Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <crypto/engine.h>
10#include <crypto/internal/hash.h>
11#include <crypto/md5.h>
12#include <crypto/scatterwalk.h>
13#include <crypto/sha1.h>
14#include <crypto/sha2.h>
15#include <crypto/sha3.h>
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/interrupt.h>
21#include <linux/iopoll.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/string.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
34#define HASH_IMR 0x20
35#define HASH_SR 0x24
36#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
37#define HASH_HREG(x) (0x310 + ((x) * 0x04))
38#define HASH_HWCFGR 0x3F0
39#define HASH_VER 0x3F4
40#define HASH_ID 0x3F8
41
42/* Control Register */
43#define HASH_CR_INIT BIT(2)
44#define HASH_CR_DMAE BIT(3)
45#define HASH_CR_DATATYPE_POS 4
46#define HASH_CR_MODE BIT(6)
47#define HASH_CR_ALGO_POS 7
48#define HASH_CR_MDMAT BIT(13)
49#define HASH_CR_DMAA BIT(14)
50#define HASH_CR_LKEY BIT(16)
51
52/* Interrupt */
53#define HASH_DINIE BIT(0)
54#define HASH_DCIE BIT(1)
55
56/* Interrupt Mask */
57#define HASH_MASK_CALC_COMPLETION BIT(0)
58#define HASH_MASK_DATA_INPUT BIT(1)
59
60/* Status Flags */
61#define HASH_SR_DATA_INPUT_READY BIT(0)
62#define HASH_SR_OUTPUT_READY BIT(1)
63#define HASH_SR_DMA_ACTIVE BIT(2)
64#define HASH_SR_BUSY BIT(3)
65
66/* STR Register */
67#define HASH_STR_NBLW_MASK GENMASK(4, 0)
68#define HASH_STR_DCAL BIT(8)
69
70/* HWCFGR Register */
71#define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
72
73/* Context swap register */
74#define HASH_CSR_NB_SHA256_HMAC 54
75#define HASH_CSR_NB_SHA256 38
76#define HASH_CSR_NB_SHA512_HMAC 103
77#define HASH_CSR_NB_SHA512 91
78#define HASH_CSR_NB_SHA3_HMAC 88
79#define HASH_CSR_NB_SHA3 72
80#define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
81
82#define HASH_FLAGS_INIT BIT(0)
83#define HASH_FLAGS_OUTPUT_READY BIT(1)
84#define HASH_FLAGS_CPU BIT(2)
85#define HASH_FLAGS_DMA_ACTIVE BIT(3)
86#define HASH_FLAGS_HMAC_INIT BIT(4)
87#define HASH_FLAGS_HMAC_FINAL BIT(5)
88#define HASH_FLAGS_HMAC_KEY BIT(6)
89#define HASH_FLAGS_SHA3_MODE BIT(7)
90#define HASH_FLAGS_FINAL BIT(15)
91#define HASH_FLAGS_FINUP BIT(16)
92#define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
93#define HASH_FLAGS_ALGO_SHIFT 17
94#define HASH_FLAGS_ERRORS BIT(21)
95#define HASH_FLAGS_EMPTY BIT(22)
96#define HASH_FLAGS_HMAC BIT(23)
97
98#define HASH_OP_UPDATE 1
99#define HASH_OP_FINAL 2
100
101#define HASH_BURST_LEVEL 4
102
103enum stm32_hash_data_format {
104 HASH_DATA_32_BITS = 0x0,
105 HASH_DATA_16_BITS = 0x1,
106 HASH_DATA_8_BITS = 0x2,
107 HASH_DATA_1_BIT = 0x3
108};
109
110#define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
111#define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
112
113enum stm32_hash_algo {
114 HASH_SHA1 = 0,
115 HASH_MD5 = 1,
116 HASH_SHA224 = 2,
117 HASH_SHA256 = 3,
118 HASH_SHA3_224 = 4,
119 HASH_SHA3_256 = 5,
120 HASH_SHA3_384 = 6,
121 HASH_SHA3_512 = 7,
122 HASH_SHA384 = 12,
123 HASH_SHA512 = 15,
124};
125
126enum ux500_hash_algo {
127 HASH_SHA256_UX500 = 0,
128 HASH_SHA1_UX500 = 1,
129};
130
131#define HASH_AUTOSUSPEND_DELAY 50
132
133struct stm32_hash_ctx {
134 struct stm32_hash_dev *hdev;
135 struct crypto_shash *xtfm;
136 unsigned long flags;
137
138 u8 key[HASH_MAX_KEY_SIZE];
139 int keylen;
140};
141
142struct stm32_hash_state {
143 u32 flags;
144
145 u16 bufcnt;
146 u16 blocklen;
147
148 u8 buffer[HASH_BUFLEN] __aligned(4);
149
150 /* hash state */
151 u32 hw_context[3 + HASH_CSR_NB_MAX];
152};
153
154struct stm32_hash_request_ctx {
155 struct stm32_hash_dev *hdev;
156 unsigned long op;
157
158 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
159 size_t digcnt;
160
161 /* DMA */
162 struct scatterlist *sg;
163 unsigned int offset;
164 unsigned int total;
165 struct scatterlist sg_key;
166
167 dma_addr_t dma_addr;
168 size_t dma_ct;
169 int nents;
170
171 u8 data_type;
172
173 struct stm32_hash_state state;
174};
175
176struct stm32_hash_algs_info {
177 struct ahash_engine_alg *algs_list;
178 size_t size;
179};
180
181struct stm32_hash_pdata {
182 const int alg_shift;
183 const struct stm32_hash_algs_info *algs_info;
184 size_t algs_info_size;
185 bool has_sr;
186 bool has_mdmat;
187 bool broken_emptymsg;
188 bool ux500;
189};
190
191struct stm32_hash_dev {
192 struct list_head list;
193 struct device *dev;
194 struct clk *clk;
195 struct reset_control *rst;
196 void __iomem *io_base;
197 phys_addr_t phys_base;
198 u32 dma_mode;
199 bool polled;
200
201 struct ahash_request *req;
202 struct crypto_engine *engine;
203
204 unsigned long flags;
205
206 struct dma_chan *dma_lch;
207 struct completion dma_completion;
208
209 const struct stm32_hash_pdata *pdata;
210};
211
212struct stm32_hash_drv {
213 struct list_head dev_list;
214 spinlock_t lock; /* List protection access */
215};
216
217static struct stm32_hash_drv stm32_hash = {
218 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
219 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
220};
221
222static void stm32_hash_dma_callback(void *param);
223
224static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
225{
226 return readl_relaxed(hdev->io_base + offset);
227}
228
229static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
230 u32 offset, u32 value)
231{
232 writel_relaxed(value, hdev->io_base + offset);
233}
234
235static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
236{
237 u32 status;
238
239 /* The Ux500 lacks the special status register, we poll the DCAL bit instead */
240 if (!hdev->pdata->has_sr)
241 return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
242 !(status & HASH_STR_DCAL), 10, 10000);
243
244 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
245 !(status & HASH_SR_BUSY), 10, 10000);
246}
247
248static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
249{
250 u32 reg;
251
252 reg = stm32_hash_read(hdev, HASH_STR);
253 reg &= ~(HASH_STR_NBLW_MASK);
254 reg |= (8U * ((length) % 4U));
255 stm32_hash_write(hdev, HASH_STR, reg);
256}
257
258static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
259{
260 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
261 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
262 u32 reg;
263 int keylen = ctx->keylen;
264 void *key = ctx->key;
265
266 if (keylen) {
267 stm32_hash_set_nblw(hdev, keylen);
268
269 while (keylen > 0) {
270 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
271 keylen -= 4;
272 key += 4;
273 }
274
275 reg = stm32_hash_read(hdev, HASH_STR);
276 reg |= HASH_STR_DCAL;
277 stm32_hash_write(hdev, HASH_STR, reg);
278
279 return -EINPROGRESS;
280 }
281
282 return 0;
283}
284
285static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
286{
287 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
288 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
289 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
290 struct stm32_hash_state *state = &rctx->state;
291 u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
292
293 u32 reg = HASH_CR_INIT;
294
295 if (!(hdev->flags & HASH_FLAGS_INIT)) {
296 if (hdev->pdata->ux500) {
297 reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
298 } else {
299 if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
300 reg |= ((alg & BIT(1)) << 17) |
301 ((alg & BIT(0)) << HASH_CR_ALGO_POS);
302 else
303 reg |= alg << hdev->pdata->alg_shift;
304 }
305
306 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
307
308 if (state->flags & HASH_FLAGS_HMAC) {
309 hdev->flags |= HASH_FLAGS_HMAC;
310 reg |= HASH_CR_MODE;
311 if (ctx->keylen > crypto_ahash_blocksize(tfm))
312 reg |= HASH_CR_LKEY;
313 }
314
315 if (!hdev->polled)
316 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
317
318 stm32_hash_write(hdev, HASH_CR, reg);
319
320 hdev->flags |= HASH_FLAGS_INIT;
321
322 /*
323 * After first block + 1 words are fill up,
324 * we only need to fill 1 block to start partial computation
325 */
326 rctx->state.blocklen -= sizeof(u32);
327
328 dev_dbg(hdev->dev, "Write Control %x\n", reg);
329 }
330}
331
332static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
333{
334 struct stm32_hash_state *state = &rctx->state;
335 size_t count;
336
337 while ((state->bufcnt < state->blocklen) && rctx->total) {
338 count = min(rctx->sg->length - rctx->offset, rctx->total);
339 count = min_t(size_t, count, state->blocklen - state->bufcnt);
340
341 if (count <= 0) {
342 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
343 rctx->sg = sg_next(rctx->sg);
344 continue;
345 } else {
346 break;
347 }
348 }
349
350 scatterwalk_map_and_copy(state->buffer + state->bufcnt,
351 rctx->sg, rctx->offset, count, 0);
352
353 state->bufcnt += count;
354 rctx->offset += count;
355 rctx->total -= count;
356
357 if (rctx->offset == rctx->sg->length) {
358 rctx->sg = sg_next(rctx->sg);
359 if (rctx->sg)
360 rctx->offset = 0;
361 else
362 rctx->total = 0;
363 }
364 }
365}
366
367static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
368 const u8 *buf, size_t length, int final)
369{
370 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
371 struct stm32_hash_state *state = &rctx->state;
372 unsigned int count, len32;
373 const u32 *buffer = (const u32 *)buf;
374 u32 reg;
375
376 if (final) {
377 hdev->flags |= HASH_FLAGS_FINAL;
378
379 /* Do not process empty messages if hw is buggy. */
380 if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
381 hdev->pdata->broken_emptymsg) {
382 state->flags |= HASH_FLAGS_EMPTY;
383 return 0;
384 }
385 }
386
387 len32 = DIV_ROUND_UP(length, sizeof(u32));
388
389 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
390 __func__, length, final, len32);
391
392 hdev->flags |= HASH_FLAGS_CPU;
393
394 stm32_hash_write_ctrl(hdev);
395
396 if (stm32_hash_wait_busy(hdev))
397 return -ETIMEDOUT;
398
399 if ((hdev->flags & HASH_FLAGS_HMAC) &&
400 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
401 hdev->flags |= HASH_FLAGS_HMAC_KEY;
402 stm32_hash_write_key(hdev);
403 if (stm32_hash_wait_busy(hdev))
404 return -ETIMEDOUT;
405 }
406
407 for (count = 0; count < len32; count++)
408 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
409
410 if (final) {
411 if (stm32_hash_wait_busy(hdev))
412 return -ETIMEDOUT;
413
414 stm32_hash_set_nblw(hdev, length);
415 reg = stm32_hash_read(hdev, HASH_STR);
416 reg |= HASH_STR_DCAL;
417 stm32_hash_write(hdev, HASH_STR, reg);
418 if (hdev->flags & HASH_FLAGS_HMAC) {
419 if (stm32_hash_wait_busy(hdev))
420 return -ETIMEDOUT;
421 stm32_hash_write_key(hdev);
422 }
423 return -EINPROGRESS;
424 }
425
426 return 0;
427}
428
429static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
430{
431 struct stm32_hash_state *state = &rctx->state;
432
433 switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
434 HASH_FLAGS_ALGO_SHIFT) {
435 case HASH_MD5:
436 case HASH_SHA1:
437 case HASH_SHA224:
438 case HASH_SHA256:
439 if (state->flags & HASH_FLAGS_HMAC)
440 return HASH_CSR_NB_SHA256_HMAC;
441 else
442 return HASH_CSR_NB_SHA256;
443 break;
444
445 case HASH_SHA384:
446 case HASH_SHA512:
447 if (state->flags & HASH_FLAGS_HMAC)
448 return HASH_CSR_NB_SHA512_HMAC;
449 else
450 return HASH_CSR_NB_SHA512;
451 break;
452
453 case HASH_SHA3_224:
454 case HASH_SHA3_256:
455 case HASH_SHA3_384:
456 case HASH_SHA3_512:
457 if (state->flags & HASH_FLAGS_HMAC)
458 return HASH_CSR_NB_SHA3_HMAC;
459 else
460 return HASH_CSR_NB_SHA3;
461 break;
462
463 default:
464 return -EINVAL;
465 }
466}
467
468static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
469{
470 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
471 struct stm32_hash_state *state = &rctx->state;
472 u32 *preg = state->hw_context;
473 int bufcnt, err = 0, final;
474 int i, swap_reg;
475
476 dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
477
478 final = state->flags & HASH_FLAGS_FINAL;
479
480 while ((rctx->total >= state->blocklen) ||
481 (state->bufcnt + rctx->total >= state->blocklen)) {
482 stm32_hash_append_sg(rctx);
483 bufcnt = state->bufcnt;
484 state->bufcnt = 0;
485 err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
486 if (err)
487 return err;
488 }
489
490 stm32_hash_append_sg(rctx);
491
492 if (final) {
493 bufcnt = state->bufcnt;
494 state->bufcnt = 0;
495 return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
496 }
497
498 if (!(hdev->flags & HASH_FLAGS_INIT))
499 return 0;
500
501 if (stm32_hash_wait_busy(hdev))
502 return -ETIMEDOUT;
503
504 swap_reg = hash_swap_reg(rctx);
505
506 if (!hdev->pdata->ux500)
507 *preg++ = stm32_hash_read(hdev, HASH_IMR);
508 *preg++ = stm32_hash_read(hdev, HASH_STR);
509 *preg++ = stm32_hash_read(hdev, HASH_CR);
510 for (i = 0; i < swap_reg; i++)
511 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
512
513 state->flags |= HASH_FLAGS_INIT;
514
515 return err;
516}
517
518static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
519 struct scatterlist *sg, int length, int mdma)
520{
521 struct dma_async_tx_descriptor *in_desc;
522 dma_cookie_t cookie;
523 u32 reg;
524 int err;
525
526 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
527 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
528 DMA_CTRL_ACK);
529 if (!in_desc) {
530 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
531 return -ENOMEM;
532 }
533
534 reinit_completion(&hdev->dma_completion);
535 in_desc->callback = stm32_hash_dma_callback;
536 in_desc->callback_param = hdev;
537
538 hdev->flags |= HASH_FLAGS_FINAL;
539 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
540
541 reg = stm32_hash_read(hdev, HASH_CR);
542
543 if (hdev->pdata->has_mdmat) {
544 if (mdma)
545 reg |= HASH_CR_MDMAT;
546 else
547 reg &= ~HASH_CR_MDMAT;
548 }
549 reg |= HASH_CR_DMAE;
550
551 stm32_hash_write(hdev, HASH_CR, reg);
552
553 stm32_hash_set_nblw(hdev, length);
554
555 cookie = dmaengine_submit(in_desc);
556 err = dma_submit_error(cookie);
557 if (err)
558 return -ENOMEM;
559
560 dma_async_issue_pending(hdev->dma_lch);
561
562 if (!wait_for_completion_timeout(&hdev->dma_completion,
563 msecs_to_jiffies(100)))
564 err = -ETIMEDOUT;
565
566 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
567 NULL, NULL) != DMA_COMPLETE)
568 err = -ETIMEDOUT;
569
570 if (err) {
571 dev_err(hdev->dev, "DMA Error %i\n", err);
572 dmaengine_terminate_all(hdev->dma_lch);
573 return err;
574 }
575
576 return -EINPROGRESS;
577}
578
579static void stm32_hash_dma_callback(void *param)
580{
581 struct stm32_hash_dev *hdev = param;
582
583 complete(&hdev->dma_completion);
584}
585
586static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
587{
588 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
589 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
590 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
591 int err;
592
593 if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode == 1) {
594 err = stm32_hash_write_key(hdev);
595 if (stm32_hash_wait_busy(hdev))
596 return -ETIMEDOUT;
597 } else {
598 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
599 sg_init_one(&rctx->sg_key, ctx->key,
600 ALIGN(ctx->keylen, sizeof(u32)));
601
602 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
603 DMA_TO_DEVICE);
604 if (rctx->dma_ct == 0) {
605 dev_err(hdev->dev, "dma_map_sg error\n");
606 return -ENOMEM;
607 }
608
609 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
610
611 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
612 }
613
614 return err;
615}
616
617static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
618{
619 struct dma_slave_config dma_conf;
620 struct dma_chan *chan;
621 int err;
622
623 memset(&dma_conf, 0, sizeof(dma_conf));
624
625 dma_conf.direction = DMA_MEM_TO_DEV;
626 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
627 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
628 dma_conf.src_maxburst = HASH_BURST_LEVEL;
629 dma_conf.dst_maxburst = HASH_BURST_LEVEL;
630 dma_conf.device_fc = false;
631
632 chan = dma_request_chan(hdev->dev, "in");
633 if (IS_ERR(chan))
634 return PTR_ERR(chan);
635
636 hdev->dma_lch = chan;
637
638 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
639 if (err) {
640 dma_release_channel(hdev->dma_lch);
641 hdev->dma_lch = NULL;
642 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
643 return err;
644 }
645
646 init_completion(&hdev->dma_completion);
647
648 return 0;
649}
650
651static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
652{
653 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
654 u32 *buffer = (void *)rctx->state.buffer;
655 struct scatterlist sg[1], *tsg;
656 int err = 0, reg, ncp = 0;
657 unsigned int i, len = 0, bufcnt = 0;
658 bool is_last = false;
659
660 rctx->sg = hdev->req->src;
661 rctx->total = hdev->req->nbytes;
662
663 rctx->nents = sg_nents(rctx->sg);
664 if (rctx->nents < 0)
665 return -EINVAL;
666
667 stm32_hash_write_ctrl(hdev);
668
669 if (hdev->flags & HASH_FLAGS_HMAC) {
670 err = stm32_hash_hmac_dma_send(hdev);
671 if (err != -EINPROGRESS)
672 return err;
673 }
674
675 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
676 sg[0] = *tsg;
677 len = sg->length;
678
679 if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
680 sg->length = rctx->total - bufcnt;
681 is_last = true;
682 if (hdev->dma_mode == 1) {
683 len = (ALIGN(sg->length, 16) - 16);
684
685 ncp = sg_pcopy_to_buffer(
686 rctx->sg, rctx->nents,
687 rctx->state.buffer, sg->length - len,
688 rctx->total - sg->length + len);
689
690 sg->length = len;
691 } else {
692 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
693 len = sg->length;
694 sg->length = ALIGN(sg->length,
695 sizeof(u32));
696 }
697 }
698 }
699
700 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
701 DMA_TO_DEVICE);
702 if (rctx->dma_ct == 0) {
703 dev_err(hdev->dev, "dma_map_sg error\n");
704 return -ENOMEM;
705 }
706
707 err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
708
709 bufcnt += sg[0].length;
710 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
711
712 if (err == -ENOMEM)
713 return err;
714 if (is_last)
715 break;
716 }
717
718 if (hdev->dma_mode == 1) {
719 if (stm32_hash_wait_busy(hdev))
720 return -ETIMEDOUT;
721 reg = stm32_hash_read(hdev, HASH_CR);
722 reg &= ~HASH_CR_DMAE;
723 reg |= HASH_CR_DMAA;
724 stm32_hash_write(hdev, HASH_CR, reg);
725
726 if (ncp) {
727 memset(buffer + ncp, 0,
728 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
729 writesl(hdev->io_base + HASH_DIN, buffer,
730 DIV_ROUND_UP(ncp, sizeof(u32)));
731 }
732 stm32_hash_set_nblw(hdev, ncp);
733 reg = stm32_hash_read(hdev, HASH_STR);
734 reg |= HASH_STR_DCAL;
735 stm32_hash_write(hdev, HASH_STR, reg);
736 err = -EINPROGRESS;
737 }
738
739 if (hdev->flags & HASH_FLAGS_HMAC) {
740 if (stm32_hash_wait_busy(hdev))
741 return -ETIMEDOUT;
742 err = stm32_hash_hmac_dma_send(hdev);
743 }
744
745 return err;
746}
747
748static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
749{
750 struct stm32_hash_dev *hdev = NULL, *tmp;
751
752 spin_lock_bh(&stm32_hash.lock);
753 if (!ctx->hdev) {
754 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
755 hdev = tmp;
756 break;
757 }
758 ctx->hdev = hdev;
759 } else {
760 hdev = ctx->hdev;
761 }
762
763 spin_unlock_bh(&stm32_hash.lock);
764
765 return hdev;
766}
767
768static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
769{
770 struct scatterlist *sg;
771 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
772 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
773 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
774 int i;
775
776 if (!hdev->dma_lch || req->nbytes <= rctx->state.blocklen)
777 return false;
778
779 if (sg_nents(req->src) > 1) {
780 if (hdev->dma_mode == 1)
781 return false;
782 for_each_sg(req->src, sg, sg_nents(req->src), i) {
783 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
784 (!sg_is_last(sg)))
785 return false;
786 }
787 }
788
789 if (req->src->offset % 4)
790 return false;
791
792 return true;
793}
794
795static int stm32_hash_init(struct ahash_request *req)
796{
797 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
798 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
799 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
800 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
801 struct stm32_hash_state *state = &rctx->state;
802 bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
803
804 rctx->hdev = hdev;
805
806 state->flags = HASH_FLAGS_CPU;
807
808 if (sha3_mode)
809 state->flags |= HASH_FLAGS_SHA3_MODE;
810
811 rctx->digcnt = crypto_ahash_digestsize(tfm);
812 switch (rctx->digcnt) {
813 case MD5_DIGEST_SIZE:
814 state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
815 break;
816 case SHA1_DIGEST_SIZE:
817 if (hdev->pdata->ux500)
818 state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
819 else
820 state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
821 break;
822 case SHA224_DIGEST_SIZE:
823 if (sha3_mode)
824 state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
825 else
826 state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
827 break;
828 case SHA256_DIGEST_SIZE:
829 if (sha3_mode) {
830 state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
831 } else {
832 if (hdev->pdata->ux500)
833 state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
834 else
835 state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
836 }
837 break;
838 case SHA384_DIGEST_SIZE:
839 if (sha3_mode)
840 state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
841 else
842 state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
843 break;
844 case SHA512_DIGEST_SIZE:
845 if (sha3_mode)
846 state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
847 else
848 state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
849 break;
850 default:
851 return -EINVAL;
852 }
853
854 rctx->state.bufcnt = 0;
855 rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
856 if (rctx->state.blocklen > HASH_BUFLEN) {
857 dev_err(hdev->dev, "Error, block too large");
858 return -EINVAL;
859 }
860 rctx->total = 0;
861 rctx->offset = 0;
862 rctx->data_type = HASH_DATA_8_BITS;
863
864 if (ctx->flags & HASH_FLAGS_HMAC)
865 state->flags |= HASH_FLAGS_HMAC;
866
867 dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
868
869 return 0;
870}
871
872static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
873{
874 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
875 struct stm32_hash_state *state = &rctx->state;
876
877 if (!(state->flags & HASH_FLAGS_CPU))
878 return stm32_hash_dma_send(hdev);
879
880 return stm32_hash_update_cpu(hdev);
881}
882
883static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
884{
885 struct ahash_request *req = hdev->req;
886 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 struct stm32_hash_state *state = &rctx->state;
888 int buflen = state->bufcnt;
889
890 if (state->flags & HASH_FLAGS_FINUP)
891 return stm32_hash_update_req(hdev);
892
893 state->bufcnt = 0;
894
895 return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
896}
897
898static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
899{
900 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
901 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
902 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
903 struct stm32_hash_dev *hdev = rctx->hdev;
904 int ret;
905
906 dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
907 ctx->keylen);
908
909 if (!ctx->xtfm) {
910 dev_err(hdev->dev, "no fallback engine\n");
911 return;
912 }
913
914 if (ctx->keylen) {
915 ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
916 if (ret) {
917 dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
918 return;
919 }
920 }
921
922 ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
923 if (ret)
924 dev_err(hdev->dev, "shash digest error\n");
925}
926
927static void stm32_hash_copy_hash(struct ahash_request *req)
928{
929 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
930 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
931 struct stm32_hash_state *state = &rctx->state;
932 struct stm32_hash_dev *hdev = rctx->hdev;
933 __be32 *hash = (void *)rctx->digest;
934 unsigned int i, hashsize;
935
936 if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
937 return stm32_hash_emptymsg_fallback(req);
938
939 hashsize = crypto_ahash_digestsize(tfm);
940
941 for (i = 0; i < hashsize / sizeof(u32); i++) {
942 if (hdev->pdata->ux500)
943 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
944 HASH_UX500_HREG(i)));
945 else
946 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
947 HASH_HREG(i)));
948 }
949}
950
951static int stm32_hash_finish(struct ahash_request *req)
952{
953 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
954 u32 reg;
955
956 reg = stm32_hash_read(rctx->hdev, HASH_SR);
957 reg &= ~HASH_SR_OUTPUT_READY;
958 stm32_hash_write(rctx->hdev, HASH_SR, reg);
959
960 if (!req->result)
961 return -EINVAL;
962
963 memcpy(req->result, rctx->digest, rctx->digcnt);
964
965 return 0;
966}
967
968static void stm32_hash_finish_req(struct ahash_request *req, int err)
969{
970 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
971 struct stm32_hash_dev *hdev = rctx->hdev;
972
973 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
974 stm32_hash_copy_hash(req);
975 err = stm32_hash_finish(req);
976 }
977
978 pm_runtime_mark_last_busy(hdev->dev);
979 pm_runtime_put_autosuspend(hdev->dev);
980
981 crypto_finalize_hash_request(hdev->engine, req, err);
982}
983
984static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
985 struct ahash_request *req)
986{
987 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
988}
989
990static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
991{
992 struct ahash_request *req = container_of(areq, struct ahash_request,
993 base);
994 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
995 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
996 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
997 struct stm32_hash_state *state = &rctx->state;
998 int swap_reg;
999 int err = 0;
1000
1001 if (!hdev)
1002 return -ENODEV;
1003
1004 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
1005 rctx->op, req->nbytes);
1006
1007 pm_runtime_get_sync(hdev->dev);
1008
1009 hdev->req = req;
1010 hdev->flags = 0;
1011 swap_reg = hash_swap_reg(rctx);
1012
1013 if (state->flags & HASH_FLAGS_INIT) {
1014 u32 *preg = rctx->state.hw_context;
1015 u32 reg;
1016 int i;
1017
1018 if (!hdev->pdata->ux500)
1019 stm32_hash_write(hdev, HASH_IMR, *preg++);
1020 stm32_hash_write(hdev, HASH_STR, *preg++);
1021 stm32_hash_write(hdev, HASH_CR, *preg);
1022 reg = *preg++ | HASH_CR_INIT;
1023 stm32_hash_write(hdev, HASH_CR, reg);
1024
1025 for (i = 0; i < swap_reg; i++)
1026 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1027
1028 hdev->flags |= HASH_FLAGS_INIT;
1029
1030 if (state->flags & HASH_FLAGS_HMAC)
1031 hdev->flags |= HASH_FLAGS_HMAC |
1032 HASH_FLAGS_HMAC_KEY;
1033 }
1034
1035 if (rctx->op == HASH_OP_UPDATE)
1036 err = stm32_hash_update_req(hdev);
1037 else if (rctx->op == HASH_OP_FINAL)
1038 err = stm32_hash_final_req(hdev);
1039
1040 /* If we have an IRQ, wait for that, else poll for completion */
1041 if (err == -EINPROGRESS && hdev->polled) {
1042 if (stm32_hash_wait_busy(hdev))
1043 err = -ETIMEDOUT;
1044 else {
1045 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1046 err = 0;
1047 }
1048 }
1049
1050 if (err != -EINPROGRESS)
1051 /* done task will not finish it, so do it here */
1052 stm32_hash_finish_req(req, err);
1053
1054 return 0;
1055}
1056
1057static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
1058{
1059 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1060 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1061 struct stm32_hash_dev *hdev = ctx->hdev;
1062
1063 rctx->op = op;
1064
1065 return stm32_hash_handle_queue(hdev, req);
1066}
1067
1068static int stm32_hash_update(struct ahash_request *req)
1069{
1070 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1071 struct stm32_hash_state *state = &rctx->state;
1072
1073 if (!req->nbytes || !(state->flags & HASH_FLAGS_CPU))
1074 return 0;
1075
1076 rctx->total = req->nbytes;
1077 rctx->sg = req->src;
1078 rctx->offset = 0;
1079
1080 if ((state->bufcnt + rctx->total < state->blocklen)) {
1081 stm32_hash_append_sg(rctx);
1082 return 0;
1083 }
1084
1085 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
1086}
1087
1088static int stm32_hash_final(struct ahash_request *req)
1089{
1090 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1091 struct stm32_hash_state *state = &rctx->state;
1092
1093 state->flags |= HASH_FLAGS_FINAL;
1094
1095 return stm32_hash_enqueue(req, HASH_OP_FINAL);
1096}
1097
1098static int stm32_hash_finup(struct ahash_request *req)
1099{
1100 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1101 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1102 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1103 struct stm32_hash_state *state = &rctx->state;
1104
1105 if (!req->nbytes)
1106 goto out;
1107
1108 state->flags |= HASH_FLAGS_FINUP;
1109 rctx->total = req->nbytes;
1110 rctx->sg = req->src;
1111 rctx->offset = 0;
1112
1113 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
1114 state->flags &= ~HASH_FLAGS_CPU;
1115
1116out:
1117 return stm32_hash_final(req);
1118}
1119
1120static int stm32_hash_digest(struct ahash_request *req)
1121{
1122 return stm32_hash_init(req) ?: stm32_hash_finup(req);
1123}
1124
1125static int stm32_hash_export(struct ahash_request *req, void *out)
1126{
1127 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1128
1129 memcpy(out, &rctx->state, sizeof(rctx->state));
1130
1131 return 0;
1132}
1133
1134static int stm32_hash_import(struct ahash_request *req, const void *in)
1135{
1136 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1137
1138 stm32_hash_init(req);
1139 memcpy(&rctx->state, in, sizeof(rctx->state));
1140
1141 return 0;
1142}
1143
1144static int stm32_hash_setkey(struct crypto_ahash *tfm,
1145 const u8 *key, unsigned int keylen)
1146{
1147 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1148
1149 if (keylen <= HASH_MAX_KEY_SIZE) {
1150 memcpy(ctx->key, key, keylen);
1151 ctx->keylen = keylen;
1152 } else {
1153 return -ENOMEM;
1154 }
1155
1156 return 0;
1157}
1158
1159static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
1160{
1161 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1162 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1163 const char *name = crypto_tfm_alg_name(tfm);
1164 struct crypto_shash *xtfm;
1165
1166 /* The fallback is only needed on Ux500 */
1167 if (!hdev->pdata->ux500)
1168 return 0;
1169
1170 xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
1171 if (IS_ERR(xtfm)) {
1172 dev_err(hdev->dev, "failed to allocate %s fallback\n",
1173 name);
1174 return PTR_ERR(xtfm);
1175 }
1176 dev_info(hdev->dev, "allocated %s fallback\n", name);
1177 ctx->xtfm = xtfm;
1178
1179 return 0;
1180}
1181
1182static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
1183{
1184 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1185
1186 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1187 sizeof(struct stm32_hash_request_ctx));
1188
1189 ctx->keylen = 0;
1190
1191 if (algs_flags)
1192 ctx->flags |= algs_flags;
1193
1194 return stm32_hash_init_fallback(tfm);
1195}
1196
1197static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1198{
1199 return stm32_hash_cra_init_algs(tfm, 0);
1200}
1201
1202static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
1203{
1204 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
1205}
1206
1207static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
1208{
1209 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
1210}
1211
1212static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
1213{
1214 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
1215 HASH_FLAGS_HMAC);
1216}
1217
1218
1219static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
1220{
1221 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1222
1223 if (ctx->xtfm)
1224 crypto_free_shash(ctx->xtfm);
1225}
1226
1227static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1228{
1229 struct stm32_hash_dev *hdev = dev_id;
1230
1231 if (HASH_FLAGS_CPU & hdev->flags) {
1232 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1233 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1234 goto finish;
1235 }
1236 } else if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1237 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1238 goto finish;
1239 }
1240
1241 return IRQ_HANDLED;
1242
1243finish:
1244 /* Finish current request */
1245 stm32_hash_finish_req(hdev->req, 0);
1246
1247 return IRQ_HANDLED;
1248}
1249
1250static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1251{
1252 struct stm32_hash_dev *hdev = dev_id;
1253 u32 reg;
1254
1255 reg = stm32_hash_read(hdev, HASH_SR);
1256 if (reg & HASH_SR_OUTPUT_READY) {
1257 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1258 /* Disable IT*/
1259 stm32_hash_write(hdev, HASH_IMR, 0);
1260 return IRQ_WAKE_THREAD;
1261 }
1262
1263 return IRQ_NONE;
1264}
1265
1266static struct ahash_engine_alg algs_md5[] = {
1267 {
1268 .base.init = stm32_hash_init,
1269 .base.update = stm32_hash_update,
1270 .base.final = stm32_hash_final,
1271 .base.finup = stm32_hash_finup,
1272 .base.digest = stm32_hash_digest,
1273 .base.export = stm32_hash_export,
1274 .base.import = stm32_hash_import,
1275 .base.halg = {
1276 .digestsize = MD5_DIGEST_SIZE,
1277 .statesize = sizeof(struct stm32_hash_state),
1278 .base = {
1279 .cra_name = "md5",
1280 .cra_driver_name = "stm32-md5",
1281 .cra_priority = 200,
1282 .cra_flags = CRYPTO_ALG_ASYNC |
1283 CRYPTO_ALG_KERN_DRIVER_ONLY,
1284 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1285 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1286 .cra_init = stm32_hash_cra_init,
1287 .cra_exit = stm32_hash_cra_exit,
1288 .cra_module = THIS_MODULE,
1289 }
1290 },
1291 .op = {
1292 .do_one_request = stm32_hash_one_request,
1293 },
1294 },
1295 {
1296 .base.init = stm32_hash_init,
1297 .base.update = stm32_hash_update,
1298 .base.final = stm32_hash_final,
1299 .base.finup = stm32_hash_finup,
1300 .base.digest = stm32_hash_digest,
1301 .base.export = stm32_hash_export,
1302 .base.import = stm32_hash_import,
1303 .base.setkey = stm32_hash_setkey,
1304 .base.halg = {
1305 .digestsize = MD5_DIGEST_SIZE,
1306 .statesize = sizeof(struct stm32_hash_state),
1307 .base = {
1308 .cra_name = "hmac(md5)",
1309 .cra_driver_name = "stm32-hmac-md5",
1310 .cra_priority = 200,
1311 .cra_flags = CRYPTO_ALG_ASYNC |
1312 CRYPTO_ALG_KERN_DRIVER_ONLY,
1313 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1314 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1315 .cra_init = stm32_hash_cra_hmac_init,
1316 .cra_exit = stm32_hash_cra_exit,
1317 .cra_module = THIS_MODULE,
1318 }
1319 },
1320 .op = {
1321 .do_one_request = stm32_hash_one_request,
1322 },
1323 }
1324};
1325
1326static struct ahash_engine_alg algs_sha1[] = {
1327 {
1328 .base.init = stm32_hash_init,
1329 .base.update = stm32_hash_update,
1330 .base.final = stm32_hash_final,
1331 .base.finup = stm32_hash_finup,
1332 .base.digest = stm32_hash_digest,
1333 .base.export = stm32_hash_export,
1334 .base.import = stm32_hash_import,
1335 .base.halg = {
1336 .digestsize = SHA1_DIGEST_SIZE,
1337 .statesize = sizeof(struct stm32_hash_state),
1338 .base = {
1339 .cra_name = "sha1",
1340 .cra_driver_name = "stm32-sha1",
1341 .cra_priority = 200,
1342 .cra_flags = CRYPTO_ALG_ASYNC |
1343 CRYPTO_ALG_KERN_DRIVER_ONLY,
1344 .cra_blocksize = SHA1_BLOCK_SIZE,
1345 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1346 .cra_init = stm32_hash_cra_init,
1347 .cra_exit = stm32_hash_cra_exit,
1348 .cra_module = THIS_MODULE,
1349 }
1350 },
1351 .op = {
1352 .do_one_request = stm32_hash_one_request,
1353 },
1354 },
1355 {
1356 .base.init = stm32_hash_init,
1357 .base.update = stm32_hash_update,
1358 .base.final = stm32_hash_final,
1359 .base.finup = stm32_hash_finup,
1360 .base.digest = stm32_hash_digest,
1361 .base.export = stm32_hash_export,
1362 .base.import = stm32_hash_import,
1363 .base.setkey = stm32_hash_setkey,
1364 .base.halg = {
1365 .digestsize = SHA1_DIGEST_SIZE,
1366 .statesize = sizeof(struct stm32_hash_state),
1367 .base = {
1368 .cra_name = "hmac(sha1)",
1369 .cra_driver_name = "stm32-hmac-sha1",
1370 .cra_priority = 200,
1371 .cra_flags = CRYPTO_ALG_ASYNC |
1372 CRYPTO_ALG_KERN_DRIVER_ONLY,
1373 .cra_blocksize = SHA1_BLOCK_SIZE,
1374 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1375 .cra_init = stm32_hash_cra_hmac_init,
1376 .cra_exit = stm32_hash_cra_exit,
1377 .cra_module = THIS_MODULE,
1378 }
1379 },
1380 .op = {
1381 .do_one_request = stm32_hash_one_request,
1382 },
1383 },
1384};
1385
1386static struct ahash_engine_alg algs_sha224[] = {
1387 {
1388 .base.init = stm32_hash_init,
1389 .base.update = stm32_hash_update,
1390 .base.final = stm32_hash_final,
1391 .base.finup = stm32_hash_finup,
1392 .base.digest = stm32_hash_digest,
1393 .base.export = stm32_hash_export,
1394 .base.import = stm32_hash_import,
1395 .base.halg = {
1396 .digestsize = SHA224_DIGEST_SIZE,
1397 .statesize = sizeof(struct stm32_hash_state),
1398 .base = {
1399 .cra_name = "sha224",
1400 .cra_driver_name = "stm32-sha224",
1401 .cra_priority = 200,
1402 .cra_flags = CRYPTO_ALG_ASYNC |
1403 CRYPTO_ALG_KERN_DRIVER_ONLY,
1404 .cra_blocksize = SHA224_BLOCK_SIZE,
1405 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1406 .cra_init = stm32_hash_cra_init,
1407 .cra_exit = stm32_hash_cra_exit,
1408 .cra_module = THIS_MODULE,
1409 }
1410 },
1411 .op = {
1412 .do_one_request = stm32_hash_one_request,
1413 },
1414 },
1415 {
1416 .base.init = stm32_hash_init,
1417 .base.update = stm32_hash_update,
1418 .base.final = stm32_hash_final,
1419 .base.finup = stm32_hash_finup,
1420 .base.digest = stm32_hash_digest,
1421 .base.setkey = stm32_hash_setkey,
1422 .base.export = stm32_hash_export,
1423 .base.import = stm32_hash_import,
1424 .base.halg = {
1425 .digestsize = SHA224_DIGEST_SIZE,
1426 .statesize = sizeof(struct stm32_hash_state),
1427 .base = {
1428 .cra_name = "hmac(sha224)",
1429 .cra_driver_name = "stm32-hmac-sha224",
1430 .cra_priority = 200,
1431 .cra_flags = CRYPTO_ALG_ASYNC |
1432 CRYPTO_ALG_KERN_DRIVER_ONLY,
1433 .cra_blocksize = SHA224_BLOCK_SIZE,
1434 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1435 .cra_init = stm32_hash_cra_hmac_init,
1436 .cra_exit = stm32_hash_cra_exit,
1437 .cra_module = THIS_MODULE,
1438 }
1439 },
1440 .op = {
1441 .do_one_request = stm32_hash_one_request,
1442 },
1443 },
1444};
1445
1446static struct ahash_engine_alg algs_sha256[] = {
1447 {
1448 .base.init = stm32_hash_init,
1449 .base.update = stm32_hash_update,
1450 .base.final = stm32_hash_final,
1451 .base.finup = stm32_hash_finup,
1452 .base.digest = stm32_hash_digest,
1453 .base.export = stm32_hash_export,
1454 .base.import = stm32_hash_import,
1455 .base.halg = {
1456 .digestsize = SHA256_DIGEST_SIZE,
1457 .statesize = sizeof(struct stm32_hash_state),
1458 .base = {
1459 .cra_name = "sha256",
1460 .cra_driver_name = "stm32-sha256",
1461 .cra_priority = 200,
1462 .cra_flags = CRYPTO_ALG_ASYNC |
1463 CRYPTO_ALG_KERN_DRIVER_ONLY,
1464 .cra_blocksize = SHA256_BLOCK_SIZE,
1465 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1466 .cra_init = stm32_hash_cra_init,
1467 .cra_exit = stm32_hash_cra_exit,
1468 .cra_module = THIS_MODULE,
1469 }
1470 },
1471 .op = {
1472 .do_one_request = stm32_hash_one_request,
1473 },
1474 },
1475 {
1476 .base.init = stm32_hash_init,
1477 .base.update = stm32_hash_update,
1478 .base.final = stm32_hash_final,
1479 .base.finup = stm32_hash_finup,
1480 .base.digest = stm32_hash_digest,
1481 .base.export = stm32_hash_export,
1482 .base.import = stm32_hash_import,
1483 .base.setkey = stm32_hash_setkey,
1484 .base.halg = {
1485 .digestsize = SHA256_DIGEST_SIZE,
1486 .statesize = sizeof(struct stm32_hash_state),
1487 .base = {
1488 .cra_name = "hmac(sha256)",
1489 .cra_driver_name = "stm32-hmac-sha256",
1490 .cra_priority = 200,
1491 .cra_flags = CRYPTO_ALG_ASYNC |
1492 CRYPTO_ALG_KERN_DRIVER_ONLY,
1493 .cra_blocksize = SHA256_BLOCK_SIZE,
1494 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1495 .cra_init = stm32_hash_cra_hmac_init,
1496 .cra_exit = stm32_hash_cra_exit,
1497 .cra_module = THIS_MODULE,
1498 }
1499 },
1500 .op = {
1501 .do_one_request = stm32_hash_one_request,
1502 },
1503 },
1504};
1505
1506static struct ahash_engine_alg algs_sha384_sha512[] = {
1507 {
1508 .base.init = stm32_hash_init,
1509 .base.update = stm32_hash_update,
1510 .base.final = stm32_hash_final,
1511 .base.finup = stm32_hash_finup,
1512 .base.digest = stm32_hash_digest,
1513 .base.export = stm32_hash_export,
1514 .base.import = stm32_hash_import,
1515 .base.halg = {
1516 .digestsize = SHA384_DIGEST_SIZE,
1517 .statesize = sizeof(struct stm32_hash_state),
1518 .base = {
1519 .cra_name = "sha384",
1520 .cra_driver_name = "stm32-sha384",
1521 .cra_priority = 200,
1522 .cra_flags = CRYPTO_ALG_ASYNC |
1523 CRYPTO_ALG_KERN_DRIVER_ONLY,
1524 .cra_blocksize = SHA384_BLOCK_SIZE,
1525 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1526 .cra_init = stm32_hash_cra_init,
1527 .cra_exit = stm32_hash_cra_exit,
1528 .cra_module = THIS_MODULE,
1529 }
1530 },
1531 .op = {
1532 .do_one_request = stm32_hash_one_request,
1533 },
1534 },
1535 {
1536 .base.init = stm32_hash_init,
1537 .base.update = stm32_hash_update,
1538 .base.final = stm32_hash_final,
1539 .base.finup = stm32_hash_finup,
1540 .base.digest = stm32_hash_digest,
1541 .base.setkey = stm32_hash_setkey,
1542 .base.export = stm32_hash_export,
1543 .base.import = stm32_hash_import,
1544 .base.halg = {
1545 .digestsize = SHA384_DIGEST_SIZE,
1546 .statesize = sizeof(struct stm32_hash_state),
1547 .base = {
1548 .cra_name = "hmac(sha384)",
1549 .cra_driver_name = "stm32-hmac-sha384",
1550 .cra_priority = 200,
1551 .cra_flags = CRYPTO_ALG_ASYNC |
1552 CRYPTO_ALG_KERN_DRIVER_ONLY,
1553 .cra_blocksize = SHA384_BLOCK_SIZE,
1554 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1555 .cra_init = stm32_hash_cra_hmac_init,
1556 .cra_exit = stm32_hash_cra_exit,
1557 .cra_module = THIS_MODULE,
1558 }
1559 },
1560 .op = {
1561 .do_one_request = stm32_hash_one_request,
1562 },
1563 },
1564 {
1565 .base.init = stm32_hash_init,
1566 .base.update = stm32_hash_update,
1567 .base.final = stm32_hash_final,
1568 .base.finup = stm32_hash_finup,
1569 .base.digest = stm32_hash_digest,
1570 .base.export = stm32_hash_export,
1571 .base.import = stm32_hash_import,
1572 .base.halg = {
1573 .digestsize = SHA512_DIGEST_SIZE,
1574 .statesize = sizeof(struct stm32_hash_state),
1575 .base = {
1576 .cra_name = "sha512",
1577 .cra_driver_name = "stm32-sha512",
1578 .cra_priority = 200,
1579 .cra_flags = CRYPTO_ALG_ASYNC |
1580 CRYPTO_ALG_KERN_DRIVER_ONLY,
1581 .cra_blocksize = SHA512_BLOCK_SIZE,
1582 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1583 .cra_init = stm32_hash_cra_init,
1584 .cra_exit = stm32_hash_cra_exit,
1585 .cra_module = THIS_MODULE,
1586 }
1587 },
1588 .op = {
1589 .do_one_request = stm32_hash_one_request,
1590 },
1591 },
1592 {
1593 .base.init = stm32_hash_init,
1594 .base.update = stm32_hash_update,
1595 .base.final = stm32_hash_final,
1596 .base.finup = stm32_hash_finup,
1597 .base.digest = stm32_hash_digest,
1598 .base.export = stm32_hash_export,
1599 .base.import = stm32_hash_import,
1600 .base.setkey = stm32_hash_setkey,
1601 .base.halg = {
1602 .digestsize = SHA512_DIGEST_SIZE,
1603 .statesize = sizeof(struct stm32_hash_state),
1604 .base = {
1605 .cra_name = "hmac(sha512)",
1606 .cra_driver_name = "stm32-hmac-sha512",
1607 .cra_priority = 200,
1608 .cra_flags = CRYPTO_ALG_ASYNC |
1609 CRYPTO_ALG_KERN_DRIVER_ONLY,
1610 .cra_blocksize = SHA512_BLOCK_SIZE,
1611 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1612 .cra_init = stm32_hash_cra_hmac_init,
1613 .cra_exit = stm32_hash_cra_exit,
1614 .cra_module = THIS_MODULE,
1615 }
1616 },
1617 .op = {
1618 .do_one_request = stm32_hash_one_request,
1619 },
1620 },
1621};
1622
1623static struct ahash_engine_alg algs_sha3[] = {
1624 {
1625 .base.init = stm32_hash_init,
1626 .base.update = stm32_hash_update,
1627 .base.final = stm32_hash_final,
1628 .base.finup = stm32_hash_finup,
1629 .base.digest = stm32_hash_digest,
1630 .base.export = stm32_hash_export,
1631 .base.import = stm32_hash_import,
1632 .base.halg = {
1633 .digestsize = SHA3_224_DIGEST_SIZE,
1634 .statesize = sizeof(struct stm32_hash_state),
1635 .base = {
1636 .cra_name = "sha3-224",
1637 .cra_driver_name = "stm32-sha3-224",
1638 .cra_priority = 200,
1639 .cra_flags = CRYPTO_ALG_ASYNC |
1640 CRYPTO_ALG_KERN_DRIVER_ONLY,
1641 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1642 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1643 .cra_init = stm32_hash_cra_sha3_init,
1644 .cra_exit = stm32_hash_cra_exit,
1645 .cra_module = THIS_MODULE,
1646 }
1647 },
1648 .op = {
1649 .do_one_request = stm32_hash_one_request,
1650 },
1651 },
1652 {
1653 .base.init = stm32_hash_init,
1654 .base.update = stm32_hash_update,
1655 .base.final = stm32_hash_final,
1656 .base.finup = stm32_hash_finup,
1657 .base.digest = stm32_hash_digest,
1658 .base.export = stm32_hash_export,
1659 .base.import = stm32_hash_import,
1660 .base.setkey = stm32_hash_setkey,
1661 .base.halg = {
1662 .digestsize = SHA3_224_DIGEST_SIZE,
1663 .statesize = sizeof(struct stm32_hash_state),
1664 .base = {
1665 .cra_name = "hmac(sha3-224)",
1666 .cra_driver_name = "stm32-hmac-sha3-224",
1667 .cra_priority = 200,
1668 .cra_flags = CRYPTO_ALG_ASYNC |
1669 CRYPTO_ALG_KERN_DRIVER_ONLY,
1670 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1671 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1672 .cra_init = stm32_hash_cra_sha3_hmac_init,
1673 .cra_exit = stm32_hash_cra_exit,
1674 .cra_module = THIS_MODULE,
1675 }
1676 },
1677 .op = {
1678 .do_one_request = stm32_hash_one_request,
1679 },
1680 },
1681 {
1682 .base.init = stm32_hash_init,
1683 .base.update = stm32_hash_update,
1684 .base.final = stm32_hash_final,
1685 .base.finup = stm32_hash_finup,
1686 .base.digest = stm32_hash_digest,
1687 .base.export = stm32_hash_export,
1688 .base.import = stm32_hash_import,
1689 .base.halg = {
1690 .digestsize = SHA3_256_DIGEST_SIZE,
1691 .statesize = sizeof(struct stm32_hash_state),
1692 .base = {
1693 .cra_name = "sha3-256",
1694 .cra_driver_name = "stm32-sha3-256",
1695 .cra_priority = 200,
1696 .cra_flags = CRYPTO_ALG_ASYNC |
1697 CRYPTO_ALG_KERN_DRIVER_ONLY,
1698 .cra_blocksize = SHA3_256_BLOCK_SIZE,
1699 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1700 .cra_init = stm32_hash_cra_sha3_init,
1701 .cra_exit = stm32_hash_cra_exit,
1702 .cra_module = THIS_MODULE,
1703 }
1704 },
1705 .op = {
1706 .do_one_request = stm32_hash_one_request,
1707 },
1708 },
1709 {
1710 .base.init = stm32_hash_init,
1711 .base.update = stm32_hash_update,
1712 .base.final = stm32_hash_final,
1713 .base.finup = stm32_hash_finup,
1714 .base.digest = stm32_hash_digest,
1715 .base.export = stm32_hash_export,
1716 .base.import = stm32_hash_import,
1717 .base.setkey = stm32_hash_setkey,
1718 .base.halg = {
1719 .digestsize = SHA3_256_DIGEST_SIZE,
1720 .statesize = sizeof(struct stm32_hash_state),
1721 .base = {
1722 .cra_name = "hmac(sha3-256)",
1723 .cra_driver_name = "stm32-hmac-sha3-256",
1724 .cra_priority = 200,
1725 .cra_flags = CRYPTO_ALG_ASYNC |
1726 CRYPTO_ALG_KERN_DRIVER_ONLY,
1727 .cra_blocksize = SHA3_256_BLOCK_SIZE,
1728 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1729 .cra_init = stm32_hash_cra_sha3_hmac_init,
1730 .cra_exit = stm32_hash_cra_exit,
1731 .cra_module = THIS_MODULE,
1732 }
1733 },
1734 .op = {
1735 .do_one_request = stm32_hash_one_request,
1736 },
1737 },
1738 {
1739 .base.init = stm32_hash_init,
1740 .base.update = stm32_hash_update,
1741 .base.final = stm32_hash_final,
1742 .base.finup = stm32_hash_finup,
1743 .base.digest = stm32_hash_digest,
1744 .base.export = stm32_hash_export,
1745 .base.import = stm32_hash_import,
1746 .base.halg = {
1747 .digestsize = SHA3_384_DIGEST_SIZE,
1748 .statesize = sizeof(struct stm32_hash_state),
1749 .base = {
1750 .cra_name = "sha3-384",
1751 .cra_driver_name = "stm32-sha3-384",
1752 .cra_priority = 200,
1753 .cra_flags = CRYPTO_ALG_ASYNC |
1754 CRYPTO_ALG_KERN_DRIVER_ONLY,
1755 .cra_blocksize = SHA3_384_BLOCK_SIZE,
1756 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1757 .cra_init = stm32_hash_cra_sha3_init,
1758 .cra_exit = stm32_hash_cra_exit,
1759 .cra_module = THIS_MODULE,
1760 }
1761 },
1762 .op = {
1763 .do_one_request = stm32_hash_one_request,
1764 },
1765 },
1766 {
1767 .base.init = stm32_hash_init,
1768 .base.update = stm32_hash_update,
1769 .base.final = stm32_hash_final,
1770 .base.finup = stm32_hash_finup,
1771 .base.digest = stm32_hash_digest,
1772 .base.export = stm32_hash_export,
1773 .base.import = stm32_hash_import,
1774 .base.setkey = stm32_hash_setkey,
1775 .base.halg = {
1776 .digestsize = SHA3_384_DIGEST_SIZE,
1777 .statesize = sizeof(struct stm32_hash_state),
1778 .base = {
1779 .cra_name = "hmac(sha3-384)",
1780 .cra_driver_name = "stm32-hmac-sha3-384",
1781 .cra_priority = 200,
1782 .cra_flags = CRYPTO_ALG_ASYNC |
1783 CRYPTO_ALG_KERN_DRIVER_ONLY,
1784 .cra_blocksize = SHA3_384_BLOCK_SIZE,
1785 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1786 .cra_init = stm32_hash_cra_sha3_hmac_init,
1787 .cra_exit = stm32_hash_cra_exit,
1788 .cra_module = THIS_MODULE,
1789 }
1790 },
1791 .op = {
1792 .do_one_request = stm32_hash_one_request,
1793 },
1794 },
1795 {
1796 .base.init = stm32_hash_init,
1797 .base.update = stm32_hash_update,
1798 .base.final = stm32_hash_final,
1799 .base.finup = stm32_hash_finup,
1800 .base.digest = stm32_hash_digest,
1801 .base.export = stm32_hash_export,
1802 .base.import = stm32_hash_import,
1803 .base.halg = {
1804 .digestsize = SHA3_512_DIGEST_SIZE,
1805 .statesize = sizeof(struct stm32_hash_state),
1806 .base = {
1807 .cra_name = "sha3-512",
1808 .cra_driver_name = "stm32-sha3-512",
1809 .cra_priority = 200,
1810 .cra_flags = CRYPTO_ALG_ASYNC |
1811 CRYPTO_ALG_KERN_DRIVER_ONLY,
1812 .cra_blocksize = SHA3_512_BLOCK_SIZE,
1813 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1814 .cra_init = stm32_hash_cra_sha3_init,
1815 .cra_exit = stm32_hash_cra_exit,
1816 .cra_module = THIS_MODULE,
1817 }
1818 },
1819 .op = {
1820 .do_one_request = stm32_hash_one_request,
1821 },
1822 },
1823 {
1824 .base.init = stm32_hash_init,
1825 .base.update = stm32_hash_update,
1826 .base.final = stm32_hash_final,
1827 .base.finup = stm32_hash_finup,
1828 .base.digest = stm32_hash_digest,
1829 .base.export = stm32_hash_export,
1830 .base.import = stm32_hash_import,
1831 .base.setkey = stm32_hash_setkey,
1832 .base.halg = {
1833 .digestsize = SHA3_512_DIGEST_SIZE,
1834 .statesize = sizeof(struct stm32_hash_state),
1835 .base = {
1836 .cra_name = "hmac(sha3-512)",
1837 .cra_driver_name = "stm32-hmac-sha3-512",
1838 .cra_priority = 200,
1839 .cra_flags = CRYPTO_ALG_ASYNC |
1840 CRYPTO_ALG_KERN_DRIVER_ONLY,
1841 .cra_blocksize = SHA3_512_BLOCK_SIZE,
1842 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1843 .cra_init = stm32_hash_cra_sha3_hmac_init,
1844 .cra_exit = stm32_hash_cra_exit,
1845 .cra_module = THIS_MODULE,
1846 }
1847 },
1848 .op = {
1849 .do_one_request = stm32_hash_one_request,
1850 },
1851 }
1852};
1853
1854static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1855{
1856 unsigned int i, j;
1857 int err;
1858
1859 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1860 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1861 err = crypto_engine_register_ahash(
1862 &hdev->pdata->algs_info[i].algs_list[j]);
1863 if (err)
1864 goto err_algs;
1865 }
1866 }
1867
1868 return 0;
1869err_algs:
1870 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1871 for (; i--; ) {
1872 for (; j--;)
1873 crypto_engine_unregister_ahash(
1874 &hdev->pdata->algs_info[i].algs_list[j]);
1875 }
1876
1877 return err;
1878}
1879
1880static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1881{
1882 unsigned int i, j;
1883
1884 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1885 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1886 crypto_engine_unregister_ahash(
1887 &hdev->pdata->algs_info[i].algs_list[j]);
1888 }
1889
1890 return 0;
1891}
1892
1893static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
1894 {
1895 .algs_list = algs_sha1,
1896 .size = ARRAY_SIZE(algs_sha1),
1897 },
1898 {
1899 .algs_list = algs_sha256,
1900 .size = ARRAY_SIZE(algs_sha256),
1901 },
1902};
1903
1904static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
1905 .alg_shift = 7,
1906 .algs_info = stm32_hash_algs_info_ux500,
1907 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
1908 .broken_emptymsg = true,
1909 .ux500 = true,
1910};
1911
1912static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1913 {
1914 .algs_list = algs_md5,
1915 .size = ARRAY_SIZE(algs_md5),
1916 },
1917 {
1918 .algs_list = algs_sha1,
1919 .size = ARRAY_SIZE(algs_sha1),
1920 },
1921};
1922
1923static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1924 .alg_shift = 7,
1925 .algs_info = stm32_hash_algs_info_stm32f4,
1926 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1927 .has_sr = true,
1928 .has_mdmat = true,
1929};
1930
1931static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1932 {
1933 .algs_list = algs_md5,
1934 .size = ARRAY_SIZE(algs_md5),
1935 },
1936 {
1937 .algs_list = algs_sha1,
1938 .size = ARRAY_SIZE(algs_sha1),
1939 },
1940 {
1941 .algs_list = algs_sha224,
1942 .size = ARRAY_SIZE(algs_sha224),
1943 },
1944 {
1945 .algs_list = algs_sha256,
1946 .size = ARRAY_SIZE(algs_sha256),
1947 },
1948};
1949
1950static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1951 .alg_shift = 7,
1952 .algs_info = stm32_hash_algs_info_stm32f7,
1953 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1954 .has_sr = true,
1955 .has_mdmat = true,
1956};
1957
1958static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
1959 {
1960 .algs_list = algs_sha1,
1961 .size = ARRAY_SIZE(algs_sha1),
1962 },
1963 {
1964 .algs_list = algs_sha224,
1965 .size = ARRAY_SIZE(algs_sha224),
1966 },
1967 {
1968 .algs_list = algs_sha256,
1969 .size = ARRAY_SIZE(algs_sha256),
1970 },
1971 {
1972 .algs_list = algs_sha384_sha512,
1973 .size = ARRAY_SIZE(algs_sha384_sha512),
1974 },
1975 {
1976 .algs_list = algs_sha3,
1977 .size = ARRAY_SIZE(algs_sha3),
1978 },
1979};
1980
1981static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
1982 .alg_shift = 17,
1983 .algs_info = stm32_hash_algs_info_stm32mp13,
1984 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
1985 .has_sr = true,
1986 .has_mdmat = true,
1987};
1988
1989static const struct of_device_id stm32_hash_of_match[] = {
1990 { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
1991 { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
1992 { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
1993 { .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
1994 {},
1995};
1996
1997MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1998
1999static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
2000 struct device *dev)
2001{
2002 hdev->pdata = of_device_get_match_data(dev);
2003 if (!hdev->pdata) {
2004 dev_err(dev, "no compatible OF match\n");
2005 return -EINVAL;
2006 }
2007
2008 return 0;
2009}
2010
2011static int stm32_hash_probe(struct platform_device *pdev)
2012{
2013 struct stm32_hash_dev *hdev;
2014 struct device *dev = &pdev->dev;
2015 struct resource *res;
2016 int ret, irq;
2017
2018 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
2019 if (!hdev)
2020 return -ENOMEM;
2021
2022 hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2023 if (IS_ERR(hdev->io_base))
2024 return PTR_ERR(hdev->io_base);
2025
2026 hdev->phys_base = res->start;
2027
2028 ret = stm32_hash_get_of_match(hdev, dev);
2029 if (ret)
2030 return ret;
2031
2032 irq = platform_get_irq_optional(pdev, 0);
2033 if (irq < 0 && irq != -ENXIO)
2034 return irq;
2035
2036 if (irq > 0) {
2037 ret = devm_request_threaded_irq(dev, irq,
2038 stm32_hash_irq_handler,
2039 stm32_hash_irq_thread,
2040 IRQF_ONESHOT,
2041 dev_name(dev), hdev);
2042 if (ret) {
2043 dev_err(dev, "Cannot grab IRQ\n");
2044 return ret;
2045 }
2046 } else {
2047 dev_info(dev, "No IRQ, use polling mode\n");
2048 hdev->polled = true;
2049 }
2050
2051 hdev->clk = devm_clk_get(&pdev->dev, NULL);
2052 if (IS_ERR(hdev->clk))
2053 return dev_err_probe(dev, PTR_ERR(hdev->clk),
2054 "failed to get clock for hash\n");
2055
2056 ret = clk_prepare_enable(hdev->clk);
2057 if (ret) {
2058 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
2059 return ret;
2060 }
2061
2062 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
2063 pm_runtime_use_autosuspend(dev);
2064
2065 pm_runtime_get_noresume(dev);
2066 pm_runtime_set_active(dev);
2067 pm_runtime_enable(dev);
2068
2069 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
2070 if (IS_ERR(hdev->rst)) {
2071 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
2072 ret = -EPROBE_DEFER;
2073 goto err_reset;
2074 }
2075 } else {
2076 reset_control_assert(hdev->rst);
2077 udelay(2);
2078 reset_control_deassert(hdev->rst);
2079 }
2080
2081 hdev->dev = dev;
2082
2083 platform_set_drvdata(pdev, hdev);
2084
2085 ret = stm32_hash_dma_init(hdev);
2086 switch (ret) {
2087 case 0:
2088 break;
2089 case -ENOENT:
2090 case -ENODEV:
2091 dev_info(dev, "DMA mode not available\n");
2092 break;
2093 default:
2094 dev_err(dev, "DMA init error %d\n", ret);
2095 goto err_dma;
2096 }
2097
2098 spin_lock(&stm32_hash.lock);
2099 list_add_tail(&hdev->list, &stm32_hash.dev_list);
2100 spin_unlock(&stm32_hash.lock);
2101
2102 /* Initialize crypto engine */
2103 hdev->engine = crypto_engine_alloc_init(dev, 1);
2104 if (!hdev->engine) {
2105 ret = -ENOMEM;
2106 goto err_engine;
2107 }
2108
2109 ret = crypto_engine_start(hdev->engine);
2110 if (ret)
2111 goto err_engine_start;
2112
2113 if (hdev->pdata->ux500)
2114 /* FIXME: implement DMA mode for Ux500 */
2115 hdev->dma_mode = 0;
2116 else
2117 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
2118
2119 /* Register algos */
2120 ret = stm32_hash_register_algs(hdev);
2121 if (ret)
2122 goto err_algs;
2123
2124 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
2125 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
2126
2127 pm_runtime_put_sync(dev);
2128
2129 return 0;
2130
2131err_algs:
2132err_engine_start:
2133 crypto_engine_exit(hdev->engine);
2134err_engine:
2135 spin_lock(&stm32_hash.lock);
2136 list_del(&hdev->list);
2137 spin_unlock(&stm32_hash.lock);
2138err_dma:
2139 if (hdev->dma_lch)
2140 dma_release_channel(hdev->dma_lch);
2141err_reset:
2142 pm_runtime_disable(dev);
2143 pm_runtime_put_noidle(dev);
2144
2145 clk_disable_unprepare(hdev->clk);
2146
2147 return ret;
2148}
2149
2150static void stm32_hash_remove(struct platform_device *pdev)
2151{
2152 struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
2153 int ret;
2154
2155 ret = pm_runtime_get_sync(hdev->dev);
2156
2157 stm32_hash_unregister_algs(hdev);
2158
2159 crypto_engine_exit(hdev->engine);
2160
2161 spin_lock(&stm32_hash.lock);
2162 list_del(&hdev->list);
2163 spin_unlock(&stm32_hash.lock);
2164
2165 if (hdev->dma_lch)
2166 dma_release_channel(hdev->dma_lch);
2167
2168 pm_runtime_disable(hdev->dev);
2169 pm_runtime_put_noidle(hdev->dev);
2170
2171 if (ret >= 0)
2172 clk_disable_unprepare(hdev->clk);
2173}
2174
2175#ifdef CONFIG_PM
2176static int stm32_hash_runtime_suspend(struct device *dev)
2177{
2178 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2179
2180 clk_disable_unprepare(hdev->clk);
2181
2182 return 0;
2183}
2184
2185static int stm32_hash_runtime_resume(struct device *dev)
2186{
2187 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2188 int ret;
2189
2190 ret = clk_prepare_enable(hdev->clk);
2191 if (ret) {
2192 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
2193 return ret;
2194 }
2195
2196 return 0;
2197}
2198#endif
2199
2200static const struct dev_pm_ops stm32_hash_pm_ops = {
2201 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2202 pm_runtime_force_resume)
2203 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
2204 stm32_hash_runtime_resume, NULL)
2205};
2206
2207static struct platform_driver stm32_hash_driver = {
2208 .probe = stm32_hash_probe,
2209 .remove_new = stm32_hash_remove,
2210 .driver = {
2211 .name = "stm32-hash",
2212 .pm = &stm32_hash_pm_ops,
2213 .of_match_table = stm32_hash_of_match,
2214 }
2215};
2216
2217module_platform_driver(stm32_hash_driver);
2218
2219MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
2220MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
2221MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <linux/clk.h>
10#include <linux/crypto.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/iopoll.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/reset.h>
22
23#include <crypto/engine.h>
24#include <crypto/hash.h>
25#include <crypto/md5.h>
26#include <crypto/scatterwalk.h>
27#include <crypto/sha.h>
28#include <crypto/internal/hash.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_IMR 0x20
34#define HASH_SR 0x24
35#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
36#define HASH_HREG(x) (0x310 + ((x) * 0x04))
37#define HASH_HWCFGR 0x3F0
38#define HASH_VER 0x3F4
39#define HASH_ID 0x3F8
40
41/* Control Register */
42#define HASH_CR_INIT BIT(2)
43#define HASH_CR_DMAE BIT(3)
44#define HASH_CR_DATATYPE_POS 4
45#define HASH_CR_MODE BIT(6)
46#define HASH_CR_MDMAT BIT(13)
47#define HASH_CR_DMAA BIT(14)
48#define HASH_CR_LKEY BIT(16)
49
50#define HASH_CR_ALGO_SHA1 0x0
51#define HASH_CR_ALGO_MD5 0x80
52#define HASH_CR_ALGO_SHA224 0x40000
53#define HASH_CR_ALGO_SHA256 0x40080
54
55/* Interrupt */
56#define HASH_DINIE BIT(0)
57#define HASH_DCIE BIT(1)
58
59/* Interrupt Mask */
60#define HASH_MASK_CALC_COMPLETION BIT(0)
61#define HASH_MASK_DATA_INPUT BIT(1)
62
63/* Context swap register */
64#define HASH_CSR_REGISTER_NUMBER 53
65
66/* Status Flags */
67#define HASH_SR_DATA_INPUT_READY BIT(0)
68#define HASH_SR_OUTPUT_READY BIT(1)
69#define HASH_SR_DMA_ACTIVE BIT(2)
70#define HASH_SR_BUSY BIT(3)
71
72/* STR Register */
73#define HASH_STR_NBLW_MASK GENMASK(4, 0)
74#define HASH_STR_DCAL BIT(8)
75
76#define HASH_FLAGS_INIT BIT(0)
77#define HASH_FLAGS_OUTPUT_READY BIT(1)
78#define HASH_FLAGS_CPU BIT(2)
79#define HASH_FLAGS_DMA_READY BIT(3)
80#define HASH_FLAGS_DMA_ACTIVE BIT(4)
81#define HASH_FLAGS_HMAC_INIT BIT(5)
82#define HASH_FLAGS_HMAC_FINAL BIT(6)
83#define HASH_FLAGS_HMAC_KEY BIT(7)
84
85#define HASH_FLAGS_FINAL BIT(15)
86#define HASH_FLAGS_FINUP BIT(16)
87#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
88#define HASH_FLAGS_MD5 BIT(18)
89#define HASH_FLAGS_SHA1 BIT(19)
90#define HASH_FLAGS_SHA224 BIT(20)
91#define HASH_FLAGS_SHA256 BIT(21)
92#define HASH_FLAGS_ERRORS BIT(22)
93#define HASH_FLAGS_HMAC BIT(23)
94
95#define HASH_OP_UPDATE 1
96#define HASH_OP_FINAL 2
97
98enum stm32_hash_data_format {
99 HASH_DATA_32_BITS = 0x0,
100 HASH_DATA_16_BITS = 0x1,
101 HASH_DATA_8_BITS = 0x2,
102 HASH_DATA_1_BIT = 0x3
103};
104
105#define HASH_BUFLEN 256
106#define HASH_LONG_KEY 64
107#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
108#define HASH_QUEUE_LENGTH 16
109#define HASH_DMA_THRESHOLD 50
110
111#define HASH_AUTOSUSPEND_DELAY 50
112
113struct stm32_hash_ctx {
114 struct crypto_engine_ctx enginectx;
115 struct stm32_hash_dev *hdev;
116 unsigned long flags;
117
118 u8 key[HASH_MAX_KEY_SIZE];
119 int keylen;
120};
121
122struct stm32_hash_request_ctx {
123 struct stm32_hash_dev *hdev;
124 unsigned long flags;
125 unsigned long op;
126
127 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
128 size_t digcnt;
129 size_t bufcnt;
130 size_t buflen;
131
132 /* DMA */
133 struct scatterlist *sg;
134 unsigned int offset;
135 unsigned int total;
136 struct scatterlist sg_key;
137
138 dma_addr_t dma_addr;
139 size_t dma_ct;
140 int nents;
141
142 u8 data_type;
143
144 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
145
146 /* Export Context */
147 u32 *hw_context;
148};
149
150struct stm32_hash_algs_info {
151 struct ahash_alg *algs_list;
152 size_t size;
153};
154
155struct stm32_hash_pdata {
156 struct stm32_hash_algs_info *algs_info;
157 size_t algs_info_size;
158};
159
160struct stm32_hash_dev {
161 struct list_head list;
162 struct device *dev;
163 struct clk *clk;
164 struct reset_control *rst;
165 void __iomem *io_base;
166 phys_addr_t phys_base;
167 u32 dma_mode;
168 u32 dma_maxburst;
169
170 struct ahash_request *req;
171 struct crypto_engine *engine;
172
173 int err;
174 unsigned long flags;
175
176 struct dma_chan *dma_lch;
177 struct completion dma_completion;
178
179 const struct stm32_hash_pdata *pdata;
180};
181
182struct stm32_hash_drv {
183 struct list_head dev_list;
184 spinlock_t lock; /* List protection access */
185};
186
187static struct stm32_hash_drv stm32_hash = {
188 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
189 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
190};
191
192static void stm32_hash_dma_callback(void *param);
193
194static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
195{
196 return readl_relaxed(hdev->io_base + offset);
197}
198
199static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
200 u32 offset, u32 value)
201{
202 writel_relaxed(value, hdev->io_base + offset);
203}
204
205static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
206{
207 u32 status;
208
209 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
210 !(status & HASH_SR_BUSY), 10, 10000);
211}
212
213static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
214{
215 u32 reg;
216
217 reg = stm32_hash_read(hdev, HASH_STR);
218 reg &= ~(HASH_STR_NBLW_MASK);
219 reg |= (8U * ((length) % 4U));
220 stm32_hash_write(hdev, HASH_STR, reg);
221}
222
223static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
224{
225 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
226 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
227 u32 reg;
228 int keylen = ctx->keylen;
229 void *key = ctx->key;
230
231 if (keylen) {
232 stm32_hash_set_nblw(hdev, keylen);
233
234 while (keylen > 0) {
235 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
236 keylen -= 4;
237 key += 4;
238 }
239
240 reg = stm32_hash_read(hdev, HASH_STR);
241 reg |= HASH_STR_DCAL;
242 stm32_hash_write(hdev, HASH_STR, reg);
243
244 return -EINPROGRESS;
245 }
246
247 return 0;
248}
249
250static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
251{
252 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
253 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
254 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
255
256 u32 reg = HASH_CR_INIT;
257
258 if (!(hdev->flags & HASH_FLAGS_INIT)) {
259 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
260 case HASH_FLAGS_MD5:
261 reg |= HASH_CR_ALGO_MD5;
262 break;
263 case HASH_FLAGS_SHA1:
264 reg |= HASH_CR_ALGO_SHA1;
265 break;
266 case HASH_FLAGS_SHA224:
267 reg |= HASH_CR_ALGO_SHA224;
268 break;
269 case HASH_FLAGS_SHA256:
270 reg |= HASH_CR_ALGO_SHA256;
271 break;
272 default:
273 reg |= HASH_CR_ALGO_MD5;
274 }
275
276 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
277
278 if (rctx->flags & HASH_FLAGS_HMAC) {
279 hdev->flags |= HASH_FLAGS_HMAC;
280 reg |= HASH_CR_MODE;
281 if (ctx->keylen > HASH_LONG_KEY)
282 reg |= HASH_CR_LKEY;
283 }
284
285 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
286
287 stm32_hash_write(hdev, HASH_CR, reg);
288
289 hdev->flags |= HASH_FLAGS_INIT;
290
291 dev_dbg(hdev->dev, "Write Control %x\n", reg);
292 }
293}
294
295static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
296{
297 size_t count;
298
299 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
300 count = min(rctx->sg->length - rctx->offset, rctx->total);
301 count = min(count, rctx->buflen - rctx->bufcnt);
302
303 if (count <= 0) {
304 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
305 rctx->sg = sg_next(rctx->sg);
306 continue;
307 } else {
308 break;
309 }
310 }
311
312 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
313 rctx->offset, count, 0);
314
315 rctx->bufcnt += count;
316 rctx->offset += count;
317 rctx->total -= count;
318
319 if (rctx->offset == rctx->sg->length) {
320 rctx->sg = sg_next(rctx->sg);
321 if (rctx->sg)
322 rctx->offset = 0;
323 else
324 rctx->total = 0;
325 }
326 }
327}
328
329static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
330 const u8 *buf, size_t length, int final)
331{
332 unsigned int count, len32;
333 const u32 *buffer = (const u32 *)buf;
334 u32 reg;
335
336 if (final)
337 hdev->flags |= HASH_FLAGS_FINAL;
338
339 len32 = DIV_ROUND_UP(length, sizeof(u32));
340
341 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
342 __func__, length, final, len32);
343
344 hdev->flags |= HASH_FLAGS_CPU;
345
346 stm32_hash_write_ctrl(hdev);
347
348 if (stm32_hash_wait_busy(hdev))
349 return -ETIMEDOUT;
350
351 if ((hdev->flags & HASH_FLAGS_HMAC) &&
352 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
353 hdev->flags |= HASH_FLAGS_HMAC_KEY;
354 stm32_hash_write_key(hdev);
355 if (stm32_hash_wait_busy(hdev))
356 return -ETIMEDOUT;
357 }
358
359 for (count = 0; count < len32; count++)
360 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
361
362 if (final) {
363 stm32_hash_set_nblw(hdev, length);
364 reg = stm32_hash_read(hdev, HASH_STR);
365 reg |= HASH_STR_DCAL;
366 stm32_hash_write(hdev, HASH_STR, reg);
367 if (hdev->flags & HASH_FLAGS_HMAC) {
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 stm32_hash_write_key(hdev);
371 }
372 return -EINPROGRESS;
373 }
374
375 return 0;
376}
377
378static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
379{
380 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
381 int bufcnt, err = 0, final;
382
383 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
384
385 final = (rctx->flags & HASH_FLAGS_FINUP);
386
387 while ((rctx->total >= rctx->buflen) ||
388 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
389 stm32_hash_append_sg(rctx);
390 bufcnt = rctx->bufcnt;
391 rctx->bufcnt = 0;
392 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
393 }
394
395 stm32_hash_append_sg(rctx);
396
397 if (final) {
398 bufcnt = rctx->bufcnt;
399 rctx->bufcnt = 0;
400 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
401 (rctx->flags & HASH_FLAGS_FINUP));
402 }
403
404 return err;
405}
406
407static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
408 struct scatterlist *sg, int length, int mdma)
409{
410 struct dma_async_tx_descriptor *in_desc;
411 dma_cookie_t cookie;
412 u32 reg;
413 int err;
414
415 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
417 DMA_CTRL_ACK);
418 if (!in_desc) {
419 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
420 return -ENOMEM;
421 }
422
423 reinit_completion(&hdev->dma_completion);
424 in_desc->callback = stm32_hash_dma_callback;
425 in_desc->callback_param = hdev;
426
427 hdev->flags |= HASH_FLAGS_FINAL;
428 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
429
430 reg = stm32_hash_read(hdev, HASH_CR);
431
432 if (mdma)
433 reg |= HASH_CR_MDMAT;
434 else
435 reg &= ~HASH_CR_MDMAT;
436
437 reg |= HASH_CR_DMAE;
438
439 stm32_hash_write(hdev, HASH_CR, reg);
440
441 stm32_hash_set_nblw(hdev, length);
442
443 cookie = dmaengine_submit(in_desc);
444 err = dma_submit_error(cookie);
445 if (err)
446 return -ENOMEM;
447
448 dma_async_issue_pending(hdev->dma_lch);
449
450 if (!wait_for_completion_timeout(&hdev->dma_completion,
451 msecs_to_jiffies(100)))
452 err = -ETIMEDOUT;
453
454 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
455 NULL, NULL) != DMA_COMPLETE)
456 err = -ETIMEDOUT;
457
458 if (err) {
459 dev_err(hdev->dev, "DMA Error %i\n", err);
460 dmaengine_terminate_all(hdev->dma_lch);
461 return err;
462 }
463
464 return -EINPROGRESS;
465}
466
467static void stm32_hash_dma_callback(void *param)
468{
469 struct stm32_hash_dev *hdev = param;
470
471 complete(&hdev->dma_completion);
472
473 hdev->flags |= HASH_FLAGS_DMA_READY;
474}
475
476static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
477{
478 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
480 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 int err;
482
483 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
484 err = stm32_hash_write_key(hdev);
485 if (stm32_hash_wait_busy(hdev))
486 return -ETIMEDOUT;
487 } else {
488 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
489 sg_init_one(&rctx->sg_key, ctx->key,
490 ALIGN(ctx->keylen, sizeof(u32)));
491
492 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
493 DMA_TO_DEVICE);
494 if (rctx->dma_ct == 0) {
495 dev_err(hdev->dev, "dma_map_sg error\n");
496 return -ENOMEM;
497 }
498
499 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
500
501 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
502 }
503
504 return err;
505}
506
507static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
508{
509 struct dma_slave_config dma_conf;
510 int err;
511
512 memset(&dma_conf, 0, sizeof(dma_conf));
513
514 dma_conf.direction = DMA_MEM_TO_DEV;
515 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
516 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
517 dma_conf.src_maxburst = hdev->dma_maxburst;
518 dma_conf.dst_maxburst = hdev->dma_maxburst;
519 dma_conf.device_fc = false;
520
521 hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
522 if (!hdev->dma_lch) {
523 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
524 return -EBUSY;
525 }
526
527 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
528 if (err) {
529 dma_release_channel(hdev->dma_lch);
530 hdev->dma_lch = NULL;
531 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
532 return err;
533 }
534
535 init_completion(&hdev->dma_completion);
536
537 return 0;
538}
539
540static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
541{
542 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
543 struct scatterlist sg[1], *tsg;
544 int err = 0, len = 0, reg, ncp = 0;
545 unsigned int i;
546 u32 *buffer = (void *)rctx->buffer;
547
548 rctx->sg = hdev->req->src;
549 rctx->total = hdev->req->nbytes;
550
551 rctx->nents = sg_nents(rctx->sg);
552
553 if (rctx->nents < 0)
554 return -EINVAL;
555
556 stm32_hash_write_ctrl(hdev);
557
558 if (hdev->flags & HASH_FLAGS_HMAC) {
559 err = stm32_hash_hmac_dma_send(hdev);
560 if (err != -EINPROGRESS)
561 return err;
562 }
563
564 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
565 len = sg->length;
566
567 sg[0] = *tsg;
568 if (sg_is_last(sg)) {
569 if (hdev->dma_mode == 1) {
570 len = (ALIGN(sg->length, 16) - 16);
571
572 ncp = sg_pcopy_to_buffer(
573 rctx->sg, rctx->nents,
574 rctx->buffer, sg->length - len,
575 rctx->total - sg->length + len);
576
577 sg->length = len;
578 } else {
579 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
580 len = sg->length;
581 sg->length = ALIGN(sg->length,
582 sizeof(u32));
583 }
584 }
585 }
586
587 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
588 DMA_TO_DEVICE);
589 if (rctx->dma_ct == 0) {
590 dev_err(hdev->dev, "dma_map_sg error\n");
591 return -ENOMEM;
592 }
593
594 err = stm32_hash_xmit_dma(hdev, sg, len,
595 !sg_is_last(sg));
596
597 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
598
599 if (err == -ENOMEM)
600 return err;
601 }
602
603 if (hdev->dma_mode == 1) {
604 if (stm32_hash_wait_busy(hdev))
605 return -ETIMEDOUT;
606 reg = stm32_hash_read(hdev, HASH_CR);
607 reg &= ~HASH_CR_DMAE;
608 reg |= HASH_CR_DMAA;
609 stm32_hash_write(hdev, HASH_CR, reg);
610
611 if (ncp) {
612 memset(buffer + ncp, 0,
613 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
614 writesl(hdev->io_base + HASH_DIN, buffer,
615 DIV_ROUND_UP(ncp, sizeof(u32)));
616 }
617 stm32_hash_set_nblw(hdev, ncp);
618 reg = stm32_hash_read(hdev, HASH_STR);
619 reg |= HASH_STR_DCAL;
620 stm32_hash_write(hdev, HASH_STR, reg);
621 err = -EINPROGRESS;
622 }
623
624 if (hdev->flags & HASH_FLAGS_HMAC) {
625 if (stm32_hash_wait_busy(hdev))
626 return -ETIMEDOUT;
627 err = stm32_hash_hmac_dma_send(hdev);
628 }
629
630 return err;
631}
632
633static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
634{
635 struct stm32_hash_dev *hdev = NULL, *tmp;
636
637 spin_lock_bh(&stm32_hash.lock);
638 if (!ctx->hdev) {
639 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
640 hdev = tmp;
641 break;
642 }
643 ctx->hdev = hdev;
644 } else {
645 hdev = ctx->hdev;
646 }
647
648 spin_unlock_bh(&stm32_hash.lock);
649
650 return hdev;
651}
652
653static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
654{
655 struct scatterlist *sg;
656 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
657 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
658 int i;
659
660 if (req->nbytes <= HASH_DMA_THRESHOLD)
661 return false;
662
663 if (sg_nents(req->src) > 1) {
664 if (hdev->dma_mode == 1)
665 return false;
666 for_each_sg(req->src, sg, sg_nents(req->src), i) {
667 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
668 (!sg_is_last(sg)))
669 return false;
670 }
671 }
672
673 if (req->src->offset % 4)
674 return false;
675
676 return true;
677}
678
679static int stm32_hash_init(struct ahash_request *req)
680{
681 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
682 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
683 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
684 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
685
686 rctx->hdev = hdev;
687
688 rctx->flags = HASH_FLAGS_CPU;
689
690 rctx->digcnt = crypto_ahash_digestsize(tfm);
691 switch (rctx->digcnt) {
692 case MD5_DIGEST_SIZE:
693 rctx->flags |= HASH_FLAGS_MD5;
694 break;
695 case SHA1_DIGEST_SIZE:
696 rctx->flags |= HASH_FLAGS_SHA1;
697 break;
698 case SHA224_DIGEST_SIZE:
699 rctx->flags |= HASH_FLAGS_SHA224;
700 break;
701 case SHA256_DIGEST_SIZE:
702 rctx->flags |= HASH_FLAGS_SHA256;
703 break;
704 default:
705 return -EINVAL;
706 }
707
708 rctx->bufcnt = 0;
709 rctx->buflen = HASH_BUFLEN;
710 rctx->total = 0;
711 rctx->offset = 0;
712 rctx->data_type = HASH_DATA_8_BITS;
713
714 memset(rctx->buffer, 0, HASH_BUFLEN);
715
716 if (ctx->flags & HASH_FLAGS_HMAC)
717 rctx->flags |= HASH_FLAGS_HMAC;
718
719 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
720
721 return 0;
722}
723
724static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
725{
726 return stm32_hash_update_cpu(hdev);
727}
728
729static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
730{
731 struct ahash_request *req = hdev->req;
732 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
733 int err;
734 int buflen = rctx->bufcnt;
735
736 rctx->bufcnt = 0;
737
738 if (!(rctx->flags & HASH_FLAGS_CPU))
739 err = stm32_hash_dma_send(hdev);
740 else
741 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
742
743
744 return err;
745}
746
747static void stm32_hash_copy_hash(struct ahash_request *req)
748{
749 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
750 u32 *hash = (u32 *)rctx->digest;
751 unsigned int i, hashsize;
752
753 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
754 case HASH_FLAGS_MD5:
755 hashsize = MD5_DIGEST_SIZE;
756 break;
757 case HASH_FLAGS_SHA1:
758 hashsize = SHA1_DIGEST_SIZE;
759 break;
760 case HASH_FLAGS_SHA224:
761 hashsize = SHA224_DIGEST_SIZE;
762 break;
763 case HASH_FLAGS_SHA256:
764 hashsize = SHA256_DIGEST_SIZE;
765 break;
766 default:
767 return;
768 }
769
770 for (i = 0; i < hashsize / sizeof(u32); i++)
771 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
772 HASH_HREG(i)));
773}
774
775static int stm32_hash_finish(struct ahash_request *req)
776{
777 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
778
779 if (!req->result)
780 return -EINVAL;
781
782 memcpy(req->result, rctx->digest, rctx->digcnt);
783
784 return 0;
785}
786
787static void stm32_hash_finish_req(struct ahash_request *req, int err)
788{
789 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
790 struct stm32_hash_dev *hdev = rctx->hdev;
791
792 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
793 stm32_hash_copy_hash(req);
794 err = stm32_hash_finish(req);
795 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
796 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
797 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
798 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
799 HASH_FLAGS_HMAC_KEY);
800 } else {
801 rctx->flags |= HASH_FLAGS_ERRORS;
802 }
803
804 pm_runtime_mark_last_busy(hdev->dev);
805 pm_runtime_put_autosuspend(hdev->dev);
806
807 crypto_finalize_hash_request(hdev->engine, req, err);
808}
809
810static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
811 struct stm32_hash_request_ctx *rctx)
812{
813 pm_runtime_get_sync(hdev->dev);
814
815 if (!(HASH_FLAGS_INIT & hdev->flags)) {
816 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
817 stm32_hash_write(hdev, HASH_STR, 0);
818 stm32_hash_write(hdev, HASH_DIN, 0);
819 stm32_hash_write(hdev, HASH_IMR, 0);
820 hdev->err = 0;
821 }
822
823 return 0;
824}
825
826static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
827static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
828
829static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
830 struct ahash_request *req)
831{
832 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
833}
834
835static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
836{
837 struct ahash_request *req = container_of(areq, struct ahash_request,
838 base);
839 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
840 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
841 struct stm32_hash_request_ctx *rctx;
842
843 if (!hdev)
844 return -ENODEV;
845
846 hdev->req = req;
847
848 rctx = ahash_request_ctx(req);
849
850 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
851 rctx->op, req->nbytes);
852
853 return stm32_hash_hw_init(hdev, rctx);
854}
855
856static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
857{
858 struct ahash_request *req = container_of(areq, struct ahash_request,
859 base);
860 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
861 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
862 struct stm32_hash_request_ctx *rctx;
863 int err = 0;
864
865 if (!hdev)
866 return -ENODEV;
867
868 hdev->req = req;
869
870 rctx = ahash_request_ctx(req);
871
872 if (rctx->op == HASH_OP_UPDATE)
873 err = stm32_hash_update_req(hdev);
874 else if (rctx->op == HASH_OP_FINAL)
875 err = stm32_hash_final_req(hdev);
876
877 if (err != -EINPROGRESS)
878 /* done task will not finish it, so do it here */
879 stm32_hash_finish_req(req, err);
880
881 return 0;
882}
883
884static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
885{
886 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
888 struct stm32_hash_dev *hdev = ctx->hdev;
889
890 rctx->op = op;
891
892 return stm32_hash_handle_queue(hdev, req);
893}
894
895static int stm32_hash_update(struct ahash_request *req)
896{
897 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
898
899 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
900 return 0;
901
902 rctx->total = req->nbytes;
903 rctx->sg = req->src;
904 rctx->offset = 0;
905
906 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
907 stm32_hash_append_sg(rctx);
908 return 0;
909 }
910
911 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
912}
913
914static int stm32_hash_final(struct ahash_request *req)
915{
916 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
917
918 rctx->flags |= HASH_FLAGS_FINUP;
919
920 return stm32_hash_enqueue(req, HASH_OP_FINAL);
921}
922
923static int stm32_hash_finup(struct ahash_request *req)
924{
925 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
926 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
927 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
928 int err1, err2;
929
930 rctx->flags |= HASH_FLAGS_FINUP;
931
932 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
933 rctx->flags &= ~HASH_FLAGS_CPU;
934
935 err1 = stm32_hash_update(req);
936
937 if (err1 == -EINPROGRESS || err1 == -EBUSY)
938 return err1;
939
940 /*
941 * final() has to be always called to cleanup resources
942 * even if update() failed, except EINPROGRESS
943 */
944 err2 = stm32_hash_final(req);
945
946 return err1 ?: err2;
947}
948
949static int stm32_hash_digest(struct ahash_request *req)
950{
951 return stm32_hash_init(req) ?: stm32_hash_finup(req);
952}
953
954static int stm32_hash_export(struct ahash_request *req, void *out)
955{
956 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
957 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
958 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
959 u32 *preg;
960 unsigned int i;
961
962 pm_runtime_get_sync(hdev->dev);
963
964 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
965 cpu_relax();
966
967 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
968 sizeof(u32),
969 GFP_KERNEL);
970
971 preg = rctx->hw_context;
972
973 *preg++ = stm32_hash_read(hdev, HASH_IMR);
974 *preg++ = stm32_hash_read(hdev, HASH_STR);
975 *preg++ = stm32_hash_read(hdev, HASH_CR);
976 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
977 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
978
979 pm_runtime_mark_last_busy(hdev->dev);
980 pm_runtime_put_autosuspend(hdev->dev);
981
982 memcpy(out, rctx, sizeof(*rctx));
983
984 return 0;
985}
986
987static int stm32_hash_import(struct ahash_request *req, const void *in)
988{
989 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
990 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
991 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
992 const u32 *preg = in;
993 u32 reg;
994 unsigned int i;
995
996 memcpy(rctx, in, sizeof(*rctx));
997
998 preg = rctx->hw_context;
999
1000 pm_runtime_get_sync(hdev->dev);
1001
1002 stm32_hash_write(hdev, HASH_IMR, *preg++);
1003 stm32_hash_write(hdev, HASH_STR, *preg++);
1004 stm32_hash_write(hdev, HASH_CR, *preg);
1005 reg = *preg++ | HASH_CR_INIT;
1006 stm32_hash_write(hdev, HASH_CR, reg);
1007
1008 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1009 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1010
1011 pm_runtime_mark_last_busy(hdev->dev);
1012 pm_runtime_put_autosuspend(hdev->dev);
1013
1014 kfree(rctx->hw_context);
1015
1016 return 0;
1017}
1018
1019static int stm32_hash_setkey(struct crypto_ahash *tfm,
1020 const u8 *key, unsigned int keylen)
1021{
1022 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1023
1024 if (keylen <= HASH_MAX_KEY_SIZE) {
1025 memcpy(ctx->key, key, keylen);
1026 ctx->keylen = keylen;
1027 } else {
1028 return -ENOMEM;
1029 }
1030
1031 return 0;
1032}
1033
1034static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1035 const char *algs_hmac_name)
1036{
1037 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1038
1039 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1040 sizeof(struct stm32_hash_request_ctx));
1041
1042 ctx->keylen = 0;
1043
1044 if (algs_hmac_name)
1045 ctx->flags |= HASH_FLAGS_HMAC;
1046
1047 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1048 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1049 ctx->enginectx.op.unprepare_request = NULL;
1050 return 0;
1051}
1052
1053static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1054{
1055 return stm32_hash_cra_init_algs(tfm, NULL);
1056}
1057
1058static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1059{
1060 return stm32_hash_cra_init_algs(tfm, "md5");
1061}
1062
1063static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1064{
1065 return stm32_hash_cra_init_algs(tfm, "sha1");
1066}
1067
1068static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1069{
1070 return stm32_hash_cra_init_algs(tfm, "sha224");
1071}
1072
1073static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1074{
1075 return stm32_hash_cra_init_algs(tfm, "sha256");
1076}
1077
1078static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1079{
1080 struct stm32_hash_dev *hdev = dev_id;
1081
1082 if (HASH_FLAGS_CPU & hdev->flags) {
1083 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1084 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1085 goto finish;
1086 }
1087 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1088 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1089 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1090 goto finish;
1091 }
1092 }
1093
1094 return IRQ_HANDLED;
1095
1096finish:
1097 /* Finish current request */
1098 stm32_hash_finish_req(hdev->req, 0);
1099
1100 return IRQ_HANDLED;
1101}
1102
1103static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1104{
1105 struct stm32_hash_dev *hdev = dev_id;
1106 u32 reg;
1107
1108 reg = stm32_hash_read(hdev, HASH_SR);
1109 if (reg & HASH_SR_OUTPUT_READY) {
1110 reg &= ~HASH_SR_OUTPUT_READY;
1111 stm32_hash_write(hdev, HASH_SR, reg);
1112 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1113 /* Disable IT*/
1114 stm32_hash_write(hdev, HASH_IMR, 0);
1115 return IRQ_WAKE_THREAD;
1116 }
1117
1118 return IRQ_NONE;
1119}
1120
1121static struct ahash_alg algs_md5_sha1[] = {
1122 {
1123 .init = stm32_hash_init,
1124 .update = stm32_hash_update,
1125 .final = stm32_hash_final,
1126 .finup = stm32_hash_finup,
1127 .digest = stm32_hash_digest,
1128 .export = stm32_hash_export,
1129 .import = stm32_hash_import,
1130 .halg = {
1131 .digestsize = MD5_DIGEST_SIZE,
1132 .statesize = sizeof(struct stm32_hash_request_ctx),
1133 .base = {
1134 .cra_name = "md5",
1135 .cra_driver_name = "stm32-md5",
1136 .cra_priority = 200,
1137 .cra_flags = CRYPTO_ALG_ASYNC |
1138 CRYPTO_ALG_KERN_DRIVER_ONLY,
1139 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1140 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1141 .cra_alignmask = 3,
1142 .cra_init = stm32_hash_cra_init,
1143 .cra_module = THIS_MODULE,
1144 }
1145 }
1146 },
1147 {
1148 .init = stm32_hash_init,
1149 .update = stm32_hash_update,
1150 .final = stm32_hash_final,
1151 .finup = stm32_hash_finup,
1152 .digest = stm32_hash_digest,
1153 .export = stm32_hash_export,
1154 .import = stm32_hash_import,
1155 .setkey = stm32_hash_setkey,
1156 .halg = {
1157 .digestsize = MD5_DIGEST_SIZE,
1158 .statesize = sizeof(struct stm32_hash_request_ctx),
1159 .base = {
1160 .cra_name = "hmac(md5)",
1161 .cra_driver_name = "stm32-hmac-md5",
1162 .cra_priority = 200,
1163 .cra_flags = CRYPTO_ALG_ASYNC |
1164 CRYPTO_ALG_KERN_DRIVER_ONLY,
1165 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1166 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1167 .cra_alignmask = 3,
1168 .cra_init = stm32_hash_cra_md5_init,
1169 .cra_module = THIS_MODULE,
1170 }
1171 }
1172 },
1173 {
1174 .init = stm32_hash_init,
1175 .update = stm32_hash_update,
1176 .final = stm32_hash_final,
1177 .finup = stm32_hash_finup,
1178 .digest = stm32_hash_digest,
1179 .export = stm32_hash_export,
1180 .import = stm32_hash_import,
1181 .halg = {
1182 .digestsize = SHA1_DIGEST_SIZE,
1183 .statesize = sizeof(struct stm32_hash_request_ctx),
1184 .base = {
1185 .cra_name = "sha1",
1186 .cra_driver_name = "stm32-sha1",
1187 .cra_priority = 200,
1188 .cra_flags = CRYPTO_ALG_ASYNC |
1189 CRYPTO_ALG_KERN_DRIVER_ONLY,
1190 .cra_blocksize = SHA1_BLOCK_SIZE,
1191 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1192 .cra_alignmask = 3,
1193 .cra_init = stm32_hash_cra_init,
1194 .cra_module = THIS_MODULE,
1195 }
1196 }
1197 },
1198 {
1199 .init = stm32_hash_init,
1200 .update = stm32_hash_update,
1201 .final = stm32_hash_final,
1202 .finup = stm32_hash_finup,
1203 .digest = stm32_hash_digest,
1204 .export = stm32_hash_export,
1205 .import = stm32_hash_import,
1206 .setkey = stm32_hash_setkey,
1207 .halg = {
1208 .digestsize = SHA1_DIGEST_SIZE,
1209 .statesize = sizeof(struct stm32_hash_request_ctx),
1210 .base = {
1211 .cra_name = "hmac(sha1)",
1212 .cra_driver_name = "stm32-hmac-sha1",
1213 .cra_priority = 200,
1214 .cra_flags = CRYPTO_ALG_ASYNC |
1215 CRYPTO_ALG_KERN_DRIVER_ONLY,
1216 .cra_blocksize = SHA1_BLOCK_SIZE,
1217 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1218 .cra_alignmask = 3,
1219 .cra_init = stm32_hash_cra_sha1_init,
1220 .cra_module = THIS_MODULE,
1221 }
1222 }
1223 },
1224};
1225
1226static struct ahash_alg algs_sha224_sha256[] = {
1227 {
1228 .init = stm32_hash_init,
1229 .update = stm32_hash_update,
1230 .final = stm32_hash_final,
1231 .finup = stm32_hash_finup,
1232 .digest = stm32_hash_digest,
1233 .export = stm32_hash_export,
1234 .import = stm32_hash_import,
1235 .halg = {
1236 .digestsize = SHA224_DIGEST_SIZE,
1237 .statesize = sizeof(struct stm32_hash_request_ctx),
1238 .base = {
1239 .cra_name = "sha224",
1240 .cra_driver_name = "stm32-sha224",
1241 .cra_priority = 200,
1242 .cra_flags = CRYPTO_ALG_ASYNC |
1243 CRYPTO_ALG_KERN_DRIVER_ONLY,
1244 .cra_blocksize = SHA224_BLOCK_SIZE,
1245 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1246 .cra_alignmask = 3,
1247 .cra_init = stm32_hash_cra_init,
1248 .cra_module = THIS_MODULE,
1249 }
1250 }
1251 },
1252 {
1253 .init = stm32_hash_init,
1254 .update = stm32_hash_update,
1255 .final = stm32_hash_final,
1256 .finup = stm32_hash_finup,
1257 .digest = stm32_hash_digest,
1258 .setkey = stm32_hash_setkey,
1259 .export = stm32_hash_export,
1260 .import = stm32_hash_import,
1261 .halg = {
1262 .digestsize = SHA224_DIGEST_SIZE,
1263 .statesize = sizeof(struct stm32_hash_request_ctx),
1264 .base = {
1265 .cra_name = "hmac(sha224)",
1266 .cra_driver_name = "stm32-hmac-sha224",
1267 .cra_priority = 200,
1268 .cra_flags = CRYPTO_ALG_ASYNC |
1269 CRYPTO_ALG_KERN_DRIVER_ONLY,
1270 .cra_blocksize = SHA224_BLOCK_SIZE,
1271 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1272 .cra_alignmask = 3,
1273 .cra_init = stm32_hash_cra_sha224_init,
1274 .cra_module = THIS_MODULE,
1275 }
1276 }
1277 },
1278 {
1279 .init = stm32_hash_init,
1280 .update = stm32_hash_update,
1281 .final = stm32_hash_final,
1282 .finup = stm32_hash_finup,
1283 .digest = stm32_hash_digest,
1284 .export = stm32_hash_export,
1285 .import = stm32_hash_import,
1286 .halg = {
1287 .digestsize = SHA256_DIGEST_SIZE,
1288 .statesize = sizeof(struct stm32_hash_request_ctx),
1289 .base = {
1290 .cra_name = "sha256",
1291 .cra_driver_name = "stm32-sha256",
1292 .cra_priority = 200,
1293 .cra_flags = CRYPTO_ALG_ASYNC |
1294 CRYPTO_ALG_KERN_DRIVER_ONLY,
1295 .cra_blocksize = SHA256_BLOCK_SIZE,
1296 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1297 .cra_alignmask = 3,
1298 .cra_init = stm32_hash_cra_init,
1299 .cra_module = THIS_MODULE,
1300 }
1301 }
1302 },
1303 {
1304 .init = stm32_hash_init,
1305 .update = stm32_hash_update,
1306 .final = stm32_hash_final,
1307 .finup = stm32_hash_finup,
1308 .digest = stm32_hash_digest,
1309 .export = stm32_hash_export,
1310 .import = stm32_hash_import,
1311 .setkey = stm32_hash_setkey,
1312 .halg = {
1313 .digestsize = SHA256_DIGEST_SIZE,
1314 .statesize = sizeof(struct stm32_hash_request_ctx),
1315 .base = {
1316 .cra_name = "hmac(sha256)",
1317 .cra_driver_name = "stm32-hmac-sha256",
1318 .cra_priority = 200,
1319 .cra_flags = CRYPTO_ALG_ASYNC |
1320 CRYPTO_ALG_KERN_DRIVER_ONLY,
1321 .cra_blocksize = SHA256_BLOCK_SIZE,
1322 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1323 .cra_alignmask = 3,
1324 .cra_init = stm32_hash_cra_sha256_init,
1325 .cra_module = THIS_MODULE,
1326 }
1327 }
1328 },
1329};
1330
1331static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1332{
1333 unsigned int i, j;
1334 int err;
1335
1336 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1337 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1338 err = crypto_register_ahash(
1339 &hdev->pdata->algs_info[i].algs_list[j]);
1340 if (err)
1341 goto err_algs;
1342 }
1343 }
1344
1345 return 0;
1346err_algs:
1347 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1348 for (; i--; ) {
1349 for (; j--;)
1350 crypto_unregister_ahash(
1351 &hdev->pdata->algs_info[i].algs_list[j]);
1352 }
1353
1354 return err;
1355}
1356
1357static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1358{
1359 unsigned int i, j;
1360
1361 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1362 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1363 crypto_unregister_ahash(
1364 &hdev->pdata->algs_info[i].algs_list[j]);
1365 }
1366
1367 return 0;
1368}
1369
1370static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1371 {
1372 .algs_list = algs_md5_sha1,
1373 .size = ARRAY_SIZE(algs_md5_sha1),
1374 },
1375};
1376
1377static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1378 .algs_info = stm32_hash_algs_info_stm32f4,
1379 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1380};
1381
1382static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1383 {
1384 .algs_list = algs_md5_sha1,
1385 .size = ARRAY_SIZE(algs_md5_sha1),
1386 },
1387 {
1388 .algs_list = algs_sha224_sha256,
1389 .size = ARRAY_SIZE(algs_sha224_sha256),
1390 },
1391};
1392
1393static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1394 .algs_info = stm32_hash_algs_info_stm32f7,
1395 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1396};
1397
1398static const struct of_device_id stm32_hash_of_match[] = {
1399 {
1400 .compatible = "st,stm32f456-hash",
1401 .data = &stm32_hash_pdata_stm32f4,
1402 },
1403 {
1404 .compatible = "st,stm32f756-hash",
1405 .data = &stm32_hash_pdata_stm32f7,
1406 },
1407 {},
1408};
1409
1410MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1411
1412static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1413 struct device *dev)
1414{
1415 hdev->pdata = of_device_get_match_data(dev);
1416 if (!hdev->pdata) {
1417 dev_err(dev, "no compatible OF match\n");
1418 return -EINVAL;
1419 }
1420
1421 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1422 &hdev->dma_maxburst)) {
1423 dev_info(dev, "dma-maxburst not specified, using 0\n");
1424 hdev->dma_maxburst = 0;
1425 }
1426
1427 return 0;
1428}
1429
1430static int stm32_hash_probe(struct platform_device *pdev)
1431{
1432 struct stm32_hash_dev *hdev;
1433 struct device *dev = &pdev->dev;
1434 struct resource *res;
1435 int ret, irq;
1436
1437 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1438 if (!hdev)
1439 return -ENOMEM;
1440
1441 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1442 hdev->io_base = devm_ioremap_resource(dev, res);
1443 if (IS_ERR(hdev->io_base))
1444 return PTR_ERR(hdev->io_base);
1445
1446 hdev->phys_base = res->start;
1447
1448 ret = stm32_hash_get_of_match(hdev, dev);
1449 if (ret)
1450 return ret;
1451
1452 irq = platform_get_irq(pdev, 0);
1453 if (irq < 0)
1454 return irq;
1455
1456 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1457 stm32_hash_irq_thread, IRQF_ONESHOT,
1458 dev_name(dev), hdev);
1459 if (ret) {
1460 dev_err(dev, "Cannot grab IRQ\n");
1461 return ret;
1462 }
1463
1464 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1465 if (IS_ERR(hdev->clk)) {
1466 dev_err(dev, "failed to get clock for hash (%lu)\n",
1467 PTR_ERR(hdev->clk));
1468 return PTR_ERR(hdev->clk);
1469 }
1470
1471 ret = clk_prepare_enable(hdev->clk);
1472 if (ret) {
1473 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1474 return ret;
1475 }
1476
1477 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1478 pm_runtime_use_autosuspend(dev);
1479
1480 pm_runtime_get_noresume(dev);
1481 pm_runtime_set_active(dev);
1482 pm_runtime_enable(dev);
1483
1484 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1485 if (!IS_ERR(hdev->rst)) {
1486 reset_control_assert(hdev->rst);
1487 udelay(2);
1488 reset_control_deassert(hdev->rst);
1489 }
1490
1491 hdev->dev = dev;
1492
1493 platform_set_drvdata(pdev, hdev);
1494
1495 ret = stm32_hash_dma_init(hdev);
1496 if (ret)
1497 dev_dbg(dev, "DMA mode not available\n");
1498
1499 spin_lock(&stm32_hash.lock);
1500 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1501 spin_unlock(&stm32_hash.lock);
1502
1503 /* Initialize crypto engine */
1504 hdev->engine = crypto_engine_alloc_init(dev, 1);
1505 if (!hdev->engine) {
1506 ret = -ENOMEM;
1507 goto err_engine;
1508 }
1509
1510 ret = crypto_engine_start(hdev->engine);
1511 if (ret)
1512 goto err_engine_start;
1513
1514 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1515
1516 /* Register algos */
1517 ret = stm32_hash_register_algs(hdev);
1518 if (ret)
1519 goto err_algs;
1520
1521 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1522 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1523
1524 pm_runtime_put_sync(dev);
1525
1526 return 0;
1527
1528err_algs:
1529err_engine_start:
1530 crypto_engine_exit(hdev->engine);
1531err_engine:
1532 spin_lock(&stm32_hash.lock);
1533 list_del(&hdev->list);
1534 spin_unlock(&stm32_hash.lock);
1535
1536 if (hdev->dma_lch)
1537 dma_release_channel(hdev->dma_lch);
1538
1539 pm_runtime_disable(dev);
1540 pm_runtime_put_noidle(dev);
1541
1542 clk_disable_unprepare(hdev->clk);
1543
1544 return ret;
1545}
1546
1547static int stm32_hash_remove(struct platform_device *pdev)
1548{
1549 struct stm32_hash_dev *hdev;
1550 int ret;
1551
1552 hdev = platform_get_drvdata(pdev);
1553 if (!hdev)
1554 return -ENODEV;
1555
1556 ret = pm_runtime_get_sync(hdev->dev);
1557 if (ret < 0)
1558 return ret;
1559
1560 stm32_hash_unregister_algs(hdev);
1561
1562 crypto_engine_exit(hdev->engine);
1563
1564 spin_lock(&stm32_hash.lock);
1565 list_del(&hdev->list);
1566 spin_unlock(&stm32_hash.lock);
1567
1568 if (hdev->dma_lch)
1569 dma_release_channel(hdev->dma_lch);
1570
1571 pm_runtime_disable(hdev->dev);
1572 pm_runtime_put_noidle(hdev->dev);
1573
1574 clk_disable_unprepare(hdev->clk);
1575
1576 return 0;
1577}
1578
1579#ifdef CONFIG_PM
1580static int stm32_hash_runtime_suspend(struct device *dev)
1581{
1582 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1583
1584 clk_disable_unprepare(hdev->clk);
1585
1586 return 0;
1587}
1588
1589static int stm32_hash_runtime_resume(struct device *dev)
1590{
1591 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1592 int ret;
1593
1594 ret = clk_prepare_enable(hdev->clk);
1595 if (ret) {
1596 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1597 return ret;
1598 }
1599
1600 return 0;
1601}
1602#endif
1603
1604static const struct dev_pm_ops stm32_hash_pm_ops = {
1605 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1606 pm_runtime_force_resume)
1607 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1608 stm32_hash_runtime_resume, NULL)
1609};
1610
1611static struct platform_driver stm32_hash_driver = {
1612 .probe = stm32_hash_probe,
1613 .remove = stm32_hash_remove,
1614 .driver = {
1615 .name = "stm32-hash",
1616 .pm = &stm32_hash_pm_ops,
1617 .of_match_table = stm32_hash_of_match,
1618 }
1619};
1620
1621module_platform_driver(stm32_hash_driver);
1622
1623MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1624MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1625MODULE_LICENSE("GPL v2");