Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file contains driver for the Cadence Triple Timer Counter Rev 06
  4 *
  5 *  Copyright (C) 2011-2013 Xilinx
  6 *
  7 * based on arch/mips/kernel/time.c timer driver
  8 */
  9
 10#include <linux/clk.h>
 11#include <linux/interrupt.h>
 12#include <linux/clockchips.h>
 13#include <linux/clocksource.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 16#include <linux/platform_device.h>
 17#include <linux/slab.h>
 18#include <linux/sched_clock.h>
 19#include <linux/module.h>
 20#include <linux/of_platform.h>
 21
 22/*
 23 * This driver configures the 2 16/32-bit count-up timers as follows:
 24 *
 25 * T1: Timer 1, clocksource for generic timekeeping
 26 * T2: Timer 2, clockevent source for hrtimers
 27 * T3: Timer 3, <unused>
 28 *
 29 * The input frequency to the timer module for emulation is 2.5MHz which is
 30 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
 31 * the timers are clocked at 78.125KHz (12.8 us resolution).
 32
 33 * The input frequency to the timer module in silicon is configurable and
 34 * obtained from device tree. The pre-scaler of 32 is used.
 35 */
 36
 37/*
 38 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
 39 * and use same offsets for Timer 2
 40 */
 41#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
 42#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
 43#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
 44#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
 45#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
 46#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
 47
 48#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
 49
 50#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
 51#define TTC_CLK_CNTRL_PSV_MASK		0x1e
 52#define TTC_CLK_CNTRL_PSV_SHIFT		1
 53
 54/*
 55 * Setup the timers to use pre-scaling, using a fixed value for now that will
 56 * work across most input frequency, but it may need to be more dynamic
 57 */
 58#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
 59#define PRESCALE		2048	/* The exponent must match this */
 60#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
 61#define CLK_CNTRL_PRESCALE_EN	1
 62#define CNT_CNTRL_RESET		(1 << 4)
 63
 64#define MAX_F_ERR 50
 65
 66/**
 67 * struct ttc_timer - This definition defines local timer structure
 68 *
 69 * @base_addr:	Base address of timer
 70 * @freq:	Timer input clock frequency
 71 * @clk:	Associated clock source
 72 * @clk_rate_change_nb:	Notifier block for clock rate changes
 73 */
 74struct ttc_timer {
 75	void __iomem *base_addr;
 76	unsigned long freq;
 77	struct clk *clk;
 78	struct notifier_block clk_rate_change_nb;
 79};
 80
 81#define to_ttc_timer(x) \
 82		container_of(x, struct ttc_timer, clk_rate_change_nb)
 83
 84struct ttc_timer_clocksource {
 85	u32			scale_clk_ctrl_reg_old;
 86	u32			scale_clk_ctrl_reg_new;
 87	struct ttc_timer	ttc;
 88	struct clocksource	cs;
 89};
 90
 91#define to_ttc_timer_clksrc(x) \
 92		container_of(x, struct ttc_timer_clocksource, cs)
 93
 94struct ttc_timer_clockevent {
 95	struct ttc_timer		ttc;
 96	struct clock_event_device	ce;
 97};
 98
 99#define to_ttc_timer_clkevent(x) \
100		container_of(x, struct ttc_timer_clockevent, ce)
101
102static void __iomem *ttc_sched_clock_val_reg;
103
104/**
105 * ttc_set_interval - Set the timer interval value
106 *
107 * @timer:	Pointer to the timer instance
108 * @cycles:	Timer interval ticks
109 **/
110static void ttc_set_interval(struct ttc_timer *timer,
111					unsigned long cycles)
112{
113	u32 ctrl_reg;
114
115	/* Disable the counter, set the counter value  and re-enable counter */
116	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
117	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
118	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
119
120	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
121
122	/*
123	 * Reset the counter (0x10) so that it starts from 0, one-shot
124	 * mode makes this needed for timing to be right.
125	 */
126	ctrl_reg |= CNT_CNTRL_RESET;
127	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
128	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
129}
130
131/**
132 * ttc_clock_event_interrupt - Clock event timer interrupt handler
133 *
134 * @irq:	IRQ number of the Timer
135 * @dev_id:	void pointer to the ttc_timer instance
136 *
137 * Returns: Always IRQ_HANDLED - success
138 **/
139static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
140{
141	struct ttc_timer_clockevent *ttce = dev_id;
142	struct ttc_timer *timer = &ttce->ttc;
143
144	/* Acknowledge the interrupt and call event handler */
145	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
146
147	ttce->ce.event_handler(&ttce->ce);
148
149	return IRQ_HANDLED;
150}
151
152/**
153 * __ttc_clocksource_read - Reads the timer counter register
154 * @cs: &clocksource to read from
155 *
156 * Returns: Current timer counter register value
157 **/
158static u64 __ttc_clocksource_read(struct clocksource *cs)
159{
160	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
161
162	return (u64)readl_relaxed(timer->base_addr +
163				TTC_COUNT_VAL_OFFSET);
164}
165
166static u64 notrace ttc_sched_clock_read(void)
167{
168	return readl_relaxed(ttc_sched_clock_val_reg);
169}
170
171/**
172 * ttc_set_next_event - Sets the time interval for next event
173 *
174 * @cycles:	Timer interval ticks
175 * @evt:	Address of clock event instance
176 *
177 * Returns: Always %0 - success
178 **/
179static int ttc_set_next_event(unsigned long cycles,
180					struct clock_event_device *evt)
181{
182	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
183	struct ttc_timer *timer = &ttce->ttc;
184
185	ttc_set_interval(timer, cycles);
186	return 0;
187}
188
189/**
190 * ttc_shutdown - Sets the state of timer
191 * @evt:	Address of clock event instance
192 *
193 * Used for shutdown or oneshot.
194 *
195 * Returns: Always %0 - success
196 **/
197static int ttc_shutdown(struct clock_event_device *evt)
198{
199	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200	struct ttc_timer *timer = &ttce->ttc;
201	u32 ctrl_reg;
202
203	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206	return 0;
207}
208
209/**
210 * ttc_set_periodic - Sets the state of timer
211 * @evt:	Address of clock event instance
212 *
213 * Returns: Always %0 - success
214 */
215static int ttc_set_periodic(struct clock_event_device *evt)
216{
217	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
218	struct ttc_timer *timer = &ttce->ttc;
219
220	ttc_set_interval(timer,
221			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
222	return 0;
223}
224
225static int ttc_resume(struct clock_event_device *evt)
226{
227	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
228	struct ttc_timer *timer = &ttce->ttc;
229	u32 ctrl_reg;
230
231	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
232	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
233	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
234	return 0;
235}
236
237static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
238		unsigned long event, void *data)
239{
240	struct clk_notifier_data *ndata = data;
241	struct ttc_timer *ttc = to_ttc_timer(nb);
242	struct ttc_timer_clocksource *ttccs = container_of(ttc,
243			struct ttc_timer_clocksource, ttc);
244
245	switch (event) {
246	case PRE_RATE_CHANGE:
247	{
248		u32 psv;
249		unsigned long factor, rate_low, rate_high;
250
251		if (ndata->new_rate > ndata->old_rate) {
252			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
253					ndata->old_rate);
254			rate_low = ndata->old_rate;
255			rate_high = ndata->new_rate;
256		} else {
257			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
258					ndata->new_rate);
259			rate_low = ndata->new_rate;
260			rate_high = ndata->old_rate;
261		}
262
263		if (!is_power_of_2(factor))
264				return NOTIFY_BAD;
265
266		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
267			return NOTIFY_BAD;
268
269		factor = __ilog2_u32(factor);
270
271		/*
272		 * store timer clock ctrl register so we can restore it in case
273		 * of an abort.
274		 */
275		ttccs->scale_clk_ctrl_reg_old =
276			readl_relaxed(ttccs->ttc.base_addr +
277			TTC_CLK_CNTRL_OFFSET);
278
279		psv = (ttccs->scale_clk_ctrl_reg_old &
280				TTC_CLK_CNTRL_PSV_MASK) >>
281				TTC_CLK_CNTRL_PSV_SHIFT;
282		if (ndata->new_rate < ndata->old_rate)
283			psv -= factor;
284		else
285			psv += factor;
286
287		/* prescaler within legal range? */
288		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
289			return NOTIFY_BAD;
290
291		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
292			~TTC_CLK_CNTRL_PSV_MASK;
293		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
294
295
296		/* scale down: adjust divider in post-change notification */
297		if (ndata->new_rate < ndata->old_rate)
298			return NOTIFY_DONE;
299
300		/* scale up: adjust divider now - before frequency change */
301		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
302			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
303		break;
304	}
305	case POST_RATE_CHANGE:
306		/* scale up: pre-change notification did the adjustment */
307		if (ndata->new_rate > ndata->old_rate)
308			return NOTIFY_OK;
309
310		/* scale down: adjust divider now - after frequency change */
311		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
312			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
313		break;
314
315	case ABORT_RATE_CHANGE:
316		/* we have to undo the adjustment in case we scale up */
317		if (ndata->new_rate < ndata->old_rate)
318			return NOTIFY_OK;
319
320		/* restore original register value */
321		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
322			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
323		fallthrough;
324	default:
325		return NOTIFY_DONE;
326	}
327
328	return NOTIFY_DONE;
329}
330
331static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
332					 u32 timer_width)
333{
334	struct ttc_timer_clocksource *ttccs;
335	int err;
336
337	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
338	if (!ttccs)
339		return -ENOMEM;
340
341	ttccs->ttc.clk = clk;
342
343	err = clk_prepare_enable(ttccs->ttc.clk);
344	if (err) {
345		kfree(ttccs);
346		return err;
347	}
348
349	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
350
351	ttccs->ttc.clk_rate_change_nb.notifier_call =
352		ttc_rate_change_clocksource_cb;
353	ttccs->ttc.clk_rate_change_nb.next = NULL;
354
355	err = clk_notifier_register(ttccs->ttc.clk,
356				    &ttccs->ttc.clk_rate_change_nb);
357	if (err)
358		pr_warn("Unable to register clock notifier.\n");
359
360	ttccs->ttc.base_addr = base;
361	ttccs->cs.name = "ttc_clocksource";
362	ttccs->cs.rating = 200;
363	ttccs->cs.read = __ttc_clocksource_read;
364	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
365	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366
367	/*
368	 * Setup the clock source counter to be an incrementing counter
369	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
370	 * it by 32 also. Let it start running now.
371	 */
372	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
373	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
374		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
375	writel_relaxed(CNT_CNTRL_RESET,
376		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
377
378	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
379	if (err) {
380		kfree(ttccs);
381		return err;
382	}
383
384	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
385	sched_clock_register(ttc_sched_clock_read, timer_width,
386			     ttccs->ttc.freq / PRESCALE);
387
388	return 0;
389}
390
391static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
392		unsigned long event, void *data)
393{
394	struct clk_notifier_data *ndata = data;
395	struct ttc_timer *ttc = to_ttc_timer(nb);
396	struct ttc_timer_clockevent *ttcce = container_of(ttc,
397			struct ttc_timer_clockevent, ttc);
398
399	switch (event) {
400	case POST_RATE_CHANGE:
401		/* update cached frequency */
402		ttc->freq = ndata->new_rate;
403
404		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
405
406		fallthrough;
407	case PRE_RATE_CHANGE:
408	case ABORT_RATE_CHANGE:
409	default:
410		return NOTIFY_DONE;
411	}
412}
413
414static int __init ttc_setup_clockevent(struct clk *clk,
415				       void __iomem *base, u32 irq)
416{
417	struct ttc_timer_clockevent *ttcce;
418	int err;
419
420	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
421	if (!ttcce)
422		return -ENOMEM;
423
424	ttcce->ttc.clk = clk;
425
426	err = clk_prepare_enable(ttcce->ttc.clk);
427	if (err)
428		goto out_kfree;
 
 
429
430	ttcce->ttc.clk_rate_change_nb.notifier_call =
431		ttc_rate_change_clockevent_cb;
432	ttcce->ttc.clk_rate_change_nb.next = NULL;
433
434	err = clk_notifier_register(ttcce->ttc.clk,
435				    &ttcce->ttc.clk_rate_change_nb);
436	if (err) {
437		pr_warn("Unable to register clock notifier.\n");
438		goto out_kfree;
439	}
440
441	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
442
443	ttcce->ttc.base_addr = base;
444	ttcce->ce.name = "ttc_clockevent";
445	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
446	ttcce->ce.set_next_event = ttc_set_next_event;
447	ttcce->ce.set_state_shutdown = ttc_shutdown;
448	ttcce->ce.set_state_periodic = ttc_set_periodic;
449	ttcce->ce.set_state_oneshot = ttc_shutdown;
450	ttcce->ce.tick_resume = ttc_resume;
451	ttcce->ce.rating = 200;
452	ttcce->ce.irq = irq;
453	ttcce->ce.cpumask = cpu_possible_mask;
454
455	/*
456	 * Setup the clock event timer to be an interval timer which
457	 * is prescaled by 32 using the interval interrupt. Leave it
458	 * disabled for now.
459	 */
460	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
461	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
462		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
463	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
464
465	err = request_irq(irq, ttc_clock_event_interrupt,
466			  IRQF_TIMER, ttcce->ce.name, ttcce);
467	if (err)
468		goto out_kfree;
 
 
469
470	clockevents_config_and_register(&ttcce->ce,
471			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
472
473	return 0;
474
475out_kfree:
476	kfree(ttcce);
477	return err;
478}
479
480static int __init ttc_timer_probe(struct platform_device *pdev)
 
 
 
 
 
 
481{
482	unsigned int irq;
483	void __iomem *timer_baseaddr;
484	struct clk *clk_cs, *clk_ce;
485	static int initialized;
486	int clksel, ret;
487	u32 timer_width = 16;
488	struct device_node *timer = pdev->dev.of_node;
489
490	if (initialized)
491		return 0;
492
493	initialized = 1;
494
495	/*
496	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
497	 * and use it. Note that the event timer uses the interrupt and it's the
498	 * 2nd TTC hence the irq_of_parse_and_map(,1)
499	 */
500	timer_baseaddr = devm_of_iomap(&pdev->dev, timer, 0, NULL);
501	if (IS_ERR(timer_baseaddr)) {
502		pr_err("ERROR: invalid timer base address\n");
503		return PTR_ERR(timer_baseaddr);
504	}
505
506	irq = irq_of_parse_and_map(timer, 1);
507	if (irq <= 0) {
508		pr_err("ERROR: invalid interrupt number\n");
509		return -EINVAL;
510	}
511
512	of_property_read_u32(timer, "timer-width", &timer_width);
513
514	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
515	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516	clk_cs = of_clk_get(timer, clksel);
517	if (IS_ERR(clk_cs)) {
518		pr_err("ERROR: timer input clock not found\n");
519		return PTR_ERR(clk_cs);
520	}
521
522	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
523	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
524	clk_ce = of_clk_get(timer, clksel);
525	if (IS_ERR(clk_ce)) {
526		pr_err("ERROR: timer input clock not found\n");
527		ret = PTR_ERR(clk_ce);
528		goto put_clk_cs;
529	}
530
531	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
532	if (ret)
533		goto put_clk_ce;
534
535	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
536	if (ret)
537		goto put_clk_ce;
538
539	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
540
541	return 0;
542
543put_clk_ce:
544	clk_put(clk_ce);
545put_clk_cs:
546	clk_put(clk_cs);
547	return ret;
548}
549
550static const struct of_device_id ttc_timer_of_match[] = {
551	{.compatible = "cdns,ttc"},
552	{},
553};
554
555MODULE_DEVICE_TABLE(of, ttc_timer_of_match);
556
557static struct platform_driver ttc_timer_driver = {
558	.driver = {
559		.name	= "cdns_ttc_timer",
560		.of_match_table = ttc_timer_of_match,
561	},
562};
563builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file contains driver for the Cadence Triple Timer Counter Rev 06
  4 *
  5 *  Copyright (C) 2011-2013 Xilinx
  6 *
  7 * based on arch/mips/kernel/time.c timer driver
  8 */
  9
 10#include <linux/clk.h>
 11#include <linux/interrupt.h>
 12#include <linux/clockchips.h>
 13#include <linux/clocksource.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 
 16#include <linux/slab.h>
 17#include <linux/sched_clock.h>
 
 
 18
 19/*
 20 * This driver configures the 2 16/32-bit count-up timers as follows:
 21 *
 22 * T1: Timer 1, clocksource for generic timekeeping
 23 * T2: Timer 2, clockevent source for hrtimers
 24 * T3: Timer 3, <unused>
 25 *
 26 * The input frequency to the timer module for emulation is 2.5MHz which is
 27 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
 28 * the timers are clocked at 78.125KHz (12.8 us resolution).
 29
 30 * The input frequency to the timer module in silicon is configurable and
 31 * obtained from device tree. The pre-scaler of 32 is used.
 32 */
 33
 34/*
 35 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
 36 * and use same offsets for Timer 2
 37 */
 38#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
 39#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
 40#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
 41#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
 42#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
 43#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
 44
 45#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
 46
 47#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
 48#define TTC_CLK_CNTRL_PSV_MASK		0x1e
 49#define TTC_CLK_CNTRL_PSV_SHIFT		1
 50
 51/*
 52 * Setup the timers to use pre-scaling, using a fixed value for now that will
 53 * work across most input frequency, but it may need to be more dynamic
 54 */
 55#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
 56#define PRESCALE		2048	/* The exponent must match this */
 57#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
 58#define CLK_CNTRL_PRESCALE_EN	1
 59#define CNT_CNTRL_RESET		(1 << 4)
 60
 61#define MAX_F_ERR 50
 62
 63/**
 64 * struct ttc_timer - This definition defines local timer structure
 65 *
 66 * @base_addr:	Base address of timer
 67 * @freq:	Timer input clock frequency
 68 * @clk:	Associated clock source
 69 * @clk_rate_change_nb	Notifier block for clock rate changes
 70 */
 71struct ttc_timer {
 72	void __iomem *base_addr;
 73	unsigned long freq;
 74	struct clk *clk;
 75	struct notifier_block clk_rate_change_nb;
 76};
 77
 78#define to_ttc_timer(x) \
 79		container_of(x, struct ttc_timer, clk_rate_change_nb)
 80
 81struct ttc_timer_clocksource {
 82	u32			scale_clk_ctrl_reg_old;
 83	u32			scale_clk_ctrl_reg_new;
 84	struct ttc_timer	ttc;
 85	struct clocksource	cs;
 86};
 87
 88#define to_ttc_timer_clksrc(x) \
 89		container_of(x, struct ttc_timer_clocksource, cs)
 90
 91struct ttc_timer_clockevent {
 92	struct ttc_timer		ttc;
 93	struct clock_event_device	ce;
 94};
 95
 96#define to_ttc_timer_clkevent(x) \
 97		container_of(x, struct ttc_timer_clockevent, ce)
 98
 99static void __iomem *ttc_sched_clock_val_reg;
100
101/**
102 * ttc_set_interval - Set the timer interval value
103 *
104 * @timer:	Pointer to the timer instance
105 * @cycles:	Timer interval ticks
106 **/
107static void ttc_set_interval(struct ttc_timer *timer,
108					unsigned long cycles)
109{
110	u32 ctrl_reg;
111
112	/* Disable the counter, set the counter value  and re-enable counter */
113	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
114	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
115	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
116
117	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
118
119	/*
120	 * Reset the counter (0x10) so that it starts from 0, one-shot
121	 * mode makes this needed for timing to be right.
122	 */
123	ctrl_reg |= CNT_CNTRL_RESET;
124	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
125	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
126}
127
128/**
129 * ttc_clock_event_interrupt - Clock event timer interrupt handler
130 *
131 * @irq:	IRQ number of the Timer
132 * @dev_id:	void pointer to the ttc_timer instance
133 *
134 * returns: Always IRQ_HANDLED - success
135 **/
136static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
137{
138	struct ttc_timer_clockevent *ttce = dev_id;
139	struct ttc_timer *timer = &ttce->ttc;
140
141	/* Acknowledge the interrupt and call event handler */
142	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
143
144	ttce->ce.event_handler(&ttce->ce);
145
146	return IRQ_HANDLED;
147}
148
149/**
150 * __ttc_clocksource_read - Reads the timer counter register
 
151 *
152 * returns: Current timer counter register value
153 **/
154static u64 __ttc_clocksource_read(struct clocksource *cs)
155{
156	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
157
158	return (u64)readl_relaxed(timer->base_addr +
159				TTC_COUNT_VAL_OFFSET);
160}
161
162static u64 notrace ttc_sched_clock_read(void)
163{
164	return readl_relaxed(ttc_sched_clock_val_reg);
165}
166
167/**
168 * ttc_set_next_event - Sets the time interval for next event
169 *
170 * @cycles:	Timer interval ticks
171 * @evt:	Address of clock event instance
172 *
173 * returns: Always 0 - success
174 **/
175static int ttc_set_next_event(unsigned long cycles,
176					struct clock_event_device *evt)
177{
178	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
179	struct ttc_timer *timer = &ttce->ttc;
180
181	ttc_set_interval(timer, cycles);
182	return 0;
183}
184
185/**
186 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
 
 
 
187 *
188 * @evt:	Address of clock event instance
189 **/
190static int ttc_shutdown(struct clock_event_device *evt)
191{
192	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
193	struct ttc_timer *timer = &ttce->ttc;
194	u32 ctrl_reg;
195
196	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
197	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
198	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
199	return 0;
200}
201
 
 
 
 
 
 
202static int ttc_set_periodic(struct clock_event_device *evt)
203{
204	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
205	struct ttc_timer *timer = &ttce->ttc;
206
207	ttc_set_interval(timer,
208			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
209	return 0;
210}
211
212static int ttc_resume(struct clock_event_device *evt)
213{
214	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
215	struct ttc_timer *timer = &ttce->ttc;
216	u32 ctrl_reg;
217
218	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
220	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
221	return 0;
222}
223
224static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
225		unsigned long event, void *data)
226{
227	struct clk_notifier_data *ndata = data;
228	struct ttc_timer *ttc = to_ttc_timer(nb);
229	struct ttc_timer_clocksource *ttccs = container_of(ttc,
230			struct ttc_timer_clocksource, ttc);
231
232	switch (event) {
233	case PRE_RATE_CHANGE:
234	{
235		u32 psv;
236		unsigned long factor, rate_low, rate_high;
237
238		if (ndata->new_rate > ndata->old_rate) {
239			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
240					ndata->old_rate);
241			rate_low = ndata->old_rate;
242			rate_high = ndata->new_rate;
243		} else {
244			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
245					ndata->new_rate);
246			rate_low = ndata->new_rate;
247			rate_high = ndata->old_rate;
248		}
249
250		if (!is_power_of_2(factor))
251				return NOTIFY_BAD;
252
253		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
254			return NOTIFY_BAD;
255
256		factor = __ilog2_u32(factor);
257
258		/*
259		 * store timer clock ctrl register so we can restore it in case
260		 * of an abort.
261		 */
262		ttccs->scale_clk_ctrl_reg_old =
263			readl_relaxed(ttccs->ttc.base_addr +
264			TTC_CLK_CNTRL_OFFSET);
265
266		psv = (ttccs->scale_clk_ctrl_reg_old &
267				TTC_CLK_CNTRL_PSV_MASK) >>
268				TTC_CLK_CNTRL_PSV_SHIFT;
269		if (ndata->new_rate < ndata->old_rate)
270			psv -= factor;
271		else
272			psv += factor;
273
274		/* prescaler within legal range? */
275		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
276			return NOTIFY_BAD;
277
278		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
279			~TTC_CLK_CNTRL_PSV_MASK;
280		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
281
282
283		/* scale down: adjust divider in post-change notification */
284		if (ndata->new_rate < ndata->old_rate)
285			return NOTIFY_DONE;
286
287		/* scale up: adjust divider now - before frequency change */
288		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
289			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
290		break;
291	}
292	case POST_RATE_CHANGE:
293		/* scale up: pre-change notification did the adjustment */
294		if (ndata->new_rate > ndata->old_rate)
295			return NOTIFY_OK;
296
297		/* scale down: adjust divider now - after frequency change */
298		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
299			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
300		break;
301
302	case ABORT_RATE_CHANGE:
303		/* we have to undo the adjustment in case we scale up */
304		if (ndata->new_rate < ndata->old_rate)
305			return NOTIFY_OK;
306
307		/* restore original register value */
308		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
309			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
310		/* fall through */
311	default:
312		return NOTIFY_DONE;
313	}
314
315	return NOTIFY_DONE;
316}
317
318static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
319					 u32 timer_width)
320{
321	struct ttc_timer_clocksource *ttccs;
322	int err;
323
324	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
325	if (!ttccs)
326		return -ENOMEM;
327
328	ttccs->ttc.clk = clk;
329
330	err = clk_prepare_enable(ttccs->ttc.clk);
331	if (err) {
332		kfree(ttccs);
333		return err;
334	}
335
336	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
337
338	ttccs->ttc.clk_rate_change_nb.notifier_call =
339		ttc_rate_change_clocksource_cb;
340	ttccs->ttc.clk_rate_change_nb.next = NULL;
341
342	err = clk_notifier_register(ttccs->ttc.clk,
343				    &ttccs->ttc.clk_rate_change_nb);
344	if (err)
345		pr_warn("Unable to register clock notifier.\n");
346
347	ttccs->ttc.base_addr = base;
348	ttccs->cs.name = "ttc_clocksource";
349	ttccs->cs.rating = 200;
350	ttccs->cs.read = __ttc_clocksource_read;
351	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
352	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
353
354	/*
355	 * Setup the clock source counter to be an incrementing counter
356	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
357	 * it by 32 also. Let it start running now.
358	 */
359	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
360	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
361		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
362	writel_relaxed(CNT_CNTRL_RESET,
363		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
364
365	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
366	if (err) {
367		kfree(ttccs);
368		return err;
369	}
370
371	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
372	sched_clock_register(ttc_sched_clock_read, timer_width,
373			     ttccs->ttc.freq / PRESCALE);
374
375	return 0;
376}
377
378static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
379		unsigned long event, void *data)
380{
381	struct clk_notifier_data *ndata = data;
382	struct ttc_timer *ttc = to_ttc_timer(nb);
383	struct ttc_timer_clockevent *ttcce = container_of(ttc,
384			struct ttc_timer_clockevent, ttc);
385
386	switch (event) {
387	case POST_RATE_CHANGE:
388		/* update cached frequency */
389		ttc->freq = ndata->new_rate;
390
391		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
392
393		/* fall through */
394	case PRE_RATE_CHANGE:
395	case ABORT_RATE_CHANGE:
396	default:
397		return NOTIFY_DONE;
398	}
399}
400
401static int __init ttc_setup_clockevent(struct clk *clk,
402				       void __iomem *base, u32 irq)
403{
404	struct ttc_timer_clockevent *ttcce;
405	int err;
406
407	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
408	if (!ttcce)
409		return -ENOMEM;
410
411	ttcce->ttc.clk = clk;
412
413	err = clk_prepare_enable(ttcce->ttc.clk);
414	if (err) {
415		kfree(ttcce);
416		return err;
417	}
418
419	ttcce->ttc.clk_rate_change_nb.notifier_call =
420		ttc_rate_change_clockevent_cb;
421	ttcce->ttc.clk_rate_change_nb.next = NULL;
422
423	err = clk_notifier_register(ttcce->ttc.clk,
424				    &ttcce->ttc.clk_rate_change_nb);
425	if (err) {
426		pr_warn("Unable to register clock notifier.\n");
427		return err;
428	}
429
430	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
431
432	ttcce->ttc.base_addr = base;
433	ttcce->ce.name = "ttc_clockevent";
434	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
435	ttcce->ce.set_next_event = ttc_set_next_event;
436	ttcce->ce.set_state_shutdown = ttc_shutdown;
437	ttcce->ce.set_state_periodic = ttc_set_periodic;
438	ttcce->ce.set_state_oneshot = ttc_shutdown;
439	ttcce->ce.tick_resume = ttc_resume;
440	ttcce->ce.rating = 200;
441	ttcce->ce.irq = irq;
442	ttcce->ce.cpumask = cpu_possible_mask;
443
444	/*
445	 * Setup the clock event timer to be an interval timer which
446	 * is prescaled by 32 using the interval interrupt. Leave it
447	 * disabled for now.
448	 */
449	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
450	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
451		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
452	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
453
454	err = request_irq(irq, ttc_clock_event_interrupt,
455			  IRQF_TIMER, ttcce->ce.name, ttcce);
456	if (err) {
457		kfree(ttcce);
458		return err;
459	}
460
461	clockevents_config_and_register(&ttcce->ce,
462			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
463
464	return 0;
 
 
 
 
465}
466
467/**
468 * ttc_timer_init - Initialize the timer
469 *
470 * Initializes the timer hardware and register the clock source and clock event
471 * timers with Linux kernal timer framework
472 */
473static int __init ttc_timer_init(struct device_node *timer)
474{
475	unsigned int irq;
476	void __iomem *timer_baseaddr;
477	struct clk *clk_cs, *clk_ce;
478	static int initialized;
479	int clksel, ret;
480	u32 timer_width = 16;
 
481
482	if (initialized)
483		return 0;
484
485	initialized = 1;
486
487	/*
488	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
489	 * and use it. Note that the event timer uses the interrupt and it's the
490	 * 2nd TTC hence the irq_of_parse_and_map(,1)
491	 */
492	timer_baseaddr = of_iomap(timer, 0);
493	if (!timer_baseaddr) {
494		pr_err("ERROR: invalid timer base address\n");
495		return -ENXIO;
496	}
497
498	irq = irq_of_parse_and_map(timer, 1);
499	if (irq <= 0) {
500		pr_err("ERROR: invalid interrupt number\n");
501		return -EINVAL;
502	}
503
504	of_property_read_u32(timer, "timer-width", &timer_width);
505
506	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
507	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508	clk_cs = of_clk_get(timer, clksel);
509	if (IS_ERR(clk_cs)) {
510		pr_err("ERROR: timer input clock not found\n");
511		return PTR_ERR(clk_cs);
512	}
513
514	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
515	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516	clk_ce = of_clk_get(timer, clksel);
517	if (IS_ERR(clk_ce)) {
518		pr_err("ERROR: timer input clock not found\n");
519		return PTR_ERR(clk_ce);
 
520	}
521
522	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
523	if (ret)
524		return ret;
525
526	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
527	if (ret)
528		return ret;
529
530	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
531
532	return 0;
 
 
 
 
 
 
533}
534
535TIMER_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);