Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Adiantum length-preserving encryption mode
  4 *
  5 * Copyright 2018 Google LLC
  6 */
  7
  8/*
  9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
 10 * and secure disk encryption, especially on CPUs without dedicated crypto
 11 * instructions.  Adiantum encrypts each sector using the XChaCha12 stream
 12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
 13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
 14 * 16-byte block.  See the paper for details:
 15 *
 16 *	Adiantum: length-preserving encryption for entry-level processors
 17 *      (https://eprint.iacr.org/2018/720.pdf)
 18 *
 19 * For flexibility, this implementation also allows other ciphers:
 20 *
 21 *	- Stream cipher: XChaCha12 or XChaCha20
 22 *	- Block cipher: any with a 128-bit block size and 256-bit key
 23 *
 24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
 25 * HPolyC is not supported.  This is because Adiantum is ~20% faster than HPolyC
 26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
 27 * formally defined to take two inputs (tweak, message) which makes it difficult
 28 * to wrap with the crypto_shash API.  Rather, some details need to be handled
 29 * here.  Nevertheless, if needed in the future, support for other ε-∆U hash
 30 * functions could be added here.
 31 */
 32
 33#include <crypto/b128ops.h>
 34#include <crypto/chacha.h>
 35#include <crypto/internal/cipher.h>
 36#include <crypto/internal/hash.h>
 37#include <crypto/internal/poly1305.h>
 38#include <crypto/internal/skcipher.h>
 39#include <crypto/nhpoly1305.h>
 40#include <crypto/scatterwalk.h>
 41#include <linux/module.h>
 42
 
 
 43/*
 44 * Size of right-hand part of input data, in bytes; also the size of the block
 45 * cipher's block size and the hash function's output.
 46 */
 47#define BLOCKCIPHER_BLOCK_SIZE		16
 48
 49/* Size of the block cipher key (K_E) in bytes */
 50#define BLOCKCIPHER_KEY_SIZE		32
 51
 52/* Size of the hash key (K_H) in bytes */
 53#define HASH_KEY_SIZE		(POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
 54
 55/*
 56 * The specification allows variable-length tweaks, but Linux's crypto API
 57 * currently only allows algorithms to support a single length.  The "natural"
 58 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
 59 * the best performance.  But longer tweaks are useful for fscrypt, to avoid
 60 * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
 61 */
 62#define TWEAK_SIZE		32
 63
 64struct adiantum_instance_ctx {
 65	struct crypto_skcipher_spawn streamcipher_spawn;
 66	struct crypto_cipher_spawn blockcipher_spawn;
 67	struct crypto_shash_spawn hash_spawn;
 68};
 69
 70struct adiantum_tfm_ctx {
 71	struct crypto_skcipher *streamcipher;
 72	struct crypto_cipher *blockcipher;
 73	struct crypto_shash *hash;
 74	struct poly1305_core_key header_hash_key;
 75};
 76
 77struct adiantum_request_ctx {
 78
 79	/*
 80	 * Buffer for right-hand part of data, i.e.
 81	 *
 82	 *    P_L => P_M => C_M => C_R when encrypting, or
 83	 *    C_R => C_M => P_M => P_L when decrypting.
 84	 *
 85	 * Also used to build the IV for the stream cipher.
 86	 */
 87	union {
 88		u8 bytes[XCHACHA_IV_SIZE];
 89		__le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
 90		le128 bignum;	/* interpret as element of Z/(2^{128}Z) */
 91	} rbuf;
 92
 93	bool enc; /* true if encrypting, false if decrypting */
 94
 95	/*
 96	 * The result of the Poly1305 ε-∆U hash function applied to
 97	 * (bulk length, tweak)
 98	 */
 99	le128 header_hash;
100
101	/* Sub-requests, must be last */
102	union {
103		struct shash_desc hash_desc;
104		struct skcipher_request streamcipher_req;
105	} u;
106};
107
108/*
109 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
110 * hash key K_H as follows:
111 *
112 *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
113 *
114 * Note that this denotes using bits from the XChaCha keystream, which here we
115 * get indirectly by encrypting a buffer containing all 0's.
116 */
117static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
118			   unsigned int keylen)
119{
120	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
121	struct {
122		u8 iv[XCHACHA_IV_SIZE];
123		u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
124		struct scatterlist sg;
125		struct crypto_wait wait;
126		struct skcipher_request req; /* must be last */
127	} *data;
128	u8 *keyp;
129	int err;
130
131	/* Set the stream cipher key (K_S) */
132	crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
133	crypto_skcipher_set_flags(tctx->streamcipher,
134				  crypto_skcipher_get_flags(tfm) &
135				  CRYPTO_TFM_REQ_MASK);
136	err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
 
 
 
137	if (err)
138		return err;
139
140	/* Derive the subkeys */
141	data = kzalloc(sizeof(*data) +
142		       crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
143	if (!data)
144		return -ENOMEM;
145	data->iv[0] = 1;
146	sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
147	crypto_init_wait(&data->wait);
148	skcipher_request_set_tfm(&data->req, tctx->streamcipher);
149	skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
150						  CRYPTO_TFM_REQ_MAY_BACKLOG,
151				      crypto_req_done, &data->wait);
152	skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
153				   sizeof(data->derived_keys), data->iv);
154	err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
155	if (err)
156		goto out;
157	keyp = data->derived_keys;
158
159	/* Set the block cipher key (K_E) */
160	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
161	crypto_cipher_set_flags(tctx->blockcipher,
162				crypto_skcipher_get_flags(tfm) &
163				CRYPTO_TFM_REQ_MASK);
164	err = crypto_cipher_setkey(tctx->blockcipher, keyp,
165				   BLOCKCIPHER_KEY_SIZE);
 
 
 
166	if (err)
167		goto out;
168	keyp += BLOCKCIPHER_KEY_SIZE;
169
170	/* Set the hash key (K_H) */
171	poly1305_core_setkey(&tctx->header_hash_key, keyp);
172	keyp += POLY1305_BLOCK_SIZE;
173
174	crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
175	crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
176					   CRYPTO_TFM_REQ_MASK);
177	err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
 
 
178	keyp += NHPOLY1305_KEY_SIZE;
179	WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
180out:
181	kfree_sensitive(data);
182	return err;
183}
184
185/* Addition in Z/(2^{128}Z) */
186static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
187{
188	u64 x = le64_to_cpu(v1->b);
189	u64 y = le64_to_cpu(v2->b);
190
191	r->b = cpu_to_le64(x + y);
192	r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
193			   (x + y < x));
194}
195
196/* Subtraction in Z/(2^{128}Z) */
197static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
198{
199	u64 x = le64_to_cpu(v1->b);
200	u64 y = le64_to_cpu(v2->b);
201
202	r->b = cpu_to_le64(x - y);
203	r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
204			   (x - y > x));
205}
206
207/*
208 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
209 * result to rctx->header_hash.  This is the calculation
210 *
211 *	H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
212 *
213 * from the procedure in section 6.4 of the Adiantum paper.  The resulting value
214 * is reused in both the first and second hash steps.  Specifically, it's added
215 * to the result of an independently keyed ε-∆U hash function (for equal length
216 * inputs only) taken over the left-hand part (the "bulk") of the message, to
217 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
218 */
219static void adiantum_hash_header(struct skcipher_request *req)
220{
221	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
222	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
223	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
224	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
225	struct {
226		__le64 message_bits;
227		__le64 padding;
228	} header = {
229		.message_bits = cpu_to_le64((u64)bulk_len * 8)
230	};
231	struct poly1305_state state;
232
233	poly1305_core_init(&state);
234
235	BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
236	poly1305_core_blocks(&state, &tctx->header_hash_key,
237			     &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
238
239	BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
240	poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
241			     TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
242
243	poly1305_core_emit(&state, NULL, &rctx->header_hash);
244}
245
246/* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
247static int adiantum_hash_message(struct skcipher_request *req,
248				 struct scatterlist *sgl, unsigned int nents,
249				 le128 *digest)
250{
 
 
251	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
252	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
253	struct shash_desc *hash_desc = &rctx->u.hash_desc;
254	struct sg_mapping_iter miter;
255	unsigned int i, n;
256	int err;
257
 
 
258	err = crypto_shash_init(hash_desc);
259	if (err)
260		return err;
261
262	sg_miter_start(&miter, sgl, nents, SG_MITER_FROM_SG | SG_MITER_ATOMIC);
 
263	for (i = 0; i < bulk_len; i += n) {
264		sg_miter_next(&miter);
265		n = min_t(unsigned int, miter.length, bulk_len - i);
266		err = crypto_shash_update(hash_desc, miter.addr, n);
267		if (err)
268			break;
269	}
270	sg_miter_stop(&miter);
271	if (err)
272		return err;
273
274	return crypto_shash_final(hash_desc, (u8 *)digest);
275}
276
277/* Continue Adiantum encryption/decryption after the stream cipher step */
278static int adiantum_finish(struct skcipher_request *req)
279{
280	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
281	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
282	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
283	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
284	struct scatterlist *dst = req->dst;
285	const unsigned int dst_nents = sg_nents(dst);
286	le128 digest;
287	int err;
288
289	/* If decrypting, decrypt C_M with the block cipher to get P_M */
290	if (!rctx->enc)
291		crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
292					  rctx->rbuf.bytes);
293
294	/*
295	 * Second hash step
296	 *	enc: C_R = C_M - H_{K_H}(T, C_L)
297	 *	dec: P_R = P_M - H_{K_H}(T, P_L)
298	 */
299	rctx->u.hash_desc.tfm = tctx->hash;
300	le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &rctx->header_hash);
301	if (dst_nents == 1 && dst->offset + req->cryptlen <= PAGE_SIZE) {
302		/* Fast path for single-page destination */
303		struct page *page = sg_page(dst);
304		void *virt = kmap_local_page(page) + dst->offset;
305
306		err = crypto_shash_digest(&rctx->u.hash_desc, virt, bulk_len,
307					  (u8 *)&digest);
308		if (err) {
309			kunmap_local(virt);
310			return err;
311		}
312		le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
313		memcpy(virt + bulk_len, &rctx->rbuf.bignum, sizeof(le128));
314		flush_dcache_page(page);
315		kunmap_local(virt);
316	} else {
317		/* Slow path that works for any destination scatterlist */
318		err = adiantum_hash_message(req, dst, dst_nents, &digest);
319		if (err)
320			return err;
321		le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
322		scatterwalk_map_and_copy(&rctx->rbuf.bignum, dst,
323					 bulk_len, sizeof(le128), 1);
324	}
325	return 0;
326}
327
328static void adiantum_streamcipher_done(void *data, int err)
 
329{
330	struct skcipher_request *req = data;
331
332	if (!err)
333		err = adiantum_finish(req);
334
335	skcipher_request_complete(req, err);
336}
337
338static int adiantum_crypt(struct skcipher_request *req, bool enc)
339{
340	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
341	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
342	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
343	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
344	struct scatterlist *src = req->src;
345	const unsigned int src_nents = sg_nents(src);
346	unsigned int stream_len;
347	le128 digest;
348	int err;
349
350	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
351		return -EINVAL;
352
353	rctx->enc = enc;
354
355	/*
356	 * First hash step
357	 *	enc: P_M = P_R + H_{K_H}(T, P_L)
358	 *	dec: C_M = C_R + H_{K_H}(T, C_L)
359	 */
360	adiantum_hash_header(req);
361	rctx->u.hash_desc.tfm = tctx->hash;
362	if (src_nents == 1 && src->offset + req->cryptlen <= PAGE_SIZE) {
363		/* Fast path for single-page source */
364		void *virt = kmap_local_page(sg_page(src)) + src->offset;
365
366		err = crypto_shash_digest(&rctx->u.hash_desc, virt, bulk_len,
367					  (u8 *)&digest);
368		memcpy(&rctx->rbuf.bignum, virt + bulk_len, sizeof(le128));
369		kunmap_local(virt);
370	} else {
371		/* Slow path that works for any source scatterlist */
372		err = adiantum_hash_message(req, src, src_nents, &digest);
373		scatterwalk_map_and_copy(&rctx->rbuf.bignum, src,
374					 bulk_len, sizeof(le128), 0);
375	}
376	if (err)
377		return err;
378	le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &rctx->header_hash);
 
 
379	le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
380
381	/* If encrypting, encrypt P_M with the block cipher to get C_M */
382	if (enc)
383		crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
384					  rctx->rbuf.bytes);
385
386	/* Initialize the rest of the XChaCha IV (first part is C_M) */
387	BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
388	BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);	/* nonce || stream position */
389	rctx->rbuf.words[4] = cpu_to_le32(1);
390	rctx->rbuf.words[5] = 0;
391	rctx->rbuf.words[6] = 0;
392	rctx->rbuf.words[7] = 0;
393
394	/*
395	 * XChaCha needs to be done on all the data except the last 16 bytes;
396	 * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha
397	 * implementations tend to be most efficient when passed a whole number
398	 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
399	 * And here it doesn't matter whether the last 16 bytes are written to,
400	 * as the second hash step will overwrite them.  Thus, round the XChaCha
401	 * length up to the next 64-byte boundary if possible.
402	 */
403	stream_len = bulk_len;
404	if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
405		stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
406
407	skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
408	skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
409				   req->dst, stream_len, &rctx->rbuf);
410	skcipher_request_set_callback(&rctx->u.streamcipher_req,
411				      req->base.flags,
412				      adiantum_streamcipher_done, req);
413	return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
414		adiantum_finish(req);
415}
416
417static int adiantum_encrypt(struct skcipher_request *req)
418{
419	return adiantum_crypt(req, true);
420}
421
422static int adiantum_decrypt(struct skcipher_request *req)
423{
424	return adiantum_crypt(req, false);
425}
426
427static int adiantum_init_tfm(struct crypto_skcipher *tfm)
428{
429	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
430	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
431	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
432	struct crypto_skcipher *streamcipher;
433	struct crypto_cipher *blockcipher;
434	struct crypto_shash *hash;
435	unsigned int subreq_size;
436	int err;
437
438	streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
439	if (IS_ERR(streamcipher))
440		return PTR_ERR(streamcipher);
441
442	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
443	if (IS_ERR(blockcipher)) {
444		err = PTR_ERR(blockcipher);
445		goto err_free_streamcipher;
446	}
447
448	hash = crypto_spawn_shash(&ictx->hash_spawn);
449	if (IS_ERR(hash)) {
450		err = PTR_ERR(hash);
451		goto err_free_blockcipher;
452	}
453
454	tctx->streamcipher = streamcipher;
455	tctx->blockcipher = blockcipher;
456	tctx->hash = hash;
457
458	BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
459		     sizeof(struct adiantum_request_ctx));
460	subreq_size = max(sizeof_field(struct adiantum_request_ctx,
461				       u.hash_desc) +
462			  crypto_shash_descsize(hash),
463			  sizeof_field(struct adiantum_request_ctx,
464				       u.streamcipher_req) +
465			  crypto_skcipher_reqsize(streamcipher));
466
467	crypto_skcipher_set_reqsize(tfm,
468				    offsetof(struct adiantum_request_ctx, u) +
469				    subreq_size);
470	return 0;
471
472err_free_blockcipher:
473	crypto_free_cipher(blockcipher);
474err_free_streamcipher:
475	crypto_free_skcipher(streamcipher);
476	return err;
477}
478
479static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
480{
481	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
482
483	crypto_free_skcipher(tctx->streamcipher);
484	crypto_free_cipher(tctx->blockcipher);
485	crypto_free_shash(tctx->hash);
486}
487
488static void adiantum_free_instance(struct skcipher_instance *inst)
489{
490	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
491
492	crypto_drop_skcipher(&ictx->streamcipher_spawn);
493	crypto_drop_cipher(&ictx->blockcipher_spawn);
494	crypto_drop_shash(&ictx->hash_spawn);
495	kfree(inst);
496}
497
498/*
499 * Check for a supported set of inner algorithms.
500 * See the comment at the beginning of this file.
501 */
502static bool adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg,
503					  struct crypto_alg *blockcipher_alg,
504					  struct shash_alg *hash_alg)
505{
506	if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
507	    strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
508		return false;
509
510	if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
511	    blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
512		return false;
513	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
514		return false;
515
516	if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
517		return false;
518
519	return true;
520}
521
522static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
523{
524	u32 mask;
 
 
525	const char *nhpoly1305_name;
526	struct skcipher_instance *inst;
527	struct adiantum_instance_ctx *ictx;
528	struct skcipher_alg_common *streamcipher_alg;
529	struct crypto_alg *blockcipher_alg;
 
530	struct shash_alg *hash_alg;
531	int err;
532
533	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
534	if (err)
535		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536
537	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
538	if (!inst)
539		return -ENOMEM;
540	ictx = skcipher_instance_ctx(inst);
541
542	/* Stream cipher, e.g. "xchacha12" */
543	err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
544				   skcipher_crypto_instance(inst),
545				   crypto_attr_alg_name(tb[1]), 0, mask);
 
 
546	if (err)
547		goto err_free_inst;
548	streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn);
549
550	/* Block cipher, e.g. "aes" */
551	err = crypto_grab_cipher(&ictx->blockcipher_spawn,
552				 skcipher_crypto_instance(inst),
553				 crypto_attr_alg_name(tb[2]), 0, mask);
 
554	if (err)
555		goto err_free_inst;
556	blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
557
558	/* NHPoly1305 ε-∆U hash function */
559	nhpoly1305_name = crypto_attr_alg_name(tb[3]);
560	if (nhpoly1305_name == ERR_PTR(-ENOENT))
561		nhpoly1305_name = "nhpoly1305";
562	err = crypto_grab_shash(&ictx->hash_spawn,
563				skcipher_crypto_instance(inst),
564				nhpoly1305_name, 0, mask);
 
 
 
 
565	if (err)
566		goto err_free_inst;
567	hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn);
568
569	/* Check the set of algorithms */
570	if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
571					   hash_alg)) {
572		pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
573			streamcipher_alg->base.cra_name,
574			blockcipher_alg->cra_name, hash_alg->base.cra_name);
575		err = -EINVAL;
576		goto err_free_inst;
577	}
578
579	/* Instance fields */
580
581	err = -ENAMETOOLONG;
582	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
583		     "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
584		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
585		goto err_free_inst;
586	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
587		     "adiantum(%s,%s,%s)",
588		     streamcipher_alg->base.cra_driver_name,
589		     blockcipher_alg->cra_driver_name,
590		     hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
591		goto err_free_inst;
592
 
 
593	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
594	inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
595	inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask;
 
596	/*
597	 * The block cipher is only invoked once per message, so for long
598	 * messages (e.g. sectors for disk encryption) its performance doesn't
599	 * matter as much as that of the stream cipher and hash function.  Thus,
600	 * weigh the block cipher's ->cra_priority less.
601	 */
602	inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
603				       2 * hash_alg->base.cra_priority +
604				       blockcipher_alg->cra_priority) / 7;
605
606	inst->alg.setkey = adiantum_setkey;
607	inst->alg.encrypt = adiantum_encrypt;
608	inst->alg.decrypt = adiantum_decrypt;
609	inst->alg.init = adiantum_init_tfm;
610	inst->alg.exit = adiantum_exit_tfm;
611	inst->alg.min_keysize = streamcipher_alg->min_keysize;
612	inst->alg.max_keysize = streamcipher_alg->max_keysize;
613	inst->alg.ivsize = TWEAK_SIZE;
614
615	inst->free = adiantum_free_instance;
616
617	err = skcipher_register_instance(tmpl, inst);
618	if (err) {
619err_free_inst:
620		adiantum_free_instance(inst);
621	}
 
 
 
 
 
 
 
 
 
 
 
 
622	return err;
623}
624
625/* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
626static struct crypto_template adiantum_tmpl = {
627	.name = "adiantum",
628	.create = adiantum_create,
629	.module = THIS_MODULE,
630};
631
632static int __init adiantum_module_init(void)
633{
634	return crypto_register_template(&adiantum_tmpl);
635}
636
637static void __exit adiantum_module_exit(void)
638{
639	crypto_unregister_template(&adiantum_tmpl);
640}
641
642subsys_initcall(adiantum_module_init);
643module_exit(adiantum_module_exit);
644
645MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
646MODULE_LICENSE("GPL v2");
647MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
648MODULE_ALIAS_CRYPTO("adiantum");
649MODULE_IMPORT_NS(CRYPTO_INTERNAL);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Adiantum length-preserving encryption mode
  4 *
  5 * Copyright 2018 Google LLC
  6 */
  7
  8/*
  9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
 10 * and secure disk encryption, especially on CPUs without dedicated crypto
 11 * instructions.  Adiantum encrypts each sector using the XChaCha12 stream
 12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
 13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
 14 * 16-byte block.  See the paper for details:
 15 *
 16 *	Adiantum: length-preserving encryption for entry-level processors
 17 *      (https://eprint.iacr.org/2018/720.pdf)
 18 *
 19 * For flexibility, this implementation also allows other ciphers:
 20 *
 21 *	- Stream cipher: XChaCha12 or XChaCha20
 22 *	- Block cipher: any with a 128-bit block size and 256-bit key
 23 *
 24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
 25 * HPolyC is not supported.  This is because Adiantum is ~20% faster than HPolyC
 26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
 27 * formally defined to take two inputs (tweak, message) which makes it difficult
 28 * to wrap with the crypto_shash API.  Rather, some details need to be handled
 29 * here.  Nevertheless, if needed in the future, support for other ε-∆U hash
 30 * functions could be added here.
 31 */
 32
 33#include <crypto/b128ops.h>
 34#include <crypto/chacha.h>
 
 35#include <crypto/internal/hash.h>
 
 36#include <crypto/internal/skcipher.h>
 37#include <crypto/nhpoly1305.h>
 38#include <crypto/scatterwalk.h>
 39#include <linux/module.h>
 40
 41#include "internal.h"
 42
 43/*
 44 * Size of right-hand part of input data, in bytes; also the size of the block
 45 * cipher's block size and the hash function's output.
 46 */
 47#define BLOCKCIPHER_BLOCK_SIZE		16
 48
 49/* Size of the block cipher key (K_E) in bytes */
 50#define BLOCKCIPHER_KEY_SIZE		32
 51
 52/* Size of the hash key (K_H) in bytes */
 53#define HASH_KEY_SIZE		(POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
 54
 55/*
 56 * The specification allows variable-length tweaks, but Linux's crypto API
 57 * currently only allows algorithms to support a single length.  The "natural"
 58 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
 59 * the best performance.  But longer tweaks are useful for fscrypt, to avoid
 60 * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
 61 */
 62#define TWEAK_SIZE		32
 63
 64struct adiantum_instance_ctx {
 65	struct crypto_skcipher_spawn streamcipher_spawn;
 66	struct crypto_spawn blockcipher_spawn;
 67	struct crypto_shash_spawn hash_spawn;
 68};
 69
 70struct adiantum_tfm_ctx {
 71	struct crypto_skcipher *streamcipher;
 72	struct crypto_cipher *blockcipher;
 73	struct crypto_shash *hash;
 74	struct poly1305_key header_hash_key;
 75};
 76
 77struct adiantum_request_ctx {
 78
 79	/*
 80	 * Buffer for right-hand part of data, i.e.
 81	 *
 82	 *    P_L => P_M => C_M => C_R when encrypting, or
 83	 *    C_R => C_M => P_M => P_L when decrypting.
 84	 *
 85	 * Also used to build the IV for the stream cipher.
 86	 */
 87	union {
 88		u8 bytes[XCHACHA_IV_SIZE];
 89		__le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
 90		le128 bignum;	/* interpret as element of Z/(2^{128}Z) */
 91	} rbuf;
 92
 93	bool enc; /* true if encrypting, false if decrypting */
 94
 95	/*
 96	 * The result of the Poly1305 ε-∆U hash function applied to
 97	 * (bulk length, tweak)
 98	 */
 99	le128 header_hash;
100
101	/* Sub-requests, must be last */
102	union {
103		struct shash_desc hash_desc;
104		struct skcipher_request streamcipher_req;
105	} u;
106};
107
108/*
109 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
110 * hash key K_H as follows:
111 *
112 *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
113 *
114 * Note that this denotes using bits from the XChaCha keystream, which here we
115 * get indirectly by encrypting a buffer containing all 0's.
116 */
117static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
118			   unsigned int keylen)
119{
120	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
121	struct {
122		u8 iv[XCHACHA_IV_SIZE];
123		u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
124		struct scatterlist sg;
125		struct crypto_wait wait;
126		struct skcipher_request req; /* must be last */
127	} *data;
128	u8 *keyp;
129	int err;
130
131	/* Set the stream cipher key (K_S) */
132	crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
133	crypto_skcipher_set_flags(tctx->streamcipher,
134				  crypto_skcipher_get_flags(tfm) &
135				  CRYPTO_TFM_REQ_MASK);
136	err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
137	crypto_skcipher_set_flags(tfm,
138				crypto_skcipher_get_flags(tctx->streamcipher) &
139				CRYPTO_TFM_RES_MASK);
140	if (err)
141		return err;
142
143	/* Derive the subkeys */
144	data = kzalloc(sizeof(*data) +
145		       crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
146	if (!data)
147		return -ENOMEM;
148	data->iv[0] = 1;
149	sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
150	crypto_init_wait(&data->wait);
151	skcipher_request_set_tfm(&data->req, tctx->streamcipher);
152	skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
153						  CRYPTO_TFM_REQ_MAY_BACKLOG,
154				      crypto_req_done, &data->wait);
155	skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
156				   sizeof(data->derived_keys), data->iv);
157	err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
158	if (err)
159		goto out;
160	keyp = data->derived_keys;
161
162	/* Set the block cipher key (K_E) */
163	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
164	crypto_cipher_set_flags(tctx->blockcipher,
165				crypto_skcipher_get_flags(tfm) &
166				CRYPTO_TFM_REQ_MASK);
167	err = crypto_cipher_setkey(tctx->blockcipher, keyp,
168				   BLOCKCIPHER_KEY_SIZE);
169	crypto_skcipher_set_flags(tfm,
170				  crypto_cipher_get_flags(tctx->blockcipher) &
171				  CRYPTO_TFM_RES_MASK);
172	if (err)
173		goto out;
174	keyp += BLOCKCIPHER_KEY_SIZE;
175
176	/* Set the hash key (K_H) */
177	poly1305_core_setkey(&tctx->header_hash_key, keyp);
178	keyp += POLY1305_BLOCK_SIZE;
179
180	crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
181	crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
182					   CRYPTO_TFM_REQ_MASK);
183	err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
184	crypto_skcipher_set_flags(tfm, crypto_shash_get_flags(tctx->hash) &
185				       CRYPTO_TFM_RES_MASK);
186	keyp += NHPOLY1305_KEY_SIZE;
187	WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
188out:
189	kzfree(data);
190	return err;
191}
192
193/* Addition in Z/(2^{128}Z) */
194static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
195{
196	u64 x = le64_to_cpu(v1->b);
197	u64 y = le64_to_cpu(v2->b);
198
199	r->b = cpu_to_le64(x + y);
200	r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
201			   (x + y < x));
202}
203
204/* Subtraction in Z/(2^{128}Z) */
205static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
206{
207	u64 x = le64_to_cpu(v1->b);
208	u64 y = le64_to_cpu(v2->b);
209
210	r->b = cpu_to_le64(x - y);
211	r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
212			   (x - y > x));
213}
214
215/*
216 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
217 * result to rctx->header_hash.  This is the calculation
218 *
219 *	H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
220 *
221 * from the procedure in section 6.4 of the Adiantum paper.  The resulting value
222 * is reused in both the first and second hash steps.  Specifically, it's added
223 * to the result of an independently keyed ε-∆U hash function (for equal length
224 * inputs only) taken over the left-hand part (the "bulk") of the message, to
225 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
226 */
227static void adiantum_hash_header(struct skcipher_request *req)
228{
229	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
230	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
231	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
232	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
233	struct {
234		__le64 message_bits;
235		__le64 padding;
236	} header = {
237		.message_bits = cpu_to_le64((u64)bulk_len * 8)
238	};
239	struct poly1305_state state;
240
241	poly1305_core_init(&state);
242
243	BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
244	poly1305_core_blocks(&state, &tctx->header_hash_key,
245			     &header, sizeof(header) / POLY1305_BLOCK_SIZE);
246
247	BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
248	poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
249			     TWEAK_SIZE / POLY1305_BLOCK_SIZE);
250
251	poly1305_core_emit(&state, &rctx->header_hash);
252}
253
254/* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
255static int adiantum_hash_message(struct skcipher_request *req,
256				 struct scatterlist *sgl, le128 *digest)
 
257{
258	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
259	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
260	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
261	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
262	struct shash_desc *hash_desc = &rctx->u.hash_desc;
263	struct sg_mapping_iter miter;
264	unsigned int i, n;
265	int err;
266
267	hash_desc->tfm = tctx->hash;
268
269	err = crypto_shash_init(hash_desc);
270	if (err)
271		return err;
272
273	sg_miter_start(&miter, sgl, sg_nents(sgl),
274		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
275	for (i = 0; i < bulk_len; i += n) {
276		sg_miter_next(&miter);
277		n = min_t(unsigned int, miter.length, bulk_len - i);
278		err = crypto_shash_update(hash_desc, miter.addr, n);
279		if (err)
280			break;
281	}
282	sg_miter_stop(&miter);
283	if (err)
284		return err;
285
286	return crypto_shash_final(hash_desc, (u8 *)digest);
287}
288
289/* Continue Adiantum encryption/decryption after the stream cipher step */
290static int adiantum_finish(struct skcipher_request *req)
291{
292	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
293	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
294	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
295	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
 
 
296	le128 digest;
297	int err;
298
299	/* If decrypting, decrypt C_M with the block cipher to get P_M */
300	if (!rctx->enc)
301		crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
302					  rctx->rbuf.bytes);
303
304	/*
305	 * Second hash step
306	 *	enc: C_R = C_M - H_{K_H}(T, C_L)
307	 *	dec: P_R = P_M - H_{K_H}(T, P_L)
308	 */
309	err = adiantum_hash_message(req, req->dst, &digest);
310	if (err)
311		return err;
312	le128_add(&digest, &digest, &rctx->header_hash);
313	le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
314	scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst,
315				 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316	return 0;
317}
318
319static void adiantum_streamcipher_done(struct crypto_async_request *areq,
320				       int err)
321{
322	struct skcipher_request *req = areq->data;
323
324	if (!err)
325		err = adiantum_finish(req);
326
327	skcipher_request_complete(req, err);
328}
329
330static int adiantum_crypt(struct skcipher_request *req, bool enc)
331{
332	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
333	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
334	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
335	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
 
 
336	unsigned int stream_len;
337	le128 digest;
338	int err;
339
340	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
341		return -EINVAL;
342
343	rctx->enc = enc;
344
345	/*
346	 * First hash step
347	 *	enc: P_M = P_R + H_{K_H}(T, P_L)
348	 *	dec: C_M = C_R + H_{K_H}(T, C_L)
349	 */
350	adiantum_hash_header(req);
351	err = adiantum_hash_message(req, req->src, &digest);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352	if (err)
353		return err;
354	le128_add(&digest, &digest, &rctx->header_hash);
355	scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src,
356				 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0);
357	le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
358
359	/* If encrypting, encrypt P_M with the block cipher to get C_M */
360	if (enc)
361		crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
362					  rctx->rbuf.bytes);
363
364	/* Initialize the rest of the XChaCha IV (first part is C_M) */
365	BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
366	BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);	/* nonce || stream position */
367	rctx->rbuf.words[4] = cpu_to_le32(1);
368	rctx->rbuf.words[5] = 0;
369	rctx->rbuf.words[6] = 0;
370	rctx->rbuf.words[7] = 0;
371
372	/*
373	 * XChaCha needs to be done on all the data except the last 16 bytes;
374	 * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha
375	 * implementations tend to be most efficient when passed a whole number
376	 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
377	 * And here it doesn't matter whether the last 16 bytes are written to,
378	 * as the second hash step will overwrite them.  Thus, round the XChaCha
379	 * length up to the next 64-byte boundary if possible.
380	 */
381	stream_len = bulk_len;
382	if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
383		stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
384
385	skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
386	skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
387				   req->dst, stream_len, &rctx->rbuf);
388	skcipher_request_set_callback(&rctx->u.streamcipher_req,
389				      req->base.flags,
390				      adiantum_streamcipher_done, req);
391	return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
392		adiantum_finish(req);
393}
394
395static int adiantum_encrypt(struct skcipher_request *req)
396{
397	return adiantum_crypt(req, true);
398}
399
400static int adiantum_decrypt(struct skcipher_request *req)
401{
402	return adiantum_crypt(req, false);
403}
404
405static int adiantum_init_tfm(struct crypto_skcipher *tfm)
406{
407	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
408	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
409	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
410	struct crypto_skcipher *streamcipher;
411	struct crypto_cipher *blockcipher;
412	struct crypto_shash *hash;
413	unsigned int subreq_size;
414	int err;
415
416	streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
417	if (IS_ERR(streamcipher))
418		return PTR_ERR(streamcipher);
419
420	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
421	if (IS_ERR(blockcipher)) {
422		err = PTR_ERR(blockcipher);
423		goto err_free_streamcipher;
424	}
425
426	hash = crypto_spawn_shash(&ictx->hash_spawn);
427	if (IS_ERR(hash)) {
428		err = PTR_ERR(hash);
429		goto err_free_blockcipher;
430	}
431
432	tctx->streamcipher = streamcipher;
433	tctx->blockcipher = blockcipher;
434	tctx->hash = hash;
435
436	BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
437		     sizeof(struct adiantum_request_ctx));
438	subreq_size = max(FIELD_SIZEOF(struct adiantum_request_ctx,
439				       u.hash_desc) +
440			  crypto_shash_descsize(hash),
441			  FIELD_SIZEOF(struct adiantum_request_ctx,
442				       u.streamcipher_req) +
443			  crypto_skcipher_reqsize(streamcipher));
444
445	crypto_skcipher_set_reqsize(tfm,
446				    offsetof(struct adiantum_request_ctx, u) +
447				    subreq_size);
448	return 0;
449
450err_free_blockcipher:
451	crypto_free_cipher(blockcipher);
452err_free_streamcipher:
453	crypto_free_skcipher(streamcipher);
454	return err;
455}
456
457static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
458{
459	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
460
461	crypto_free_skcipher(tctx->streamcipher);
462	crypto_free_cipher(tctx->blockcipher);
463	crypto_free_shash(tctx->hash);
464}
465
466static void adiantum_free_instance(struct skcipher_instance *inst)
467{
468	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
469
470	crypto_drop_skcipher(&ictx->streamcipher_spawn);
471	crypto_drop_spawn(&ictx->blockcipher_spawn);
472	crypto_drop_shash(&ictx->hash_spawn);
473	kfree(inst);
474}
475
476/*
477 * Check for a supported set of inner algorithms.
478 * See the comment at the beginning of this file.
479 */
480static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg,
481					  struct crypto_alg *blockcipher_alg,
482					  struct shash_alg *hash_alg)
483{
484	if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
485	    strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
486		return false;
487
488	if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
489	    blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
490		return false;
491	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
492		return false;
493
494	if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
495		return false;
496
497	return true;
498}
499
500static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
501{
502	struct crypto_attr_type *algt;
503	const char *streamcipher_name;
504	const char *blockcipher_name;
505	const char *nhpoly1305_name;
506	struct skcipher_instance *inst;
507	struct adiantum_instance_ctx *ictx;
508	struct skcipher_alg *streamcipher_alg;
509	struct crypto_alg *blockcipher_alg;
510	struct crypto_alg *_hash_alg;
511	struct shash_alg *hash_alg;
512	int err;
513
514	algt = crypto_get_attr_type(tb);
515	if (IS_ERR(algt))
516		return PTR_ERR(algt);
517
518	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
519		return -EINVAL;
520
521	streamcipher_name = crypto_attr_alg_name(tb[1]);
522	if (IS_ERR(streamcipher_name))
523		return PTR_ERR(streamcipher_name);
524
525	blockcipher_name = crypto_attr_alg_name(tb[2]);
526	if (IS_ERR(blockcipher_name))
527		return PTR_ERR(blockcipher_name);
528
529	nhpoly1305_name = crypto_attr_alg_name(tb[3]);
530	if (nhpoly1305_name == ERR_PTR(-ENOENT))
531		nhpoly1305_name = "nhpoly1305";
532	if (IS_ERR(nhpoly1305_name))
533		return PTR_ERR(nhpoly1305_name);
534
535	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
536	if (!inst)
537		return -ENOMEM;
538	ictx = skcipher_instance_ctx(inst);
539
540	/* Stream cipher, e.g. "xchacha12" */
541	crypto_set_skcipher_spawn(&ictx->streamcipher_spawn,
542				  skcipher_crypto_instance(inst));
543	err = crypto_grab_skcipher(&ictx->streamcipher_spawn, streamcipher_name,
544				   0, crypto_requires_sync(algt->type,
545							   algt->mask));
546	if (err)
547		goto out_free_inst;
548	streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn);
549
550	/* Block cipher, e.g. "aes" */
551	crypto_set_spawn(&ictx->blockcipher_spawn,
552			 skcipher_crypto_instance(inst));
553	err = crypto_grab_spawn(&ictx->blockcipher_spawn, blockcipher_name,
554				CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK);
555	if (err)
556		goto out_drop_streamcipher;
557	blockcipher_alg = ictx->blockcipher_spawn.alg;
558
559	/* NHPoly1305 ε-∆U hash function */
560	_hash_alg = crypto_alg_mod_lookup(nhpoly1305_name,
561					  CRYPTO_ALG_TYPE_SHASH,
562					  CRYPTO_ALG_TYPE_MASK);
563	if (IS_ERR(_hash_alg)) {
564		err = PTR_ERR(_hash_alg);
565		goto out_drop_blockcipher;
566	}
567	hash_alg = __crypto_shash_alg(_hash_alg);
568	err = crypto_init_shash_spawn(&ictx->hash_spawn, hash_alg,
569				      skcipher_crypto_instance(inst));
570	if (err)
571		goto out_put_hash;
 
572
573	/* Check the set of algorithms */
574	if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
575					   hash_alg)) {
576		pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
577			streamcipher_alg->base.cra_name,
578			blockcipher_alg->cra_name, hash_alg->base.cra_name);
579		err = -EINVAL;
580		goto out_drop_hash;
581	}
582
583	/* Instance fields */
584
585	err = -ENAMETOOLONG;
586	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
587		     "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
588		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
589		goto out_drop_hash;
590	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
591		     "adiantum(%s,%s,%s)",
592		     streamcipher_alg->base.cra_driver_name,
593		     blockcipher_alg->cra_driver_name,
594		     hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
595		goto out_drop_hash;
596
597	inst->alg.base.cra_flags = streamcipher_alg->base.cra_flags &
598				   CRYPTO_ALG_ASYNC;
599	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
600	inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
601	inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask |
602				       hash_alg->base.cra_alignmask;
603	/*
604	 * The block cipher is only invoked once per message, so for long
605	 * messages (e.g. sectors for disk encryption) its performance doesn't
606	 * matter as much as that of the stream cipher and hash function.  Thus,
607	 * weigh the block cipher's ->cra_priority less.
608	 */
609	inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
610				       2 * hash_alg->base.cra_priority +
611				       blockcipher_alg->cra_priority) / 7;
612
613	inst->alg.setkey = adiantum_setkey;
614	inst->alg.encrypt = adiantum_encrypt;
615	inst->alg.decrypt = adiantum_decrypt;
616	inst->alg.init = adiantum_init_tfm;
617	inst->alg.exit = adiantum_exit_tfm;
618	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg);
619	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg);
620	inst->alg.ivsize = TWEAK_SIZE;
621
622	inst->free = adiantum_free_instance;
623
624	err = skcipher_register_instance(tmpl, inst);
625	if (err)
626		goto out_drop_hash;
627
628	crypto_mod_put(_hash_alg);
629	return 0;
630
631out_drop_hash:
632	crypto_drop_shash(&ictx->hash_spawn);
633out_put_hash:
634	crypto_mod_put(_hash_alg);
635out_drop_blockcipher:
636	crypto_drop_spawn(&ictx->blockcipher_spawn);
637out_drop_streamcipher:
638	crypto_drop_skcipher(&ictx->streamcipher_spawn);
639out_free_inst:
640	kfree(inst);
641	return err;
642}
643
644/* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
645static struct crypto_template adiantum_tmpl = {
646	.name = "adiantum",
647	.create = adiantum_create,
648	.module = THIS_MODULE,
649};
650
651static int __init adiantum_module_init(void)
652{
653	return crypto_register_template(&adiantum_tmpl);
654}
655
656static void __exit adiantum_module_exit(void)
657{
658	crypto_unregister_template(&adiantum_tmpl);
659}
660
661subsys_initcall(adiantum_module_init);
662module_exit(adiantum_module_exit);
663
664MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
665MODULE_LICENSE("GPL v2");
666MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
667MODULE_ALIAS_CRYPTO("adiantum");