Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Routines for doing kexec-based kdump.
4 *
5 * Copyright (C) 2005, IBM Corp.
6 *
7 * Created by: Michael Ellerman
8 */
9
10#undef DEBUG
11
12#include <linux/crash_dump.h>
13#include <linux/io.h>
14#include <linux/memblock.h>
15#include <linux/of.h>
16#include <asm/code-patching.h>
17#include <asm/kdump.h>
18#include <asm/firmware.h>
19#include <linux/uio.h>
20#include <asm/rtas.h>
21#include <asm/inst.h>
22#include <asm/fadump.h>
23
24#ifdef DEBUG
25#include <asm/udbg.h>
26#define DBG(fmt...) udbg_printf(fmt)
27#else
28#define DBG(fmt...)
29#endif
30
31#ifndef CONFIG_NONSTATIC_KERNEL
32void __init reserve_kdump_trampoline(void)
33{
34 memblock_reserve(0, KDUMP_RESERVE_LIMIT);
35}
36
37static void __init create_trampoline(unsigned long addr)
38{
39 u32 *p = (u32 *)addr;
40
41 /* The maximum range of a single instruction branch, is the current
42 * instruction's address + (32 MB - 4) bytes. For the trampoline we
43 * need to branch to current address + 32 MB. So we insert a nop at
44 * the trampoline address, then the next instruction (+ 4 bytes)
45 * does a branch to (32 MB - 4). The net effect is that when we
46 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
47 * two instructions it doesn't require any registers.
48 */
49 patch_instruction(p, ppc_inst(PPC_RAW_NOP()));
50 patch_branch(p + 1, addr + PHYSICAL_START, 0);
51}
52
53void __init setup_kdump_trampoline(void)
54{
55 unsigned long i;
56
57 DBG(" -> setup_kdump_trampoline()\n");
58
59 for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
60 create_trampoline(i);
61 }
62
63#ifdef CONFIG_PPC_PSERIES
64 create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
65 create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
66#endif /* CONFIG_PPC_PSERIES */
67
68 DBG(" <- setup_kdump_trampoline()\n");
69}
70#endif /* CONFIG_NONSTATIC_KERNEL */
71
72ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn,
73 size_t csize, unsigned long offset)
74{
75 void *vaddr;
76 phys_addr_t paddr;
77
78 if (!csize)
79 return 0;
80
81 csize = min_t(size_t, csize, PAGE_SIZE);
82 paddr = pfn << PAGE_SHIFT;
83
84 if (memblock_is_region_memory(paddr, csize)) {
85 vaddr = __va(paddr);
86 csize = copy_to_iter(vaddr + offset, csize, iter);
87 } else {
88 vaddr = ioremap_cache(paddr, PAGE_SIZE);
89 csize = copy_to_iter(vaddr + offset, csize, iter);
90 iounmap(vaddr);
91 }
92
93 return csize;
94}
95
96/*
97 * Return true only when kexec based kernel dump capturing method is used.
98 * This ensures all restritions applied for kdump case are not automatically
99 * applied for fadump case.
100 */
101bool is_kdump_kernel(void)
102{
103 return !is_fadump_active() && elfcorehdr_addr != ELFCORE_ADDR_MAX;
104}
105EXPORT_SYMBOL_GPL(is_kdump_kernel);
106
107#ifdef CONFIG_PPC_RTAS
108/*
109 * The crashkernel region will almost always overlap the RTAS region, so
110 * we have to be careful when shrinking the crashkernel region.
111 */
112void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
113{
114 unsigned long addr;
115 const __be32 *basep, *sizep;
116 unsigned int rtas_start = 0, rtas_end = 0;
117
118 basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
119 sizep = of_get_property(rtas.dev, "rtas-size", NULL);
120
121 if (basep && sizep) {
122 rtas_start = be32_to_cpup(basep);
123 rtas_end = rtas_start + be32_to_cpup(sizep);
124 }
125
126 for (addr = begin; addr < end; addr += PAGE_SIZE) {
127 /* Does this page overlap with the RTAS region? */
128 if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
129 continue;
130
131 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
132 }
133}
134#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Routines for doing kexec-based kdump.
4 *
5 * Copyright (C) 2005, IBM Corp.
6 *
7 * Created by: Michael Ellerman
8 */
9
10#undef DEBUG
11
12#include <linux/crash_dump.h>
13#include <linux/io.h>
14#include <linux/memblock.h>
15#include <asm/code-patching.h>
16#include <asm/kdump.h>
17#include <asm/prom.h>
18#include <asm/firmware.h>
19#include <linux/uaccess.h>
20#include <asm/rtas.h>
21
22#ifdef DEBUG
23#include <asm/udbg.h>
24#define DBG(fmt...) udbg_printf(fmt)
25#else
26#define DBG(fmt...)
27#endif
28
29#ifndef CONFIG_NONSTATIC_KERNEL
30void __init reserve_kdump_trampoline(void)
31{
32 memblock_reserve(0, KDUMP_RESERVE_LIMIT);
33}
34
35static void __init create_trampoline(unsigned long addr)
36{
37 unsigned int *p = (unsigned int *)addr;
38
39 /* The maximum range of a single instruction branch, is the current
40 * instruction's address + (32 MB - 4) bytes. For the trampoline we
41 * need to branch to current address + 32 MB. So we insert a nop at
42 * the trampoline address, then the next instruction (+ 4 bytes)
43 * does a branch to (32 MB - 4). The net effect is that when we
44 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
45 * two instructions it doesn't require any registers.
46 */
47 patch_instruction(p, PPC_INST_NOP);
48 patch_branch(++p, addr + PHYSICAL_START, 0);
49}
50
51void __init setup_kdump_trampoline(void)
52{
53 unsigned long i;
54
55 DBG(" -> setup_kdump_trampoline()\n");
56
57 for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
58 create_trampoline(i);
59 }
60
61#ifdef CONFIG_PPC_PSERIES
62 create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
63 create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
64#endif /* CONFIG_PPC_PSERIES */
65
66 DBG(" <- setup_kdump_trampoline()\n");
67}
68#endif /* CONFIG_NONSTATIC_KERNEL */
69
70static size_t copy_oldmem_vaddr(void *vaddr, char *buf, size_t csize,
71 unsigned long offset, int userbuf)
72{
73 if (userbuf) {
74 if (copy_to_user((char __user *)buf, (vaddr + offset), csize))
75 return -EFAULT;
76 } else
77 memcpy(buf, (vaddr + offset), csize);
78
79 return csize;
80}
81
82/**
83 * copy_oldmem_page - copy one page from "oldmem"
84 * @pfn: page frame number to be copied
85 * @buf: target memory address for the copy; this can be in kernel address
86 * space or user address space (see @userbuf)
87 * @csize: number of bytes to copy
88 * @offset: offset in bytes into the page (based on pfn) to begin the copy
89 * @userbuf: if set, @buf is in user address space, use copy_to_user(),
90 * otherwise @buf is in kernel address space, use memcpy().
91 *
92 * Copy a page from "oldmem". For this page, there is no pte mapped
93 * in the current kernel. We stitch up a pte, similar to kmap_atomic.
94 */
95ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
96 size_t csize, unsigned long offset, int userbuf)
97{
98 void *vaddr;
99 phys_addr_t paddr;
100
101 if (!csize)
102 return 0;
103
104 csize = min_t(size_t, csize, PAGE_SIZE);
105 paddr = pfn << PAGE_SHIFT;
106
107 if (memblock_is_region_memory(paddr, csize)) {
108 vaddr = __va(paddr);
109 csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
110 } else {
111 vaddr = ioremap_cache(paddr, PAGE_SIZE);
112 csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
113 iounmap(vaddr);
114 }
115
116 return csize;
117}
118
119#ifdef CONFIG_PPC_RTAS
120/*
121 * The crashkernel region will almost always overlap the RTAS region, so
122 * we have to be careful when shrinking the crashkernel region.
123 */
124void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
125{
126 unsigned long addr;
127 const __be32 *basep, *sizep;
128 unsigned int rtas_start = 0, rtas_end = 0;
129
130 basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
131 sizep = of_get_property(rtas.dev, "rtas-size", NULL);
132
133 if (basep && sizep) {
134 rtas_start = be32_to_cpup(basep);
135 rtas_end = rtas_start + be32_to_cpup(sizep);
136 }
137
138 for (addr = begin; addr < end; addr += PAGE_SIZE) {
139 /* Does this page overlap with the RTAS region? */
140 if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
141 continue;
142
143 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
144 }
145}
146#endif