Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Setup routines for AGP 3.5 compliant bridges.
  4 */
  5
  6#include <linux/list.h>
  7#include <linux/pci.h>
  8#include <linux/agp_backend.h>
  9#include <linux/module.h>
 10#include <linux/slab.h>
 11
 12#include "agp.h"
 13
 14/* Generic AGP 3.5 enabling routines */
 15
 16struct agp_3_5_dev {
 17	struct list_head list;
 18	u8 capndx;
 19	u32 maxbw;
 20	struct pci_dev *dev;
 21};
 22
 23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
 24{
 25	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
 26	struct list_head *pos;
 27
 28	list_for_each(pos, head) {
 29		cur = list_entry(pos, struct agp_3_5_dev, list);
 30		if (cur->maxbw > n->maxbw)
 31			break;
 32	}
 33	list_add_tail(new, pos);
 34}
 35
 36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
 37{
 38	struct agp_3_5_dev *cur;
 39	struct pci_dev *dev;
 40	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
 41	u32 nistat;
 42
 43	INIT_LIST_HEAD(head);
 44
 45	for (pos=start; pos!=head; ) {
 46		cur = list_entry(pos, struct agp_3_5_dev, list);
 47		dev = cur->dev;
 48
 49		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
 50		cur->maxbw = (nistat >> 16) & 0xff;
 51
 52		tmp = pos;
 53		pos = pos->next;
 54		agp_3_5_dev_list_insert(head, tmp);
 55	}
 56}
 57
 58/*
 59 * Initialize all isochronous transfer parameters for an AGP 3.0
 60 * node (i.e. a host bridge in combination with the adapters
 61 * lying behind it...)
 62 */
 63
 64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
 65		struct agp_3_5_dev *dev_list, unsigned int ndevs)
 66{
 67	/*
 68	 * Convenience structure to make the calculations clearer
 69	 * here.  The field names come straight from the AGP 3.0 spec.
 70	 */
 71	struct isoch_data {
 72		u32 maxbw;
 73		u32 n;
 74		u32 y;
 75		u32 l;
 76		u32 rq;
 77		struct agp_3_5_dev *dev;
 78	};
 79
 80	struct pci_dev *td = bridge->dev, *dev;
 81	struct list_head *head = &dev_list->list, *pos;
 82	struct agp_3_5_dev *cur;
 83	struct isoch_data *master, target;
 84	unsigned int cdev = 0;
 85	u32 mnistat, tnistat, tstatus, mcmd;
 86	u16 tnicmd, mnicmd;
 
 87	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
 88	u32 step, rem, rem_isoch, rem_async;
 89	int ret = 0;
 90
 91	/*
 92	 * We'll work with an array of isoch_data's (one for each
 93	 * device in dev_list) throughout this function.
 94	 */
 95	master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
 96	if (master == NULL) {
 97		ret = -ENOMEM;
 98		goto get_out;
 99	}
100
101	/*
102	 * Sort the device list by maxbw.  We need to do this because the
103	 * spec suggests that the devices with the smallest requirements
104	 * have their resources allocated first, with all remaining resources
105	 * falling to the device with the largest requirement.
106	 *
107	 * We don't exactly do this, we divide target resources by ndevs
108	 * and split them amongst the AGP 3.0 devices.  The remainder of such
109	 * division operations are dropped on the last device, sort of like
110	 * the spec mentions it should be done.
111	 *
112	 * We can't do this sort when we initially construct the dev_list
113	 * because we don't know until this function whether isochronous
114	 * transfers are enabled and consequently whether maxbw will mean
115	 * anything.
116	 */
117	agp_3_5_dev_list_sort(dev_list, ndevs);
118
119	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121
122	/* Extract power-on defaults from the target */
123	target.maxbw = (tnistat >> 16) & 0xff;
124	target.n     = (tnistat >> 8)  & 0xff;
125	target.y     = (tnistat >> 6)  & 0x3;
126	target.l     = (tnistat >> 3)  & 0x7;
127	target.rq    = (tstatus >> 24) & 0xff;
128
129	y_max = target.y;
130
131	/*
132	 * Extract power-on defaults for each device in dev_list.  Along
133	 * the way, calculate the total isochronous bandwidth required
134	 * by these devices and the largest requested payload size.
135	 */
136	list_for_each(pos, head) {
137		cur = list_entry(pos, struct agp_3_5_dev, list);
138		dev = cur->dev;
139
 
 
140		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141
142		master[cdev].maxbw = (mnistat >> 16) & 0xff;
143		master[cdev].n     = (mnistat >> 8)  & 0xff;
144		master[cdev].y     = (mnistat >> 6)  & 0x3;
145		master[cdev].dev   = cur;
146
147		tot_bw += master[cdev].maxbw;
148		y_max = max(y_max, master[cdev].y);
149
150		cdev++;
151	}
152
153	/* Check if this configuration has any chance of working */
154	if (tot_bw > target.maxbw) {
155		dev_err(&td->dev, "isochronous bandwidth required "
156			"by AGP 3.0 devices exceeds that which is supported by "
157			"the AGP 3.0 bridge!\n");
158		ret = -ENODEV;
159		goto free_and_exit;
160	}
161
162	target.y = y_max;
163
164	/*
165	 * Write the calculated payload size into the target's NICMD
166	 * register.  Doing this directly effects the ISOCH_N value
167	 * in the target's NISTAT register, so we need to do this now
168	 * to get an accurate value for ISOCH_N later.
169	 */
170	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171	tnicmd &= ~(0x3 << 6);
172	tnicmd |= target.y << 6;
173	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174
175	/* Reread the target's ISOCH_N */
176	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177	target.n = (tnistat >> 8) & 0xff;
178
179	/* Calculate the minimum ISOCH_N needed by each master */
180	for (cdev=0; cdev<ndevs; cdev++) {
181		master[cdev].y = target.y;
182		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183
184		tot_n += master[cdev].n;
185	}
186
187	/* Exit if the minimal ISOCH_N allocation among the masters is more
188	 * than the target can handle. */
189	if (tot_n > target.n) {
190		dev_err(&td->dev, "number of isochronous "
191			"transactions per period required by AGP 3.0 devices "
192			"exceeds that which is supported by the AGP 3.0 "
193			"bridge!\n");
194		ret = -ENODEV;
195		goto free_and_exit;
196	}
197
198	/* Calculate left over ISOCH_N capability in the target.  We'll give
199	 * this to the hungriest device (as per the spec) */
200	rem  = target.n - tot_n;
201
202	/*
203	 * Calculate the minimum isochronous RQ depth needed by each master.
204	 * Along the way, distribute the extra ISOCH_N capability calculated
205	 * above.
206	 */
207	for (cdev=0; cdev<ndevs; cdev++) {
208		/*
209		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
210		 * byte isochronous writes will be broken into 64B pieces.
211		 * This means we need to budget more RQ depth to account for
212		 * these kind of writes (each isochronous write is actually
213		 * many writes on the AGP bus).
214		 */
215		master[cdev].rq = master[cdev].n;
216		if (master[cdev].y > 0x1)
217			master[cdev].rq *= (1 << (master[cdev].y - 1));
218
219		tot_rq += master[cdev].rq;
220	}
221	master[ndevs-1].n += rem;
222
223	/* Figure the number of isochronous and asynchronous RQ slots the
224	 * target is providing. */
225	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
226	rq_async = target.rq - rq_isoch;
227
228	/* Exit if the minimal RQ needs of the masters exceeds what the target
229	 * can provide. */
230	if (tot_rq > rq_isoch) {
231		dev_err(&td->dev, "number of request queue slots "
232			"required by the isochronous bandwidth requested by "
233			"AGP 3.0 devices exceeds the number provided by the "
234			"AGP 3.0 bridge!\n");
235		ret = -ENODEV;
236		goto free_and_exit;
237	}
238
239	/* Calculate asynchronous RQ capability in the target (per master) as
240	 * well as the total number of leftover isochronous RQ slots. */
241	step      = rq_async / ndevs;
242	rem_async = step + (rq_async % ndevs);
243	rem_isoch = rq_isoch - tot_rq;
244
245	/* Distribute the extra RQ slots calculated above and write our
246	 * isochronous settings out to the actual devices. */
247	for (cdev=0; cdev<ndevs; cdev++) {
248		cur = master[cdev].dev;
249		dev = cur->dev;
250
 
 
251		master[cdev].rq += (cdev == ndevs - 1)
252		              ? (rem_async + rem_isoch) : step;
253
254		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
255		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
256
257		mnicmd &= ~(0xff << 8);
258		mnicmd &= ~(0x3  << 6);
259		mcmd   &= ~(0xff << 24);
260
261		mnicmd |= master[cdev].n  << 8;
262		mnicmd |= master[cdev].y  << 6;
263		mcmd   |= master[cdev].rq << 24;
264
265		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
266		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
267	}
268
269free_and_exit:
270	kfree(master);
271
272get_out:
273	return ret;
274}
275
276/*
277 * This function basically allocates request queue slots among the
278 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
279 * pretty stupid, divide the total number of RQ slots provided by the
280 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
281 * giving any left over slots to the last device in dev_list.
282 */
283static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
284		struct agp_3_5_dev *dev_list, unsigned int ndevs)
285{
286	struct agp_3_5_dev *cur;
287	struct list_head *head = &dev_list->list, *pos;
288	u32 tstatus, mcmd;
289	u32 trq, mrq, rem;
290	unsigned int cdev = 0;
291
292	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
293
294	trq = (tstatus >> 24) & 0xff;
295	mrq = trq / ndevs;
296
297	rem = mrq + (trq % ndevs);
298
299	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
300		cur = list_entry(pos, struct agp_3_5_dev, list);
301
302		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
303		mcmd &= ~(0xff << 24);
304		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
305		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
306	}
307}
308
309/*
310 * Fully configure and enable an AGP 3.0 host bridge and all the devices
311 * lying behind it.
312 */
313int agp_3_5_enable(struct agp_bridge_data *bridge)
314{
315	struct pci_dev *td = bridge->dev, *dev = NULL;
316	u8 mcapndx;
317	u32 isoch;
318	u32 tstatus, mstatus, ncapid;
319	u32 mmajor;
320	u16 mpstat;
321	struct agp_3_5_dev *dev_list, *cur;
322	struct list_head *head, *pos;
323	unsigned int ndevs = 0;
324	int ret = 0;
325
326	/* Extract some power-on defaults from the target */
327	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
328	isoch     = (tstatus >> 17) & 0x1;
329	if (isoch == 0)	/* isoch xfers not available, bail out. */
330		return -ENODEV;
 
 
331
332	/*
333	 * Allocate a head for our AGP 3.5 device list
334	 * (multiple AGP v3 devices are allowed behind a single bridge).
335	 */
336	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
337		ret = -ENOMEM;
338		goto get_out;
339	}
340	head = &dev_list->list;
341	INIT_LIST_HEAD(head);
342
343	/* Find all AGP devices, and add them to dev_list. */
344	for_each_pci_dev(dev) {
345		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
346		if (mcapndx == 0)
347			continue;
348
349		switch ((dev->class >>8) & 0xff00) {
350			case 0x0600:    /* Bridge */
351				/* Skip bridges. We should call this function for each one. */
352				continue;
353
354			case 0x0001:    /* Unclassified device */
355				/* Don't know what this is, but log it for investigation. */
356				if (mcapndx != 0) {
357					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
358						 pci_name(dev),
359						 dev->vendor, dev->device);
360				}
361				continue;
362
363			case 0x0300:    /* Display controller */
364			case 0x0400:    /* Multimedia controller */
365				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
366					ret = -ENOMEM;
367					goto free_and_exit;
368				}
369				cur->dev = dev;
370
371				pos = &cur->list;
372				list_add(pos, head);
373				ndevs++;
374				continue;
375
376			default:
377				continue;
378		}
379	}
380
381	/*
382	 * Take an initial pass through the devices lying behind our host
383	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
384	 * exit with an error message.  Along the way store the AGP 3.0
385	 * cap_ptr for each device
386	 */
387	list_for_each(pos, head) {
388		cur = list_entry(pos, struct agp_3_5_dev, list);
389		dev = cur->dev;
390
391		pci_read_config_word(dev, PCI_STATUS, &mpstat);
392		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
393			continue;
394
395		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
396		if (mcapndx != 0) {
397			do {
398				pci_read_config_dword(dev, mcapndx, &ncapid);
399				if ((ncapid & 0xff) != 2)
400					mcapndx = (ncapid >> 8) & 0xff;
401			}
402			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
403		}
404
405		if (mcapndx == 0) {
406			dev_err(&td->dev, "woah!  Non-AGP device %s on "
407				"secondary bus of AGP 3.5 bridge!\n",
408				pci_name(dev));
409			ret = -ENODEV;
410			goto free_and_exit;
411		}
412
413		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
414		if (mmajor < 3) {
415			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
416				"secondary bus of AGP 3.5 bridge operating "
417				"with AGP 3.0 electricals!\n", pci_name(dev));
418			ret = -ENODEV;
419			goto free_and_exit;
420		}
421
422		cur->capndx = mcapndx;
423
424		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
425
426		if (((mstatus >> 3) & 0x1) == 0) {
427			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
428				"operating in AGP 3.x mode on secondary bus "
429				"of AGP 3.5 bridge operating with AGP 3.0 "
430				"electricals!\n", pci_name(dev));
431			ret = -ENODEV;
432			goto free_and_exit;
433		}
434	}		
435
436	/*
437	 * Call functions to divide target resources amongst the AGP 3.0
438	 * masters.  This process is dramatically different depending on
439	 * whether isochronous transfers are supported.
440	 */
441	if (isoch) {
442		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
443		if (ret) {
444			dev_info(&td->dev, "something bad happened setting "
445				 "up isochronous xfers; falling back to "
446				 "non-isochronous xfer mode\n");
447		} else {
448			goto free_and_exit;
449		}
450	}
451	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
452
453free_and_exit:
454	/* Be sure to free the dev_list */
455	for (pos=head->next; pos!=head; ) {
456		cur = list_entry(pos, struct agp_3_5_dev, list);
457
458		pos = pos->next;
459		kfree(cur);
460	}
461	kfree(dev_list);
462
463get_out:
464	return ret;
465}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Setup routines for AGP 3.5 compliant bridges.
  4 */
  5
  6#include <linux/list.h>
  7#include <linux/pci.h>
  8#include <linux/agp_backend.h>
  9#include <linux/module.h>
 10#include <linux/slab.h>
 11
 12#include "agp.h"
 13
 14/* Generic AGP 3.5 enabling routines */
 15
 16struct agp_3_5_dev {
 17	struct list_head list;
 18	u8 capndx;
 19	u32 maxbw;
 20	struct pci_dev *dev;
 21};
 22
 23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
 24{
 25	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
 26	struct list_head *pos;
 27
 28	list_for_each(pos, head) {
 29		cur = list_entry(pos, struct agp_3_5_dev, list);
 30		if (cur->maxbw > n->maxbw)
 31			break;
 32	}
 33	list_add_tail(new, pos);
 34}
 35
 36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
 37{
 38	struct agp_3_5_dev *cur;
 39	struct pci_dev *dev;
 40	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
 41	u32 nistat;
 42
 43	INIT_LIST_HEAD(head);
 44
 45	for (pos=start; pos!=head; ) {
 46		cur = list_entry(pos, struct agp_3_5_dev, list);
 47		dev = cur->dev;
 48
 49		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
 50		cur->maxbw = (nistat >> 16) & 0xff;
 51
 52		tmp = pos;
 53		pos = pos->next;
 54		agp_3_5_dev_list_insert(head, tmp);
 55	}
 56}
 57
 58/*
 59 * Initialize all isochronous transfer parameters for an AGP 3.0
 60 * node (i.e. a host bridge in combination with the adapters
 61 * lying behind it...)
 62 */
 63
 64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
 65		struct agp_3_5_dev *dev_list, unsigned int ndevs)
 66{
 67	/*
 68	 * Convenience structure to make the calculations clearer
 69	 * here.  The field names come straight from the AGP 3.0 spec.
 70	 */
 71	struct isoch_data {
 72		u32 maxbw;
 73		u32 n;
 74		u32 y;
 75		u32 l;
 76		u32 rq;
 77		struct agp_3_5_dev *dev;
 78	};
 79
 80	struct pci_dev *td = bridge->dev, *dev;
 81	struct list_head *head = &dev_list->list, *pos;
 82	struct agp_3_5_dev *cur;
 83	struct isoch_data *master, target;
 84	unsigned int cdev = 0;
 85	u32 mnistat, tnistat, tstatus, mcmd;
 86	u16 tnicmd, mnicmd;
 87	u8 mcapndx;
 88	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
 89	u32 step, rem, rem_isoch, rem_async;
 90	int ret = 0;
 91
 92	/*
 93	 * We'll work with an array of isoch_data's (one for each
 94	 * device in dev_list) throughout this function.
 95	 */
 96	master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
 97	if (master == NULL) {
 98		ret = -ENOMEM;
 99		goto get_out;
100	}
101
102	/*
103	 * Sort the device list by maxbw.  We need to do this because the
104	 * spec suggests that the devices with the smallest requirements
105	 * have their resources allocated first, with all remaining resources
106	 * falling to the device with the largest requirement.
107	 *
108	 * We don't exactly do this, we divide target resources by ndevs
109	 * and split them amongst the AGP 3.0 devices.  The remainder of such
110	 * division operations are dropped on the last device, sort of like
111	 * the spec mentions it should be done.
112	 *
113	 * We can't do this sort when we initially construct the dev_list
114	 * because we don't know until this function whether isochronous
115	 * transfers are enabled and consequently whether maxbw will mean
116	 * anything.
117	 */
118	agp_3_5_dev_list_sort(dev_list, ndevs);
119
120	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
121	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
122
123	/* Extract power-on defaults from the target */
124	target.maxbw = (tnistat >> 16) & 0xff;
125	target.n     = (tnistat >> 8)  & 0xff;
126	target.y     = (tnistat >> 6)  & 0x3;
127	target.l     = (tnistat >> 3)  & 0x7;
128	target.rq    = (tstatus >> 24) & 0xff;
129
130	y_max = target.y;
131
132	/*
133	 * Extract power-on defaults for each device in dev_list.  Along
134	 * the way, calculate the total isochronous bandwidth required
135	 * by these devices and the largest requested payload size.
136	 */
137	list_for_each(pos, head) {
138		cur = list_entry(pos, struct agp_3_5_dev, list);
139		dev = cur->dev;
140
141		mcapndx = cur->capndx;
142
143		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
144
145		master[cdev].maxbw = (mnistat >> 16) & 0xff;
146		master[cdev].n     = (mnistat >> 8)  & 0xff;
147		master[cdev].y     = (mnistat >> 6)  & 0x3;
148		master[cdev].dev   = cur;
149
150		tot_bw += master[cdev].maxbw;
151		y_max = max(y_max, master[cdev].y);
152
153		cdev++;
154	}
155
156	/* Check if this configuration has any chance of working */
157	if (tot_bw > target.maxbw) {
158		dev_err(&td->dev, "isochronous bandwidth required "
159			"by AGP 3.0 devices exceeds that which is supported by "
160			"the AGP 3.0 bridge!\n");
161		ret = -ENODEV;
162		goto free_and_exit;
163	}
164
165	target.y = y_max;
166
167	/*
168	 * Write the calculated payload size into the target's NICMD
169	 * register.  Doing this directly effects the ISOCH_N value
170	 * in the target's NISTAT register, so we need to do this now
171	 * to get an accurate value for ISOCH_N later.
172	 */
173	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
174	tnicmd &= ~(0x3 << 6);
175	tnicmd |= target.y << 6;
176	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
177
178	/* Reread the target's ISOCH_N */
179	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
180	target.n = (tnistat >> 8) & 0xff;
181
182	/* Calculate the minimum ISOCH_N needed by each master */
183	for (cdev=0; cdev<ndevs; cdev++) {
184		master[cdev].y = target.y;
185		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
186
187		tot_n += master[cdev].n;
188	}
189
190	/* Exit if the minimal ISOCH_N allocation among the masters is more
191	 * than the target can handle. */
192	if (tot_n > target.n) {
193		dev_err(&td->dev, "number of isochronous "
194			"transactions per period required by AGP 3.0 devices "
195			"exceeds that which is supported by the AGP 3.0 "
196			"bridge!\n");
197		ret = -ENODEV;
198		goto free_and_exit;
199	}
200
201	/* Calculate left over ISOCH_N capability in the target.  We'll give
202	 * this to the hungriest device (as per the spec) */
203	rem  = target.n - tot_n;
204
205	/*
206	 * Calculate the minimum isochronous RQ depth needed by each master.
207	 * Along the way, distribute the extra ISOCH_N capability calculated
208	 * above.
209	 */
210	for (cdev=0; cdev<ndevs; cdev++) {
211		/*
212		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
213		 * byte isochronous writes will be broken into 64B pieces.
214		 * This means we need to budget more RQ depth to account for
215		 * these kind of writes (each isochronous write is actually
216		 * many writes on the AGP bus).
217		 */
218		master[cdev].rq = master[cdev].n;
219		if (master[cdev].y > 0x1)
220			master[cdev].rq *= (1 << (master[cdev].y - 1));
221
222		tot_rq += master[cdev].rq;
223	}
224	master[ndevs-1].n += rem;
225
226	/* Figure the number of isochronous and asynchronous RQ slots the
227	 * target is providing. */
228	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
229	rq_async = target.rq - rq_isoch;
230
231	/* Exit if the minimal RQ needs of the masters exceeds what the target
232	 * can provide. */
233	if (tot_rq > rq_isoch) {
234		dev_err(&td->dev, "number of request queue slots "
235			"required by the isochronous bandwidth requested by "
236			"AGP 3.0 devices exceeds the number provided by the "
237			"AGP 3.0 bridge!\n");
238		ret = -ENODEV;
239		goto free_and_exit;
240	}
241
242	/* Calculate asynchronous RQ capability in the target (per master) as
243	 * well as the total number of leftover isochronous RQ slots. */
244	step      = rq_async / ndevs;
245	rem_async = step + (rq_async % ndevs);
246	rem_isoch = rq_isoch - tot_rq;
247
248	/* Distribute the extra RQ slots calculated above and write our
249	 * isochronous settings out to the actual devices. */
250	for (cdev=0; cdev<ndevs; cdev++) {
251		cur = master[cdev].dev;
252		dev = cur->dev;
253
254		mcapndx = cur->capndx;
255
256		master[cdev].rq += (cdev == ndevs - 1)
257		              ? (rem_async + rem_isoch) : step;
258
259		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
260		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
261
262		mnicmd &= ~(0xff << 8);
263		mnicmd &= ~(0x3  << 6);
264		mcmd   &= ~(0xff << 24);
265
266		mnicmd |= master[cdev].n  << 8;
267		mnicmd |= master[cdev].y  << 6;
268		mcmd   |= master[cdev].rq << 24;
269
270		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
271		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
272	}
273
274free_and_exit:
275	kfree(master);
276
277get_out:
278	return ret;
279}
280
281/*
282 * This function basically allocates request queue slots among the
283 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
284 * pretty stupid, divide the total number of RQ slots provided by the
285 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
286 * giving any left over slots to the last device in dev_list.
287 */
288static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
289		struct agp_3_5_dev *dev_list, unsigned int ndevs)
290{
291	struct agp_3_5_dev *cur;
292	struct list_head *head = &dev_list->list, *pos;
293	u32 tstatus, mcmd;
294	u32 trq, mrq, rem;
295	unsigned int cdev = 0;
296
297	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
298
299	trq = (tstatus >> 24) & 0xff;
300	mrq = trq / ndevs;
301
302	rem = mrq + (trq % ndevs);
303
304	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
305		cur = list_entry(pos, struct agp_3_5_dev, list);
306
307		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
308		mcmd &= ~(0xff << 24);
309		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
310		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
311	}
312}
313
314/*
315 * Fully configure and enable an AGP 3.0 host bridge and all the devices
316 * lying behind it.
317 */
318int agp_3_5_enable(struct agp_bridge_data *bridge)
319{
320	struct pci_dev *td = bridge->dev, *dev = NULL;
321	u8 mcapndx;
322	u32 isoch, arqsz;
323	u32 tstatus, mstatus, ncapid;
324	u32 mmajor;
325	u16 mpstat;
326	struct agp_3_5_dev *dev_list, *cur;
327	struct list_head *head, *pos;
328	unsigned int ndevs = 0;
329	int ret = 0;
330
331	/* Extract some power-on defaults from the target */
332	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
333	isoch     = (tstatus >> 17) & 0x1;
334	if (isoch == 0)	/* isoch xfers not available, bail out. */
335		return -ENODEV;
336
337	arqsz     = (tstatus >> 13) & 0x7;
338
339	/*
340	 * Allocate a head for our AGP 3.5 device list
341	 * (multiple AGP v3 devices are allowed behind a single bridge).
342	 */
343	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
344		ret = -ENOMEM;
345		goto get_out;
346	}
347	head = &dev_list->list;
348	INIT_LIST_HEAD(head);
349
350	/* Find all AGP devices, and add them to dev_list. */
351	for_each_pci_dev(dev) {
352		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
353		if (mcapndx == 0)
354			continue;
355
356		switch ((dev->class >>8) & 0xff00) {
357			case 0x0600:    /* Bridge */
358				/* Skip bridges. We should call this function for each one. */
359				continue;
360
361			case 0x0001:    /* Unclassified device */
362				/* Don't know what this is, but log it for investigation. */
363				if (mcapndx != 0) {
364					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
365						 pci_name(dev),
366						 dev->vendor, dev->device);
367				}
368				continue;
369
370			case 0x0300:    /* Display controller */
371			case 0x0400:    /* Multimedia controller */
372				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
373					ret = -ENOMEM;
374					goto free_and_exit;
375				}
376				cur->dev = dev;
377
378				pos = &cur->list;
379				list_add(pos, head);
380				ndevs++;
381				continue;
382
383			default:
384				continue;
385		}
386	}
387
388	/*
389	 * Take an initial pass through the devices lying behind our host
390	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
391	 * exit with an error message.  Along the way store the AGP 3.0
392	 * cap_ptr for each device
393	 */
394	list_for_each(pos, head) {
395		cur = list_entry(pos, struct agp_3_5_dev, list);
396		dev = cur->dev;
397
398		pci_read_config_word(dev, PCI_STATUS, &mpstat);
399		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
400			continue;
401
402		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
403		if (mcapndx != 0) {
404			do {
405				pci_read_config_dword(dev, mcapndx, &ncapid);
406				if ((ncapid & 0xff) != 2)
407					mcapndx = (ncapid >> 8) & 0xff;
408			}
409			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
410		}
411
412		if (mcapndx == 0) {
413			dev_err(&td->dev, "woah!  Non-AGP device %s on "
414				"secondary bus of AGP 3.5 bridge!\n",
415				pci_name(dev));
416			ret = -ENODEV;
417			goto free_and_exit;
418		}
419
420		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
421		if (mmajor < 3) {
422			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
423				"secondary bus of AGP 3.5 bridge operating "
424				"with AGP 3.0 electricals!\n", pci_name(dev));
425			ret = -ENODEV;
426			goto free_and_exit;
427		}
428
429		cur->capndx = mcapndx;
430
431		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
432
433		if (((mstatus >> 3) & 0x1) == 0) {
434			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
435				"operating in AGP 3.x mode on secondary bus "
436				"of AGP 3.5 bridge operating with AGP 3.0 "
437				"electricals!\n", pci_name(dev));
438			ret = -ENODEV;
439			goto free_and_exit;
440		}
441	}		
442
443	/*
444	 * Call functions to divide target resources amongst the AGP 3.0
445	 * masters.  This process is dramatically different depending on
446	 * whether isochronous transfers are supported.
447	 */
448	if (isoch) {
449		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
450		if (ret) {
451			dev_info(&td->dev, "something bad happened setting "
452				 "up isochronous xfers; falling back to "
453				 "non-isochronous xfer mode\n");
454		} else {
455			goto free_and_exit;
456		}
457	}
458	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
459
460free_and_exit:
461	/* Be sure to free the dev_list */
462	for (pos=head->next; pos!=head; ) {
463		cur = list_entry(pos, struct agp_3_5_dev, list);
464
465		pos = pos->next;
466		kfree(cur);
467	}
468	kfree(dev_list);
469
470get_out:
471	return ret;
472}