echan)
1537{
1538	struct edma_cc *ecc = echan->ecc;
1539	struct device *dev = echan->vchan.chan.device->dev;
1540	struct edmacc_param p;
1541	int err;
1542
1543	if (!echan->edesc)
1544		return;
1545
1546	spin_lock(&echan->vchan.lock);
1547
1548	err = edma_read_slot(ecc, echan->slot[0], &p);
1549
1550	/*
1551	 * Issue later based on missed flag which will be sure
1552	 * to happen as:
1553	 * (1) we finished transmitting an intermediate slot and
1554	 *     edma_execute is coming up.
1555	 * (2) or we finished current transfer and issue will
1556	 *     call edma_execute.
1557	 *
1558	 * Important note: issuing can be dangerous here and
1559	 * lead to some nasty recursion when we are in a NULL
1560	 * slot. So we avoid doing so and set the missed flag.
1561	 */
1562	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1563		dev_dbg(dev, "Error on null slot, setting miss\n");
1564		echan->missed = 1;
1565	} else {
1566		/*
1567		 * The slot is already programmed but the event got
1568		 * missed, so its safe to issue it here.
1569		 */
1570		dev_dbg(dev, "Missed event, TRIGGERING\n");
1571		edma_clean_channel(echan);
1572		edma_stop(echan);
1573		edma_start(echan);
1574		edma_trigger_channel(echan);
1575	}
1576	spin_unlock(&echan->vchan.lock);
1577}
1578
1579static inline bool edma_error_pending(struct edma_cc *ecc)
1580{
1581	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1582	    edma_read_array(ecc, EDMA_EMR, 1) ||
1583	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1584		return true;
1585
1586	return false;
1587}
1588
1589/* eDMA error interrupt handler */
1590static irqreturn_t dma_ccerr_handler(int irq, void *data)
1591{
1592	struct edma_cc *ecc = data;
1593	int i, j;
1594	int ctlr;
1595	unsigned int cnt = 0;
1596	unsigned int val;
1597
1598	ctlr = ecc->id;
1599	if (ctlr < 0)
1600		return IRQ_NONE;
1601
1602	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1603
1604	if (!edma_error_pending(ecc)) {
1605		/*
1606		 * The registers indicate no pending error event but the irq
1607		 * handler has been called.
1608		 * Ask eDMA to re-evaluate the error registers.
1609		 */
1610		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1611			__func__);
1612		edma_write(ecc, EDMA_EEVAL, 1);
1613		return IRQ_NONE;
1614	}
1615
1616	while (1) {
1617		/* Event missed register(s) */
1618		for (j = 0; j < 2; j++) {
1619			unsigned long emr;
1620
1621			val = edma_read_array(ecc, EDMA_EMR, j);
1622			if (!val)
1623				continue;
1624
1625			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1626			emr = val;
1627			for_each_set_bit(i, &emr, 32) {
 
1628				int k = (j << 5) + i;
1629
1630				/* Clear the corresponding EMR bits */
1631				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1632				/* Clear any SER */
1633				edma_shadow0_write_array(ecc, SH_SECR, j,
1634							 BIT(i));
1635				edma_error_handler(&ecc->slave_chans[k]);
1636			}
1637		}
1638
1639		val = edma_read(ecc, EDMA_QEMR);
1640		if (val) {
1641			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1642			/* Not reported, just clear the interrupt reason. */
1643			edma_write(ecc, EDMA_QEMCR, val);
1644			edma_shadow0_write(ecc, SH_QSECR, val);
1645		}
1646
1647		val = edma_read(ecc, EDMA_CCERR);
1648		if (val) {
1649			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1650			/* Not reported, just clear the interrupt reason. */
1651			edma_write(ecc, EDMA_CCERRCLR, val);
1652		}
1653
1654		if (!edma_error_pending(ecc))
1655			break;
1656		cnt++;
1657		if (cnt > 10)
1658			break;
1659	}
1660	edma_write(ecc, EDMA_EEVAL, 1);
1661	return IRQ_HANDLED;
1662}
1663
1664/* Alloc channel resources */
1665static int edma_alloc_chan_resources(struct dma_chan *chan)
1666{
1667	struct edma_chan *echan = to_edma_chan(chan);
1668	struct edma_cc *ecc = echan->ecc;
1669	struct device *dev = ecc->dev;
1670	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1671	int ret;
1672
1673	if (echan->tc) {
1674		eventq_no = echan->tc->id;
1675	} else if (ecc->tc_list) {
1676		/* memcpy channel */
1677		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1678		eventq_no = echan->tc->id;
1679	}
1680
1681	ret = edma_alloc_channel(echan, eventq_no);
1682	if (ret)
1683		return ret;
1684
1685	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1686	if (echan->slot[0] < 0) {
1687		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1688			EDMA_CHAN_SLOT(echan->ch_num));
1689		ret = echan->slot[0];
1690		goto err_slot;
1691	}
1692
1693	/* Set up channel -> slot mapping for the entry slot */
1694	edma_set_chmap(echan, echan->slot[0]);
1695	echan->alloced = true;
1696
1697	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1698		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1699		echan->hw_triggered ? "HW" : "SW");
1700
1701	return 0;
1702
1703err_slot:
1704	edma_free_channel(echan);
1705	return ret;
1706}
1707
1708/* Free channel resources */
1709static void edma_free_chan_resources(struct dma_chan *chan)
1710{
1711	struct edma_chan *echan = to_edma_chan(chan);
1712	struct device *dev = echan->ecc->dev;
1713	int i;
1714
1715	/* Terminate transfers */
1716	edma_stop(echan);
1717
1718	vchan_free_chan_resources(&echan->vchan);
1719
1720	/* Free EDMA PaRAM slots */
1721	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1722		if (echan->slot[i] >= 0) {
1723			edma_free_slot(echan->ecc, echan->slot[i]);
1724			echan->slot[i] = -1;
1725		}
1726	}
1727
1728	/* Set entry slot to the dummy slot */
1729	edma_set_chmap(echan, echan->ecc->dummy_slot);
1730
1731	/* Free EDMA channel */
1732	if (echan->alloced) {
1733		edma_free_channel(echan);
1734		echan->alloced = false;
1735	}
1736
1737	echan->tc = NULL;
1738	echan->hw_triggered = false;
1739
1740	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1741		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1742}
1743
1744/* Send pending descriptor to hardware */
1745static void edma_issue_pending(struct dma_chan *chan)
1746{
1747	struct edma_chan *echan = to_edma_chan(chan);
1748	unsigned long flags;
1749
1750	spin_lock_irqsave(&echan->vchan.lock, flags);
1751	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1752		edma_execute(echan);
1753	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1754}
1755
1756/*
1757 * This limit exists to avoid a possible infinite loop when waiting for proof
1758 * that a particular transfer is completed. This limit can be hit if there
1759 * are large bursts to/from slow devices or the CPU is never able to catch
1760 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1761 * RX-FIFO, as many as 55 loops have been seen.
1762 */
1763#define EDMA_MAX_TR_WAIT_LOOPS 1000
1764
1765static u32 edma_residue(struct edma_desc *edesc)
1766{
1767	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1768	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1769	struct edma_chan *echan = edesc->echan;
1770	struct edma_pset *pset = edesc->pset;
1771	dma_addr_t done, pos, pos_old;
1772	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1773	int idx = EDMA_REG_ARRAY_INDEX(channel);
1774	int ch_bit = EDMA_CHANNEL_BIT(channel);
1775	int event_reg;
1776	int i;
1777
1778	/*
1779	 * We always read the dst/src position from the first RamPar
1780	 * pset. That's the one which is active now.
1781	 */
1782	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783
1784	/*
1785	 * "pos" may represent a transfer request that is still being
1786	 * processed by the EDMACC or EDMATC. We will busy wait until
1787	 * any one of the situations occurs:
1788	 *   1. while and event is pending for the channel
1789	 *   2. a position updated
1790	 *   3. we hit the loop limit
1791	 */
1792	if (is_slave_direction(edesc->direction))
1793		event_reg = SH_ER;
1794	else
1795		event_reg = SH_ESR;
1796
1797	pos_old = pos;
1798	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1799		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1800		if (pos != pos_old)
1801			break;
1802
1803		if (!--loop_count) {
1804			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1805				"%s: timeout waiting for PaRAM update\n",
1806				__func__);
1807			break;
1808		}
1809
1810		cpu_relax();
1811	}
1812
1813	/*
1814	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1815	 *
1816	 * We never update edesc->residue in the cyclic case, so we
1817	 * can tell the remaining room to the end of the circular
1818	 * buffer.
1819	 */
1820	if (edesc->cyclic) {
1821		done = pos - pset->addr;
1822		edesc->residue_stat = edesc->residue - done;
1823		return edesc->residue_stat;
1824	}
1825
1826	/*
1827	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1828	 * transfer is completed
1829	 */
1830	if (!pos)
1831		return 0;
1832	/*
1833	 * For SG operation we catch up with the last processed
1834	 * status.
1835	 */
1836	pset += edesc->processed_stat;
1837
1838	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1839		/*
1840		 * If we are inside this pset address range, we know
1841		 * this is the active one. Get the current delta and
1842		 * stop walking the psets.
1843		 */
1844		if (pos >= pset->addr && pos < pset->addr + pset->len)
1845			return edesc->residue_stat - (pos - pset->addr);
1846
1847		/* Otherwise mark it done and update residue_stat. */
1848		edesc->processed_stat++;
1849		edesc->residue_stat -= pset->len;
1850	}
1851	return edesc->residue_stat;
1852}
1853
1854/* Check request completion status */
1855static enum dma_status edma_tx_status(struct dma_chan *chan,
1856				      dma_cookie_t cookie,
1857				      struct dma_tx_state *txstate)
1858{
1859	struct edma_chan *echan = to_edma_chan(chan);
1860	struct dma_tx_state txstate_tmp;
1861	enum dma_status ret;
1862	unsigned long flags;
1863
1864	ret = dma_cookie_status(chan, cookie, txstate);
1865
1866	if (ret == DMA_COMPLETE)
1867		return ret;
1868
1869	/* Provide a dummy dma_tx_state for completion checking */
1870	if (!txstate)
1871		txstate = &txstate_tmp;
1872
1873	spin_lock_irqsave(&echan->vchan.lock, flags);
1874	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1875		txstate->residue = edma_residue(echan->edesc);
1876	} else {
1877		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1878							      cookie);
1879
1880		if (vdesc)
1881			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1882		else
1883			txstate->residue = 0;
1884	}
1885
1886	/*
1887	 * Mark the cookie completed if the residue is 0 for non cyclic
1888	 * transfers
1889	 */
1890	if (ret != DMA_COMPLETE && !txstate->residue &&
1891	    echan->edesc && echan->edesc->polled &&
1892	    echan->edesc->vdesc.tx.cookie == cookie) {
1893		edma_stop(echan);
1894		vchan_cookie_complete(&echan->edesc->vdesc);
1895		echan->edesc = NULL;
1896		edma_execute(echan);
1897		ret = DMA_COMPLETE;
1898	}
1899
1900	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1901
1902	return ret;
1903}
1904
1905static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1906{
1907	if (!memcpy_channels)
1908		return false;
1909	while (*memcpy_channels != -1) {
1910		if (*memcpy_channels == ch_num)
1911			return true;
1912		memcpy_channels++;
1913	}
1914	return false;
1915}
1916
1917#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1918				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1919				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1920				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1921
1922static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1923{
1924	struct dma_device *s_ddev = &ecc->dma_slave;
1925	struct dma_device *m_ddev = NULL;
1926	s32 *memcpy_channels = ecc->info->memcpy_channels;
1927	int i, j;
1928
1929	dma_cap_zero(s_ddev->cap_mask);
1930	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1931	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1932	if (ecc->legacy_mode && !memcpy_channels) {
1933		dev_warn(ecc->dev,
1934			 "Legacy memcpy is enabled, things might not work\n");
1935
1936		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1937		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1938		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1939		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1940		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1941	}
1942
1943	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1944	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1945	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1947	s_ddev->device_issue_pending = edma_issue_pending;
1948	s_ddev->device_tx_status = edma_tx_status;
1949	s_ddev->device_config = edma_slave_config;
1950	s_ddev->device_pause = edma_dma_pause;
1951	s_ddev->device_resume = edma_dma_resume;
1952	s_ddev->device_terminate_all = edma_terminate_all;
1953	s_ddev->device_synchronize = edma_synchronize;
1954
1955	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1958	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1960
1961	s_ddev->dev = ecc->dev;
1962	INIT_LIST_HEAD(&s_ddev->channels);
1963
1964	if (memcpy_channels) {
1965		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1966		if (!m_ddev) {
1967			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1968			memcpy_channels = NULL;
1969			goto ch_setup;
1970		}
1971		ecc->dma_memcpy = m_ddev;
1972
1973		dma_cap_zero(m_ddev->cap_mask);
1974		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1975		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1976
1977		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1978		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1979		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1980		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1981		m_ddev->device_issue_pending = edma_issue_pending;
1982		m_ddev->device_tx_status = edma_tx_status;
1983		m_ddev->device_config = edma_slave_config;
1984		m_ddev->device_pause = edma_dma_pause;
1985		m_ddev->device_resume = edma_dma_resume;
1986		m_ddev->device_terminate_all = edma_terminate_all;
1987		m_ddev->device_synchronize = edma_synchronize;
1988
1989		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1990		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1991		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1992		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1993
1994		m_ddev->dev = ecc->dev;
1995		INIT_LIST_HEAD(&m_ddev->channels);
1996	} else if (!ecc->legacy_mode) {
1997		dev_info(ecc->dev, "memcpy is disabled\n");
1998	}
1999
2000ch_setup:
2001	for (i = 0; i < ecc->num_channels; i++) {
2002		struct edma_chan *echan = &ecc->slave_chans[i];
2003		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2004		echan->ecc = ecc;
2005		echan->vchan.desc_free = edma_desc_free;
2006
2007		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2008			vchan_init(&echan->vchan, m_ddev);
2009		else
2010			vchan_init(&echan->vchan, s_ddev);
2011
2012		INIT_LIST_HEAD(&echan->node);
2013		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2014			echan->slot[j] = -1;
2015	}
2016}
2017
2018static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2019			      struct edma_cc *ecc)
2020{
2021	int i;
2022	u32 value, cccfg;
2023	s8 (*queue_priority_map)[2];
2024
2025	/* Decode the eDMA3 configuration from CCCFG register */
2026	cccfg = edma_read(ecc, EDMA_CCCFG);
2027
2028	value = GET_NUM_REGN(cccfg);
2029	ecc->num_region = BIT(value);
2030
2031	value = GET_NUM_DMACH(cccfg);
2032	ecc->num_channels = BIT(value + 1);
2033
2034	value = GET_NUM_QDMACH(cccfg);
2035	ecc->num_qchannels = value * 2;
2036
2037	value = GET_NUM_PAENTRY(cccfg);
2038	ecc->num_slots = BIT(value + 4);
2039
2040	value = GET_NUM_EVQUE(cccfg);
2041	ecc->num_tc = value + 1;
2042
2043	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2044
2045	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2046	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2047	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2048	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2049	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2050	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2051	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2052
2053	/* Nothing need to be done if queue priority is provided */
2054	if (pdata->queue_priority_mapping)
2055		return 0;
2056
2057	/*
2058	 * Configure TC/queue priority as follows:
2059	 * Q0 - priority 0
2060	 * Q1 - priority 1
2061	 * Q2 - priority 2
2062	 * ...
2063	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2064	 * priority. So Q0 is the highest priority queue and the last queue has
2065	 * the lowest priority.
2066	 */
2067	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2068					  GFP_KERNEL);
2069	if (!queue_priority_map)
2070		return -ENOMEM;
2071
2072	for (i = 0; i < ecc->num_tc; i++) {
2073		queue_priority_map[i][0] = i;
2074		queue_priority_map[i][1] = i;
2075	}
2076	queue_priority_map[i][0] = -1;
2077	queue_priority_map[i][1] = -1;
2078
2079	pdata->queue_priority_mapping = queue_priority_map;
2080	/* Default queue has the lowest priority */
2081	pdata->default_queue = i - 1;
2082
2083	return 0;
2084}
2085
2086#if IS_ENABLED(CONFIG_OF)
2087static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2088			       size_t sz)
2089{
2090	const char pname[] = "ti,edma-xbar-event-map";
2091	struct resource res;
2092	void __iomem *xbar;
2093	s16 (*xbar_chans)[2];
2094	size_t nelm = sz / sizeof(s16);
2095	u32 shift, offset, mux;
2096	int ret, i;
2097
2098	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2099	if (!xbar_chans)
2100		return -ENOMEM;
2101
2102	ret = of_address_to_resource(dev->of_node, 1, &res);
2103	if (ret)
2104		return -ENOMEM;
2105
2106	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2107	if (!xbar)
2108		return -ENOMEM;
2109
2110	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2111					 nelm);
2112	if (ret)
2113		return -EIO;
2114
2115	/* Invalidate last entry for the other user of this mess */
2116	nelm >>= 1;
2117	xbar_chans[nelm][0] = -1;
2118	xbar_chans[nelm][1] = -1;
2119
2120	for (i = 0; i < nelm; i++) {
2121		shift = (xbar_chans[i][1] & 0x03) << 3;
2122		offset = xbar_chans[i][1] & 0xfffffffc;
2123		mux = readl(xbar + offset);
2124		mux &= ~(0xff << shift);
2125		mux |= xbar_chans[i][0] << shift;
2126		writel(mux, (xbar + offset));
2127	}
2128
2129	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2130	return 0;
2131}
2132
2133static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2134						     bool legacy_mode)
2135{
2136	struct edma_soc_info *info;
2137	struct property *prop;
2138	int sz, ret;
2139
2140	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2141	if (!info)
2142		return ERR_PTR(-ENOMEM);
2143
2144	if (legacy_mode) {
2145		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2146					&sz);
2147		if (prop) {
2148			ret = edma_xbar_event_map(dev, info, sz);
2149			if (ret)
2150				return ERR_PTR(ret);
2151		}
2152		return info;
2153	}
2154
2155	/* Get the list of channels allocated to be used for memcpy */
2156	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2157	if (prop) {
2158		const char pname[] = "ti,edma-memcpy-channels";
2159		size_t nelm = sz / sizeof(s32);
2160		s32 *memcpy_ch;
2161
2162		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2163					 GFP_KERNEL);
2164		if (!memcpy_ch)
2165			return ERR_PTR(-ENOMEM);
2166
2167		ret = of_property_read_u32_array(dev->of_node, pname,
2168						 (u32 *)memcpy_ch, nelm);
2169		if (ret)
2170			return ERR_PTR(ret);
2171
2172		memcpy_ch[nelm] = -1;
2173		info->memcpy_channels = memcpy_ch;
2174	}
2175
2176	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2177				&sz);
2178	if (prop) {
2179		const char pname[] = "ti,edma-reserved-slot-ranges";
2180		u32 (*tmp)[2];
2181		s16 (*rsv_slots)[2];
2182		size_t nelm = sz / sizeof(*tmp);
2183		struct edma_rsv_info *rsv_info;
2184		int i;
2185
2186		if (!nelm)
2187			return info;
2188
2189		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2190		if (!tmp)
2191			return ERR_PTR(-ENOMEM);
2192
2193		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2194		if (!rsv_info) {
2195			kfree(tmp);
2196			return ERR_PTR(-ENOMEM);
2197		}
2198
2199		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2200					 GFP_KERNEL);
2201		if (!rsv_slots) {
2202			kfree(tmp);
2203			return ERR_PTR(-ENOMEM);
2204		}
2205
2206		ret = of_property_read_u32_array(dev->of_node, pname,
2207						 (u32 *)tmp, nelm * 2);
2208		if (ret) {
2209			kfree(tmp);
2210			return ERR_PTR(ret);
2211		}
2212
2213		for (i = 0; i < nelm; i++) {
2214			rsv_slots[i][0] = tmp[i][0];
2215			rsv_slots[i][1] = tmp[i][1];
2216		}
2217		rsv_slots[nelm][0] = -1;
2218		rsv_slots[nelm][1] = -1;
2219
2220		info->rsv = rsv_info;
2221		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2222
2223		kfree(tmp);
2224	}
2225
2226	return info;
2227}
2228
2229static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2230				      struct of_dma *ofdma)
2231{
2232	struct edma_cc *ecc = ofdma->of_dma_data;
2233	struct dma_chan *chan = NULL;
2234	struct edma_chan *echan;
2235	int i;
2236
2237	if (!ecc || dma_spec->args_count < 1)
2238		return NULL;
2239
2240	for (i = 0; i < ecc->num_channels; i++) {
2241		echan = &ecc->slave_chans[i];
2242		if (echan->ch_num == dma_spec->args[0]) {
2243			chan = &echan->vchan.chan;
2244			break;
2245		}
2246	}
2247
2248	if (!chan)
2249		return NULL;
2250
2251	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2252		goto out;
2253
2254	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2255	    dma_spec->args[1] < echan->ecc->num_tc) {
2256		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2257		goto out;
2258	}
2259
2260	return NULL;
2261out:
2262	/* The channel is going to be used as HW synchronized */
2263	echan->hw_triggered = true;
2264	return dma_get_slave_channel(chan);
2265}
2266#else
2267static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2268						     bool legacy_mode)
2269{
2270	return ERR_PTR(-EINVAL);
2271}
2272
2273static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2274				      struct of_dma *ofdma)
2275{
2276	return NULL;
2277}
2278#endif
2279
2280static bool edma_filter_fn(struct dma_chan *chan, void *param);
2281
2282static int edma_probe(struct platform_device *pdev)
2283{
2284	struct edma_soc_info	*info = pdev->dev.platform_data;
2285	s8			(*queue_priority_mapping)[2];
2286	const s16		(*reserved)[2];
2287	int			i, irq;
 
 
2288	char			*irq_name;
2289	struct resource		*mem;
2290	struct device_node	*node = pdev->dev.of_node;
2291	struct device		*dev = &pdev->dev;
2292	struct edma_cc		*ecc;
2293	bool			legacy_mode = true;
2294	int ret;
2295
2296	if (node) {
2297		const struct of_device_id *match;
2298
2299		match = of_match_node(edma_of_ids, node);
2300		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2301			legacy_mode = false;
2302
2303		info = edma_setup_info_from_dt(dev, legacy_mode);
2304		if (IS_ERR(info)) {
2305			dev_err(dev, "failed to get DT data\n");
2306			return PTR_ERR(info);
2307		}
2308	}
2309
2310	if (!info)
2311		return -ENODEV;
2312
 
 
 
 
 
 
 
2313	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2314	if (ret)
2315		return ret;
2316
2317	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2318	if (!ecc)
2319		return -ENOMEM;
2320
2321	ecc->dev = dev;
2322	ecc->id = pdev->id;
2323	ecc->legacy_mode = legacy_mode;
2324	/* When booting with DT the pdev->id is -1 */
2325	if (ecc->id < 0)
2326		ecc->id = 0;
2327
2328	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2329	if (!mem) {
2330		dev_dbg(dev, "mem resource not found, using index 0\n");
2331		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2332		if (!mem) {
2333			dev_err(dev, "no mem resource?\n");
2334			return -ENODEV;
2335		}
2336	}
2337	ecc->base = devm_ioremap_resource(dev, mem);
2338	if (IS_ERR(ecc->base))
2339		return PTR_ERR(ecc->base);
2340
2341	platform_set_drvdata(pdev, ecc);
2342
2343	pm_runtime_enable(dev);
2344	ret = pm_runtime_get_sync(dev);
2345	if (ret < 0) {
2346		dev_err(dev, "pm_runtime_get_sync() failed\n");
2347		pm_runtime_disable(dev);
2348		return ret;
2349	}
2350
2351	/* Get eDMA3 configuration from IP */
2352	ret = edma_setup_from_hw(dev, info, ecc);
2353	if (ret)
2354		goto err_disable_pm;
2355
2356	/* Allocate memory based on the information we got from the IP */
2357	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2358					sizeof(*ecc->slave_chans), GFP_KERNEL);
 
 
2359
2360	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2361				       sizeof(unsigned long), GFP_KERNEL);
2362
2363	ecc->channels_mask = devm_kcalloc(dev,
2364					   BITS_TO_LONGS(ecc->num_channels),
2365					   sizeof(unsigned long), GFP_KERNEL);
2366	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2367		ret = -ENOMEM;
2368		goto err_disable_pm;
2369	}
2370
2371	/* Mark all channels available initially */
2372	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2373
2374	ecc->default_queue = info->default_queue;
2375
2376	if (info->rsv) {
2377		/* Set the reserved slots in inuse list */
2378		reserved = info->rsv->rsv_slots;
2379		if (reserved) {
2380			for (i = 0; reserved[i][0] != -1; i++)
2381				bitmap_set(ecc->slot_inuse, reserved[i][0],
2382					   reserved[i][1]);
2383		}
2384
2385		/* Clear channels not usable for Linux */
2386		reserved = info->rsv->rsv_chans;
2387		if (reserved) {
2388			for (i = 0; reserved[i][0] != -1; i++)
2389				bitmap_clear(ecc->channels_mask, reserved[i][0],
2390					     reserved[i][1]);
2391		}
2392	}
2393
2394	for (i = 0; i < ecc->num_slots; i++) {
2395		/* Reset only unused - not reserved - paRAM slots */
2396		if (!test_bit(i, ecc->slot_inuse))
2397			edma_write_slot(ecc, i, &dummy_paramset);
2398	}
2399
 
 
 
 
 
 
 
 
2400	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2401	if (irq < 0 && node)
2402		irq = irq_of_parse_and_map(node, 0);
2403
2404	if (irq > 0) {
2405		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2406					  dev_name(dev));
2407		if (!irq_name) {
2408			ret = -ENOMEM;
2409			goto err_disable_pm;
2410		}
2411
2412		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2413				       ecc);
2414		if (ret) {
2415			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2416			goto err_disable_pm;
2417		}
2418		ecc->ccint = irq;
2419	}
2420
2421	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2422	if (irq < 0 && node)
2423		irq = irq_of_parse_and_map(node, 2);
2424
2425	if (irq > 0) {
2426		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2427					  dev_name(dev));
2428		if (!irq_name) {
2429			ret = -ENOMEM;
2430			goto err_disable_pm;
2431		}
2432
2433		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2434				       ecc);
2435		if (ret) {
2436			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2437			goto err_disable_pm;
2438		}
2439		ecc->ccerrint = irq;
2440	}
2441
2442	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2443	if (ecc->dummy_slot < 0) {
2444		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2445		ret = ecc->dummy_slot;
2446		goto err_disable_pm;
2447	}
2448
2449	queue_priority_mapping = info->queue_priority_mapping;
2450
2451	if (!ecc->legacy_mode) {
2452		int lowest_priority = 0;
2453		unsigned int array_max;
2454		struct of_phandle_args tc_args;
2455
2456		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2457					    sizeof(*ecc->tc_list), GFP_KERNEL);
2458		if (!ecc->tc_list) {
2459			ret = -ENOMEM;
2460			goto err_reg1;
2461		}
2462
2463		for (i = 0;; i++) {
2464			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2465							       1, i, &tc_args);
2466			if (ret || i == ecc->num_tc)
2467				break;
2468
2469			ecc->tc_list[i].node = tc_args.np;
2470			ecc->tc_list[i].id = i;
2471			queue_priority_mapping[i][1] = tc_args.args[0];
2472			if (queue_priority_mapping[i][1] > lowest_priority) {
2473				lowest_priority = queue_priority_mapping[i][1];
2474				info->default_queue = i;
2475			}
2476		}
2477
2478		/* See if we have optional dma-channel-mask array */
2479		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2480		ret = of_property_read_variable_u32_array(node,
2481						"dma-channel-mask",
2482						(u32 *)ecc->channels_mask,
2483						1, array_max);
2484		if (ret > 0 && ret != array_max)
2485			dev_warn(dev, "dma-channel-mask is not complete.\n");
2486		else if (ret == -EOVERFLOW || ret == -ENODATA)
2487			dev_warn(dev,
2488				 "dma-channel-mask is out of range or empty\n");
2489	}
2490
2491	/* Event queue priority mapping */
2492	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2493		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2494					      queue_priority_mapping[i][1]);
2495
2496	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2497	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2498	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2499
2500	ecc->info = info;
2501
2502	/* Init the dma device and channels */
2503	edma_dma_init(ecc, legacy_mode);
2504
2505	for (i = 0; i < ecc->num_channels; i++) {
2506		/* Do not touch reserved channels */
2507		if (!test_bit(i, ecc->channels_mask))
2508			continue;
2509
2510		/* Assign all channels to the default queue */
2511		edma_assign_channel_eventq(&ecc->slave_chans[i],
2512					   info->default_queue);
2513		/* Set entry slot to the dummy slot */
2514		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2515	}
2516
2517	ecc->dma_slave.filter.map = info->slave_map;
2518	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2519	ecc->dma_slave.filter.fn = edma_filter_fn;
2520
2521	ret = dma_async_device_register(&ecc->dma_slave);
2522	if (ret) {
2523		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2524		goto err_reg1;
2525	}
2526
2527	if (ecc->dma_memcpy) {
2528		ret = dma_async_device_register(ecc->dma_memcpy);
2529		if (ret) {
2530			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2531				ret);
2532			dma_async_device_unregister(&ecc->dma_slave);
2533			goto err_reg1;
2534		}
2535	}
2536
2537	if (node)
2538		of_dma_controller_register(node, of_edma_xlate, ecc);
2539
2540	dev_info(dev, "TI EDMA DMA engine driver\n");
2541
2542	return 0;
2543
2544err_reg1:
2545	edma_free_slot(ecc, ecc->dummy_slot);
2546err_disable_pm:
2547	pm_runtime_put_sync(dev);
2548	pm_runtime_disable(dev);
2549	return ret;
2550}
2551
2552static void edma_cleanupp_vchan(struct dma_device *dmadev)
2553{
2554	struct edma_chan *echan, *_echan;
2555
2556	list_for_each_entry_safe(echan, _echan,
2557			&dmadev->channels, vchan.chan.device_node) {
2558		list_del(&echan->vchan.chan.device_node);
2559		tasklet_kill(&echan->vchan.task);
2560	}
2561}
2562
2563static void edma_remove(struct platform_device *pdev)
2564{
2565	struct device *dev = &pdev->dev;
2566	struct edma_cc *ecc = dev_get_drvdata(dev);
2567
2568	devm_free_irq(dev, ecc->ccint, ecc);
2569	devm_free_irq(dev, ecc->ccerrint, ecc);
2570
2571	edma_cleanupp_vchan(&ecc->dma_slave);
2572
2573	if (dev->of_node)
2574		of_dma_controller_free(dev->of_node);
2575	dma_async_device_unregister(&ecc->dma_slave);
2576	if (ecc->dma_memcpy)
2577		dma_async_device_unregister(ecc->dma_memcpy);
2578	edma_free_slot(ecc, ecc->dummy_slot);
2579	pm_runtime_put_sync(dev);
2580	pm_runtime_disable(dev);
2581}
2582
2583#ifdef CONFIG_PM_SLEEP
2584static int edma_pm_suspend(struct device *dev)
2585{
2586	struct edma_cc *ecc = dev_get_drvdata(dev);
2587	struct edma_chan *echan = ecc->slave_chans;
2588	int i;
2589
2590	for (i = 0; i < ecc->num_channels; i++) {
2591		if (echan[i].alloced)
2592			edma_setup_interrupt(&echan[i], false);
2593	}
2594
2595	return 0;
2596}
2597
2598static int edma_pm_resume(struct device *dev)
2599{
2600	struct edma_cc *ecc = dev_get_drvdata(dev);
2601	struct edma_chan *echan = ecc->slave_chans;
2602	int i;
2603	s8 (*queue_priority_mapping)[2];
2604
2605	/* re initialize dummy slot to dummy param set */
2606	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2607
2608	queue_priority_mapping = ecc->info->queue_priority_mapping;
2609
2610	/* Event queue priority mapping */
2611	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2612		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2613					      queue_priority_mapping[i][1]);
2614
2615	for (i = 0; i < ecc->num_channels; i++) {
2616		if (echan[i].alloced) {
2617			/* ensure access through shadow region 0 */
2618			edma_or_array2(ecc, EDMA_DRAE, 0,
2619				       EDMA_REG_ARRAY_INDEX(i),
2620				       EDMA_CHANNEL_BIT(i));
2621
2622			edma_setup_interrupt(&echan[i], true);
2623
2624			/* Set up channel -> slot mapping for the entry slot */
2625			edma_set_chmap(&echan[i], echan[i].slot[0]);
2626		}
2627	}
2628
2629	return 0;
2630}
2631#endif
2632
2633static const struct dev_pm_ops edma_pm_ops = {
2634	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2635};
2636
2637static struct platform_driver edma_driver = {
2638	.probe		= edma_probe,
2639	.remove_new	= edma_remove,
2640	.driver = {
2641		.name	= "edma",
2642		.pm	= &edma_pm_ops,
2643		.of_match_table = edma_of_ids,
2644	},
2645};
2646
2647static int edma_tptc_probe(struct platform_device *pdev)
2648{
2649	pm_runtime_enable(&pdev->dev);
2650	return pm_runtime_get_sync(&pdev->dev);
2651}
2652
2653static struct platform_driver edma_tptc_driver = {
2654	.probe		= edma_tptc_probe,
2655	.driver = {
2656		.name	= "edma3-tptc",
2657		.of_match_table = edma_tptc_of_ids,
2658	},
2659};
2660
2661static bool edma_filter_fn(struct dma_chan *chan, void *param)
2662{
2663	bool match = false;
2664
2665	if (chan->device->dev->driver == &edma_driver.driver) {
2666		struct edma_chan *echan = to_edma_chan(chan);
2667		unsigned ch_req = *(unsigned *)param;
2668		if (ch_req == echan->ch_num) {
2669			/* The channel is going to be used as HW synchronized */
2670			echan->hw_triggered = true;
2671			match = true;
2672		}
2673	}
2674	return match;
2675}
2676
2677static int edma_init(void)
2678{
2679	int ret;
2680
2681	ret = platform_driver_register(&edma_tptc_driver);
2682	if (ret)
2683		return ret;
2684
2685	return platform_driver_register(&edma_driver);
2686}
2687subsys_initcall(edma_init);
2688
2689static void __exit edma_exit(void)
2690{
2691	platform_driver_unregister(&edma_driver);
2692	platform_driver_unregister(&edma_tptc_driver);
2693}
2694module_exit(edma_exit);
2695
2696MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2697MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2698MODULE_LICENSE("GPL v2");
v5.4
 
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/bitmap.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28#include <linux/of_dma.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/pm_runtime.h>
  33
  34#include <linux/platform_data/edma.h>
  35
  36#include "../dmaengine.h"
  37#include "../virt-dma.h"
  38
  39/* Offsets matching "struct edmacc_param" */
  40#define PARM_OPT		0x00
  41#define PARM_SRC		0x04
  42#define PARM_A_B_CNT		0x08
  43#define PARM_DST		0x0c
  44#define PARM_SRC_DST_BIDX	0x10
  45#define PARM_LINK_BCNTRLD	0x14
  46#define PARM_SRC_DST_CIDX	0x18
  47#define PARM_CCNT		0x1c
  48
  49#define PARM_SIZE		0x20
  50
  51/* Offsets for EDMA CC global channel registers and their shadows */
  52#define SH_ER			0x00	/* 64 bits */
  53#define SH_ECR			0x08	/* 64 bits */
  54#define SH_ESR			0x10	/* 64 bits */
  55#define SH_CER			0x18	/* 64 bits */
  56#define SH_EER			0x20	/* 64 bits */
  57#define SH_EECR			0x28	/* 64 bits */
  58#define SH_EESR			0x30	/* 64 bits */
  59#define SH_SER			0x38	/* 64 bits */
  60#define SH_SECR			0x40	/* 64 bits */
  61#define SH_IER			0x50	/* 64 bits */
  62#define SH_IECR			0x58	/* 64 bits */
  63#define SH_IESR			0x60	/* 64 bits */
  64#define SH_IPR			0x68	/* 64 bits */
  65#define SH_ICR			0x70	/* 64 bits */
  66#define SH_IEVAL		0x78
  67#define SH_QER			0x80
  68#define SH_QEER			0x84
  69#define SH_QEECR		0x88
  70#define SH_QEESR		0x8c
  71#define SH_QSER			0x90
  72#define SH_QSECR		0x94
  73#define SH_SIZE			0x200
  74
  75/* Offsets for EDMA CC global registers */
  76#define EDMA_REV		0x0000
  77#define EDMA_CCCFG		0x0004
  78#define EDMA_QCHMAP		0x0200	/* 8 registers */
  79#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
  80#define EDMA_QDMAQNUM		0x0260
  81#define EDMA_QUETCMAP		0x0280
  82#define EDMA_QUEPRI		0x0284
  83#define EDMA_EMR		0x0300	/* 64 bits */
  84#define EDMA_EMCR		0x0308	/* 64 bits */
  85#define EDMA_QEMR		0x0310
  86#define EDMA_QEMCR		0x0314
  87#define EDMA_CCERR		0x0318
  88#define EDMA_CCERRCLR		0x031c
  89#define EDMA_EEVAL		0x0320
  90#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
  91#define EDMA_QRAE		0x0380	/* 4 registers */
  92#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
  93#define EDMA_QSTAT		0x0600	/* 2 registers */
  94#define EDMA_QWMTHRA		0x0620
  95#define EDMA_QWMTHRB		0x0624
  96#define EDMA_CCSTAT		0x0640
  97
  98#define EDMA_M			0x1000	/* global channel registers */
  99#define EDMA_ECR		0x1008
 100#define EDMA_ECRH		0x100C
 101#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
 102#define EDMA_PARM		0x4000	/* PaRAM entries */
 103
 104#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 105
 106#define EDMA_DCHMAP		0x0100  /* 64 registers */
 107
 108/* CCCFG register */
 109#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
 110#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
 111#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
 112#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
 113#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
 114#define CHMAP_EXIST		BIT(24)
 115
 116/* CCSTAT register */
 117#define EDMA_CCSTAT_ACTV	BIT(4)
 118
 119/*
 120 * Max of 20 segments per channel to conserve PaRAM slots
 121 * Also note that MAX_NR_SG should be atleast the no.of periods
 122 * that are required for ASoC, otherwise DMA prep calls will
 123 * fail. Today davinci-pcm is the only user of this driver and
 124 * requires atleast 17 slots, so we setup the default to 20.
 125 */
 126#define MAX_NR_SG		20
 127#define EDMA_MAX_SLOTS		MAX_NR_SG
 128#define EDMA_DESCRIPTORS	16
 129
 130#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
 131#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
 132#define EDMA_CONT_PARAMS_ANY		 1001
 133#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
 134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 135
 136/*
 137 * 64bit array registers are split into two 32bit registers:
 138 * reg0: channel/event 0-31
 139 * reg1: channel/event 32-63
 140 *
 141 * bit 5 in the channel number tells the array index (0/1)
 142 * bit 0-4 (0x1f) is the bit offset within the register
 143 */
 144#define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
 145#define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
 146
 147/* PaRAM slots are laid out like this */
 148struct edmacc_param {
 149	u32 opt;
 150	u32 src;
 151	u32 a_b_cnt;
 152	u32 dst;
 153	u32 src_dst_bidx;
 154	u32 link_bcntrld;
 155	u32 src_dst_cidx;
 156	u32 ccnt;
 157} __packed;
 158
 159/* fields in edmacc_param.opt */
 160#define SAM		BIT(0)
 161#define DAM		BIT(1)
 162#define SYNCDIM		BIT(2)
 163#define STATIC		BIT(3)
 164#define EDMA_FWID	(0x07 << 8)
 165#define TCCMODE		BIT(11)
 166#define EDMA_TCC(t)	((t) << 12)
 167#define TCINTEN		BIT(20)
 168#define ITCINTEN	BIT(21)
 169#define TCCHEN		BIT(22)
 170#define ITCCHEN		BIT(23)
 171
 172struct edma_pset {
 173	u32				len;
 174	dma_addr_t			addr;
 175	struct edmacc_param		param;
 176};
 177
 178struct edma_desc {
 179	struct virt_dma_desc		vdesc;
 180	struct list_head		node;
 181	enum dma_transfer_direction	direction;
 182	int				cyclic;
 183	bool				polled;
 184	int				absync;
 185	int				pset_nr;
 186	struct edma_chan		*echan;
 187	int				processed;
 188
 189	/*
 190	 * The following 4 elements are used for residue accounting.
 191	 *
 192	 * - processed_stat: the number of SG elements we have traversed
 193	 * so far to cover accounting. This is updated directly to processed
 194	 * during edma_callback and is always <= processed, because processed
 195	 * refers to the number of pending transfer (programmed to EDMA
 196	 * controller), where as processed_stat tracks number of transfers
 197	 * accounted for so far.
 198	 *
 199	 * - residue: The amount of bytes we have left to transfer for this desc
 200	 *
 201	 * - residue_stat: The residue in bytes of data we have covered
 202	 * so far for accounting. This is updated directly to residue
 203	 * during callbacks to keep it current.
 204	 *
 205	 * - sg_len: Tracks the length of the current intermediate transfer,
 206	 * this is required to update the residue during intermediate transfer
 207	 * completion callback.
 208	 */
 209	int				processed_stat;
 210	u32				sg_len;
 211	u32				residue;
 212	u32				residue_stat;
 213
 214	struct edma_pset		pset[0];
 215};
 216
 217struct edma_cc;
 218
 219struct edma_tc {
 220	struct device_node		*node;
 221	u16				id;
 222};
 223
 224struct edma_chan {
 225	struct virt_dma_chan		vchan;
 226	struct list_head		node;
 227	struct edma_desc		*edesc;
 228	struct edma_cc			*ecc;
 229	struct edma_tc			*tc;
 230	int				ch_num;
 231	bool				alloced;
 232	bool				hw_triggered;
 233	int				slot[EDMA_MAX_SLOTS];
 234	int				missed;
 235	struct dma_slave_config		cfg;
 236};
 237
 238struct edma_cc {
 239	struct device			*dev;
 240	struct edma_soc_info		*info;
 241	void __iomem			*base;
 242	int				id;
 243	bool				legacy_mode;
 244
 245	/* eDMA3 resource information */
 246	unsigned			num_channels;
 247	unsigned			num_qchannels;
 248	unsigned			num_region;
 249	unsigned			num_slots;
 250	unsigned			num_tc;
 251	bool				chmap_exist;
 252	enum dma_event_q		default_queue;
 253
 254	unsigned int			ccint;
 255	unsigned int			ccerrint;
 256
 257	/*
 258	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 259	 * in use by Linux or if it is allocated to be used by DSP.
 260	 */
 261	unsigned long *slot_inuse;
 262
 
 
 
 
 
 
 
 263	struct dma_device		dma_slave;
 264	struct dma_device		*dma_memcpy;
 265	struct edma_chan		*slave_chans;
 266	struct edma_tc			*tc_list;
 267	int				dummy_slot;
 268};
 269
 270/* dummy param set used to (re)initialize parameter RAM slots */
 271static const struct edmacc_param dummy_paramset = {
 272	.link_bcntrld = 0xffff,
 273	.ccnt = 1,
 274};
 275
 276#define EDMA_BINDING_LEGACY	0
 277#define EDMA_BINDING_TPCC	1
 278static const u32 edma_binding_type[] = {
 279	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
 280	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
 281};
 282
 283static const struct of_device_id edma_of_ids[] = {
 284	{
 285		.compatible = "ti,edma3",
 286		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
 287	},
 288	{
 289		.compatible = "ti,edma3-tpcc",
 290		.data = &edma_binding_type[EDMA_BINDING_TPCC],
 291	},
 292	{}
 293};
 294MODULE_DEVICE_TABLE(of, edma_of_ids);
 295
 296static const struct of_device_id edma_tptc_of_ids[] = {
 297	{ .compatible = "ti,edma3-tptc", },
 298	{}
 299};
 300MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
 301
 302static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 303{
 304	return (unsigned int)__raw_readl(ecc->base + offset);
 305}
 306
 307static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 308{
 309	__raw_writel(val, ecc->base + offset);
 310}
 311
 312static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 313			       unsigned or)
 314{
 315	unsigned val = edma_read(ecc, offset);
 316
 317	val &= and;
 318	val |= or;
 319	edma_write(ecc, offset, val);
 320}
 321
 322static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
 323{
 324	unsigned val = edma_read(ecc, offset);
 325
 326	val &= and;
 327	edma_write(ecc, offset, val);
 328}
 329
 330static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 331{
 332	unsigned val = edma_read(ecc, offset);
 333
 334	val |= or;
 335	edma_write(ecc, offset, val);
 336}
 337
 338static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 339					   int i)
 340{
 341	return edma_read(ecc, offset + (i << 2));
 342}
 343
 344static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 345				    unsigned val)
 346{
 347	edma_write(ecc, offset + (i << 2), val);
 348}
 349
 350static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 351				     unsigned and, unsigned or)
 352{
 353	edma_modify(ecc, offset + (i << 2), and, or);
 354}
 355
 356static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
 357				 unsigned or)
 358{
 359	edma_or(ecc, offset + (i << 2), or);
 360}
 361
 362static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 363				  unsigned or)
 364{
 365	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 366}
 367
 368static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 369				     int j, unsigned val)
 370{
 371	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 372}
 373
 374static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
 375{
 376	return edma_read(ecc, EDMA_SHADOW0 + offset);
 377}
 378
 379static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 380						   int offset, int i)
 381{
 382	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 383}
 384
 385static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 386				      unsigned val)
 387{
 388	edma_write(ecc, EDMA_SHADOW0 + offset, val);
 389}
 390
 391static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 392					    int i, unsigned val)
 393{
 394	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 395}
 396
 397static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
 398					   int param_no)
 399{
 400	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
 401}
 402
 403static inline void edma_param_write(struct edma_cc *ecc, int offset,
 404				    int param_no, unsigned val)
 405{
 406	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
 407}
 408
 409static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 410				     int param_no, unsigned and, unsigned or)
 411{
 412	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 413}
 414
 415static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
 416				  unsigned and)
 417{
 418	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
 419}
 420
 421static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
 422				 unsigned or)
 423{
 424	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
 425}
 426
 427static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 428					  int priority)
 429{
 430	int bit = queue_no * 4;
 431
 432	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 433}
 434
 435static void edma_set_chmap(struct edma_chan *echan, int slot)
 436{
 437	struct edma_cc *ecc = echan->ecc;
 438	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 439
 440	if (ecc->chmap_exist) {
 441		slot = EDMA_CHAN_SLOT(slot);
 442		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 443	}
 444}
 445
 446static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 447{
 448	struct edma_cc *ecc = echan->ecc;
 449	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 450	int idx = EDMA_REG_ARRAY_INDEX(channel);
 451	int ch_bit = EDMA_CHANNEL_BIT(channel);
 452
 453	if (enable) {
 454		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 455		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
 456	} else {
 457		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
 458	}
 459}
 460
 461/*
 462 * paRAM slot management functions
 463 */
 464static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 465			    const struct edmacc_param *param)
 466{
 467	slot = EDMA_CHAN_SLOT(slot);
 468	if (slot >= ecc->num_slots)
 469		return;
 470	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 471}
 472
 473static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
 474			   struct edmacc_param *param)
 475{
 476	slot = EDMA_CHAN_SLOT(slot);
 477	if (slot >= ecc->num_slots)
 478		return -EINVAL;
 479	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 480
 481	return 0;
 482}
 483
 484/**
 485 * edma_alloc_slot - allocate DMA parameter RAM
 486 * @ecc: pointer to edma_cc struct
 487 * @slot: specific slot to allocate; negative for "any unused slot"
 488 *
 489 * This allocates a parameter RAM slot, initializing it to hold a
 490 * dummy transfer.  Slots allocated using this routine have not been
 491 * mapped to a hardware DMA channel, and will normally be used by
 492 * linking to them from a slot associated with a DMA channel.
 493 *
 494 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 495 * slots may be allocated on behalf of DSP firmware.
 496 *
 497 * Returns the number of the slot, else negative errno.
 498 */
 499static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 500{
 501	if (slot >= 0) {
 502		slot = EDMA_CHAN_SLOT(slot);
 503		/* Requesting entry paRAM slot for a HW triggered channel. */
 504		if (ecc->chmap_exist && slot < ecc->num_channels)
 505			slot = EDMA_SLOT_ANY;
 506	}
 507
 508	if (slot < 0) {
 509		if (ecc->chmap_exist)
 510			slot = 0;
 511		else
 512			slot = ecc->num_channels;
 513		for (;;) {
 514			slot = find_next_zero_bit(ecc->slot_inuse,
 515						  ecc->num_slots,
 516						  slot);
 517			if (slot == ecc->num_slots)
 518				return -ENOMEM;
 519			if (!test_and_set_bit(slot, ecc->slot_inuse))
 520				break;
 521		}
 522	} else if (slot >= ecc->num_slots) {
 523		return -EINVAL;
 524	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 525		return -EBUSY;
 526	}
 527
 528	edma_write_slot(ecc, slot, &dummy_paramset);
 529
 530	return EDMA_CTLR_CHAN(ecc->id, slot);
 531}
 532
 533static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 534{
 535	slot = EDMA_CHAN_SLOT(slot);
 536	if (slot >= ecc->num_slots)
 537		return;
 538
 539	edma_write_slot(ecc, slot, &dummy_paramset);
 540	clear_bit(slot, ecc->slot_inuse);
 541}
 542
 543/**
 544 * edma_link - link one parameter RAM slot to another
 545 * @ecc: pointer to edma_cc struct
 546 * @from: parameter RAM slot originating the link
 547 * @to: parameter RAM slot which is the link target
 548 *
 549 * The originating slot should not be part of any active DMA transfer.
 550 */
 551static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 552{
 553	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 554		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 555
 556	from = EDMA_CHAN_SLOT(from);
 557	to = EDMA_CHAN_SLOT(to);
 558	if (from >= ecc->num_slots || to >= ecc->num_slots)
 559		return;
 560
 561	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 562			  PARM_OFFSET(to));
 563}
 564
 565/**
 566 * edma_get_position - returns the current transfer point
 567 * @ecc: pointer to edma_cc struct
 568 * @slot: parameter RAM slot being examined
 569 * @dst:  true selects the dest position, false the source
 570 *
 571 * Returns the position of the current active slot
 572 */
 573static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 574				    bool dst)
 575{
 576	u32 offs;
 577
 578	slot = EDMA_CHAN_SLOT(slot);
 579	offs = PARM_OFFSET(slot);
 580	offs += dst ? PARM_DST : PARM_SRC;
 581
 582	return edma_read(ecc, offs);
 583}
 584
 585/*
 586 * Channels with event associations will be triggered by their hardware
 587 * events, and channels without such associations will be triggered by
 588 * software.  (At this writing there is no interface for using software
 589 * triggers except with channels that don't support hardware triggers.)
 590 */
 591static void edma_start(struct edma_chan *echan)
 592{
 593	struct edma_cc *ecc = echan->ecc;
 594	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 595	int idx = EDMA_REG_ARRAY_INDEX(channel);
 596	int ch_bit = EDMA_CHANNEL_BIT(channel);
 597
 598	if (!echan->hw_triggered) {
 599		/* EDMA channels without event association */
 600		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 601			edma_shadow0_read_array(ecc, SH_ESR, idx));
 602		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 603	} else {
 604		/* EDMA channel with event association */
 605		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
 606			edma_shadow0_read_array(ecc, SH_ER, idx));
 607		/* Clear any pending event or error */
 608		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
 609		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 610		/* Clear any SER */
 611		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 612		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
 613		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 614			edma_shadow0_read_array(ecc, SH_EER, idx));
 615	}
 616}
 617
 618static void edma_stop(struct edma_chan *echan)
 619{
 620	struct edma_cc *ecc = echan->ecc;
 621	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 622	int idx = EDMA_REG_ARRAY_INDEX(channel);
 623	int ch_bit = EDMA_CHANNEL_BIT(channel);
 624
 625	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
 626	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 627	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 628	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 629
 630	/* clear possibly pending completion interrupt */
 631	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 632
 633	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 634		edma_shadow0_read_array(ecc, SH_EER, idx));
 635
 636	/* REVISIT:  consider guarding against inappropriate event
 637	 * chaining by overwriting with dummy_paramset.
 638	 */
 639}
 640
 641/*
 642 * Temporarily disable EDMA hardware events on the specified channel,
 643 * preventing them from triggering new transfers
 644 */
 645static void edma_pause(struct edma_chan *echan)
 646{
 647	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 648
 649	edma_shadow0_write_array(echan->ecc, SH_EECR,
 650				 EDMA_REG_ARRAY_INDEX(channel),
 651				 EDMA_CHANNEL_BIT(channel));
 652}
 653
 654/* Re-enable EDMA hardware events on the specified channel.  */
 655static void edma_resume(struct edma_chan *echan)
 656{
 657	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 658
 659	edma_shadow0_write_array(echan->ecc, SH_EESR,
 660				 EDMA_REG_ARRAY_INDEX(channel),
 661				 EDMA_CHANNEL_BIT(channel));
 662}
 663
 664static void edma_trigger_channel(struct edma_chan *echan)
 665{
 666	struct edma_cc *ecc = echan->ecc;
 667	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 668	int idx = EDMA_REG_ARRAY_INDEX(channel);
 669	int ch_bit = EDMA_CHANNEL_BIT(channel);
 670
 671	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 672
 673	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 674		edma_shadow0_read_array(ecc, SH_ESR, idx));
 675}
 676
 677static void edma_clean_channel(struct edma_chan *echan)
 678{
 679	struct edma_cc *ecc = echan->ecc;
 680	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 681	int idx = EDMA_REG_ARRAY_INDEX(channel);
 682	int ch_bit = EDMA_CHANNEL_BIT(channel);
 683
 684	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
 685		edma_read_array(ecc, EDMA_EMR, idx));
 686	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 687	/* Clear the corresponding EMR bits */
 688	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 689	/* Clear any SER */
 690	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 691	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 692}
 693
 694/* Move channel to a specific event queue */
 695static void edma_assign_channel_eventq(struct edma_chan *echan,
 696				       enum dma_event_q eventq_no)
 697{
 698	struct edma_cc *ecc = echan->ecc;
 699	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 700	int bit = (channel & 0x7) * 4;
 701
 702	/* default to low priority queue */
 703	if (eventq_no == EVENTQ_DEFAULT)
 704		eventq_no = ecc->default_queue;
 705	if (eventq_no >= ecc->num_tc)
 706		return;
 707
 708	eventq_no &= 7;
 709	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 710			  eventq_no << bit);
 711}
 712
 713static int edma_alloc_channel(struct edma_chan *echan,
 714			      enum dma_event_q eventq_no)
 715{
 716	struct edma_cc *ecc = echan->ecc;
 717	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 718
 
 
 
 
 
 
 719	/* ensure access through shadow region 0 */
 720	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
 721		       EDMA_CHANNEL_BIT(channel));
 722
 723	/* ensure no events are pending */
 724	edma_stop(echan);
 725
 726	edma_setup_interrupt(echan, true);
 727
 728	edma_assign_channel_eventq(echan, eventq_no);
 729
 730	return 0;
 731}
 732
 733static void edma_free_channel(struct edma_chan *echan)
 734{
 735	/* ensure no events are pending */
 736	edma_stop(echan);
 737	/* REVISIT should probably take out of shadow region 0 */
 738	edma_setup_interrupt(echan, false);
 739}
 740
 741static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 742{
 743	return container_of(d, struct edma_cc, dma_slave);
 744}
 745
 746static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 747{
 748	return container_of(c, struct edma_chan, vchan.chan);
 749}
 750
 751static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 752{
 753	return container_of(tx, struct edma_desc, vdesc.tx);
 754}
 755
 756static void edma_desc_free(struct virt_dma_desc *vdesc)
 757{
 758	kfree(container_of(vdesc, struct edma_desc, vdesc));
 759}
 760
 761/* Dispatch a queued descriptor to the controller (caller holds lock) */
 762static void edma_execute(struct edma_chan *echan)
 763{
 764	struct edma_cc *ecc = echan->ecc;
 765	struct virt_dma_desc *vdesc;
 766	struct edma_desc *edesc;
 767	struct device *dev = echan->vchan.chan.device->dev;
 768	int i, j, left, nslots;
 769
 770	if (!echan->edesc) {
 771		/* Setup is needed for the first transfer */
 772		vdesc = vchan_next_desc(&echan->vchan);
 773		if (!vdesc)
 774			return;
 775		list_del(&vdesc->node);
 776		echan->edesc = to_edma_desc(&vdesc->tx);
 777	}
 778
 779	edesc = echan->edesc;
 780
 781	/* Find out how many left */
 782	left = edesc->pset_nr - edesc->processed;
 783	nslots = min(MAX_NR_SG, left);
 784	edesc->sg_len = 0;
 785
 786	/* Write descriptor PaRAM set(s) */
 787	for (i = 0; i < nslots; i++) {
 788		j = i + edesc->processed;
 789		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 790		edesc->sg_len += edesc->pset[j].len;
 791		dev_vdbg(dev,
 792			 "\n pset[%d]:\n"
 793			 "  chnum\t%d\n"
 794			 "  slot\t%d\n"
 795			 "  opt\t%08x\n"
 796			 "  src\t%08x\n"
 797			 "  dst\t%08x\n"
 798			 "  abcnt\t%08x\n"
 799			 "  ccnt\t%08x\n"
 800			 "  bidx\t%08x\n"
 801			 "  cidx\t%08x\n"
 802			 "  lkrld\t%08x\n",
 803			 j, echan->ch_num, echan->slot[i],
 804			 edesc->pset[j].param.opt,
 805			 edesc->pset[j].param.src,
 806			 edesc->pset[j].param.dst,
 807			 edesc->pset[j].param.a_b_cnt,
 808			 edesc->pset[j].param.ccnt,
 809			 edesc->pset[j].param.src_dst_bidx,
 810			 edesc->pset[j].param.src_dst_cidx,
 811			 edesc->pset[j].param.link_bcntrld);
 812		/* Link to the previous slot if not the last set */
 813		if (i != (nslots - 1))
 814			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 815	}
 816
 817	edesc->processed += nslots;
 818
 819	/*
 820	 * If this is either the last set in a set of SG-list transactions
 821	 * then setup a link to the dummy slot, this results in all future
 822	 * events being absorbed and that's OK because we're done
 823	 */
 824	if (edesc->processed == edesc->pset_nr) {
 825		if (edesc->cyclic)
 826			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 827		else
 828			edma_link(ecc, echan->slot[nslots - 1],
 829				  echan->ecc->dummy_slot);
 830	}
 831
 832	if (echan->missed) {
 833		/*
 834		 * This happens due to setup times between intermediate
 835		 * transfers in long SG lists which have to be broken up into
 836		 * transfers of MAX_NR_SG
 837		 */
 838		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 839		edma_clean_channel(echan);
 840		edma_stop(echan);
 841		edma_start(echan);
 842		edma_trigger_channel(echan);
 843		echan->missed = 0;
 844	} else if (edesc->processed <= MAX_NR_SG) {
 845		dev_dbg(dev, "first transfer starting on channel %d\n",
 846			echan->ch_num);
 847		edma_start(echan);
 848	} else {
 849		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 850			echan->ch_num, edesc->processed);
 851		edma_resume(echan);
 852	}
 853}
 854
 855static int edma_terminate_all(struct dma_chan *chan)
 856{
 857	struct edma_chan *echan = to_edma_chan(chan);
 858	unsigned long flags;
 859	LIST_HEAD(head);
 860
 861	spin_lock_irqsave(&echan->vchan.lock, flags);
 862
 863	/*
 864	 * Stop DMA activity: we assume the callback will not be called
 865	 * after edma_dma() returns (even if it does, it will see
 866	 * echan->edesc is NULL and exit.)
 867	 */
 868	if (echan->edesc) {
 869		edma_stop(echan);
 870		/* Move the cyclic channel back to default queue */
 871		if (!echan->tc && echan->edesc->cyclic)
 872			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 873
 874		vchan_terminate_vdesc(&echan->edesc->vdesc);
 875		echan->edesc = NULL;
 876	}
 877
 878	vchan_get_all_descriptors(&echan->vchan, &head);
 879	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 880	vchan_dma_desc_free_list(&echan->vchan, &head);
 881
 882	return 0;
 883}
 884
 885static void edma_synchronize(struct dma_chan *chan)
 886{
 887	struct edma_chan *echan = to_edma_chan(chan);
 888
 889	vchan_synchronize(&echan->vchan);
 890}
 891
 892static int edma_slave_config(struct dma_chan *chan,
 893	struct dma_slave_config *cfg)
 894{
 895	struct edma_chan *echan = to_edma_chan(chan);
 896
 897	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 898	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 899		return -EINVAL;
 900
 901	if (cfg->src_maxburst > chan->device->max_burst ||
 902	    cfg->dst_maxburst > chan->device->max_burst)
 903		return -EINVAL;
 904
 905	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 906
 907	return 0;
 908}
 909
 910static int edma_dma_pause(struct dma_chan *chan)
 911{
 912	struct edma_chan *echan = to_edma_chan(chan);
 913
 914	if (!echan->edesc)
 915		return -EINVAL;
 916
 917	edma_pause(echan);
 918	return 0;
 919}
 920
 921static int edma_dma_resume(struct dma_chan *chan)
 922{
 923	struct edma_chan *echan = to_edma_chan(chan);
 924
 925	edma_resume(echan);
 926	return 0;
 927}
 928
 929/*
 930 * A PaRAM set configuration abstraction used by other modes
 931 * @chan: Channel who's PaRAM set we're configuring
 932 * @pset: PaRAM set to initialize and setup.
 933 * @src_addr: Source address of the DMA
 934 * @dst_addr: Destination address of the DMA
 935 * @burst: In units of dev_width, how much to send
 936 * @dev_width: How much is the dev_width
 937 * @dma_length: Total length of the DMA transfer
 938 * @direction: Direction of the transfer
 939 */
 940static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 941			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 942			    unsigned int acnt, unsigned int dma_length,
 943			    enum dma_transfer_direction direction)
 944{
 945	struct edma_chan *echan = to_edma_chan(chan);
 946	struct device *dev = chan->device->dev;
 947	struct edmacc_param *param = &epset->param;
 948	int bcnt, ccnt, cidx;
 949	int src_bidx, dst_bidx, src_cidx, dst_cidx;
 950	int absync;
 951
 952	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 953	if (!burst)
 954		burst = 1;
 955	/*
 956	 * If the maxburst is equal to the fifo width, use
 957	 * A-synced transfers. This allows for large contiguous
 958	 * buffer transfers using only one PaRAM set.
 959	 */
 960	if (burst == 1) {
 961		/*
 962		 * For the A-sync case, bcnt and ccnt are the remainder
 963		 * and quotient respectively of the division of:
 964		 * (dma_length / acnt) by (SZ_64K -1). This is so
 965		 * that in case bcnt over flows, we have ccnt to use.
 966		 * Note: In A-sync tranfer only, bcntrld is used, but it
 967		 * only applies for sg_dma_len(sg) >= SZ_64K.
 968		 * In this case, the best way adopted is- bccnt for the
 969		 * first frame will be the remainder below. Then for
 970		 * every successive frame, bcnt will be SZ_64K-1. This
 971		 * is assured as bcntrld = 0xffff in end of function.
 972		 */
 973		absync = false;
 974		ccnt = dma_length / acnt / (SZ_64K - 1);
 975		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 976		/*
 977		 * If bcnt is non-zero, we have a remainder and hence an
 978		 * extra frame to transfer, so increment ccnt.
 979		 */
 980		if (bcnt)
 981			ccnt++;
 982		else
 983			bcnt = SZ_64K - 1;
 984		cidx = acnt;
 985	} else {
 986		/*
 987		 * If maxburst is greater than the fifo address_width,
 988		 * use AB-synced transfers where A count is the fifo
 989		 * address_width and B count is the maxburst. In this
 990		 * case, we are limited to transfers of C count frames
 991		 * of (address_width * maxburst) where C count is limited
 992		 * to SZ_64K-1. This places an upper bound on the length
 993		 * of an SG segment that can be handled.
 994		 */
 995		absync = true;
 996		bcnt = burst;
 997		ccnt = dma_length / (acnt * bcnt);
 998		if (ccnt > (SZ_64K - 1)) {
 999			dev_err(dev, "Exceeded max SG segment size\n");
1000			return -EINVAL;
1001		}
1002		cidx = acnt * bcnt;
1003	}
1004
1005	epset->len = dma_length;
1006
1007	if (direction == DMA_MEM_TO_DEV) {
1008		src_bidx = acnt;
1009		src_cidx = cidx;
1010		dst_bidx = 0;
1011		dst_cidx = 0;
1012		epset->addr = src_addr;
1013	} else if (direction == DMA_DEV_TO_MEM)  {
1014		src_bidx = 0;
1015		src_cidx = 0;
1016		dst_bidx = acnt;
1017		dst_cidx = cidx;
1018		epset->addr = dst_addr;
1019	} else if (direction == DMA_MEM_TO_MEM)  {
1020		src_bidx = acnt;
1021		src_cidx = cidx;
1022		dst_bidx = acnt;
1023		dst_cidx = cidx;
1024		epset->addr = src_addr;
1025	} else {
1026		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1027		return -EINVAL;
1028	}
1029
1030	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1031	/* Configure A or AB synchronized transfers */
1032	if (absync)
1033		param->opt |= SYNCDIM;
1034
1035	param->src = src_addr;
1036	param->dst = dst_addr;
1037
1038	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1039	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1040
1041	param->a_b_cnt = bcnt << 16 | acnt;
1042	param->ccnt = ccnt;
1043	/*
1044	 * Only time when (bcntrld) auto reload is required is for
1045	 * A-sync case, and in this case, a requirement of reload value
1046	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1047	 * and then later will be populated by edma_execute.
1048	 */
1049	param->link_bcntrld = 0xffffffff;
1050	return absync;
1051}
1052
1053static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1054	struct dma_chan *chan, struct scatterlist *sgl,
1055	unsigned int sg_len, enum dma_transfer_direction direction,
1056	unsigned long tx_flags, void *context)
1057{
1058	struct edma_chan *echan = to_edma_chan(chan);
1059	struct device *dev = chan->device->dev;
1060	struct edma_desc *edesc;
1061	dma_addr_t src_addr = 0, dst_addr = 0;
1062	enum dma_slave_buswidth dev_width;
1063	u32 burst;
1064	struct scatterlist *sg;
1065	int i, nslots, ret;
1066
1067	if (unlikely(!echan || !sgl || !sg_len))
1068		return NULL;
1069
1070	if (direction == DMA_DEV_TO_MEM) {
1071		src_addr = echan->cfg.src_addr;
1072		dev_width = echan->cfg.src_addr_width;
1073		burst = echan->cfg.src_maxburst;
1074	} else if (direction == DMA_MEM_TO_DEV) {
1075		dst_addr = echan->cfg.dst_addr;
1076		dev_width = echan->cfg.dst_addr_width;
1077		burst = echan->cfg.dst_maxburst;
1078	} else {
1079		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1080		return NULL;
1081	}
1082
1083	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1084		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1085		return NULL;
1086	}
1087
1088	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1089	if (!edesc)
1090		return NULL;
1091
1092	edesc->pset_nr = sg_len;
1093	edesc->residue = 0;
1094	edesc->direction = direction;
1095	edesc->echan = echan;
1096
1097	/* Allocate a PaRAM slot, if needed */
1098	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1099
1100	for (i = 0; i < nslots; i++) {
1101		if (echan->slot[i] < 0) {
1102			echan->slot[i] =
1103				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1104			if (echan->slot[i] < 0) {
1105				kfree(edesc);
1106				dev_err(dev, "%s: Failed to allocate slot\n",
1107					__func__);
1108				return NULL;
1109			}
1110		}
1111	}
1112
1113	/* Configure PaRAM sets for each SG */
1114	for_each_sg(sgl, sg, sg_len, i) {
1115		/* Get address for each SG */
1116		if (direction == DMA_DEV_TO_MEM)
1117			dst_addr = sg_dma_address(sg);
1118		else
1119			src_addr = sg_dma_address(sg);
1120
1121		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1122				       dst_addr, burst, dev_width,
1123				       sg_dma_len(sg), direction);
1124		if (ret < 0) {
1125			kfree(edesc);
1126			return NULL;
1127		}
1128
1129		edesc->absync = ret;
1130		edesc->residue += sg_dma_len(sg);
1131
1132		if (i == sg_len - 1)
1133			/* Enable completion interrupt */
1134			edesc->pset[i].param.opt |= TCINTEN;
1135		else if (!((i+1) % MAX_NR_SG))
1136			/*
1137			 * Enable early completion interrupt for the
1138			 * intermediateset. In this case the driver will be
1139			 * notified when the paRAM set is submitted to TC. This
1140			 * will allow more time to set up the next set of slots.
1141			 */
1142			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1143	}
1144	edesc->residue_stat = edesc->residue;
1145
1146	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1147}
1148
1149static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1150	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1151	size_t len, unsigned long tx_flags)
1152{
1153	int ret, nslots;
1154	struct edma_desc *edesc;
1155	struct device *dev = chan->device->dev;
1156	struct edma_chan *echan = to_edma_chan(chan);
1157	unsigned int width, pset_len, array_size;
1158
1159	if (unlikely(!echan || !len))
1160		return NULL;
1161
1162	/* Align the array size (acnt block) with the transfer properties */
1163	switch (__ffs((src | dest | len))) {
1164	case 0:
1165		array_size = SZ_32K - 1;
1166		break;
1167	case 1:
1168		array_size = SZ_32K - 2;
1169		break;
1170	default:
1171		array_size = SZ_32K - 4;
1172		break;
1173	}
1174
1175	if (len < SZ_64K) {
1176		/*
1177		 * Transfer size less than 64K can be handled with one paRAM
1178		 * slot and with one burst.
1179		 * ACNT = length
1180		 */
1181		width = len;
1182		pset_len = len;
1183		nslots = 1;
1184	} else {
1185		/*
1186		 * Transfer size bigger than 64K will be handled with maximum of
1187		 * two paRAM slots.
1188		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1189		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1190		 * slot2: the remaining amount of data after slot1.
1191		 *	  ACNT = full_length - length1, length2 = ACNT
1192		 *
1193		 * When the full_length is multibple of 32767 one slot can be
1194		 * used to complete the transfer.
1195		 */
1196		width = array_size;
1197		pset_len = rounddown(len, width);
1198		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1199		if (unlikely(pset_len == len))
1200			nslots = 1;
1201		else
1202			nslots = 2;
1203	}
1204
1205	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1206	if (!edesc)
1207		return NULL;
1208
1209	edesc->pset_nr = nslots;
1210	edesc->residue = edesc->residue_stat = len;
1211	edesc->direction = DMA_MEM_TO_MEM;
1212	edesc->echan = echan;
1213
1214	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1215			       width, pset_len, DMA_MEM_TO_MEM);
1216	if (ret < 0) {
1217		kfree(edesc);
1218		return NULL;
1219	}
1220
1221	edesc->absync = ret;
1222
1223	edesc->pset[0].param.opt |= ITCCHEN;
1224	if (nslots == 1) {
1225		/* Enable transfer complete interrupt if requested */
1226		if (tx_flags & DMA_PREP_INTERRUPT)
1227			edesc->pset[0].param.opt |= TCINTEN;
1228	} else {
1229		/* Enable transfer complete chaining for the first slot */
1230		edesc->pset[0].param.opt |= TCCHEN;
1231
1232		if (echan->slot[1] < 0) {
1233			echan->slot[1] = edma_alloc_slot(echan->ecc,
1234							 EDMA_SLOT_ANY);
1235			if (echan->slot[1] < 0) {
1236				kfree(edesc);
1237				dev_err(dev, "%s: Failed to allocate slot\n",
1238					__func__);
1239				return NULL;
1240			}
1241		}
1242		dest += pset_len;
1243		src += pset_len;
1244		pset_len = width = len % array_size;
1245
1246		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1247				       width, pset_len, DMA_MEM_TO_MEM);
1248		if (ret < 0) {
1249			kfree(edesc);
1250			return NULL;
1251		}
1252
1253		edesc->pset[1].param.opt |= ITCCHEN;
1254		/* Enable transfer complete interrupt if requested */
1255		if (tx_flags & DMA_PREP_INTERRUPT)
1256			edesc->pset[1].param.opt |= TCINTEN;
1257	}
1258
1259	if (!(tx_flags & DMA_PREP_INTERRUPT))
1260		edesc->polled = true;
1261
1262	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1263}
1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1266	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1267	size_t period_len, enum dma_transfer_direction direction,
1268	unsigned long tx_flags)
1269{
1270	struct edma_chan *echan = to_edma_chan(chan);
1271	struct device *dev = chan->device->dev;
1272	struct edma_desc *edesc;
1273	dma_addr_t src_addr, dst_addr;
1274	enum dma_slave_buswidth dev_width;
1275	bool use_intermediate = false;
1276	u32 burst;
1277	int i, ret, nslots;
1278
1279	if (unlikely(!echan || !buf_len || !period_len))
1280		return NULL;
1281
1282	if (direction == DMA_DEV_TO_MEM) {
1283		src_addr = echan->cfg.src_addr;
1284		dst_addr = buf_addr;
1285		dev_width = echan->cfg.src_addr_width;
1286		burst = echan->cfg.src_maxburst;
1287	} else if (direction == DMA_MEM_TO_DEV) {
1288		src_addr = buf_addr;
1289		dst_addr = echan->cfg.dst_addr;
1290		dev_width = echan->cfg.dst_addr_width;
1291		burst = echan->cfg.dst_maxburst;
1292	} else {
1293		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1294		return NULL;
1295	}
1296
1297	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1298		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1299		return NULL;
1300	}
1301
1302	if (unlikely(buf_len % period_len)) {
1303		dev_err(dev, "Period should be multiple of Buffer length\n");
1304		return NULL;
1305	}
1306
1307	nslots = (buf_len / period_len) + 1;
1308
1309	/*
1310	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1311	 * by cases where the number of periods is more than the maximum
1312	 * number of SGs the EDMA driver can handle at a time. For DMA types
1313	 * such as Slave SGs, such delays are tolerable and synchronized,
1314	 * but the synchronization is difficult to achieve with Cyclic and
1315	 * cannot be guaranteed, so we error out early.
1316	 */
1317	if (nslots > MAX_NR_SG) {
1318		/*
1319		 * If the burst and period sizes are the same, we can put
1320		 * the full buffer into a single period and activate
1321		 * intermediate interrupts. This will produce interrupts
1322		 * after each burst, which is also after each desired period.
1323		 */
1324		if (burst == period_len) {
1325			period_len = buf_len;
1326			nslots = 2;
1327			use_intermediate = true;
1328		} else {
1329			return NULL;
1330		}
1331	}
1332
1333	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1334	if (!edesc)
1335		return NULL;
1336
1337	edesc->cyclic = 1;
1338	edesc->pset_nr = nslots;
1339	edesc->residue = edesc->residue_stat = buf_len;
1340	edesc->direction = direction;
1341	edesc->echan = echan;
1342
1343	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1344		__func__, echan->ch_num, nslots, period_len, buf_len);
1345
1346	for (i = 0; i < nslots; i++) {
1347		/* Allocate a PaRAM slot, if needed */
1348		if (echan->slot[i] < 0) {
1349			echan->slot[i] =
1350				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1351			if (echan->slot[i] < 0) {
1352				kfree(edesc);
1353				dev_err(dev, "%s: Failed to allocate slot\n",
1354					__func__);
1355				return NULL;
1356			}
1357		}
1358
1359		if (i == nslots - 1) {
1360			memcpy(&edesc->pset[i], &edesc->pset[0],
1361			       sizeof(edesc->pset[0]));
1362			break;
1363		}
1364
1365		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1366				       dst_addr, burst, dev_width, period_len,
1367				       direction);
1368		if (ret < 0) {
1369			kfree(edesc);
1370			return NULL;
1371		}
1372
1373		if (direction == DMA_DEV_TO_MEM)
1374			dst_addr += period_len;
1375		else
1376			src_addr += period_len;
1377
1378		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1379		dev_vdbg(dev,
1380			"\n pset[%d]:\n"
1381			"  chnum\t%d\n"
1382			"  slot\t%d\n"
1383			"  opt\t%08x\n"
1384			"  src\t%08x\n"
1385			"  dst\t%08x\n"
1386			"  abcnt\t%08x\n"
1387			"  ccnt\t%08x\n"
1388			"  bidx\t%08x\n"
1389			"  cidx\t%08x\n"
1390			"  lkrld\t%08x\n",
1391			i, echan->ch_num, echan->slot[i],
1392			edesc->pset[i].param.opt,
1393			edesc->pset[i].param.src,
1394			edesc->pset[i].param.dst,
1395			edesc->pset[i].param.a_b_cnt,
1396			edesc->pset[i].param.ccnt,
1397			edesc->pset[i].param.src_dst_bidx,
1398			edesc->pset[i].param.src_dst_cidx,
1399			edesc->pset[i].param.link_bcntrld);
1400
1401		edesc->absync = ret;
1402
1403		/*
1404		 * Enable period interrupt only if it is requested
1405		 */
1406		if (tx_flags & DMA_PREP_INTERRUPT) {
1407			edesc->pset[i].param.opt |= TCINTEN;
1408
1409			/* Also enable intermediate interrupts if necessary */
1410			if (use_intermediate)
1411				edesc->pset[i].param.opt |= ITCINTEN;
1412		}
1413	}
1414
1415	/* Place the cyclic channel to highest priority queue */
1416	if (!echan->tc)
1417		edma_assign_channel_eventq(echan, EVENTQ_0);
1418
1419	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1420}
1421
1422static void edma_completion_handler(struct edma_chan *echan)
1423{
1424	struct device *dev = echan->vchan.chan.device->dev;
1425	struct edma_desc *edesc;
1426
1427	spin_lock(&echan->vchan.lock);
1428	edesc = echan->edesc;
1429	if (edesc) {
1430		if (edesc->cyclic) {
1431			vchan_cyclic_callback(&edesc->vdesc);
1432			spin_unlock(&echan->vchan.lock);
1433			return;
1434		} else if (edesc->processed == edesc->pset_nr) {
1435			edesc->residue = 0;
1436			edma_stop(echan);
1437			vchan_cookie_complete(&edesc->vdesc);
1438			echan->edesc = NULL;
1439
1440			dev_dbg(dev, "Transfer completed on channel %d\n",
1441				echan->ch_num);
1442		} else {
1443			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1444				echan->ch_num);
1445
1446			edma_pause(echan);
1447
1448			/* Update statistics for tx_status */
1449			edesc->residue -= edesc->sg_len;
1450			edesc->residue_stat = edesc->residue;
1451			edesc->processed_stat = edesc->processed;
1452		}
1453		edma_execute(echan);
1454	}
1455
1456	spin_unlock(&echan->vchan.lock);
1457}
1458
1459/* eDMA interrupt handler */
1460static irqreturn_t dma_irq_handler(int irq, void *data)
1461{
1462	struct edma_cc *ecc = data;
1463	int ctlr;
1464	u32 sh_ier;
1465	u32 sh_ipr;
1466	u32 bank;
1467
1468	ctlr = ecc->id;
1469	if (ctlr < 0)
1470		return IRQ_NONE;
1471
1472	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1473
1474	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1475	if (!sh_ipr) {
1476		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1477		if (!sh_ipr)
1478			return IRQ_NONE;
1479		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1480		bank = 1;
1481	} else {
1482		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1483		bank = 0;
1484	}
1485
1486	do {
1487		u32 slot;
1488		u32 channel;
1489
1490		slot = __ffs(sh_ipr);
1491		sh_ipr &= ~(BIT(slot));
1492
1493		if (sh_ier & BIT(slot)) {
1494			channel = (bank << 5) | slot;
1495			/* Clear the corresponding IPR bits */
1496			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1497			edma_completion_handler(&ecc->slave_chans[channel]);
1498		}
1499	} while (sh_ipr);
1500
1501	edma_shadow0_write(ecc, SH_IEVAL, 1);
1502	return IRQ_HANDLED;
1503}
1504
1505static void edma_error_handler(struct edma_chan *echan)
1506{
1507	struct edma_cc *ecc = echan->ecc;
1508	struct device *dev = echan->vchan.chan.device->dev;
1509	struct edmacc_param p;
1510	int err;
1511
1512	if (!echan->edesc)
1513		return;
1514
1515	spin_lock(&echan->vchan.lock);
1516
1517	err = edma_read_slot(ecc, echan->slot[0], &p);
1518
1519	/*
1520	 * Issue later based on missed flag which will be sure
1521	 * to happen as:
1522	 * (1) we finished transmitting an intermediate slot and
1523	 *     edma_execute is coming up.
1524	 * (2) or we finished current transfer and issue will
1525	 *     call edma_execute.
1526	 *
1527	 * Important note: issuing can be dangerous here and
1528	 * lead to some nasty recursion when we are in a NULL
1529	 * slot. So we avoid doing so and set the missed flag.
1530	 */
1531	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1532		dev_dbg(dev, "Error on null slot, setting miss\n");
1533		echan->missed = 1;
1534	} else {
1535		/*
1536		 * The slot is already programmed but the event got
1537		 * missed, so its safe to issue it here.
1538		 */
1539		dev_dbg(dev, "Missed event, TRIGGERING\n");
1540		edma_clean_channel(echan);
1541		edma_stop(echan);
1542		edma_start(echan);
1543		edma_trigger_channel(echan);
1544	}
1545	spin_unlock(&echan->vchan.lock);
1546}
1547
1548static inline bool edma_error_pending(struct edma_cc *ecc)
1549{
1550	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1551	    edma_read_array(ecc, EDMA_EMR, 1) ||
1552	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1553		return true;
1554
1555	return false;
1556}
1557
1558/* eDMA error interrupt handler */
1559static irqreturn_t dma_ccerr_handler(int irq, void *data)
1560{
1561	struct edma_cc *ecc = data;
1562	int i, j;
1563	int ctlr;
1564	unsigned int cnt = 0;
1565	unsigned int val;
1566
1567	ctlr = ecc->id;
1568	if (ctlr < 0)
1569		return IRQ_NONE;
1570
1571	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1572
1573	if (!edma_error_pending(ecc)) {
1574		/*
1575		 * The registers indicate no pending error event but the irq
1576		 * handler has been called.
1577		 * Ask eDMA to re-evaluate the error registers.
1578		 */
1579		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1580			__func__);
1581		edma_write(ecc, EDMA_EEVAL, 1);
1582		return IRQ_NONE;
1583	}
1584
1585	while (1) {
1586		/* Event missed register(s) */
1587		for (j = 0; j < 2; j++) {
1588			unsigned long emr;
1589
1590			val = edma_read_array(ecc, EDMA_EMR, j);
1591			if (!val)
1592				continue;
1593
1594			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1595			emr = val;
1596			for (i = find_next_bit(&emr, 32, 0); i < 32;
1597			     i = find_next_bit(&emr, 32, i + 1)) {
1598				int k = (j << 5) + i;
1599
1600				/* Clear the corresponding EMR bits */
1601				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1602				/* Clear any SER */
1603				edma_shadow0_write_array(ecc, SH_SECR, j,
1604							 BIT(i));
1605				edma_error_handler(&ecc->slave_chans[k]);
1606			}
1607		}
1608
1609		val = edma_read(ecc, EDMA_QEMR);
1610		if (val) {
1611			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1612			/* Not reported, just clear the interrupt reason. */
1613			edma_write(ecc, EDMA_QEMCR, val);
1614			edma_shadow0_write(ecc, SH_QSECR, val);
1615		}
1616
1617		val = edma_read(ecc, EDMA_CCERR);
1618		if (val) {
1619			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1620			/* Not reported, just clear the interrupt reason. */
1621			edma_write(ecc, EDMA_CCERRCLR, val);
1622		}
1623
1624		if (!edma_error_pending(ecc))
1625			break;
1626		cnt++;
1627		if (cnt > 10)
1628			break;
1629	}
1630	edma_write(ecc, EDMA_EEVAL, 1);
1631	return IRQ_HANDLED;
1632}
1633
1634/* Alloc channel resources */
1635static int edma_alloc_chan_resources(struct dma_chan *chan)
1636{
1637	struct edma_chan *echan = to_edma_chan(chan);
1638	struct edma_cc *ecc = echan->ecc;
1639	struct device *dev = ecc->dev;
1640	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1641	int ret;
1642
1643	if (echan->tc) {
1644		eventq_no = echan->tc->id;
1645	} else if (ecc->tc_list) {
1646		/* memcpy channel */
1647		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1648		eventq_no = echan->tc->id;
1649	}
1650
1651	ret = edma_alloc_channel(echan, eventq_no);
1652	if (ret)
1653		return ret;
1654
1655	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1656	if (echan->slot[0] < 0) {
1657		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1658			EDMA_CHAN_SLOT(echan->ch_num));
1659		ret = echan->slot[0];
1660		goto err_slot;
1661	}
1662
1663	/* Set up channel -> slot mapping for the entry slot */
1664	edma_set_chmap(echan, echan->slot[0]);
1665	echan->alloced = true;
1666
1667	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1668		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1669		echan->hw_triggered ? "HW" : "SW");
1670
1671	return 0;
1672
1673err_slot:
1674	edma_free_channel(echan);
1675	return ret;
1676}
1677
1678/* Free channel resources */
1679static void edma_free_chan_resources(struct dma_chan *chan)
1680{
1681	struct edma_chan *echan = to_edma_chan(chan);
1682	struct device *dev = echan->ecc->dev;
1683	int i;
1684
1685	/* Terminate transfers */
1686	edma_stop(echan);
1687
1688	vchan_free_chan_resources(&echan->vchan);
1689
1690	/* Free EDMA PaRAM slots */
1691	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1692		if (echan->slot[i] >= 0) {
1693			edma_free_slot(echan->ecc, echan->slot[i]);
1694			echan->slot[i] = -1;
1695		}
1696	}
1697
1698	/* Set entry slot to the dummy slot */
1699	edma_set_chmap(echan, echan->ecc->dummy_slot);
1700
1701	/* Free EDMA channel */
1702	if (echan->alloced) {
1703		edma_free_channel(echan);
1704		echan->alloced = false;
1705	}
1706
1707	echan->tc = NULL;
1708	echan->hw_triggered = false;
1709
1710	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1711		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1712}
1713
1714/* Send pending descriptor to hardware */
1715static void edma_issue_pending(struct dma_chan *chan)
1716{
1717	struct edma_chan *echan = to_edma_chan(chan);
1718	unsigned long flags;
1719
1720	spin_lock_irqsave(&echan->vchan.lock, flags);
1721	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1722		edma_execute(echan);
1723	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1724}
1725
1726/*
1727 * This limit exists to avoid a possible infinite loop when waiting for proof
1728 * that a particular transfer is completed. This limit can be hit if there
1729 * are large bursts to/from slow devices or the CPU is never able to catch
1730 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1731 * RX-FIFO, as many as 55 loops have been seen.
1732 */
1733#define EDMA_MAX_TR_WAIT_LOOPS 1000
1734
1735static u32 edma_residue(struct edma_desc *edesc)
1736{
1737	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1738	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1739	struct edma_chan *echan = edesc->echan;
1740	struct edma_pset *pset = edesc->pset;
1741	dma_addr_t done, pos, pos_old;
1742	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1743	int idx = EDMA_REG_ARRAY_INDEX(channel);
1744	int ch_bit = EDMA_CHANNEL_BIT(channel);
1745	int event_reg;
1746	int i;
1747
1748	/*
1749	 * We always read the dst/src position from the first RamPar
1750	 * pset. That's the one which is active now.
1751	 */
1752	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1753
1754	/*
1755	 * "pos" may represent a transfer request that is still being
1756	 * processed by the EDMACC or EDMATC. We will busy wait until
1757	 * any one of the situations occurs:
1758	 *   1. while and event is pending for the channel
1759	 *   2. a position updated
1760	 *   3. we hit the loop limit
1761	 */
1762	if (is_slave_direction(edesc->direction))
1763		event_reg = SH_ER;
1764	else
1765		event_reg = SH_ESR;
1766
1767	pos_old = pos;
1768	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1769		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1770		if (pos != pos_old)
1771			break;
1772
1773		if (!--loop_count) {
1774			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1775				"%s: timeout waiting for PaRAM update\n",
1776				__func__);
1777			break;
1778		}
1779
1780		cpu_relax();
1781	}
1782
1783	/*
1784	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1785	 *
1786	 * We never update edesc->residue in the cyclic case, so we
1787	 * can tell the remaining room to the end of the circular
1788	 * buffer.
1789	 */
1790	if (edesc->cyclic) {
1791		done = pos - pset->addr;
1792		edesc->residue_stat = edesc->residue - done;
1793		return edesc->residue_stat;
1794	}
1795
1796	/*
1797	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1798	 * transfer is completed
1799	 */
1800	if (!pos)
1801		return 0;
1802	/*
1803	 * For SG operation we catch up with the last processed
1804	 * status.
1805	 */
1806	pset += edesc->processed_stat;
1807
1808	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1809		/*
1810		 * If we are inside this pset address range, we know
1811		 * this is the active one. Get the current delta and
1812		 * stop walking the psets.
1813		 */
1814		if (pos >= pset->addr && pos < pset->addr + pset->len)
1815			return edesc->residue_stat - (pos - pset->addr);
1816
1817		/* Otherwise mark it done and update residue_stat. */
1818		edesc->processed_stat++;
1819		edesc->residue_stat -= pset->len;
1820	}
1821	return edesc->residue_stat;
1822}
1823
1824/* Check request completion status */
1825static enum dma_status edma_tx_status(struct dma_chan *chan,
1826				      dma_cookie_t cookie,
1827				      struct dma_tx_state *txstate)
1828{
1829	struct edma_chan *echan = to_edma_chan(chan);
1830	struct dma_tx_state txstate_tmp;
1831	enum dma_status ret;
1832	unsigned long flags;
1833
1834	ret = dma_cookie_status(chan, cookie, txstate);
1835
1836	if (ret == DMA_COMPLETE)
1837		return ret;
1838
1839	/* Provide a dummy dma_tx_state for completion checking */
1840	if (!txstate)
1841		txstate = &txstate_tmp;
1842
1843	spin_lock_irqsave(&echan->vchan.lock, flags);
1844	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1845		txstate->residue = edma_residue(echan->edesc);
1846	} else {
1847		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1848							      cookie);
1849
1850		if (vdesc)
1851			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1852		else
1853			txstate->residue = 0;
1854	}
1855
1856	/*
1857	 * Mark the cookie completed if the residue is 0 for non cyclic
1858	 * transfers
1859	 */
1860	if (ret != DMA_COMPLETE && !txstate->residue &&
1861	    echan->edesc && echan->edesc->polled &&
1862	    echan->edesc->vdesc.tx.cookie == cookie) {
1863		edma_stop(echan);
1864		vchan_cookie_complete(&echan->edesc->vdesc);
1865		echan->edesc = NULL;
1866		edma_execute(echan);
1867		ret = DMA_COMPLETE;
1868	}
1869
1870	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1871
1872	return ret;
1873}
1874
1875static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1876{
1877	if (!memcpy_channels)
1878		return false;
1879	while (*memcpy_channels != -1) {
1880		if (*memcpy_channels == ch_num)
1881			return true;
1882		memcpy_channels++;
1883	}
1884	return false;
1885}
1886
1887#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1888				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1889				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1890				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1891
1892static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1893{
1894	struct dma_device *s_ddev = &ecc->dma_slave;
1895	struct dma_device *m_ddev = NULL;
1896	s32 *memcpy_channels = ecc->info->memcpy_channels;
1897	int i, j;
1898
1899	dma_cap_zero(s_ddev->cap_mask);
1900	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1901	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1902	if (ecc->legacy_mode && !memcpy_channels) {
1903		dev_warn(ecc->dev,
1904			 "Legacy memcpy is enabled, things might not work\n");
1905
1906		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
 
1907		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
 
1908		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1909	}
1910
1911	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1912	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1913	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1914	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1915	s_ddev->device_issue_pending = edma_issue_pending;
1916	s_ddev->device_tx_status = edma_tx_status;
1917	s_ddev->device_config = edma_slave_config;
1918	s_ddev->device_pause = edma_dma_pause;
1919	s_ddev->device_resume = edma_dma_resume;
1920	s_ddev->device_terminate_all = edma_terminate_all;
1921	s_ddev->device_synchronize = edma_synchronize;
1922
1923	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1924	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1925	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1926	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1927	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1928
1929	s_ddev->dev = ecc->dev;
1930	INIT_LIST_HEAD(&s_ddev->channels);
1931
1932	if (memcpy_channels) {
1933		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1934		if (!m_ddev) {
1935			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1936			memcpy_channels = NULL;
1937			goto ch_setup;
1938		}
1939		ecc->dma_memcpy = m_ddev;
1940
1941		dma_cap_zero(m_ddev->cap_mask);
1942		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
 
1943
1944		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
 
1945		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1947		m_ddev->device_issue_pending = edma_issue_pending;
1948		m_ddev->device_tx_status = edma_tx_status;
1949		m_ddev->device_config = edma_slave_config;
1950		m_ddev->device_pause = edma_dma_pause;
1951		m_ddev->device_resume = edma_dma_resume;
1952		m_ddev->device_terminate_all = edma_terminate_all;
1953		m_ddev->device_synchronize = edma_synchronize;
1954
1955		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1958		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959
1960		m_ddev->dev = ecc->dev;
1961		INIT_LIST_HEAD(&m_ddev->channels);
1962	} else if (!ecc->legacy_mode) {
1963		dev_info(ecc->dev, "memcpy is disabled\n");
1964	}
1965
1966ch_setup:
1967	for (i = 0; i < ecc->num_channels; i++) {
1968		struct edma_chan *echan = &ecc->slave_chans[i];
1969		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1970		echan->ecc = ecc;
1971		echan->vchan.desc_free = edma_desc_free;
1972
1973		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1974			vchan_init(&echan->vchan, m_ddev);
1975		else
1976			vchan_init(&echan->vchan, s_ddev);
1977
1978		INIT_LIST_HEAD(&echan->node);
1979		for (j = 0; j < EDMA_MAX_SLOTS; j++)
1980			echan->slot[j] = -1;
1981	}
1982}
1983
1984static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1985			      struct edma_cc *ecc)
1986{
1987	int i;
1988	u32 value, cccfg;
1989	s8 (*queue_priority_map)[2];
1990
1991	/* Decode the eDMA3 configuration from CCCFG register */
1992	cccfg = edma_read(ecc, EDMA_CCCFG);
1993
1994	value = GET_NUM_REGN(cccfg);
1995	ecc->num_region = BIT(value);
1996
1997	value = GET_NUM_DMACH(cccfg);
1998	ecc->num_channels = BIT(value + 1);
1999
2000	value = GET_NUM_QDMACH(cccfg);
2001	ecc->num_qchannels = value * 2;
2002
2003	value = GET_NUM_PAENTRY(cccfg);
2004	ecc->num_slots = BIT(value + 4);
2005
2006	value = GET_NUM_EVQUE(cccfg);
2007	ecc->num_tc = value + 1;
2008
2009	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2010
2011	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2012	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2013	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2014	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2015	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2016	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2017	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2018
2019	/* Nothing need to be done if queue priority is provided */
2020	if (pdata->queue_priority_mapping)
2021		return 0;
2022
2023	/*
2024	 * Configure TC/queue priority as follows:
2025	 * Q0 - priority 0
2026	 * Q1 - priority 1
2027	 * Q2 - priority 2
2028	 * ...
2029	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2030	 * priority. So Q0 is the highest priority queue and the last queue has
2031	 * the lowest priority.
2032	 */
2033	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2034					  GFP_KERNEL);
2035	if (!queue_priority_map)
2036		return -ENOMEM;
2037
2038	for (i = 0; i < ecc->num_tc; i++) {
2039		queue_priority_map[i][0] = i;
2040		queue_priority_map[i][1] = i;
2041	}
2042	queue_priority_map[i][0] = -1;
2043	queue_priority_map[i][1] = -1;
2044
2045	pdata->queue_priority_mapping = queue_priority_map;
2046	/* Default queue has the lowest priority */
2047	pdata->default_queue = i - 1;
2048
2049	return 0;
2050}
2051
2052#if IS_ENABLED(CONFIG_OF)
2053static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2054			       size_t sz)
2055{
2056	const char pname[] = "ti,edma-xbar-event-map";
2057	struct resource res;
2058	void __iomem *xbar;
2059	s16 (*xbar_chans)[2];
2060	size_t nelm = sz / sizeof(s16);
2061	u32 shift, offset, mux;
2062	int ret, i;
2063
2064	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2065	if (!xbar_chans)
2066		return -ENOMEM;
2067
2068	ret = of_address_to_resource(dev->of_node, 1, &res);
2069	if (ret)
2070		return -ENOMEM;
2071
2072	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2073	if (!xbar)
2074		return -ENOMEM;
2075
2076	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2077					 nelm);
2078	if (ret)
2079		return -EIO;
2080
2081	/* Invalidate last entry for the other user of this mess */
2082	nelm >>= 1;
2083	xbar_chans[nelm][0] = -1;
2084	xbar_chans[nelm][1] = -1;
2085
2086	for (i = 0; i < nelm; i++) {
2087		shift = (xbar_chans[i][1] & 0x03) << 3;
2088		offset = xbar_chans[i][1] & 0xfffffffc;
2089		mux = readl(xbar + offset);
2090		mux &= ~(0xff << shift);
2091		mux |= xbar_chans[i][0] << shift;
2092		writel(mux, (xbar + offset));
2093	}
2094
2095	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2096	return 0;
2097}
2098
2099static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2100						     bool legacy_mode)
2101{
2102	struct edma_soc_info *info;
2103	struct property *prop;
2104	int sz, ret;
2105
2106	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2107	if (!info)
2108		return ERR_PTR(-ENOMEM);
2109
2110	if (legacy_mode) {
2111		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2112					&sz);
2113		if (prop) {
2114			ret = edma_xbar_event_map(dev, info, sz);
2115			if (ret)
2116				return ERR_PTR(ret);
2117		}
2118		return info;
2119	}
2120
2121	/* Get the list of channels allocated to be used for memcpy */
2122	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2123	if (prop) {
2124		const char pname[] = "ti,edma-memcpy-channels";
2125		size_t nelm = sz / sizeof(s32);
2126		s32 *memcpy_ch;
2127
2128		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2129					 GFP_KERNEL);
2130		if (!memcpy_ch)
2131			return ERR_PTR(-ENOMEM);
2132
2133		ret = of_property_read_u32_array(dev->of_node, pname,
2134						 (u32 *)memcpy_ch, nelm);
2135		if (ret)
2136			return ERR_PTR(ret);
2137
2138		memcpy_ch[nelm] = -1;
2139		info->memcpy_channels = memcpy_ch;
2140	}
2141
2142	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2143				&sz);
2144	if (prop) {
2145		const char pname[] = "ti,edma-reserved-slot-ranges";
2146		u32 (*tmp)[2];
2147		s16 (*rsv_slots)[2];
2148		size_t nelm = sz / sizeof(*tmp);
2149		struct edma_rsv_info *rsv_info;
2150		int i;
2151
2152		if (!nelm)
2153			return info;
2154
2155		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2156		if (!tmp)
2157			return ERR_PTR(-ENOMEM);
2158
2159		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2160		if (!rsv_info) {
2161			kfree(tmp);
2162			return ERR_PTR(-ENOMEM);
2163		}
2164
2165		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2166					 GFP_KERNEL);
2167		if (!rsv_slots) {
2168			kfree(tmp);
2169			return ERR_PTR(-ENOMEM);
2170		}
2171
2172		ret = of_property_read_u32_array(dev->of_node, pname,
2173						 (u32 *)tmp, nelm * 2);
2174		if (ret) {
2175			kfree(tmp);
2176			return ERR_PTR(ret);
2177		}
2178
2179		for (i = 0; i < nelm; i++) {
2180			rsv_slots[i][0] = tmp[i][0];
2181			rsv_slots[i][1] = tmp[i][1];
2182		}
2183		rsv_slots[nelm][0] = -1;
2184		rsv_slots[nelm][1] = -1;
2185
2186		info->rsv = rsv_info;
2187		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2188
2189		kfree(tmp);
2190	}
2191
2192	return info;
2193}
2194
2195static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2196				      struct of_dma *ofdma)
2197{
2198	struct edma_cc *ecc = ofdma->of_dma_data;
2199	struct dma_chan *chan = NULL;
2200	struct edma_chan *echan;
2201	int i;
2202
2203	if (!ecc || dma_spec->args_count < 1)
2204		return NULL;
2205
2206	for (i = 0; i < ecc->num_channels; i++) {
2207		echan = &ecc->slave_chans[i];
2208		if (echan->ch_num == dma_spec->args[0]) {
2209			chan = &echan->vchan.chan;
2210			break;
2211		}
2212	}
2213
2214	if (!chan)
2215		return NULL;
2216
2217	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2218		goto out;
2219
2220	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2221	    dma_spec->args[1] < echan->ecc->num_tc) {
2222		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2223		goto out;
2224	}
2225
2226	return NULL;
2227out:
2228	/* The channel is going to be used as HW synchronized */
2229	echan->hw_triggered = true;
2230	return dma_get_slave_channel(chan);
2231}
2232#else
2233static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2234						     bool legacy_mode)
2235{
2236	return ERR_PTR(-EINVAL);
2237}
2238
2239static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2240				      struct of_dma *ofdma)
2241{
2242	return NULL;
2243}
2244#endif
2245
2246static bool edma_filter_fn(struct dma_chan *chan, void *param);
2247
2248static int edma_probe(struct platform_device *pdev)
2249{
2250	struct edma_soc_info	*info = pdev->dev.platform_data;
2251	s8			(*queue_priority_mapping)[2];
2252	int			i, off;
2253	const s16		(*rsv_slots)[2];
2254	const s16		(*xbar_chans)[2];
2255	int			irq;
2256	char			*irq_name;
2257	struct resource		*mem;
2258	struct device_node	*node = pdev->dev.of_node;
2259	struct device		*dev = &pdev->dev;
2260	struct edma_cc		*ecc;
2261	bool			legacy_mode = true;
2262	int ret;
2263
2264	if (node) {
2265		const struct of_device_id *match;
2266
2267		match = of_match_node(edma_of_ids, node);
2268		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2269			legacy_mode = false;
2270
2271		info = edma_setup_info_from_dt(dev, legacy_mode);
2272		if (IS_ERR(info)) {
2273			dev_err(dev, "failed to get DT data\n");
2274			return PTR_ERR(info);
2275		}
2276	}
2277
2278	if (!info)
2279		return -ENODEV;
2280
2281	pm_runtime_enable(dev);
2282	ret = pm_runtime_get_sync(dev);
2283	if (ret < 0) {
2284		dev_err(dev, "pm_runtime_get_sync() failed\n");
2285		return ret;
2286	}
2287
2288	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2289	if (ret)
2290		return ret;
2291
2292	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2293	if (!ecc)
2294		return -ENOMEM;
2295
2296	ecc->dev = dev;
2297	ecc->id = pdev->id;
2298	ecc->legacy_mode = legacy_mode;
2299	/* When booting with DT the pdev->id is -1 */
2300	if (ecc->id < 0)
2301		ecc->id = 0;
2302
2303	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2304	if (!mem) {
2305		dev_dbg(dev, "mem resource not found, using index 0\n");
2306		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2307		if (!mem) {
2308			dev_err(dev, "no mem resource?\n");
2309			return -ENODEV;
2310		}
2311	}
2312	ecc->base = devm_ioremap_resource(dev, mem);
2313	if (IS_ERR(ecc->base))
2314		return PTR_ERR(ecc->base);
2315
2316	platform_set_drvdata(pdev, ecc);
2317
 
 
 
 
 
 
 
 
2318	/* Get eDMA3 configuration from IP */
2319	ret = edma_setup_from_hw(dev, info, ecc);
2320	if (ret)
2321		return ret;
2322
2323	/* Allocate memory based on the information we got from the IP */
2324	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2325					sizeof(*ecc->slave_chans), GFP_KERNEL);
2326	if (!ecc->slave_chans)
2327		return -ENOMEM;
2328
2329	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2330				       sizeof(unsigned long), GFP_KERNEL);
2331	if (!ecc->slot_inuse)
2332		return -ENOMEM;
 
 
 
 
 
 
 
 
 
2333
2334	ecc->default_queue = info->default_queue;
2335
2336	if (info->rsv) {
2337		/* Set the reserved slots in inuse list */
2338		rsv_slots = info->rsv->rsv_slots;
2339		if (rsv_slots) {
2340			for (i = 0; rsv_slots[i][0] != -1; i++)
2341				bitmap_set(ecc->slot_inuse, rsv_slots[i][0],
2342					   rsv_slots[i][1]);
 
 
 
 
 
 
 
 
2343		}
2344	}
2345
2346	for (i = 0; i < ecc->num_slots; i++) {
2347		/* Reset only unused - not reserved - paRAM slots */
2348		if (!test_bit(i, ecc->slot_inuse))
2349			edma_write_slot(ecc, i, &dummy_paramset);
2350	}
2351
2352	/* Clear the xbar mapped channels in unused list */
2353	xbar_chans = info->xbar_chans;
2354	if (xbar_chans) {
2355		for (i = 0; xbar_chans[i][1] != -1; i++) {
2356			off = xbar_chans[i][1];
2357		}
2358	}
2359
2360	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2361	if (irq < 0 && node)
2362		irq = irq_of_parse_and_map(node, 0);
2363
2364	if (irq >= 0) {
2365		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2366					  dev_name(dev));
 
 
 
 
 
2367		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2368				       ecc);
2369		if (ret) {
2370			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2371			return ret;
2372		}
2373		ecc->ccint = irq;
2374	}
2375
2376	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2377	if (irq < 0 && node)
2378		irq = irq_of_parse_and_map(node, 2);
2379
2380	if (irq >= 0) {
2381		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2382					  dev_name(dev));
 
 
 
 
 
2383		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2384				       ecc);
2385		if (ret) {
2386			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2387			return ret;
2388		}
2389		ecc->ccerrint = irq;
2390	}
2391
2392	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2393	if (ecc->dummy_slot < 0) {
2394		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2395		return ecc->dummy_slot;
 
2396	}
2397
2398	queue_priority_mapping = info->queue_priority_mapping;
2399
2400	if (!ecc->legacy_mode) {
2401		int lowest_priority = 0;
 
2402		struct of_phandle_args tc_args;
2403
2404		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2405					    sizeof(*ecc->tc_list), GFP_KERNEL);
2406		if (!ecc->tc_list)
2407			return -ENOMEM;
 
 
2408
2409		for (i = 0;; i++) {
2410			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2411							       1, i, &tc_args);
2412			if (ret || i == ecc->num_tc)
2413				break;
2414
2415			ecc->tc_list[i].node = tc_args.np;
2416			ecc->tc_list[i].id = i;
2417			queue_priority_mapping[i][1] = tc_args.args[0];
2418			if (queue_priority_mapping[i][1] > lowest_priority) {
2419				lowest_priority = queue_priority_mapping[i][1];
2420				info->default_queue = i;
2421			}
2422		}
 
 
 
 
 
 
 
 
 
 
 
 
2423	}
2424
2425	/* Event queue priority mapping */
2426	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2427		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2428					      queue_priority_mapping[i][1]);
2429
2430	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2431	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2432	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2433
2434	ecc->info = info;
2435
2436	/* Init the dma device and channels */
2437	edma_dma_init(ecc, legacy_mode);
2438
2439	for (i = 0; i < ecc->num_channels; i++) {
 
 
 
 
2440		/* Assign all channels to the default queue */
2441		edma_assign_channel_eventq(&ecc->slave_chans[i],
2442					   info->default_queue);
2443		/* Set entry slot to the dummy slot */
2444		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2445	}
2446
2447	ecc->dma_slave.filter.map = info->slave_map;
2448	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2449	ecc->dma_slave.filter.fn = edma_filter_fn;
2450
2451	ret = dma_async_device_register(&ecc->dma_slave);
2452	if (ret) {
2453		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2454		goto err_reg1;
2455	}
2456
2457	if (ecc->dma_memcpy) {
2458		ret = dma_async_device_register(ecc->dma_memcpy);
2459		if (ret) {
2460			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2461				ret);
2462			dma_async_device_unregister(&ecc->dma_slave);
2463			goto err_reg1;
2464		}
2465	}
2466
2467	if (node)
2468		of_dma_controller_register(node, of_edma_xlate, ecc);
2469
2470	dev_info(dev, "TI EDMA DMA engine driver\n");
2471
2472	return 0;
2473
2474err_reg1:
2475	edma_free_slot(ecc, ecc->dummy_slot);
 
 
 
2476	return ret;
2477}
2478
2479static void edma_cleanupp_vchan(struct dma_device *dmadev)
2480{
2481	struct edma_chan *echan, *_echan;
2482
2483	list_for_each_entry_safe(echan, _echan,
2484			&dmadev->channels, vchan.chan.device_node) {
2485		list_del(&echan->vchan.chan.device_node);
2486		tasklet_kill(&echan->vchan.task);
2487	}
2488}
2489
2490static int edma_remove(struct platform_device *pdev)
2491{
2492	struct device *dev = &pdev->dev;
2493	struct edma_cc *ecc = dev_get_drvdata(dev);
2494
2495	devm_free_irq(dev, ecc->ccint, ecc);
2496	devm_free_irq(dev, ecc->ccerrint, ecc);
2497
2498	edma_cleanupp_vchan(&ecc->dma_slave);
2499
2500	if (dev->of_node)
2501		of_dma_controller_free(dev->of_node);
2502	dma_async_device_unregister(&ecc->dma_slave);
2503	if (ecc->dma_memcpy)
2504		dma_async_device_unregister(ecc->dma_memcpy);
2505	edma_free_slot(ecc, ecc->dummy_slot);
2506
2507	return 0;
2508}
2509
2510#ifdef CONFIG_PM_SLEEP
2511static int edma_pm_suspend(struct device *dev)
2512{
2513	struct edma_cc *ecc = dev_get_drvdata(dev);
2514	struct edma_chan *echan = ecc->slave_chans;
2515	int i;
2516
2517	for (i = 0; i < ecc->num_channels; i++) {
2518		if (echan[i].alloced)
2519			edma_setup_interrupt(&echan[i], false);
2520	}
2521
2522	return 0;
2523}
2524
2525static int edma_pm_resume(struct device *dev)
2526{
2527	struct edma_cc *ecc = dev_get_drvdata(dev);
2528	struct edma_chan *echan = ecc->slave_chans;
2529	int i;
2530	s8 (*queue_priority_mapping)[2];
2531
2532	/* re initialize dummy slot to dummy param set */
2533	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2534
2535	queue_priority_mapping = ecc->info->queue_priority_mapping;
2536
2537	/* Event queue priority mapping */
2538	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2539		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2540					      queue_priority_mapping[i][1]);
2541
2542	for (i = 0; i < ecc->num_channels; i++) {
2543		if (echan[i].alloced) {
2544			/* ensure access through shadow region 0 */
2545			edma_or_array2(ecc, EDMA_DRAE, 0,
2546				       EDMA_REG_ARRAY_INDEX(i),
2547				       EDMA_CHANNEL_BIT(i));
2548
2549			edma_setup_interrupt(&echan[i], true);
2550
2551			/* Set up channel -> slot mapping for the entry slot */
2552			edma_set_chmap(&echan[i], echan[i].slot[0]);
2553		}
2554	}
2555
2556	return 0;
2557}
2558#endif
2559
2560static const struct dev_pm_ops edma_pm_ops = {
2561	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2562};
2563
2564static struct platform_driver edma_driver = {
2565	.probe		= edma_probe,
2566	.remove		= edma_remove,
2567	.driver = {
2568		.name	= "edma",
2569		.pm	= &edma_pm_ops,
2570		.of_match_table = edma_of_ids,
2571	},
2572};
2573
2574static int edma_tptc_probe(struct platform_device *pdev)
2575{
2576	pm_runtime_enable(&pdev->dev);
2577	return pm_runtime_get_sync(&pdev->dev);
2578}
2579
2580static struct platform_driver edma_tptc_driver = {
2581	.probe		= edma_tptc_probe,
2582	.driver = {
2583		.name	= "edma3-tptc",
2584		.of_match_table = edma_tptc_of_ids,
2585	},
2586};
2587
2588static bool edma_filter_fn(struct dma_chan *chan, void *param)
2589{
2590	bool match = false;
2591
2592	if (chan->device->dev->driver == &edma_driver.driver) {
2593		struct edma_chan *echan = to_edma_chan(chan);
2594		unsigned ch_req = *(unsigned *)param;
2595		if (ch_req == echan->ch_num) {
2596			/* The channel is going to be used as HW synchronized */
2597			echan->hw_triggered = true;
2598			match = true;
2599		}
2600	}
2601	return match;
2602}
2603
2604static int edma_init(void)
2605{
2606	int ret;
2607
2608	ret = platform_driver_register(&edma_tptc_driver);
2609	if (ret)
2610		return ret;
2611
2612	return platform_driver_register(&edma_driver);
2613}
2614subsys_initcall(edma_init);
2615
2616static void __exit edma_exit(void)
2617{
2618	platform_driver_unregister(&edma_driver);
2619	platform_driver_unregister(&edma_tptc_driver);
2620}
2621module_exit(edma_exit);
2622
2623MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2624MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2625MODULE_LICENSE("GPL v2");