Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* linux/arch/arm/mach-exynos4/mct.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Exynos4 MCT(Multi-Core Timer) support
8*/
9
10#include <linux/interrupt.h>
11#include <linux/irq.h>
12#include <linux/err.h>
13#include <linux/clk.h>
14#include <linux/clockchips.h>
15#include <linux/cpu.h>
16#include <linux/delay.h>
17#include <linux/percpu.h>
18#include <linux/of.h>
19#include <linux/of_irq.h>
20#include <linux/of_address.h>
21#include <linux/clocksource.h>
22#include <linux/sched_clock.h>
23
24#define EXYNOS4_MCTREG(x) (x)
25#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * (x)))
37#define EXYNOS4_MCT_L_MASK (0xffffff00)
38
39#define MCT_L_TCNTB_OFFSET (0x00)
40#define MCT_L_ICNTB_OFFSET (0x08)
41#define MCT_L_TCON_OFFSET (0x20)
42#define MCT_L_INT_CSTAT_OFFSET (0x30)
43#define MCT_L_INT_ENB_OFFSET (0x34)
44#define MCT_L_WSTAT_OFFSET (0x40)
45#define MCT_G_TCON_START (1 << 8)
46#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49#define MCT_L_TCON_INT_START (1 << 1)
50#define MCT_L_TCON_TIMER_START (1 << 0)
51
52#define TICK_BASE_CNT 1
53
54#ifdef CONFIG_ARM
55/* Use values higher than ARM arch timer. See 6282edb72bed. */
56#define MCT_CLKSOURCE_RATING 450
57#define MCT_CLKEVENTS_RATING 500
58#else
59#define MCT_CLKSOURCE_RATING 350
60#define MCT_CLKEVENTS_RATING 350
61#endif
62
63/* There are four Global timers starting with 0 offset */
64#define MCT_G0_IRQ 0
65/* Local timers count starts after global timer count */
66#define MCT_L0_IRQ 4
67/* Max number of IRQ as per DT binding document */
68#define MCT_NR_IRQS 20
69/* Max number of local timers */
70#define MCT_NR_LOCAL (MCT_NR_IRQS - MCT_L0_IRQ)
71
72enum {
73 MCT_INT_SPI,
74 MCT_INT_PPI
75};
76
77static void __iomem *reg_base;
78static unsigned long clk_rate;
79static unsigned int mct_int_type;
80static int mct_irqs[MCT_NR_IRQS];
81
82struct mct_clock_event_device {
83 struct clock_event_device evt;
84 unsigned long base;
85 /**
86 * The length of the name must be adjusted if number of
87 * local timer interrupts grow over two digits
88 */
89 char name[11];
90};
91
92static void exynos4_mct_write(unsigned int value, unsigned long offset)
93{
94 unsigned long stat_addr;
95 u32 mask;
96 u32 i;
97
98 writel_relaxed(value, reg_base + offset);
99
100 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
101 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
102 switch (offset & ~EXYNOS4_MCT_L_MASK) {
103 case MCT_L_TCON_OFFSET:
104 mask = 1 << 3; /* L_TCON write status */
105 break;
106 case MCT_L_ICNTB_OFFSET:
107 mask = 1 << 1; /* L_ICNTB write status */
108 break;
109 case MCT_L_TCNTB_OFFSET:
110 mask = 1 << 0; /* L_TCNTB write status */
111 break;
112 default:
113 return;
114 }
115 } else {
116 switch (offset) {
117 case EXYNOS4_MCT_G_TCON:
118 stat_addr = EXYNOS4_MCT_G_WSTAT;
119 mask = 1 << 16; /* G_TCON write status */
120 break;
121 case EXYNOS4_MCT_G_COMP0_L:
122 stat_addr = EXYNOS4_MCT_G_WSTAT;
123 mask = 1 << 0; /* G_COMP0_L write status */
124 break;
125 case EXYNOS4_MCT_G_COMP0_U:
126 stat_addr = EXYNOS4_MCT_G_WSTAT;
127 mask = 1 << 1; /* G_COMP0_U write status */
128 break;
129 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
130 stat_addr = EXYNOS4_MCT_G_WSTAT;
131 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
132 break;
133 case EXYNOS4_MCT_G_CNT_L:
134 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135 mask = 1 << 0; /* G_CNT_L write status */
136 break;
137 case EXYNOS4_MCT_G_CNT_U:
138 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
139 mask = 1 << 1; /* G_CNT_U write status */
140 break;
141 default:
142 return;
143 }
144 }
145
146 /* Wait maximum 1 ms until written values are applied */
147 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
148 if (readl_relaxed(reg_base + stat_addr) & mask) {
149 writel_relaxed(mask, reg_base + stat_addr);
150 return;
151 }
152
153 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
154}
155
156/* Clocksource handling */
157static void exynos4_mct_frc_start(void)
158{
159 u32 reg;
160
161 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
162 reg |= MCT_G_TCON_START;
163 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
164}
165
166/**
167 * exynos4_read_count_64 - Read all 64-bits of the global counter
168 *
169 * This will read all 64-bits of the global counter taking care to make sure
170 * that the upper and lower half match. Note that reading the MCT can be quite
171 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
172 * only) version when possible.
173 *
174 * Returns the number of cycles in the global counter.
175 */
176static u64 exynos4_read_count_64(void)
177{
178 unsigned int lo, hi;
179 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
180
181 do {
182 hi = hi2;
183 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
184 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
185 } while (hi != hi2);
186
187 return ((u64)hi << 32) | lo;
188}
189
190/**
191 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
192 *
193 * This will read just the lower 32-bits of the global counter. This is marked
194 * as notrace so it can be used by the scheduler clock.
195 *
196 * Returns the number of cycles in the global counter (lower 32 bits).
197 */
198static u32 notrace exynos4_read_count_32(void)
199{
200 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
201}
202
203static u64 exynos4_frc_read(struct clocksource *cs)
204{
205 return exynos4_read_count_32();
206}
207
208static void exynos4_frc_resume(struct clocksource *cs)
209{
210 exynos4_mct_frc_start();
211}
212
213static struct clocksource mct_frc = {
214 .name = "mct-frc",
215 .rating = MCT_CLKSOURCE_RATING,
216 .read = exynos4_frc_read,
217 .mask = CLOCKSOURCE_MASK(32),
218 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
219 .resume = exynos4_frc_resume,
220};
221
222static u64 notrace exynos4_read_sched_clock(void)
223{
224 return exynos4_read_count_32();
225}
226
227#if defined(CONFIG_ARM)
228static struct delay_timer exynos4_delay_timer;
229
230static cycles_t exynos4_read_current_timer(void)
231{
232 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
233 "cycles_t needs to move to 32-bit for ARM64 usage");
234 return exynos4_read_count_32();
235}
236#endif
237
238static int __init exynos4_clocksource_init(bool frc_shared)
239{
240 /*
241 * When the frc is shared, the main processer should have already
242 * turned it on and we shouldn't be writing to TCON.
243 */
244 if (frc_shared)
245 mct_frc.resume = NULL;
246 else
247 exynos4_mct_frc_start();
248
249#if defined(CONFIG_ARM)
250 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
251 exynos4_delay_timer.freq = clk_rate;
252 register_current_timer_delay(&exynos4_delay_timer);
253#endif
254
255 if (clocksource_register_hz(&mct_frc, clk_rate))
256 panic("%s: can't register clocksource\n", mct_frc.name);
257
258 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
259
260 return 0;
261}
262
263static void exynos4_mct_comp0_stop(void)
264{
265 unsigned int tcon;
266
267 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
268 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
269
270 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
271 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
272}
273
274static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
275{
276 unsigned int tcon;
277 u64 comp_cycle;
278
279 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
280
281 if (periodic) {
282 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
283 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
284 }
285
286 comp_cycle = exynos4_read_count_64() + cycles;
287 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
288 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
289
290 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
291
292 tcon |= MCT_G_TCON_COMP0_ENABLE;
293 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
294}
295
296static int exynos4_comp_set_next_event(unsigned long cycles,
297 struct clock_event_device *evt)
298{
299 exynos4_mct_comp0_start(false, cycles);
300
301 return 0;
302}
303
304static int mct_set_state_shutdown(struct clock_event_device *evt)
305{
306 exynos4_mct_comp0_stop();
307 return 0;
308}
309
310static int mct_set_state_periodic(struct clock_event_device *evt)
311{
312 unsigned long cycles_per_jiffy;
313
314 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
315 >> evt->shift);
316 exynos4_mct_comp0_stop();
317 exynos4_mct_comp0_start(true, cycles_per_jiffy);
318 return 0;
319}
320
321static struct clock_event_device mct_comp_device = {
322 .name = "mct-comp",
323 .features = CLOCK_EVT_FEAT_PERIODIC |
324 CLOCK_EVT_FEAT_ONESHOT,
325 .rating = 250,
326 .set_next_event = exynos4_comp_set_next_event,
327 .set_state_periodic = mct_set_state_periodic,
328 .set_state_shutdown = mct_set_state_shutdown,
329 .set_state_oneshot = mct_set_state_shutdown,
330 .set_state_oneshot_stopped = mct_set_state_shutdown,
331 .tick_resume = mct_set_state_shutdown,
332};
333
334static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
335{
336 struct clock_event_device *evt = dev_id;
337
338 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
339
340 evt->event_handler(evt);
341
342 return IRQ_HANDLED;
343}
344
345static int exynos4_clockevent_init(void)
346{
347 mct_comp_device.cpumask = cpumask_of(0);
348 clockevents_config_and_register(&mct_comp_device, clk_rate,
349 0xf, 0xffffffff);
350 if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
351 IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
352 &mct_comp_device))
353 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
354
355 return 0;
356}
357
358static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
359
360/* Clock event handling */
361static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
362{
363 unsigned long tmp;
364 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
365 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
366
367 tmp = readl_relaxed(reg_base + offset);
368 if (tmp & mask) {
369 tmp &= ~mask;
370 exynos4_mct_write(tmp, offset);
371 }
372}
373
374static void exynos4_mct_tick_start(unsigned long cycles,
375 struct mct_clock_event_device *mevt)
376{
377 unsigned long tmp;
378
379 exynos4_mct_tick_stop(mevt);
380
381 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
382
383 /* update interrupt count buffer */
384 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
385
386 /* enable MCT tick interrupt */
387 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
388
389 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
390 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
391 MCT_L_TCON_INTERVAL_MODE;
392 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
393}
394
395static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
396{
397 /* Clear the MCT tick interrupt */
398 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
399 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
400}
401
402static int exynos4_tick_set_next_event(unsigned long cycles,
403 struct clock_event_device *evt)
404{
405 struct mct_clock_event_device *mevt;
406
407 mevt = container_of(evt, struct mct_clock_event_device, evt);
408 exynos4_mct_tick_start(cycles, mevt);
409 return 0;
410}
411
412static int set_state_shutdown(struct clock_event_device *evt)
413{
414 struct mct_clock_event_device *mevt;
415
416 mevt = container_of(evt, struct mct_clock_event_device, evt);
417 exynos4_mct_tick_stop(mevt);
418 exynos4_mct_tick_clear(mevt);
419 return 0;
420}
421
422static int set_state_periodic(struct clock_event_device *evt)
423{
424 struct mct_clock_event_device *mevt;
425 unsigned long cycles_per_jiffy;
426
427 mevt = container_of(evt, struct mct_clock_event_device, evt);
428 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
429 >> evt->shift);
430 exynos4_mct_tick_stop(mevt);
431 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
432 return 0;
433}
434
435static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
436{
437 struct mct_clock_event_device *mevt = dev_id;
438 struct clock_event_device *evt = &mevt->evt;
439
440 /*
441 * This is for supporting oneshot mode.
442 * Mct would generate interrupt periodically
443 * without explicit stopping.
444 */
445 if (!clockevent_state_periodic(&mevt->evt))
446 exynos4_mct_tick_stop(mevt);
447
448 exynos4_mct_tick_clear(mevt);
449
450 evt->event_handler(evt);
451
452 return IRQ_HANDLED;
453}
454
455static int exynos4_mct_starting_cpu(unsigned int cpu)
456{
457 struct mct_clock_event_device *mevt =
458 per_cpu_ptr(&percpu_mct_tick, cpu);
459 struct clock_event_device *evt = &mevt->evt;
460
461 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
462
463 evt->name = mevt->name;
464 evt->cpumask = cpumask_of(cpu);
465 evt->set_next_event = exynos4_tick_set_next_event;
466 evt->set_state_periodic = set_state_periodic;
467 evt->set_state_shutdown = set_state_shutdown;
468 evt->set_state_oneshot = set_state_shutdown;
469 evt->set_state_oneshot_stopped = set_state_shutdown;
470 evt->tick_resume = set_state_shutdown;
471 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
472 CLOCK_EVT_FEAT_PERCPU;
473 evt->rating = MCT_CLKEVENTS_RATING;
474
475 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
476
477 if (mct_int_type == MCT_INT_SPI) {
478
479 if (evt->irq == -1)
480 return -EIO;
481
482 irq_force_affinity(evt->irq, cpumask_of(cpu));
483 enable_irq(evt->irq);
484 } else {
485 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
486 }
487 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
488 0xf, 0x7fffffff);
489
490 return 0;
491}
492
493static int exynos4_mct_dying_cpu(unsigned int cpu)
494{
495 struct mct_clock_event_device *mevt =
496 per_cpu_ptr(&percpu_mct_tick, cpu);
497 struct clock_event_device *evt = &mevt->evt;
498
499 evt->set_state_shutdown(evt);
500 if (mct_int_type == MCT_INT_SPI) {
501 if (evt->irq != -1)
502 disable_irq_nosync(evt->irq);
503 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
504 } else {
505 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
506 }
507 return 0;
508}
509
510static int __init exynos4_timer_resources(struct device_node *np)
511{
512 struct clk *mct_clk, *tick_clk;
513
514 reg_base = of_iomap(np, 0);
515 if (!reg_base)
516 panic("%s: unable to ioremap mct address space\n", __func__);
517
518 tick_clk = of_clk_get_by_name(np, "fin_pll");
519 if (IS_ERR(tick_clk))
520 panic("%s: unable to determine tick clock rate\n", __func__);
521 clk_rate = clk_get_rate(tick_clk);
522
523 mct_clk = of_clk_get_by_name(np, "mct");
524 if (IS_ERR(mct_clk))
525 panic("%s: unable to retrieve mct clock instance\n", __func__);
526 clk_prepare_enable(mct_clk);
527
528 return 0;
529}
530
531/**
532 * exynos4_timer_interrupts - initialize MCT interrupts
533 * @np: device node for MCT
534 * @int_type: interrupt type, MCT_INT_PPI or MCT_INT_SPI
535 * @local_idx: array mapping CPU numbers to local timer indices
536 * @nr_local: size of @local_idx array
537 */
538static int __init exynos4_timer_interrupts(struct device_node *np,
539 unsigned int int_type,
540 const u32 *local_idx,
541 size_t nr_local)
542{
543 int nr_irqs, i, err, cpu;
544
545 mct_int_type = int_type;
546
547 /* This driver uses only one global timer interrupt */
548 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
549
550 /*
551 * Find out the number of local irqs specified. The local
552 * timer irqs are specified after the four global timer
553 * irqs are specified.
554 */
555 nr_irqs = of_irq_count(np);
556 if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
557 pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
558 nr_irqs);
559 nr_irqs = ARRAY_SIZE(mct_irqs);
560 }
561 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
562 mct_irqs[i] = irq_of_parse_and_map(np, i);
563
564 if (mct_int_type == MCT_INT_PPI) {
565
566 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
567 exynos4_mct_tick_isr, "MCT",
568 &percpu_mct_tick);
569 WARN(err, "MCT: can't request IRQ %d (%d)\n",
570 mct_irqs[MCT_L0_IRQ], err);
571 } else {
572 for_each_possible_cpu(cpu) {
573 int mct_irq;
574 unsigned int irq_idx;
575 struct mct_clock_event_device *pcpu_mevt =
576 per_cpu_ptr(&percpu_mct_tick, cpu);
577
578 if (cpu >= nr_local) {
579 err = -EINVAL;
580 goto out_irq;
581 }
582
583 irq_idx = MCT_L0_IRQ + local_idx[cpu];
584
585 pcpu_mevt->evt.irq = -1;
586 if (irq_idx >= ARRAY_SIZE(mct_irqs))
587 break;
588 mct_irq = mct_irqs[irq_idx];
589
590 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
591 if (request_irq(mct_irq,
592 exynos4_mct_tick_isr,
593 IRQF_TIMER | IRQF_NOBALANCING,
594 pcpu_mevt->name, pcpu_mevt)) {
595 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
596 cpu);
597
598 continue;
599 }
600 pcpu_mevt->evt.irq = mct_irq;
601 }
602 }
603
604 for_each_possible_cpu(cpu) {
605 struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu);
606
607 if (cpu >= nr_local) {
608 err = -EINVAL;
609 goto out_irq;
610 }
611
612 mevt->base = EXYNOS4_MCT_L_BASE(local_idx[cpu]);
613 }
614
615 /* Install hotplug callbacks which configure the timer on this CPU */
616 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
617 "clockevents/exynos4/mct_timer:starting",
618 exynos4_mct_starting_cpu,
619 exynos4_mct_dying_cpu);
620 if (err)
621 goto out_irq;
622
623 return 0;
624
625out_irq:
626 if (mct_int_type == MCT_INT_PPI) {
627 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
628 } else {
629 for_each_possible_cpu(cpu) {
630 struct mct_clock_event_device *pcpu_mevt =
631 per_cpu_ptr(&percpu_mct_tick, cpu);
632
633 if (pcpu_mevt->evt.irq != -1) {
634 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
635 pcpu_mevt->evt.irq = -1;
636 }
637 }
638 }
639 return err;
640}
641
642static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
643{
644 bool frc_shared = of_property_read_bool(np, "samsung,frc-shared");
645 u32 local_idx[MCT_NR_LOCAL] = {0};
646 int nr_local;
647 int ret;
648
649 nr_local = of_property_count_u32_elems(np, "samsung,local-timers");
650 if (nr_local == 0)
651 return -EINVAL;
652 if (nr_local > 0) {
653 if (nr_local > ARRAY_SIZE(local_idx))
654 return -EINVAL;
655
656 ret = of_property_read_u32_array(np, "samsung,local-timers",
657 local_idx, nr_local);
658 if (ret)
659 return ret;
660 } else {
661 int i;
662
663 nr_local = ARRAY_SIZE(local_idx);
664 for (i = 0; i < nr_local; i++)
665 local_idx[i] = i;
666 }
667
668 ret = exynos4_timer_resources(np);
669 if (ret)
670 return ret;
671
672 ret = exynos4_timer_interrupts(np, int_type, local_idx, nr_local);
673 if (ret)
674 return ret;
675
676 ret = exynos4_clocksource_init(frc_shared);
677 if (ret)
678 return ret;
679
680 /*
681 * When the FRC is shared with a main processor, this secondary
682 * processor cannot use the global comparator.
683 */
684 if (frc_shared)
685 return 0;
686
687 return exynos4_clockevent_init();
688}
689
690
691static int __init mct_init_spi(struct device_node *np)
692{
693 return mct_init_dt(np, MCT_INT_SPI);
694}
695
696static int __init mct_init_ppi(struct device_node *np)
697{
698 return mct_init_dt(np, MCT_INT_PPI);
699}
700TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
701TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
1// SPDX-License-Identifier: GPL-2.0-only
2/* linux/arch/arm/mach-exynos4/mct.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * EXYNOS4 MCT(Multi-Core Timer) support
8*/
9
10#include <linux/interrupt.h>
11#include <linux/irq.h>
12#include <linux/err.h>
13#include <linux/clk.h>
14#include <linux/clockchips.h>
15#include <linux/cpu.h>
16#include <linux/delay.h>
17#include <linux/percpu.h>
18#include <linux/of.h>
19#include <linux/of_irq.h>
20#include <linux/of_address.h>
21#include <linux/clocksource.h>
22#include <linux/sched_clock.h>
23
24#define EXYNOS4_MCTREG(x) (x)
25#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
37#define EXYNOS4_MCT_L_MASK (0xffffff00)
38
39#define MCT_L_TCNTB_OFFSET (0x00)
40#define MCT_L_ICNTB_OFFSET (0x08)
41#define MCT_L_TCON_OFFSET (0x20)
42#define MCT_L_INT_CSTAT_OFFSET (0x30)
43#define MCT_L_INT_ENB_OFFSET (0x34)
44#define MCT_L_WSTAT_OFFSET (0x40)
45#define MCT_G_TCON_START (1 << 8)
46#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49#define MCT_L_TCON_INT_START (1 << 1)
50#define MCT_L_TCON_TIMER_START (1 << 0)
51
52#define TICK_BASE_CNT 1
53
54enum {
55 MCT_INT_SPI,
56 MCT_INT_PPI
57};
58
59enum {
60 MCT_G0_IRQ,
61 MCT_G1_IRQ,
62 MCT_G2_IRQ,
63 MCT_G3_IRQ,
64 MCT_L0_IRQ,
65 MCT_L1_IRQ,
66 MCT_L2_IRQ,
67 MCT_L3_IRQ,
68 MCT_L4_IRQ,
69 MCT_L5_IRQ,
70 MCT_L6_IRQ,
71 MCT_L7_IRQ,
72 MCT_NR_IRQS,
73};
74
75static void __iomem *reg_base;
76static unsigned long clk_rate;
77static unsigned int mct_int_type;
78static int mct_irqs[MCT_NR_IRQS];
79
80struct mct_clock_event_device {
81 struct clock_event_device evt;
82 unsigned long base;
83 char name[10];
84};
85
86static void exynos4_mct_write(unsigned int value, unsigned long offset)
87{
88 unsigned long stat_addr;
89 u32 mask;
90 u32 i;
91
92 writel_relaxed(value, reg_base + offset);
93
94 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
95 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
96 switch (offset & ~EXYNOS4_MCT_L_MASK) {
97 case MCT_L_TCON_OFFSET:
98 mask = 1 << 3; /* L_TCON write status */
99 break;
100 case MCT_L_ICNTB_OFFSET:
101 mask = 1 << 1; /* L_ICNTB write status */
102 break;
103 case MCT_L_TCNTB_OFFSET:
104 mask = 1 << 0; /* L_TCNTB write status */
105 break;
106 default:
107 return;
108 }
109 } else {
110 switch (offset) {
111 case EXYNOS4_MCT_G_TCON:
112 stat_addr = EXYNOS4_MCT_G_WSTAT;
113 mask = 1 << 16; /* G_TCON write status */
114 break;
115 case EXYNOS4_MCT_G_COMP0_L:
116 stat_addr = EXYNOS4_MCT_G_WSTAT;
117 mask = 1 << 0; /* G_COMP0_L write status */
118 break;
119 case EXYNOS4_MCT_G_COMP0_U:
120 stat_addr = EXYNOS4_MCT_G_WSTAT;
121 mask = 1 << 1; /* G_COMP0_U write status */
122 break;
123 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
124 stat_addr = EXYNOS4_MCT_G_WSTAT;
125 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
126 break;
127 case EXYNOS4_MCT_G_CNT_L:
128 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
129 mask = 1 << 0; /* G_CNT_L write status */
130 break;
131 case EXYNOS4_MCT_G_CNT_U:
132 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133 mask = 1 << 1; /* G_CNT_U write status */
134 break;
135 default:
136 return;
137 }
138 }
139
140 /* Wait maximum 1 ms until written values are applied */
141 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
142 if (readl_relaxed(reg_base + stat_addr) & mask) {
143 writel_relaxed(mask, reg_base + stat_addr);
144 return;
145 }
146
147 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
148}
149
150/* Clocksource handling */
151static void exynos4_mct_frc_start(void)
152{
153 u32 reg;
154
155 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
156 reg |= MCT_G_TCON_START;
157 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
158}
159
160/**
161 * exynos4_read_count_64 - Read all 64-bits of the global counter
162 *
163 * This will read all 64-bits of the global counter taking care to make sure
164 * that the upper and lower half match. Note that reading the MCT can be quite
165 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
166 * only) version when possible.
167 *
168 * Returns the number of cycles in the global counter.
169 */
170static u64 exynos4_read_count_64(void)
171{
172 unsigned int lo, hi;
173 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
174
175 do {
176 hi = hi2;
177 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
178 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179 } while (hi != hi2);
180
181 return ((u64)hi << 32) | lo;
182}
183
184/**
185 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
186 *
187 * This will read just the lower 32-bits of the global counter. This is marked
188 * as notrace so it can be used by the scheduler clock.
189 *
190 * Returns the number of cycles in the global counter (lower 32 bits).
191 */
192static u32 notrace exynos4_read_count_32(void)
193{
194 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
195}
196
197static u64 exynos4_frc_read(struct clocksource *cs)
198{
199 return exynos4_read_count_32();
200}
201
202static void exynos4_frc_resume(struct clocksource *cs)
203{
204 exynos4_mct_frc_start();
205}
206
207static struct clocksource mct_frc = {
208 .name = "mct-frc",
209 .rating = 450, /* use value higher than ARM arch timer */
210 .read = exynos4_frc_read,
211 .mask = CLOCKSOURCE_MASK(32),
212 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
213 .resume = exynos4_frc_resume,
214};
215
216static u64 notrace exynos4_read_sched_clock(void)
217{
218 return exynos4_read_count_32();
219}
220
221#if defined(CONFIG_ARM)
222static struct delay_timer exynos4_delay_timer;
223
224static cycles_t exynos4_read_current_timer(void)
225{
226 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
227 "cycles_t needs to move to 32-bit for ARM64 usage");
228 return exynos4_read_count_32();
229}
230#endif
231
232static int __init exynos4_clocksource_init(void)
233{
234 exynos4_mct_frc_start();
235
236#if defined(CONFIG_ARM)
237 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
238 exynos4_delay_timer.freq = clk_rate;
239 register_current_timer_delay(&exynos4_delay_timer);
240#endif
241
242 if (clocksource_register_hz(&mct_frc, clk_rate))
243 panic("%s: can't register clocksource\n", mct_frc.name);
244
245 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
246
247 return 0;
248}
249
250static void exynos4_mct_comp0_stop(void)
251{
252 unsigned int tcon;
253
254 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
255 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
256
257 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
258 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
259}
260
261static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
262{
263 unsigned int tcon;
264 u64 comp_cycle;
265
266 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
267
268 if (periodic) {
269 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
270 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
271 }
272
273 comp_cycle = exynos4_read_count_64() + cycles;
274 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
275 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
276
277 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
278
279 tcon |= MCT_G_TCON_COMP0_ENABLE;
280 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
281}
282
283static int exynos4_comp_set_next_event(unsigned long cycles,
284 struct clock_event_device *evt)
285{
286 exynos4_mct_comp0_start(false, cycles);
287
288 return 0;
289}
290
291static int mct_set_state_shutdown(struct clock_event_device *evt)
292{
293 exynos4_mct_comp0_stop();
294 return 0;
295}
296
297static int mct_set_state_periodic(struct clock_event_device *evt)
298{
299 unsigned long cycles_per_jiffy;
300
301 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
302 >> evt->shift);
303 exynos4_mct_comp0_stop();
304 exynos4_mct_comp0_start(true, cycles_per_jiffy);
305 return 0;
306}
307
308static struct clock_event_device mct_comp_device = {
309 .name = "mct-comp",
310 .features = CLOCK_EVT_FEAT_PERIODIC |
311 CLOCK_EVT_FEAT_ONESHOT,
312 .rating = 250,
313 .set_next_event = exynos4_comp_set_next_event,
314 .set_state_periodic = mct_set_state_periodic,
315 .set_state_shutdown = mct_set_state_shutdown,
316 .set_state_oneshot = mct_set_state_shutdown,
317 .set_state_oneshot_stopped = mct_set_state_shutdown,
318 .tick_resume = mct_set_state_shutdown,
319};
320
321static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
322{
323 struct clock_event_device *evt = dev_id;
324
325 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
326
327 evt->event_handler(evt);
328
329 return IRQ_HANDLED;
330}
331
332static struct irqaction mct_comp_event_irq = {
333 .name = "mct_comp_irq",
334 .flags = IRQF_TIMER | IRQF_IRQPOLL,
335 .handler = exynos4_mct_comp_isr,
336 .dev_id = &mct_comp_device,
337};
338
339static int exynos4_clockevent_init(void)
340{
341 mct_comp_device.cpumask = cpumask_of(0);
342 clockevents_config_and_register(&mct_comp_device, clk_rate,
343 0xf, 0xffffffff);
344 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
345
346 return 0;
347}
348
349static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
350
351/* Clock event handling */
352static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
353{
354 unsigned long tmp;
355 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
356 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
357
358 tmp = readl_relaxed(reg_base + offset);
359 if (tmp & mask) {
360 tmp &= ~mask;
361 exynos4_mct_write(tmp, offset);
362 }
363}
364
365static void exynos4_mct_tick_start(unsigned long cycles,
366 struct mct_clock_event_device *mevt)
367{
368 unsigned long tmp;
369
370 exynos4_mct_tick_stop(mevt);
371
372 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
373
374 /* update interrupt count buffer */
375 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
376
377 /* enable MCT tick interrupt */
378 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
379
380 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
381 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
382 MCT_L_TCON_INTERVAL_MODE;
383 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
384}
385
386static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
387{
388 /* Clear the MCT tick interrupt */
389 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
390 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
391}
392
393static int exynos4_tick_set_next_event(unsigned long cycles,
394 struct clock_event_device *evt)
395{
396 struct mct_clock_event_device *mevt;
397
398 mevt = container_of(evt, struct mct_clock_event_device, evt);
399 exynos4_mct_tick_start(cycles, mevt);
400 return 0;
401}
402
403static int set_state_shutdown(struct clock_event_device *evt)
404{
405 struct mct_clock_event_device *mevt;
406
407 mevt = container_of(evt, struct mct_clock_event_device, evt);
408 exynos4_mct_tick_stop(mevt);
409 exynos4_mct_tick_clear(mevt);
410 return 0;
411}
412
413static int set_state_periodic(struct clock_event_device *evt)
414{
415 struct mct_clock_event_device *mevt;
416 unsigned long cycles_per_jiffy;
417
418 mevt = container_of(evt, struct mct_clock_event_device, evt);
419 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
420 >> evt->shift);
421 exynos4_mct_tick_stop(mevt);
422 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
423 return 0;
424}
425
426static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
427{
428 struct mct_clock_event_device *mevt = dev_id;
429 struct clock_event_device *evt = &mevt->evt;
430
431 /*
432 * This is for supporting oneshot mode.
433 * Mct would generate interrupt periodically
434 * without explicit stopping.
435 */
436 if (!clockevent_state_periodic(&mevt->evt))
437 exynos4_mct_tick_stop(mevt);
438
439 exynos4_mct_tick_clear(mevt);
440
441 evt->event_handler(evt);
442
443 return IRQ_HANDLED;
444}
445
446static int exynos4_mct_starting_cpu(unsigned int cpu)
447{
448 struct mct_clock_event_device *mevt =
449 per_cpu_ptr(&percpu_mct_tick, cpu);
450 struct clock_event_device *evt = &mevt->evt;
451
452 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
453 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
454
455 evt->name = mevt->name;
456 evt->cpumask = cpumask_of(cpu);
457 evt->set_next_event = exynos4_tick_set_next_event;
458 evt->set_state_periodic = set_state_periodic;
459 evt->set_state_shutdown = set_state_shutdown;
460 evt->set_state_oneshot = set_state_shutdown;
461 evt->set_state_oneshot_stopped = set_state_shutdown;
462 evt->tick_resume = set_state_shutdown;
463 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
464 evt->rating = 500; /* use value higher than ARM arch timer */
465
466 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
467
468 if (mct_int_type == MCT_INT_SPI) {
469
470 if (evt->irq == -1)
471 return -EIO;
472
473 irq_force_affinity(evt->irq, cpumask_of(cpu));
474 enable_irq(evt->irq);
475 } else {
476 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
477 }
478 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
479 0xf, 0x7fffffff);
480
481 return 0;
482}
483
484static int exynos4_mct_dying_cpu(unsigned int cpu)
485{
486 struct mct_clock_event_device *mevt =
487 per_cpu_ptr(&percpu_mct_tick, cpu);
488 struct clock_event_device *evt = &mevt->evt;
489
490 evt->set_state_shutdown(evt);
491 if (mct_int_type == MCT_INT_SPI) {
492 if (evt->irq != -1)
493 disable_irq_nosync(evt->irq);
494 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
495 } else {
496 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
497 }
498 return 0;
499}
500
501static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
502{
503 int err, cpu;
504 struct clk *mct_clk, *tick_clk;
505
506 tick_clk = of_clk_get_by_name(np, "fin_pll");
507 if (IS_ERR(tick_clk))
508 panic("%s: unable to determine tick clock rate\n", __func__);
509 clk_rate = clk_get_rate(tick_clk);
510
511 mct_clk = of_clk_get_by_name(np, "mct");
512 if (IS_ERR(mct_clk))
513 panic("%s: unable to retrieve mct clock instance\n", __func__);
514 clk_prepare_enable(mct_clk);
515
516 reg_base = base;
517 if (!reg_base)
518 panic("%s: unable to ioremap mct address space\n", __func__);
519
520 if (mct_int_type == MCT_INT_PPI) {
521
522 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
523 exynos4_mct_tick_isr, "MCT",
524 &percpu_mct_tick);
525 WARN(err, "MCT: can't request IRQ %d (%d)\n",
526 mct_irqs[MCT_L0_IRQ], err);
527 } else {
528 for_each_possible_cpu(cpu) {
529 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
530 struct mct_clock_event_device *pcpu_mevt =
531 per_cpu_ptr(&percpu_mct_tick, cpu);
532
533 pcpu_mevt->evt.irq = -1;
534
535 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
536 if (request_irq(mct_irq,
537 exynos4_mct_tick_isr,
538 IRQF_TIMER | IRQF_NOBALANCING,
539 pcpu_mevt->name, pcpu_mevt)) {
540 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
541 cpu);
542
543 continue;
544 }
545 pcpu_mevt->evt.irq = mct_irq;
546 }
547 }
548
549 /* Install hotplug callbacks which configure the timer on this CPU */
550 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
551 "clockevents/exynos4/mct_timer:starting",
552 exynos4_mct_starting_cpu,
553 exynos4_mct_dying_cpu);
554 if (err)
555 goto out_irq;
556
557 return 0;
558
559out_irq:
560 if (mct_int_type == MCT_INT_PPI) {
561 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
562 } else {
563 for_each_possible_cpu(cpu) {
564 struct mct_clock_event_device *pcpu_mevt =
565 per_cpu_ptr(&percpu_mct_tick, cpu);
566
567 if (pcpu_mevt->evt.irq != -1) {
568 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
569 pcpu_mevt->evt.irq = -1;
570 }
571 }
572 }
573 return err;
574}
575
576static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
577{
578 u32 nr_irqs, i;
579 int ret;
580
581 mct_int_type = int_type;
582
583 /* This driver uses only one global timer interrupt */
584 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
585
586 /*
587 * Find out the number of local irqs specified. The local
588 * timer irqs are specified after the four global timer
589 * irqs are specified.
590 */
591 nr_irqs = of_irq_count(np);
592 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
593 mct_irqs[i] = irq_of_parse_and_map(np, i);
594
595 ret = exynos4_timer_resources(np, of_iomap(np, 0));
596 if (ret)
597 return ret;
598
599 ret = exynos4_clocksource_init();
600 if (ret)
601 return ret;
602
603 return exynos4_clockevent_init();
604}
605
606
607static int __init mct_init_spi(struct device_node *np)
608{
609 return mct_init_dt(np, MCT_INT_SPI);
610}
611
612static int __init mct_init_ppi(struct device_node *np)
613{
614 return mct_init_dt(np, MCT_INT_PPI);
615}
616TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
617TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);