Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Setup routines for AGP 3.5 compliant bridges.
4 */
5
6#include <linux/list.h>
7#include <linux/pci.h>
8#include <linux/agp_backend.h>
9#include <linux/module.h>
10#include <linux/slab.h>
11
12#include "agp.h"
13
14/* Generic AGP 3.5 enabling routines */
15
16struct agp_3_5_dev {
17 struct list_head list;
18 u8 capndx;
19 u32 maxbw;
20 struct pci_dev *dev;
21};
22
23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24{
25 struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 struct list_head *pos;
27
28 list_for_each(pos, head) {
29 cur = list_entry(pos, struct agp_3_5_dev, list);
30 if (cur->maxbw > n->maxbw)
31 break;
32 }
33 list_add_tail(new, pos);
34}
35
36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37{
38 struct agp_3_5_dev *cur;
39 struct pci_dev *dev;
40 struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 u32 nistat;
42
43 INIT_LIST_HEAD(head);
44
45 for (pos=start; pos!=head; ) {
46 cur = list_entry(pos, struct agp_3_5_dev, list);
47 dev = cur->dev;
48
49 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 cur->maxbw = (nistat >> 16) & 0xff;
51
52 tmp = pos;
53 pos = pos->next;
54 agp_3_5_dev_list_insert(head, tmp);
55 }
56}
57
58/*
59 * Initialize all isochronous transfer parameters for an AGP 3.0
60 * node (i.e. a host bridge in combination with the adapters
61 * lying behind it...)
62 */
63
64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 struct agp_3_5_dev *dev_list, unsigned int ndevs)
66{
67 /*
68 * Convenience structure to make the calculations clearer
69 * here. The field names come straight from the AGP 3.0 spec.
70 */
71 struct isoch_data {
72 u32 maxbw;
73 u32 n;
74 u32 y;
75 u32 l;
76 u32 rq;
77 struct agp_3_5_dev *dev;
78 };
79
80 struct pci_dev *td = bridge->dev, *dev;
81 struct list_head *head = &dev_list->list, *pos;
82 struct agp_3_5_dev *cur;
83 struct isoch_data *master, target;
84 unsigned int cdev = 0;
85 u32 mnistat, tnistat, tstatus, mcmd;
86 u16 tnicmd, mnicmd;
87 u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88 u32 step, rem, rem_isoch, rem_async;
89 int ret = 0;
90
91 /*
92 * We'll work with an array of isoch_data's (one for each
93 * device in dev_list) throughout this function.
94 */
95 master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
96 if (master == NULL) {
97 ret = -ENOMEM;
98 goto get_out;
99 }
100
101 /*
102 * Sort the device list by maxbw. We need to do this because the
103 * spec suggests that the devices with the smallest requirements
104 * have their resources allocated first, with all remaining resources
105 * falling to the device with the largest requirement.
106 *
107 * We don't exactly do this, we divide target resources by ndevs
108 * and split them amongst the AGP 3.0 devices. The remainder of such
109 * division operations are dropped on the last device, sort of like
110 * the spec mentions it should be done.
111 *
112 * We can't do this sort when we initially construct the dev_list
113 * because we don't know until this function whether isochronous
114 * transfers are enabled and consequently whether maxbw will mean
115 * anything.
116 */
117 agp_3_5_dev_list_sort(dev_list, ndevs);
118
119 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121
122 /* Extract power-on defaults from the target */
123 target.maxbw = (tnistat >> 16) & 0xff;
124 target.n = (tnistat >> 8) & 0xff;
125 target.y = (tnistat >> 6) & 0x3;
126 target.l = (tnistat >> 3) & 0x7;
127 target.rq = (tstatus >> 24) & 0xff;
128
129 y_max = target.y;
130
131 /*
132 * Extract power-on defaults for each device in dev_list. Along
133 * the way, calculate the total isochronous bandwidth required
134 * by these devices and the largest requested payload size.
135 */
136 list_for_each(pos, head) {
137 cur = list_entry(pos, struct agp_3_5_dev, list);
138 dev = cur->dev;
139
140 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141
142 master[cdev].maxbw = (mnistat >> 16) & 0xff;
143 master[cdev].n = (mnistat >> 8) & 0xff;
144 master[cdev].y = (mnistat >> 6) & 0x3;
145 master[cdev].dev = cur;
146
147 tot_bw += master[cdev].maxbw;
148 y_max = max(y_max, master[cdev].y);
149
150 cdev++;
151 }
152
153 /* Check if this configuration has any chance of working */
154 if (tot_bw > target.maxbw) {
155 dev_err(&td->dev, "isochronous bandwidth required "
156 "by AGP 3.0 devices exceeds that which is supported by "
157 "the AGP 3.0 bridge!\n");
158 ret = -ENODEV;
159 goto free_and_exit;
160 }
161
162 target.y = y_max;
163
164 /*
165 * Write the calculated payload size into the target's NICMD
166 * register. Doing this directly effects the ISOCH_N value
167 * in the target's NISTAT register, so we need to do this now
168 * to get an accurate value for ISOCH_N later.
169 */
170 pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171 tnicmd &= ~(0x3 << 6);
172 tnicmd |= target.y << 6;
173 pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174
175 /* Reread the target's ISOCH_N */
176 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177 target.n = (tnistat >> 8) & 0xff;
178
179 /* Calculate the minimum ISOCH_N needed by each master */
180 for (cdev=0; cdev<ndevs; cdev++) {
181 master[cdev].y = target.y;
182 master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183
184 tot_n += master[cdev].n;
185 }
186
187 /* Exit if the minimal ISOCH_N allocation among the masters is more
188 * than the target can handle. */
189 if (tot_n > target.n) {
190 dev_err(&td->dev, "number of isochronous "
191 "transactions per period required by AGP 3.0 devices "
192 "exceeds that which is supported by the AGP 3.0 "
193 "bridge!\n");
194 ret = -ENODEV;
195 goto free_and_exit;
196 }
197
198 /* Calculate left over ISOCH_N capability in the target. We'll give
199 * this to the hungriest device (as per the spec) */
200 rem = target.n - tot_n;
201
202 /*
203 * Calculate the minimum isochronous RQ depth needed by each master.
204 * Along the way, distribute the extra ISOCH_N capability calculated
205 * above.
206 */
207 for (cdev=0; cdev<ndevs; cdev++) {
208 /*
209 * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
210 * byte isochronous writes will be broken into 64B pieces.
211 * This means we need to budget more RQ depth to account for
212 * these kind of writes (each isochronous write is actually
213 * many writes on the AGP bus).
214 */
215 master[cdev].rq = master[cdev].n;
216 if (master[cdev].y > 0x1)
217 master[cdev].rq *= (1 << (master[cdev].y - 1));
218
219 tot_rq += master[cdev].rq;
220 }
221 master[ndevs-1].n += rem;
222
223 /* Figure the number of isochronous and asynchronous RQ slots the
224 * target is providing. */
225 rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
226 rq_async = target.rq - rq_isoch;
227
228 /* Exit if the minimal RQ needs of the masters exceeds what the target
229 * can provide. */
230 if (tot_rq > rq_isoch) {
231 dev_err(&td->dev, "number of request queue slots "
232 "required by the isochronous bandwidth requested by "
233 "AGP 3.0 devices exceeds the number provided by the "
234 "AGP 3.0 bridge!\n");
235 ret = -ENODEV;
236 goto free_and_exit;
237 }
238
239 /* Calculate asynchronous RQ capability in the target (per master) as
240 * well as the total number of leftover isochronous RQ slots. */
241 step = rq_async / ndevs;
242 rem_async = step + (rq_async % ndevs);
243 rem_isoch = rq_isoch - tot_rq;
244
245 /* Distribute the extra RQ slots calculated above and write our
246 * isochronous settings out to the actual devices. */
247 for (cdev=0; cdev<ndevs; cdev++) {
248 cur = master[cdev].dev;
249 dev = cur->dev;
250
251 master[cdev].rq += (cdev == ndevs - 1)
252 ? (rem_async + rem_isoch) : step;
253
254 pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
255 pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
256
257 mnicmd &= ~(0xff << 8);
258 mnicmd &= ~(0x3 << 6);
259 mcmd &= ~(0xff << 24);
260
261 mnicmd |= master[cdev].n << 8;
262 mnicmd |= master[cdev].y << 6;
263 mcmd |= master[cdev].rq << 24;
264
265 pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
266 pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
267 }
268
269free_and_exit:
270 kfree(master);
271
272get_out:
273 return ret;
274}
275
276/*
277 * This function basically allocates request queue slots among the
278 * AGP 3.0 systems in nonisochronous nodes. The algorithm is
279 * pretty stupid, divide the total number of RQ slots provided by the
280 * target by ndevs. Distribute this many slots to each AGP 3.0 device,
281 * giving any left over slots to the last device in dev_list.
282 */
283static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
284 struct agp_3_5_dev *dev_list, unsigned int ndevs)
285{
286 struct agp_3_5_dev *cur;
287 struct list_head *head = &dev_list->list, *pos;
288 u32 tstatus, mcmd;
289 u32 trq, mrq, rem;
290 unsigned int cdev = 0;
291
292 pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
293
294 trq = (tstatus >> 24) & 0xff;
295 mrq = trq / ndevs;
296
297 rem = mrq + (trq % ndevs);
298
299 for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
300 cur = list_entry(pos, struct agp_3_5_dev, list);
301
302 pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
303 mcmd &= ~(0xff << 24);
304 mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
305 pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
306 }
307}
308
309/*
310 * Fully configure and enable an AGP 3.0 host bridge and all the devices
311 * lying behind it.
312 */
313int agp_3_5_enable(struct agp_bridge_data *bridge)
314{
315 struct pci_dev *td = bridge->dev, *dev = NULL;
316 u8 mcapndx;
317 u32 isoch;
318 u32 tstatus, mstatus, ncapid;
319 u32 mmajor;
320 u16 mpstat;
321 struct agp_3_5_dev *dev_list, *cur;
322 struct list_head *head, *pos;
323 unsigned int ndevs = 0;
324 int ret = 0;
325
326 /* Extract some power-on defaults from the target */
327 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
328 isoch = (tstatus >> 17) & 0x1;
329 if (isoch == 0) /* isoch xfers not available, bail out. */
330 return -ENODEV;
331
332 /*
333 * Allocate a head for our AGP 3.5 device list
334 * (multiple AGP v3 devices are allowed behind a single bridge).
335 */
336 if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
337 ret = -ENOMEM;
338 goto get_out;
339 }
340 head = &dev_list->list;
341 INIT_LIST_HEAD(head);
342
343 /* Find all AGP devices, and add them to dev_list. */
344 for_each_pci_dev(dev) {
345 mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
346 if (mcapndx == 0)
347 continue;
348
349 switch ((dev->class >>8) & 0xff00) {
350 case 0x0600: /* Bridge */
351 /* Skip bridges. We should call this function for each one. */
352 continue;
353
354 case 0x0001: /* Unclassified device */
355 /* Don't know what this is, but log it for investigation. */
356 if (mcapndx != 0) {
357 dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
358 pci_name(dev),
359 dev->vendor, dev->device);
360 }
361 continue;
362
363 case 0x0300: /* Display controller */
364 case 0x0400: /* Multimedia controller */
365 if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
366 ret = -ENOMEM;
367 goto free_and_exit;
368 }
369 cur->dev = dev;
370
371 pos = &cur->list;
372 list_add(pos, head);
373 ndevs++;
374 continue;
375
376 default:
377 continue;
378 }
379 }
380
381 /*
382 * Take an initial pass through the devices lying behind our host
383 * bridge. Make sure each one is actually an AGP 3.0 device, otherwise
384 * exit with an error message. Along the way store the AGP 3.0
385 * cap_ptr for each device
386 */
387 list_for_each(pos, head) {
388 cur = list_entry(pos, struct agp_3_5_dev, list);
389 dev = cur->dev;
390
391 pci_read_config_word(dev, PCI_STATUS, &mpstat);
392 if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
393 continue;
394
395 pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
396 if (mcapndx != 0) {
397 do {
398 pci_read_config_dword(dev, mcapndx, &ncapid);
399 if ((ncapid & 0xff) != 2)
400 mcapndx = (ncapid >> 8) & 0xff;
401 }
402 while (((ncapid & 0xff) != 2) && (mcapndx != 0));
403 }
404
405 if (mcapndx == 0) {
406 dev_err(&td->dev, "woah! Non-AGP device %s on "
407 "secondary bus of AGP 3.5 bridge!\n",
408 pci_name(dev));
409 ret = -ENODEV;
410 goto free_and_exit;
411 }
412
413 mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
414 if (mmajor < 3) {
415 dev_err(&td->dev, "woah! AGP 2.0 device %s on "
416 "secondary bus of AGP 3.5 bridge operating "
417 "with AGP 3.0 electricals!\n", pci_name(dev));
418 ret = -ENODEV;
419 goto free_and_exit;
420 }
421
422 cur->capndx = mcapndx;
423
424 pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
425
426 if (((mstatus >> 3) & 0x1) == 0) {
427 dev_err(&td->dev, "woah! AGP 3.x device %s not "
428 "operating in AGP 3.x mode on secondary bus "
429 "of AGP 3.5 bridge operating with AGP 3.0 "
430 "electricals!\n", pci_name(dev));
431 ret = -ENODEV;
432 goto free_and_exit;
433 }
434 }
435
436 /*
437 * Call functions to divide target resources amongst the AGP 3.0
438 * masters. This process is dramatically different depending on
439 * whether isochronous transfers are supported.
440 */
441 if (isoch) {
442 ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
443 if (ret) {
444 dev_info(&td->dev, "something bad happened setting "
445 "up isochronous xfers; falling back to "
446 "non-isochronous xfer mode\n");
447 } else {
448 goto free_and_exit;
449 }
450 }
451 agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
452
453free_and_exit:
454 /* Be sure to free the dev_list */
455 for (pos=head->next; pos!=head; ) {
456 cur = list_entry(pos, struct agp_3_5_dev, list);
457
458 pos = pos->next;
459 kfree(cur);
460 }
461 kfree(dev_list);
462
463get_out:
464 return ret;
465}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Setup routines for AGP 3.5 compliant bridges.
4 */
5
6#include <linux/list.h>
7#include <linux/pci.h>
8#include <linux/agp_backend.h>
9#include <linux/module.h>
10#include <linux/slab.h>
11
12#include "agp.h"
13
14/* Generic AGP 3.5 enabling routines */
15
16struct agp_3_5_dev {
17 struct list_head list;
18 u8 capndx;
19 u32 maxbw;
20 struct pci_dev *dev;
21};
22
23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24{
25 struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 struct list_head *pos;
27
28 list_for_each(pos, head) {
29 cur = list_entry(pos, struct agp_3_5_dev, list);
30 if (cur->maxbw > n->maxbw)
31 break;
32 }
33 list_add_tail(new, pos);
34}
35
36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37{
38 struct agp_3_5_dev *cur;
39 struct pci_dev *dev;
40 struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 u32 nistat;
42
43 INIT_LIST_HEAD(head);
44
45 for (pos=start; pos!=head; ) {
46 cur = list_entry(pos, struct agp_3_5_dev, list);
47 dev = cur->dev;
48
49 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 cur->maxbw = (nistat >> 16) & 0xff;
51
52 tmp = pos;
53 pos = pos->next;
54 agp_3_5_dev_list_insert(head, tmp);
55 }
56}
57
58/*
59 * Initialize all isochronous transfer parameters for an AGP 3.0
60 * node (i.e. a host bridge in combination with the adapters
61 * lying behind it...)
62 */
63
64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 struct agp_3_5_dev *dev_list, unsigned int ndevs)
66{
67 /*
68 * Convenience structure to make the calculations clearer
69 * here. The field names come straight from the AGP 3.0 spec.
70 */
71 struct isoch_data {
72 u32 maxbw;
73 u32 n;
74 u32 y;
75 u32 l;
76 u32 rq;
77 struct agp_3_5_dev *dev;
78 };
79
80 struct pci_dev *td = bridge->dev, *dev;
81 struct list_head *head = &dev_list->list, *pos;
82 struct agp_3_5_dev *cur;
83 struct isoch_data *master, target;
84 unsigned int cdev = 0;
85 u32 mnistat, tnistat, tstatus, mcmd;
86 u16 tnicmd, mnicmd;
87 u8 mcapndx;
88 u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
89 u32 step, rem, rem_isoch, rem_async;
90 int ret = 0;
91
92 /*
93 * We'll work with an array of isoch_data's (one for each
94 * device in dev_list) throughout this function.
95 */
96 master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
97 if (master == NULL) {
98 ret = -ENOMEM;
99 goto get_out;
100 }
101
102 /*
103 * Sort the device list by maxbw. We need to do this because the
104 * spec suggests that the devices with the smallest requirements
105 * have their resources allocated first, with all remaining resources
106 * falling to the device with the largest requirement.
107 *
108 * We don't exactly do this, we divide target resources by ndevs
109 * and split them amongst the AGP 3.0 devices. The remainder of such
110 * division operations are dropped on the last device, sort of like
111 * the spec mentions it should be done.
112 *
113 * We can't do this sort when we initially construct the dev_list
114 * because we don't know until this function whether isochronous
115 * transfers are enabled and consequently whether maxbw will mean
116 * anything.
117 */
118 agp_3_5_dev_list_sort(dev_list, ndevs);
119
120 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
121 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
122
123 /* Extract power-on defaults from the target */
124 target.maxbw = (tnistat >> 16) & 0xff;
125 target.n = (tnistat >> 8) & 0xff;
126 target.y = (tnistat >> 6) & 0x3;
127 target.l = (tnistat >> 3) & 0x7;
128 target.rq = (tstatus >> 24) & 0xff;
129
130 y_max = target.y;
131
132 /*
133 * Extract power-on defaults for each device in dev_list. Along
134 * the way, calculate the total isochronous bandwidth required
135 * by these devices and the largest requested payload size.
136 */
137 list_for_each(pos, head) {
138 cur = list_entry(pos, struct agp_3_5_dev, list);
139 dev = cur->dev;
140
141 mcapndx = cur->capndx;
142
143 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
144
145 master[cdev].maxbw = (mnistat >> 16) & 0xff;
146 master[cdev].n = (mnistat >> 8) & 0xff;
147 master[cdev].y = (mnistat >> 6) & 0x3;
148 master[cdev].dev = cur;
149
150 tot_bw += master[cdev].maxbw;
151 y_max = max(y_max, master[cdev].y);
152
153 cdev++;
154 }
155
156 /* Check if this configuration has any chance of working */
157 if (tot_bw > target.maxbw) {
158 dev_err(&td->dev, "isochronous bandwidth required "
159 "by AGP 3.0 devices exceeds that which is supported by "
160 "the AGP 3.0 bridge!\n");
161 ret = -ENODEV;
162 goto free_and_exit;
163 }
164
165 target.y = y_max;
166
167 /*
168 * Write the calculated payload size into the target's NICMD
169 * register. Doing this directly effects the ISOCH_N value
170 * in the target's NISTAT register, so we need to do this now
171 * to get an accurate value for ISOCH_N later.
172 */
173 pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
174 tnicmd &= ~(0x3 << 6);
175 tnicmd |= target.y << 6;
176 pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
177
178 /* Reread the target's ISOCH_N */
179 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
180 target.n = (tnistat >> 8) & 0xff;
181
182 /* Calculate the minimum ISOCH_N needed by each master */
183 for (cdev=0; cdev<ndevs; cdev++) {
184 master[cdev].y = target.y;
185 master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
186
187 tot_n += master[cdev].n;
188 }
189
190 /* Exit if the minimal ISOCH_N allocation among the masters is more
191 * than the target can handle. */
192 if (tot_n > target.n) {
193 dev_err(&td->dev, "number of isochronous "
194 "transactions per period required by AGP 3.0 devices "
195 "exceeds that which is supported by the AGP 3.0 "
196 "bridge!\n");
197 ret = -ENODEV;
198 goto free_and_exit;
199 }
200
201 /* Calculate left over ISOCH_N capability in the target. We'll give
202 * this to the hungriest device (as per the spec) */
203 rem = target.n - tot_n;
204
205 /*
206 * Calculate the minimum isochronous RQ depth needed by each master.
207 * Along the way, distribute the extra ISOCH_N capability calculated
208 * above.
209 */
210 for (cdev=0; cdev<ndevs; cdev++) {
211 /*
212 * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
213 * byte isochronous writes will be broken into 64B pieces.
214 * This means we need to budget more RQ depth to account for
215 * these kind of writes (each isochronous write is actually
216 * many writes on the AGP bus).
217 */
218 master[cdev].rq = master[cdev].n;
219 if (master[cdev].y > 0x1)
220 master[cdev].rq *= (1 << (master[cdev].y - 1));
221
222 tot_rq += master[cdev].rq;
223 }
224 master[ndevs-1].n += rem;
225
226 /* Figure the number of isochronous and asynchronous RQ slots the
227 * target is providing. */
228 rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
229 rq_async = target.rq - rq_isoch;
230
231 /* Exit if the minimal RQ needs of the masters exceeds what the target
232 * can provide. */
233 if (tot_rq > rq_isoch) {
234 dev_err(&td->dev, "number of request queue slots "
235 "required by the isochronous bandwidth requested by "
236 "AGP 3.0 devices exceeds the number provided by the "
237 "AGP 3.0 bridge!\n");
238 ret = -ENODEV;
239 goto free_and_exit;
240 }
241
242 /* Calculate asynchronous RQ capability in the target (per master) as
243 * well as the total number of leftover isochronous RQ slots. */
244 step = rq_async / ndevs;
245 rem_async = step + (rq_async % ndevs);
246 rem_isoch = rq_isoch - tot_rq;
247
248 /* Distribute the extra RQ slots calculated above and write our
249 * isochronous settings out to the actual devices. */
250 for (cdev=0; cdev<ndevs; cdev++) {
251 cur = master[cdev].dev;
252 dev = cur->dev;
253
254 mcapndx = cur->capndx;
255
256 master[cdev].rq += (cdev == ndevs - 1)
257 ? (rem_async + rem_isoch) : step;
258
259 pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
260 pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
261
262 mnicmd &= ~(0xff << 8);
263 mnicmd &= ~(0x3 << 6);
264 mcmd &= ~(0xff << 24);
265
266 mnicmd |= master[cdev].n << 8;
267 mnicmd |= master[cdev].y << 6;
268 mcmd |= master[cdev].rq << 24;
269
270 pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
271 pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
272 }
273
274free_and_exit:
275 kfree(master);
276
277get_out:
278 return ret;
279}
280
281/*
282 * This function basically allocates request queue slots among the
283 * AGP 3.0 systems in nonisochronous nodes. The algorithm is
284 * pretty stupid, divide the total number of RQ slots provided by the
285 * target by ndevs. Distribute this many slots to each AGP 3.0 device,
286 * giving any left over slots to the last device in dev_list.
287 */
288static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
289 struct agp_3_5_dev *dev_list, unsigned int ndevs)
290{
291 struct agp_3_5_dev *cur;
292 struct list_head *head = &dev_list->list, *pos;
293 u32 tstatus, mcmd;
294 u32 trq, mrq, rem;
295 unsigned int cdev = 0;
296
297 pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
298
299 trq = (tstatus >> 24) & 0xff;
300 mrq = trq / ndevs;
301
302 rem = mrq + (trq % ndevs);
303
304 for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
305 cur = list_entry(pos, struct agp_3_5_dev, list);
306
307 pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
308 mcmd &= ~(0xff << 24);
309 mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
310 pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
311 }
312}
313
314/*
315 * Fully configure and enable an AGP 3.0 host bridge and all the devices
316 * lying behind it.
317 */
318int agp_3_5_enable(struct agp_bridge_data *bridge)
319{
320 struct pci_dev *td = bridge->dev, *dev = NULL;
321 u8 mcapndx;
322 u32 isoch, arqsz;
323 u32 tstatus, mstatus, ncapid;
324 u32 mmajor;
325 u16 mpstat;
326 struct agp_3_5_dev *dev_list, *cur;
327 struct list_head *head, *pos;
328 unsigned int ndevs = 0;
329 int ret = 0;
330
331 /* Extract some power-on defaults from the target */
332 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
333 isoch = (tstatus >> 17) & 0x1;
334 if (isoch == 0) /* isoch xfers not available, bail out. */
335 return -ENODEV;
336
337 arqsz = (tstatus >> 13) & 0x7;
338
339 /*
340 * Allocate a head for our AGP 3.5 device list
341 * (multiple AGP v3 devices are allowed behind a single bridge).
342 */
343 if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
344 ret = -ENOMEM;
345 goto get_out;
346 }
347 head = &dev_list->list;
348 INIT_LIST_HEAD(head);
349
350 /* Find all AGP devices, and add them to dev_list. */
351 for_each_pci_dev(dev) {
352 mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
353 if (mcapndx == 0)
354 continue;
355
356 switch ((dev->class >>8) & 0xff00) {
357 case 0x0600: /* Bridge */
358 /* Skip bridges. We should call this function for each one. */
359 continue;
360
361 case 0x0001: /* Unclassified device */
362 /* Don't know what this is, but log it for investigation. */
363 if (mcapndx != 0) {
364 dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
365 pci_name(dev),
366 dev->vendor, dev->device);
367 }
368 continue;
369
370 case 0x0300: /* Display controller */
371 case 0x0400: /* Multimedia controller */
372 if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
373 ret = -ENOMEM;
374 goto free_and_exit;
375 }
376 cur->dev = dev;
377
378 pos = &cur->list;
379 list_add(pos, head);
380 ndevs++;
381 continue;
382
383 default:
384 continue;
385 }
386 }
387
388 /*
389 * Take an initial pass through the devices lying behind our host
390 * bridge. Make sure each one is actually an AGP 3.0 device, otherwise
391 * exit with an error message. Along the way store the AGP 3.0
392 * cap_ptr for each device
393 */
394 list_for_each(pos, head) {
395 cur = list_entry(pos, struct agp_3_5_dev, list);
396 dev = cur->dev;
397
398 pci_read_config_word(dev, PCI_STATUS, &mpstat);
399 if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
400 continue;
401
402 pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
403 if (mcapndx != 0) {
404 do {
405 pci_read_config_dword(dev, mcapndx, &ncapid);
406 if ((ncapid & 0xff) != 2)
407 mcapndx = (ncapid >> 8) & 0xff;
408 }
409 while (((ncapid & 0xff) != 2) && (mcapndx != 0));
410 }
411
412 if (mcapndx == 0) {
413 dev_err(&td->dev, "woah! Non-AGP device %s on "
414 "secondary bus of AGP 3.5 bridge!\n",
415 pci_name(dev));
416 ret = -ENODEV;
417 goto free_and_exit;
418 }
419
420 mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
421 if (mmajor < 3) {
422 dev_err(&td->dev, "woah! AGP 2.0 device %s on "
423 "secondary bus of AGP 3.5 bridge operating "
424 "with AGP 3.0 electricals!\n", pci_name(dev));
425 ret = -ENODEV;
426 goto free_and_exit;
427 }
428
429 cur->capndx = mcapndx;
430
431 pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
432
433 if (((mstatus >> 3) & 0x1) == 0) {
434 dev_err(&td->dev, "woah! AGP 3.x device %s not "
435 "operating in AGP 3.x mode on secondary bus "
436 "of AGP 3.5 bridge operating with AGP 3.0 "
437 "electricals!\n", pci_name(dev));
438 ret = -ENODEV;
439 goto free_and_exit;
440 }
441 }
442
443 /*
444 * Call functions to divide target resources amongst the AGP 3.0
445 * masters. This process is dramatically different depending on
446 * whether isochronous transfers are supported.
447 */
448 if (isoch) {
449 ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
450 if (ret) {
451 dev_info(&td->dev, "something bad happened setting "
452 "up isochronous xfers; falling back to "
453 "non-isochronous xfer mode\n");
454 } else {
455 goto free_and_exit;
456 }
457 }
458 agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
459
460free_and_exit:
461 /* Be sure to free the dev_list */
462 for (pos=head->next; pos!=head; ) {
463 cur = list_entry(pos, struct agp_3_5_dev, list);
464
465 pos = pos->next;
466 kfree(cur);
467 }
468 kfree(dev_list);
469
470get_out:
471 return ret;
472}