Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright (C) 2009, 2010 ARM Limited
   5 *
   6 * Author: Will Deacon <will.deacon@arm.com>
   7 */
   8
   9/*
  10 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  11 * using the CPU's debug registers.
  12 */
  13#define pr_fmt(fmt) "hw-breakpoint: " fmt
  14
  15#include <linux/errno.h>
  16#include <linux/hardirq.h>
  17#include <linux/perf_event.h>
  18#include <linux/hw_breakpoint.h>
  19#include <linux/smp.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/coresight.h>
  22
  23#include <asm/cacheflush.h>
  24#include <asm/cputype.h>
  25#include <asm/current.h>
  26#include <asm/hw_breakpoint.h>
  27#include <asm/traps.h>
  28
  29/* Breakpoint currently in use for each BRP. */
  30static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
  31
  32/* Watchpoint currently in use for each WRP. */
  33static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
  34
  35/* Number of BRP/WRP registers on this CPU. */
  36static int core_num_brps __ro_after_init;
  37static int core_num_wrps __ro_after_init;
  38
  39/* Debug architecture version. */
  40static u8 debug_arch __ro_after_init;
  41
  42/* Does debug architecture support OS Save and Restore? */
  43static bool has_ossr __ro_after_init;
  44
  45/* Maximum supported watchpoint length. */
  46static u8 max_watchpoint_len __ro_after_init;
  47
  48#define READ_WB_REG_CASE(OP2, M, VAL)			\
  49	case ((OP2 << 4) + M):				\
  50		ARM_DBG_READ(c0, c ## M, OP2, VAL);	\
  51		break
  52
  53#define WRITE_WB_REG_CASE(OP2, M, VAL)			\
  54	case ((OP2 << 4) + M):				\
  55		ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\
  56		break
  57
  58#define GEN_READ_WB_REG_CASES(OP2, VAL)		\
  59	READ_WB_REG_CASE(OP2, 0, VAL);		\
  60	READ_WB_REG_CASE(OP2, 1, VAL);		\
  61	READ_WB_REG_CASE(OP2, 2, VAL);		\
  62	READ_WB_REG_CASE(OP2, 3, VAL);		\
  63	READ_WB_REG_CASE(OP2, 4, VAL);		\
  64	READ_WB_REG_CASE(OP2, 5, VAL);		\
  65	READ_WB_REG_CASE(OP2, 6, VAL);		\
  66	READ_WB_REG_CASE(OP2, 7, VAL);		\
  67	READ_WB_REG_CASE(OP2, 8, VAL);		\
  68	READ_WB_REG_CASE(OP2, 9, VAL);		\
  69	READ_WB_REG_CASE(OP2, 10, VAL);		\
  70	READ_WB_REG_CASE(OP2, 11, VAL);		\
  71	READ_WB_REG_CASE(OP2, 12, VAL);		\
  72	READ_WB_REG_CASE(OP2, 13, VAL);		\
  73	READ_WB_REG_CASE(OP2, 14, VAL);		\
  74	READ_WB_REG_CASE(OP2, 15, VAL)
  75
  76#define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\
  77	WRITE_WB_REG_CASE(OP2, 0, VAL);		\
  78	WRITE_WB_REG_CASE(OP2, 1, VAL);		\
  79	WRITE_WB_REG_CASE(OP2, 2, VAL);		\
  80	WRITE_WB_REG_CASE(OP2, 3, VAL);		\
  81	WRITE_WB_REG_CASE(OP2, 4, VAL);		\
  82	WRITE_WB_REG_CASE(OP2, 5, VAL);		\
  83	WRITE_WB_REG_CASE(OP2, 6, VAL);		\
  84	WRITE_WB_REG_CASE(OP2, 7, VAL);		\
  85	WRITE_WB_REG_CASE(OP2, 8, VAL);		\
  86	WRITE_WB_REG_CASE(OP2, 9, VAL);		\
  87	WRITE_WB_REG_CASE(OP2, 10, VAL);	\
  88	WRITE_WB_REG_CASE(OP2, 11, VAL);	\
  89	WRITE_WB_REG_CASE(OP2, 12, VAL);	\
  90	WRITE_WB_REG_CASE(OP2, 13, VAL);	\
  91	WRITE_WB_REG_CASE(OP2, 14, VAL);	\
  92	WRITE_WB_REG_CASE(OP2, 15, VAL)
  93
  94static u32 read_wb_reg(int n)
  95{
  96	u32 val = 0;
  97
  98	switch (n) {
  99	GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
 100	GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
 101	GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
 102	GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
 103	default:
 104		pr_warn("attempt to read from unknown breakpoint register %d\n",
 105			n);
 106	}
 107
 108	return val;
 109}
 110
 111static void write_wb_reg(int n, u32 val)
 112{
 113	switch (n) {
 114	GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
 115	GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
 116	GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
 117	GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
 118	default:
 119		pr_warn("attempt to write to unknown breakpoint register %d\n",
 120			n);
 121	}
 122	isb();
 123}
 124
 125/* Determine debug architecture. */
 126static u8 get_debug_arch(void)
 127{
 128	u32 didr;
 129
 130	/* Do we implement the extended CPUID interface? */
 131	if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
 132		pr_warn_once("CPUID feature registers not supported. "
 133			     "Assuming v6 debug is present.\n");
 134		return ARM_DEBUG_ARCH_V6;
 135	}
 136
 137	ARM_DBG_READ(c0, c0, 0, didr);
 138	return (didr >> 16) & 0xf;
 139}
 140
 141u8 arch_get_debug_arch(void)
 142{
 143	return debug_arch;
 144}
 145
 146static int debug_arch_supported(void)
 147{
 148	u8 arch = get_debug_arch();
 149
 150	/* We don't support the memory-mapped interface. */
 151	return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
 152		arch >= ARM_DEBUG_ARCH_V7_1;
 153}
 154
 155/* Can we determine the watchpoint access type from the fsr? */
 156static int debug_exception_updates_fsr(void)
 157{
 158	return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
 159}
 160
 161/* Determine number of WRP registers available. */
 162static int get_num_wrp_resources(void)
 163{
 164	u32 didr;
 165	ARM_DBG_READ(c0, c0, 0, didr);
 166	return ((didr >> 28) & 0xf) + 1;
 167}
 168
 169/* Determine number of BRP registers available. */
 170static int get_num_brp_resources(void)
 171{
 172	u32 didr;
 173	ARM_DBG_READ(c0, c0, 0, didr);
 174	return ((didr >> 24) & 0xf) + 1;
 175}
 176
 177/* Does this core support mismatch breakpoints? */
 178static int core_has_mismatch_brps(void)
 179{
 180	return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
 181		get_num_brp_resources() > 1);
 182}
 183
 184/* Determine number of usable WRPs available. */
 185static int get_num_wrps(void)
 186{
 187	/*
 188	 * On debug architectures prior to 7.1, when a watchpoint fires, the
 189	 * only way to work out which watchpoint it was is by disassembling
 190	 * the faulting instruction and working out the address of the memory
 191	 * access.
 192	 *
 193	 * Furthermore, we can only do this if the watchpoint was precise
 194	 * since imprecise watchpoints prevent us from calculating register
 195	 * based addresses.
 196	 *
 197	 * Providing we have more than 1 breakpoint register, we only report
 198	 * a single watchpoint register for the time being. This way, we always
 199	 * know which watchpoint fired. In the future we can either add a
 200	 * disassembler and address generation emulator, or we can insert a
 201	 * check to see if the DFAR is set on watchpoint exception entry
 202	 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
 203	 * that it is set on some implementations].
 204	 */
 205	if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
 206		return 1;
 207
 208	return get_num_wrp_resources();
 209}
 210
 211/* Determine number of usable BRPs available. */
 212static int get_num_brps(void)
 213{
 214	int brps = get_num_brp_resources();
 215	return core_has_mismatch_brps() ? brps - 1 : brps;
 216}
 217
 218/*
 219 * In order to access the breakpoint/watchpoint control registers,
 220 * we must be running in debug monitor mode. Unfortunately, we can
 221 * be put into halting debug mode at any time by an external debugger
 222 * but there is nothing we can do to prevent that.
 223 */
 224static int monitor_mode_enabled(void)
 225{
 226	u32 dscr;
 227	ARM_DBG_READ(c0, c1, 0, dscr);
 228	return !!(dscr & ARM_DSCR_MDBGEN);
 229}
 230
 231static int enable_monitor_mode(void)
 232{
 233	u32 dscr;
 234	ARM_DBG_READ(c0, c1, 0, dscr);
 235
 236	/* If monitor mode is already enabled, just return. */
 237	if (dscr & ARM_DSCR_MDBGEN)
 238		goto out;
 239
 240	/* Write to the corresponding DSCR. */
 241	switch (get_debug_arch()) {
 242	case ARM_DEBUG_ARCH_V6:
 243	case ARM_DEBUG_ARCH_V6_1:
 244		ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
 245		break;
 246	case ARM_DEBUG_ARCH_V7_ECP14:
 247	case ARM_DEBUG_ARCH_V7_1:
 248	case ARM_DEBUG_ARCH_V8:
 249	case ARM_DEBUG_ARCH_V8_1:
 250	case ARM_DEBUG_ARCH_V8_2:
 251	case ARM_DEBUG_ARCH_V8_4:
 252		ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
 253		isb();
 254		break;
 255	default:
 256		return -ENODEV;
 257	}
 258
 259	/* Check that the write made it through. */
 260	ARM_DBG_READ(c0, c1, 0, dscr);
 261	if (!(dscr & ARM_DSCR_MDBGEN)) {
 262		pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
 263				smp_processor_id());
 264		return -EPERM;
 265	}
 266
 267out:
 268	return 0;
 269}
 270
 271int hw_breakpoint_slots(int type)
 272{
 273	if (!debug_arch_supported())
 274		return 0;
 275
 276	/*
 277	 * We can be called early, so don't rely on
 278	 * our static variables being initialised.
 279	 */
 280	switch (type) {
 281	case TYPE_INST:
 282		return get_num_brps();
 283	case TYPE_DATA:
 284		return get_num_wrps();
 285	default:
 286		pr_warn("unknown slot type: %d\n", type);
 287		return 0;
 288	}
 289}
 290
 291/*
 292 * Check if 8-bit byte-address select is available.
 293 * This clobbers WRP 0.
 294 */
 295static u8 get_max_wp_len(void)
 296{
 297	u32 ctrl_reg;
 298	struct arch_hw_breakpoint_ctrl ctrl;
 299	u8 size = 4;
 300
 301	if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
 302		goto out;
 303
 304	memset(&ctrl, 0, sizeof(ctrl));
 305	ctrl.len = ARM_BREAKPOINT_LEN_8;
 306	ctrl_reg = encode_ctrl_reg(ctrl);
 307
 308	write_wb_reg(ARM_BASE_WVR, 0);
 309	write_wb_reg(ARM_BASE_WCR, ctrl_reg);
 310	if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
 311		size = 8;
 312
 313out:
 314	return size;
 315}
 316
 317u8 arch_get_max_wp_len(void)
 318{
 319	return max_watchpoint_len;
 320}
 321
 322/*
 323 * Install a perf counter breakpoint.
 324 */
 325int arch_install_hw_breakpoint(struct perf_event *bp)
 326{
 327	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 328	struct perf_event **slot, **slots;
 329	int i, max_slots, ctrl_base, val_base;
 330	u32 addr, ctrl;
 331
 332	addr = info->address;
 333	ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
 334
 335	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 336		/* Breakpoint */
 337		ctrl_base = ARM_BASE_BCR;
 338		val_base = ARM_BASE_BVR;
 339		slots = this_cpu_ptr(bp_on_reg);
 340		max_slots = core_num_brps;
 341	} else {
 342		/* Watchpoint */
 343		ctrl_base = ARM_BASE_WCR;
 344		val_base = ARM_BASE_WVR;
 345		slots = this_cpu_ptr(wp_on_reg);
 346		max_slots = core_num_wrps;
 347	}
 348
 349	for (i = 0; i < max_slots; ++i) {
 350		slot = &slots[i];
 351
 352		if (!*slot) {
 353			*slot = bp;
 354			break;
 355		}
 356	}
 357
 358	if (i == max_slots) {
 359		pr_warn("Can't find any breakpoint slot\n");
 360		return -EBUSY;
 361	}
 362
 363	/* Override the breakpoint data with the step data. */
 364	if (info->step_ctrl.enabled) {
 365		addr = info->trigger & ~0x3;
 366		ctrl = encode_ctrl_reg(info->step_ctrl);
 367		if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
 368			i = 0;
 369			ctrl_base = ARM_BASE_BCR + core_num_brps;
 370			val_base = ARM_BASE_BVR + core_num_brps;
 371		}
 372	}
 373
 374	/* Setup the address register. */
 375	write_wb_reg(val_base + i, addr);
 376
 377	/* Setup the control register. */
 378	write_wb_reg(ctrl_base + i, ctrl);
 379	return 0;
 380}
 381
 382void arch_uninstall_hw_breakpoint(struct perf_event *bp)
 383{
 384	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 385	struct perf_event **slot, **slots;
 386	int i, max_slots, base;
 387
 388	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 389		/* Breakpoint */
 390		base = ARM_BASE_BCR;
 391		slots = this_cpu_ptr(bp_on_reg);
 392		max_slots = core_num_brps;
 393	} else {
 394		/* Watchpoint */
 395		base = ARM_BASE_WCR;
 396		slots = this_cpu_ptr(wp_on_reg);
 397		max_slots = core_num_wrps;
 398	}
 399
 400	/* Remove the breakpoint. */
 401	for (i = 0; i < max_slots; ++i) {
 402		slot = &slots[i];
 403
 404		if (*slot == bp) {
 405			*slot = NULL;
 406			break;
 407		}
 408	}
 409
 410	if (i == max_slots) {
 411		pr_warn("Can't find any breakpoint slot\n");
 412		return;
 413	}
 414
 415	/* Ensure that we disable the mismatch breakpoint. */
 416	if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
 417	    info->step_ctrl.enabled) {
 418		i = 0;
 419		base = ARM_BASE_BCR + core_num_brps;
 420	}
 421
 422	/* Reset the control register. */
 423	write_wb_reg(base + i, 0);
 424}
 425
 426static int get_hbp_len(u8 hbp_len)
 427{
 428	unsigned int len_in_bytes = 0;
 429
 430	switch (hbp_len) {
 431	case ARM_BREAKPOINT_LEN_1:
 432		len_in_bytes = 1;
 433		break;
 434	case ARM_BREAKPOINT_LEN_2:
 435		len_in_bytes = 2;
 436		break;
 437	case ARM_BREAKPOINT_LEN_4:
 438		len_in_bytes = 4;
 439		break;
 440	case ARM_BREAKPOINT_LEN_8:
 441		len_in_bytes = 8;
 442		break;
 443	}
 444
 445	return len_in_bytes;
 446}
 447
 448/*
 449 * Check whether bp virtual address is in kernel space.
 450 */
 451int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
 452{
 453	unsigned int len;
 454	unsigned long va;
 455
 456	va = hw->address;
 457	len = get_hbp_len(hw->ctrl.len);
 458
 459	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
 460}
 461
 462/*
 463 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
 464 * Hopefully this will disappear when ptrace can bypass the conversion
 465 * to generic breakpoint descriptions.
 466 */
 467int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
 468			   int *gen_len, int *gen_type)
 469{
 470	/* Type */
 471	switch (ctrl.type) {
 472	case ARM_BREAKPOINT_EXECUTE:
 473		*gen_type = HW_BREAKPOINT_X;
 474		break;
 475	case ARM_BREAKPOINT_LOAD:
 476		*gen_type = HW_BREAKPOINT_R;
 477		break;
 478	case ARM_BREAKPOINT_STORE:
 479		*gen_type = HW_BREAKPOINT_W;
 480		break;
 481	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
 482		*gen_type = HW_BREAKPOINT_RW;
 483		break;
 484	default:
 485		return -EINVAL;
 486	}
 487
 488	/* Len */
 489	switch (ctrl.len) {
 490	case ARM_BREAKPOINT_LEN_1:
 491		*gen_len = HW_BREAKPOINT_LEN_1;
 492		break;
 493	case ARM_BREAKPOINT_LEN_2:
 494		*gen_len = HW_BREAKPOINT_LEN_2;
 495		break;
 496	case ARM_BREAKPOINT_LEN_4:
 497		*gen_len = HW_BREAKPOINT_LEN_4;
 498		break;
 499	case ARM_BREAKPOINT_LEN_8:
 500		*gen_len = HW_BREAKPOINT_LEN_8;
 501		break;
 502	default:
 503		return -EINVAL;
 504	}
 505
 506	return 0;
 507}
 508
 509/*
 510 * Construct an arch_hw_breakpoint from a perf_event.
 511 */
 512static int arch_build_bp_info(struct perf_event *bp,
 513			      const struct perf_event_attr *attr,
 514			      struct arch_hw_breakpoint *hw)
 515{
 516	/* Type */
 517	switch (attr->bp_type) {
 518	case HW_BREAKPOINT_X:
 519		hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
 520		break;
 521	case HW_BREAKPOINT_R:
 522		hw->ctrl.type = ARM_BREAKPOINT_LOAD;
 523		break;
 524	case HW_BREAKPOINT_W:
 525		hw->ctrl.type = ARM_BREAKPOINT_STORE;
 526		break;
 527	case HW_BREAKPOINT_RW:
 528		hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
 529		break;
 530	default:
 531		return -EINVAL;
 532	}
 533
 534	/* Len */
 535	switch (attr->bp_len) {
 536	case HW_BREAKPOINT_LEN_1:
 537		hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
 538		break;
 539	case HW_BREAKPOINT_LEN_2:
 540		hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
 541		break;
 542	case HW_BREAKPOINT_LEN_4:
 543		hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
 544		break;
 545	case HW_BREAKPOINT_LEN_8:
 546		hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
 547		if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
 548			&& max_watchpoint_len >= 8)
 549			break;
 550		fallthrough;
 551	default:
 552		return -EINVAL;
 553	}
 554
 555	/*
 556	 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
 557	 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
 558	 * by the hardware and must be aligned to the appropriate number of
 559	 * bytes.
 560	 */
 561	if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
 562	    hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
 563	    hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
 564		return -EINVAL;
 565
 566	/* Address */
 567	hw->address = attr->bp_addr;
 568
 569	/* Privilege */
 570	hw->ctrl.privilege = ARM_BREAKPOINT_USER;
 571	if (arch_check_bp_in_kernelspace(hw))
 572		hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
 573
 574	/* Enabled? */
 575	hw->ctrl.enabled = !attr->disabled;
 576
 577	/* Mismatch */
 578	hw->ctrl.mismatch = 0;
 579
 580	return 0;
 581}
 582
 583/*
 584 * Validate the arch-specific HW Breakpoint register settings.
 585 */
 586int hw_breakpoint_arch_parse(struct perf_event *bp,
 587			     const struct perf_event_attr *attr,
 588			     struct arch_hw_breakpoint *hw)
 589{
 590	int ret = 0;
 591	u32 offset, alignment_mask = 0x3;
 592
 593	/* Ensure that we are in monitor debug mode. */
 594	if (!monitor_mode_enabled())
 595		return -ENODEV;
 596
 597	/* Build the arch_hw_breakpoint. */
 598	ret = arch_build_bp_info(bp, attr, hw);
 599	if (ret)
 600		goto out;
 601
 602	/* Check address alignment. */
 603	if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
 604		alignment_mask = 0x7;
 605	offset = hw->address & alignment_mask;
 606	switch (offset) {
 607	case 0:
 608		/* Aligned */
 609		break;
 610	case 1:
 611	case 2:
 612		/* Allow halfword watchpoints and breakpoints. */
 613		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
 614			break;
 615		fallthrough;
 616	case 3:
 617		/* Allow single byte watchpoint. */
 618		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
 619			break;
 620		fallthrough;
 621	default:
 622		ret = -EINVAL;
 623		goto out;
 624	}
 625
 626	hw->address &= ~alignment_mask;
 627	hw->ctrl.len <<= offset;
 628
 629	if (uses_default_overflow_handler(bp)) {
 630		/*
 631		 * Mismatch breakpoints are required for single-stepping
 632		 * breakpoints.
 633		 */
 634		if (!core_has_mismatch_brps())
 635			return -EINVAL;
 636
 637		/* We don't allow mismatch breakpoints in kernel space. */
 638		if (arch_check_bp_in_kernelspace(hw))
 639			return -EPERM;
 640
 641		/*
 642		 * Per-cpu breakpoints are not supported by our stepping
 643		 * mechanism.
 644		 */
 645		if (!bp->hw.target)
 646			return -EINVAL;
 647
 648		/*
 649		 * We only support specific access types if the fsr
 650		 * reports them.
 651		 */
 652		if (!debug_exception_updates_fsr() &&
 653		    (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
 654		     hw->ctrl.type == ARM_BREAKPOINT_STORE))
 655			return -EINVAL;
 656	}
 657
 658out:
 659	return ret;
 660}
 661
 662/*
 663 * Enable/disable single-stepping over the breakpoint bp at address addr.
 664 */
 665static void enable_single_step(struct perf_event *bp, u32 addr)
 666{
 667	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 668
 669	arch_uninstall_hw_breakpoint(bp);
 670	info->step_ctrl.mismatch  = 1;
 671	info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4;
 672	info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE;
 673	info->step_ctrl.privilege = info->ctrl.privilege;
 674	info->step_ctrl.enabled	  = 1;
 675	info->trigger		  = addr;
 676	arch_install_hw_breakpoint(bp);
 677}
 678
 679static void disable_single_step(struct perf_event *bp)
 680{
 681	arch_uninstall_hw_breakpoint(bp);
 682	counter_arch_bp(bp)->step_ctrl.enabled = 0;
 683	arch_install_hw_breakpoint(bp);
 684}
 685
 686/*
 687 * Arm32 hardware does not always report a watchpoint hit address that matches
 688 * one of the watchpoints set. It can also report an address "near" the
 689 * watchpoint if a single instruction access both watched and unwatched
 690 * addresses. There is no straight-forward way, short of disassembling the
 691 * offending instruction, to map that address back to the watchpoint. This
 692 * function computes the distance of the memory access from the watchpoint as a
 693 * heuristic for the likelyhood that a given access triggered the watchpoint.
 694 *
 695 * See this same function in the arm64 platform code, which has the same
 696 * problem.
 697 *
 698 * The function returns the distance of the address from the bytes watched by
 699 * the watchpoint. In case of an exact match, it returns 0.
 700 */
 701static u32 get_distance_from_watchpoint(unsigned long addr, u32 val,
 702					struct arch_hw_breakpoint_ctrl *ctrl)
 703{
 704	u32 wp_low, wp_high;
 705	u32 lens, lene;
 706
 707	lens = __ffs(ctrl->len);
 708	lene = __fls(ctrl->len);
 709
 710	wp_low = val + lens;
 711	wp_high = val + lene;
 712	if (addr < wp_low)
 713		return wp_low - addr;
 714	else if (addr > wp_high)
 715		return addr - wp_high;
 716	else
 717		return 0;
 718}
 719
 720static int watchpoint_fault_on_uaccess(struct pt_regs *regs,
 721				       struct arch_hw_breakpoint *info)
 722{
 723	return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER;
 724}
 725
 726static void watchpoint_handler(unsigned long addr, unsigned int fsr,
 727			       struct pt_regs *regs)
 728{
 729	int i, access, closest_match = 0;
 730	u32 min_dist = -1, dist;
 731	u32 val, ctrl_reg;
 732	struct perf_event *wp, **slots;
 733	struct arch_hw_breakpoint *info;
 734	struct arch_hw_breakpoint_ctrl ctrl;
 735
 736	slots = this_cpu_ptr(wp_on_reg);
 737
 738	/*
 739	 * Find all watchpoints that match the reported address. If no exact
 740	 * match is found. Attribute the hit to the closest watchpoint.
 741	 */
 742	rcu_read_lock();
 743	for (i = 0; i < core_num_wrps; ++i) {
 
 
 744		wp = slots[i];
 
 745		if (wp == NULL)
 746			continue;
 747
 
 748		/*
 749		 * The DFAR is an unknown value on debug architectures prior
 750		 * to 7.1. Since we only allow a single watchpoint on these
 751		 * older CPUs, we can set the trigger to the lowest possible
 752		 * faulting address.
 753		 */
 754		if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
 755			BUG_ON(i > 0);
 756			info = counter_arch_bp(wp);
 757			info->trigger = wp->attr.bp_addr;
 758		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759			/* Check that the access type matches. */
 760			if (debug_exception_updates_fsr()) {
 761				access = (fsr & ARM_FSR_ACCESS_MASK) ?
 762					  HW_BREAKPOINT_W : HW_BREAKPOINT_R;
 763				if (!(access & hw_breakpoint_type(wp)))
 764					continue;
 765			}
 766
 767			val = read_wb_reg(ARM_BASE_WVR + i);
 768			ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
 769			decode_ctrl_reg(ctrl_reg, &ctrl);
 770			dist = get_distance_from_watchpoint(addr, val, &ctrl);
 771			if (dist < min_dist) {
 772				min_dist = dist;
 773				closest_match = i;
 774			}
 775			/* Is this an exact match? */
 776			if (dist != 0)
 777				continue;
 778
 779			/* We have a winner. */
 780			info = counter_arch_bp(wp);
 781			info->trigger = addr;
 782		}
 783
 784		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 785
 786		/*
 787		 * If we triggered a user watchpoint from a uaccess routine,
 788		 * then handle the stepping ourselves since userspace really
 789		 * can't help us with this.
 790		 */
 791		if (watchpoint_fault_on_uaccess(regs, info))
 792			goto step;
 793
 794		perf_bp_event(wp, regs);
 795
 796		/*
 797		 * Defer stepping to the overflow handler if one is installed.
 798		 * Otherwise, insert a temporary mismatch breakpoint so that
 799		 * we can single-step over the watchpoint trigger.
 800		 */
 801		if (!uses_default_overflow_handler(wp))
 802			continue;
 803step:
 804		enable_single_step(wp, instruction_pointer(regs));
 805	}
 806
 807	if (min_dist > 0 && min_dist != -1) {
 808		/* No exact match found. */
 809		wp = slots[closest_match];
 810		info = counter_arch_bp(wp);
 811		info->trigger = addr;
 812		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 813		perf_bp_event(wp, regs);
 814		if (uses_default_overflow_handler(wp))
 815			enable_single_step(wp, instruction_pointer(regs));
 816	}
 817
 818	rcu_read_unlock();
 
 
 819}
 820
 821static void watchpoint_single_step_handler(unsigned long pc)
 822{
 823	int i;
 824	struct perf_event *wp, **slots;
 825	struct arch_hw_breakpoint *info;
 826
 827	slots = this_cpu_ptr(wp_on_reg);
 828
 829	for (i = 0; i < core_num_wrps; ++i) {
 830		rcu_read_lock();
 831
 832		wp = slots[i];
 833
 834		if (wp == NULL)
 835			goto unlock;
 836
 837		info = counter_arch_bp(wp);
 838		if (!info->step_ctrl.enabled)
 839			goto unlock;
 840
 841		/*
 842		 * Restore the original watchpoint if we've completed the
 843		 * single-step.
 844		 */
 845		if (info->trigger != pc)
 846			disable_single_step(wp);
 847
 848unlock:
 849		rcu_read_unlock();
 850	}
 851}
 852
 853static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
 854{
 855	int i;
 856	u32 ctrl_reg, val, addr;
 857	struct perf_event *bp, **slots;
 858	struct arch_hw_breakpoint *info;
 859	struct arch_hw_breakpoint_ctrl ctrl;
 860
 861	slots = this_cpu_ptr(bp_on_reg);
 862
 863	/* The exception entry code places the amended lr in the PC. */
 864	addr = regs->ARM_pc;
 865
 866	/* Check the currently installed breakpoints first. */
 867	for (i = 0; i < core_num_brps; ++i) {
 868		rcu_read_lock();
 869
 870		bp = slots[i];
 871
 872		if (bp == NULL)
 873			goto unlock;
 874
 875		info = counter_arch_bp(bp);
 876
 877		/* Check if the breakpoint value matches. */
 878		val = read_wb_reg(ARM_BASE_BVR + i);
 879		if (val != (addr & ~0x3))
 880			goto mismatch;
 881
 882		/* Possible match, check the byte address select to confirm. */
 883		ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
 884		decode_ctrl_reg(ctrl_reg, &ctrl);
 885		if ((1 << (addr & 0x3)) & ctrl.len) {
 886			info->trigger = addr;
 887			pr_debug("breakpoint fired: address = 0x%x\n", addr);
 888			perf_bp_event(bp, regs);
 889			if (uses_default_overflow_handler(bp))
 890				enable_single_step(bp, addr);
 891			goto unlock;
 892		}
 893
 894mismatch:
 895		/* If we're stepping a breakpoint, it can now be restored. */
 896		if (info->step_ctrl.enabled)
 897			disable_single_step(bp);
 898unlock:
 899		rcu_read_unlock();
 900	}
 901
 902	/* Handle any pending watchpoint single-step breakpoints. */
 903	watchpoint_single_step_handler(addr);
 904}
 905
 906/*
 907 * Called from either the Data Abort Handler [watchpoint] or the
 908 * Prefetch Abort Handler [breakpoint] with interrupts disabled.
 909 */
 910static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
 911				 struct pt_regs *regs)
 912{
 913	int ret = 0;
 914	u32 dscr;
 915
 916	preempt_disable();
 917
 918	if (interrupts_enabled(regs))
 919		local_irq_enable();
 920
 921	/* We only handle watchpoints and hardware breakpoints. */
 922	ARM_DBG_READ(c0, c1, 0, dscr);
 923
 924	/* Perform perf callbacks. */
 925	switch (ARM_DSCR_MOE(dscr)) {
 926	case ARM_ENTRY_BREAKPOINT:
 927		breakpoint_handler(addr, regs);
 928		break;
 929	case ARM_ENTRY_ASYNC_WATCHPOINT:
 930		WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
 931		fallthrough;
 932	case ARM_ENTRY_SYNC_WATCHPOINT:
 933		watchpoint_handler(addr, fsr, regs);
 934		break;
 935	default:
 936		ret = 1; /* Unhandled fault. */
 937	}
 938
 939	preempt_enable();
 940
 941	return ret;
 942}
 943
 944#ifdef CONFIG_ARM_ERRATA_764319
 945static int oslsr_fault;
 946
 947static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr)
 948{
 949	oslsr_fault = 1;
 950	instruction_pointer(regs) += 4;
 951	return 0;
 952}
 953
 954static struct undef_hook debug_oslsr_hook = {
 955	.instr_mask  = 0xffffffff,
 956	.instr_val = 0xee115e91,
 957	.fn = debug_oslsr_trap,
 958};
 959#endif
 960
 961/*
 962 * One-time initialisation.
 963 */
 964static cpumask_t debug_err_mask;
 965
 966static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
 967{
 968	int cpu = smp_processor_id();
 969
 970	pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
 971		instr, cpu);
 972
 973	/* Set the error flag for this CPU and skip the faulting instruction. */
 974	cpumask_set_cpu(cpu, &debug_err_mask);
 975	instruction_pointer(regs) += 4;
 976	return 0;
 977}
 978
 979static struct undef_hook debug_reg_hook = {
 980	.instr_mask	= 0x0fe80f10,
 981	.instr_val	= 0x0e000e10,
 982	.fn		= debug_reg_trap,
 983};
 984
 985/* Does this core support OS Save and Restore? */
 986static bool core_has_os_save_restore(void)
 987{
 988	u32 oslsr;
 989
 990	switch (get_debug_arch()) {
 991	case ARM_DEBUG_ARCH_V7_1:
 992		return true;
 993	case ARM_DEBUG_ARCH_V7_ECP14:
 994#ifdef CONFIG_ARM_ERRATA_764319
 995		oslsr_fault = 0;
 996		register_undef_hook(&debug_oslsr_hook);
 997		ARM_DBG_READ(c1, c1, 4, oslsr);
 998		unregister_undef_hook(&debug_oslsr_hook);
 999		if (oslsr_fault)
1000			return false;
1001#else
1002		ARM_DBG_READ(c1, c1, 4, oslsr);
1003#endif
1004		if (oslsr & ARM_OSLSR_OSLM0)
1005			return true;
1006		fallthrough;
1007	default:
1008		return false;
1009	}
1010}
1011
1012static void reset_ctrl_regs(unsigned int cpu)
1013{
1014	int i, raw_num_brps, err = 0;
1015	u32 val;
1016
1017	/*
1018	 * v7 debug contains save and restore registers so that debug state
1019	 * can be maintained across low-power modes without leaving the debug
1020	 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
1021	 * the debug registers out of reset, so we must unlock the OS Lock
1022	 * Access Register to avoid taking undefined instruction exceptions
1023	 * later on.
1024	 */
1025	switch (debug_arch) {
1026	case ARM_DEBUG_ARCH_V6:
1027	case ARM_DEBUG_ARCH_V6_1:
1028		/* ARMv6 cores clear the registers out of reset. */
1029		goto out_mdbgen;
1030	case ARM_DEBUG_ARCH_V7_ECP14:
1031		/*
1032		 * Ensure sticky power-down is clear (i.e. debug logic is
1033		 * powered up).
1034		 */
1035		ARM_DBG_READ(c1, c5, 4, val);
1036		if ((val & 0x1) == 0)
1037			err = -EPERM;
1038
1039		if (!has_ossr)
1040			goto clear_vcr;
1041		break;
1042	case ARM_DEBUG_ARCH_V7_1:
1043		/*
1044		 * Ensure the OS double lock is clear.
1045		 */
1046		ARM_DBG_READ(c1, c3, 4, val);
1047		if ((val & 0x1) == 1)
1048			err = -EPERM;
1049		break;
1050	}
1051
1052	if (err) {
1053		pr_warn_once("CPU %d debug is powered down!\n", cpu);
1054		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1055		return;
1056	}
1057
1058	/*
1059	 * Unconditionally clear the OS lock by writing a value
1060	 * other than CS_LAR_KEY to the access register.
1061	 */
1062	ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
1063	isb();
1064
1065	/*
1066	 * Clear any configured vector-catch events before
1067	 * enabling monitor mode.
1068	 */
1069clear_vcr:
1070	ARM_DBG_WRITE(c0, c7, 0, 0);
1071	isb();
1072
1073	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1074		pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
1075		return;
1076	}
1077
1078	/*
1079	 * The control/value register pairs are UNKNOWN out of reset so
1080	 * clear them to avoid spurious debug events.
1081	 */
1082	raw_num_brps = get_num_brp_resources();
1083	for (i = 0; i < raw_num_brps; ++i) {
1084		write_wb_reg(ARM_BASE_BCR + i, 0UL);
1085		write_wb_reg(ARM_BASE_BVR + i, 0UL);
1086	}
1087
1088	for (i = 0; i < core_num_wrps; ++i) {
1089		write_wb_reg(ARM_BASE_WCR + i, 0UL);
1090		write_wb_reg(ARM_BASE_WVR + i, 0UL);
1091	}
1092
1093	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1094		pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1095		return;
1096	}
1097
1098	/*
1099	 * Have a crack at enabling monitor mode. We don't actually need
1100	 * it yet, but reporting an error early is useful if it fails.
1101	 */
1102out_mdbgen:
1103	if (enable_monitor_mode())
1104		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1105}
1106
1107static int dbg_reset_online(unsigned int cpu)
1108{
1109	local_irq_disable();
1110	reset_ctrl_regs(cpu);
1111	local_irq_enable();
1112	return 0;
1113}
1114
1115#ifdef CONFIG_CPU_PM
1116static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1117			     void *v)
1118{
1119	if (action == CPU_PM_EXIT)
1120		reset_ctrl_regs(smp_processor_id());
1121
1122	return NOTIFY_OK;
1123}
1124
1125static struct notifier_block dbg_cpu_pm_nb = {
1126	.notifier_call = dbg_cpu_pm_notify,
1127};
1128
1129static void __init pm_init(void)
1130{
1131	cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1132}
1133#else
1134static inline void pm_init(void)
1135{
1136}
1137#endif
1138
1139static int __init arch_hw_breakpoint_init(void)
1140{
1141	int ret;
1142
1143	debug_arch = get_debug_arch();
1144
1145	if (!debug_arch_supported()) {
1146		pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1147		return 0;
1148	}
1149
1150	/*
1151	 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1152	 * whenever a WFI is issued, even if the core is not powered down, in
1153	 * violation of the architecture.  When DBGPRSR.SPD is set, accesses to
1154	 * breakpoint and watchpoint registers are treated as undefined, so
1155	 * this results in boot time and runtime failures when these are
1156	 * accessed and we unexpectedly take a trap.
1157	 *
1158	 * It's not clear if/how this can be worked around, so we blacklist
1159	 * Scorpion CPUs to avoid these issues.
1160	*/
1161	if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1162		pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1163		return 0;
1164	}
1165
1166	has_ossr = core_has_os_save_restore();
1167
1168	/* Determine how many BRPs/WRPs are available. */
1169	core_num_brps = get_num_brps();
1170	core_num_wrps = get_num_wrps();
1171
1172	/*
1173	 * We need to tread carefully here because DBGSWENABLE may be
1174	 * driven low on this core and there isn't an architected way to
1175	 * determine that.
1176	 */
1177	cpus_read_lock();
1178	register_undef_hook(&debug_reg_hook);
1179
1180	/*
1181	 * Register CPU notifier which resets the breakpoint resources. We
1182	 * assume that a halting debugger will leave the world in a nice state
1183	 * for us.
1184	 */
1185	ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1186					   "arm/hw_breakpoint:online",
1187					   dbg_reset_online, NULL);
1188	unregister_undef_hook(&debug_reg_hook);
1189	if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1190		core_num_brps = 0;
1191		core_num_wrps = 0;
1192		if (ret > 0)
1193			cpuhp_remove_state_nocalls_cpuslocked(ret);
1194		cpus_read_unlock();
1195		return 0;
1196	}
1197
1198	pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1199		core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1200		"", core_num_wrps);
1201
1202	/* Work out the maximum supported watchpoint length. */
1203	max_watchpoint_len = get_max_wp_len();
1204	pr_info("maximum watchpoint size is %u bytes.\n",
1205			max_watchpoint_len);
1206
1207	/* Register debug fault handler. */
1208	hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1209			TRAP_HWBKPT, "watchpoint debug exception");
1210	hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1211			TRAP_HWBKPT, "breakpoint debug exception");
1212	cpus_read_unlock();
1213
1214	/* Register PM notifiers. */
1215	pm_init();
1216	return 0;
1217}
1218arch_initcall(arch_hw_breakpoint_init);
1219
1220void hw_breakpoint_pmu_read(struct perf_event *bp)
1221{
1222}
1223
1224/*
1225 * Dummy function to register with die_notifier.
1226 */
1227int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1228					unsigned long val, void *data)
1229{
1230	return NOTIFY_DONE;
1231}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright (C) 2009, 2010 ARM Limited
   5 *
   6 * Author: Will Deacon <will.deacon@arm.com>
   7 */
   8
   9/*
  10 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  11 * using the CPU's debug registers.
  12 */
  13#define pr_fmt(fmt) "hw-breakpoint: " fmt
  14
  15#include <linux/errno.h>
  16#include <linux/hardirq.h>
  17#include <linux/perf_event.h>
  18#include <linux/hw_breakpoint.h>
  19#include <linux/smp.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/coresight.h>
  22
  23#include <asm/cacheflush.h>
  24#include <asm/cputype.h>
  25#include <asm/current.h>
  26#include <asm/hw_breakpoint.h>
  27#include <asm/traps.h>
  28
  29/* Breakpoint currently in use for each BRP. */
  30static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
  31
  32/* Watchpoint currently in use for each WRP. */
  33static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
  34
  35/* Number of BRP/WRP registers on this CPU. */
  36static int core_num_brps __ro_after_init;
  37static int core_num_wrps __ro_after_init;
  38
  39/* Debug architecture version. */
  40static u8 debug_arch __ro_after_init;
  41
  42/* Does debug architecture support OS Save and Restore? */
  43static bool has_ossr __ro_after_init;
  44
  45/* Maximum supported watchpoint length. */
  46static u8 max_watchpoint_len __ro_after_init;
  47
  48#define READ_WB_REG_CASE(OP2, M, VAL)			\
  49	case ((OP2 << 4) + M):				\
  50		ARM_DBG_READ(c0, c ## M, OP2, VAL);	\
  51		break
  52
  53#define WRITE_WB_REG_CASE(OP2, M, VAL)			\
  54	case ((OP2 << 4) + M):				\
  55		ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\
  56		break
  57
  58#define GEN_READ_WB_REG_CASES(OP2, VAL)		\
  59	READ_WB_REG_CASE(OP2, 0, VAL);		\
  60	READ_WB_REG_CASE(OP2, 1, VAL);		\
  61	READ_WB_REG_CASE(OP2, 2, VAL);		\
  62	READ_WB_REG_CASE(OP2, 3, VAL);		\
  63	READ_WB_REG_CASE(OP2, 4, VAL);		\
  64	READ_WB_REG_CASE(OP2, 5, VAL);		\
  65	READ_WB_REG_CASE(OP2, 6, VAL);		\
  66	READ_WB_REG_CASE(OP2, 7, VAL);		\
  67	READ_WB_REG_CASE(OP2, 8, VAL);		\
  68	READ_WB_REG_CASE(OP2, 9, VAL);		\
  69	READ_WB_REG_CASE(OP2, 10, VAL);		\
  70	READ_WB_REG_CASE(OP2, 11, VAL);		\
  71	READ_WB_REG_CASE(OP2, 12, VAL);		\
  72	READ_WB_REG_CASE(OP2, 13, VAL);		\
  73	READ_WB_REG_CASE(OP2, 14, VAL);		\
  74	READ_WB_REG_CASE(OP2, 15, VAL)
  75
  76#define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\
  77	WRITE_WB_REG_CASE(OP2, 0, VAL);		\
  78	WRITE_WB_REG_CASE(OP2, 1, VAL);		\
  79	WRITE_WB_REG_CASE(OP2, 2, VAL);		\
  80	WRITE_WB_REG_CASE(OP2, 3, VAL);		\
  81	WRITE_WB_REG_CASE(OP2, 4, VAL);		\
  82	WRITE_WB_REG_CASE(OP2, 5, VAL);		\
  83	WRITE_WB_REG_CASE(OP2, 6, VAL);		\
  84	WRITE_WB_REG_CASE(OP2, 7, VAL);		\
  85	WRITE_WB_REG_CASE(OP2, 8, VAL);		\
  86	WRITE_WB_REG_CASE(OP2, 9, VAL);		\
  87	WRITE_WB_REG_CASE(OP2, 10, VAL);	\
  88	WRITE_WB_REG_CASE(OP2, 11, VAL);	\
  89	WRITE_WB_REG_CASE(OP2, 12, VAL);	\
  90	WRITE_WB_REG_CASE(OP2, 13, VAL);	\
  91	WRITE_WB_REG_CASE(OP2, 14, VAL);	\
  92	WRITE_WB_REG_CASE(OP2, 15, VAL)
  93
  94static u32 read_wb_reg(int n)
  95{
  96	u32 val = 0;
  97
  98	switch (n) {
  99	GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
 100	GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
 101	GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
 102	GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
 103	default:
 104		pr_warn("attempt to read from unknown breakpoint register %d\n",
 105			n);
 106	}
 107
 108	return val;
 109}
 110
 111static void write_wb_reg(int n, u32 val)
 112{
 113	switch (n) {
 114	GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
 115	GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
 116	GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
 117	GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
 118	default:
 119		pr_warn("attempt to write to unknown breakpoint register %d\n",
 120			n);
 121	}
 122	isb();
 123}
 124
 125/* Determine debug architecture. */
 126static u8 get_debug_arch(void)
 127{
 128	u32 didr;
 129
 130	/* Do we implement the extended CPUID interface? */
 131	if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
 132		pr_warn_once("CPUID feature registers not supported. "
 133			     "Assuming v6 debug is present.\n");
 134		return ARM_DEBUG_ARCH_V6;
 135	}
 136
 137	ARM_DBG_READ(c0, c0, 0, didr);
 138	return (didr >> 16) & 0xf;
 139}
 140
 141u8 arch_get_debug_arch(void)
 142{
 143	return debug_arch;
 144}
 145
 146static int debug_arch_supported(void)
 147{
 148	u8 arch = get_debug_arch();
 149
 150	/* We don't support the memory-mapped interface. */
 151	return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
 152		arch >= ARM_DEBUG_ARCH_V7_1;
 153}
 154
 155/* Can we determine the watchpoint access type from the fsr? */
 156static int debug_exception_updates_fsr(void)
 157{
 158	return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
 159}
 160
 161/* Determine number of WRP registers available. */
 162static int get_num_wrp_resources(void)
 163{
 164	u32 didr;
 165	ARM_DBG_READ(c0, c0, 0, didr);
 166	return ((didr >> 28) & 0xf) + 1;
 167}
 168
 169/* Determine number of BRP registers available. */
 170static int get_num_brp_resources(void)
 171{
 172	u32 didr;
 173	ARM_DBG_READ(c0, c0, 0, didr);
 174	return ((didr >> 24) & 0xf) + 1;
 175}
 176
 177/* Does this core support mismatch breakpoints? */
 178static int core_has_mismatch_brps(void)
 179{
 180	return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
 181		get_num_brp_resources() > 1);
 182}
 183
 184/* Determine number of usable WRPs available. */
 185static int get_num_wrps(void)
 186{
 187	/*
 188	 * On debug architectures prior to 7.1, when a watchpoint fires, the
 189	 * only way to work out which watchpoint it was is by disassembling
 190	 * the faulting instruction and working out the address of the memory
 191	 * access.
 192	 *
 193	 * Furthermore, we can only do this if the watchpoint was precise
 194	 * since imprecise watchpoints prevent us from calculating register
 195	 * based addresses.
 196	 *
 197	 * Providing we have more than 1 breakpoint register, we only report
 198	 * a single watchpoint register for the time being. This way, we always
 199	 * know which watchpoint fired. In the future we can either add a
 200	 * disassembler and address generation emulator, or we can insert a
 201	 * check to see if the DFAR is set on watchpoint exception entry
 202	 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
 203	 * that it is set on some implementations].
 204	 */
 205	if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
 206		return 1;
 207
 208	return get_num_wrp_resources();
 209}
 210
 211/* Determine number of usable BRPs available. */
 212static int get_num_brps(void)
 213{
 214	int brps = get_num_brp_resources();
 215	return core_has_mismatch_brps() ? brps - 1 : brps;
 216}
 217
 218/*
 219 * In order to access the breakpoint/watchpoint control registers,
 220 * we must be running in debug monitor mode. Unfortunately, we can
 221 * be put into halting debug mode at any time by an external debugger
 222 * but there is nothing we can do to prevent that.
 223 */
 224static int monitor_mode_enabled(void)
 225{
 226	u32 dscr;
 227	ARM_DBG_READ(c0, c1, 0, dscr);
 228	return !!(dscr & ARM_DSCR_MDBGEN);
 229}
 230
 231static int enable_monitor_mode(void)
 232{
 233	u32 dscr;
 234	ARM_DBG_READ(c0, c1, 0, dscr);
 235
 236	/* If monitor mode is already enabled, just return. */
 237	if (dscr & ARM_DSCR_MDBGEN)
 238		goto out;
 239
 240	/* Write to the corresponding DSCR. */
 241	switch (get_debug_arch()) {
 242	case ARM_DEBUG_ARCH_V6:
 243	case ARM_DEBUG_ARCH_V6_1:
 244		ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
 245		break;
 246	case ARM_DEBUG_ARCH_V7_ECP14:
 247	case ARM_DEBUG_ARCH_V7_1:
 248	case ARM_DEBUG_ARCH_V8:
 
 
 
 249		ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
 250		isb();
 251		break;
 252	default:
 253		return -ENODEV;
 254	}
 255
 256	/* Check that the write made it through. */
 257	ARM_DBG_READ(c0, c1, 0, dscr);
 258	if (!(dscr & ARM_DSCR_MDBGEN)) {
 259		pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
 260				smp_processor_id());
 261		return -EPERM;
 262	}
 263
 264out:
 265	return 0;
 266}
 267
 268int hw_breakpoint_slots(int type)
 269{
 270	if (!debug_arch_supported())
 271		return 0;
 272
 273	/*
 274	 * We can be called early, so don't rely on
 275	 * our static variables being initialised.
 276	 */
 277	switch (type) {
 278	case TYPE_INST:
 279		return get_num_brps();
 280	case TYPE_DATA:
 281		return get_num_wrps();
 282	default:
 283		pr_warn("unknown slot type: %d\n", type);
 284		return 0;
 285	}
 286}
 287
 288/*
 289 * Check if 8-bit byte-address select is available.
 290 * This clobbers WRP 0.
 291 */
 292static u8 get_max_wp_len(void)
 293{
 294	u32 ctrl_reg;
 295	struct arch_hw_breakpoint_ctrl ctrl;
 296	u8 size = 4;
 297
 298	if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
 299		goto out;
 300
 301	memset(&ctrl, 0, sizeof(ctrl));
 302	ctrl.len = ARM_BREAKPOINT_LEN_8;
 303	ctrl_reg = encode_ctrl_reg(ctrl);
 304
 305	write_wb_reg(ARM_BASE_WVR, 0);
 306	write_wb_reg(ARM_BASE_WCR, ctrl_reg);
 307	if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
 308		size = 8;
 309
 310out:
 311	return size;
 312}
 313
 314u8 arch_get_max_wp_len(void)
 315{
 316	return max_watchpoint_len;
 317}
 318
 319/*
 320 * Install a perf counter breakpoint.
 321 */
 322int arch_install_hw_breakpoint(struct perf_event *bp)
 323{
 324	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 325	struct perf_event **slot, **slots;
 326	int i, max_slots, ctrl_base, val_base;
 327	u32 addr, ctrl;
 328
 329	addr = info->address;
 330	ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
 331
 332	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 333		/* Breakpoint */
 334		ctrl_base = ARM_BASE_BCR;
 335		val_base = ARM_BASE_BVR;
 336		slots = this_cpu_ptr(bp_on_reg);
 337		max_slots = core_num_brps;
 338	} else {
 339		/* Watchpoint */
 340		ctrl_base = ARM_BASE_WCR;
 341		val_base = ARM_BASE_WVR;
 342		slots = this_cpu_ptr(wp_on_reg);
 343		max_slots = core_num_wrps;
 344	}
 345
 346	for (i = 0; i < max_slots; ++i) {
 347		slot = &slots[i];
 348
 349		if (!*slot) {
 350			*slot = bp;
 351			break;
 352		}
 353	}
 354
 355	if (i == max_slots) {
 356		pr_warn("Can't find any breakpoint slot\n");
 357		return -EBUSY;
 358	}
 359
 360	/* Override the breakpoint data with the step data. */
 361	if (info->step_ctrl.enabled) {
 362		addr = info->trigger & ~0x3;
 363		ctrl = encode_ctrl_reg(info->step_ctrl);
 364		if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
 365			i = 0;
 366			ctrl_base = ARM_BASE_BCR + core_num_brps;
 367			val_base = ARM_BASE_BVR + core_num_brps;
 368		}
 369	}
 370
 371	/* Setup the address register. */
 372	write_wb_reg(val_base + i, addr);
 373
 374	/* Setup the control register. */
 375	write_wb_reg(ctrl_base + i, ctrl);
 376	return 0;
 377}
 378
 379void arch_uninstall_hw_breakpoint(struct perf_event *bp)
 380{
 381	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 382	struct perf_event **slot, **slots;
 383	int i, max_slots, base;
 384
 385	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 386		/* Breakpoint */
 387		base = ARM_BASE_BCR;
 388		slots = this_cpu_ptr(bp_on_reg);
 389		max_slots = core_num_brps;
 390	} else {
 391		/* Watchpoint */
 392		base = ARM_BASE_WCR;
 393		slots = this_cpu_ptr(wp_on_reg);
 394		max_slots = core_num_wrps;
 395	}
 396
 397	/* Remove the breakpoint. */
 398	for (i = 0; i < max_slots; ++i) {
 399		slot = &slots[i];
 400
 401		if (*slot == bp) {
 402			*slot = NULL;
 403			break;
 404		}
 405	}
 406
 407	if (i == max_slots) {
 408		pr_warn("Can't find any breakpoint slot\n");
 409		return;
 410	}
 411
 412	/* Ensure that we disable the mismatch breakpoint. */
 413	if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
 414	    info->step_ctrl.enabled) {
 415		i = 0;
 416		base = ARM_BASE_BCR + core_num_brps;
 417	}
 418
 419	/* Reset the control register. */
 420	write_wb_reg(base + i, 0);
 421}
 422
 423static int get_hbp_len(u8 hbp_len)
 424{
 425	unsigned int len_in_bytes = 0;
 426
 427	switch (hbp_len) {
 428	case ARM_BREAKPOINT_LEN_1:
 429		len_in_bytes = 1;
 430		break;
 431	case ARM_BREAKPOINT_LEN_2:
 432		len_in_bytes = 2;
 433		break;
 434	case ARM_BREAKPOINT_LEN_4:
 435		len_in_bytes = 4;
 436		break;
 437	case ARM_BREAKPOINT_LEN_8:
 438		len_in_bytes = 8;
 439		break;
 440	}
 441
 442	return len_in_bytes;
 443}
 444
 445/*
 446 * Check whether bp virtual address is in kernel space.
 447 */
 448int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
 449{
 450	unsigned int len;
 451	unsigned long va;
 452
 453	va = hw->address;
 454	len = get_hbp_len(hw->ctrl.len);
 455
 456	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
 457}
 458
 459/*
 460 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
 461 * Hopefully this will disappear when ptrace can bypass the conversion
 462 * to generic breakpoint descriptions.
 463 */
 464int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
 465			   int *gen_len, int *gen_type)
 466{
 467	/* Type */
 468	switch (ctrl.type) {
 469	case ARM_BREAKPOINT_EXECUTE:
 470		*gen_type = HW_BREAKPOINT_X;
 471		break;
 472	case ARM_BREAKPOINT_LOAD:
 473		*gen_type = HW_BREAKPOINT_R;
 474		break;
 475	case ARM_BREAKPOINT_STORE:
 476		*gen_type = HW_BREAKPOINT_W;
 477		break;
 478	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
 479		*gen_type = HW_BREAKPOINT_RW;
 480		break;
 481	default:
 482		return -EINVAL;
 483	}
 484
 485	/* Len */
 486	switch (ctrl.len) {
 487	case ARM_BREAKPOINT_LEN_1:
 488		*gen_len = HW_BREAKPOINT_LEN_1;
 489		break;
 490	case ARM_BREAKPOINT_LEN_2:
 491		*gen_len = HW_BREAKPOINT_LEN_2;
 492		break;
 493	case ARM_BREAKPOINT_LEN_4:
 494		*gen_len = HW_BREAKPOINT_LEN_4;
 495		break;
 496	case ARM_BREAKPOINT_LEN_8:
 497		*gen_len = HW_BREAKPOINT_LEN_8;
 498		break;
 499	default:
 500		return -EINVAL;
 501	}
 502
 503	return 0;
 504}
 505
 506/*
 507 * Construct an arch_hw_breakpoint from a perf_event.
 508 */
 509static int arch_build_bp_info(struct perf_event *bp,
 510			      const struct perf_event_attr *attr,
 511			      struct arch_hw_breakpoint *hw)
 512{
 513	/* Type */
 514	switch (attr->bp_type) {
 515	case HW_BREAKPOINT_X:
 516		hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
 517		break;
 518	case HW_BREAKPOINT_R:
 519		hw->ctrl.type = ARM_BREAKPOINT_LOAD;
 520		break;
 521	case HW_BREAKPOINT_W:
 522		hw->ctrl.type = ARM_BREAKPOINT_STORE;
 523		break;
 524	case HW_BREAKPOINT_RW:
 525		hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
 526		break;
 527	default:
 528		return -EINVAL;
 529	}
 530
 531	/* Len */
 532	switch (attr->bp_len) {
 533	case HW_BREAKPOINT_LEN_1:
 534		hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
 535		break;
 536	case HW_BREAKPOINT_LEN_2:
 537		hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
 538		break;
 539	case HW_BREAKPOINT_LEN_4:
 540		hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
 541		break;
 542	case HW_BREAKPOINT_LEN_8:
 543		hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
 544		if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
 545			&& max_watchpoint_len >= 8)
 546			break;
 547		/* Else, fall through */
 548	default:
 549		return -EINVAL;
 550	}
 551
 552	/*
 553	 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
 554	 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
 555	 * by the hardware and must be aligned to the appropriate number of
 556	 * bytes.
 557	 */
 558	if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
 559	    hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
 560	    hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
 561		return -EINVAL;
 562
 563	/* Address */
 564	hw->address = attr->bp_addr;
 565
 566	/* Privilege */
 567	hw->ctrl.privilege = ARM_BREAKPOINT_USER;
 568	if (arch_check_bp_in_kernelspace(hw))
 569		hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
 570
 571	/* Enabled? */
 572	hw->ctrl.enabled = !attr->disabled;
 573
 574	/* Mismatch */
 575	hw->ctrl.mismatch = 0;
 576
 577	return 0;
 578}
 579
 580/*
 581 * Validate the arch-specific HW Breakpoint register settings.
 582 */
 583int hw_breakpoint_arch_parse(struct perf_event *bp,
 584			     const struct perf_event_attr *attr,
 585			     struct arch_hw_breakpoint *hw)
 586{
 587	int ret = 0;
 588	u32 offset, alignment_mask = 0x3;
 589
 590	/* Ensure that we are in monitor debug mode. */
 591	if (!monitor_mode_enabled())
 592		return -ENODEV;
 593
 594	/* Build the arch_hw_breakpoint. */
 595	ret = arch_build_bp_info(bp, attr, hw);
 596	if (ret)
 597		goto out;
 598
 599	/* Check address alignment. */
 600	if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
 601		alignment_mask = 0x7;
 602	offset = hw->address & alignment_mask;
 603	switch (offset) {
 604	case 0:
 605		/* Aligned */
 606		break;
 607	case 1:
 608	case 2:
 609		/* Allow halfword watchpoints and breakpoints. */
 610		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
 611			break;
 612		/* Else, fall through */
 613	case 3:
 614		/* Allow single byte watchpoint. */
 615		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
 616			break;
 617		/* Else, fall through */
 618	default:
 619		ret = -EINVAL;
 620		goto out;
 621	}
 622
 623	hw->address &= ~alignment_mask;
 624	hw->ctrl.len <<= offset;
 625
 626	if (is_default_overflow_handler(bp)) {
 627		/*
 628		 * Mismatch breakpoints are required for single-stepping
 629		 * breakpoints.
 630		 */
 631		if (!core_has_mismatch_brps())
 632			return -EINVAL;
 633
 634		/* We don't allow mismatch breakpoints in kernel space. */
 635		if (arch_check_bp_in_kernelspace(hw))
 636			return -EPERM;
 637
 638		/*
 639		 * Per-cpu breakpoints are not supported by our stepping
 640		 * mechanism.
 641		 */
 642		if (!bp->hw.target)
 643			return -EINVAL;
 644
 645		/*
 646		 * We only support specific access types if the fsr
 647		 * reports them.
 648		 */
 649		if (!debug_exception_updates_fsr() &&
 650		    (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
 651		     hw->ctrl.type == ARM_BREAKPOINT_STORE))
 652			return -EINVAL;
 653	}
 654
 655out:
 656	return ret;
 657}
 658
 659/*
 660 * Enable/disable single-stepping over the breakpoint bp at address addr.
 661 */
 662static void enable_single_step(struct perf_event *bp, u32 addr)
 663{
 664	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 665
 666	arch_uninstall_hw_breakpoint(bp);
 667	info->step_ctrl.mismatch  = 1;
 668	info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4;
 669	info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE;
 670	info->step_ctrl.privilege = info->ctrl.privilege;
 671	info->step_ctrl.enabled	  = 1;
 672	info->trigger		  = addr;
 673	arch_install_hw_breakpoint(bp);
 674}
 675
 676static void disable_single_step(struct perf_event *bp)
 677{
 678	arch_uninstall_hw_breakpoint(bp);
 679	counter_arch_bp(bp)->step_ctrl.enabled = 0;
 680	arch_install_hw_breakpoint(bp);
 681}
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683static void watchpoint_handler(unsigned long addr, unsigned int fsr,
 684			       struct pt_regs *regs)
 685{
 686	int i, access;
 687	u32 val, ctrl_reg, alignment_mask;
 
 688	struct perf_event *wp, **slots;
 689	struct arch_hw_breakpoint *info;
 690	struct arch_hw_breakpoint_ctrl ctrl;
 691
 692	slots = this_cpu_ptr(wp_on_reg);
 693
 
 
 
 
 
 694	for (i = 0; i < core_num_wrps; ++i) {
 695		rcu_read_lock();
 696
 697		wp = slots[i];
 698
 699		if (wp == NULL)
 700			goto unlock;
 701
 702		info = counter_arch_bp(wp);
 703		/*
 704		 * The DFAR is an unknown value on debug architectures prior
 705		 * to 7.1. Since we only allow a single watchpoint on these
 706		 * older CPUs, we can set the trigger to the lowest possible
 707		 * faulting address.
 708		 */
 709		if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
 710			BUG_ON(i > 0);
 
 711			info->trigger = wp->attr.bp_addr;
 712		} else {
 713			if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
 714				alignment_mask = 0x7;
 715			else
 716				alignment_mask = 0x3;
 717
 718			/* Check if the watchpoint value matches. */
 719			val = read_wb_reg(ARM_BASE_WVR + i);
 720			if (val != (addr & ~alignment_mask))
 721				goto unlock;
 722
 723			/* Possible match, check the byte address select. */
 724			ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
 725			decode_ctrl_reg(ctrl_reg, &ctrl);
 726			if (!((1 << (addr & alignment_mask)) & ctrl.len))
 727				goto unlock;
 728
 729			/* Check that the access type matches. */
 730			if (debug_exception_updates_fsr()) {
 731				access = (fsr & ARM_FSR_ACCESS_MASK) ?
 732					  HW_BREAKPOINT_W : HW_BREAKPOINT_R;
 733				if (!(access & hw_breakpoint_type(wp)))
 734					goto unlock;
 735			}
 736
 
 
 
 
 
 
 
 
 
 
 
 
 737			/* We have a winner. */
 
 738			info->trigger = addr;
 739		}
 740
 741		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 
 
 
 
 
 
 
 
 
 742		perf_bp_event(wp, regs);
 743
 744		/*
 745		 * If no overflow handler is present, insert a temporary
 746		 * mismatch breakpoint so we can single-step over the
 747		 * watchpoint trigger.
 748		 */
 749		if (is_default_overflow_handler(wp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 750			enable_single_step(wp, instruction_pointer(regs));
 
 751
 752unlock:
 753		rcu_read_unlock();
 754	}
 755}
 756
 757static void watchpoint_single_step_handler(unsigned long pc)
 758{
 759	int i;
 760	struct perf_event *wp, **slots;
 761	struct arch_hw_breakpoint *info;
 762
 763	slots = this_cpu_ptr(wp_on_reg);
 764
 765	for (i = 0; i < core_num_wrps; ++i) {
 766		rcu_read_lock();
 767
 768		wp = slots[i];
 769
 770		if (wp == NULL)
 771			goto unlock;
 772
 773		info = counter_arch_bp(wp);
 774		if (!info->step_ctrl.enabled)
 775			goto unlock;
 776
 777		/*
 778		 * Restore the original watchpoint if we've completed the
 779		 * single-step.
 780		 */
 781		if (info->trigger != pc)
 782			disable_single_step(wp);
 783
 784unlock:
 785		rcu_read_unlock();
 786	}
 787}
 788
 789static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
 790{
 791	int i;
 792	u32 ctrl_reg, val, addr;
 793	struct perf_event *bp, **slots;
 794	struct arch_hw_breakpoint *info;
 795	struct arch_hw_breakpoint_ctrl ctrl;
 796
 797	slots = this_cpu_ptr(bp_on_reg);
 798
 799	/* The exception entry code places the amended lr in the PC. */
 800	addr = regs->ARM_pc;
 801
 802	/* Check the currently installed breakpoints first. */
 803	for (i = 0; i < core_num_brps; ++i) {
 804		rcu_read_lock();
 805
 806		bp = slots[i];
 807
 808		if (bp == NULL)
 809			goto unlock;
 810
 811		info = counter_arch_bp(bp);
 812
 813		/* Check if the breakpoint value matches. */
 814		val = read_wb_reg(ARM_BASE_BVR + i);
 815		if (val != (addr & ~0x3))
 816			goto mismatch;
 817
 818		/* Possible match, check the byte address select to confirm. */
 819		ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
 820		decode_ctrl_reg(ctrl_reg, &ctrl);
 821		if ((1 << (addr & 0x3)) & ctrl.len) {
 822			info->trigger = addr;
 823			pr_debug("breakpoint fired: address = 0x%x\n", addr);
 824			perf_bp_event(bp, regs);
 825			if (!bp->overflow_handler)
 826				enable_single_step(bp, addr);
 827			goto unlock;
 828		}
 829
 830mismatch:
 831		/* If we're stepping a breakpoint, it can now be restored. */
 832		if (info->step_ctrl.enabled)
 833			disable_single_step(bp);
 834unlock:
 835		rcu_read_unlock();
 836	}
 837
 838	/* Handle any pending watchpoint single-step breakpoints. */
 839	watchpoint_single_step_handler(addr);
 840}
 841
 842/*
 843 * Called from either the Data Abort Handler [watchpoint] or the
 844 * Prefetch Abort Handler [breakpoint] with interrupts disabled.
 845 */
 846static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
 847				 struct pt_regs *regs)
 848{
 849	int ret = 0;
 850	u32 dscr;
 851
 852	preempt_disable();
 853
 854	if (interrupts_enabled(regs))
 855		local_irq_enable();
 856
 857	/* We only handle watchpoints and hardware breakpoints. */
 858	ARM_DBG_READ(c0, c1, 0, dscr);
 859
 860	/* Perform perf callbacks. */
 861	switch (ARM_DSCR_MOE(dscr)) {
 862	case ARM_ENTRY_BREAKPOINT:
 863		breakpoint_handler(addr, regs);
 864		break;
 865	case ARM_ENTRY_ASYNC_WATCHPOINT:
 866		WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
 867		/* Fall through */
 868	case ARM_ENTRY_SYNC_WATCHPOINT:
 869		watchpoint_handler(addr, fsr, regs);
 870		break;
 871	default:
 872		ret = 1; /* Unhandled fault. */
 873	}
 874
 875	preempt_enable();
 876
 877	return ret;
 878}
 879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880/*
 881 * One-time initialisation.
 882 */
 883static cpumask_t debug_err_mask;
 884
 885static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
 886{
 887	int cpu = smp_processor_id();
 888
 889	pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
 890		instr, cpu);
 891
 892	/* Set the error flag for this CPU and skip the faulting instruction. */
 893	cpumask_set_cpu(cpu, &debug_err_mask);
 894	instruction_pointer(regs) += 4;
 895	return 0;
 896}
 897
 898static struct undef_hook debug_reg_hook = {
 899	.instr_mask	= 0x0fe80f10,
 900	.instr_val	= 0x0e000e10,
 901	.fn		= debug_reg_trap,
 902};
 903
 904/* Does this core support OS Save and Restore? */
 905static bool core_has_os_save_restore(void)
 906{
 907	u32 oslsr;
 908
 909	switch (get_debug_arch()) {
 910	case ARM_DEBUG_ARCH_V7_1:
 911		return true;
 912	case ARM_DEBUG_ARCH_V7_ECP14:
 
 
 
 
 
 
 
 
 913		ARM_DBG_READ(c1, c1, 4, oslsr);
 
 914		if (oslsr & ARM_OSLSR_OSLM0)
 915			return true;
 916		/* Else, fall through */
 917	default:
 918		return false;
 919	}
 920}
 921
 922static void reset_ctrl_regs(unsigned int cpu)
 923{
 924	int i, raw_num_brps, err = 0;
 925	u32 val;
 926
 927	/*
 928	 * v7 debug contains save and restore registers so that debug state
 929	 * can be maintained across low-power modes without leaving the debug
 930	 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
 931	 * the debug registers out of reset, so we must unlock the OS Lock
 932	 * Access Register to avoid taking undefined instruction exceptions
 933	 * later on.
 934	 */
 935	switch (debug_arch) {
 936	case ARM_DEBUG_ARCH_V6:
 937	case ARM_DEBUG_ARCH_V6_1:
 938		/* ARMv6 cores clear the registers out of reset. */
 939		goto out_mdbgen;
 940	case ARM_DEBUG_ARCH_V7_ECP14:
 941		/*
 942		 * Ensure sticky power-down is clear (i.e. debug logic is
 943		 * powered up).
 944		 */
 945		ARM_DBG_READ(c1, c5, 4, val);
 946		if ((val & 0x1) == 0)
 947			err = -EPERM;
 948
 949		if (!has_ossr)
 950			goto clear_vcr;
 951		break;
 952	case ARM_DEBUG_ARCH_V7_1:
 953		/*
 954		 * Ensure the OS double lock is clear.
 955		 */
 956		ARM_DBG_READ(c1, c3, 4, val);
 957		if ((val & 0x1) == 1)
 958			err = -EPERM;
 959		break;
 960	}
 961
 962	if (err) {
 963		pr_warn_once("CPU %d debug is powered down!\n", cpu);
 964		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
 965		return;
 966	}
 967
 968	/*
 969	 * Unconditionally clear the OS lock by writing a value
 970	 * other than CS_LAR_KEY to the access register.
 971	 */
 972	ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
 973	isb();
 974
 975	/*
 976	 * Clear any configured vector-catch events before
 977	 * enabling monitor mode.
 978	 */
 979clear_vcr:
 980	ARM_DBG_WRITE(c0, c7, 0, 0);
 981	isb();
 982
 983	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
 984		pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
 985		return;
 986	}
 987
 988	/*
 989	 * The control/value register pairs are UNKNOWN out of reset so
 990	 * clear them to avoid spurious debug events.
 991	 */
 992	raw_num_brps = get_num_brp_resources();
 993	for (i = 0; i < raw_num_brps; ++i) {
 994		write_wb_reg(ARM_BASE_BCR + i, 0UL);
 995		write_wb_reg(ARM_BASE_BVR + i, 0UL);
 996	}
 997
 998	for (i = 0; i < core_num_wrps; ++i) {
 999		write_wb_reg(ARM_BASE_WCR + i, 0UL);
1000		write_wb_reg(ARM_BASE_WVR + i, 0UL);
1001	}
1002
1003	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1004		pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1005		return;
1006	}
1007
1008	/*
1009	 * Have a crack at enabling monitor mode. We don't actually need
1010	 * it yet, but reporting an error early is useful if it fails.
1011	 */
1012out_mdbgen:
1013	if (enable_monitor_mode())
1014		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1015}
1016
1017static int dbg_reset_online(unsigned int cpu)
1018{
1019	local_irq_disable();
1020	reset_ctrl_regs(cpu);
1021	local_irq_enable();
1022	return 0;
1023}
1024
1025#ifdef CONFIG_CPU_PM
1026static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1027			     void *v)
1028{
1029	if (action == CPU_PM_EXIT)
1030		reset_ctrl_regs(smp_processor_id());
1031
1032	return NOTIFY_OK;
1033}
1034
1035static struct notifier_block dbg_cpu_pm_nb = {
1036	.notifier_call = dbg_cpu_pm_notify,
1037};
1038
1039static void __init pm_init(void)
1040{
1041	cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1042}
1043#else
1044static inline void pm_init(void)
1045{
1046}
1047#endif
1048
1049static int __init arch_hw_breakpoint_init(void)
1050{
1051	int ret;
1052
1053	debug_arch = get_debug_arch();
1054
1055	if (!debug_arch_supported()) {
1056		pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1057		return 0;
1058	}
1059
1060	/*
1061	 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1062	 * whenever a WFI is issued, even if the core is not powered down, in
1063	 * violation of the architecture.  When DBGPRSR.SPD is set, accesses to
1064	 * breakpoint and watchpoint registers are treated as undefined, so
1065	 * this results in boot time and runtime failures when these are
1066	 * accessed and we unexpectedly take a trap.
1067	 *
1068	 * It's not clear if/how this can be worked around, so we blacklist
1069	 * Scorpion CPUs to avoid these issues.
1070	*/
1071	if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1072		pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1073		return 0;
1074	}
1075
1076	has_ossr = core_has_os_save_restore();
1077
1078	/* Determine how many BRPs/WRPs are available. */
1079	core_num_brps = get_num_brps();
1080	core_num_wrps = get_num_wrps();
1081
1082	/*
1083	 * We need to tread carefully here because DBGSWENABLE may be
1084	 * driven low on this core and there isn't an architected way to
1085	 * determine that.
1086	 */
1087	cpus_read_lock();
1088	register_undef_hook(&debug_reg_hook);
1089
1090	/*
1091	 * Register CPU notifier which resets the breakpoint resources. We
1092	 * assume that a halting debugger will leave the world in a nice state
1093	 * for us.
1094	 */
1095	ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1096					   "arm/hw_breakpoint:online",
1097					   dbg_reset_online, NULL);
1098	unregister_undef_hook(&debug_reg_hook);
1099	if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1100		core_num_brps = 0;
1101		core_num_wrps = 0;
1102		if (ret > 0)
1103			cpuhp_remove_state_nocalls_cpuslocked(ret);
1104		cpus_read_unlock();
1105		return 0;
1106	}
1107
1108	pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1109		core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1110		"", core_num_wrps);
1111
1112	/* Work out the maximum supported watchpoint length. */
1113	max_watchpoint_len = get_max_wp_len();
1114	pr_info("maximum watchpoint size is %u bytes.\n",
1115			max_watchpoint_len);
1116
1117	/* Register debug fault handler. */
1118	hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1119			TRAP_HWBKPT, "watchpoint debug exception");
1120	hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1121			TRAP_HWBKPT, "breakpoint debug exception");
1122	cpus_read_unlock();
1123
1124	/* Register PM notifiers. */
1125	pm_init();
1126	return 0;
1127}
1128arch_initcall(arch_hw_breakpoint_init);
1129
1130void hw_breakpoint_pmu_read(struct perf_event *bp)
1131{
1132}
1133
1134/*
1135 * Dummy function to register with die_notifier.
1136 */
1137int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1138					unsigned long val, void *data)
1139{
1140	return NOTIFY_DONE;
1141}