Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
   4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
   5 *
   6 * KVM Xen emulation
   7 */
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include "x86.h"
  11#include "xen.h"
  12#include "hyperv.h"
  13#include "lapic.h"
  14
  15#include <linux/eventfd.h>
  16#include <linux/kvm_host.h>
  17#include <linux/sched/stat.h>
  18
  19#include <trace/events/kvm.h>
  20#include <xen/interface/xen.h>
  21#include <xen/interface/vcpu.h>
  22#include <xen/interface/version.h>
  23#include <xen/interface/event_channel.h>
  24#include <xen/interface/sched.h>
  25
  26#include <asm/xen/cpuid.h>
  27
  28#include "cpuid.h"
  29#include "trace.h"
  30
  31static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
  32static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
  33static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
  34
  35DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
  36
  37static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
  38{
  39	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
  40	struct pvclock_wall_clock *wc;
  41	gpa_t gpa = gfn_to_gpa(gfn);
  42	u32 *wc_sec_hi;
  43	u32 wc_version;
  44	u64 wall_nsec;
  45	int ret = 0;
  46	int idx = srcu_read_lock(&kvm->srcu);
  47
  48	if (gfn == KVM_XEN_INVALID_GFN) {
  49		kvm_gpc_deactivate(gpc);
  50		goto out;
  51	}
  52
  53	do {
  54		ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
  55		if (ret)
  56			goto out;
  57
  58		/*
  59		 * This code mirrors kvm_write_wall_clock() except that it writes
  60		 * directly through the pfn cache and doesn't mark the page dirty.
  61		 */
  62		wall_nsec = kvm_get_wall_clock_epoch(kvm);
  63
  64		/* It could be invalid again already, so we need to check */
  65		read_lock_irq(&gpc->lock);
  66
  67		if (gpc->valid)
  68			break;
  69
  70		read_unlock_irq(&gpc->lock);
  71	} while (1);
  72
  73	/* Paranoia checks on the 32-bit struct layout */
  74	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
  75	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
  76	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
  77
  78#ifdef CONFIG_X86_64
  79	/* Paranoia checks on the 64-bit struct layout */
  80	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
  81	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
  82
  83	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
  84		struct shared_info *shinfo = gpc->khva;
  85
  86		wc_sec_hi = &shinfo->wc_sec_hi;
  87		wc = &shinfo->wc;
  88	} else
  89#endif
  90	{
  91		struct compat_shared_info *shinfo = gpc->khva;
  92
  93		wc_sec_hi = &shinfo->arch.wc_sec_hi;
  94		wc = &shinfo->wc;
  95	}
  96
  97	/* Increment and ensure an odd value */
  98	wc_version = wc->version = (wc->version + 1) | 1;
  99	smp_wmb();
 100
 101	wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
 102	wc->sec = (u32)wall_nsec;
 103	*wc_sec_hi = wall_nsec >> 32;
 104	smp_wmb();
 105
 106	wc->version = wc_version + 1;
 107	read_unlock_irq(&gpc->lock);
 108
 109	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
 110
 111out:
 112	srcu_read_unlock(&kvm->srcu, idx);
 113	return ret;
 114}
 115
 116void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
 117{
 118	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
 119		struct kvm_xen_evtchn e;
 120
 121		e.vcpu_id = vcpu->vcpu_id;
 122		e.vcpu_idx = vcpu->vcpu_idx;
 123		e.port = vcpu->arch.xen.timer_virq;
 124		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
 125
 126		kvm_xen_set_evtchn(&e, vcpu->kvm);
 127
 128		vcpu->arch.xen.timer_expires = 0;
 129		atomic_set(&vcpu->arch.xen.timer_pending, 0);
 130	}
 131}
 132
 133static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
 134{
 135	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
 136					     arch.xen.timer);
 137	struct kvm_xen_evtchn e;
 138	int rc;
 139
 140	if (atomic_read(&vcpu->arch.xen.timer_pending))
 141		return HRTIMER_NORESTART;
 142
 143	e.vcpu_id = vcpu->vcpu_id;
 144	e.vcpu_idx = vcpu->vcpu_idx;
 145	e.port = vcpu->arch.xen.timer_virq;
 146	e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
 147
 148	rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
 149	if (rc != -EWOULDBLOCK) {
 150		vcpu->arch.xen.timer_expires = 0;
 151		return HRTIMER_NORESTART;
 152	}
 153
 154	atomic_inc(&vcpu->arch.xen.timer_pending);
 155	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
 156	kvm_vcpu_kick(vcpu);
 157
 158	return HRTIMER_NORESTART;
 159}
 160
 161static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
 162{
 163	/*
 164	 * Avoid races with the old timer firing. Checking timer_expires
 165	 * to avoid calling hrtimer_cancel() will only have false positives
 166	 * so is fine.
 167	 */
 168	if (vcpu->arch.xen.timer_expires)
 169		hrtimer_cancel(&vcpu->arch.xen.timer);
 170
 171	atomic_set(&vcpu->arch.xen.timer_pending, 0);
 172	vcpu->arch.xen.timer_expires = guest_abs;
 173
 174	if (delta_ns <= 0) {
 175		xen_timer_callback(&vcpu->arch.xen.timer);
 176	} else {
 177		ktime_t ktime_now = ktime_get();
 178		hrtimer_start(&vcpu->arch.xen.timer,
 179			      ktime_add_ns(ktime_now, delta_ns),
 180			      HRTIMER_MODE_ABS_HARD);
 181	}
 182}
 183
 184static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
 185{
 186	hrtimer_cancel(&vcpu->arch.xen.timer);
 187	vcpu->arch.xen.timer_expires = 0;
 188	atomic_set(&vcpu->arch.xen.timer_pending, 0);
 189}
 190
 191static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
 192{
 193	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
 194		     HRTIMER_MODE_ABS_HARD);
 195	vcpu->arch.xen.timer.function = xen_timer_callback;
 196}
 197
 198static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
 199{
 200	struct kvm_vcpu_xen *vx = &v->arch.xen;
 201	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
 202	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
 203	size_t user_len, user_len1, user_len2;
 204	struct vcpu_runstate_info rs;
 205	unsigned long flags;
 206	size_t times_ofs;
 207	uint8_t *update_bit = NULL;
 208	uint64_t entry_time;
 209	uint64_t *rs_times;
 210	int *rs_state;
 211
 212	/*
 213	 * The only difference between 32-bit and 64-bit versions of the
 214	 * runstate struct is the alignment of uint64_t in 32-bit, which
 215	 * means that the 64-bit version has an additional 4 bytes of
 216	 * padding after the first field 'state'. Let's be really really
 217	 * paranoid about that, and matching it with our internal data
 218	 * structures that we memcpy into it...
 219	 */
 220	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
 221	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
 222	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
 223#ifdef CONFIG_X86_64
 224	/*
 225	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
 226	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
 227	 */
 228	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
 229		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
 230	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
 231		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
 232	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
 233#endif
 234	/*
 235	 * The state field is in the same place at the start of both structs,
 236	 * and is the same size (int) as vx->current_runstate.
 237	 */
 238	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
 239		     offsetof(struct compat_vcpu_runstate_info, state));
 240	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
 241		     sizeof(vx->current_runstate));
 242	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
 243		     sizeof(vx->current_runstate));
 244
 245	/*
 246	 * The state_entry_time field is 64 bits in both versions, and the
 247	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
 248	 * is little-endian means that it's in the last *byte* of the word.
 249	 * That detail is important later.
 250	 */
 251	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
 252		     sizeof(uint64_t));
 253	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
 254		     sizeof(uint64_t));
 255	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
 256
 257	/*
 258	 * The time array is four 64-bit quantities in both versions, matching
 259	 * the vx->runstate_times and immediately following state_entry_time.
 260	 */
 261	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
 262		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
 263	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
 264		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
 265	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
 266		     sizeof_field(struct compat_vcpu_runstate_info, time));
 267	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
 268		     sizeof(vx->runstate_times));
 269
 270	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
 271		user_len = sizeof(struct vcpu_runstate_info);
 272		times_ofs = offsetof(struct vcpu_runstate_info,
 273				     state_entry_time);
 274	} else {
 275		user_len = sizeof(struct compat_vcpu_runstate_info);
 276		times_ofs = offsetof(struct compat_vcpu_runstate_info,
 277				     state_entry_time);
 278	}
 279
 280	/*
 281	 * There are basically no alignment constraints. The guest can set it
 282	 * up so it crosses from one page to the next, and at arbitrary byte
 283	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
 284	 * anyway, even if the overall struct had been 64-bit aligned).
 285	 */
 286	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
 287		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
 288		user_len2 = user_len - user_len1;
 289	} else {
 290		user_len1 = user_len;
 291		user_len2 = 0;
 292	}
 293	BUG_ON(user_len1 + user_len2 != user_len);
 294
 295 retry:
 296	/*
 297	 * Attempt to obtain the GPC lock on *both* (if there are two)
 298	 * gfn_to_pfn caches that cover the region.
 299	 */
 300	if (atomic) {
 301		local_irq_save(flags);
 302		if (!read_trylock(&gpc1->lock)) {
 303			local_irq_restore(flags);
 304			return;
 305		}
 306	} else {
 307		read_lock_irqsave(&gpc1->lock, flags);
 308	}
 309	while (!kvm_gpc_check(gpc1, user_len1)) {
 310		read_unlock_irqrestore(&gpc1->lock, flags);
 311
 312		/* When invoked from kvm_sched_out() we cannot sleep */
 313		if (atomic)
 314			return;
 315
 316		if (kvm_gpc_refresh(gpc1, user_len1))
 317			return;
 318
 319		read_lock_irqsave(&gpc1->lock, flags);
 320	}
 321
 322	if (likely(!user_len2)) {
 323		/*
 324		 * Set up three pointers directly to the runstate_info
 325		 * struct in the guest (via the GPC).
 326		 *
 327		 *  • @rs_state   → state field
 328		 *  • @rs_times   → state_entry_time field.
 329		 *  • @update_bit → last byte of state_entry_time, which
 330		 *                  contains the XEN_RUNSTATE_UPDATE bit.
 331		 */
 332		rs_state = gpc1->khva;
 333		rs_times = gpc1->khva + times_ofs;
 334		if (v->kvm->arch.xen.runstate_update_flag)
 335			update_bit = ((void *)(&rs_times[1])) - 1;
 336	} else {
 337		/*
 338		 * The guest's runstate_info is split across two pages and we
 339		 * need to hold and validate both GPCs simultaneously. We can
 340		 * declare a lock ordering GPC1 > GPC2 because nothing else
 341		 * takes them more than one at a time. Set a subclass on the
 342		 * gpc1 lock to make lockdep shut up about it.
 343		 */
 344		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
 345		if (atomic) {
 346			if (!read_trylock(&gpc2->lock)) {
 347				read_unlock_irqrestore(&gpc1->lock, flags);
 348				return;
 349			}
 350		} else {
 351			read_lock(&gpc2->lock);
 352		}
 353
 354		if (!kvm_gpc_check(gpc2, user_len2)) {
 355			read_unlock(&gpc2->lock);
 356			read_unlock_irqrestore(&gpc1->lock, flags);
 357
 358			/* When invoked from kvm_sched_out() we cannot sleep */
 359			if (atomic)
 360				return;
 361
 362			/*
 363			 * Use kvm_gpc_activate() here because if the runstate
 364			 * area was configured in 32-bit mode and only extends
 365			 * to the second page now because the guest changed to
 366			 * 64-bit mode, the second GPC won't have been set up.
 367			 */
 368			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
 369					     user_len2))
 370				return;
 371
 372			/*
 373			 * We dropped the lock on GPC1 so we have to go all the
 374			 * way back and revalidate that too.
 375			 */
 376			goto retry;
 377		}
 378
 379		/*
 380		 * In this case, the runstate_info struct will be assembled on
 381		 * the kernel stack (compat or not as appropriate) and will
 382		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
 383		 * rs pointers accordingly.
 384		 */
 385		rs_times = &rs.state_entry_time;
 386
 387		/*
 388		 * The rs_state pointer points to the start of what we'll
 389		 * copy to the guest, which in the case of a compat guest
 390		 * is the 32-bit field that the compiler thinks is padding.
 391		 */
 392		rs_state = ((void *)rs_times) - times_ofs;
 393
 394		/*
 395		 * The update_bit is still directly in the guest memory,
 396		 * via one GPC or the other.
 397		 */
 398		if (v->kvm->arch.xen.runstate_update_flag) {
 399			if (user_len1 >= times_ofs + sizeof(uint64_t))
 400				update_bit = gpc1->khva + times_ofs +
 401					sizeof(uint64_t) - 1;
 402			else
 403				update_bit = gpc2->khva + times_ofs +
 404					sizeof(uint64_t) - 1 - user_len1;
 405		}
 406
 407#ifdef CONFIG_X86_64
 408		/*
 409		 * Don't leak kernel memory through the padding in the 64-bit
 410		 * version of the struct.
 411		 */
 412		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
 413#endif
 414	}
 415
 416	/*
 417	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
 418	 * state_entry_time field, directly in the guest. We need to set
 419	 * that (and write-barrier) before writing to the rest of the
 420	 * structure, and clear it last. Just as Xen does, we address the
 421	 * single *byte* in which it resides because it might be in a
 422	 * different cache line to the rest of the 64-bit word, due to
 423	 * the (lack of) alignment constraints.
 424	 */
 425	entry_time = vx->runstate_entry_time;
 426	if (update_bit) {
 427		entry_time |= XEN_RUNSTATE_UPDATE;
 428		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
 429		smp_wmb();
 430	}
 431
 432	/*
 433	 * Now assemble the actual structure, either on our kernel stack
 434	 * or directly in the guest according to how the rs_state and
 435	 * rs_times pointers were set up above.
 436	 */
 437	*rs_state = vx->current_runstate;
 438	rs_times[0] = entry_time;
 439	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
 440
 441	/* For the split case, we have to then copy it to the guest. */
 442	if (user_len2) {
 443		memcpy(gpc1->khva, rs_state, user_len1);
 444		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
 445	}
 446	smp_wmb();
 447
 448	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
 449	if (update_bit) {
 450		entry_time &= ~XEN_RUNSTATE_UPDATE;
 451		*update_bit = entry_time >> 56;
 452		smp_wmb();
 453	}
 454
 455	if (user_len2)
 456		read_unlock(&gpc2->lock);
 457
 458	read_unlock_irqrestore(&gpc1->lock, flags);
 459
 460	mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
 461	if (user_len2)
 462		mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
 463}
 464
 465void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
 466{
 467	struct kvm_vcpu_xen *vx = &v->arch.xen;
 468	u64 now = get_kvmclock_ns(v->kvm);
 469	u64 delta_ns = now - vx->runstate_entry_time;
 470	u64 run_delay = current->sched_info.run_delay;
 471
 472	if (unlikely(!vx->runstate_entry_time))
 473		vx->current_runstate = RUNSTATE_offline;
 474
 475	/*
 476	 * Time waiting for the scheduler isn't "stolen" if the
 477	 * vCPU wasn't running anyway.
 478	 */
 479	if (vx->current_runstate == RUNSTATE_running) {
 480		u64 steal_ns = run_delay - vx->last_steal;
 481
 482		delta_ns -= steal_ns;
 483
 484		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
 485	}
 486	vx->last_steal = run_delay;
 487
 488	vx->runstate_times[vx->current_runstate] += delta_ns;
 489	vx->current_runstate = state;
 490	vx->runstate_entry_time = now;
 491
 492	if (vx->runstate_cache.active)
 493		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
 494}
 495
 496static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
 497{
 498	struct kvm_lapic_irq irq = { };
 499	int r;
 500
 501	irq.dest_id = v->vcpu_id;
 502	irq.vector = v->arch.xen.upcall_vector;
 503	irq.dest_mode = APIC_DEST_PHYSICAL;
 504	irq.shorthand = APIC_DEST_NOSHORT;
 505	irq.delivery_mode = APIC_DM_FIXED;
 506	irq.level = 1;
 507
 508	/* The fast version will always work for physical unicast */
 509	WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
 510}
 511
 512/*
 513 * On event channel delivery, the vcpu_info may not have been accessible.
 514 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
 515 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
 516 * Do so now that we can sleep in the context of the vCPU to bring the
 517 * page in, and refresh the pfn cache for it.
 518 */
 519void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
 520{
 521	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
 522	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
 523	unsigned long flags;
 524
 525	if (!evtchn_pending_sel)
 526		return;
 527
 528	/*
 529	 * Yes, this is an open-coded loop. But that's just what put_user()
 530	 * does anyway. Page it in and retry the instruction. We're just a
 531	 * little more honest about it.
 532	 */
 533	read_lock_irqsave(&gpc->lock, flags);
 534	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
 535		read_unlock_irqrestore(&gpc->lock, flags);
 536
 537		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
 538			return;
 539
 540		read_lock_irqsave(&gpc->lock, flags);
 541	}
 542
 543	/* Now gpc->khva is a valid kernel address for the vcpu_info */
 544	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
 545		struct vcpu_info *vi = gpc->khva;
 546
 547		asm volatile(LOCK_PREFIX "orq %0, %1\n"
 548			     "notq %0\n"
 549			     LOCK_PREFIX "andq %0, %2\n"
 550			     : "=r" (evtchn_pending_sel),
 551			       "+m" (vi->evtchn_pending_sel),
 552			       "+m" (v->arch.xen.evtchn_pending_sel)
 553			     : "0" (evtchn_pending_sel));
 554		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
 555	} else {
 556		u32 evtchn_pending_sel32 = evtchn_pending_sel;
 557		struct compat_vcpu_info *vi = gpc->khva;
 558
 559		asm volatile(LOCK_PREFIX "orl %0, %1\n"
 560			     "notl %0\n"
 561			     LOCK_PREFIX "andl %0, %2\n"
 562			     : "=r" (evtchn_pending_sel32),
 563			       "+m" (vi->evtchn_pending_sel),
 564			       "+m" (v->arch.xen.evtchn_pending_sel)
 565			     : "0" (evtchn_pending_sel32));
 566		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
 567	}
 568	read_unlock_irqrestore(&gpc->lock, flags);
 569
 570	/* For the per-vCPU lapic vector, deliver it as MSI. */
 571	if (v->arch.xen.upcall_vector)
 572		kvm_xen_inject_vcpu_vector(v);
 573
 574	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
 575}
 576
 577int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
 578{
 579	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
 580	unsigned long flags;
 581	u8 rc = 0;
 582
 583	/*
 584	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
 585	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
 586	 */
 587
 588	/* No need for compat handling here */
 589	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
 590		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
 591	BUILD_BUG_ON(sizeof(rc) !=
 592		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
 593	BUILD_BUG_ON(sizeof(rc) !=
 594		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
 595
 596	read_lock_irqsave(&gpc->lock, flags);
 597	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
 598		read_unlock_irqrestore(&gpc->lock, flags);
 599
 600		/*
 601		 * This function gets called from kvm_vcpu_block() after setting the
 602		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
 603		 * from a HLT. So we really mustn't sleep. If the page ended up absent
 604		 * at that point, just return 1 in order to trigger an immediate wake,
 605		 * and we'll end up getting called again from a context where we *can*
 606		 * fault in the page and wait for it.
 607		 */
 608		if (in_atomic() || !task_is_running(current))
 609			return 1;
 610
 611		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
 612			/*
 613			 * If this failed, userspace has screwed up the
 614			 * vcpu_info mapping. No interrupts for you.
 615			 */
 616			return 0;
 617		}
 618		read_lock_irqsave(&gpc->lock, flags);
 619	}
 620
 621	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
 622	read_unlock_irqrestore(&gpc->lock, flags);
 623	return rc;
 624}
 625
 626int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
 627{
 628	int r = -ENOENT;
 629
 630
 631	switch (data->type) {
 632	case KVM_XEN_ATTR_TYPE_LONG_MODE:
 633		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
 634			r = -EINVAL;
 635		} else {
 636			mutex_lock(&kvm->arch.xen.xen_lock);
 637			kvm->arch.xen.long_mode = !!data->u.long_mode;
 638			mutex_unlock(&kvm->arch.xen.xen_lock);
 639			r = 0;
 640		}
 641		break;
 642
 643	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
 644		mutex_lock(&kvm->arch.xen.xen_lock);
 645		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
 646		mutex_unlock(&kvm->arch.xen.xen_lock);
 647		break;
 648
 649	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
 650		if (data->u.vector && data->u.vector < 0x10)
 651			r = -EINVAL;
 652		else {
 653			mutex_lock(&kvm->arch.xen.xen_lock);
 654			kvm->arch.xen.upcall_vector = data->u.vector;
 655			mutex_unlock(&kvm->arch.xen.xen_lock);
 656			r = 0;
 657		}
 658		break;
 659
 660	case KVM_XEN_ATTR_TYPE_EVTCHN:
 661		r = kvm_xen_setattr_evtchn(kvm, data);
 662		break;
 663
 664	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
 665		mutex_lock(&kvm->arch.xen.xen_lock);
 666		kvm->arch.xen.xen_version = data->u.xen_version;
 667		mutex_unlock(&kvm->arch.xen.xen_lock);
 668		r = 0;
 669		break;
 670
 671	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
 672		if (!sched_info_on()) {
 673			r = -EOPNOTSUPP;
 674			break;
 675		}
 676		mutex_lock(&kvm->arch.xen.xen_lock);
 677		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
 678		mutex_unlock(&kvm->arch.xen.xen_lock);
 679		r = 0;
 680		break;
 681
 682	default:
 683		break;
 684	}
 685
 686	return r;
 687}
 688
 689int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
 690{
 691	int r = -ENOENT;
 692
 693	mutex_lock(&kvm->arch.xen.xen_lock);
 694
 695	switch (data->type) {
 696	case KVM_XEN_ATTR_TYPE_LONG_MODE:
 697		data->u.long_mode = kvm->arch.xen.long_mode;
 698		r = 0;
 699		break;
 700
 701	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
 702		if (kvm->arch.xen.shinfo_cache.active)
 703			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
 704		else
 705			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
 706		r = 0;
 707		break;
 708
 709	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
 710		data->u.vector = kvm->arch.xen.upcall_vector;
 711		r = 0;
 712		break;
 713
 714	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
 715		data->u.xen_version = kvm->arch.xen.xen_version;
 716		r = 0;
 717		break;
 718
 719	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
 720		if (!sched_info_on()) {
 721			r = -EOPNOTSUPP;
 722			break;
 723		}
 724		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
 725		r = 0;
 726		break;
 727
 728	default:
 729		break;
 730	}
 731
 732	mutex_unlock(&kvm->arch.xen.xen_lock);
 733	return r;
 734}
 735
 736int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
 737{
 738	int idx, r = -ENOENT;
 739
 740	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
 741	idx = srcu_read_lock(&vcpu->kvm->srcu);
 742
 743	switch (data->type) {
 744	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
 745		/* No compat necessary here. */
 746		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
 747			     sizeof(struct compat_vcpu_info));
 748		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
 749			     offsetof(struct compat_vcpu_info, time));
 750
 751		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
 752			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
 753			r = 0;
 754			break;
 755		}
 756
 757		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
 758				     data->u.gpa, sizeof(struct vcpu_info));
 759		if (!r)
 760			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 761
 762		break;
 763
 764	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
 765		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
 766			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
 767			r = 0;
 768			break;
 769		}
 770
 771		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
 772				     data->u.gpa,
 773				     sizeof(struct pvclock_vcpu_time_info));
 774		if (!r)
 775			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 776		break;
 777
 778	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
 779		size_t sz, sz1, sz2;
 780
 781		if (!sched_info_on()) {
 782			r = -EOPNOTSUPP;
 783			break;
 784		}
 785		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
 786			r = 0;
 787		deactivate_out:
 788			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
 789			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
 790			break;
 791		}
 792
 793		/*
 794		 * If the guest switches to 64-bit mode after setting the runstate
 795		 * address, that's actually OK. kvm_xen_update_runstate_guest()
 796		 * will cope.
 797		 */
 798		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
 799			sz = sizeof(struct vcpu_runstate_info);
 800		else
 801			sz = sizeof(struct compat_vcpu_runstate_info);
 802
 803		/* How much fits in the (first) page? */
 804		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
 805		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
 806				     data->u.gpa, sz1);
 807		if (r)
 808			goto deactivate_out;
 809
 810		/* Either map the second page, or deactivate the second GPC */
 811		if (sz1 >= sz) {
 812			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
 813		} else {
 814			sz2 = sz - sz1;
 815			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
 816			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
 817					     data->u.gpa + sz1, sz2);
 818			if (r)
 819				goto deactivate_out;
 820		}
 821
 822		kvm_xen_update_runstate_guest(vcpu, false);
 823		break;
 824	}
 825	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
 826		if (!sched_info_on()) {
 827			r = -EOPNOTSUPP;
 828			break;
 829		}
 830		if (data->u.runstate.state > RUNSTATE_offline) {
 831			r = -EINVAL;
 832			break;
 833		}
 834
 835		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
 836		r = 0;
 837		break;
 838
 839	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
 840		if (!sched_info_on()) {
 841			r = -EOPNOTSUPP;
 842			break;
 843		}
 844		if (data->u.runstate.state > RUNSTATE_offline) {
 845			r = -EINVAL;
 846			break;
 847		}
 848		if (data->u.runstate.state_entry_time !=
 849		    (data->u.runstate.time_running +
 850		     data->u.runstate.time_runnable +
 851		     data->u.runstate.time_blocked +
 852		     data->u.runstate.time_offline)) {
 853			r = -EINVAL;
 854			break;
 855		}
 856		if (get_kvmclock_ns(vcpu->kvm) <
 857		    data->u.runstate.state_entry_time) {
 858			r = -EINVAL;
 859			break;
 860		}
 861
 862		vcpu->arch.xen.current_runstate = data->u.runstate.state;
 863		vcpu->arch.xen.runstate_entry_time =
 864			data->u.runstate.state_entry_time;
 865		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
 866			data->u.runstate.time_running;
 867		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
 868			data->u.runstate.time_runnable;
 869		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
 870			data->u.runstate.time_blocked;
 871		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
 872			data->u.runstate.time_offline;
 873		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
 874		r = 0;
 875		break;
 876
 877	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
 878		if (!sched_info_on()) {
 879			r = -EOPNOTSUPP;
 880			break;
 881		}
 882		if (data->u.runstate.state > RUNSTATE_offline &&
 883		    data->u.runstate.state != (u64)-1) {
 884			r = -EINVAL;
 885			break;
 886		}
 887		/* The adjustment must add up */
 888		if (data->u.runstate.state_entry_time !=
 889		    (data->u.runstate.time_running +
 890		     data->u.runstate.time_runnable +
 891		     data->u.runstate.time_blocked +
 892		     data->u.runstate.time_offline)) {
 893			r = -EINVAL;
 894			break;
 895		}
 896
 897		if (get_kvmclock_ns(vcpu->kvm) <
 898		    (vcpu->arch.xen.runstate_entry_time +
 899		     data->u.runstate.state_entry_time)) {
 900			r = -EINVAL;
 901			break;
 902		}
 903
 904		vcpu->arch.xen.runstate_entry_time +=
 905			data->u.runstate.state_entry_time;
 906		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
 907			data->u.runstate.time_running;
 908		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
 909			data->u.runstate.time_runnable;
 910		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
 911			data->u.runstate.time_blocked;
 912		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
 913			data->u.runstate.time_offline;
 914
 915		if (data->u.runstate.state <= RUNSTATE_offline)
 916			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
 917		else if (vcpu->arch.xen.runstate_cache.active)
 918			kvm_xen_update_runstate_guest(vcpu, false);
 919		r = 0;
 920		break;
 921
 922	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
 923		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
 924			r = -EINVAL;
 925		else {
 926			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
 927			r = 0;
 928		}
 929		break;
 930
 931	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
 932		if (data->u.timer.port &&
 933		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
 934			r = -EINVAL;
 935			break;
 936		}
 937
 938		if (!vcpu->arch.xen.timer.function)
 939			kvm_xen_init_timer(vcpu);
 940
 941		/* Stop the timer (if it's running) before changing the vector */
 942		kvm_xen_stop_timer(vcpu);
 943		vcpu->arch.xen.timer_virq = data->u.timer.port;
 944
 945		/* Start the timer if the new value has a valid vector+expiry. */
 946		if (data->u.timer.port && data->u.timer.expires_ns)
 947			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
 948					    data->u.timer.expires_ns -
 949					    get_kvmclock_ns(vcpu->kvm));
 950
 951		r = 0;
 952		break;
 953
 954	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
 955		if (data->u.vector && data->u.vector < 0x10)
 956			r = -EINVAL;
 957		else {
 958			vcpu->arch.xen.upcall_vector = data->u.vector;
 959			r = 0;
 960		}
 961		break;
 962
 963	default:
 964		break;
 965	}
 966
 967	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 968	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
 969	return r;
 970}
 971
 972int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
 973{
 974	int r = -ENOENT;
 975
 976	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
 977
 978	switch (data->type) {
 979	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
 980		if (vcpu->arch.xen.vcpu_info_cache.active)
 981			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
 982		else
 983			data->u.gpa = KVM_XEN_INVALID_GPA;
 984		r = 0;
 985		break;
 986
 987	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
 988		if (vcpu->arch.xen.vcpu_time_info_cache.active)
 989			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
 990		else
 991			data->u.gpa = KVM_XEN_INVALID_GPA;
 992		r = 0;
 993		break;
 994
 995	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
 996		if (!sched_info_on()) {
 997			r = -EOPNOTSUPP;
 998			break;
 999		}
1000		if (vcpu->arch.xen.runstate_cache.active) {
1001			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1002			r = 0;
1003		}
1004		break;
1005
1006	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1007		if (!sched_info_on()) {
1008			r = -EOPNOTSUPP;
1009			break;
1010		}
1011		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1012		r = 0;
1013		break;
1014
1015	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1016		if (!sched_info_on()) {
1017			r = -EOPNOTSUPP;
1018			break;
1019		}
1020		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1021		data->u.runstate.state_entry_time =
1022			vcpu->arch.xen.runstate_entry_time;
1023		data->u.runstate.time_running =
1024			vcpu->arch.xen.runstate_times[RUNSTATE_running];
1025		data->u.runstate.time_runnable =
1026			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1027		data->u.runstate.time_blocked =
1028			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1029		data->u.runstate.time_offline =
1030			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1031		r = 0;
1032		break;
1033
1034	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1035		r = -EINVAL;
1036		break;
1037
1038	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1039		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1040		r = 0;
1041		break;
1042
1043	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1044		/*
1045		 * Ensure a consistent snapshot of state is captured, with a
1046		 * timer either being pending, or the event channel delivered
1047		 * to the corresponding bit in the shared_info. Not still
1048		 * lurking in the timer_pending flag for deferred delivery.
1049		 * Purely as an optimisation, if the timer_expires field is
1050		 * zero, that means the timer isn't active (or even in the
1051		 * timer_pending flag) and there is no need to cancel it.
1052		 */
1053		if (vcpu->arch.xen.timer_expires) {
1054			hrtimer_cancel(&vcpu->arch.xen.timer);
1055			kvm_xen_inject_timer_irqs(vcpu);
1056		}
1057
1058		data->u.timer.port = vcpu->arch.xen.timer_virq;
1059		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1060		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1061
1062		/*
1063		 * The hrtimer may trigger and raise the IRQ immediately,
1064		 * while the returned state causes it to be set up and
1065		 * raised again on the destination system after migration.
1066		 * That's fine, as the guest won't even have had a chance
1067		 * to run and handle the interrupt. Asserting an already
1068		 * pending event channel is idempotent.
1069		 */
1070		if (vcpu->arch.xen.timer_expires)
1071			hrtimer_start_expires(&vcpu->arch.xen.timer,
1072					      HRTIMER_MODE_ABS_HARD);
1073
1074		r = 0;
1075		break;
1076
1077	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1078		data->u.vector = vcpu->arch.xen.upcall_vector;
1079		r = 0;
1080		break;
1081
1082	default:
1083		break;
1084	}
1085
1086	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1087	return r;
1088}
1089
1090int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1091{
1092	struct kvm *kvm = vcpu->kvm;
1093	u32 page_num = data & ~PAGE_MASK;
1094	u64 page_addr = data & PAGE_MASK;
1095	bool lm = is_long_mode(vcpu);
1096
1097	/* Latch long_mode for shared_info pages etc. */
1098	vcpu->kvm->arch.xen.long_mode = lm;
1099
1100	/*
1101	 * If Xen hypercall intercept is enabled, fill the hypercall
1102	 * page with VMCALL/VMMCALL instructions since that's what
1103	 * we catch. Else the VMM has provided the hypercall pages
1104	 * with instructions of its own choosing, so use those.
1105	 */
1106	if (kvm_xen_hypercall_enabled(kvm)) {
1107		u8 instructions[32];
1108		int i;
1109
1110		if (page_num)
1111			return 1;
1112
1113		/* mov imm32, %eax */
1114		instructions[0] = 0xb8;
1115
1116		/* vmcall / vmmcall */
1117		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1118
1119		/* ret */
1120		instructions[8] = 0xc3;
1121
1122		/* int3 to pad */
1123		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1124
1125		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1126			*(u32 *)&instructions[1] = i;
1127			if (kvm_vcpu_write_guest(vcpu,
1128						 page_addr + (i * sizeof(instructions)),
1129						 instructions, sizeof(instructions)))
1130				return 1;
1131		}
1132	} else {
1133		/*
1134		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1135		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1136		 */
1137		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1138				     : kvm->arch.xen_hvm_config.blob_addr_32;
1139		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1140				  : kvm->arch.xen_hvm_config.blob_size_32;
1141		u8 *page;
1142		int ret;
1143
1144		if (page_num >= blob_size)
1145			return 1;
1146
1147		blob_addr += page_num * PAGE_SIZE;
1148
1149		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1150		if (IS_ERR(page))
1151			return PTR_ERR(page);
1152
1153		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1154		kfree(page);
1155		if (ret)
1156			return 1;
1157	}
1158	return 0;
1159}
1160
1161int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1162{
1163	/* Only some feature flags need to be *enabled* by userspace */
1164	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1165		KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1166		KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1167	u32 old_flags;
1168
1169	if (xhc->flags & ~permitted_flags)
1170		return -EINVAL;
1171
1172	/*
1173	 * With hypercall interception the kernel generates its own
1174	 * hypercall page so it must not be provided.
1175	 */
1176	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1177	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1178	     xhc->blob_size_32 || xhc->blob_size_64))
1179		return -EINVAL;
1180
1181	mutex_lock(&kvm->arch.xen.xen_lock);
1182
1183	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1184		static_branch_inc(&kvm_xen_enabled.key);
1185	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1186		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1187
1188	old_flags = kvm->arch.xen_hvm_config.flags;
1189	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1190
1191	mutex_unlock(&kvm->arch.xen.xen_lock);
1192
1193	if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1194		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1195
1196	return 0;
1197}
1198
1199static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1200{
1201	kvm_rax_write(vcpu, result);
1202	return kvm_skip_emulated_instruction(vcpu);
1203}
1204
1205static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1206{
1207	struct kvm_run *run = vcpu->run;
1208
1209	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1210		return 1;
1211
1212	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1213}
1214
1215static inline int max_evtchn_port(struct kvm *kvm)
1216{
1217	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1218		return EVTCHN_2L_NR_CHANNELS;
1219	else
1220		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1221}
1222
1223static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1224			       evtchn_port_t *ports)
1225{
1226	struct kvm *kvm = vcpu->kvm;
1227	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1228	unsigned long *pending_bits;
1229	unsigned long flags;
1230	bool ret = true;
1231	int idx, i;
1232
1233	idx = srcu_read_lock(&kvm->srcu);
1234	read_lock_irqsave(&gpc->lock, flags);
1235	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1236		goto out_rcu;
1237
1238	ret = false;
1239	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1240		struct shared_info *shinfo = gpc->khva;
1241		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1242	} else {
1243		struct compat_shared_info *shinfo = gpc->khva;
1244		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1245	}
1246
1247	for (i = 0; i < nr_ports; i++) {
1248		if (test_bit(ports[i], pending_bits)) {
1249			ret = true;
1250			break;
1251		}
1252	}
1253
1254 out_rcu:
1255	read_unlock_irqrestore(&gpc->lock, flags);
1256	srcu_read_unlock(&kvm->srcu, idx);
1257
1258	return ret;
1259}
1260
1261static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1262				 u64 param, u64 *r)
1263{
1264	struct sched_poll sched_poll;
1265	evtchn_port_t port, *ports;
1266	struct x86_exception e;
1267	int i;
1268
1269	if (!lapic_in_kernel(vcpu) ||
1270	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1271		return false;
1272
1273	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1274		struct compat_sched_poll sp32;
1275
1276		/* Sanity check that the compat struct definition is correct */
1277		BUILD_BUG_ON(sizeof(sp32) != 16);
1278
1279		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1280			*r = -EFAULT;
1281			return true;
1282		}
1283
1284		/*
1285		 * This is a 32-bit pointer to an array of evtchn_port_t which
1286		 * are uint32_t, so once it's converted no further compat
1287		 * handling is needed.
1288		 */
1289		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1290		sched_poll.nr_ports = sp32.nr_ports;
1291		sched_poll.timeout = sp32.timeout;
1292	} else {
1293		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1294					sizeof(sched_poll), &e)) {
1295			*r = -EFAULT;
1296			return true;
1297		}
1298	}
1299
1300	if (unlikely(sched_poll.nr_ports > 1)) {
1301		/* Xen (unofficially) limits number of pollers to 128 */
1302		if (sched_poll.nr_ports > 128) {
1303			*r = -EINVAL;
1304			return true;
1305		}
1306
1307		ports = kmalloc_array(sched_poll.nr_ports,
1308				      sizeof(*ports), GFP_KERNEL);
1309		if (!ports) {
1310			*r = -ENOMEM;
1311			return true;
1312		}
1313	} else
1314		ports = &port;
1315
1316	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1317				sched_poll.nr_ports * sizeof(*ports), &e)) {
1318		*r = -EFAULT;
1319		return true;
1320	}
1321
1322	for (i = 0; i < sched_poll.nr_ports; i++) {
1323		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1324			*r = -EINVAL;
1325			goto out;
1326		}
1327	}
1328
1329	if (sched_poll.nr_ports == 1)
1330		vcpu->arch.xen.poll_evtchn = port;
1331	else
1332		vcpu->arch.xen.poll_evtchn = -1;
1333
1334	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1335
1336	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1337		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1338
1339		if (sched_poll.timeout)
1340			mod_timer(&vcpu->arch.xen.poll_timer,
1341				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1342
1343		kvm_vcpu_halt(vcpu);
1344
1345		if (sched_poll.timeout)
1346			del_timer(&vcpu->arch.xen.poll_timer);
1347
1348		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1349	}
1350
1351	vcpu->arch.xen.poll_evtchn = 0;
1352	*r = 0;
1353out:
1354	/* Really, this is only needed in case of timeout */
1355	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1356
1357	if (unlikely(sched_poll.nr_ports > 1))
1358		kfree(ports);
1359	return true;
1360}
1361
1362static void cancel_evtchn_poll(struct timer_list *t)
1363{
1364	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1365
1366	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1367	kvm_vcpu_kick(vcpu);
1368}
1369
1370static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1371				   int cmd, u64 param, u64 *r)
1372{
1373	switch (cmd) {
1374	case SCHEDOP_poll:
1375		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1376			return true;
1377		fallthrough;
1378	case SCHEDOP_yield:
1379		kvm_vcpu_on_spin(vcpu, true);
1380		*r = 0;
1381		return true;
1382	default:
1383		break;
1384	}
1385
1386	return false;
1387}
1388
1389struct compat_vcpu_set_singleshot_timer {
1390    uint64_t timeout_abs_ns;
1391    uint32_t flags;
1392} __attribute__((packed));
1393
1394static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1395				  int vcpu_id, u64 param, u64 *r)
1396{
1397	struct vcpu_set_singleshot_timer oneshot;
1398	struct x86_exception e;
1399	s64 delta;
1400
1401	if (!kvm_xen_timer_enabled(vcpu))
1402		return false;
1403
1404	switch (cmd) {
1405	case VCPUOP_set_singleshot_timer:
1406		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1407			*r = -EINVAL;
1408			return true;
1409		}
1410
1411		/*
1412		 * The only difference for 32-bit compat is the 4 bytes of
1413		 * padding after the interesting part of the structure. So
1414		 * for a faithful emulation of Xen we have to *try* to copy
1415		 * the padding and return -EFAULT if we can't. Otherwise we
1416		 * might as well just have copied the 12-byte 32-bit struct.
1417		 */
1418		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1419			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1420		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1421			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1422		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1423			     offsetof(struct vcpu_set_singleshot_timer, flags));
1424		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1425			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1426
1427		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1428					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1429			*r = -EFAULT;
1430			return true;
1431		}
1432
1433		/* A delta <= 0 results in an immediate callback, which is what we want */
1434		delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1435		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1436		*r = 0;
1437		return true;
1438
1439	case VCPUOP_stop_singleshot_timer:
1440		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1441			*r = -EINVAL;
1442			return true;
1443		}
1444		kvm_xen_stop_timer(vcpu);
1445		*r = 0;
1446		return true;
1447	}
1448
1449	return false;
1450}
1451
1452static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1453				       u64 *r)
1454{
1455	if (!kvm_xen_timer_enabled(vcpu))
1456		return false;
1457
1458	if (timeout) {
1459		uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1460		int64_t delta = timeout - guest_now;
1461
1462		/* Xen has a 'Linux workaround' in do_set_timer_op() which
1463		 * checks for negative absolute timeout values (caused by
1464		 * integer overflow), and for values about 13 days in the
1465		 * future (2^50ns) which would be caused by jiffies
1466		 * overflow. For those cases, it sets the timeout 100ms in
1467		 * the future (not *too* soon, since if a guest really did
1468		 * set a long timeout on purpose we don't want to keep
1469		 * churning CPU time by waking it up).
1470		 */
1471		if (unlikely((int64_t)timeout < 0 ||
1472			     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1473			delta = 100 * NSEC_PER_MSEC;
1474			timeout = guest_now + delta;
1475		}
1476
1477		kvm_xen_start_timer(vcpu, timeout, delta);
1478	} else {
1479		kvm_xen_stop_timer(vcpu);
1480	}
1481
1482	*r = 0;
1483	return true;
1484}
1485
1486int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1487{
1488	bool longmode;
1489	u64 input, params[6], r = -ENOSYS;
1490	bool handled = false;
1491	u8 cpl;
1492
1493	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1494
1495	/* Hyper-V hypercalls get bit 31 set in EAX */
1496	if ((input & 0x80000000) &&
1497	    kvm_hv_hypercall_enabled(vcpu))
1498		return kvm_hv_hypercall(vcpu);
1499
1500	longmode = is_64_bit_hypercall(vcpu);
1501	if (!longmode) {
1502		params[0] = (u32)kvm_rbx_read(vcpu);
1503		params[1] = (u32)kvm_rcx_read(vcpu);
1504		params[2] = (u32)kvm_rdx_read(vcpu);
1505		params[3] = (u32)kvm_rsi_read(vcpu);
1506		params[4] = (u32)kvm_rdi_read(vcpu);
1507		params[5] = (u32)kvm_rbp_read(vcpu);
1508	}
1509#ifdef CONFIG_X86_64
1510	else {
1511		params[0] = (u64)kvm_rdi_read(vcpu);
1512		params[1] = (u64)kvm_rsi_read(vcpu);
1513		params[2] = (u64)kvm_rdx_read(vcpu);
1514		params[3] = (u64)kvm_r10_read(vcpu);
1515		params[4] = (u64)kvm_r8_read(vcpu);
1516		params[5] = (u64)kvm_r9_read(vcpu);
1517	}
1518#endif
1519	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1520	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1521				params[3], params[4], params[5]);
1522
1523	/*
1524	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1525	 * are permitted in guest userspace can be handled by the VMM.
1526	 */
1527	if (unlikely(cpl > 0))
1528		goto handle_in_userspace;
1529
1530	switch (input) {
1531	case __HYPERVISOR_xen_version:
1532		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1533			r = vcpu->kvm->arch.xen.xen_version;
1534			handled = true;
1535		}
1536		break;
1537	case __HYPERVISOR_event_channel_op:
1538		if (params[0] == EVTCHNOP_send)
1539			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1540		break;
1541	case __HYPERVISOR_sched_op:
1542		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1543						 params[1], &r);
1544		break;
1545	case __HYPERVISOR_vcpu_op:
1546		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1547						params[2], &r);
1548		break;
1549	case __HYPERVISOR_set_timer_op: {
1550		u64 timeout = params[0];
1551		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1552		if (!longmode)
1553			timeout |= params[1] << 32;
1554		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1555		break;
1556	}
1557	default:
1558		break;
1559	}
1560
1561	if (handled)
1562		return kvm_xen_hypercall_set_result(vcpu, r);
1563
1564handle_in_userspace:
1565	vcpu->run->exit_reason = KVM_EXIT_XEN;
1566	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1567	vcpu->run->xen.u.hcall.longmode = longmode;
1568	vcpu->run->xen.u.hcall.cpl = cpl;
1569	vcpu->run->xen.u.hcall.input = input;
1570	vcpu->run->xen.u.hcall.params[0] = params[0];
1571	vcpu->run->xen.u.hcall.params[1] = params[1];
1572	vcpu->run->xen.u.hcall.params[2] = params[2];
1573	vcpu->run->xen.u.hcall.params[3] = params[3];
1574	vcpu->run->xen.u.hcall.params[4] = params[4];
1575	vcpu->run->xen.u.hcall.params[5] = params[5];
1576	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1577	vcpu->arch.complete_userspace_io =
1578		kvm_xen_hypercall_complete_userspace;
1579
1580	return 0;
1581}
1582
1583static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1584{
1585	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1586
1587	if ((poll_evtchn == port || poll_evtchn == -1) &&
1588	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1589		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1590		kvm_vcpu_kick(vcpu);
1591	}
1592}
1593
1594/*
1595 * The return value from this function is propagated to kvm_set_irq() API,
1596 * so it returns:
1597 *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1598 *  = 0   Interrupt was coalesced (previous irq is still pending)
1599 *  > 0   Number of CPUs interrupt was delivered to
1600 *
1601 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1602 * only check on its return value is a comparison with -EWOULDBLOCK'.
1603 */
1604int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1605{
1606	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1607	struct kvm_vcpu *vcpu;
1608	unsigned long *pending_bits, *mask_bits;
1609	unsigned long flags;
1610	int port_word_bit;
1611	bool kick_vcpu = false;
1612	int vcpu_idx, idx, rc;
1613
1614	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1615	if (vcpu_idx >= 0)
1616		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1617	else {
1618		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1619		if (!vcpu)
1620			return -EINVAL;
1621		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1622	}
1623
1624	if (!vcpu->arch.xen.vcpu_info_cache.active)
1625		return -EINVAL;
1626
1627	if (xe->port >= max_evtchn_port(kvm))
1628		return -EINVAL;
1629
1630	rc = -EWOULDBLOCK;
1631
1632	idx = srcu_read_lock(&kvm->srcu);
1633
1634	read_lock_irqsave(&gpc->lock, flags);
1635	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1636		goto out_rcu;
1637
1638	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1639		struct shared_info *shinfo = gpc->khva;
1640		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1641		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1642		port_word_bit = xe->port / 64;
1643	} else {
1644		struct compat_shared_info *shinfo = gpc->khva;
1645		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1646		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1647		port_word_bit = xe->port / 32;
1648	}
1649
1650	/*
1651	 * If this port wasn't already set, and if it isn't masked, then
1652	 * we try to set the corresponding bit in the in-kernel shadow of
1653	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1654	 * already set, then we kick the vCPU in question to write to the
1655	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1656	 */
1657	if (test_and_set_bit(xe->port, pending_bits)) {
1658		rc = 0; /* It was already raised */
1659	} else if (test_bit(xe->port, mask_bits)) {
1660		rc = -ENOTCONN; /* Masked */
1661		kvm_xen_check_poller(vcpu, xe->port);
1662	} else {
1663		rc = 1; /* Delivered to the bitmap in shared_info. */
1664		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1665		read_unlock_irqrestore(&gpc->lock, flags);
1666		gpc = &vcpu->arch.xen.vcpu_info_cache;
1667
1668		read_lock_irqsave(&gpc->lock, flags);
1669		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1670			/*
1671			 * Could not access the vcpu_info. Set the bit in-kernel
1672			 * and prod the vCPU to deliver it for itself.
1673			 */
1674			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1675				kick_vcpu = true;
1676			goto out_rcu;
1677		}
1678
1679		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1680			struct vcpu_info *vcpu_info = gpc->khva;
1681			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1682				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1683				kick_vcpu = true;
1684			}
1685		} else {
1686			struct compat_vcpu_info *vcpu_info = gpc->khva;
1687			if (!test_and_set_bit(port_word_bit,
1688					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1689				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1690				kick_vcpu = true;
1691			}
1692		}
1693
1694		/* For the per-vCPU lapic vector, deliver it as MSI. */
1695		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1696			kvm_xen_inject_vcpu_vector(vcpu);
1697			kick_vcpu = false;
1698		}
1699	}
1700
1701 out_rcu:
1702	read_unlock_irqrestore(&gpc->lock, flags);
1703	srcu_read_unlock(&kvm->srcu, idx);
1704
1705	if (kick_vcpu) {
1706		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1707		kvm_vcpu_kick(vcpu);
1708	}
1709
1710	return rc;
1711}
1712
1713static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1714{
1715	bool mm_borrowed = false;
1716	int rc;
1717
1718	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1719	if (rc != -EWOULDBLOCK)
1720		return rc;
1721
1722	if (current->mm != kvm->mm) {
1723		/*
1724		 * If not on a thread which already belongs to this KVM,
1725		 * we'd better be in the irqfd workqueue.
1726		 */
1727		if (WARN_ON_ONCE(current->mm))
1728			return -EINVAL;
1729
1730		kthread_use_mm(kvm->mm);
1731		mm_borrowed = true;
1732	}
1733
1734	mutex_lock(&kvm->arch.xen.xen_lock);
1735
1736	/*
1737	 * It is theoretically possible for the page to be unmapped
1738	 * and the MMU notifier to invalidate the shared_info before
1739	 * we even get to use it. In that case, this looks like an
1740	 * infinite loop. It was tempting to do it via the userspace
1741	 * HVA instead... but that just *hides* the fact that it's
1742	 * an infinite loop, because if a fault occurs and it waits
1743	 * for the page to come back, it can *still* immediately
1744	 * fault and have to wait again, repeatedly.
1745	 *
1746	 * Conversely, the page could also have been reinstated by
1747	 * another thread before we even obtain the mutex above, so
1748	 * check again *first* before remapping it.
1749	 */
1750	do {
1751		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1752		int idx;
1753
1754		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1755		if (rc != -EWOULDBLOCK)
1756			break;
1757
1758		idx = srcu_read_lock(&kvm->srcu);
1759		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1760		srcu_read_unlock(&kvm->srcu, idx);
1761	} while(!rc);
1762
1763	mutex_unlock(&kvm->arch.xen.xen_lock);
1764
1765	if (mm_borrowed)
1766		kthread_unuse_mm(kvm->mm);
1767
1768	return rc;
1769}
1770
1771/* This is the version called from kvm_set_irq() as the .set function */
1772static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1773			 int irq_source_id, int level, bool line_status)
1774{
1775	if (!level)
1776		return -EINVAL;
1777
1778	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1779}
1780
1781/*
1782 * Set up an event channel interrupt from the KVM IRQ routing table.
1783 * Used for e.g. PIRQ from passed through physical devices.
1784 */
1785int kvm_xen_setup_evtchn(struct kvm *kvm,
1786			 struct kvm_kernel_irq_routing_entry *e,
1787			 const struct kvm_irq_routing_entry *ue)
1788
1789{
1790	struct kvm_vcpu *vcpu;
1791
1792	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1793		return -EINVAL;
1794
1795	/* We only support 2 level event channels for now */
1796	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1797		return -EINVAL;
1798
1799	/*
1800	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1801	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1802	 * to find it. Do that once at setup time, instead of every time.
1803	 * But beware that on live update / live migration, the routing
1804	 * table might be reinstated before the vCPU threads have finished
1805	 * recreating their vCPUs.
1806	 */
1807	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1808	if (vcpu)
1809		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1810	else
1811		e->xen_evtchn.vcpu_idx = -1;
1812
1813	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1814	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1815	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1816	e->set = evtchn_set_fn;
1817
1818	return 0;
1819}
1820
1821/*
1822 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1823 */
1824int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1825{
1826	struct kvm_xen_evtchn e;
1827	int ret;
1828
1829	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1830		return -EINVAL;
1831
1832	/* We only support 2 level event channels for now */
1833	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1834		return -EINVAL;
1835
1836	e.port = uxe->port;
1837	e.vcpu_id = uxe->vcpu;
1838	e.vcpu_idx = -1;
1839	e.priority = uxe->priority;
1840
1841	ret = kvm_xen_set_evtchn(&e, kvm);
1842
1843	/*
1844	 * None of that 'return 1 if it actually got delivered' nonsense.
1845	 * We don't care if it was masked (-ENOTCONN) either.
1846	 */
1847	if (ret > 0 || ret == -ENOTCONN)
1848		ret = 0;
1849
1850	return ret;
1851}
1852
1853/*
1854 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1855 */
1856struct evtchnfd {
1857	u32 send_port;
1858	u32 type;
1859	union {
1860		struct kvm_xen_evtchn port;
1861		struct {
1862			u32 port; /* zero */
1863			struct eventfd_ctx *ctx;
1864		} eventfd;
1865	} deliver;
1866};
1867
1868/*
1869 * Update target vCPU or priority for a registered sending channel.
1870 */
1871static int kvm_xen_eventfd_update(struct kvm *kvm,
1872				  struct kvm_xen_hvm_attr *data)
1873{
1874	u32 port = data->u.evtchn.send_port;
1875	struct evtchnfd *evtchnfd;
1876	int ret;
1877
1878	/* Protect writes to evtchnfd as well as the idr lookup.  */
1879	mutex_lock(&kvm->arch.xen.xen_lock);
1880	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1881
1882	ret = -ENOENT;
1883	if (!evtchnfd)
1884		goto out_unlock;
1885
1886	/* For an UPDATE, nothing may change except the priority/vcpu */
1887	ret = -EINVAL;
1888	if (evtchnfd->type != data->u.evtchn.type)
1889		goto out_unlock;
1890
1891	/*
1892	 * Port cannot change, and if it's zero that was an eventfd
1893	 * which can't be changed either.
1894	 */
1895	if (!evtchnfd->deliver.port.port ||
1896	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1897		goto out_unlock;
1898
1899	/* We only support 2 level event channels for now */
1900	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1901		goto out_unlock;
1902
1903	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1904	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1905		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1906		evtchnfd->deliver.port.vcpu_idx = -1;
1907	}
1908	ret = 0;
1909out_unlock:
1910	mutex_unlock(&kvm->arch.xen.xen_lock);
1911	return ret;
1912}
1913
1914/*
1915 * Configure the target (eventfd or local port delivery) for sending on
1916 * a given event channel.
1917 */
1918static int kvm_xen_eventfd_assign(struct kvm *kvm,
1919				  struct kvm_xen_hvm_attr *data)
1920{
1921	u32 port = data->u.evtchn.send_port;
1922	struct eventfd_ctx *eventfd = NULL;
1923	struct evtchnfd *evtchnfd;
1924	int ret = -EINVAL;
1925
1926	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1927	if (!evtchnfd)
1928		return -ENOMEM;
1929
1930	switch(data->u.evtchn.type) {
1931	case EVTCHNSTAT_ipi:
1932		/* IPI  must map back to the same port# */
1933		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1934			goto out_noeventfd; /* -EINVAL */
1935		break;
1936
1937	case EVTCHNSTAT_interdomain:
1938		if (data->u.evtchn.deliver.port.port) {
1939			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1940				goto out_noeventfd; /* -EINVAL */
1941		} else {
1942			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1943			if (IS_ERR(eventfd)) {
1944				ret = PTR_ERR(eventfd);
1945				goto out_noeventfd;
1946			}
1947		}
1948		break;
1949
1950	case EVTCHNSTAT_virq:
1951	case EVTCHNSTAT_closed:
1952	case EVTCHNSTAT_unbound:
1953	case EVTCHNSTAT_pirq:
1954	default: /* Unknown event channel type */
1955		goto out; /* -EINVAL */
1956	}
1957
1958	evtchnfd->send_port = data->u.evtchn.send_port;
1959	evtchnfd->type = data->u.evtchn.type;
1960	if (eventfd) {
1961		evtchnfd->deliver.eventfd.ctx = eventfd;
1962	} else {
1963		/* We only support 2 level event channels for now */
1964		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1965			goto out; /* -EINVAL; */
1966
1967		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1968		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1969		evtchnfd->deliver.port.vcpu_idx = -1;
1970		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1971	}
1972
1973	mutex_lock(&kvm->arch.xen.xen_lock);
1974	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1975			GFP_KERNEL);
1976	mutex_unlock(&kvm->arch.xen.xen_lock);
1977	if (ret >= 0)
1978		return 0;
1979
1980	if (ret == -ENOSPC)
1981		ret = -EEXIST;
1982out:
1983	if (eventfd)
1984		eventfd_ctx_put(eventfd);
1985out_noeventfd:
1986	kfree(evtchnfd);
1987	return ret;
1988}
1989
1990static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1991{
1992	struct evtchnfd *evtchnfd;
1993
1994	mutex_lock(&kvm->arch.xen.xen_lock);
1995	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1996	mutex_unlock(&kvm->arch.xen.xen_lock);
1997
1998	if (!evtchnfd)
1999		return -ENOENT;
2000
2001	synchronize_srcu(&kvm->srcu);
2002	if (!evtchnfd->deliver.port.port)
2003		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2004	kfree(evtchnfd);
2005	return 0;
2006}
2007
2008static int kvm_xen_eventfd_reset(struct kvm *kvm)
2009{
2010	struct evtchnfd *evtchnfd, **all_evtchnfds;
2011	int i;
2012	int n = 0;
2013
2014	mutex_lock(&kvm->arch.xen.xen_lock);
2015
2016	/*
2017	 * Because synchronize_srcu() cannot be called inside the
2018	 * critical section, first collect all the evtchnfd objects
2019	 * in an array as they are removed from evtchn_ports.
2020	 */
2021	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2022		n++;
2023
2024	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2025	if (!all_evtchnfds) {
2026		mutex_unlock(&kvm->arch.xen.xen_lock);
2027		return -ENOMEM;
2028	}
2029
2030	n = 0;
2031	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2032		all_evtchnfds[n++] = evtchnfd;
2033		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2034	}
2035	mutex_unlock(&kvm->arch.xen.xen_lock);
2036
2037	synchronize_srcu(&kvm->srcu);
2038
2039	while (n--) {
2040		evtchnfd = all_evtchnfds[n];
2041		if (!evtchnfd->deliver.port.port)
2042			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2043		kfree(evtchnfd);
2044	}
2045	kfree(all_evtchnfds);
2046
2047	return 0;
2048}
2049
2050static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2051{
2052	u32 port = data->u.evtchn.send_port;
2053
2054	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2055		return kvm_xen_eventfd_reset(kvm);
2056
2057	if (!port || port >= max_evtchn_port(kvm))
2058		return -EINVAL;
2059
2060	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2061		return kvm_xen_eventfd_deassign(kvm, port);
2062	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2063		return kvm_xen_eventfd_update(kvm, data);
2064	if (data->u.evtchn.flags)
2065		return -EINVAL;
2066
2067	return kvm_xen_eventfd_assign(kvm, data);
2068}
2069
2070static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2071{
2072	struct evtchnfd *evtchnfd;
2073	struct evtchn_send send;
2074	struct x86_exception e;
2075
2076	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2077	BUILD_BUG_ON(sizeof(send) != 4);
2078	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2079		*r = -EFAULT;
2080		return true;
2081	}
2082
2083	/*
2084	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2085	 * is protected by RCU.
2086	 */
2087	rcu_read_lock();
2088	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2089	rcu_read_unlock();
2090	if (!evtchnfd)
2091		return false;
2092
2093	if (evtchnfd->deliver.port.port) {
2094		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2095		if (ret < 0 && ret != -ENOTCONN)
2096			return false;
2097	} else {
2098		eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2099	}
2100
2101	*r = 0;
2102	return true;
2103}
2104
2105void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2106{
2107	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2108	vcpu->arch.xen.poll_evtchn = 0;
2109
2110	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2111
2112	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2113		     KVM_HOST_USES_PFN);
2114	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2115		     KVM_HOST_USES_PFN);
2116	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2117		     KVM_HOST_USES_PFN);
2118	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2119		     KVM_HOST_USES_PFN);
2120}
2121
2122void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2123{
2124	if (kvm_xen_timer_enabled(vcpu))
2125		kvm_xen_stop_timer(vcpu);
2126
2127	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2128	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2129	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2130	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2131
2132	del_timer_sync(&vcpu->arch.xen.poll_timer);
2133}
2134
2135void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2136{
2137	struct kvm_cpuid_entry2 *entry;
2138	u32 function;
2139
2140	if (!vcpu->arch.xen.cpuid.base)
2141		return;
2142
2143	function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2144	if (function > vcpu->arch.xen.cpuid.limit)
2145		return;
2146
2147	entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2148	if (entry) {
2149		entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2150		entry->edx = vcpu->arch.hv_clock.tsc_shift;
2151	}
2152
2153	entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2154	if (entry)
2155		entry->eax = vcpu->arch.hw_tsc_khz;
2156}
2157
2158void kvm_xen_init_vm(struct kvm *kvm)
2159{
2160	mutex_init(&kvm->arch.xen.xen_lock);
2161	idr_init(&kvm->arch.xen.evtchn_ports);
2162	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2163}
2164
2165void kvm_xen_destroy_vm(struct kvm *kvm)
2166{
2167	struct evtchnfd *evtchnfd;
2168	int i;
2169
2170	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2171
2172	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2173		if (!evtchnfd->deliver.port.port)
2174			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2175		kfree(evtchnfd);
2176	}
2177	idr_destroy(&kvm->arch.xen.evtchn_ports);
2178
2179	if (kvm->arch.xen_hvm_config.msr)
2180		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2181}