Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic helpers for smp ipi calls
4 *
5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/irq_work.h>
11#include <linux/rcupdate.h>
12#include <linux/rculist.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/percpu.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/gfp.h>
19#include <linux/smp.h>
20#include <linux/cpu.h>
21#include <linux/sched.h>
22#include <linux/sched/idle.h>
23#include <linux/hypervisor.h>
24#include <linux/sched/clock.h>
25#include <linux/nmi.h>
26#include <linux/sched/debug.h>
27#include <linux/jump_label.h>
28
29#include <trace/events/ipi.h>
30#define CREATE_TRACE_POINTS
31#include <trace/events/csd.h>
32#undef CREATE_TRACE_POINTS
33
34#include "smpboot.h"
35#include "sched/smp.h"
36
37#define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
38
39struct call_function_data {
40 call_single_data_t __percpu *csd;
41 cpumask_var_t cpumask;
42 cpumask_var_t cpumask_ipi;
43};
44
45static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
46
47static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
48
49static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1);
50
51static void __flush_smp_call_function_queue(bool warn_cpu_offline);
52
53int smpcfd_prepare_cpu(unsigned int cpu)
54{
55 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
56
57 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
58 cpu_to_node(cpu)))
59 return -ENOMEM;
60 if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
61 cpu_to_node(cpu))) {
62 free_cpumask_var(cfd->cpumask);
63 return -ENOMEM;
64 }
65 cfd->csd = alloc_percpu(call_single_data_t);
66 if (!cfd->csd) {
67 free_cpumask_var(cfd->cpumask);
68 free_cpumask_var(cfd->cpumask_ipi);
69 return -ENOMEM;
70 }
71
72 return 0;
73}
74
75int smpcfd_dead_cpu(unsigned int cpu)
76{
77 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
78
79 free_cpumask_var(cfd->cpumask);
80 free_cpumask_var(cfd->cpumask_ipi);
81 free_percpu(cfd->csd);
82 return 0;
83}
84
85int smpcfd_dying_cpu(unsigned int cpu)
86{
87 /*
88 * The IPIs for the smp-call-function callbacks queued by other
89 * CPUs might arrive late, either due to hardware latencies or
90 * because this CPU disabled interrupts (inside stop-machine)
91 * before the IPIs were sent. So flush out any pending callbacks
92 * explicitly (without waiting for the IPIs to arrive), to
93 * ensure that the outgoing CPU doesn't go offline with work
94 * still pending.
95 */
96 __flush_smp_call_function_queue(false);
97 irq_work_run();
98 return 0;
99}
100
101void __init call_function_init(void)
102{
103 int i;
104
105 for_each_possible_cpu(i)
106 init_llist_head(&per_cpu(call_single_queue, i));
107
108 smpcfd_prepare_cpu(smp_processor_id());
109}
110
111static __always_inline void
112send_call_function_single_ipi(int cpu)
113{
114 if (call_function_single_prep_ipi(cpu)) {
115 trace_ipi_send_cpu(cpu, _RET_IP_,
116 generic_smp_call_function_single_interrupt);
117 arch_send_call_function_single_ipi(cpu);
118 }
119}
120
121static __always_inline void
122send_call_function_ipi_mask(struct cpumask *mask)
123{
124 trace_ipi_send_cpumask(mask, _RET_IP_,
125 generic_smp_call_function_single_interrupt);
126 arch_send_call_function_ipi_mask(mask);
127}
128
129static __always_inline void
130csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd)
131{
132 trace_csd_function_entry(func, csd);
133 func(info);
134 trace_csd_function_exit(func, csd);
135}
136
137#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
138
139static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled);
140
141/*
142 * Parse the csdlock_debug= kernel boot parameter.
143 *
144 * If you need to restore the old "ext" value that once provided
145 * additional debugging information, reapply the following commits:
146 *
147 * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging")
148 * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging")
149 */
150static int __init csdlock_debug(char *str)
151{
152 int ret;
153 unsigned int val = 0;
154
155 ret = get_option(&str, &val);
156 if (ret) {
157 if (val)
158 static_branch_enable(&csdlock_debug_enabled);
159 else
160 static_branch_disable(&csdlock_debug_enabled);
161 }
162
163 return 1;
164}
165__setup("csdlock_debug=", csdlock_debug);
166
167static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
168static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
169static DEFINE_PER_CPU(void *, cur_csd_info);
170
171static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */
172module_param(csd_lock_timeout, ulong, 0444);
173static int panic_on_ipistall; /* CSD panic timeout in milliseconds, 300000 for five minutes. */
174module_param(panic_on_ipistall, int, 0444);
175
176static atomic_t csd_bug_count = ATOMIC_INIT(0);
177
178/* Record current CSD work for current CPU, NULL to erase. */
179static void __csd_lock_record(call_single_data_t *csd)
180{
181 if (!csd) {
182 smp_mb(); /* NULL cur_csd after unlock. */
183 __this_cpu_write(cur_csd, NULL);
184 return;
185 }
186 __this_cpu_write(cur_csd_func, csd->func);
187 __this_cpu_write(cur_csd_info, csd->info);
188 smp_wmb(); /* func and info before csd. */
189 __this_cpu_write(cur_csd, csd);
190 smp_mb(); /* Update cur_csd before function call. */
191 /* Or before unlock, as the case may be. */
192}
193
194static __always_inline void csd_lock_record(call_single_data_t *csd)
195{
196 if (static_branch_unlikely(&csdlock_debug_enabled))
197 __csd_lock_record(csd);
198}
199
200static int csd_lock_wait_getcpu(call_single_data_t *csd)
201{
202 unsigned int csd_type;
203
204 csd_type = CSD_TYPE(csd);
205 if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
206 return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
207 return -1;
208}
209
210/*
211 * Complain if too much time spent waiting. Note that only
212 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
213 * so waiting on other types gets much less information.
214 */
215static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id)
216{
217 int cpu = -1;
218 int cpux;
219 bool firsttime;
220 u64 ts2, ts_delta;
221 call_single_data_t *cpu_cur_csd;
222 unsigned int flags = READ_ONCE(csd->node.u_flags);
223 unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
224
225 if (!(flags & CSD_FLAG_LOCK)) {
226 if (!unlikely(*bug_id))
227 return true;
228 cpu = csd_lock_wait_getcpu(csd);
229 pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
230 *bug_id, raw_smp_processor_id(), cpu);
231 return true;
232 }
233
234 ts2 = sched_clock();
235 /* How long since we last checked for a stuck CSD lock.*/
236 ts_delta = ts2 - *ts1;
237 if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
238 return false;
239
240 firsttime = !*bug_id;
241 if (firsttime)
242 *bug_id = atomic_inc_return(&csd_bug_count);
243 cpu = csd_lock_wait_getcpu(csd);
244 if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
245 cpux = 0;
246 else
247 cpux = cpu;
248 cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
249 /* How long since this CSD lock was stuck. */
250 ts_delta = ts2 - ts0;
251 pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
252 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts_delta,
253 cpu, csd->func, csd->info);
254 /*
255 * If the CSD lock is still stuck after 5 minutes, it is unlikely
256 * to become unstuck. Use a signed comparison to avoid triggering
257 * on underflows when the TSC is out of sync between sockets.
258 */
259 BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC));
260 if (cpu_cur_csd && csd != cpu_cur_csd) {
261 pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
262 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
263 READ_ONCE(per_cpu(cur_csd_info, cpux)));
264 } else {
265 pr_alert("\tcsd: CSD lock (#%d) %s.\n",
266 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
267 }
268 if (cpu >= 0) {
269 if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0))
270 dump_cpu_task(cpu);
271 if (!cpu_cur_csd) {
272 pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
273 arch_send_call_function_single_ipi(cpu);
274 }
275 }
276 if (firsttime)
277 dump_stack();
278 *ts1 = ts2;
279
280 return false;
281}
282
283/*
284 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
285 *
286 * For non-synchronous ipi calls the csd can still be in use by the
287 * previous function call. For multi-cpu calls its even more interesting
288 * as we'll have to ensure no other cpu is observing our csd.
289 */
290static void __csd_lock_wait(call_single_data_t *csd)
291{
292 int bug_id = 0;
293 u64 ts0, ts1;
294
295 ts1 = ts0 = sched_clock();
296 for (;;) {
297 if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
298 break;
299 cpu_relax();
300 }
301 smp_acquire__after_ctrl_dep();
302}
303
304static __always_inline void csd_lock_wait(call_single_data_t *csd)
305{
306 if (static_branch_unlikely(&csdlock_debug_enabled)) {
307 __csd_lock_wait(csd);
308 return;
309 }
310
311 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
312}
313#else
314static void csd_lock_record(call_single_data_t *csd)
315{
316}
317
318static __always_inline void csd_lock_wait(call_single_data_t *csd)
319{
320 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
321}
322#endif
323
324static __always_inline void csd_lock(call_single_data_t *csd)
325{
326 csd_lock_wait(csd);
327 csd->node.u_flags |= CSD_FLAG_LOCK;
328
329 /*
330 * prevent CPU from reordering the above assignment
331 * to ->flags with any subsequent assignments to other
332 * fields of the specified call_single_data_t structure:
333 */
334 smp_wmb();
335}
336
337static __always_inline void csd_unlock(call_single_data_t *csd)
338{
339 WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
340
341 /*
342 * ensure we're all done before releasing data:
343 */
344 smp_store_release(&csd->node.u_flags, 0);
345}
346
347static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
348
349void __smp_call_single_queue(int cpu, struct llist_node *node)
350{
351 /*
352 * We have to check the type of the CSD before queueing it, because
353 * once queued it can have its flags cleared by
354 * flush_smp_call_function_queue()
355 * even if we haven't sent the smp_call IPI yet (e.g. the stopper
356 * executes migration_cpu_stop() on the remote CPU).
357 */
358 if (trace_csd_queue_cpu_enabled()) {
359 call_single_data_t *csd;
360 smp_call_func_t func;
361
362 csd = container_of(node, call_single_data_t, node.llist);
363 func = CSD_TYPE(csd) == CSD_TYPE_TTWU ?
364 sched_ttwu_pending : csd->func;
365
366 trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
367 }
368
369 /*
370 * The list addition should be visible to the target CPU when it pops
371 * the head of the list to pull the entry off it in the IPI handler
372 * because of normal cache coherency rules implied by the underlying
373 * llist ops.
374 *
375 * If IPIs can go out of order to the cache coherency protocol
376 * in an architecture, sufficient synchronisation should be added
377 * to arch code to make it appear to obey cache coherency WRT
378 * locking and barrier primitives. Generic code isn't really
379 * equipped to do the right thing...
380 */
381 if (llist_add(node, &per_cpu(call_single_queue, cpu)))
382 send_call_function_single_ipi(cpu);
383}
384
385/*
386 * Insert a previously allocated call_single_data_t element
387 * for execution on the given CPU. data must already have
388 * ->func, ->info, and ->flags set.
389 */
390static int generic_exec_single(int cpu, call_single_data_t *csd)
391{
392 if (cpu == smp_processor_id()) {
393 smp_call_func_t func = csd->func;
394 void *info = csd->info;
395 unsigned long flags;
396
397 /*
398 * We can unlock early even for the synchronous on-stack case,
399 * since we're doing this from the same CPU..
400 */
401 csd_lock_record(csd);
402 csd_unlock(csd);
403 local_irq_save(flags);
404 csd_do_func(func, info, NULL);
405 csd_lock_record(NULL);
406 local_irq_restore(flags);
407 return 0;
408 }
409
410 if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
411 csd_unlock(csd);
412 return -ENXIO;
413 }
414
415 __smp_call_single_queue(cpu, &csd->node.llist);
416
417 return 0;
418}
419
420/**
421 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
422 *
423 * Invoked by arch to handle an IPI for call function single.
424 * Must be called with interrupts disabled.
425 */
426void generic_smp_call_function_single_interrupt(void)
427{
428 __flush_smp_call_function_queue(true);
429}
430
431/**
432 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
433 *
434 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
435 * offline CPU. Skip this check if set to 'false'.
436 *
437 * Flush any pending smp-call-function callbacks queued on this CPU. This is
438 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
439 * to ensure that all pending IPI callbacks are run before it goes completely
440 * offline.
441 *
442 * Loop through the call_single_queue and run all the queued callbacks.
443 * Must be called with interrupts disabled.
444 */
445static void __flush_smp_call_function_queue(bool warn_cpu_offline)
446{
447 call_single_data_t *csd, *csd_next;
448 struct llist_node *entry, *prev;
449 struct llist_head *head;
450 static bool warned;
451 atomic_t *tbt;
452
453 lockdep_assert_irqs_disabled();
454
455 /* Allow waiters to send backtrace NMI from here onwards */
456 tbt = this_cpu_ptr(&trigger_backtrace);
457 atomic_set_release(tbt, 1);
458
459 head = this_cpu_ptr(&call_single_queue);
460 entry = llist_del_all(head);
461 entry = llist_reverse_order(entry);
462
463 /* There shouldn't be any pending callbacks on an offline CPU. */
464 if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
465 !warned && entry != NULL)) {
466 warned = true;
467 WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
468
469 /*
470 * We don't have to use the _safe() variant here
471 * because we are not invoking the IPI handlers yet.
472 */
473 llist_for_each_entry(csd, entry, node.llist) {
474 switch (CSD_TYPE(csd)) {
475 case CSD_TYPE_ASYNC:
476 case CSD_TYPE_SYNC:
477 case CSD_TYPE_IRQ_WORK:
478 pr_warn("IPI callback %pS sent to offline CPU\n",
479 csd->func);
480 break;
481
482 case CSD_TYPE_TTWU:
483 pr_warn("IPI task-wakeup sent to offline CPU\n");
484 break;
485
486 default:
487 pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
488 CSD_TYPE(csd));
489 break;
490 }
491 }
492 }
493
494 /*
495 * First; run all SYNC callbacks, people are waiting for us.
496 */
497 prev = NULL;
498 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
499 /* Do we wait until *after* callback? */
500 if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
501 smp_call_func_t func = csd->func;
502 void *info = csd->info;
503
504 if (prev) {
505 prev->next = &csd_next->node.llist;
506 } else {
507 entry = &csd_next->node.llist;
508 }
509
510 csd_lock_record(csd);
511 csd_do_func(func, info, csd);
512 csd_unlock(csd);
513 csd_lock_record(NULL);
514 } else {
515 prev = &csd->node.llist;
516 }
517 }
518
519 if (!entry)
520 return;
521
522 /*
523 * Second; run all !SYNC callbacks.
524 */
525 prev = NULL;
526 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
527 int type = CSD_TYPE(csd);
528
529 if (type != CSD_TYPE_TTWU) {
530 if (prev) {
531 prev->next = &csd_next->node.llist;
532 } else {
533 entry = &csd_next->node.llist;
534 }
535
536 if (type == CSD_TYPE_ASYNC) {
537 smp_call_func_t func = csd->func;
538 void *info = csd->info;
539
540 csd_lock_record(csd);
541 csd_unlock(csd);
542 csd_do_func(func, info, csd);
543 csd_lock_record(NULL);
544 } else if (type == CSD_TYPE_IRQ_WORK) {
545 irq_work_single(csd);
546 }
547
548 } else {
549 prev = &csd->node.llist;
550 }
551 }
552
553 /*
554 * Third; only CSD_TYPE_TTWU is left, issue those.
555 */
556 if (entry) {
557 csd = llist_entry(entry, typeof(*csd), node.llist);
558 csd_do_func(sched_ttwu_pending, entry, csd);
559 }
560}
561
562
563/**
564 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
565 * from task context (idle, migration thread)
566 *
567 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
568 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
569 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
570 * handle queued SMP function calls before scheduling.
571 *
572 * The migration thread has to ensure that an eventually pending wakeup has
573 * been handled before it migrates a task.
574 */
575void flush_smp_call_function_queue(void)
576{
577 unsigned int was_pending;
578 unsigned long flags;
579
580 if (llist_empty(this_cpu_ptr(&call_single_queue)))
581 return;
582
583 local_irq_save(flags);
584 /* Get the already pending soft interrupts for RT enabled kernels */
585 was_pending = local_softirq_pending();
586 __flush_smp_call_function_queue(true);
587 if (local_softirq_pending())
588 do_softirq_post_smp_call_flush(was_pending);
589
590 local_irq_restore(flags);
591}
592
593/*
594 * smp_call_function_single - Run a function on a specific CPU
595 * @func: The function to run. This must be fast and non-blocking.
596 * @info: An arbitrary pointer to pass to the function.
597 * @wait: If true, wait until function has completed on other CPUs.
598 *
599 * Returns 0 on success, else a negative status code.
600 */
601int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
602 int wait)
603{
604 call_single_data_t *csd;
605 call_single_data_t csd_stack = {
606 .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
607 };
608 int this_cpu;
609 int err;
610
611 /*
612 * prevent preemption and reschedule on another processor,
613 * as well as CPU removal
614 */
615 this_cpu = get_cpu();
616
617 /*
618 * Can deadlock when called with interrupts disabled.
619 * We allow cpu's that are not yet online though, as no one else can
620 * send smp call function interrupt to this cpu and as such deadlocks
621 * can't happen.
622 */
623 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
624 && !oops_in_progress);
625
626 /*
627 * When @wait we can deadlock when we interrupt between llist_add() and
628 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
629 * csd_lock() on because the interrupt context uses the same csd
630 * storage.
631 */
632 WARN_ON_ONCE(!in_task());
633
634 csd = &csd_stack;
635 if (!wait) {
636 csd = this_cpu_ptr(&csd_data);
637 csd_lock(csd);
638 }
639
640 csd->func = func;
641 csd->info = info;
642#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
643 csd->node.src = smp_processor_id();
644 csd->node.dst = cpu;
645#endif
646
647 err = generic_exec_single(cpu, csd);
648
649 if (wait)
650 csd_lock_wait(csd);
651
652 put_cpu();
653
654 return err;
655}
656EXPORT_SYMBOL(smp_call_function_single);
657
658/**
659 * smp_call_function_single_async() - Run an asynchronous function on a
660 * specific CPU.
661 * @cpu: The CPU to run on.
662 * @csd: Pre-allocated and setup data structure
663 *
664 * Like smp_call_function_single(), but the call is asynchonous and
665 * can thus be done from contexts with disabled interrupts.
666 *
667 * The caller passes his own pre-allocated data structure
668 * (ie: embedded in an object) and is responsible for synchronizing it
669 * such that the IPIs performed on the @csd are strictly serialized.
670 *
671 * If the function is called with one csd which has not yet been
672 * processed by previous call to smp_call_function_single_async(), the
673 * function will return immediately with -EBUSY showing that the csd
674 * object is still in progress.
675 *
676 * NOTE: Be careful, there is unfortunately no current debugging facility to
677 * validate the correctness of this serialization.
678 *
679 * Return: %0 on success or negative errno value on error
680 */
681int smp_call_function_single_async(int cpu, call_single_data_t *csd)
682{
683 int err = 0;
684
685 preempt_disable();
686
687 if (csd->node.u_flags & CSD_FLAG_LOCK) {
688 err = -EBUSY;
689 goto out;
690 }
691
692 csd->node.u_flags = CSD_FLAG_LOCK;
693 smp_wmb();
694
695 err = generic_exec_single(cpu, csd);
696
697out:
698 preempt_enable();
699
700 return err;
701}
702EXPORT_SYMBOL_GPL(smp_call_function_single_async);
703
704/*
705 * smp_call_function_any - Run a function on any of the given cpus
706 * @mask: The mask of cpus it can run on.
707 * @func: The function to run. This must be fast and non-blocking.
708 * @info: An arbitrary pointer to pass to the function.
709 * @wait: If true, wait until function has completed.
710 *
711 * Returns 0 on success, else a negative status code (if no cpus were online).
712 *
713 * Selection preference:
714 * 1) current cpu if in @mask
715 * 2) any cpu of current node if in @mask
716 * 3) any other online cpu in @mask
717 */
718int smp_call_function_any(const struct cpumask *mask,
719 smp_call_func_t func, void *info, int wait)
720{
721 unsigned int cpu;
722 const struct cpumask *nodemask;
723 int ret;
724
725 /* Try for same CPU (cheapest) */
726 cpu = get_cpu();
727 if (cpumask_test_cpu(cpu, mask))
728 goto call;
729
730 /* Try for same node. */
731 nodemask = cpumask_of_node(cpu_to_node(cpu));
732 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
733 cpu = cpumask_next_and(cpu, nodemask, mask)) {
734 if (cpu_online(cpu))
735 goto call;
736 }
737
738 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */
739 cpu = cpumask_any_and(mask, cpu_online_mask);
740call:
741 ret = smp_call_function_single(cpu, func, info, wait);
742 put_cpu();
743 return ret;
744}
745EXPORT_SYMBOL_GPL(smp_call_function_any);
746
747/*
748 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
749 *
750 * %SCF_WAIT: Wait until function execution is completed
751 * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask
752 */
753#define SCF_WAIT (1U << 0)
754#define SCF_RUN_LOCAL (1U << 1)
755
756static void smp_call_function_many_cond(const struct cpumask *mask,
757 smp_call_func_t func, void *info,
758 unsigned int scf_flags,
759 smp_cond_func_t cond_func)
760{
761 int cpu, last_cpu, this_cpu = smp_processor_id();
762 struct call_function_data *cfd;
763 bool wait = scf_flags & SCF_WAIT;
764 int nr_cpus = 0;
765 bool run_remote = false;
766 bool run_local = false;
767
768 lockdep_assert_preemption_disabled();
769
770 /*
771 * Can deadlock when called with interrupts disabled.
772 * We allow cpu's that are not yet online though, as no one else can
773 * send smp call function interrupt to this cpu and as such deadlocks
774 * can't happen.
775 */
776 if (cpu_online(this_cpu) && !oops_in_progress &&
777 !early_boot_irqs_disabled)
778 lockdep_assert_irqs_enabled();
779
780 /*
781 * When @wait we can deadlock when we interrupt between llist_add() and
782 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
783 * csd_lock() on because the interrupt context uses the same csd
784 * storage.
785 */
786 WARN_ON_ONCE(!in_task());
787
788 /* Check if we need local execution. */
789 if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
790 run_local = true;
791
792 /* Check if we need remote execution, i.e., any CPU excluding this one. */
793 cpu = cpumask_first_and(mask, cpu_online_mask);
794 if (cpu == this_cpu)
795 cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
796 if (cpu < nr_cpu_ids)
797 run_remote = true;
798
799 if (run_remote) {
800 cfd = this_cpu_ptr(&cfd_data);
801 cpumask_and(cfd->cpumask, mask, cpu_online_mask);
802 __cpumask_clear_cpu(this_cpu, cfd->cpumask);
803
804 cpumask_clear(cfd->cpumask_ipi);
805 for_each_cpu(cpu, cfd->cpumask) {
806 call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
807
808 if (cond_func && !cond_func(cpu, info)) {
809 __cpumask_clear_cpu(cpu, cfd->cpumask);
810 continue;
811 }
812
813 csd_lock(csd);
814 if (wait)
815 csd->node.u_flags |= CSD_TYPE_SYNC;
816 csd->func = func;
817 csd->info = info;
818#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
819 csd->node.src = smp_processor_id();
820 csd->node.dst = cpu;
821#endif
822 trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
823
824 if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
825 __cpumask_set_cpu(cpu, cfd->cpumask_ipi);
826 nr_cpus++;
827 last_cpu = cpu;
828 }
829 }
830
831 /*
832 * Choose the most efficient way to send an IPI. Note that the
833 * number of CPUs might be zero due to concurrent changes to the
834 * provided mask.
835 */
836 if (nr_cpus == 1)
837 send_call_function_single_ipi(last_cpu);
838 else if (likely(nr_cpus > 1))
839 send_call_function_ipi_mask(cfd->cpumask_ipi);
840 }
841
842 if (run_local && (!cond_func || cond_func(this_cpu, info))) {
843 unsigned long flags;
844
845 local_irq_save(flags);
846 csd_do_func(func, info, NULL);
847 local_irq_restore(flags);
848 }
849
850 if (run_remote && wait) {
851 for_each_cpu(cpu, cfd->cpumask) {
852 call_single_data_t *csd;
853
854 csd = per_cpu_ptr(cfd->csd, cpu);
855 csd_lock_wait(csd);
856 }
857 }
858}
859
860/**
861 * smp_call_function_many(): Run a function on a set of CPUs.
862 * @mask: The set of cpus to run on (only runs on online subset).
863 * @func: The function to run. This must be fast and non-blocking.
864 * @info: An arbitrary pointer to pass to the function.
865 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
866 * (atomically) until function has completed on other CPUs. If
867 * %SCF_RUN_LOCAL is set, the function will also be run locally
868 * if the local CPU is set in the @cpumask.
869 *
870 * If @wait is true, then returns once @func has returned.
871 *
872 * You must not call this function with disabled interrupts or from a
873 * hardware interrupt handler or from a bottom half handler. Preemption
874 * must be disabled when calling this function.
875 */
876void smp_call_function_many(const struct cpumask *mask,
877 smp_call_func_t func, void *info, bool wait)
878{
879 smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
880}
881EXPORT_SYMBOL(smp_call_function_many);
882
883/**
884 * smp_call_function(): Run a function on all other CPUs.
885 * @func: The function to run. This must be fast and non-blocking.
886 * @info: An arbitrary pointer to pass to the function.
887 * @wait: If true, wait (atomically) until function has completed
888 * on other CPUs.
889 *
890 * Returns 0.
891 *
892 * If @wait is true, then returns once @func has returned; otherwise
893 * it returns just before the target cpu calls @func.
894 *
895 * You must not call this function with disabled interrupts or from a
896 * hardware interrupt handler or from a bottom half handler.
897 */
898void smp_call_function(smp_call_func_t func, void *info, int wait)
899{
900 preempt_disable();
901 smp_call_function_many(cpu_online_mask, func, info, wait);
902 preempt_enable();
903}
904EXPORT_SYMBOL(smp_call_function);
905
906/* Setup configured maximum number of CPUs to activate */
907unsigned int setup_max_cpus = NR_CPUS;
908EXPORT_SYMBOL(setup_max_cpus);
909
910
911/*
912 * Setup routine for controlling SMP activation
913 *
914 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
915 * activation entirely (the MPS table probe still happens, though).
916 *
917 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
918 * greater than 0, limits the maximum number of CPUs activated in
919 * SMP mode to <NUM>.
920 */
921
922void __weak __init arch_disable_smp_support(void) { }
923
924static int __init nosmp(char *str)
925{
926 setup_max_cpus = 0;
927 arch_disable_smp_support();
928
929 return 0;
930}
931
932early_param("nosmp", nosmp);
933
934/* this is hard limit */
935static int __init nrcpus(char *str)
936{
937 int nr_cpus;
938
939 if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
940 set_nr_cpu_ids(nr_cpus);
941
942 return 0;
943}
944
945early_param("nr_cpus", nrcpus);
946
947static int __init maxcpus(char *str)
948{
949 get_option(&str, &setup_max_cpus);
950 if (setup_max_cpus == 0)
951 arch_disable_smp_support();
952
953 return 0;
954}
955
956early_param("maxcpus", maxcpus);
957
958#if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
959/* Setup number of possible processor ids */
960unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
961EXPORT_SYMBOL(nr_cpu_ids);
962#endif
963
964/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
965void __init setup_nr_cpu_ids(void)
966{
967 set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
968}
969
970/* Called by boot processor to activate the rest. */
971void __init smp_init(void)
972{
973 int num_nodes, num_cpus;
974
975 idle_threads_init();
976 cpuhp_threads_init();
977
978 pr_info("Bringing up secondary CPUs ...\n");
979
980 bringup_nonboot_cpus(setup_max_cpus);
981
982 num_nodes = num_online_nodes();
983 num_cpus = num_online_cpus();
984 pr_info("Brought up %d node%s, %d CPU%s\n",
985 num_nodes, (num_nodes > 1 ? "s" : ""),
986 num_cpus, (num_cpus > 1 ? "s" : ""));
987
988 /* Any cleanup work */
989 smp_cpus_done(setup_max_cpus);
990}
991
992/*
993 * on_each_cpu_cond(): Call a function on each processor for which
994 * the supplied function cond_func returns true, optionally waiting
995 * for all the required CPUs to finish. This may include the local
996 * processor.
997 * @cond_func: A callback function that is passed a cpu id and
998 * the info parameter. The function is called
999 * with preemption disabled. The function should
1000 * return a blooean value indicating whether to IPI
1001 * the specified CPU.
1002 * @func: The function to run on all applicable CPUs.
1003 * This must be fast and non-blocking.
1004 * @info: An arbitrary pointer to pass to both functions.
1005 * @wait: If true, wait (atomically) until function has
1006 * completed on other CPUs.
1007 *
1008 * Preemption is disabled to protect against CPUs going offline but not online.
1009 * CPUs going online during the call will not be seen or sent an IPI.
1010 *
1011 * You must not call this function with disabled interrupts or
1012 * from a hardware interrupt handler or from a bottom half handler.
1013 */
1014void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1015 void *info, bool wait, const struct cpumask *mask)
1016{
1017 unsigned int scf_flags = SCF_RUN_LOCAL;
1018
1019 if (wait)
1020 scf_flags |= SCF_WAIT;
1021
1022 preempt_disable();
1023 smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1024 preempt_enable();
1025}
1026EXPORT_SYMBOL(on_each_cpu_cond_mask);
1027
1028static void do_nothing(void *unused)
1029{
1030}
1031
1032/**
1033 * kick_all_cpus_sync - Force all cpus out of idle
1034 *
1035 * Used to synchronize the update of pm_idle function pointer. It's
1036 * called after the pointer is updated and returns after the dummy
1037 * callback function has been executed on all cpus. The execution of
1038 * the function can only happen on the remote cpus after they have
1039 * left the idle function which had been called via pm_idle function
1040 * pointer. So it's guaranteed that nothing uses the previous pointer
1041 * anymore.
1042 */
1043void kick_all_cpus_sync(void)
1044{
1045 /* Make sure the change is visible before we kick the cpus */
1046 smp_mb();
1047 smp_call_function(do_nothing, NULL, 1);
1048}
1049EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1050
1051/**
1052 * wake_up_all_idle_cpus - break all cpus out of idle
1053 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1054 * including idle polling cpus, for non-idle cpus, we will do nothing
1055 * for them.
1056 */
1057void wake_up_all_idle_cpus(void)
1058{
1059 int cpu;
1060
1061 for_each_possible_cpu(cpu) {
1062 preempt_disable();
1063 if (cpu != smp_processor_id() && cpu_online(cpu))
1064 wake_up_if_idle(cpu);
1065 preempt_enable();
1066 }
1067}
1068EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1069
1070/**
1071 * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1072 * @work: &work_struct
1073 * @done: &completion to signal
1074 * @func: function to call
1075 * @data: function's data argument
1076 * @ret: return value from @func
1077 * @cpu: target CPU (%-1 for any CPU)
1078 *
1079 * Used to call a function on a specific cpu and wait for it to return.
1080 * Optionally make sure the call is done on a specified physical cpu via vcpu
1081 * pinning in order to support virtualized environments.
1082 */
1083struct smp_call_on_cpu_struct {
1084 struct work_struct work;
1085 struct completion done;
1086 int (*func)(void *);
1087 void *data;
1088 int ret;
1089 int cpu;
1090};
1091
1092static void smp_call_on_cpu_callback(struct work_struct *work)
1093{
1094 struct smp_call_on_cpu_struct *sscs;
1095
1096 sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1097 if (sscs->cpu >= 0)
1098 hypervisor_pin_vcpu(sscs->cpu);
1099 sscs->ret = sscs->func(sscs->data);
1100 if (sscs->cpu >= 0)
1101 hypervisor_pin_vcpu(-1);
1102
1103 complete(&sscs->done);
1104}
1105
1106int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1107{
1108 struct smp_call_on_cpu_struct sscs = {
1109 .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1110 .func = func,
1111 .data = par,
1112 .cpu = phys ? cpu : -1,
1113 };
1114
1115 INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1116
1117 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1118 return -ENXIO;
1119
1120 queue_work_on(cpu, system_wq, &sscs.work);
1121 wait_for_completion(&sscs.done);
1122
1123 return sscs.ret;
1124}
1125EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic helpers for smp ipi calls
4 *
5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/irq_work.h>
11#include <linux/rcupdate.h>
12#include <linux/rculist.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/percpu.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/gfp.h>
19#include <linux/smp.h>
20#include <linux/cpu.h>
21#include <linux/sched.h>
22#include <linux/sched/idle.h>
23#include <linux/hypervisor.h>
24#include <linux/sched/clock.h>
25#include <linux/nmi.h>
26#include <linux/sched/debug.h>
27#include <linux/jump_label.h>
28
29#include "smpboot.h"
30#include "sched/smp.h"
31
32#define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
33
34#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
35union cfd_seq_cnt {
36 u64 val;
37 struct {
38 u64 src:16;
39 u64 dst:16;
40#define CFD_SEQ_NOCPU 0xffff
41 u64 type:4;
42#define CFD_SEQ_QUEUE 0
43#define CFD_SEQ_IPI 1
44#define CFD_SEQ_NOIPI 2
45#define CFD_SEQ_PING 3
46#define CFD_SEQ_PINGED 4
47#define CFD_SEQ_HANDLE 5
48#define CFD_SEQ_DEQUEUE 6
49#define CFD_SEQ_IDLE 7
50#define CFD_SEQ_GOTIPI 8
51#define CFD_SEQ_HDLEND 9
52 u64 cnt:28;
53 } u;
54};
55
56static char *seq_type[] = {
57 [CFD_SEQ_QUEUE] = "queue",
58 [CFD_SEQ_IPI] = "ipi",
59 [CFD_SEQ_NOIPI] = "noipi",
60 [CFD_SEQ_PING] = "ping",
61 [CFD_SEQ_PINGED] = "pinged",
62 [CFD_SEQ_HANDLE] = "handle",
63 [CFD_SEQ_DEQUEUE] = "dequeue (src CPU 0 == empty)",
64 [CFD_SEQ_IDLE] = "idle",
65 [CFD_SEQ_GOTIPI] = "gotipi",
66 [CFD_SEQ_HDLEND] = "hdlend (src CPU 0 == early)",
67};
68
69struct cfd_seq_local {
70 u64 ping;
71 u64 pinged;
72 u64 handle;
73 u64 dequeue;
74 u64 idle;
75 u64 gotipi;
76 u64 hdlend;
77};
78#endif
79
80struct cfd_percpu {
81 call_single_data_t csd;
82#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
83 u64 seq_queue;
84 u64 seq_ipi;
85 u64 seq_noipi;
86#endif
87};
88
89struct call_function_data {
90 struct cfd_percpu __percpu *pcpu;
91 cpumask_var_t cpumask;
92 cpumask_var_t cpumask_ipi;
93};
94
95static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
96
97static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
98
99static void flush_smp_call_function_queue(bool warn_cpu_offline);
100
101int smpcfd_prepare_cpu(unsigned int cpu)
102{
103 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
104
105 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
106 cpu_to_node(cpu)))
107 return -ENOMEM;
108 if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
109 cpu_to_node(cpu))) {
110 free_cpumask_var(cfd->cpumask);
111 return -ENOMEM;
112 }
113 cfd->pcpu = alloc_percpu(struct cfd_percpu);
114 if (!cfd->pcpu) {
115 free_cpumask_var(cfd->cpumask);
116 free_cpumask_var(cfd->cpumask_ipi);
117 return -ENOMEM;
118 }
119
120 return 0;
121}
122
123int smpcfd_dead_cpu(unsigned int cpu)
124{
125 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
126
127 free_cpumask_var(cfd->cpumask);
128 free_cpumask_var(cfd->cpumask_ipi);
129 free_percpu(cfd->pcpu);
130 return 0;
131}
132
133int smpcfd_dying_cpu(unsigned int cpu)
134{
135 /*
136 * The IPIs for the smp-call-function callbacks queued by other
137 * CPUs might arrive late, either due to hardware latencies or
138 * because this CPU disabled interrupts (inside stop-machine)
139 * before the IPIs were sent. So flush out any pending callbacks
140 * explicitly (without waiting for the IPIs to arrive), to
141 * ensure that the outgoing CPU doesn't go offline with work
142 * still pending.
143 */
144 flush_smp_call_function_queue(false);
145 irq_work_run();
146 return 0;
147}
148
149void __init call_function_init(void)
150{
151 int i;
152
153 for_each_possible_cpu(i)
154 init_llist_head(&per_cpu(call_single_queue, i));
155
156 smpcfd_prepare_cpu(smp_processor_id());
157}
158
159#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
160
161static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
162static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
163
164static int __init csdlock_debug(char *str)
165{
166 unsigned int val = 0;
167
168 if (str && !strcmp(str, "ext")) {
169 val = 1;
170 static_branch_enable(&csdlock_debug_extended);
171 } else
172 get_option(&str, &val);
173
174 if (val)
175 static_branch_enable(&csdlock_debug_enabled);
176
177 return 0;
178}
179early_param("csdlock_debug", csdlock_debug);
180
181static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
182static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
183static DEFINE_PER_CPU(void *, cur_csd_info);
184static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
185
186#define CSD_LOCK_TIMEOUT (5ULL * NSEC_PER_SEC)
187static atomic_t csd_bug_count = ATOMIC_INIT(0);
188static u64 cfd_seq;
189
190#define CFD_SEQ(s, d, t, c) \
191 (union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
192
193static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
194{
195 union cfd_seq_cnt new, old;
196
197 new = CFD_SEQ(src, dst, type, 0);
198
199 do {
200 old.val = READ_ONCE(cfd_seq);
201 new.u.cnt = old.u.cnt + 1;
202 } while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
203
204 return old.val;
205}
206
207#define cfd_seq_store(var, src, dst, type) \
208 do { \
209 if (static_branch_unlikely(&csdlock_debug_extended)) \
210 var = cfd_seq_inc(src, dst, type); \
211 } while (0)
212
213/* Record current CSD work for current CPU, NULL to erase. */
214static void __csd_lock_record(struct __call_single_data *csd)
215{
216 if (!csd) {
217 smp_mb(); /* NULL cur_csd after unlock. */
218 __this_cpu_write(cur_csd, NULL);
219 return;
220 }
221 __this_cpu_write(cur_csd_func, csd->func);
222 __this_cpu_write(cur_csd_info, csd->info);
223 smp_wmb(); /* func and info before csd. */
224 __this_cpu_write(cur_csd, csd);
225 smp_mb(); /* Update cur_csd before function call. */
226 /* Or before unlock, as the case may be. */
227}
228
229static __always_inline void csd_lock_record(struct __call_single_data *csd)
230{
231 if (static_branch_unlikely(&csdlock_debug_enabled))
232 __csd_lock_record(csd);
233}
234
235static int csd_lock_wait_getcpu(struct __call_single_data *csd)
236{
237 unsigned int csd_type;
238
239 csd_type = CSD_TYPE(csd);
240 if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
241 return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
242 return -1;
243}
244
245static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
246 unsigned int type, union cfd_seq_cnt *data,
247 unsigned int *n_data, unsigned int now)
248{
249 union cfd_seq_cnt new[2];
250 unsigned int i, j, k;
251
252 new[0].val = val;
253 new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
254
255 for (i = 0; i < 2; i++) {
256 if (new[i].u.cnt <= now)
257 new[i].u.cnt |= 0x80000000U;
258 for (j = 0; j < *n_data; j++) {
259 if (new[i].u.cnt == data[j].u.cnt) {
260 /* Direct read value trumps generated one. */
261 if (i == 0)
262 data[j].val = new[i].val;
263 break;
264 }
265 if (new[i].u.cnt < data[j].u.cnt) {
266 for (k = *n_data; k > j; k--)
267 data[k].val = data[k - 1].val;
268 data[j].val = new[i].val;
269 (*n_data)++;
270 break;
271 }
272 }
273 if (j == *n_data) {
274 data[j].val = new[i].val;
275 (*n_data)++;
276 }
277 }
278}
279
280static const char *csd_lock_get_type(unsigned int type)
281{
282 return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
283}
284
285static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
286{
287 struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
288 unsigned int srccpu = csd->node.src;
289 struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
290 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
291 unsigned int now;
292 union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
293 unsigned int n_data = 0, i;
294
295 data[0].val = READ_ONCE(cfd_seq);
296 now = data[0].u.cnt;
297
298 cfd_seq_data_add(pcpu->seq_queue, srccpu, cpu, CFD_SEQ_QUEUE, data, &n_data, now);
299 cfd_seq_data_add(pcpu->seq_ipi, srccpu, cpu, CFD_SEQ_IPI, data, &n_data, now);
300 cfd_seq_data_add(pcpu->seq_noipi, srccpu, cpu, CFD_SEQ_NOIPI, data, &n_data, now);
301
302 cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING, data, &n_data, now);
303 cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
304
305 cfd_seq_data_add(seq->idle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE, data, &n_data, now);
306 cfd_seq_data_add(seq->gotipi, CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI, data, &n_data, now);
307 cfd_seq_data_add(seq->handle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE, data, &n_data, now);
308 cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
309 cfd_seq_data_add(seq->hdlend, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND, data, &n_data, now);
310
311 for (i = 0; i < n_data; i++) {
312 pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
313 data[i].u.cnt & ~0x80000000U, data[i].u.src,
314 data[i].u.dst, csd_lock_get_type(data[i].u.type));
315 }
316 pr_alert("\tcsd: cnt now: %07x\n", now);
317}
318
319/*
320 * Complain if too much time spent waiting. Note that only
321 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
322 * so waiting on other types gets much less information.
323 */
324static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
325{
326 int cpu = -1;
327 int cpux;
328 bool firsttime;
329 u64 ts2, ts_delta;
330 call_single_data_t *cpu_cur_csd;
331 unsigned int flags = READ_ONCE(csd->node.u_flags);
332
333 if (!(flags & CSD_FLAG_LOCK)) {
334 if (!unlikely(*bug_id))
335 return true;
336 cpu = csd_lock_wait_getcpu(csd);
337 pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
338 *bug_id, raw_smp_processor_id(), cpu);
339 return true;
340 }
341
342 ts2 = sched_clock();
343 ts_delta = ts2 - *ts1;
344 if (likely(ts_delta <= CSD_LOCK_TIMEOUT))
345 return false;
346
347 firsttime = !*bug_id;
348 if (firsttime)
349 *bug_id = atomic_inc_return(&csd_bug_count);
350 cpu = csd_lock_wait_getcpu(csd);
351 if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
352 cpux = 0;
353 else
354 cpux = cpu;
355 cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
356 pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
357 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
358 cpu, csd->func, csd->info);
359 if (cpu_cur_csd && csd != cpu_cur_csd) {
360 pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
361 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
362 READ_ONCE(per_cpu(cur_csd_info, cpux)));
363 } else {
364 pr_alert("\tcsd: CSD lock (#%d) %s.\n",
365 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
366 }
367 if (cpu >= 0) {
368 if (static_branch_unlikely(&csdlock_debug_extended))
369 csd_lock_print_extended(csd, cpu);
370 if (!trigger_single_cpu_backtrace(cpu))
371 dump_cpu_task(cpu);
372 if (!cpu_cur_csd) {
373 pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
374 arch_send_call_function_single_ipi(cpu);
375 }
376 }
377 dump_stack();
378 *ts1 = ts2;
379
380 return false;
381}
382
383/*
384 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
385 *
386 * For non-synchronous ipi calls the csd can still be in use by the
387 * previous function call. For multi-cpu calls its even more interesting
388 * as we'll have to ensure no other cpu is observing our csd.
389 */
390static void __csd_lock_wait(struct __call_single_data *csd)
391{
392 int bug_id = 0;
393 u64 ts0, ts1;
394
395 ts1 = ts0 = sched_clock();
396 for (;;) {
397 if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
398 break;
399 cpu_relax();
400 }
401 smp_acquire__after_ctrl_dep();
402}
403
404static __always_inline void csd_lock_wait(struct __call_single_data *csd)
405{
406 if (static_branch_unlikely(&csdlock_debug_enabled)) {
407 __csd_lock_wait(csd);
408 return;
409 }
410
411 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
412}
413
414static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
415{
416 unsigned int this_cpu = smp_processor_id();
417 struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
418 struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
419 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
420
421 cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
422 if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
423 cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
424 cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
425 send_call_function_single_ipi(cpu);
426 cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
427 } else {
428 cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
429 }
430}
431#else
432#define cfd_seq_store(var, src, dst, type)
433
434static void csd_lock_record(struct __call_single_data *csd)
435{
436}
437
438static __always_inline void csd_lock_wait(struct __call_single_data *csd)
439{
440 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
441}
442#endif
443
444static __always_inline void csd_lock(struct __call_single_data *csd)
445{
446 csd_lock_wait(csd);
447 csd->node.u_flags |= CSD_FLAG_LOCK;
448
449 /*
450 * prevent CPU from reordering the above assignment
451 * to ->flags with any subsequent assignments to other
452 * fields of the specified call_single_data_t structure:
453 */
454 smp_wmb();
455}
456
457static __always_inline void csd_unlock(struct __call_single_data *csd)
458{
459 WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
460
461 /*
462 * ensure we're all done before releasing data:
463 */
464 smp_store_release(&csd->node.u_flags, 0);
465}
466
467static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
468
469void __smp_call_single_queue(int cpu, struct llist_node *node)
470{
471#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
472 if (static_branch_unlikely(&csdlock_debug_extended)) {
473 unsigned int type;
474
475 type = CSD_TYPE(container_of(node, call_single_data_t,
476 node.llist));
477 if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
478 __smp_call_single_queue_debug(cpu, node);
479 return;
480 }
481 }
482#endif
483
484 /*
485 * The list addition should be visible before sending the IPI
486 * handler locks the list to pull the entry off it because of
487 * normal cache coherency rules implied by spinlocks.
488 *
489 * If IPIs can go out of order to the cache coherency protocol
490 * in an architecture, sufficient synchronisation should be added
491 * to arch code to make it appear to obey cache coherency WRT
492 * locking and barrier primitives. Generic code isn't really
493 * equipped to do the right thing...
494 */
495 if (llist_add(node, &per_cpu(call_single_queue, cpu)))
496 send_call_function_single_ipi(cpu);
497}
498
499/*
500 * Insert a previously allocated call_single_data_t element
501 * for execution on the given CPU. data must already have
502 * ->func, ->info, and ->flags set.
503 */
504static int generic_exec_single(int cpu, struct __call_single_data *csd)
505{
506 if (cpu == smp_processor_id()) {
507 smp_call_func_t func = csd->func;
508 void *info = csd->info;
509 unsigned long flags;
510
511 /*
512 * We can unlock early even for the synchronous on-stack case,
513 * since we're doing this from the same CPU..
514 */
515 csd_lock_record(csd);
516 csd_unlock(csd);
517 local_irq_save(flags);
518 func(info);
519 csd_lock_record(NULL);
520 local_irq_restore(flags);
521 return 0;
522 }
523
524 if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
525 csd_unlock(csd);
526 return -ENXIO;
527 }
528
529 __smp_call_single_queue(cpu, &csd->node.llist);
530
531 return 0;
532}
533
534/**
535 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
536 *
537 * Invoked by arch to handle an IPI for call function single.
538 * Must be called with interrupts disabled.
539 */
540void generic_smp_call_function_single_interrupt(void)
541{
542 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
543 smp_processor_id(), CFD_SEQ_GOTIPI);
544 flush_smp_call_function_queue(true);
545}
546
547/**
548 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
549 *
550 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
551 * offline CPU. Skip this check if set to 'false'.
552 *
553 * Flush any pending smp-call-function callbacks queued on this CPU. This is
554 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
555 * to ensure that all pending IPI callbacks are run before it goes completely
556 * offline.
557 *
558 * Loop through the call_single_queue and run all the queued callbacks.
559 * Must be called with interrupts disabled.
560 */
561static void flush_smp_call_function_queue(bool warn_cpu_offline)
562{
563 call_single_data_t *csd, *csd_next;
564 struct llist_node *entry, *prev;
565 struct llist_head *head;
566 static bool warned;
567
568 lockdep_assert_irqs_disabled();
569
570 head = this_cpu_ptr(&call_single_queue);
571 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
572 smp_processor_id(), CFD_SEQ_HANDLE);
573 entry = llist_del_all(head);
574 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
575 /* Special meaning of source cpu: 0 == queue empty */
576 entry ? CFD_SEQ_NOCPU : 0,
577 smp_processor_id(), CFD_SEQ_DEQUEUE);
578 entry = llist_reverse_order(entry);
579
580 /* There shouldn't be any pending callbacks on an offline CPU. */
581 if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
582 !warned && !llist_empty(head))) {
583 warned = true;
584 WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
585
586 /*
587 * We don't have to use the _safe() variant here
588 * because we are not invoking the IPI handlers yet.
589 */
590 llist_for_each_entry(csd, entry, node.llist) {
591 switch (CSD_TYPE(csd)) {
592 case CSD_TYPE_ASYNC:
593 case CSD_TYPE_SYNC:
594 case CSD_TYPE_IRQ_WORK:
595 pr_warn("IPI callback %pS sent to offline CPU\n",
596 csd->func);
597 break;
598
599 case CSD_TYPE_TTWU:
600 pr_warn("IPI task-wakeup sent to offline CPU\n");
601 break;
602
603 default:
604 pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
605 CSD_TYPE(csd));
606 break;
607 }
608 }
609 }
610
611 /*
612 * First; run all SYNC callbacks, people are waiting for us.
613 */
614 prev = NULL;
615 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
616 /* Do we wait until *after* callback? */
617 if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
618 smp_call_func_t func = csd->func;
619 void *info = csd->info;
620
621 if (prev) {
622 prev->next = &csd_next->node.llist;
623 } else {
624 entry = &csd_next->node.llist;
625 }
626
627 csd_lock_record(csd);
628 func(info);
629 csd_unlock(csd);
630 csd_lock_record(NULL);
631 } else {
632 prev = &csd->node.llist;
633 }
634 }
635
636 if (!entry) {
637 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
638 0, smp_processor_id(),
639 CFD_SEQ_HDLEND);
640 return;
641 }
642
643 /*
644 * Second; run all !SYNC callbacks.
645 */
646 prev = NULL;
647 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
648 int type = CSD_TYPE(csd);
649
650 if (type != CSD_TYPE_TTWU) {
651 if (prev) {
652 prev->next = &csd_next->node.llist;
653 } else {
654 entry = &csd_next->node.llist;
655 }
656
657 if (type == CSD_TYPE_ASYNC) {
658 smp_call_func_t func = csd->func;
659 void *info = csd->info;
660
661 csd_lock_record(csd);
662 csd_unlock(csd);
663 func(info);
664 csd_lock_record(NULL);
665 } else if (type == CSD_TYPE_IRQ_WORK) {
666 irq_work_single(csd);
667 }
668
669 } else {
670 prev = &csd->node.llist;
671 }
672 }
673
674 /*
675 * Third; only CSD_TYPE_TTWU is left, issue those.
676 */
677 if (entry)
678 sched_ttwu_pending(entry);
679
680 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
681 smp_processor_id(), CFD_SEQ_HDLEND);
682}
683
684void flush_smp_call_function_from_idle(void)
685{
686 unsigned long flags;
687
688 if (llist_empty(this_cpu_ptr(&call_single_queue)))
689 return;
690
691 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
692 smp_processor_id(), CFD_SEQ_IDLE);
693 local_irq_save(flags);
694 flush_smp_call_function_queue(true);
695 if (local_softirq_pending())
696 do_softirq();
697
698 local_irq_restore(flags);
699}
700
701/*
702 * smp_call_function_single - Run a function on a specific CPU
703 * @func: The function to run. This must be fast and non-blocking.
704 * @info: An arbitrary pointer to pass to the function.
705 * @wait: If true, wait until function has completed on other CPUs.
706 *
707 * Returns 0 on success, else a negative status code.
708 */
709int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
710 int wait)
711{
712 call_single_data_t *csd;
713 call_single_data_t csd_stack = {
714 .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
715 };
716 int this_cpu;
717 int err;
718
719 /*
720 * prevent preemption and reschedule on another processor,
721 * as well as CPU removal
722 */
723 this_cpu = get_cpu();
724
725 /*
726 * Can deadlock when called with interrupts disabled.
727 * We allow cpu's that are not yet online though, as no one else can
728 * send smp call function interrupt to this cpu and as such deadlocks
729 * can't happen.
730 */
731 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
732 && !oops_in_progress);
733
734 /*
735 * When @wait we can deadlock when we interrupt between llist_add() and
736 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
737 * csd_lock() on because the interrupt context uses the same csd
738 * storage.
739 */
740 WARN_ON_ONCE(!in_task());
741
742 csd = &csd_stack;
743 if (!wait) {
744 csd = this_cpu_ptr(&csd_data);
745 csd_lock(csd);
746 }
747
748 csd->func = func;
749 csd->info = info;
750#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
751 csd->node.src = smp_processor_id();
752 csd->node.dst = cpu;
753#endif
754
755 err = generic_exec_single(cpu, csd);
756
757 if (wait)
758 csd_lock_wait(csd);
759
760 put_cpu();
761
762 return err;
763}
764EXPORT_SYMBOL(smp_call_function_single);
765
766/**
767 * smp_call_function_single_async(): Run an asynchronous function on a
768 * specific CPU.
769 * @cpu: The CPU to run on.
770 * @csd: Pre-allocated and setup data structure
771 *
772 * Like smp_call_function_single(), but the call is asynchonous and
773 * can thus be done from contexts with disabled interrupts.
774 *
775 * The caller passes his own pre-allocated data structure
776 * (ie: embedded in an object) and is responsible for synchronizing it
777 * such that the IPIs performed on the @csd are strictly serialized.
778 *
779 * If the function is called with one csd which has not yet been
780 * processed by previous call to smp_call_function_single_async(), the
781 * function will return immediately with -EBUSY showing that the csd
782 * object is still in progress.
783 *
784 * NOTE: Be careful, there is unfortunately no current debugging facility to
785 * validate the correctness of this serialization.
786 */
787int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
788{
789 int err = 0;
790
791 preempt_disable();
792
793 if (csd->node.u_flags & CSD_FLAG_LOCK) {
794 err = -EBUSY;
795 goto out;
796 }
797
798 csd->node.u_flags = CSD_FLAG_LOCK;
799 smp_wmb();
800
801 err = generic_exec_single(cpu, csd);
802
803out:
804 preempt_enable();
805
806 return err;
807}
808EXPORT_SYMBOL_GPL(smp_call_function_single_async);
809
810/*
811 * smp_call_function_any - Run a function on any of the given cpus
812 * @mask: The mask of cpus it can run on.
813 * @func: The function to run. This must be fast and non-blocking.
814 * @info: An arbitrary pointer to pass to the function.
815 * @wait: If true, wait until function has completed.
816 *
817 * Returns 0 on success, else a negative status code (if no cpus were online).
818 *
819 * Selection preference:
820 * 1) current cpu if in @mask
821 * 2) any cpu of current node if in @mask
822 * 3) any other online cpu in @mask
823 */
824int smp_call_function_any(const struct cpumask *mask,
825 smp_call_func_t func, void *info, int wait)
826{
827 unsigned int cpu;
828 const struct cpumask *nodemask;
829 int ret;
830
831 /* Try for same CPU (cheapest) */
832 cpu = get_cpu();
833 if (cpumask_test_cpu(cpu, mask))
834 goto call;
835
836 /* Try for same node. */
837 nodemask = cpumask_of_node(cpu_to_node(cpu));
838 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
839 cpu = cpumask_next_and(cpu, nodemask, mask)) {
840 if (cpu_online(cpu))
841 goto call;
842 }
843
844 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */
845 cpu = cpumask_any_and(mask, cpu_online_mask);
846call:
847 ret = smp_call_function_single(cpu, func, info, wait);
848 put_cpu();
849 return ret;
850}
851EXPORT_SYMBOL_GPL(smp_call_function_any);
852
853/*
854 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
855 *
856 * %SCF_WAIT: Wait until function execution is completed
857 * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask
858 */
859#define SCF_WAIT (1U << 0)
860#define SCF_RUN_LOCAL (1U << 1)
861
862static void smp_call_function_many_cond(const struct cpumask *mask,
863 smp_call_func_t func, void *info,
864 unsigned int scf_flags,
865 smp_cond_func_t cond_func)
866{
867 int cpu, last_cpu, this_cpu = smp_processor_id();
868 struct call_function_data *cfd;
869 bool wait = scf_flags & SCF_WAIT;
870 bool run_remote = false;
871 bool run_local = false;
872 int nr_cpus = 0;
873
874 lockdep_assert_preemption_disabled();
875
876 /*
877 * Can deadlock when called with interrupts disabled.
878 * We allow cpu's that are not yet online though, as no one else can
879 * send smp call function interrupt to this cpu and as such deadlocks
880 * can't happen.
881 */
882 if (cpu_online(this_cpu) && !oops_in_progress &&
883 !early_boot_irqs_disabled)
884 lockdep_assert_irqs_enabled();
885
886 /*
887 * When @wait we can deadlock when we interrupt between llist_add() and
888 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
889 * csd_lock() on because the interrupt context uses the same csd
890 * storage.
891 */
892 WARN_ON_ONCE(!in_task());
893
894 /* Check if we need local execution. */
895 if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
896 run_local = true;
897
898 /* Check if we need remote execution, i.e., any CPU excluding this one. */
899 cpu = cpumask_first_and(mask, cpu_online_mask);
900 if (cpu == this_cpu)
901 cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
902 if (cpu < nr_cpu_ids)
903 run_remote = true;
904
905 if (run_remote) {
906 cfd = this_cpu_ptr(&cfd_data);
907 cpumask_and(cfd->cpumask, mask, cpu_online_mask);
908 __cpumask_clear_cpu(this_cpu, cfd->cpumask);
909
910 cpumask_clear(cfd->cpumask_ipi);
911 for_each_cpu(cpu, cfd->cpumask) {
912 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
913 call_single_data_t *csd = &pcpu->csd;
914
915 if (cond_func && !cond_func(cpu, info))
916 continue;
917
918 csd_lock(csd);
919 if (wait)
920 csd->node.u_flags |= CSD_TYPE_SYNC;
921 csd->func = func;
922 csd->info = info;
923#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
924 csd->node.src = smp_processor_id();
925 csd->node.dst = cpu;
926#endif
927 cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
928 if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
929 __cpumask_set_cpu(cpu, cfd->cpumask_ipi);
930 nr_cpus++;
931 last_cpu = cpu;
932
933 cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
934 } else {
935 cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
936 }
937 }
938
939 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
940
941 /*
942 * Choose the most efficient way to send an IPI. Note that the
943 * number of CPUs might be zero due to concurrent changes to the
944 * provided mask.
945 */
946 if (nr_cpus == 1)
947 send_call_function_single_ipi(last_cpu);
948 else if (likely(nr_cpus > 1))
949 arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
950
951 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
952 }
953
954 if (run_local && (!cond_func || cond_func(this_cpu, info))) {
955 unsigned long flags;
956
957 local_irq_save(flags);
958 func(info);
959 local_irq_restore(flags);
960 }
961
962 if (run_remote && wait) {
963 for_each_cpu(cpu, cfd->cpumask) {
964 call_single_data_t *csd;
965
966 csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
967 csd_lock_wait(csd);
968 }
969 }
970}
971
972/**
973 * smp_call_function_many(): Run a function on a set of CPUs.
974 * @mask: The set of cpus to run on (only runs on online subset).
975 * @func: The function to run. This must be fast and non-blocking.
976 * @info: An arbitrary pointer to pass to the function.
977 * @flags: Bitmask that controls the operation. If %SCF_WAIT is set, wait
978 * (atomically) until function has completed on other CPUs. If
979 * %SCF_RUN_LOCAL is set, the function will also be run locally
980 * if the local CPU is set in the @cpumask.
981 *
982 * If @wait is true, then returns once @func has returned.
983 *
984 * You must not call this function with disabled interrupts or from a
985 * hardware interrupt handler or from a bottom half handler. Preemption
986 * must be disabled when calling this function.
987 */
988void smp_call_function_many(const struct cpumask *mask,
989 smp_call_func_t func, void *info, bool wait)
990{
991 smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
992}
993EXPORT_SYMBOL(smp_call_function_many);
994
995/**
996 * smp_call_function(): Run a function on all other CPUs.
997 * @func: The function to run. This must be fast and non-blocking.
998 * @info: An arbitrary pointer to pass to the function.
999 * @wait: If true, wait (atomically) until function has completed
1000 * on other CPUs.
1001 *
1002 * Returns 0.
1003 *
1004 * If @wait is true, then returns once @func has returned; otherwise
1005 * it returns just before the target cpu calls @func.
1006 *
1007 * You must not call this function with disabled interrupts or from a
1008 * hardware interrupt handler or from a bottom half handler.
1009 */
1010void smp_call_function(smp_call_func_t func, void *info, int wait)
1011{
1012 preempt_disable();
1013 smp_call_function_many(cpu_online_mask, func, info, wait);
1014 preempt_enable();
1015}
1016EXPORT_SYMBOL(smp_call_function);
1017
1018/* Setup configured maximum number of CPUs to activate */
1019unsigned int setup_max_cpus = NR_CPUS;
1020EXPORT_SYMBOL(setup_max_cpus);
1021
1022
1023/*
1024 * Setup routine for controlling SMP activation
1025 *
1026 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1027 * activation entirely (the MPS table probe still happens, though).
1028 *
1029 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1030 * greater than 0, limits the maximum number of CPUs activated in
1031 * SMP mode to <NUM>.
1032 */
1033
1034void __weak arch_disable_smp_support(void) { }
1035
1036static int __init nosmp(char *str)
1037{
1038 setup_max_cpus = 0;
1039 arch_disable_smp_support();
1040
1041 return 0;
1042}
1043
1044early_param("nosmp", nosmp);
1045
1046/* this is hard limit */
1047static int __init nrcpus(char *str)
1048{
1049 int nr_cpus;
1050
1051 if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1052 nr_cpu_ids = nr_cpus;
1053
1054 return 0;
1055}
1056
1057early_param("nr_cpus", nrcpus);
1058
1059static int __init maxcpus(char *str)
1060{
1061 get_option(&str, &setup_max_cpus);
1062 if (setup_max_cpus == 0)
1063 arch_disable_smp_support();
1064
1065 return 0;
1066}
1067
1068early_param("maxcpus", maxcpus);
1069
1070/* Setup number of possible processor ids */
1071unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1072EXPORT_SYMBOL(nr_cpu_ids);
1073
1074/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
1075void __init setup_nr_cpu_ids(void)
1076{
1077 nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
1078}
1079
1080/* Called by boot processor to activate the rest. */
1081void __init smp_init(void)
1082{
1083 int num_nodes, num_cpus;
1084
1085 idle_threads_init();
1086 cpuhp_threads_init();
1087
1088 pr_info("Bringing up secondary CPUs ...\n");
1089
1090 bringup_nonboot_cpus(setup_max_cpus);
1091
1092 num_nodes = num_online_nodes();
1093 num_cpus = num_online_cpus();
1094 pr_info("Brought up %d node%s, %d CPU%s\n",
1095 num_nodes, (num_nodes > 1 ? "s" : ""),
1096 num_cpus, (num_cpus > 1 ? "s" : ""));
1097
1098 /* Any cleanup work */
1099 smp_cpus_done(setup_max_cpus);
1100}
1101
1102/*
1103 * on_each_cpu_cond(): Call a function on each processor for which
1104 * the supplied function cond_func returns true, optionally waiting
1105 * for all the required CPUs to finish. This may include the local
1106 * processor.
1107 * @cond_func: A callback function that is passed a cpu id and
1108 * the info parameter. The function is called
1109 * with preemption disabled. The function should
1110 * return a blooean value indicating whether to IPI
1111 * the specified CPU.
1112 * @func: The function to run on all applicable CPUs.
1113 * This must be fast and non-blocking.
1114 * @info: An arbitrary pointer to pass to both functions.
1115 * @wait: If true, wait (atomically) until function has
1116 * completed on other CPUs.
1117 *
1118 * Preemption is disabled to protect against CPUs going offline but not online.
1119 * CPUs going online during the call will not be seen or sent an IPI.
1120 *
1121 * You must not call this function with disabled interrupts or
1122 * from a hardware interrupt handler or from a bottom half handler.
1123 */
1124void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1125 void *info, bool wait, const struct cpumask *mask)
1126{
1127 unsigned int scf_flags = SCF_RUN_LOCAL;
1128
1129 if (wait)
1130 scf_flags |= SCF_WAIT;
1131
1132 preempt_disable();
1133 smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1134 preempt_enable();
1135}
1136EXPORT_SYMBOL(on_each_cpu_cond_mask);
1137
1138static void do_nothing(void *unused)
1139{
1140}
1141
1142/**
1143 * kick_all_cpus_sync - Force all cpus out of idle
1144 *
1145 * Used to synchronize the update of pm_idle function pointer. It's
1146 * called after the pointer is updated and returns after the dummy
1147 * callback function has been executed on all cpus. The execution of
1148 * the function can only happen on the remote cpus after they have
1149 * left the idle function which had been called via pm_idle function
1150 * pointer. So it's guaranteed that nothing uses the previous pointer
1151 * anymore.
1152 */
1153void kick_all_cpus_sync(void)
1154{
1155 /* Make sure the change is visible before we kick the cpus */
1156 smp_mb();
1157 smp_call_function(do_nothing, NULL, 1);
1158}
1159EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1160
1161/**
1162 * wake_up_all_idle_cpus - break all cpus out of idle
1163 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1164 * including idle polling cpus, for non-idle cpus, we will do nothing
1165 * for them.
1166 */
1167void wake_up_all_idle_cpus(void)
1168{
1169 int cpu;
1170
1171 preempt_disable();
1172 for_each_online_cpu(cpu) {
1173 if (cpu == smp_processor_id())
1174 continue;
1175
1176 wake_up_if_idle(cpu);
1177 }
1178 preempt_enable();
1179}
1180EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1181
1182/**
1183 * smp_call_on_cpu - Call a function on a specific cpu
1184 *
1185 * Used to call a function on a specific cpu and wait for it to return.
1186 * Optionally make sure the call is done on a specified physical cpu via vcpu
1187 * pinning in order to support virtualized environments.
1188 */
1189struct smp_call_on_cpu_struct {
1190 struct work_struct work;
1191 struct completion done;
1192 int (*func)(void *);
1193 void *data;
1194 int ret;
1195 int cpu;
1196};
1197
1198static void smp_call_on_cpu_callback(struct work_struct *work)
1199{
1200 struct smp_call_on_cpu_struct *sscs;
1201
1202 sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1203 if (sscs->cpu >= 0)
1204 hypervisor_pin_vcpu(sscs->cpu);
1205 sscs->ret = sscs->func(sscs->data);
1206 if (sscs->cpu >= 0)
1207 hypervisor_pin_vcpu(-1);
1208
1209 complete(&sscs->done);
1210}
1211
1212int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1213{
1214 struct smp_call_on_cpu_struct sscs = {
1215 .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1216 .func = func,
1217 .data = par,
1218 .cpu = phys ? cpu : -1,
1219 };
1220
1221 INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1222
1223 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1224 return -ENXIO;
1225
1226 queue_work_on(cpu, system_wq, &sscs.work);
1227 wait_for_completion(&sscs.done);
1228
1229 return sscs.ret;
1230}
1231EXPORT_SYMBOL_GPL(smp_call_on_cpu);