Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Real Time Clock interface for Linux
   4 *
   5 *	Copyright (C) 1996 Paul Gortmaker
   6 *
   7 *	This driver allows use of the real time clock (built into
   8 *	nearly all computers) from user space. It exports the /dev/rtc
   9 *	interface supporting various ioctl() and also the
  10 *	/proc/driver/rtc pseudo-file for status information.
  11 *
  12 *	The ioctls can be used to set the interrupt behaviour and
  13 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
  14 *	interface can be used to make use of these timer interrupts,
  15 *	be they interval or alarm based.
  16 *
  17 *	The /dev/rtc interface will block on reads until an interrupt
  18 *	has been received. If a RTC interrupt has already happened,
  19 *	it will output an unsigned long and then block. The output value
  20 *	contains the interrupt status in the low byte and the number of
  21 *	interrupts since the last read in the remaining high bytes. The
  22 *	/dev/rtc interface can also be used with the select(2) call.
  23 *
  24 *	Based on other minimal char device drivers, like Alan's
  25 *	watchdog, Ted's random, etc. etc.
  26 *
  27 *	1.07	Paul Gortmaker.
  28 *	1.08	Miquel van Smoorenburg: disallow certain things on the
  29 *		DEC Alpha as the CMOS clock is also used for other things.
  30 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
  31 *	1.09a	Pete Zaitcev: Sun SPARC
  32 *	1.09b	Jeff Garzik: Modularize, init cleanup
  33 *	1.09c	Jeff Garzik: SMP cleanup
  34 *	1.10	Paul Barton-Davis: add support for async I/O
  35 *	1.10a	Andrea Arcangeli: Alpha updates
  36 *	1.10b	Andrew Morton: SMP lock fix
  37 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
  38 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
  39 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
  40 *	1.11	Takashi Iwai: Kernel access functions
  41 *			      rtc_register/rtc_unregister/rtc_control
  42 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  43 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  44 *		CONFIG_HPET_EMULATE_RTC
  45 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
  46 *	1.12ac	Alan Cox: Allow read access to the day of week register
  47 *	1.12b	David John: Remove calls to the BKL.
  48 */
  49
  50#define RTC_VERSION		"1.12b"
  51
  52/*
  53 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  54 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  55 *	design of the RTC, we don't want two different things trying to
  56 *	get to it at once. (e.g. the periodic 11 min sync from
  57 *      kernel/time/ntp.c vs. this driver.)
  58 */
  59
  60#include <linux/interrupt.h>
  61#include <linux/module.h>
  62#include <linux/kernel.h>
  63#include <linux/types.h>
  64#include <linux/miscdevice.h>
  65#include <linux/ioport.h>
  66#include <linux/fcntl.h>
  67#include <linux/mc146818rtc.h>
  68#include <linux/init.h>
  69#include <linux/poll.h>
  70#include <linux/proc_fs.h>
  71#include <linux/seq_file.h>
  72#include <linux/spinlock.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sysctl.h>
  75#include <linux/wait.h>
  76#include <linux/bcd.h>
  77#include <linux/delay.h>
  78#include <linux/uaccess.h>
  79#include <linux/ratelimit.h>
  80
  81#include <asm/current.h>
  82
  83#ifdef CONFIG_X86
  84#include <asm/hpet.h>
  85#endif
  86
  87#ifdef CONFIG_SPARC32
  88#include <linux/of.h>
  89#include <linux/of_device.h>
  90#include <asm/io.h>
  91
  92static unsigned long rtc_port;
  93static int rtc_irq;
  94#endif
  95
  96#ifdef	CONFIG_HPET_EMULATE_RTC
  97#undef	RTC_IRQ
  98#endif
  99
 100#ifdef RTC_IRQ
 101static int rtc_has_irq = 1;
 102#endif
 103
 104#ifndef CONFIG_HPET_EMULATE_RTC
 105#define is_hpet_enabled()			0
 106#define hpet_set_alarm_time(hrs, min, sec)	0
 107#define hpet_set_periodic_freq(arg)		0
 108#define hpet_mask_rtc_irq_bit(arg)		0
 109#define hpet_set_rtc_irq_bit(arg)		0
 110#define hpet_rtc_timer_init()			do { } while (0)
 111#define hpet_rtc_dropped_irq()			0
 112#define hpet_register_irq_handler(h)		({ 0; })
 113#define hpet_unregister_irq_handler(h)		({ 0; })
 114#ifdef RTC_IRQ
 115static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 116{
 117	return 0;
 118}
 119#endif
 120#endif
 121
 122/*
 123 *	We sponge a minor off of the misc major. No need slurping
 124 *	up another valuable major dev number for this. If you add
 125 *	an ioctl, make sure you don't conflict with SPARC's RTC
 126 *	ioctls.
 127 */
 128
 129static struct fasync_struct *rtc_async_queue;
 130
 131static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 132
 133#ifdef RTC_IRQ
 134static void rtc_dropped_irq(struct timer_list *unused);
 135
 136static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
 137#endif
 138
 139static ssize_t rtc_read(struct file *file, char __user *buf,
 140			size_t count, loff_t *ppos);
 141
 142static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 143static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
 144
 145#ifdef RTC_IRQ
 146static __poll_t rtc_poll(struct file *file, poll_table *wait);
 147#endif
 148
 149static void get_rtc_alm_time(struct rtc_time *alm_tm);
 150#ifdef RTC_IRQ
 151static void set_rtc_irq_bit_locked(unsigned char bit);
 152static void mask_rtc_irq_bit_locked(unsigned char bit);
 153
 154static inline void set_rtc_irq_bit(unsigned char bit)
 155{
 156	spin_lock_irq(&rtc_lock);
 157	set_rtc_irq_bit_locked(bit);
 158	spin_unlock_irq(&rtc_lock);
 159}
 160
 161static void mask_rtc_irq_bit(unsigned char bit)
 162{
 163	spin_lock_irq(&rtc_lock);
 164	mask_rtc_irq_bit_locked(bit);
 165	spin_unlock_irq(&rtc_lock);
 166}
 167#endif
 168
 169#ifdef CONFIG_PROC_FS
 170static int rtc_proc_show(struct seq_file *seq, void *v);
 171#endif
 172
 173/*
 174 *	Bits in rtc_status. (6 bits of room for future expansion)
 175 */
 176
 177#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
 178#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
 179
 180/*
 181 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 182 * protected by the spin lock rtc_lock. However, ioctl can still disable the
 183 * timer in rtc_status and then with del_timer after the interrupt has read
 184 * rtc_status but before mod_timer is called, which would then reenable the
 185 * timer (but you would need to have an awful timing before you'd trip on it)
 186 */
 187static unsigned long rtc_status;	/* bitmapped status byte.	*/
 188static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
 189static unsigned long rtc_irq_data;	/* our output to the world	*/
 190static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 191
 192/*
 193 *	If this driver ever becomes modularised, it will be really nice
 194 *	to make the epoch retain its value across module reload...
 195 */
 196
 197static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
 198
 199static const unsigned char days_in_mo[] =
 200{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 201
 202/*
 203 * Returns true if a clock update is in progress
 204 */
 205static inline unsigned char rtc_is_updating(void)
 206{
 207	unsigned long flags;
 208	unsigned char uip;
 209
 210	spin_lock_irqsave(&rtc_lock, flags);
 211	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 212	spin_unlock_irqrestore(&rtc_lock, flags);
 213	return uip;
 214}
 215
 216#ifdef RTC_IRQ
 217/*
 218 *	A very tiny interrupt handler. It runs with interrupts disabled,
 219 *	but there is possibility of conflicting with the set_rtc_mmss()
 220 *	call (the rtc irq and the timer irq can easily run at the same
 221 *	time in two different CPUs). So we need to serialize
 222 *	accesses to the chip with the rtc_lock spinlock that each
 223 *	architecture should implement in the timer code.
 224 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 225 */
 226
 227static irqreturn_t rtc_interrupt(int irq, void *dev_id)
 228{
 229	/*
 230	 *	Can be an alarm interrupt, update complete interrupt,
 231	 *	or a periodic interrupt. We store the status in the
 232	 *	low byte and the number of interrupts received since
 233	 *	the last read in the remainder of rtc_irq_data.
 234	 */
 235
 236	spin_lock(&rtc_lock);
 237	rtc_irq_data += 0x100;
 238	rtc_irq_data &= ~0xff;
 239	if (is_hpet_enabled()) {
 240		/*
 241		 * In this case it is HPET RTC interrupt handler
 242		 * calling us, with the interrupt information
 243		 * passed as arg1, instead of irq.
 244		 */
 245		rtc_irq_data |= (unsigned long)irq & 0xF0;
 246	} else {
 247		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 248	}
 249
 250	if (rtc_status & RTC_TIMER_ON)
 251		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 252
 253	spin_unlock(&rtc_lock);
 254
 255	wake_up_interruptible(&rtc_wait);
 256
 257	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 258
 259	return IRQ_HANDLED;
 260}
 261#endif
 262
 263/*
 264 * sysctl-tuning infrastructure.
 265 */
 266static struct ctl_table rtc_table[] = {
 267	{
 268		.procname	= "max-user-freq",
 269		.data		= &rtc_max_user_freq,
 270		.maxlen		= sizeof(int),
 271		.mode		= 0644,
 272		.proc_handler	= proc_dointvec,
 273	},
 274	{ }
 275};
 276
 277static struct ctl_table rtc_root[] = {
 278	{
 279		.procname	= "rtc",
 280		.mode		= 0555,
 281		.child		= rtc_table,
 282	},
 283	{ }
 284};
 285
 286static struct ctl_table dev_root[] = {
 287	{
 288		.procname	= "dev",
 289		.mode		= 0555,
 290		.child		= rtc_root,
 291	},
 292	{ }
 293};
 294
 295static struct ctl_table_header *sysctl_header;
 296
 297static int __init init_sysctl(void)
 298{
 299    sysctl_header = register_sysctl_table(dev_root);
 300    return 0;
 301}
 302
 303static void __exit cleanup_sysctl(void)
 304{
 305    unregister_sysctl_table(sysctl_header);
 306}
 307
 308/*
 309 *	Now all the various file operations that we export.
 310 */
 311
 312static ssize_t rtc_read(struct file *file, char __user *buf,
 313			size_t count, loff_t *ppos)
 314{
 315#ifndef RTC_IRQ
 316	return -EIO;
 317#else
 318	DECLARE_WAITQUEUE(wait, current);
 319	unsigned long data;
 320	ssize_t retval;
 321
 322	if (rtc_has_irq == 0)
 323		return -EIO;
 324
 325	/*
 326	 * Historically this function used to assume that sizeof(unsigned long)
 327	 * is the same in userspace and kernelspace.  This lead to problems
 328	 * for configurations with multiple ABIs such a the MIPS o32 and 64
 329	 * ABIs supported on the same kernel.  So now we support read of both
 330	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
 331	 * userspace ABI.
 332	 */
 333	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
 334		return -EINVAL;
 335
 336	add_wait_queue(&rtc_wait, &wait);
 337
 338	do {
 339		/* First make it right. Then make it fast. Putting this whole
 340		 * block within the parentheses of a while would be too
 341		 * confusing. And no, xchg() is not the answer. */
 342
 343		__set_current_state(TASK_INTERRUPTIBLE);
 344
 345		spin_lock_irq(&rtc_lock);
 346		data = rtc_irq_data;
 347		rtc_irq_data = 0;
 348		spin_unlock_irq(&rtc_lock);
 349
 350		if (data != 0)
 351			break;
 352
 353		if (file->f_flags & O_NONBLOCK) {
 354			retval = -EAGAIN;
 355			goto out;
 356		}
 357		if (signal_pending(current)) {
 358			retval = -ERESTARTSYS;
 359			goto out;
 360		}
 361		schedule();
 362	} while (1);
 363
 364	if (count == sizeof(unsigned int)) {
 365		retval = put_user(data,
 366				  (unsigned int __user *)buf) ?: sizeof(int);
 367	} else {
 368		retval = put_user(data,
 369				  (unsigned long __user *)buf) ?: sizeof(long);
 370	}
 371	if (!retval)
 372		retval = count;
 373 out:
 374	__set_current_state(TASK_RUNNING);
 375	remove_wait_queue(&rtc_wait, &wait);
 376
 377	return retval;
 378#endif
 379}
 380
 381static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 382{
 383	struct rtc_time wtime;
 384
 385#ifdef RTC_IRQ
 386	if (rtc_has_irq == 0) {
 387		switch (cmd) {
 388		case RTC_AIE_OFF:
 389		case RTC_AIE_ON:
 390		case RTC_PIE_OFF:
 391		case RTC_PIE_ON:
 392		case RTC_UIE_OFF:
 393		case RTC_UIE_ON:
 394		case RTC_IRQP_READ:
 395		case RTC_IRQP_SET:
 396			return -EINVAL;
 397		}
 398	}
 399#endif
 400
 401	switch (cmd) {
 402#ifdef RTC_IRQ
 403	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
 404	{
 405		mask_rtc_irq_bit(RTC_AIE);
 406		return 0;
 407	}
 408	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
 409	{
 410		set_rtc_irq_bit(RTC_AIE);
 411		return 0;
 412	}
 413	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
 414	{
 415		/* can be called from isr via rtc_control() */
 416		unsigned long flags;
 417
 418		spin_lock_irqsave(&rtc_lock, flags);
 419		mask_rtc_irq_bit_locked(RTC_PIE);
 420		if (rtc_status & RTC_TIMER_ON) {
 421			rtc_status &= ~RTC_TIMER_ON;
 422			del_timer(&rtc_irq_timer);
 423		}
 424		spin_unlock_irqrestore(&rtc_lock, flags);
 425
 426		return 0;
 427	}
 428	case RTC_PIE_ON:	/* Allow periodic ints		*/
 429	{
 430		/* can be called from isr via rtc_control() */
 431		unsigned long flags;
 432
 433		/*
 434		 * We don't really want Joe User enabling more
 435		 * than 64Hz of interrupts on a multi-user machine.
 436		 */
 437		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
 438						(!capable(CAP_SYS_RESOURCE)))
 439			return -EACCES;
 440
 441		spin_lock_irqsave(&rtc_lock, flags);
 442		if (!(rtc_status & RTC_TIMER_ON)) {
 443			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
 444					2*HZ/100);
 445			rtc_status |= RTC_TIMER_ON;
 446		}
 447		set_rtc_irq_bit_locked(RTC_PIE);
 448		spin_unlock_irqrestore(&rtc_lock, flags);
 449
 450		return 0;
 451	}
 452	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
 453	{
 454		mask_rtc_irq_bit(RTC_UIE);
 455		return 0;
 456	}
 457	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
 458	{
 459		set_rtc_irq_bit(RTC_UIE);
 460		return 0;
 461	}
 462#endif
 463	case RTC_ALM_READ:	/* Read the present alarm time */
 464	{
 465		/*
 466		 * This returns a struct rtc_time. Reading >= 0xc0
 467		 * means "don't care" or "match all". Only the tm_hour,
 468		 * tm_min, and tm_sec values are filled in.
 469		 */
 470		memset(&wtime, 0, sizeof(struct rtc_time));
 471		get_rtc_alm_time(&wtime);
 472		break;
 473	}
 474	case RTC_ALM_SET:	/* Store a time into the alarm */
 475	{
 476		/*
 477		 * This expects a struct rtc_time. Writing 0xff means
 478		 * "don't care" or "match all". Only the tm_hour,
 479		 * tm_min and tm_sec are used.
 480		 */
 481		unsigned char hrs, min, sec;
 482		struct rtc_time alm_tm;
 483
 484		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
 485				   sizeof(struct rtc_time)))
 486			return -EFAULT;
 487
 488		hrs = alm_tm.tm_hour;
 489		min = alm_tm.tm_min;
 490		sec = alm_tm.tm_sec;
 491
 492		spin_lock_irq(&rtc_lock);
 493		if (hpet_set_alarm_time(hrs, min, sec)) {
 494			/*
 495			 * Fallthru and set alarm time in CMOS too,
 496			 * so that we will get proper value in RTC_ALM_READ
 497			 */
 498		}
 499		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
 500							RTC_ALWAYS_BCD) {
 501			if (sec < 60)
 502				sec = bin2bcd(sec);
 503			else
 504				sec = 0xff;
 505
 506			if (min < 60)
 507				min = bin2bcd(min);
 508			else
 509				min = 0xff;
 510
 511			if (hrs < 24)
 512				hrs = bin2bcd(hrs);
 513			else
 514				hrs = 0xff;
 515		}
 516		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 517		CMOS_WRITE(min, RTC_MINUTES_ALARM);
 518		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 519		spin_unlock_irq(&rtc_lock);
 520
 521		return 0;
 522	}
 523	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
 524	{
 525		memset(&wtime, 0, sizeof(struct rtc_time));
 526		rtc_get_rtc_time(&wtime);
 527		break;
 528	}
 529	case RTC_SET_TIME:	/* Set the RTC */
 530	{
 531		struct rtc_time rtc_tm;
 532		unsigned char mon, day, hrs, min, sec, leap_yr;
 533		unsigned char save_control, save_freq_select;
 534		unsigned int yrs;
 535#ifdef CONFIG_MACH_DECSTATION
 536		unsigned int real_yrs;
 537#endif
 538
 539		if (!capable(CAP_SYS_TIME))
 540			return -EACCES;
 541
 542		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
 543				   sizeof(struct rtc_time)))
 544			return -EFAULT;
 545
 546		yrs = rtc_tm.tm_year + 1900;
 547		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 548		day = rtc_tm.tm_mday;
 549		hrs = rtc_tm.tm_hour;
 550		min = rtc_tm.tm_min;
 551		sec = rtc_tm.tm_sec;
 552
 553		if (yrs < 1970)
 554			return -EINVAL;
 555
 556		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 557
 558		if ((mon > 12) || (day == 0))
 559			return -EINVAL;
 560
 561		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 562			return -EINVAL;
 563
 564		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 565			return -EINVAL;
 566
 567		yrs -= epoch;
 568		if (yrs > 255)		/* They are unsigned */
 569			return -EINVAL;
 570
 571		spin_lock_irq(&rtc_lock);
 572#ifdef CONFIG_MACH_DECSTATION
 573		real_yrs = yrs;
 574		yrs = 72;
 575
 576		/*
 577		 * We want to keep the year set to 73 until March
 578		 * for non-leap years, so that Feb, 29th is handled
 579		 * correctly.
 580		 */
 581		if (!leap_yr && mon < 3) {
 582			real_yrs--;
 583			yrs = 73;
 584		}
 585#endif
 586		/* These limits and adjustments are independent of
 587		 * whether the chip is in binary mode or not.
 588		 */
 589		if (yrs > 169) {
 590			spin_unlock_irq(&rtc_lock);
 591			return -EINVAL;
 592		}
 593		if (yrs >= 100)
 594			yrs -= 100;
 595
 596		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
 597		    || RTC_ALWAYS_BCD) {
 598			sec = bin2bcd(sec);
 599			min = bin2bcd(min);
 600			hrs = bin2bcd(hrs);
 601			day = bin2bcd(day);
 602			mon = bin2bcd(mon);
 603			yrs = bin2bcd(yrs);
 604		}
 605
 606		save_control = CMOS_READ(RTC_CONTROL);
 607		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 608		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 609		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 610
 611#ifdef CONFIG_MACH_DECSTATION
 612		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
 613#endif
 614		CMOS_WRITE(yrs, RTC_YEAR);
 615		CMOS_WRITE(mon, RTC_MONTH);
 616		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
 617		CMOS_WRITE(hrs, RTC_HOURS);
 618		CMOS_WRITE(min, RTC_MINUTES);
 619		CMOS_WRITE(sec, RTC_SECONDS);
 620
 621		CMOS_WRITE(save_control, RTC_CONTROL);
 622		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 623
 624		spin_unlock_irq(&rtc_lock);
 625		return 0;
 626	}
 627#ifdef RTC_IRQ
 628	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
 629	{
 630		return put_user(rtc_freq, (unsigned long __user *)arg);
 631	}
 632	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
 633	{
 634		int tmp = 0;
 635		unsigned char val;
 636		/* can be called from isr via rtc_control() */
 637		unsigned long flags;
 638
 639		/*
 640		 * The max we can do is 8192Hz.
 641		 */
 642		if ((arg < 2) || (arg > 8192))
 643			return -EINVAL;
 644		/*
 645		 * We don't really want Joe User generating more
 646		 * than 64Hz of interrupts on a multi-user machine.
 647		 */
 648		if (!kernel && (arg > rtc_max_user_freq) &&
 649					!capable(CAP_SYS_RESOURCE))
 650			return -EACCES;
 651
 652		while (arg > (1<<tmp))
 653			tmp++;
 654
 655		/*
 656		 * Check that the input was really a power of 2.
 657		 */
 658		if (arg != (1<<tmp))
 659			return -EINVAL;
 660
 661		rtc_freq = arg;
 662
 663		spin_lock_irqsave(&rtc_lock, flags);
 664		if (hpet_set_periodic_freq(arg)) {
 665			spin_unlock_irqrestore(&rtc_lock, flags);
 666			return 0;
 667		}
 668
 669		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
 670		val |= (16 - tmp);
 671		CMOS_WRITE(val, RTC_FREQ_SELECT);
 672		spin_unlock_irqrestore(&rtc_lock, flags);
 673		return 0;
 674	}
 675#endif
 676	case RTC_EPOCH_READ:	/* Read the epoch.	*/
 677	{
 678		return put_user(epoch, (unsigned long __user *)arg);
 679	}
 680	case RTC_EPOCH_SET:	/* Set the epoch.	*/
 681	{
 682		/*
 683		 * There were no RTC clocks before 1900.
 684		 */
 685		if (arg < 1900)
 686			return -EINVAL;
 687
 688		if (!capable(CAP_SYS_TIME))
 689			return -EACCES;
 690
 691		epoch = arg;
 692		return 0;
 693	}
 694	default:
 695		return -ENOTTY;
 696	}
 697	return copy_to_user((void __user *)arg,
 698			    &wtime, sizeof wtime) ? -EFAULT : 0;
 699}
 700
 701static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 702{
 703	long ret;
 704	ret = rtc_do_ioctl(cmd, arg, 0);
 705	return ret;
 706}
 707
 708/*
 709 *	We enforce only one user at a time here with the open/close.
 710 *	Also clear the previous interrupt data on an open, and clean
 711 *	up things on a close.
 712 */
 713static int rtc_open(struct inode *inode, struct file *file)
 714{
 715	spin_lock_irq(&rtc_lock);
 716
 717	if (rtc_status & RTC_IS_OPEN)
 718		goto out_busy;
 719
 720	rtc_status |= RTC_IS_OPEN;
 721
 722	rtc_irq_data = 0;
 723	spin_unlock_irq(&rtc_lock);
 724	return 0;
 725
 726out_busy:
 727	spin_unlock_irq(&rtc_lock);
 728	return -EBUSY;
 729}
 730
 731static int rtc_fasync(int fd, struct file *filp, int on)
 732{
 733	return fasync_helper(fd, filp, on, &rtc_async_queue);
 734}
 735
 736static int rtc_release(struct inode *inode, struct file *file)
 737{
 738#ifdef RTC_IRQ
 739	unsigned char tmp;
 740
 741	if (rtc_has_irq == 0)
 742		goto no_irq;
 743
 744	/*
 745	 * Turn off all interrupts once the device is no longer
 746	 * in use, and clear the data.
 747	 */
 748
 749	spin_lock_irq(&rtc_lock);
 750	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 751		tmp = CMOS_READ(RTC_CONTROL);
 752		tmp &=  ~RTC_PIE;
 753		tmp &=  ~RTC_AIE;
 754		tmp &=  ~RTC_UIE;
 755		CMOS_WRITE(tmp, RTC_CONTROL);
 756		CMOS_READ(RTC_INTR_FLAGS);
 757	}
 758	if (rtc_status & RTC_TIMER_ON) {
 759		rtc_status &= ~RTC_TIMER_ON;
 760		del_timer(&rtc_irq_timer);
 761	}
 762	spin_unlock_irq(&rtc_lock);
 763
 764no_irq:
 765#endif
 766
 767	spin_lock_irq(&rtc_lock);
 768	rtc_irq_data = 0;
 769	rtc_status &= ~RTC_IS_OPEN;
 770	spin_unlock_irq(&rtc_lock);
 771
 772	return 0;
 773}
 774
 775#ifdef RTC_IRQ
 776static __poll_t rtc_poll(struct file *file, poll_table *wait)
 777{
 778	unsigned long l;
 779
 780	if (rtc_has_irq == 0)
 781		return 0;
 782
 783	poll_wait(file, &rtc_wait, wait);
 784
 785	spin_lock_irq(&rtc_lock);
 786	l = rtc_irq_data;
 787	spin_unlock_irq(&rtc_lock);
 788
 789	if (l != 0)
 790		return EPOLLIN | EPOLLRDNORM;
 791	return 0;
 792}
 793#endif
 794
 795/*
 796 *	The various file operations we support.
 797 */
 798
 799static const struct file_operations rtc_fops = {
 800	.owner		= THIS_MODULE,
 801	.llseek		= no_llseek,
 802	.read		= rtc_read,
 803#ifdef RTC_IRQ
 804	.poll		= rtc_poll,
 805#endif
 806	.unlocked_ioctl	= rtc_ioctl,
 807	.open		= rtc_open,
 808	.release	= rtc_release,
 809	.fasync		= rtc_fasync,
 810};
 811
 812static struct miscdevice rtc_dev = {
 813	.minor		= RTC_MINOR,
 814	.name		= "rtc",
 815	.fops		= &rtc_fops,
 816};
 817
 818static resource_size_t rtc_size;
 819
 820static struct resource * __init rtc_request_region(resource_size_t size)
 821{
 822	struct resource *r;
 823
 824	if (RTC_IOMAPPED)
 825		r = request_region(RTC_PORT(0), size, "rtc");
 826	else
 827		r = request_mem_region(RTC_PORT(0), size, "rtc");
 828
 829	if (r)
 830		rtc_size = size;
 831
 832	return r;
 833}
 834
 835static void rtc_release_region(void)
 836{
 837	if (RTC_IOMAPPED)
 838		release_region(RTC_PORT(0), rtc_size);
 839	else
 840		release_mem_region(RTC_PORT(0), rtc_size);
 841}
 842
 843static int __init rtc_init(void)
 844{
 845#ifdef CONFIG_PROC_FS
 846	struct proc_dir_entry *ent;
 847#endif
 848#if defined(__alpha__) || defined(__mips__)
 849	unsigned int year, ctrl;
 850	char *guess = NULL;
 851#endif
 852#ifdef CONFIG_SPARC32
 853	struct device_node *ebus_dp;
 854	struct platform_device *op;
 855#else
 856	void *r;
 857#ifdef RTC_IRQ
 858	irq_handler_t rtc_int_handler_ptr;
 859#endif
 860#endif
 861
 862#ifdef CONFIG_SPARC32
 863	for_each_node_by_name(ebus_dp, "ebus") {
 864		struct device_node *dp;
 865		for_each_child_of_node(ebus_dp, dp) {
 866			if (of_node_name_eq(dp, "rtc")) {
 867				op = of_find_device_by_node(dp);
 868				if (op) {
 869					rtc_port = op->resource[0].start;
 870					rtc_irq = op->irqs[0];
 871					goto found;
 872				}
 873			}
 874		}
 875	}
 876	rtc_has_irq = 0;
 877	printk(KERN_ERR "rtc_init: no PC rtc found\n");
 878	return -EIO;
 879
 880found:
 881	if (!rtc_irq) {
 882		rtc_has_irq = 0;
 883		goto no_irq;
 884	}
 885
 886	/*
 887	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
 888	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
 889	 */
 890	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
 891			(void *)&rtc_port)) {
 892		rtc_has_irq = 0;
 893		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
 894		return -EIO;
 895	}
 896no_irq:
 897#else
 898	r = rtc_request_region(RTC_IO_EXTENT);
 899
 900	/*
 901	 * If we've already requested a smaller range (for example, because
 902	 * PNPBIOS or ACPI told us how the device is configured), the request
 903	 * above might fail because it's too big.
 904	 *
 905	 * If so, request just the range we actually use.
 906	 */
 907	if (!r)
 908		r = rtc_request_region(RTC_IO_EXTENT_USED);
 909	if (!r) {
 910#ifdef RTC_IRQ
 911		rtc_has_irq = 0;
 912#endif
 913		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
 914		       (long)(RTC_PORT(0)));
 915		return -EIO;
 916	}
 917
 918#ifdef RTC_IRQ
 919	if (is_hpet_enabled()) {
 920		int err;
 921
 922		rtc_int_handler_ptr = hpet_rtc_interrupt;
 923		err = hpet_register_irq_handler(rtc_interrupt);
 924		if (err != 0) {
 925			printk(KERN_WARNING "hpet_register_irq_handler failed "
 926					"in rtc_init().");
 927			return err;
 928		}
 929	} else {
 930		rtc_int_handler_ptr = rtc_interrupt;
 931	}
 932
 933	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
 934		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
 935		rtc_has_irq = 0;
 936		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
 937		rtc_release_region();
 938
 939		return -EIO;
 940	}
 941	hpet_rtc_timer_init();
 942
 943#endif
 944
 945#endif /* CONFIG_SPARC32 vs. others */
 946
 947	if (misc_register(&rtc_dev)) {
 948#ifdef RTC_IRQ
 949		free_irq(RTC_IRQ, NULL);
 950		hpet_unregister_irq_handler(rtc_interrupt);
 951		rtc_has_irq = 0;
 952#endif
 953		rtc_release_region();
 954		return -ENODEV;
 955	}
 956
 957#ifdef CONFIG_PROC_FS
 958	ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
 959	if (!ent)
 960		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
 961#endif
 962
 963#if defined(__alpha__) || defined(__mips__)
 964	rtc_freq = HZ;
 965
 966	/* Each operating system on an Alpha uses its own epoch.
 967	   Let's try to guess which one we are using now. */
 968
 969	if (rtc_is_updating() != 0)
 970		msleep(20);
 971
 972	spin_lock_irq(&rtc_lock);
 973	year = CMOS_READ(RTC_YEAR);
 974	ctrl = CMOS_READ(RTC_CONTROL);
 975	spin_unlock_irq(&rtc_lock);
 976
 977	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 978		year = bcd2bin(year);       /* This should never happen... */
 979
 980	if (year < 20) {
 981		epoch = 2000;
 982		guess = "SRM (post-2000)";
 983	} else if (year >= 20 && year < 48) {
 984		epoch = 1980;
 985		guess = "ARC console";
 986	} else if (year >= 48 && year < 72) {
 987		epoch = 1952;
 988		guess = "Digital UNIX";
 989#if defined(__mips__)
 990	} else if (year >= 72 && year < 74) {
 991		epoch = 2000;
 992		guess = "Digital DECstation";
 993#else
 994	} else if (year >= 70) {
 995		epoch = 1900;
 996		guess = "Standard PC (1900)";
 997#endif
 998	}
 999	if (guess)
1000		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1001			guess, epoch);
1002#endif
1003#ifdef RTC_IRQ
1004	if (rtc_has_irq == 0)
1005		goto no_irq2;
1006
1007	spin_lock_irq(&rtc_lock);
1008	rtc_freq = 1024;
1009	if (!hpet_set_periodic_freq(rtc_freq)) {
1010		/*
1011		 * Initialize periodic frequency to CMOS reset default,
1012		 * which is 1024Hz
1013		 */
1014		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1015			   RTC_FREQ_SELECT);
1016	}
1017	spin_unlock_irq(&rtc_lock);
1018no_irq2:
1019#endif
1020
1021	(void) init_sysctl();
1022
1023	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1024
1025	return 0;
1026}
1027
1028static void __exit rtc_exit(void)
1029{
1030	cleanup_sysctl();
1031	remove_proc_entry("driver/rtc", NULL);
1032	misc_deregister(&rtc_dev);
1033
1034#ifdef CONFIG_SPARC32
1035	if (rtc_has_irq)
1036		free_irq(rtc_irq, &rtc_port);
1037#else
1038	rtc_release_region();
1039#ifdef RTC_IRQ
1040	if (rtc_has_irq) {
1041		free_irq(RTC_IRQ, NULL);
1042		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1043	}
1044#endif
1045#endif /* CONFIG_SPARC32 */
1046}
1047
1048module_init(rtc_init);
1049module_exit(rtc_exit);
1050
1051#ifdef RTC_IRQ
1052/*
1053 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1054 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1055 *	Since the interrupt handler doesn't get called, the IRQ status
1056 *	byte doesn't get read, and the RTC stops generating interrupts.
1057 *	A timer is set, and will call this function if/when that happens.
1058 *	To get it out of this stalled state, we just read the status.
1059 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1060 *	(You *really* shouldn't be trying to use a non-realtime system
1061 *	for something that requires a steady > 1KHz signal anyways.)
1062 */
1063
1064static void rtc_dropped_irq(struct timer_list *unused)
1065{
1066	unsigned long freq;
1067
1068	spin_lock_irq(&rtc_lock);
1069
1070	if (hpet_rtc_dropped_irq()) {
1071		spin_unlock_irq(&rtc_lock);
1072		return;
1073	}
1074
1075	/* Just in case someone disabled the timer from behind our back... */
1076	if (rtc_status & RTC_TIMER_ON)
1077		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1078
1079	rtc_irq_data += ((rtc_freq/HZ)<<8);
1080	rtc_irq_data &= ~0xff;
1081	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1082
1083	freq = rtc_freq;
1084
1085	spin_unlock_irq(&rtc_lock);
1086
1087	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1088			   freq);
1089
1090	/* Now we have new data */
1091	wake_up_interruptible(&rtc_wait);
1092
1093	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1094}
1095#endif
1096
1097#ifdef CONFIG_PROC_FS
1098/*
1099 *	Info exported via "/proc/driver/rtc".
1100 */
1101
1102static int rtc_proc_show(struct seq_file *seq, void *v)
1103{
1104#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1105#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1106	struct rtc_time tm;
1107	unsigned char batt, ctrl;
1108	unsigned long freq;
1109
1110	spin_lock_irq(&rtc_lock);
1111	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1112	ctrl = CMOS_READ(RTC_CONTROL);
1113	freq = rtc_freq;
1114	spin_unlock_irq(&rtc_lock);
1115
1116
1117	rtc_get_rtc_time(&tm);
1118
1119	/*
1120	 * There is no way to tell if the luser has the RTC set for local
1121	 * time or for Universal Standard Time (GMT). Probably local though.
1122	 */
1123	seq_printf(seq,
1124		   "rtc_time\t: %ptRt\n"
1125		   "rtc_date\t: %ptRd\n"
1126		   "rtc_epoch\t: %04lu\n",
1127		   &tm, &tm, epoch);
1128
1129	get_rtc_alm_time(&tm);
1130
1131	/*
1132	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1133	 * match any value for that particular field. Values that are
1134	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1135	 */
1136	seq_puts(seq, "alarm\t\t: ");
1137	if (tm.tm_hour <= 24)
1138		seq_printf(seq, "%02d:", tm.tm_hour);
1139	else
1140		seq_puts(seq, "**:");
1141
1142	if (tm.tm_min <= 59)
1143		seq_printf(seq, "%02d:", tm.tm_min);
1144	else
1145		seq_puts(seq, "**:");
1146
1147	if (tm.tm_sec <= 59)
1148		seq_printf(seq, "%02d\n", tm.tm_sec);
1149	else
1150		seq_puts(seq, "**\n");
1151
1152	seq_printf(seq,
1153		   "DST_enable\t: %s\n"
1154		   "BCD\t\t: %s\n"
1155		   "24hr\t\t: %s\n"
1156		   "square_wave\t: %s\n"
1157		   "alarm_IRQ\t: %s\n"
1158		   "update_IRQ\t: %s\n"
1159		   "periodic_IRQ\t: %s\n"
1160		   "periodic_freq\t: %ld\n"
1161		   "batt_status\t: %s\n",
1162		   YN(RTC_DST_EN),
1163		   NY(RTC_DM_BINARY),
1164		   YN(RTC_24H),
1165		   YN(RTC_SQWE),
1166		   YN(RTC_AIE),
1167		   YN(RTC_UIE),
1168		   YN(RTC_PIE),
1169		   freq,
1170		   batt ? "okay" : "dead");
1171
1172	return  0;
1173#undef YN
1174#undef NY
1175}
1176#endif
1177
1178static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1179{
1180	unsigned long uip_watchdog = jiffies, flags;
1181	unsigned char ctrl;
1182#ifdef CONFIG_MACH_DECSTATION
1183	unsigned int real_year;
1184#endif
1185
1186	/*
1187	 * read RTC once any update in progress is done. The update
1188	 * can take just over 2ms. We wait 20ms. There is no need to
1189	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1190	 * If you need to know *exactly* when a second has started, enable
1191	 * periodic update complete interrupts, (via ioctl) and then
1192	 * immediately read /dev/rtc which will block until you get the IRQ.
1193	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1194	 */
1195
1196	while (rtc_is_updating() != 0 &&
1197	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1198		cpu_relax();
1199
1200	/*
1201	 * Only the values that we read from the RTC are set. We leave
1202	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1203	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1204	 * only updated by the RTC when initially set to a non-zero value.
1205	 */
1206	spin_lock_irqsave(&rtc_lock, flags);
1207	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1208	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1209	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1210	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1211	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1212	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1213	/* Only set from 2.6.16 onwards */
1214	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1215
1216#ifdef CONFIG_MACH_DECSTATION
1217	real_year = CMOS_READ(RTC_DEC_YEAR);
1218#endif
1219	ctrl = CMOS_READ(RTC_CONTROL);
1220	spin_unlock_irqrestore(&rtc_lock, flags);
1221
1222	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1223		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1224		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1225		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1226		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1227		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1228		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1229		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1230	}
1231
1232#ifdef CONFIG_MACH_DECSTATION
1233	rtc_tm->tm_year += real_year - 72;
1234#endif
1235
1236	/*
1237	 * Account for differences between how the RTC uses the values
1238	 * and how they are defined in a struct rtc_time;
1239	 */
1240	rtc_tm->tm_year += epoch - 1900;
1241	if (rtc_tm->tm_year <= 69)
1242		rtc_tm->tm_year += 100;
1243
1244	rtc_tm->tm_mon--;
1245}
1246
1247static void get_rtc_alm_time(struct rtc_time *alm_tm)
1248{
1249	unsigned char ctrl;
1250
1251	/*
1252	 * Only the values that we read from the RTC are set. That
1253	 * means only tm_hour, tm_min, and tm_sec.
1254	 */
1255	spin_lock_irq(&rtc_lock);
1256	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1257	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1258	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1259	ctrl = CMOS_READ(RTC_CONTROL);
1260	spin_unlock_irq(&rtc_lock);
1261
1262	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1263		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1264		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1265		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1266	}
1267}
1268
1269#ifdef RTC_IRQ
1270/*
1271 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1272 * Rumour has it that if you frob the interrupt enable/disable
1273 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1274 * ensure you actually start getting interrupts. Probably for
1275 * compatibility with older/broken chipset RTC implementations.
1276 * We also clear out any old irq data after an ioctl() that
1277 * meddles with the interrupt enable/disable bits.
1278 */
1279
1280static void mask_rtc_irq_bit_locked(unsigned char bit)
1281{
1282	unsigned char val;
1283
1284	if (hpet_mask_rtc_irq_bit(bit))
1285		return;
1286	val = CMOS_READ(RTC_CONTROL);
1287	val &=  ~bit;
1288	CMOS_WRITE(val, RTC_CONTROL);
1289	CMOS_READ(RTC_INTR_FLAGS);
1290
1291	rtc_irq_data = 0;
1292}
1293
1294static void set_rtc_irq_bit_locked(unsigned char bit)
1295{
1296	unsigned char val;
1297
1298	if (hpet_set_rtc_irq_bit(bit))
1299		return;
1300	val = CMOS_READ(RTC_CONTROL);
1301	val |= bit;
1302	CMOS_WRITE(val, RTC_CONTROL);
1303	CMOS_READ(RTC_INTR_FLAGS);
1304
1305	rtc_irq_data = 0;
1306}
1307#endif
1308
1309MODULE_AUTHOR("Paul Gortmaker");
1310MODULE_LICENSE("GPL");
1311MODULE_ALIAS_MISCDEV(RTC_MINOR);