Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/kvm_host.h>
14#include "linux/lockdep.h"
15#include <linux/export.h>
16#include <linux/vmalloc.h>
17#include <linux/uaccess.h>
18#include <linux/sched/stat.h>
19
20#include <asm/processor.h>
21#include <asm/user.h>
22#include <asm/fpu/xstate.h>
23#include <asm/sgx.h>
24#include <asm/cpuid.h>
25#include "cpuid.h"
26#include "lapic.h"
27#include "mmu.h"
28#include "trace.h"
29#include "pmu.h"
30#include "xen.h"
31
32/*
33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35 */
36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39u32 xstate_required_size(u64 xstate_bv, bool compacted)
40{
41 int feature_bit = 0;
42 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44 xstate_bv &= XFEATURE_MASK_EXTEND;
45 while (xstate_bv) {
46 if (xstate_bv & 0x1) {
47 u32 eax, ebx, ecx, edx, offset;
48 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49 /* ECX[1]: 64B alignment in compacted form */
50 if (compacted)
51 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52 else
53 offset = ebx;
54 ret = max(ret, offset + eax);
55 }
56
57 xstate_bv >>= 1;
58 feature_bit++;
59 }
60
61 return ret;
62}
63
64#define F feature_bit
65
66/* Scattered Flag - For features that are scattered by cpufeatures.h. */
67#define SF(name) \
68({ \
69 BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
70 (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \
71})
72
73/*
74 * Magic value used by KVM when querying userspace-provided CPUID entries and
75 * doesn't care about the CPIUD index because the index of the function in
76 * question is not significant. Note, this magic value must have at least one
77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78 * to avoid false positives when processing guest CPUID input.
79 */
80#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84{
85 struct kvm_cpuid_entry2 *e;
86 int i;
87
88 /*
89 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90 * with IRQs disabled is disallowed. The CPUID model can legitimately
91 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92 * typically disabled in KVM only when KVM is in a performance critical
93 * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
94 * if this rule is violated, this assertion is purely to flag potential
95 * performance issues. If this fires, consider moving the lookup out
96 * of the hotpath, e.g. by caching information during CPUID updates.
97 */
98 lockdep_assert_irqs_enabled();
99
100 for (i = 0; i < nent; i++) {
101 e = &entries[i];
102
103 if (e->function != function)
104 continue;
105
106 /*
107 * If the index isn't significant, use the first entry with a
108 * matching function. It's userspace's responsibility to not
109 * provide "duplicate" entries in all cases.
110 */
111 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112 return e;
113
114
115 /*
116 * Similarly, use the first matching entry if KVM is doing a
117 * lookup (as opposed to emulating CPUID) for a function that's
118 * architecturally defined as not having a significant index.
119 */
120 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121 /*
122 * Direct lookups from KVM should not diverge from what
123 * KVM defines internally (the architectural behavior).
124 */
125 WARN_ON_ONCE(cpuid_function_is_indexed(function));
126 return e;
127 }
128 }
129
130 return NULL;
131}
132
133static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134 struct kvm_cpuid_entry2 *entries,
135 int nent)
136{
137 struct kvm_cpuid_entry2 *best;
138 u64 xfeatures;
139
140 /*
141 * The existing code assumes virtual address is 48-bit or 57-bit in the
142 * canonical address checks; exit if it is ever changed.
143 */
144 best = cpuid_entry2_find(entries, nent, 0x80000008,
145 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146 if (best) {
147 int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 return -EINVAL;
151 }
152
153 /*
154 * Exposing dynamic xfeatures to the guest requires additional
155 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 */
157 best = cpuid_entry2_find(entries, nent, 0xd, 0);
158 if (!best)
159 return 0;
160
161 xfeatures = best->eax | ((u64)best->edx << 32);
162 xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 if (!xfeatures)
164 return 0;
165
166 return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167}
168
169/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171 int nent)
172{
173 struct kvm_cpuid_entry2 *orig;
174 int i;
175
176 if (nent != vcpu->arch.cpuid_nent)
177 return -EINVAL;
178
179 for (i = 0; i < nent; i++) {
180 orig = &vcpu->arch.cpuid_entries[i];
181 if (e2[i].function != orig->function ||
182 e2[i].index != orig->index ||
183 e2[i].flags != orig->flags ||
184 e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185 e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186 return -EINVAL;
187 }
188
189 return 0;
190}
191
192static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193 const char *sig)
194{
195 struct kvm_hypervisor_cpuid cpuid = {};
196 struct kvm_cpuid_entry2 *entry;
197 u32 base;
198
199 for_each_possible_hypervisor_cpuid_base(base) {
200 entry = kvm_find_cpuid_entry(vcpu, base);
201
202 if (entry) {
203 u32 signature[3];
204
205 signature[0] = entry->ebx;
206 signature[1] = entry->ecx;
207 signature[2] = entry->edx;
208
209 if (!memcmp(signature, sig, sizeof(signature))) {
210 cpuid.base = base;
211 cpuid.limit = entry->eax;
212 break;
213 }
214 }
215 }
216
217 return cpuid;
218}
219
220static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221 struct kvm_cpuid_entry2 *entries, int nent)
222{
223 u32 base = vcpu->arch.kvm_cpuid.base;
224
225 if (!base)
226 return NULL;
227
228 return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
229 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
230}
231
232static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233{
234 return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235 vcpu->arch.cpuid_nent);
236}
237
238void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239{
240 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241
242 /*
243 * save the feature bitmap to avoid cpuid lookup for every PV
244 * operation
245 */
246 if (best)
247 vcpu->arch.pv_cpuid.features = best->eax;
248}
249
250/*
251 * Calculate guest's supported XCR0 taking into account guest CPUID data and
252 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253 */
254static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255{
256 struct kvm_cpuid_entry2 *best;
257
258 best = cpuid_entry2_find(entries, nent, 0xd, 0);
259 if (!best)
260 return 0;
261
262 return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263}
264
265static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266 int nent)
267{
268 struct kvm_cpuid_entry2 *best;
269
270 best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271 if (best) {
272 /* Update OSXSAVE bit */
273 if (boot_cpu_has(X86_FEATURE_XSAVE))
274 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275 kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276
277 cpuid_entry_change(best, X86_FEATURE_APIC,
278 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279 }
280
281 best = cpuid_entry2_find(entries, nent, 7, 0);
282 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283 cpuid_entry_change(best, X86_FEATURE_OSPKE,
284 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285
286 best = cpuid_entry2_find(entries, nent, 0xD, 0);
287 if (best)
288 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289
290 best = cpuid_entry2_find(entries, nent, 0xD, 1);
291 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294
295 best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299
300 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302 if (best)
303 cpuid_entry_change(best, X86_FEATURE_MWAIT,
304 vcpu->arch.ia32_misc_enable_msr &
305 MSR_IA32_MISC_ENABLE_MWAIT);
306 }
307}
308
309void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310{
311 __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312}
313EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
314
315static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316{
317#ifdef CONFIG_KVM_HYPERV
318 struct kvm_cpuid_entry2 *entry;
319
320 entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
321 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
322 return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
323#else
324 return false;
325#endif
326}
327
328static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
329{
330 struct kvm_lapic *apic = vcpu->arch.apic;
331 struct kvm_cpuid_entry2 *best;
332 bool allow_gbpages;
333
334 BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
335 bitmap_zero(vcpu->arch.governed_features.enabled,
336 KVM_MAX_NR_GOVERNED_FEATURES);
337
338 /*
339 * If TDP is enabled, let the guest use GBPAGES if they're supported in
340 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
341 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
342 * walk for performance and complexity reasons. Not to mention KVM
343 * _can't_ solve the problem because GVA->GPA walks aren't visible to
344 * KVM once a TDP translation is installed. Mimic hardware behavior so
345 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
346 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
347 * and can install smaller shadow pages if the host lacks 1GiB support.
348 */
349 allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
350 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
351 if (allow_gbpages)
352 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
353
354 best = kvm_find_cpuid_entry(vcpu, 1);
355 if (best && apic) {
356 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
357 apic->lapic_timer.timer_mode_mask = 3 << 17;
358 else
359 apic->lapic_timer.timer_mode_mask = 1 << 17;
360
361 kvm_apic_set_version(vcpu);
362 }
363
364 vcpu->arch.guest_supported_xcr0 =
365 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
366
367 kvm_update_pv_runtime(vcpu);
368
369 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
370 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
371
372 kvm_pmu_refresh(vcpu);
373 vcpu->arch.cr4_guest_rsvd_bits =
374 __cr4_reserved_bits(guest_cpuid_has, vcpu);
375
376 kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
377 vcpu->arch.cpuid_nent));
378
379 /* Invoke the vendor callback only after the above state is updated. */
380 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
381
382 /*
383 * Except for the MMU, which needs to do its thing any vendor specific
384 * adjustments to the reserved GPA bits.
385 */
386 kvm_mmu_after_set_cpuid(vcpu);
387}
388
389int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
390{
391 struct kvm_cpuid_entry2 *best;
392
393 best = kvm_find_cpuid_entry(vcpu, 0x80000000);
394 if (!best || best->eax < 0x80000008)
395 goto not_found;
396 best = kvm_find_cpuid_entry(vcpu, 0x80000008);
397 if (best)
398 return best->eax & 0xff;
399not_found:
400 return 36;
401}
402
403/*
404 * This "raw" version returns the reserved GPA bits without any adjustments for
405 * encryption technologies that usurp bits. The raw mask should be used if and
406 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
407 */
408u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
409{
410 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
411}
412
413static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
414 int nent)
415{
416 int r;
417
418 __kvm_update_cpuid_runtime(vcpu, e2, nent);
419
420 /*
421 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
422 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
423 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
424 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
425 * the core vCPU model on the fly. It would've been better to forbid any
426 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
427 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
428 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
429 * whether the supplied CPUID data is equal to what's already set.
430 */
431 if (kvm_vcpu_has_run(vcpu)) {
432 r = kvm_cpuid_check_equal(vcpu, e2, nent);
433 if (r)
434 return r;
435
436 kvfree(e2);
437 return 0;
438 }
439
440#ifdef CONFIG_KVM_HYPERV
441 if (kvm_cpuid_has_hyperv(e2, nent)) {
442 r = kvm_hv_vcpu_init(vcpu);
443 if (r)
444 return r;
445 }
446#endif
447
448 r = kvm_check_cpuid(vcpu, e2, nent);
449 if (r)
450 return r;
451
452 kvfree(vcpu->arch.cpuid_entries);
453 vcpu->arch.cpuid_entries = e2;
454 vcpu->arch.cpuid_nent = nent;
455
456 vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
457#ifdef CONFIG_KVM_XEN
458 vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
459#endif
460 kvm_vcpu_after_set_cpuid(vcpu);
461
462 return 0;
463}
464
465/* when an old userspace process fills a new kernel module */
466int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
467 struct kvm_cpuid *cpuid,
468 struct kvm_cpuid_entry __user *entries)
469{
470 int r, i;
471 struct kvm_cpuid_entry *e = NULL;
472 struct kvm_cpuid_entry2 *e2 = NULL;
473
474 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
475 return -E2BIG;
476
477 if (cpuid->nent) {
478 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
479 if (IS_ERR(e))
480 return PTR_ERR(e);
481
482 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
483 if (!e2) {
484 r = -ENOMEM;
485 goto out_free_cpuid;
486 }
487 }
488 for (i = 0; i < cpuid->nent; i++) {
489 e2[i].function = e[i].function;
490 e2[i].eax = e[i].eax;
491 e2[i].ebx = e[i].ebx;
492 e2[i].ecx = e[i].ecx;
493 e2[i].edx = e[i].edx;
494 e2[i].index = 0;
495 e2[i].flags = 0;
496 e2[i].padding[0] = 0;
497 e2[i].padding[1] = 0;
498 e2[i].padding[2] = 0;
499 }
500
501 r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
502 if (r)
503 kvfree(e2);
504
505out_free_cpuid:
506 kvfree(e);
507
508 return r;
509}
510
511int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
512 struct kvm_cpuid2 *cpuid,
513 struct kvm_cpuid_entry2 __user *entries)
514{
515 struct kvm_cpuid_entry2 *e2 = NULL;
516 int r;
517
518 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
519 return -E2BIG;
520
521 if (cpuid->nent) {
522 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
523 if (IS_ERR(e2))
524 return PTR_ERR(e2);
525 }
526
527 r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
528 if (r)
529 kvfree(e2);
530
531 return r;
532}
533
534int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
535 struct kvm_cpuid2 *cpuid,
536 struct kvm_cpuid_entry2 __user *entries)
537{
538 if (cpuid->nent < vcpu->arch.cpuid_nent)
539 return -E2BIG;
540
541 if (copy_to_user(entries, vcpu->arch.cpuid_entries,
542 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
543 return -EFAULT;
544
545 cpuid->nent = vcpu->arch.cpuid_nent;
546 return 0;
547}
548
549/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
550static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
551{
552 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
553 struct kvm_cpuid_entry2 entry;
554
555 reverse_cpuid_check(leaf);
556
557 cpuid_count(cpuid.function, cpuid.index,
558 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
559
560 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
561}
562
563static __always_inline
564void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
565{
566 /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
567 BUILD_BUG_ON(leaf < NCAPINTS);
568
569 kvm_cpu_caps[leaf] = mask;
570
571 __kvm_cpu_cap_mask(leaf);
572}
573
574static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
575{
576 /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
577 BUILD_BUG_ON(leaf >= NCAPINTS);
578
579 kvm_cpu_caps[leaf] &= mask;
580
581 __kvm_cpu_cap_mask(leaf);
582}
583
584void kvm_set_cpu_caps(void)
585{
586#ifdef CONFIG_X86_64
587 unsigned int f_gbpages = F(GBPAGES);
588 unsigned int f_lm = F(LM);
589 unsigned int f_xfd = F(XFD);
590#else
591 unsigned int f_gbpages = 0;
592 unsigned int f_lm = 0;
593 unsigned int f_xfd = 0;
594#endif
595 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
596
597 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
598 sizeof(boot_cpu_data.x86_capability));
599
600 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
601 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
602
603 kvm_cpu_cap_mask(CPUID_1_ECX,
604 /*
605 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
606 * advertised to guests via CPUID!
607 */
608 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
609 0 /* DS-CPL, VMX, SMX, EST */ |
610 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
611 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
612 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
613 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
614 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
615 F(F16C) | F(RDRAND)
616 );
617 /* KVM emulates x2apic in software irrespective of host support. */
618 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
619
620 kvm_cpu_cap_mask(CPUID_1_EDX,
621 F(FPU) | F(VME) | F(DE) | F(PSE) |
622 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
623 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
624 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
625 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
626 0 /* Reserved, DS, ACPI */ | F(MMX) |
627 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
628 0 /* HTT, TM, Reserved, PBE */
629 );
630
631 kvm_cpu_cap_mask(CPUID_7_0_EBX,
632 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
633 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
634 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
635 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
636 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
637 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
638 F(AVX512VL));
639
640 kvm_cpu_cap_mask(CPUID_7_ECX,
641 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
642 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
643 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
644 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
645 F(SGX_LC) | F(BUS_LOCK_DETECT)
646 );
647 /* Set LA57 based on hardware capability. */
648 if (cpuid_ecx(7) & F(LA57))
649 kvm_cpu_cap_set(X86_FEATURE_LA57);
650
651 /*
652 * PKU not yet implemented for shadow paging and requires OSPKE
653 * to be set on the host. Clear it if that is not the case
654 */
655 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
656 kvm_cpu_cap_clear(X86_FEATURE_PKU);
657
658 kvm_cpu_cap_mask(CPUID_7_EDX,
659 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
660 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
661 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
662 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
663 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
664 );
665
666 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
667 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
668 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
669
670 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
671 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
672 if (boot_cpu_has(X86_FEATURE_STIBP))
673 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
674 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
675 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
676
677 kvm_cpu_cap_mask(CPUID_7_1_EAX,
678 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
679 F(FZRM) | F(FSRS) | F(FSRC) |
680 F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
681 );
682
683 kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
684 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
685 F(AMX_COMPLEX)
686 );
687
688 kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
689 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
690 F(BHI_CTRL) | F(MCDT_NO)
691 );
692
693 kvm_cpu_cap_mask(CPUID_D_1_EAX,
694 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
695 );
696
697 kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
698 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
699 );
700
701 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
702 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
703 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
704 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
705 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
706 F(TOPOEXT) | 0 /* PERFCTR_CORE */
707 );
708
709 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
710 F(FPU) | F(VME) | F(DE) | F(PSE) |
711 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
712 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
713 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
714 F(PAT) | F(PSE36) | 0 /* Reserved */ |
715 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
716 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
717 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
718 );
719
720 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
721 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
722
723 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
724 SF(CONSTANT_TSC)
725 );
726
727 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
728 F(CLZERO) | F(XSAVEERPTR) |
729 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
730 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
731 F(AMD_PSFD)
732 );
733
734 /*
735 * AMD has separate bits for each SPEC_CTRL bit.
736 * arch/x86/kernel/cpu/bugs.c is kind enough to
737 * record that in cpufeatures so use them.
738 */
739 if (boot_cpu_has(X86_FEATURE_IBPB))
740 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
741 if (boot_cpu_has(X86_FEATURE_IBRS))
742 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
743 if (boot_cpu_has(X86_FEATURE_STIBP))
744 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
745 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
746 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
747 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
748 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
749 /*
750 * The preference is to use SPEC CTRL MSR instead of the
751 * VIRT_SPEC MSR.
752 */
753 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
754 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
755 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
756
757 /*
758 * Hide all SVM features by default, SVM will set the cap bits for
759 * features it emulates and/or exposes for L1.
760 */
761 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
762
763 kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
764 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
765 F(SME_COHERENT));
766
767 kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
768 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
769 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
770 F(WRMSR_XX_BASE_NS)
771 );
772
773 kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
774 kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
775 kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
776
777 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
778 F(PERFMON_V2)
779 );
780
781 /*
782 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
783 * KVM's supported CPUID if the feature is reported as supported by the
784 * kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long
785 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
786 * CPUs that support SSE2. On CPUs that don't support AMD's leaf,
787 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
788 * the mask with the raw host CPUID, and reporting support in AMD's
789 * leaf can make it easier for userspace to detect the feature.
790 */
791 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
792 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
793 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
794 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
795 kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
796
797 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
798 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
799 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
800 F(PMM) | F(PMM_EN)
801 );
802
803 /*
804 * Hide RDTSCP and RDPID if either feature is reported as supported but
805 * probing MSR_TSC_AUX failed. This is purely a sanity check and
806 * should never happen, but the guest will likely crash if RDTSCP or
807 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
808 * the past. For example, the sanity check may fire if this instance of
809 * KVM is running as L1 on top of an older, broken KVM.
810 */
811 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
812 kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
813 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
814 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
815 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
816 }
817}
818EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
819
820struct kvm_cpuid_array {
821 struct kvm_cpuid_entry2 *entries;
822 int maxnent;
823 int nent;
824};
825
826static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
827{
828 if (array->nent >= array->maxnent)
829 return NULL;
830
831 return &array->entries[array->nent++];
832}
833
834static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
835 u32 function, u32 index)
836{
837 struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
838
839 if (!entry)
840 return NULL;
841
842 memset(entry, 0, sizeof(*entry));
843 entry->function = function;
844 entry->index = index;
845 switch (function & 0xC0000000) {
846 case 0x40000000:
847 /* Hypervisor leaves are always synthesized by __do_cpuid_func. */
848 return entry;
849
850 case 0x80000000:
851 /*
852 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
853 * would result in out-of-bounds calls to do_host_cpuid.
854 */
855 {
856 static int max_cpuid_80000000;
857 if (!READ_ONCE(max_cpuid_80000000))
858 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
859 if (function > READ_ONCE(max_cpuid_80000000))
860 return entry;
861 }
862 break;
863
864 default:
865 break;
866 }
867
868 cpuid_count(entry->function, entry->index,
869 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
870
871 if (cpuid_function_is_indexed(function))
872 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
873
874 return entry;
875}
876
877static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
878{
879 struct kvm_cpuid_entry2 *entry;
880
881 if (array->nent >= array->maxnent)
882 return -E2BIG;
883
884 entry = &array->entries[array->nent];
885 entry->function = func;
886 entry->index = 0;
887 entry->flags = 0;
888
889 switch (func) {
890 case 0:
891 entry->eax = 7;
892 ++array->nent;
893 break;
894 case 1:
895 entry->ecx = F(MOVBE);
896 ++array->nent;
897 break;
898 case 7:
899 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
900 entry->eax = 0;
901 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
902 entry->ecx = F(RDPID);
903 ++array->nent;
904 break;
905 default:
906 break;
907 }
908
909 return 0;
910}
911
912static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
913{
914 struct kvm_cpuid_entry2 *entry;
915 int r, i, max_idx;
916
917 /* all calls to cpuid_count() should be made on the same cpu */
918 get_cpu();
919
920 r = -E2BIG;
921
922 entry = do_host_cpuid(array, function, 0);
923 if (!entry)
924 goto out;
925
926 switch (function) {
927 case 0:
928 /* Limited to the highest leaf implemented in KVM. */
929 entry->eax = min(entry->eax, 0x1fU);
930 break;
931 case 1:
932 cpuid_entry_override(entry, CPUID_1_EDX);
933 cpuid_entry_override(entry, CPUID_1_ECX);
934 break;
935 case 2:
936 /*
937 * On ancient CPUs, function 2 entries are STATEFUL. That is,
938 * CPUID(function=2, index=0) may return different results each
939 * time, with the least-significant byte in EAX enumerating the
940 * number of times software should do CPUID(2, 0).
941 *
942 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
943 * idiotic. Intel's SDM states that EAX & 0xff "will always
944 * return 01H. Software should ignore this value and not
945 * interpret it as an informational descriptor", while AMD's
946 * APM states that CPUID(2) is reserved.
947 *
948 * WARN if a frankenstein CPU that supports virtualization and
949 * a stateful CPUID.0x2 is encountered.
950 */
951 WARN_ON_ONCE((entry->eax & 0xff) > 1);
952 break;
953 /* functions 4 and 0x8000001d have additional index. */
954 case 4:
955 case 0x8000001d:
956 /*
957 * Read entries until the cache type in the previous entry is
958 * zero, i.e. indicates an invalid entry.
959 */
960 for (i = 1; entry->eax & 0x1f; ++i) {
961 entry = do_host_cpuid(array, function, i);
962 if (!entry)
963 goto out;
964 }
965 break;
966 case 6: /* Thermal management */
967 entry->eax = 0x4; /* allow ARAT */
968 entry->ebx = 0;
969 entry->ecx = 0;
970 entry->edx = 0;
971 break;
972 /* function 7 has additional index. */
973 case 7:
974 max_idx = entry->eax = min(entry->eax, 2u);
975 cpuid_entry_override(entry, CPUID_7_0_EBX);
976 cpuid_entry_override(entry, CPUID_7_ECX);
977 cpuid_entry_override(entry, CPUID_7_EDX);
978
979 /* KVM only supports up to 0x7.2, capped above via min(). */
980 if (max_idx >= 1) {
981 entry = do_host_cpuid(array, function, 1);
982 if (!entry)
983 goto out;
984
985 cpuid_entry_override(entry, CPUID_7_1_EAX);
986 cpuid_entry_override(entry, CPUID_7_1_EDX);
987 entry->ebx = 0;
988 entry->ecx = 0;
989 }
990 if (max_idx >= 2) {
991 entry = do_host_cpuid(array, function, 2);
992 if (!entry)
993 goto out;
994
995 cpuid_entry_override(entry, CPUID_7_2_EDX);
996 entry->ecx = 0;
997 entry->ebx = 0;
998 entry->eax = 0;
999 }
1000 break;
1001 case 0xa: { /* Architectural Performance Monitoring */
1002 union cpuid10_eax eax;
1003 union cpuid10_edx edx;
1004
1005 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1006 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1007 break;
1008 }
1009
1010 eax.split.version_id = kvm_pmu_cap.version;
1011 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1012 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1013 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1014 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1015 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1016
1017 if (kvm_pmu_cap.version)
1018 edx.split.anythread_deprecated = 1;
1019 edx.split.reserved1 = 0;
1020 edx.split.reserved2 = 0;
1021
1022 entry->eax = eax.full;
1023 entry->ebx = kvm_pmu_cap.events_mask;
1024 entry->ecx = 0;
1025 entry->edx = edx.full;
1026 break;
1027 }
1028 case 0x1f:
1029 case 0xb:
1030 /*
1031 * No topology; a valid topology is indicated by the presence
1032 * of subleaf 1.
1033 */
1034 entry->eax = entry->ebx = entry->ecx = 0;
1035 break;
1036 case 0xd: {
1037 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1038 u64 permitted_xss = kvm_caps.supported_xss;
1039
1040 entry->eax &= permitted_xcr0;
1041 entry->ebx = xstate_required_size(permitted_xcr0, false);
1042 entry->ecx = entry->ebx;
1043 entry->edx &= permitted_xcr0 >> 32;
1044 if (!permitted_xcr0)
1045 break;
1046
1047 entry = do_host_cpuid(array, function, 1);
1048 if (!entry)
1049 goto out;
1050
1051 cpuid_entry_override(entry, CPUID_D_1_EAX);
1052 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1053 entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1054 true);
1055 else {
1056 WARN_ON_ONCE(permitted_xss != 0);
1057 entry->ebx = 0;
1058 }
1059 entry->ecx &= permitted_xss;
1060 entry->edx &= permitted_xss >> 32;
1061
1062 for (i = 2; i < 64; ++i) {
1063 bool s_state;
1064 if (permitted_xcr0 & BIT_ULL(i))
1065 s_state = false;
1066 else if (permitted_xss & BIT_ULL(i))
1067 s_state = true;
1068 else
1069 continue;
1070
1071 entry = do_host_cpuid(array, function, i);
1072 if (!entry)
1073 goto out;
1074
1075 /*
1076 * The supported check above should have filtered out
1077 * invalid sub-leafs. Only valid sub-leafs should
1078 * reach this point, and they should have a non-zero
1079 * save state size. Furthermore, check whether the
1080 * processor agrees with permitted_xcr0/permitted_xss
1081 * on whether this is an XCR0- or IA32_XSS-managed area.
1082 */
1083 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1084 --array->nent;
1085 continue;
1086 }
1087
1088 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1089 entry->ecx &= ~BIT_ULL(2);
1090 entry->edx = 0;
1091 }
1092 break;
1093 }
1094 case 0x12:
1095 /* Intel SGX */
1096 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1097 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1098 break;
1099 }
1100
1101 /*
1102 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1103 * and max enclave sizes. The SGX sub-features and MISCSELECT
1104 * are restricted by kernel and KVM capabilities (like most
1105 * feature flags), while enclave size is unrestricted.
1106 */
1107 cpuid_entry_override(entry, CPUID_12_EAX);
1108 entry->ebx &= SGX_MISC_EXINFO;
1109
1110 entry = do_host_cpuid(array, function, 1);
1111 if (!entry)
1112 goto out;
1113
1114 /*
1115 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
1116 * feature flags. Advertise all supported flags, including
1117 * privileged attributes that require explicit opt-in from
1118 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
1119 * expected to derive it from supported XCR0.
1120 */
1121 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1122 entry->ebx &= 0;
1123 break;
1124 /* Intel PT */
1125 case 0x14:
1126 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1127 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1128 break;
1129 }
1130
1131 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1132 if (!do_host_cpuid(array, function, i))
1133 goto out;
1134 }
1135 break;
1136 /* Intel AMX TILE */
1137 case 0x1d:
1138 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1139 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1140 break;
1141 }
1142
1143 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1144 if (!do_host_cpuid(array, function, i))
1145 goto out;
1146 }
1147 break;
1148 case 0x1e: /* TMUL information */
1149 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151 break;
1152 }
1153 break;
1154 case KVM_CPUID_SIGNATURE: {
1155 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1156 entry->eax = KVM_CPUID_FEATURES;
1157 entry->ebx = sigptr[0];
1158 entry->ecx = sigptr[1];
1159 entry->edx = sigptr[2];
1160 break;
1161 }
1162 case KVM_CPUID_FEATURES:
1163 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1164 (1 << KVM_FEATURE_NOP_IO_DELAY) |
1165 (1 << KVM_FEATURE_CLOCKSOURCE2) |
1166 (1 << KVM_FEATURE_ASYNC_PF) |
1167 (1 << KVM_FEATURE_PV_EOI) |
1168 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1169 (1 << KVM_FEATURE_PV_UNHALT) |
1170 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1171 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1172 (1 << KVM_FEATURE_PV_SEND_IPI) |
1173 (1 << KVM_FEATURE_POLL_CONTROL) |
1174 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1175 (1 << KVM_FEATURE_ASYNC_PF_INT);
1176
1177 if (sched_info_on())
1178 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1179
1180 entry->ebx = 0;
1181 entry->ecx = 0;
1182 entry->edx = 0;
1183 break;
1184 case 0x80000000:
1185 entry->eax = min(entry->eax, 0x80000022);
1186 /*
1187 * Serializing LFENCE is reported in a multitude of ways, and
1188 * NullSegClearsBase is not reported in CPUID on Zen2; help
1189 * userspace by providing the CPUID leaf ourselves.
1190 *
1191 * However, only do it if the host has CPUID leaf 0x8000001d.
1192 * QEMU thinks that it can query the host blindly for that
1193 * CPUID leaf if KVM reports that it supports 0x8000001d or
1194 * above. The processor merrily returns values from the
1195 * highest Intel leaf which QEMU tries to use as the guest's
1196 * 0x8000001d. Even worse, this can result in an infinite
1197 * loop if said highest leaf has no subleaves indexed by ECX.
1198 */
1199 if (entry->eax >= 0x8000001d &&
1200 (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1201 || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1202 entry->eax = max(entry->eax, 0x80000021);
1203 break;
1204 case 0x80000001:
1205 entry->ebx &= ~GENMASK(27, 16);
1206 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1207 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1208 break;
1209 case 0x80000005:
1210 /* Pass host L1 cache and TLB info. */
1211 break;
1212 case 0x80000006:
1213 /* Drop reserved bits, pass host L2 cache and TLB info. */
1214 entry->edx &= ~GENMASK(17, 16);
1215 break;
1216 case 0x80000007: /* Advanced power management */
1217 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1218
1219 /* mask against host */
1220 entry->edx &= boot_cpu_data.x86_power;
1221 entry->eax = entry->ebx = entry->ecx = 0;
1222 break;
1223 case 0x80000008: {
1224 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1225 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1226 unsigned phys_as = entry->eax & 0xff;
1227
1228 /*
1229 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1230 * the guest operates in the same PA space as the host, i.e.
1231 * reductions in MAXPHYADDR for memory encryption affect shadow
1232 * paging, too.
1233 *
1234 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1235 * provided, use the raw bare metal MAXPHYADDR as reductions to
1236 * the HPAs do not affect GPAs.
1237 */
1238 if (!tdp_enabled)
1239 g_phys_as = boot_cpu_data.x86_phys_bits;
1240 else if (!g_phys_as)
1241 g_phys_as = phys_as;
1242
1243 entry->eax = g_phys_as | (virt_as << 8);
1244 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1245 entry->edx = 0;
1246 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1247 break;
1248 }
1249 case 0x8000000A:
1250 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1251 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1252 break;
1253 }
1254 entry->eax = 1; /* SVM revision 1 */
1255 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1256 ASID emulation to nested SVM */
1257 entry->ecx = 0; /* Reserved */
1258 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1259 break;
1260 case 0x80000019:
1261 entry->ecx = entry->edx = 0;
1262 break;
1263 case 0x8000001a:
1264 entry->eax &= GENMASK(2, 0);
1265 entry->ebx = entry->ecx = entry->edx = 0;
1266 break;
1267 case 0x8000001e:
1268 /* Do not return host topology information. */
1269 entry->eax = entry->ebx = entry->ecx = 0;
1270 entry->edx = 0; /* reserved */
1271 break;
1272 case 0x8000001F:
1273 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1274 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1275 } else {
1276 cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1277 /* Clear NumVMPL since KVM does not support VMPL. */
1278 entry->ebx &= ~GENMASK(31, 12);
1279 /*
1280 * Enumerate '0' for "PA bits reduction", the adjusted
1281 * MAXPHYADDR is enumerated directly (see 0x80000008).
1282 */
1283 entry->ebx &= ~GENMASK(11, 6);
1284 }
1285 break;
1286 case 0x80000020:
1287 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1288 break;
1289 case 0x80000021:
1290 entry->ebx = entry->ecx = entry->edx = 0;
1291 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1292 break;
1293 /* AMD Extended Performance Monitoring and Debug */
1294 case 0x80000022: {
1295 union cpuid_0x80000022_ebx ebx;
1296
1297 entry->ecx = entry->edx = 0;
1298 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1299 entry->eax = entry->ebx;
1300 break;
1301 }
1302
1303 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1304
1305 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1306 ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1307 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1308 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1309 else
1310 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1311
1312 entry->ebx = ebx.full;
1313 break;
1314 }
1315 /*Add support for Centaur's CPUID instruction*/
1316 case 0xC0000000:
1317 /*Just support up to 0xC0000004 now*/
1318 entry->eax = min(entry->eax, 0xC0000004);
1319 break;
1320 case 0xC0000001:
1321 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1322 break;
1323 case 3: /* Processor serial number */
1324 case 5: /* MONITOR/MWAIT */
1325 case 0xC0000002:
1326 case 0xC0000003:
1327 case 0xC0000004:
1328 default:
1329 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1330 break;
1331 }
1332
1333 r = 0;
1334
1335out:
1336 put_cpu();
1337
1338 return r;
1339}
1340
1341static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1342 unsigned int type)
1343{
1344 if (type == KVM_GET_EMULATED_CPUID)
1345 return __do_cpuid_func_emulated(array, func);
1346
1347 return __do_cpuid_func(array, func);
1348}
1349
1350#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1351
1352static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353 unsigned int type)
1354{
1355 u32 limit;
1356 int r;
1357
1358 if (func == CENTAUR_CPUID_SIGNATURE &&
1359 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1360 return 0;
1361
1362 r = do_cpuid_func(array, func, type);
1363 if (r)
1364 return r;
1365
1366 limit = array->entries[array->nent - 1].eax;
1367 for (func = func + 1; func <= limit; ++func) {
1368 r = do_cpuid_func(array, func, type);
1369 if (r)
1370 break;
1371 }
1372
1373 return r;
1374}
1375
1376static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1377 __u32 num_entries, unsigned int ioctl_type)
1378{
1379 int i;
1380 __u32 pad[3];
1381
1382 if (ioctl_type != KVM_GET_EMULATED_CPUID)
1383 return false;
1384
1385 /*
1386 * We want to make sure that ->padding is being passed clean from
1387 * userspace in case we want to use it for something in the future.
1388 *
1389 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1390 * have to give ourselves satisfied only with the emulated side. /me
1391 * sheds a tear.
1392 */
1393 for (i = 0; i < num_entries; i++) {
1394 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1395 return true;
1396
1397 if (pad[0] || pad[1] || pad[2])
1398 return true;
1399 }
1400 return false;
1401}
1402
1403int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1404 struct kvm_cpuid_entry2 __user *entries,
1405 unsigned int type)
1406{
1407 static const u32 funcs[] = {
1408 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1409 };
1410
1411 struct kvm_cpuid_array array = {
1412 .nent = 0,
1413 };
1414 int r, i;
1415
1416 if (cpuid->nent < 1)
1417 return -E2BIG;
1418 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1419 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1420
1421 if (sanity_check_entries(entries, cpuid->nent, type))
1422 return -EINVAL;
1423
1424 array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1425 if (!array.entries)
1426 return -ENOMEM;
1427
1428 array.maxnent = cpuid->nent;
1429
1430 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1431 r = get_cpuid_func(&array, funcs[i], type);
1432 if (r)
1433 goto out_free;
1434 }
1435 cpuid->nent = array.nent;
1436
1437 if (copy_to_user(entries, array.entries,
1438 array.nent * sizeof(struct kvm_cpuid_entry2)))
1439 r = -EFAULT;
1440
1441out_free:
1442 kvfree(array.entries);
1443 return r;
1444}
1445
1446struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1447 u32 function, u32 index)
1448{
1449 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1450 function, index);
1451}
1452EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1453
1454struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1455 u32 function)
1456{
1457 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1458 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1459}
1460EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1461
1462/*
1463 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1464 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1465 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1466 * range. Centaur/VIA follows Intel semantics.
1467 *
1468 * A leaf is considered out-of-range if its function is higher than the maximum
1469 * supported leaf of its associated class or if its associated class does not
1470 * exist.
1471 *
1472 * There are three primary classes to be considered, with their respective
1473 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1474 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
1475 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1476 *
1477 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1478 * - Hypervisor: 0x40000000 - 0x4fffffff
1479 * - Extended: 0x80000000 - 0xbfffffff
1480 * - Centaur: 0xc0000000 - 0xcfffffff
1481 *
1482 * The Hypervisor class is further subdivided into sub-classes that each act as
1483 * their own independent class associated with a 0x100 byte range. E.g. if Qemu
1484 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1485 * CPUID sub-classes are:
1486 *
1487 * - HyperV: 0x40000000 - 0x400000ff
1488 * - KVM: 0x40000100 - 0x400001ff
1489 */
1490static struct kvm_cpuid_entry2 *
1491get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1492{
1493 struct kvm_cpuid_entry2 *basic, *class;
1494 u32 function = *fn_ptr;
1495
1496 basic = kvm_find_cpuid_entry(vcpu, 0);
1497 if (!basic)
1498 return NULL;
1499
1500 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1501 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1502 return NULL;
1503
1504 if (function >= 0x40000000 && function <= 0x4fffffff)
1505 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1506 else if (function >= 0xc0000000)
1507 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1508 else
1509 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1510
1511 if (class && function <= class->eax)
1512 return NULL;
1513
1514 /*
1515 * Leaf specific adjustments are also applied when redirecting to the
1516 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1517 * entry for CPUID.0xb.index (see below), then the output value for EDX
1518 * needs to be pulled from CPUID.0xb.1.
1519 */
1520 *fn_ptr = basic->eax;
1521
1522 /*
1523 * The class does not exist or the requested function is out of range;
1524 * the effective CPUID entry is the max basic leaf. Note, the index of
1525 * the original requested leaf is observed!
1526 */
1527 return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1528}
1529
1530bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1531 u32 *ecx, u32 *edx, bool exact_only)
1532{
1533 u32 orig_function = *eax, function = *eax, index = *ecx;
1534 struct kvm_cpuid_entry2 *entry;
1535 bool exact, used_max_basic = false;
1536
1537 entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1538 exact = !!entry;
1539
1540 if (!entry && !exact_only) {
1541 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1542 used_max_basic = !!entry;
1543 }
1544
1545 if (entry) {
1546 *eax = entry->eax;
1547 *ebx = entry->ebx;
1548 *ecx = entry->ecx;
1549 *edx = entry->edx;
1550 if (function == 7 && index == 0) {
1551 u64 data;
1552 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1553 (data & TSX_CTRL_CPUID_CLEAR))
1554 *ebx &= ~(F(RTM) | F(HLE));
1555 } else if (function == 0x80000007) {
1556 if (kvm_hv_invtsc_suppressed(vcpu))
1557 *edx &= ~SF(CONSTANT_TSC);
1558 }
1559 } else {
1560 *eax = *ebx = *ecx = *edx = 0;
1561 /*
1562 * When leaf 0BH or 1FH is defined, CL is pass-through
1563 * and EDX is always the x2APIC ID, even for undefined
1564 * subleaves. Index 1 will exist iff the leaf is
1565 * implemented, so we pass through CL iff leaf 1
1566 * exists. EDX can be copied from any existing index.
1567 */
1568 if (function == 0xb || function == 0x1f) {
1569 entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1570 if (entry) {
1571 *ecx = index & 0xff;
1572 *edx = entry->edx;
1573 }
1574 }
1575 }
1576 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1577 used_max_basic);
1578 return exact;
1579}
1580EXPORT_SYMBOL_GPL(kvm_cpuid);
1581
1582int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1583{
1584 u32 eax, ebx, ecx, edx;
1585
1586 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1587 return 1;
1588
1589 eax = kvm_rax_read(vcpu);
1590 ecx = kvm_rcx_read(vcpu);
1591 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1592 kvm_rax_write(vcpu, eax);
1593 kvm_rbx_write(vcpu, ebx);
1594 kvm_rcx_write(vcpu, ecx);
1595 kvm_rdx_write(vcpu, edx);
1596 return kvm_skip_emulated_instruction(vcpu);
1597}
1598EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11
12#include <linux/kvm_host.h>
13#include <linux/export.h>
14#include <linux/vmalloc.h>
15#include <linux/uaccess.h>
16#include <linux/sched/stat.h>
17
18#include <asm/processor.h>
19#include <asm/user.h>
20#include <asm/fpu/xstate.h>
21#include "cpuid.h"
22#include "lapic.h"
23#include "mmu.h"
24#include "trace.h"
25#include "pmu.h"
26
27static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28{
29 int feature_bit = 0;
30 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32 xstate_bv &= XFEATURE_MASK_EXTEND;
33 while (xstate_bv) {
34 if (xstate_bv & 0x1) {
35 u32 eax, ebx, ecx, edx, offset;
36 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 offset = compacted ? ret : ebx;
38 ret = max(ret, offset + eax);
39 }
40
41 xstate_bv >>= 1;
42 feature_bit++;
43 }
44
45 return ret;
46}
47
48bool kvm_mpx_supported(void)
49{
50 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 && kvm_x86_ops->mpx_supported());
52}
53EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55u64 kvm_supported_xcr0(void)
56{
57 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59 if (!kvm_mpx_supported())
60 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62 return xcr0;
63}
64
65#define F(x) bit(X86_FEATURE_##x)
66
67int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68{
69 struct kvm_cpuid_entry2 *best;
70 struct kvm_lapic *apic = vcpu->arch.apic;
71
72 best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 if (!best)
74 return 0;
75
76 /* Update OSXSAVE bit */
77 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78 best->ecx &= ~F(OSXSAVE);
79 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 best->ecx |= F(OSXSAVE);
81 }
82
83 best->edx &= ~F(APIC);
84 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85 best->edx |= F(APIC);
86
87 if (apic) {
88 if (best->ecx & F(TSC_DEADLINE_TIMER))
89 apic->lapic_timer.timer_mode_mask = 3 << 17;
90 else
91 apic->lapic_timer.timer_mode_mask = 1 << 17;
92 }
93
94 best = kvm_find_cpuid_entry(vcpu, 7, 0);
95 if (best) {
96 /* Update OSPKE bit */
97 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98 best->ecx &= ~F(OSPKE);
99 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100 best->ecx |= F(OSPKE);
101 }
102 }
103
104 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105 if (!best) {
106 vcpu->arch.guest_supported_xcr0 = 0;
107 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108 } else {
109 vcpu->arch.guest_supported_xcr0 =
110 (best->eax | ((u64)best->edx << 32)) &
111 kvm_supported_xcr0();
112 vcpu->arch.guest_xstate_size = best->ebx =
113 xstate_required_size(vcpu->arch.xcr0, false);
114 }
115
116 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120 /*
121 * The existing code assumes virtual address is 48-bit or 57-bit in the
122 * canonical address checks; exit if it is ever changed.
123 */
124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 if (best) {
126 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129 return -EINVAL;
130 }
131
132 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139 if (best) {
140 if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141 best->ecx |= F(MWAIT);
142 else
143 best->ecx &= ~F(MWAIT);
144 }
145 }
146
147 /* Update physical-address width */
148 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149 kvm_mmu_reset_context(vcpu);
150
151 kvm_pmu_refresh(vcpu);
152 return 0;
153}
154
155static int is_efer_nx(void)
156{
157 unsigned long long efer = 0;
158
159 rdmsrl_safe(MSR_EFER, &efer);
160 return efer & EFER_NX;
161}
162
163static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164{
165 int i;
166 struct kvm_cpuid_entry2 *e, *entry;
167
168 entry = NULL;
169 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170 e = &vcpu->arch.cpuid_entries[i];
171 if (e->function == 0x80000001) {
172 entry = e;
173 break;
174 }
175 }
176 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177 entry->edx &= ~F(NX);
178 printk(KERN_INFO "kvm: guest NX capability removed\n");
179 }
180}
181
182int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183{
184 struct kvm_cpuid_entry2 *best;
185
186 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187 if (!best || best->eax < 0x80000008)
188 goto not_found;
189 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190 if (best)
191 return best->eax & 0xff;
192not_found:
193 return 36;
194}
195EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196
197/* when an old userspace process fills a new kernel module */
198int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199 struct kvm_cpuid *cpuid,
200 struct kvm_cpuid_entry __user *entries)
201{
202 int r, i;
203 struct kvm_cpuid_entry *cpuid_entries = NULL;
204
205 r = -E2BIG;
206 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207 goto out;
208 r = -ENOMEM;
209 if (cpuid->nent) {
210 cpuid_entries =
211 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212 cpuid->nent));
213 if (!cpuid_entries)
214 goto out;
215 r = -EFAULT;
216 if (copy_from_user(cpuid_entries, entries,
217 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218 goto out;
219 }
220 for (i = 0; i < cpuid->nent; i++) {
221 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226 vcpu->arch.cpuid_entries[i].index = 0;
227 vcpu->arch.cpuid_entries[i].flags = 0;
228 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230 vcpu->arch.cpuid_entries[i].padding[2] = 0;
231 }
232 vcpu->arch.cpuid_nent = cpuid->nent;
233 cpuid_fix_nx_cap(vcpu);
234 kvm_apic_set_version(vcpu);
235 kvm_x86_ops->cpuid_update(vcpu);
236 r = kvm_update_cpuid(vcpu);
237
238out:
239 vfree(cpuid_entries);
240 return r;
241}
242
243int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244 struct kvm_cpuid2 *cpuid,
245 struct kvm_cpuid_entry2 __user *entries)
246{
247 int r;
248
249 r = -E2BIG;
250 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251 goto out;
252 r = -EFAULT;
253 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255 goto out;
256 vcpu->arch.cpuid_nent = cpuid->nent;
257 kvm_apic_set_version(vcpu);
258 kvm_x86_ops->cpuid_update(vcpu);
259 r = kvm_update_cpuid(vcpu);
260out:
261 return r;
262}
263
264int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265 struct kvm_cpuid2 *cpuid,
266 struct kvm_cpuid_entry2 __user *entries)
267{
268 int r;
269
270 r = -E2BIG;
271 if (cpuid->nent < vcpu->arch.cpuid_nent)
272 goto out;
273 r = -EFAULT;
274 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276 goto out;
277 return 0;
278
279out:
280 cpuid->nent = vcpu->arch.cpuid_nent;
281 return r;
282}
283
284static void cpuid_mask(u32 *word, int wordnum)
285{
286 *word &= boot_cpu_data.x86_capability[wordnum];
287}
288
289static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290 u32 index)
291{
292 entry->function = function;
293 entry->index = index;
294 entry->flags = 0;
295
296 cpuid_count(entry->function, entry->index,
297 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298
299 switch (function) {
300 case 2:
301 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302 break;
303 case 4:
304 case 7:
305 case 0xb:
306 case 0xd:
307 case 0xf:
308 case 0x10:
309 case 0x12:
310 case 0x14:
311 case 0x17:
312 case 0x18:
313 case 0x1f:
314 case 0x8000001d:
315 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
316 break;
317 }
318}
319
320static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
321 u32 func, int *nent, int maxnent)
322{
323 entry->function = func;
324 entry->index = 0;
325 entry->flags = 0;
326
327 switch (func) {
328 case 0:
329 entry->eax = 7;
330 ++*nent;
331 break;
332 case 1:
333 entry->ecx = F(MOVBE);
334 ++*nent;
335 break;
336 case 7:
337 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
338 entry->eax = 0;
339 entry->ecx = F(RDPID);
340 ++*nent;
341 default:
342 break;
343 }
344
345 return 0;
346}
347
348static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
349{
350 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
351 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
352 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
353 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
354 unsigned f_la57;
355
356 /* cpuid 7.0.ebx */
357 const u32 kvm_cpuid_7_0_ebx_x86_features =
358 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
359 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
360 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
361 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
362 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
363
364 /* cpuid 7.0.ecx*/
365 const u32 kvm_cpuid_7_0_ecx_x86_features =
366 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
367 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
368 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
369 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
370
371 /* cpuid 7.0.edx*/
372 const u32 kvm_cpuid_7_0_edx_x86_features =
373 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
374 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
375 F(MD_CLEAR);
376
377 /* cpuid 7.1.eax */
378 const u32 kvm_cpuid_7_1_eax_x86_features =
379 F(AVX512_BF16);
380
381 switch (index) {
382 case 0:
383 entry->eax = min(entry->eax, 1u);
384 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
385 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
386 /* TSC_ADJUST is emulated */
387 entry->ebx |= F(TSC_ADJUST);
388
389 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
390 f_la57 = entry->ecx & F(LA57);
391 cpuid_mask(&entry->ecx, CPUID_7_ECX);
392 /* Set LA57 based on hardware capability. */
393 entry->ecx |= f_la57;
394 entry->ecx |= f_umip;
395 /* PKU is not yet implemented for shadow paging. */
396 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
397 entry->ecx &= ~F(PKU);
398
399 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
400 cpuid_mask(&entry->edx, CPUID_7_EDX);
401 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
402 entry->edx |= F(SPEC_CTRL);
403 if (boot_cpu_has(X86_FEATURE_STIBP))
404 entry->edx |= F(INTEL_STIBP);
405 if (boot_cpu_has(X86_FEATURE_SSBD))
406 entry->edx |= F(SPEC_CTRL_SSBD);
407 /*
408 * We emulate ARCH_CAPABILITIES in software even
409 * if the host doesn't support it.
410 */
411 entry->edx |= F(ARCH_CAPABILITIES);
412 break;
413 case 1:
414 entry->eax &= kvm_cpuid_7_1_eax_x86_features;
415 entry->ebx = 0;
416 entry->ecx = 0;
417 entry->edx = 0;
418 break;
419 default:
420 WARN_ON_ONCE(1);
421 entry->eax = 0;
422 entry->ebx = 0;
423 entry->ecx = 0;
424 entry->edx = 0;
425 break;
426 }
427}
428
429static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
430 int *nent, int maxnent)
431{
432 int r;
433 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
434#ifdef CONFIG_X86_64
435 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
436 ? F(GBPAGES) : 0;
437 unsigned f_lm = F(LM);
438#else
439 unsigned f_gbpages = 0;
440 unsigned f_lm = 0;
441#endif
442 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
443 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
444 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
445
446 /* cpuid 1.edx */
447 const u32 kvm_cpuid_1_edx_x86_features =
448 F(FPU) | F(VME) | F(DE) | F(PSE) |
449 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
450 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
451 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
452 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
453 0 /* Reserved, DS, ACPI */ | F(MMX) |
454 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
455 0 /* HTT, TM, Reserved, PBE */;
456 /* cpuid 0x80000001.edx */
457 const u32 kvm_cpuid_8000_0001_edx_x86_features =
458 F(FPU) | F(VME) | F(DE) | F(PSE) |
459 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
460 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
461 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
462 F(PAT) | F(PSE36) | 0 /* Reserved */ |
463 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
464 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
465 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
466 /* cpuid 1.ecx */
467 const u32 kvm_cpuid_1_ecx_x86_features =
468 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
469 * but *not* advertised to guests via CPUID ! */
470 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
471 0 /* DS-CPL, VMX, SMX, EST */ |
472 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
473 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
474 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
475 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
476 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
477 F(F16C) | F(RDRAND);
478 /* cpuid 0x80000001.ecx */
479 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
480 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
481 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
482 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
483 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
484 F(TOPOEXT) | F(PERFCTR_CORE);
485
486 /* cpuid 0x80000008.ebx */
487 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
488 F(CLZERO) | F(XSAVEERPTR) |
489 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
490 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
491
492 /* cpuid 0xC0000001.edx */
493 const u32 kvm_cpuid_C000_0001_edx_x86_features =
494 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
495 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
496 F(PMM) | F(PMM_EN);
497
498 /* cpuid 0xD.1.eax */
499 const u32 kvm_cpuid_D_1_eax_x86_features =
500 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
501
502 /* all calls to cpuid_count() should be made on the same cpu */
503 get_cpu();
504
505 r = -E2BIG;
506
507 if (*nent >= maxnent)
508 goto out;
509
510 do_host_cpuid(entry, function, 0);
511 ++*nent;
512
513 switch (function) {
514 case 0:
515 /* Limited to the highest leaf implemented in KVM. */
516 entry->eax = min(entry->eax, 0x1fU);
517 break;
518 case 1:
519 entry->edx &= kvm_cpuid_1_edx_x86_features;
520 cpuid_mask(&entry->edx, CPUID_1_EDX);
521 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
522 cpuid_mask(&entry->ecx, CPUID_1_ECX);
523 /* we support x2apic emulation even if host does not support
524 * it since we emulate x2apic in software */
525 entry->ecx |= F(X2APIC);
526 break;
527 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
528 * may return different values. This forces us to get_cpu() before
529 * issuing the first command, and also to emulate this annoying behavior
530 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
531 case 2: {
532 int t, times = entry->eax & 0xff;
533
534 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
535 for (t = 1; t < times; ++t) {
536 if (*nent >= maxnent)
537 goto out;
538
539 do_host_cpuid(&entry[t], function, 0);
540 ++*nent;
541 }
542 break;
543 }
544 /* functions 4 and 0x8000001d have additional index. */
545 case 4:
546 case 0x8000001d: {
547 int i, cache_type;
548
549 /* read more entries until cache_type is zero */
550 for (i = 1; ; ++i) {
551 if (*nent >= maxnent)
552 goto out;
553
554 cache_type = entry[i - 1].eax & 0x1f;
555 if (!cache_type)
556 break;
557 do_host_cpuid(&entry[i], function, i);
558 ++*nent;
559 }
560 break;
561 }
562 case 6: /* Thermal management */
563 entry->eax = 0x4; /* allow ARAT */
564 entry->ebx = 0;
565 entry->ecx = 0;
566 entry->edx = 0;
567 break;
568 /* function 7 has additional index. */
569 case 7: {
570 int i;
571
572 for (i = 0; ; ) {
573 do_cpuid_7_mask(&entry[i], i);
574 if (i == entry->eax)
575 break;
576 if (*nent >= maxnent)
577 goto out;
578
579 ++i;
580 do_host_cpuid(&entry[i], function, i);
581 ++*nent;
582 }
583 break;
584 }
585 case 9:
586 break;
587 case 0xa: { /* Architectural Performance Monitoring */
588 struct x86_pmu_capability cap;
589 union cpuid10_eax eax;
590 union cpuid10_edx edx;
591
592 perf_get_x86_pmu_capability(&cap);
593
594 /*
595 * Only support guest architectural pmu on a host
596 * with architectural pmu.
597 */
598 if (!cap.version)
599 memset(&cap, 0, sizeof(cap));
600
601 eax.split.version_id = min(cap.version, 2);
602 eax.split.num_counters = cap.num_counters_gp;
603 eax.split.bit_width = cap.bit_width_gp;
604 eax.split.mask_length = cap.events_mask_len;
605
606 edx.split.num_counters_fixed = cap.num_counters_fixed;
607 edx.split.bit_width_fixed = cap.bit_width_fixed;
608 edx.split.reserved = 0;
609
610 entry->eax = eax.full;
611 entry->ebx = cap.events_mask;
612 entry->ecx = 0;
613 entry->edx = edx.full;
614 break;
615 }
616 /*
617 * Per Intel's SDM, the 0x1f is a superset of 0xb,
618 * thus they can be handled by common code.
619 */
620 case 0x1f:
621 case 0xb: {
622 int i;
623
624 /*
625 * We filled in entry[0] for CPUID(EAX=<function>,
626 * ECX=00H) above. If its level type (ECX[15:8]) is
627 * zero, then the leaf is unimplemented, and we're
628 * done. Otherwise, continue to populate entries
629 * until the level type (ECX[15:8]) of the previously
630 * added entry is zero.
631 */
632 for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
633 if (*nent >= maxnent)
634 goto out;
635
636 do_host_cpuid(&entry[i], function, i);
637 ++*nent;
638 }
639 break;
640 }
641 case 0xd: {
642 int idx, i;
643 u64 supported = kvm_supported_xcr0();
644
645 entry->eax &= supported;
646 entry->ebx = xstate_required_size(supported, false);
647 entry->ecx = entry->ebx;
648 entry->edx &= supported >> 32;
649 if (!supported)
650 break;
651
652 for (idx = 1, i = 1; idx < 64; ++idx) {
653 u64 mask = ((u64)1 << idx);
654 if (*nent >= maxnent)
655 goto out;
656
657 do_host_cpuid(&entry[i], function, idx);
658 if (idx == 1) {
659 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
660 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
661 entry[i].ebx = 0;
662 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
663 entry[i].ebx =
664 xstate_required_size(supported,
665 true);
666 } else {
667 if (entry[i].eax == 0 || !(supported & mask))
668 continue;
669 if (WARN_ON_ONCE(entry[i].ecx & 1))
670 continue;
671 }
672 entry[i].ecx = 0;
673 entry[i].edx = 0;
674 ++*nent;
675 ++i;
676 }
677 break;
678 }
679 /* Intel PT */
680 case 0x14: {
681 int t, times = entry->eax;
682
683 if (!f_intel_pt)
684 break;
685
686 for (t = 1; t <= times; ++t) {
687 if (*nent >= maxnent)
688 goto out;
689 do_host_cpuid(&entry[t], function, t);
690 ++*nent;
691 }
692 break;
693 }
694 case KVM_CPUID_SIGNATURE: {
695 static const char signature[12] = "KVMKVMKVM\0\0";
696 const u32 *sigptr = (const u32 *)signature;
697 entry->eax = KVM_CPUID_FEATURES;
698 entry->ebx = sigptr[0];
699 entry->ecx = sigptr[1];
700 entry->edx = sigptr[2];
701 break;
702 }
703 case KVM_CPUID_FEATURES:
704 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
705 (1 << KVM_FEATURE_NOP_IO_DELAY) |
706 (1 << KVM_FEATURE_CLOCKSOURCE2) |
707 (1 << KVM_FEATURE_ASYNC_PF) |
708 (1 << KVM_FEATURE_PV_EOI) |
709 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
710 (1 << KVM_FEATURE_PV_UNHALT) |
711 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
712 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
713 (1 << KVM_FEATURE_PV_SEND_IPI) |
714 (1 << KVM_FEATURE_POLL_CONTROL) |
715 (1 << KVM_FEATURE_PV_SCHED_YIELD);
716
717 if (sched_info_on())
718 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
719
720 entry->ebx = 0;
721 entry->ecx = 0;
722 entry->edx = 0;
723 break;
724 case 0x80000000:
725 entry->eax = min(entry->eax, 0x8000001f);
726 break;
727 case 0x80000001:
728 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
729 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
730 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
731 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
732 break;
733 case 0x80000007: /* Advanced power management */
734 /* invariant TSC is CPUID.80000007H:EDX[8] */
735 entry->edx &= (1 << 8);
736 /* mask against host */
737 entry->edx &= boot_cpu_data.x86_power;
738 entry->eax = entry->ebx = entry->ecx = 0;
739 break;
740 case 0x80000008: {
741 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
742 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
743 unsigned phys_as = entry->eax & 0xff;
744
745 if (!g_phys_as)
746 g_phys_as = phys_as;
747 entry->eax = g_phys_as | (virt_as << 8);
748 entry->edx = 0;
749 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
750 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
751 /*
752 * AMD has separate bits for each SPEC_CTRL bit.
753 * arch/x86/kernel/cpu/bugs.c is kind enough to
754 * record that in cpufeatures so use them.
755 */
756 if (boot_cpu_has(X86_FEATURE_IBPB))
757 entry->ebx |= F(AMD_IBPB);
758 if (boot_cpu_has(X86_FEATURE_IBRS))
759 entry->ebx |= F(AMD_IBRS);
760 if (boot_cpu_has(X86_FEATURE_STIBP))
761 entry->ebx |= F(AMD_STIBP);
762 if (boot_cpu_has(X86_FEATURE_SSBD))
763 entry->ebx |= F(AMD_SSBD);
764 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
765 entry->ebx |= F(AMD_SSB_NO);
766 /*
767 * The preference is to use SPEC CTRL MSR instead of the
768 * VIRT_SPEC MSR.
769 */
770 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
771 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
772 entry->ebx |= F(VIRT_SSBD);
773 break;
774 }
775 case 0x80000019:
776 entry->ecx = entry->edx = 0;
777 break;
778 case 0x8000001a:
779 case 0x8000001e:
780 break;
781 /*Add support for Centaur's CPUID instruction*/
782 case 0xC0000000:
783 /*Just support up to 0xC0000004 now*/
784 entry->eax = min(entry->eax, 0xC0000004);
785 break;
786 case 0xC0000001:
787 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
788 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
789 break;
790 case 3: /* Processor serial number */
791 case 5: /* MONITOR/MWAIT */
792 case 0xC0000002:
793 case 0xC0000003:
794 case 0xC0000004:
795 default:
796 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
797 break;
798 }
799
800 kvm_x86_ops->set_supported_cpuid(function, entry);
801
802 r = 0;
803
804out:
805 put_cpu();
806
807 return r;
808}
809
810static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
811 int *nent, int maxnent, unsigned int type)
812{
813 if (type == KVM_GET_EMULATED_CPUID)
814 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
815
816 return __do_cpuid_func(entry, func, nent, maxnent);
817}
818
819#undef F
820
821struct kvm_cpuid_param {
822 u32 func;
823 bool (*qualifier)(const struct kvm_cpuid_param *param);
824};
825
826static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
827{
828 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
829}
830
831static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
832 __u32 num_entries, unsigned int ioctl_type)
833{
834 int i;
835 __u32 pad[3];
836
837 if (ioctl_type != KVM_GET_EMULATED_CPUID)
838 return false;
839
840 /*
841 * We want to make sure that ->padding is being passed clean from
842 * userspace in case we want to use it for something in the future.
843 *
844 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
845 * have to give ourselves satisfied only with the emulated side. /me
846 * sheds a tear.
847 */
848 for (i = 0; i < num_entries; i++) {
849 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
850 return true;
851
852 if (pad[0] || pad[1] || pad[2])
853 return true;
854 }
855 return false;
856}
857
858int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
859 struct kvm_cpuid_entry2 __user *entries,
860 unsigned int type)
861{
862 struct kvm_cpuid_entry2 *cpuid_entries;
863 int limit, nent = 0, r = -E2BIG, i;
864 u32 func;
865 static const struct kvm_cpuid_param param[] = {
866 { .func = 0 },
867 { .func = 0x80000000 },
868 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
869 { .func = KVM_CPUID_SIGNATURE },
870 };
871
872 if (cpuid->nent < 1)
873 goto out;
874 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
875 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
876
877 if (sanity_check_entries(entries, cpuid->nent, type))
878 return -EINVAL;
879
880 r = -ENOMEM;
881 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
882 cpuid->nent));
883 if (!cpuid_entries)
884 goto out;
885
886 r = 0;
887 for (i = 0; i < ARRAY_SIZE(param); i++) {
888 const struct kvm_cpuid_param *ent = ¶m[i];
889
890 if (ent->qualifier && !ent->qualifier(ent))
891 continue;
892
893 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
894 &nent, cpuid->nent, type);
895
896 if (r)
897 goto out_free;
898
899 limit = cpuid_entries[nent - 1].eax;
900 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
901 r = do_cpuid_func(&cpuid_entries[nent], func,
902 &nent, cpuid->nent, type);
903
904 if (r)
905 goto out_free;
906 }
907
908 r = -EFAULT;
909 if (copy_to_user(entries, cpuid_entries,
910 nent * sizeof(struct kvm_cpuid_entry2)))
911 goto out_free;
912 cpuid->nent = nent;
913 r = 0;
914
915out_free:
916 vfree(cpuid_entries);
917out:
918 return r;
919}
920
921static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
922{
923 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
924 struct kvm_cpuid_entry2 *ej;
925 int j = i;
926 int nent = vcpu->arch.cpuid_nent;
927
928 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
929 /* when no next entry is found, the current entry[i] is reselected */
930 do {
931 j = (j + 1) % nent;
932 ej = &vcpu->arch.cpuid_entries[j];
933 } while (ej->function != e->function);
934
935 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
936
937 return j;
938}
939
940/* find an entry with matching function, matching index (if needed), and that
941 * should be read next (if it's stateful) */
942static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
943 u32 function, u32 index)
944{
945 if (e->function != function)
946 return 0;
947 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
948 return 0;
949 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
950 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
951 return 0;
952 return 1;
953}
954
955struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
956 u32 function, u32 index)
957{
958 int i;
959 struct kvm_cpuid_entry2 *best = NULL;
960
961 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
962 struct kvm_cpuid_entry2 *e;
963
964 e = &vcpu->arch.cpuid_entries[i];
965 if (is_matching_cpuid_entry(e, function, index)) {
966 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
967 move_to_next_stateful_cpuid_entry(vcpu, i);
968 best = e;
969 break;
970 }
971 }
972 return best;
973}
974EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
975
976/*
977 * If the basic or extended CPUID leaf requested is higher than the
978 * maximum supported basic or extended leaf, respectively, then it is
979 * out of range.
980 */
981static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
982{
983 struct kvm_cpuid_entry2 *max;
984
985 max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
986 return max && function <= max->eax;
987}
988
989bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
990 u32 *ecx, u32 *edx, bool check_limit)
991{
992 u32 function = *eax, index = *ecx;
993 struct kvm_cpuid_entry2 *entry;
994 struct kvm_cpuid_entry2 *max;
995 bool found;
996
997 entry = kvm_find_cpuid_entry(vcpu, function, index);
998 found = entry;
999 /*
1000 * Intel CPUID semantics treats any query for an out-of-range
1001 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1002 * requested. AMD CPUID semantics returns all zeroes for any
1003 * undefined leaf, whether or not the leaf is in range.
1004 */
1005 if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1006 !cpuid_function_in_range(vcpu, function)) {
1007 max = kvm_find_cpuid_entry(vcpu, 0, 0);
1008 if (max) {
1009 function = max->eax;
1010 entry = kvm_find_cpuid_entry(vcpu, function, index);
1011 }
1012 }
1013 if (entry) {
1014 *eax = entry->eax;
1015 *ebx = entry->ebx;
1016 *ecx = entry->ecx;
1017 *edx = entry->edx;
1018 } else {
1019 *eax = *ebx = *ecx = *edx = 0;
1020 /*
1021 * When leaf 0BH or 1FH is defined, CL is pass-through
1022 * and EDX is always the x2APIC ID, even for undefined
1023 * subleaves. Index 1 will exist iff the leaf is
1024 * implemented, so we pass through CL iff leaf 1
1025 * exists. EDX can be copied from any existing index.
1026 */
1027 if (function == 0xb || function == 0x1f) {
1028 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1029 if (entry) {
1030 *ecx = index & 0xff;
1031 *edx = entry->edx;
1032 }
1033 }
1034 }
1035 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1036 return found;
1037}
1038EXPORT_SYMBOL_GPL(kvm_cpuid);
1039
1040int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1041{
1042 u32 eax, ebx, ecx, edx;
1043
1044 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1045 return 1;
1046
1047 eax = kvm_rax_read(vcpu);
1048 ecx = kvm_rcx_read(vcpu);
1049 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1050 kvm_rax_write(vcpu, eax);
1051 kvm_rbx_write(vcpu, ebx);
1052 kvm_rcx_write(vcpu, ecx);
1053 kvm_rdx_write(vcpu, edx);
1054 return kvm_skip_emulated_instruction(vcpu);
1055}
1056EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);