Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/sched/debug.c
   4 *
   5 * Print the CFS rbtree and other debugging details
   6 *
   7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   8 */
 
   9
  10/*
  11 * This allows printing both to /sys/kernel/debug/sched/debug and
  12 * to the console
  13 */
  14#define SEQ_printf(m, x...)			\
  15 do {						\
  16	if (m)					\
  17		seq_printf(m, x);		\
  18	else					\
  19		pr_cont(x);			\
  20 } while (0)
  21
  22/*
  23 * Ease the printing of nsec fields:
  24 */
  25static long long nsec_high(unsigned long long nsec)
  26{
  27	if ((long long)nsec < 0) {
  28		nsec = -nsec;
  29		do_div(nsec, 1000000);
  30		return -nsec;
  31	}
  32	do_div(nsec, 1000000);
  33
  34	return nsec;
  35}
  36
  37static unsigned long nsec_low(unsigned long long nsec)
  38{
  39	if ((long long)nsec < 0)
  40		nsec = -nsec;
  41
  42	return do_div(nsec, 1000000);
  43}
  44
  45#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  46
  47#define SCHED_FEAT(name, enabled)	\
  48	#name ,
  49
  50static const char * const sched_feat_names[] = {
  51#include "features.h"
  52};
  53
  54#undef SCHED_FEAT
  55
  56static int sched_feat_show(struct seq_file *m, void *v)
  57{
  58	int i;
  59
  60	for (i = 0; i < __SCHED_FEAT_NR; i++) {
  61		if (!(sysctl_sched_features & (1UL << i)))
  62			seq_puts(m, "NO_");
  63		seq_printf(m, "%s ", sched_feat_names[i]);
  64	}
  65	seq_puts(m, "\n");
  66
  67	return 0;
  68}
  69
  70#ifdef CONFIG_JUMP_LABEL
  71
  72#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  73#define jump_label_key__false STATIC_KEY_INIT_FALSE
  74
  75#define SCHED_FEAT(name, enabled)	\
  76	jump_label_key__##enabled ,
  77
  78struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  79#include "features.h"
  80};
  81
  82#undef SCHED_FEAT
  83
  84static void sched_feat_disable(int i)
  85{
  86	static_key_disable_cpuslocked(&sched_feat_keys[i]);
  87}
  88
  89static void sched_feat_enable(int i)
  90{
  91	static_key_enable_cpuslocked(&sched_feat_keys[i]);
  92}
  93#else
  94static void sched_feat_disable(int i) { };
  95static void sched_feat_enable(int i) { };
  96#endif /* CONFIG_JUMP_LABEL */
  97
  98static int sched_feat_set(char *cmp)
  99{
 100	int i;
 101	int neg = 0;
 102
 103	if (strncmp(cmp, "NO_", 3) == 0) {
 104		neg = 1;
 105		cmp += 3;
 106	}
 107
 108	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
 109	if (i < 0)
 110		return i;
 111
 112	if (neg) {
 113		sysctl_sched_features &= ~(1UL << i);
 114		sched_feat_disable(i);
 115	} else {
 116		sysctl_sched_features |= (1UL << i);
 117		sched_feat_enable(i);
 118	}
 119
 120	return 0;
 121}
 122
 123static ssize_t
 124sched_feat_write(struct file *filp, const char __user *ubuf,
 125		size_t cnt, loff_t *ppos)
 126{
 127	char buf[64];
 128	char *cmp;
 129	int ret;
 130	struct inode *inode;
 131
 132	if (cnt > 63)
 133		cnt = 63;
 134
 135	if (copy_from_user(&buf, ubuf, cnt))
 136		return -EFAULT;
 137
 138	buf[cnt] = 0;
 139	cmp = strstrip(buf);
 140
 141	/* Ensure the static_key remains in a consistent state */
 142	inode = file_inode(filp);
 143	cpus_read_lock();
 144	inode_lock(inode);
 145	ret = sched_feat_set(cmp);
 146	inode_unlock(inode);
 147	cpus_read_unlock();
 148	if (ret < 0)
 149		return ret;
 150
 151	*ppos += cnt;
 152
 153	return cnt;
 154}
 155
 156static int sched_feat_open(struct inode *inode, struct file *filp)
 157{
 158	return single_open(filp, sched_feat_show, NULL);
 159}
 160
 161static const struct file_operations sched_feat_fops = {
 162	.open		= sched_feat_open,
 163	.write		= sched_feat_write,
 164	.read		= seq_read,
 165	.llseek		= seq_lseek,
 166	.release	= single_release,
 167};
 168
 169#ifdef CONFIG_SMP
 170
 171static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
 172				   size_t cnt, loff_t *ppos)
 173{
 174	char buf[16];
 175	unsigned int scaling;
 176
 177	if (cnt > 15)
 178		cnt = 15;
 179
 180	if (copy_from_user(&buf, ubuf, cnt))
 181		return -EFAULT;
 182	buf[cnt] = '\0';
 183
 184	if (kstrtouint(buf, 10, &scaling))
 185		return -EINVAL;
 186
 187	if (scaling >= SCHED_TUNABLESCALING_END)
 188		return -EINVAL;
 189
 190	sysctl_sched_tunable_scaling = scaling;
 191	if (sched_update_scaling())
 192		return -EINVAL;
 193
 194	*ppos += cnt;
 195	return cnt;
 196}
 197
 198static int sched_scaling_show(struct seq_file *m, void *v)
 199{
 200	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
 201	return 0;
 202}
 203
 204static int sched_scaling_open(struct inode *inode, struct file *filp)
 205{
 206	return single_open(filp, sched_scaling_show, NULL);
 207}
 208
 209static const struct file_operations sched_scaling_fops = {
 210	.open		= sched_scaling_open,
 211	.write		= sched_scaling_write,
 212	.read		= seq_read,
 213	.llseek		= seq_lseek,
 214	.release	= single_release,
 215};
 216
 217#endif /* SMP */
 218
 219#ifdef CONFIG_PREEMPT_DYNAMIC
 220
 221static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
 222				   size_t cnt, loff_t *ppos)
 223{
 224	char buf[16];
 225	int mode;
 226
 227	if (cnt > 15)
 228		cnt = 15;
 229
 230	if (copy_from_user(&buf, ubuf, cnt))
 231		return -EFAULT;
 232
 233	buf[cnt] = 0;
 234	mode = sched_dynamic_mode(strstrip(buf));
 235	if (mode < 0)
 236		return mode;
 237
 238	sched_dynamic_update(mode);
 239
 240	*ppos += cnt;
 241
 242	return cnt;
 243}
 244
 245static int sched_dynamic_show(struct seq_file *m, void *v)
 246{
 247	static const char * preempt_modes[] = {
 248		"none", "voluntary", "full"
 249	};
 250	int i;
 251
 252	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
 253		if (preempt_dynamic_mode == i)
 254			seq_puts(m, "(");
 255		seq_puts(m, preempt_modes[i]);
 256		if (preempt_dynamic_mode == i)
 257			seq_puts(m, ")");
 258
 259		seq_puts(m, " ");
 260	}
 261
 262	seq_puts(m, "\n");
 263	return 0;
 264}
 265
 266static int sched_dynamic_open(struct inode *inode, struct file *filp)
 267{
 268	return single_open(filp, sched_dynamic_show, NULL);
 269}
 270
 271static const struct file_operations sched_dynamic_fops = {
 272	.open		= sched_dynamic_open,
 273	.write		= sched_dynamic_write,
 274	.read		= seq_read,
 275	.llseek		= seq_lseek,
 276	.release	= single_release,
 277};
 278
 279#endif /* CONFIG_PREEMPT_DYNAMIC */
 280
 281__read_mostly bool sched_debug_verbose;
 282
 283#ifdef CONFIG_SMP
 284static struct dentry           *sd_dentry;
 285
 286
 287static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
 288				  size_t cnt, loff_t *ppos)
 289{
 290	ssize_t result;
 291	bool orig;
 292
 293	cpus_read_lock();
 294	mutex_lock(&sched_domains_mutex);
 295
 296	orig = sched_debug_verbose;
 297	result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
 298
 299	if (sched_debug_verbose && !orig)
 300		update_sched_domain_debugfs();
 301	else if (!sched_debug_verbose && orig) {
 302		debugfs_remove(sd_dentry);
 303		sd_dentry = NULL;
 304	}
 305
 306	mutex_unlock(&sched_domains_mutex);
 307	cpus_read_unlock();
 308
 309	return result;
 310}
 311#else
 312#define sched_verbose_write debugfs_write_file_bool
 313#endif
 314
 315static const struct file_operations sched_verbose_fops = {
 316	.read =         debugfs_read_file_bool,
 317	.write =        sched_verbose_write,
 318	.open =         simple_open,
 319	.llseek =       default_llseek,
 320};
 321
 322static const struct seq_operations sched_debug_sops;
 323
 324static int sched_debug_open(struct inode *inode, struct file *filp)
 325{
 326	return seq_open(filp, &sched_debug_sops);
 327}
 328
 329static const struct file_operations sched_debug_fops = {
 330	.open		= sched_debug_open,
 331	.read		= seq_read,
 332	.llseek		= seq_lseek,
 333	.release	= seq_release,
 334};
 335
 336static struct dentry *debugfs_sched;
 337
 338static __init int sched_init_debug(void)
 339{
 340	struct dentry __maybe_unused *numa;
 341
 342	debugfs_sched = debugfs_create_dir("sched", NULL);
 343
 344	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
 345	debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
 346#ifdef CONFIG_PREEMPT_DYNAMIC
 347	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
 348#endif
 349
 350	debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
 
 
 351
 352	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
 353	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
 354
 355#ifdef CONFIG_SMP
 356	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
 357	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
 358	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
 359
 360	mutex_lock(&sched_domains_mutex);
 361	update_sched_domain_debugfs();
 362	mutex_unlock(&sched_domains_mutex);
 363#endif
 364
 365#ifdef CONFIG_NUMA_BALANCING
 366	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
 367
 368	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
 369	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
 370	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
 371	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
 372	debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
 373#endif
 374
 375	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
 376
 377	return 0;
 378}
 379late_initcall(sched_init_debug);
 380
 381#ifdef CONFIG_SMP
 382
 383static cpumask_var_t		sd_sysctl_cpus;
 
 384
 385static int sd_flags_show(struct seq_file *m, void *v)
 386{
 387	unsigned long flags = *(unsigned int *)m->private;
 388	int idx;
 389
 390	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
 391		seq_puts(m, sd_flag_debug[idx].name);
 392		seq_puts(m, " ");
 393	}
 394	seq_puts(m, "\n");
 395
 396	return 0;
 397}
 398
 399static int sd_flags_open(struct inode *inode, struct file *file)
 400{
 401	return single_open(file, sd_flags_show, inode->i_private);
 402}
 403
 404static const struct file_operations sd_flags_fops = {
 405	.open		= sd_flags_open,
 406	.read		= seq_read,
 407	.llseek		= seq_lseek,
 408	.release	= single_release,
 409};
 410
 411static void register_sd(struct sched_domain *sd, struct dentry *parent)
 412{
 413#define SDM(type, mode, member)	\
 414	debugfs_create_##type(#member, mode, parent, &sd->member)
 415
 416	SDM(ulong, 0644, min_interval);
 417	SDM(ulong, 0644, max_interval);
 418	SDM(u64,   0644, max_newidle_lb_cost);
 419	SDM(u32,   0644, busy_factor);
 420	SDM(u32,   0644, imbalance_pct);
 421	SDM(u32,   0644, cache_nice_tries);
 422	SDM(str,   0444, name);
 423
 424#undef SDM
 425
 426	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
 427	debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
 428}
 429
 430void update_sched_domain_debugfs(void)
 431{
 432	int cpu, i;
 433
 434	/*
 435	 * This can unfortunately be invoked before sched_debug_init() creates
 436	 * the debug directory. Don't touch sd_sysctl_cpus until then.
 437	 */
 438	if (!debugfs_sched)
 439		return;
 440
 441	if (!sched_debug_verbose)
 442		return;
 443
 444	if (!cpumask_available(sd_sysctl_cpus)) {
 445		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 446			return;
 447		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 448	}
 449
 450	if (!sd_dentry) {
 451		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
 452
 453		/* rebuild sd_sysctl_cpus if empty since it gets cleared below */
 454		if (cpumask_empty(sd_sysctl_cpus))
 455			cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
 456	}
 457
 458	for_each_cpu(cpu, sd_sysctl_cpus) {
 459		struct sched_domain *sd;
 460		struct dentry *d_cpu;
 461		char buf[32];
 462
 463		snprintf(buf, sizeof(buf), "cpu%d", cpu);
 464		debugfs_lookup_and_remove(buf, sd_dentry);
 465		d_cpu = debugfs_create_dir(buf, sd_dentry);
 466
 467		i = 0;
 468		for_each_domain(cpu, sd) {
 469			struct dentry *d_sd;
 470
 471			snprintf(buf, sizeof(buf), "domain%d", i);
 472			d_sd = debugfs_create_dir(buf, d_cpu);
 473
 474			register_sd(sd, d_sd);
 475			i++;
 476		}
 477
 478		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
 479	}
 480}
 481
 482void dirty_sched_domain_sysctl(int cpu)
 483{
 484	if (cpumask_available(sd_sysctl_cpus))
 485		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
 486}
 487
 488#endif /* CONFIG_SMP */
 489
 490#ifdef CONFIG_FAIR_GROUP_SCHED
 491static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 492{
 493	struct sched_entity *se = tg->se[cpu];
 494
 495#define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
 496#define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	\
 497		#F, (long long)schedstat_val(stats->F))
 498#define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 499#define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", \
 500		#F, SPLIT_NS((long long)schedstat_val(stats->F)))
 501
 502	if (!se)
 503		return;
 504
 505	PN(se->exec_start);
 506	PN(se->vruntime);
 507	PN(se->sum_exec_runtime);
 508
 509	if (schedstat_enabled()) {
 510		struct sched_statistics *stats;
 511		stats = __schedstats_from_se(se);
 512
 513		PN_SCHEDSTAT(wait_start);
 514		PN_SCHEDSTAT(sleep_start);
 515		PN_SCHEDSTAT(block_start);
 516		PN_SCHEDSTAT(sleep_max);
 517		PN_SCHEDSTAT(block_max);
 518		PN_SCHEDSTAT(exec_max);
 519		PN_SCHEDSTAT(slice_max);
 520		PN_SCHEDSTAT(wait_max);
 521		PN_SCHEDSTAT(wait_sum);
 522		P_SCHEDSTAT(wait_count);
 523	}
 524
 525	P(se->load.weight);
 526#ifdef CONFIG_SMP
 527	P(se->avg.load_avg);
 528	P(se->avg.util_avg);
 529	P(se->avg.runnable_avg);
 530#endif
 531
 532#undef PN_SCHEDSTAT
 533#undef PN
 534#undef P_SCHEDSTAT
 535#undef P
 536}
 537#endif
 538
 539#ifdef CONFIG_CGROUP_SCHED
 540static DEFINE_SPINLOCK(sched_debug_lock);
 541static char group_path[PATH_MAX];
 542
 543static void task_group_path(struct task_group *tg, char *path, int plen)
 544{
 545	if (autogroup_path(tg, path, plen))
 546		return;
 547
 548	cgroup_path(tg->css.cgroup, path, plen);
 549}
 550
 551/*
 552 * Only 1 SEQ_printf_task_group_path() caller can use the full length
 553 * group_path[] for cgroup path. Other simultaneous callers will have
 554 * to use a shorter stack buffer. A "..." suffix is appended at the end
 555 * of the stack buffer so that it will show up in case the output length
 556 * matches the given buffer size to indicate possible path name truncation.
 557 */
 558#define SEQ_printf_task_group_path(m, tg, fmt...)			\
 559{									\
 560	if (spin_trylock(&sched_debug_lock)) {				\
 561		task_group_path(tg, group_path, sizeof(group_path));	\
 562		SEQ_printf(m, fmt, group_path);				\
 563		spin_unlock(&sched_debug_lock);				\
 564	} else {							\
 565		char buf[128];						\
 566		char *bufend = buf + sizeof(buf) - 3;			\
 567		task_group_path(tg, buf, bufend - buf);			\
 568		strcpy(bufend - 1, "...");				\
 569		SEQ_printf(m, fmt, buf);				\
 570	}								\
 571}
 572#endif
 573
 574static void
 575print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 576{
 577	if (task_current(rq, p))
 578		SEQ_printf(m, ">R");
 579	else
 580		SEQ_printf(m, " %c", task_state_to_char(p));
 581
 582	SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
 583		p->comm, task_pid_nr(p),
 584		SPLIT_NS(p->se.vruntime),
 585		entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
 586		SPLIT_NS(p->se.deadline),
 587		SPLIT_NS(p->se.slice),
 588		SPLIT_NS(p->se.sum_exec_runtime),
 589		(long long)(p->nvcsw + p->nivcsw),
 590		p->prio);
 591
 592	SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
 593		SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
 594		SPLIT_NS(p->se.sum_exec_runtime),
 595		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
 596		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
 597
 598#ifdef CONFIG_NUMA_BALANCING
 599	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 600#endif
 601#ifdef CONFIG_CGROUP_SCHED
 602	SEQ_printf_task_group_path(m, task_group(p), " %s")
 603#endif
 604
 605	SEQ_printf(m, "\n");
 606}
 607
 608static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 609{
 610	struct task_struct *g, *p;
 611
 612	SEQ_printf(m, "\n");
 613	SEQ_printf(m, "runnable tasks:\n");
 614	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
 615		   "     wait-time             sum-exec        sum-sleep\n");
 616	SEQ_printf(m, "-------------------------------------------------------"
 617		   "------------------------------------------------------\n");
 618
 619	rcu_read_lock();
 620	for_each_process_thread(g, p) {
 621		if (task_cpu(p) != rq_cpu)
 622			continue;
 623
 624		print_task(m, rq, p);
 625	}
 626	rcu_read_unlock();
 627}
 628
 629void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 630{
 631	s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
 632	struct sched_entity *last, *first, *root;
 633	struct rq *rq = cpu_rq(cpu);
 
 634	unsigned long flags;
 635
 636#ifdef CONFIG_FAIR_GROUP_SCHED
 637	SEQ_printf(m, "\n");
 638	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
 639#else
 640	SEQ_printf(m, "\n");
 641	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 642#endif
 643	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 644			SPLIT_NS(cfs_rq->exec_clock));
 645
 646	raw_spin_rq_lock_irqsave(rq, flags);
 647	root = __pick_root_entity(cfs_rq);
 648	if (root)
 649		left_vruntime = root->min_vruntime;
 650	first = __pick_first_entity(cfs_rq);
 651	if (first)
 652		left_deadline = first->deadline;
 653	last = __pick_last_entity(cfs_rq);
 654	if (last)
 655		right_vruntime = last->vruntime;
 656	min_vruntime = cfs_rq->min_vruntime;
 
 657	raw_spin_rq_unlock_irqrestore(rq, flags);
 658
 659	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "left_deadline",
 660			SPLIT_NS(left_deadline));
 661	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "left_vruntime",
 662			SPLIT_NS(left_vruntime));
 663	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 664			SPLIT_NS(min_vruntime));
 665	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "avg_vruntime",
 666			SPLIT_NS(avg_vruntime(cfs_rq)));
 667	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "right_vruntime",
 668			SPLIT_NS(right_vruntime));
 669	spread = right_vruntime - left_vruntime;
 670	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
 
 
 671	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 672			cfs_rq->nr_spread_over);
 673	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 674	SEQ_printf(m, "  .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
 675	SEQ_printf(m, "  .%-30s: %d\n", "idle_nr_running",
 676			cfs_rq->idle_nr_running);
 677	SEQ_printf(m, "  .%-30s: %d\n", "idle_h_nr_running",
 678			cfs_rq->idle_h_nr_running);
 679	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 680#ifdef CONFIG_SMP
 681	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 682			cfs_rq->avg.load_avg);
 683	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
 684			cfs_rq->avg.runnable_avg);
 685	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 686			cfs_rq->avg.util_avg);
 687	SEQ_printf(m, "  .%-30s: %u\n", "util_est",
 688			cfs_rq->avg.util_est);
 689	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 690			cfs_rq->removed.load_avg);
 691	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 692			cfs_rq->removed.util_avg);
 693	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
 694			cfs_rq->removed.runnable_avg);
 695#ifdef CONFIG_FAIR_GROUP_SCHED
 696	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 697			cfs_rq->tg_load_avg_contrib);
 698	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 699			atomic_long_read(&cfs_rq->tg->load_avg));
 700#endif
 701#endif
 702#ifdef CONFIG_CFS_BANDWIDTH
 703	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 704			cfs_rq->throttled);
 705	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 706			cfs_rq->throttle_count);
 707#endif
 708
 709#ifdef CONFIG_FAIR_GROUP_SCHED
 710	print_cfs_group_stats(m, cpu, cfs_rq->tg);
 711#endif
 712}
 713
 714void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 715{
 716#ifdef CONFIG_RT_GROUP_SCHED
 717	SEQ_printf(m, "\n");
 718	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
 719#else
 720	SEQ_printf(m, "\n");
 721	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 722#endif
 723
 724#define P(x) \
 725	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 726#define PU(x) \
 727	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 728#define PN(x) \
 729	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 730
 731	PU(rt_nr_running);
 
 
 
 732	P(rt_throttled);
 733	PN(rt_time);
 734	PN(rt_runtime);
 735
 736#undef PN
 737#undef PU
 738#undef P
 739}
 740
 741void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 742{
 743	struct dl_bw *dl_bw;
 744
 745	SEQ_printf(m, "\n");
 746	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 747
 748#define PU(x) \
 749	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 750
 751	PU(dl_nr_running);
 752#ifdef CONFIG_SMP
 
 753	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 754#else
 755	dl_bw = &dl_rq->dl_bw;
 756#endif
 757	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 758	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 759
 760#undef PU
 761}
 762
 763static void print_cpu(struct seq_file *m, int cpu)
 764{
 765	struct rq *rq = cpu_rq(cpu);
 766
 767#ifdef CONFIG_X86
 768	{
 769		unsigned int freq = cpu_khz ? : 1;
 770
 771		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 772			   cpu, freq / 1000, (freq % 1000));
 773	}
 774#else
 775	SEQ_printf(m, "cpu#%d\n", cpu);
 776#endif
 777
 778#define P(x)								\
 779do {									\
 780	if (sizeof(rq->x) == 4)						\
 781		SEQ_printf(m, "  .%-30s: %d\n", #x, (int)(rq->x));	\
 782	else								\
 783		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 784} while (0)
 785
 786#define PN(x) \
 787	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 788
 789	P(nr_running);
 790	P(nr_switches);
 791	P(nr_uninterruptible);
 792	PN(next_balance);
 793	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 794	PN(clock);
 795	PN(clock_task);
 796#undef P
 797#undef PN
 798
 799#ifdef CONFIG_SMP
 800#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 801	P64(avg_idle);
 802	P64(max_idle_balance_cost);
 803#undef P64
 804#endif
 805
 806#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 807	if (schedstat_enabled()) {
 808		P(yld_count);
 809		P(sched_count);
 810		P(sched_goidle);
 811		P(ttwu_count);
 812		P(ttwu_local);
 813	}
 814#undef P
 815
 816	print_cfs_stats(m, cpu);
 817	print_rt_stats(m, cpu);
 818	print_dl_stats(m, cpu);
 819
 820	print_rq(m, rq, cpu);
 821	SEQ_printf(m, "\n");
 822}
 823
 824static const char *sched_tunable_scaling_names[] = {
 825	"none",
 826	"logarithmic",
 827	"linear"
 828};
 829
 830static void sched_debug_header(struct seq_file *m)
 831{
 832	u64 ktime, sched_clk, cpu_clk;
 833	unsigned long flags;
 834
 835	local_irq_save(flags);
 836	ktime = ktime_to_ns(ktime_get());
 837	sched_clk = sched_clock();
 838	cpu_clk = local_clock();
 839	local_irq_restore(flags);
 840
 841	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 842		init_utsname()->release,
 843		(int)strcspn(init_utsname()->version, " "),
 844		init_utsname()->version);
 845
 846#define P(x) \
 847	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 848#define PN(x) \
 849	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 850	PN(ktime);
 851	PN(sched_clk);
 852	PN(cpu_clk);
 853	P(jiffies);
 854#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 855	P(sched_clock_stable());
 856#endif
 857#undef PN
 858#undef P
 859
 860	SEQ_printf(m, "\n");
 861	SEQ_printf(m, "sysctl_sched\n");
 862
 863#define P(x) \
 864	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 865#define PN(x) \
 866	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 867	PN(sysctl_sched_base_slice);
 
 
 
 868	P(sysctl_sched_features);
 869#undef PN
 870#undef P
 871
 872	SEQ_printf(m, "  .%-40s: %d (%s)\n",
 873		"sysctl_sched_tunable_scaling",
 874		sysctl_sched_tunable_scaling,
 875		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 876	SEQ_printf(m, "\n");
 877}
 878
 879static int sched_debug_show(struct seq_file *m, void *v)
 880{
 881	int cpu = (unsigned long)(v - 2);
 882
 883	if (cpu != -1)
 884		print_cpu(m, cpu);
 885	else
 886		sched_debug_header(m);
 887
 888	return 0;
 889}
 890
 891void sysrq_sched_debug_show(void)
 892{
 893	int cpu;
 894
 895	sched_debug_header(NULL);
 896	for_each_online_cpu(cpu) {
 897		/*
 898		 * Need to reset softlockup watchdogs on all CPUs, because
 899		 * another CPU might be blocked waiting for us to process
 900		 * an IPI or stop_machine.
 901		 */
 902		touch_nmi_watchdog();
 903		touch_all_softlockup_watchdogs();
 904		print_cpu(NULL, cpu);
 905	}
 906}
 907
 908/*
 909 * This iterator needs some explanation.
 910 * It returns 1 for the header position.
 911 * This means 2 is CPU 0.
 912 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 913 * to use cpumask_* to iterate over the CPUs.
 914 */
 915static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 916{
 917	unsigned long n = *offset;
 918
 919	if (n == 0)
 920		return (void *) 1;
 921
 922	n--;
 923
 924	if (n > 0)
 925		n = cpumask_next(n - 1, cpu_online_mask);
 926	else
 927		n = cpumask_first(cpu_online_mask);
 928
 929	*offset = n + 1;
 930
 931	if (n < nr_cpu_ids)
 932		return (void *)(unsigned long)(n + 2);
 933
 934	return NULL;
 935}
 936
 937static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 938{
 939	(*offset)++;
 940	return sched_debug_start(file, offset);
 941}
 942
 943static void sched_debug_stop(struct seq_file *file, void *data)
 944{
 945}
 946
 947static const struct seq_operations sched_debug_sops = {
 948	.start		= sched_debug_start,
 949	.next		= sched_debug_next,
 950	.stop		= sched_debug_stop,
 951	.show		= sched_debug_show,
 952};
 953
 954#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
 955#define __P(F) __PS(#F, F)
 956#define   P(F) __PS(#F, p->F)
 957#define   PM(F, M) __PS(#F, p->F & (M))
 958#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
 959#define __PN(F) __PSN(#F, F)
 960#define   PN(F) __PSN(#F, p->F)
 961
 962
 963#ifdef CONFIG_NUMA_BALANCING
 964void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 965		unsigned long tpf, unsigned long gsf, unsigned long gpf)
 966{
 967	SEQ_printf(m, "numa_faults node=%d ", node);
 968	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
 969	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
 970}
 971#endif
 972
 973
 974static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 975{
 976#ifdef CONFIG_NUMA_BALANCING
 
 
 977	if (p->mm)
 978		P(mm->numa_scan_seq);
 979
 
 
 
 
 
 
 
 980	P(numa_pages_migrated);
 981	P(numa_preferred_nid);
 982	P(total_numa_faults);
 983	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 984			task_node(p), task_numa_group_id(p));
 985	show_numa_stats(p, m);
 
 986#endif
 987}
 988
 989void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 990						  struct seq_file *m)
 991{
 992	unsigned long nr_switches;
 993
 994	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 995						get_nr_threads(p));
 996	SEQ_printf(m,
 997		"---------------------------------------------------------"
 998		"----------\n");
 999
1000#define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->stats.F))
1001#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1002
1003	PN(se.exec_start);
1004	PN(se.vruntime);
1005	PN(se.sum_exec_runtime);
1006
1007	nr_switches = p->nvcsw + p->nivcsw;
1008
1009	P(se.nr_migrations);
1010
1011	if (schedstat_enabled()) {
1012		u64 avg_atom, avg_per_cpu;
1013
1014		PN_SCHEDSTAT(sum_sleep_runtime);
1015		PN_SCHEDSTAT(sum_block_runtime);
1016		PN_SCHEDSTAT(wait_start);
1017		PN_SCHEDSTAT(sleep_start);
1018		PN_SCHEDSTAT(block_start);
1019		PN_SCHEDSTAT(sleep_max);
1020		PN_SCHEDSTAT(block_max);
1021		PN_SCHEDSTAT(exec_max);
1022		PN_SCHEDSTAT(slice_max);
1023		PN_SCHEDSTAT(wait_max);
1024		PN_SCHEDSTAT(wait_sum);
1025		P_SCHEDSTAT(wait_count);
1026		PN_SCHEDSTAT(iowait_sum);
1027		P_SCHEDSTAT(iowait_count);
1028		P_SCHEDSTAT(nr_migrations_cold);
1029		P_SCHEDSTAT(nr_failed_migrations_affine);
1030		P_SCHEDSTAT(nr_failed_migrations_running);
1031		P_SCHEDSTAT(nr_failed_migrations_hot);
1032		P_SCHEDSTAT(nr_forced_migrations);
1033		P_SCHEDSTAT(nr_wakeups);
1034		P_SCHEDSTAT(nr_wakeups_sync);
1035		P_SCHEDSTAT(nr_wakeups_migrate);
1036		P_SCHEDSTAT(nr_wakeups_local);
1037		P_SCHEDSTAT(nr_wakeups_remote);
1038		P_SCHEDSTAT(nr_wakeups_affine);
1039		P_SCHEDSTAT(nr_wakeups_affine_attempts);
1040		P_SCHEDSTAT(nr_wakeups_passive);
1041		P_SCHEDSTAT(nr_wakeups_idle);
1042
1043		avg_atom = p->se.sum_exec_runtime;
1044		if (nr_switches)
1045			avg_atom = div64_ul(avg_atom, nr_switches);
1046		else
1047			avg_atom = -1LL;
1048
1049		avg_per_cpu = p->se.sum_exec_runtime;
1050		if (p->se.nr_migrations) {
1051			avg_per_cpu = div64_u64(avg_per_cpu,
1052						p->se.nr_migrations);
1053		} else {
1054			avg_per_cpu = -1LL;
1055		}
1056
1057		__PN(avg_atom);
1058		__PN(avg_per_cpu);
1059
1060#ifdef CONFIG_SCHED_CORE
1061		PN_SCHEDSTAT(core_forceidle_sum);
1062#endif
1063	}
1064
1065	__P(nr_switches);
1066	__PS("nr_voluntary_switches", p->nvcsw);
1067	__PS("nr_involuntary_switches", p->nivcsw);
1068
1069	P(se.load.weight);
1070#ifdef CONFIG_SMP
1071	P(se.avg.load_sum);
1072	P(se.avg.runnable_sum);
1073	P(se.avg.util_sum);
1074	P(se.avg.load_avg);
1075	P(se.avg.runnable_avg);
1076	P(se.avg.util_avg);
1077	P(se.avg.last_update_time);
1078	PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
 
1079#endif
1080#ifdef CONFIG_UCLAMP_TASK
1081	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1082	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1083	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1084	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1085#endif
1086	P(policy);
1087	P(prio);
1088	if (task_has_dl_policy(p)) {
1089		P(dl.runtime);
1090		P(dl.deadline);
1091	}
1092#undef PN_SCHEDSTAT
1093#undef P_SCHEDSTAT
1094
1095	{
1096		unsigned int this_cpu = raw_smp_processor_id();
1097		u64 t0, t1;
1098
1099		t0 = cpu_clock(this_cpu);
1100		t1 = cpu_clock(this_cpu);
1101		__PS("clock-delta", t1-t0);
1102	}
1103
1104	sched_show_numa(p, m);
1105}
1106
1107void proc_sched_set_task(struct task_struct *p)
1108{
1109#ifdef CONFIG_SCHEDSTATS
1110	memset(&p->stats, 0, sizeof(p->stats));
1111#endif
1112}
1113
1114void resched_latency_warn(int cpu, u64 latency)
1115{
1116	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1117
1118	WARN(__ratelimit(&latency_check_ratelimit),
1119	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1120	     "without schedule\n",
1121	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1122}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/sched/debug.c
   4 *
   5 * Print the CFS rbtree and other debugging details
   6 *
   7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   8 */
   9#include "sched.h"
  10
  11/*
  12 * This allows printing both to /proc/sched_debug and
  13 * to the console
  14 */
  15#define SEQ_printf(m, x...)			\
  16 do {						\
  17	if (m)					\
  18		seq_printf(m, x);		\
  19	else					\
  20		pr_cont(x);			\
  21 } while (0)
  22
  23/*
  24 * Ease the printing of nsec fields:
  25 */
  26static long long nsec_high(unsigned long long nsec)
  27{
  28	if ((long long)nsec < 0) {
  29		nsec = -nsec;
  30		do_div(nsec, 1000000);
  31		return -nsec;
  32	}
  33	do_div(nsec, 1000000);
  34
  35	return nsec;
  36}
  37
  38static unsigned long nsec_low(unsigned long long nsec)
  39{
  40	if ((long long)nsec < 0)
  41		nsec = -nsec;
  42
  43	return do_div(nsec, 1000000);
  44}
  45
  46#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  47
  48#define SCHED_FEAT(name, enabled)	\
  49	#name ,
  50
  51static const char * const sched_feat_names[] = {
  52#include "features.h"
  53};
  54
  55#undef SCHED_FEAT
  56
  57static int sched_feat_show(struct seq_file *m, void *v)
  58{
  59	int i;
  60
  61	for (i = 0; i < __SCHED_FEAT_NR; i++) {
  62		if (!(sysctl_sched_features & (1UL << i)))
  63			seq_puts(m, "NO_");
  64		seq_printf(m, "%s ", sched_feat_names[i]);
  65	}
  66	seq_puts(m, "\n");
  67
  68	return 0;
  69}
  70
  71#ifdef CONFIG_JUMP_LABEL
  72
  73#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  74#define jump_label_key__false STATIC_KEY_INIT_FALSE
  75
  76#define SCHED_FEAT(name, enabled)	\
  77	jump_label_key__##enabled ,
  78
  79struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  80#include "features.h"
  81};
  82
  83#undef SCHED_FEAT
  84
  85static void sched_feat_disable(int i)
  86{
  87	static_key_disable_cpuslocked(&sched_feat_keys[i]);
  88}
  89
  90static void sched_feat_enable(int i)
  91{
  92	static_key_enable_cpuslocked(&sched_feat_keys[i]);
  93}
  94#else
  95static void sched_feat_disable(int i) { };
  96static void sched_feat_enable(int i) { };
  97#endif /* CONFIG_JUMP_LABEL */
  98
  99static int sched_feat_set(char *cmp)
 100{
 101	int i;
 102	int neg = 0;
 103
 104	if (strncmp(cmp, "NO_", 3) == 0) {
 105		neg = 1;
 106		cmp += 3;
 107	}
 108
 109	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
 110	if (i < 0)
 111		return i;
 112
 113	if (neg) {
 114		sysctl_sched_features &= ~(1UL << i);
 115		sched_feat_disable(i);
 116	} else {
 117		sysctl_sched_features |= (1UL << i);
 118		sched_feat_enable(i);
 119	}
 120
 121	return 0;
 122}
 123
 124static ssize_t
 125sched_feat_write(struct file *filp, const char __user *ubuf,
 126		size_t cnt, loff_t *ppos)
 127{
 128	char buf[64];
 129	char *cmp;
 130	int ret;
 131	struct inode *inode;
 132
 133	if (cnt > 63)
 134		cnt = 63;
 135
 136	if (copy_from_user(&buf, ubuf, cnt))
 137		return -EFAULT;
 138
 139	buf[cnt] = 0;
 140	cmp = strstrip(buf);
 141
 142	/* Ensure the static_key remains in a consistent state */
 143	inode = file_inode(filp);
 144	cpus_read_lock();
 145	inode_lock(inode);
 146	ret = sched_feat_set(cmp);
 147	inode_unlock(inode);
 148	cpus_read_unlock();
 149	if (ret < 0)
 150		return ret;
 151
 152	*ppos += cnt;
 153
 154	return cnt;
 155}
 156
 157static int sched_feat_open(struct inode *inode, struct file *filp)
 158{
 159	return single_open(filp, sched_feat_show, NULL);
 160}
 161
 162static const struct file_operations sched_feat_fops = {
 163	.open		= sched_feat_open,
 164	.write		= sched_feat_write,
 165	.read		= seq_read,
 166	.llseek		= seq_lseek,
 167	.release	= single_release,
 168};
 169
 170#ifdef CONFIG_SMP
 171
 172static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
 173				   size_t cnt, loff_t *ppos)
 174{
 175	char buf[16];
 176	unsigned int scaling;
 177
 178	if (cnt > 15)
 179		cnt = 15;
 180
 181	if (copy_from_user(&buf, ubuf, cnt))
 182		return -EFAULT;
 183	buf[cnt] = '\0';
 184
 185	if (kstrtouint(buf, 10, &scaling))
 186		return -EINVAL;
 187
 188	if (scaling >= SCHED_TUNABLESCALING_END)
 189		return -EINVAL;
 190
 191	sysctl_sched_tunable_scaling = scaling;
 192	if (sched_update_scaling())
 193		return -EINVAL;
 194
 195	*ppos += cnt;
 196	return cnt;
 197}
 198
 199static int sched_scaling_show(struct seq_file *m, void *v)
 200{
 201	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
 202	return 0;
 203}
 204
 205static int sched_scaling_open(struct inode *inode, struct file *filp)
 206{
 207	return single_open(filp, sched_scaling_show, NULL);
 208}
 209
 210static const struct file_operations sched_scaling_fops = {
 211	.open		= sched_scaling_open,
 212	.write		= sched_scaling_write,
 213	.read		= seq_read,
 214	.llseek		= seq_lseek,
 215	.release	= single_release,
 216};
 217
 218#endif /* SMP */
 219
 220#ifdef CONFIG_PREEMPT_DYNAMIC
 221
 222static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
 223				   size_t cnt, loff_t *ppos)
 224{
 225	char buf[16];
 226	int mode;
 227
 228	if (cnt > 15)
 229		cnt = 15;
 230
 231	if (copy_from_user(&buf, ubuf, cnt))
 232		return -EFAULT;
 233
 234	buf[cnt] = 0;
 235	mode = sched_dynamic_mode(strstrip(buf));
 236	if (mode < 0)
 237		return mode;
 238
 239	sched_dynamic_update(mode);
 240
 241	*ppos += cnt;
 242
 243	return cnt;
 244}
 245
 246static int sched_dynamic_show(struct seq_file *m, void *v)
 247{
 248	static const char * preempt_modes[] = {
 249		"none", "voluntary", "full"
 250	};
 251	int i;
 252
 253	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
 254		if (preempt_dynamic_mode == i)
 255			seq_puts(m, "(");
 256		seq_puts(m, preempt_modes[i]);
 257		if (preempt_dynamic_mode == i)
 258			seq_puts(m, ")");
 259
 260		seq_puts(m, " ");
 261	}
 262
 263	seq_puts(m, "\n");
 264	return 0;
 265}
 266
 267static int sched_dynamic_open(struct inode *inode, struct file *filp)
 268{
 269	return single_open(filp, sched_dynamic_show, NULL);
 270}
 271
 272static const struct file_operations sched_dynamic_fops = {
 273	.open		= sched_dynamic_open,
 274	.write		= sched_dynamic_write,
 275	.read		= seq_read,
 276	.llseek		= seq_lseek,
 277	.release	= single_release,
 278};
 279
 280#endif /* CONFIG_PREEMPT_DYNAMIC */
 281
 282__read_mostly bool sched_debug_verbose;
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284static const struct seq_operations sched_debug_sops;
 285
 286static int sched_debug_open(struct inode *inode, struct file *filp)
 287{
 288	return seq_open(filp, &sched_debug_sops);
 289}
 290
 291static const struct file_operations sched_debug_fops = {
 292	.open		= sched_debug_open,
 293	.read		= seq_read,
 294	.llseek		= seq_lseek,
 295	.release	= seq_release,
 296};
 297
 298static struct dentry *debugfs_sched;
 299
 300static __init int sched_init_debug(void)
 301{
 302	struct dentry __maybe_unused *numa;
 303
 304	debugfs_sched = debugfs_create_dir("sched", NULL);
 305
 306	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
 307	debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
 308#ifdef CONFIG_PREEMPT_DYNAMIC
 309	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
 310#endif
 311
 312	debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
 313	debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
 314	debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
 315
 316	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
 317	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
 318
 319#ifdef CONFIG_SMP
 320	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
 321	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
 322	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
 323
 324	mutex_lock(&sched_domains_mutex);
 325	update_sched_domain_debugfs();
 326	mutex_unlock(&sched_domains_mutex);
 327#endif
 328
 329#ifdef CONFIG_NUMA_BALANCING
 330	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
 331
 332	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
 333	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
 334	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
 335	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
 
 336#endif
 337
 338	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
 339
 340	return 0;
 341}
 342late_initcall(sched_init_debug);
 343
 344#ifdef CONFIG_SMP
 345
 346static cpumask_var_t		sd_sysctl_cpus;
 347static struct dentry		*sd_dentry;
 348
 349static int sd_flags_show(struct seq_file *m, void *v)
 350{
 351	unsigned long flags = *(unsigned int *)m->private;
 352	int idx;
 353
 354	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
 355		seq_puts(m, sd_flag_debug[idx].name);
 356		seq_puts(m, " ");
 357	}
 358	seq_puts(m, "\n");
 359
 360	return 0;
 361}
 362
 363static int sd_flags_open(struct inode *inode, struct file *file)
 364{
 365	return single_open(file, sd_flags_show, inode->i_private);
 366}
 367
 368static const struct file_operations sd_flags_fops = {
 369	.open		= sd_flags_open,
 370	.read		= seq_read,
 371	.llseek		= seq_lseek,
 372	.release	= single_release,
 373};
 374
 375static void register_sd(struct sched_domain *sd, struct dentry *parent)
 376{
 377#define SDM(type, mode, member)	\
 378	debugfs_create_##type(#member, mode, parent, &sd->member)
 379
 380	SDM(ulong, 0644, min_interval);
 381	SDM(ulong, 0644, max_interval);
 382	SDM(u64,   0644, max_newidle_lb_cost);
 383	SDM(u32,   0644, busy_factor);
 384	SDM(u32,   0644, imbalance_pct);
 385	SDM(u32,   0644, cache_nice_tries);
 386	SDM(str,   0444, name);
 387
 388#undef SDM
 389
 390	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
 
 391}
 392
 393void update_sched_domain_debugfs(void)
 394{
 395	int cpu, i;
 396
 397	/*
 398	 * This can unfortunately be invoked before sched_debug_init() creates
 399	 * the debug directory. Don't touch sd_sysctl_cpus until then.
 400	 */
 401	if (!debugfs_sched)
 402		return;
 403
 
 
 
 404	if (!cpumask_available(sd_sysctl_cpus)) {
 405		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 406			return;
 407		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 408	}
 409
 410	if (!sd_dentry)
 411		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
 412
 
 
 
 
 
 413	for_each_cpu(cpu, sd_sysctl_cpus) {
 414		struct sched_domain *sd;
 415		struct dentry *d_cpu;
 416		char buf[32];
 417
 418		snprintf(buf, sizeof(buf), "cpu%d", cpu);
 419		debugfs_remove(debugfs_lookup(buf, sd_dentry));
 420		d_cpu = debugfs_create_dir(buf, sd_dentry);
 421
 422		i = 0;
 423		for_each_domain(cpu, sd) {
 424			struct dentry *d_sd;
 425
 426			snprintf(buf, sizeof(buf), "domain%d", i);
 427			d_sd = debugfs_create_dir(buf, d_cpu);
 428
 429			register_sd(sd, d_sd);
 430			i++;
 431		}
 432
 433		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
 434	}
 435}
 436
 437void dirty_sched_domain_sysctl(int cpu)
 438{
 439	if (cpumask_available(sd_sysctl_cpus))
 440		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
 441}
 442
 443#endif /* CONFIG_SMP */
 444
 445#ifdef CONFIG_FAIR_GROUP_SCHED
 446static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 447{
 448	struct sched_entity *se = tg->se[cpu];
 449
 450#define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
 451#define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
 
 452#define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 453#define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 
 454
 455	if (!se)
 456		return;
 457
 458	PN(se->exec_start);
 459	PN(se->vruntime);
 460	PN(se->sum_exec_runtime);
 461
 462	if (schedstat_enabled()) {
 463		PN_SCHEDSTAT(se->statistics.wait_start);
 464		PN_SCHEDSTAT(se->statistics.sleep_start);
 465		PN_SCHEDSTAT(se->statistics.block_start);
 466		PN_SCHEDSTAT(se->statistics.sleep_max);
 467		PN_SCHEDSTAT(se->statistics.block_max);
 468		PN_SCHEDSTAT(se->statistics.exec_max);
 469		PN_SCHEDSTAT(se->statistics.slice_max);
 470		PN_SCHEDSTAT(se->statistics.wait_max);
 471		PN_SCHEDSTAT(se->statistics.wait_sum);
 472		P_SCHEDSTAT(se->statistics.wait_count);
 
 
 
 473	}
 474
 475	P(se->load.weight);
 476#ifdef CONFIG_SMP
 477	P(se->avg.load_avg);
 478	P(se->avg.util_avg);
 479	P(se->avg.runnable_avg);
 480#endif
 481
 482#undef PN_SCHEDSTAT
 483#undef PN
 484#undef P_SCHEDSTAT
 485#undef P
 486}
 487#endif
 488
 489#ifdef CONFIG_CGROUP_SCHED
 490static DEFINE_SPINLOCK(sched_debug_lock);
 491static char group_path[PATH_MAX];
 492
 493static void task_group_path(struct task_group *tg, char *path, int plen)
 494{
 495	if (autogroup_path(tg, path, plen))
 496		return;
 497
 498	cgroup_path(tg->css.cgroup, path, plen);
 499}
 500
 501/*
 502 * Only 1 SEQ_printf_task_group_path() caller can use the full length
 503 * group_path[] for cgroup path. Other simultaneous callers will have
 504 * to use a shorter stack buffer. A "..." suffix is appended at the end
 505 * of the stack buffer so that it will show up in case the output length
 506 * matches the given buffer size to indicate possible path name truncation.
 507 */
 508#define SEQ_printf_task_group_path(m, tg, fmt...)			\
 509{									\
 510	if (spin_trylock(&sched_debug_lock)) {				\
 511		task_group_path(tg, group_path, sizeof(group_path));	\
 512		SEQ_printf(m, fmt, group_path);				\
 513		spin_unlock(&sched_debug_lock);				\
 514	} else {							\
 515		char buf[128];						\
 516		char *bufend = buf + sizeof(buf) - 3;			\
 517		task_group_path(tg, buf, bufend - buf);			\
 518		strcpy(bufend - 1, "...");				\
 519		SEQ_printf(m, fmt, buf);				\
 520	}								\
 521}
 522#endif
 523
 524static void
 525print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 526{
 527	if (task_current(rq, p))
 528		SEQ_printf(m, ">R");
 529	else
 530		SEQ_printf(m, " %c", task_state_to_char(p));
 531
 532	SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
 533		p->comm, task_pid_nr(p),
 534		SPLIT_NS(p->se.vruntime),
 
 
 
 
 535		(long long)(p->nvcsw + p->nivcsw),
 536		p->prio);
 537
 538	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 539		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
 540		SPLIT_NS(p->se.sum_exec_runtime),
 541		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
 
 542
 543#ifdef CONFIG_NUMA_BALANCING
 544	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 545#endif
 546#ifdef CONFIG_CGROUP_SCHED
 547	SEQ_printf_task_group_path(m, task_group(p), " %s")
 548#endif
 549
 550	SEQ_printf(m, "\n");
 551}
 552
 553static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 554{
 555	struct task_struct *g, *p;
 556
 557	SEQ_printf(m, "\n");
 558	SEQ_printf(m, "runnable tasks:\n");
 559	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
 560		   "     wait-time             sum-exec        sum-sleep\n");
 561	SEQ_printf(m, "-------------------------------------------------------"
 562		   "------------------------------------------------------\n");
 563
 564	rcu_read_lock();
 565	for_each_process_thread(g, p) {
 566		if (task_cpu(p) != rq_cpu)
 567			continue;
 568
 569		print_task(m, rq, p);
 570	}
 571	rcu_read_unlock();
 572}
 573
 574void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 575{
 576	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 577		spread, rq0_min_vruntime, spread0;
 578	struct rq *rq = cpu_rq(cpu);
 579	struct sched_entity *last;
 580	unsigned long flags;
 581
 582#ifdef CONFIG_FAIR_GROUP_SCHED
 583	SEQ_printf(m, "\n");
 584	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
 585#else
 586	SEQ_printf(m, "\n");
 587	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 588#endif
 589	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 590			SPLIT_NS(cfs_rq->exec_clock));
 591
 592	raw_spin_rq_lock_irqsave(rq, flags);
 593	if (rb_first_cached(&cfs_rq->tasks_timeline))
 594		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 
 
 
 
 595	last = __pick_last_entity(cfs_rq);
 596	if (last)
 597		max_vruntime = last->vruntime;
 598	min_vruntime = cfs_rq->min_vruntime;
 599	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 600	raw_spin_rq_unlock_irqrestore(rq, flags);
 601	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 602			SPLIT_NS(MIN_vruntime));
 
 
 
 603	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 604			SPLIT_NS(min_vruntime));
 605	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 606			SPLIT_NS(max_vruntime));
 607	spread = max_vruntime - MIN_vruntime;
 608	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 609			SPLIT_NS(spread));
 610	spread0 = min_vruntime - rq0_min_vruntime;
 611	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 612			SPLIT_NS(spread0));
 613	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 614			cfs_rq->nr_spread_over);
 615	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 
 
 
 
 
 616	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 617#ifdef CONFIG_SMP
 618	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 619			cfs_rq->avg.load_avg);
 620	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
 621			cfs_rq->avg.runnable_avg);
 622	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 623			cfs_rq->avg.util_avg);
 624	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
 625			cfs_rq->avg.util_est.enqueued);
 626	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 627			cfs_rq->removed.load_avg);
 628	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 629			cfs_rq->removed.util_avg);
 630	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
 631			cfs_rq->removed.runnable_avg);
 632#ifdef CONFIG_FAIR_GROUP_SCHED
 633	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 634			cfs_rq->tg_load_avg_contrib);
 635	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 636			atomic_long_read(&cfs_rq->tg->load_avg));
 637#endif
 638#endif
 639#ifdef CONFIG_CFS_BANDWIDTH
 640	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 641			cfs_rq->throttled);
 642	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 643			cfs_rq->throttle_count);
 644#endif
 645
 646#ifdef CONFIG_FAIR_GROUP_SCHED
 647	print_cfs_group_stats(m, cpu, cfs_rq->tg);
 648#endif
 649}
 650
 651void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 652{
 653#ifdef CONFIG_RT_GROUP_SCHED
 654	SEQ_printf(m, "\n");
 655	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
 656#else
 657	SEQ_printf(m, "\n");
 658	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 659#endif
 660
 661#define P(x) \
 662	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 663#define PU(x) \
 664	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 665#define PN(x) \
 666	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 667
 668	PU(rt_nr_running);
 669#ifdef CONFIG_SMP
 670	PU(rt_nr_migratory);
 671#endif
 672	P(rt_throttled);
 673	PN(rt_time);
 674	PN(rt_runtime);
 675
 676#undef PN
 677#undef PU
 678#undef P
 679}
 680
 681void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 682{
 683	struct dl_bw *dl_bw;
 684
 685	SEQ_printf(m, "\n");
 686	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 687
 688#define PU(x) \
 689	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 690
 691	PU(dl_nr_running);
 692#ifdef CONFIG_SMP
 693	PU(dl_nr_migratory);
 694	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 695#else
 696	dl_bw = &dl_rq->dl_bw;
 697#endif
 698	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 699	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 700
 701#undef PU
 702}
 703
 704static void print_cpu(struct seq_file *m, int cpu)
 705{
 706	struct rq *rq = cpu_rq(cpu);
 707
 708#ifdef CONFIG_X86
 709	{
 710		unsigned int freq = cpu_khz ? : 1;
 711
 712		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 713			   cpu, freq / 1000, (freq % 1000));
 714	}
 715#else
 716	SEQ_printf(m, "cpu#%d\n", cpu);
 717#endif
 718
 719#define P(x)								\
 720do {									\
 721	if (sizeof(rq->x) == 4)						\
 722		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
 723	else								\
 724		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 725} while (0)
 726
 727#define PN(x) \
 728	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 729
 730	P(nr_running);
 731	P(nr_switches);
 732	P(nr_uninterruptible);
 733	PN(next_balance);
 734	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 735	PN(clock);
 736	PN(clock_task);
 737#undef P
 738#undef PN
 739
 740#ifdef CONFIG_SMP
 741#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 742	P64(avg_idle);
 743	P64(max_idle_balance_cost);
 744#undef P64
 745#endif
 746
 747#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 748	if (schedstat_enabled()) {
 749		P(yld_count);
 750		P(sched_count);
 751		P(sched_goidle);
 752		P(ttwu_count);
 753		P(ttwu_local);
 754	}
 755#undef P
 756
 757	print_cfs_stats(m, cpu);
 758	print_rt_stats(m, cpu);
 759	print_dl_stats(m, cpu);
 760
 761	print_rq(m, rq, cpu);
 762	SEQ_printf(m, "\n");
 763}
 764
 765static const char *sched_tunable_scaling_names[] = {
 766	"none",
 767	"logarithmic",
 768	"linear"
 769};
 770
 771static void sched_debug_header(struct seq_file *m)
 772{
 773	u64 ktime, sched_clk, cpu_clk;
 774	unsigned long flags;
 775
 776	local_irq_save(flags);
 777	ktime = ktime_to_ns(ktime_get());
 778	sched_clk = sched_clock();
 779	cpu_clk = local_clock();
 780	local_irq_restore(flags);
 781
 782	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 783		init_utsname()->release,
 784		(int)strcspn(init_utsname()->version, " "),
 785		init_utsname()->version);
 786
 787#define P(x) \
 788	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 789#define PN(x) \
 790	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 791	PN(ktime);
 792	PN(sched_clk);
 793	PN(cpu_clk);
 794	P(jiffies);
 795#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 796	P(sched_clock_stable());
 797#endif
 798#undef PN
 799#undef P
 800
 801	SEQ_printf(m, "\n");
 802	SEQ_printf(m, "sysctl_sched\n");
 803
 804#define P(x) \
 805	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 806#define PN(x) \
 807	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 808	PN(sysctl_sched_latency);
 809	PN(sysctl_sched_min_granularity);
 810	PN(sysctl_sched_wakeup_granularity);
 811	P(sysctl_sched_child_runs_first);
 812	P(sysctl_sched_features);
 813#undef PN
 814#undef P
 815
 816	SEQ_printf(m, "  .%-40s: %d (%s)\n",
 817		"sysctl_sched_tunable_scaling",
 818		sysctl_sched_tunable_scaling,
 819		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 820	SEQ_printf(m, "\n");
 821}
 822
 823static int sched_debug_show(struct seq_file *m, void *v)
 824{
 825	int cpu = (unsigned long)(v - 2);
 826
 827	if (cpu != -1)
 828		print_cpu(m, cpu);
 829	else
 830		sched_debug_header(m);
 831
 832	return 0;
 833}
 834
 835void sysrq_sched_debug_show(void)
 836{
 837	int cpu;
 838
 839	sched_debug_header(NULL);
 840	for_each_online_cpu(cpu) {
 841		/*
 842		 * Need to reset softlockup watchdogs on all CPUs, because
 843		 * another CPU might be blocked waiting for us to process
 844		 * an IPI or stop_machine.
 845		 */
 846		touch_nmi_watchdog();
 847		touch_all_softlockup_watchdogs();
 848		print_cpu(NULL, cpu);
 849	}
 850}
 851
 852/*
 853 * This iterator needs some explanation.
 854 * It returns 1 for the header position.
 855 * This means 2 is CPU 0.
 856 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 857 * to use cpumask_* to iterate over the CPUs.
 858 */
 859static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 860{
 861	unsigned long n = *offset;
 862
 863	if (n == 0)
 864		return (void *) 1;
 865
 866	n--;
 867
 868	if (n > 0)
 869		n = cpumask_next(n - 1, cpu_online_mask);
 870	else
 871		n = cpumask_first(cpu_online_mask);
 872
 873	*offset = n + 1;
 874
 875	if (n < nr_cpu_ids)
 876		return (void *)(unsigned long)(n + 2);
 877
 878	return NULL;
 879}
 880
 881static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 882{
 883	(*offset)++;
 884	return sched_debug_start(file, offset);
 885}
 886
 887static void sched_debug_stop(struct seq_file *file, void *data)
 888{
 889}
 890
 891static const struct seq_operations sched_debug_sops = {
 892	.start		= sched_debug_start,
 893	.next		= sched_debug_next,
 894	.stop		= sched_debug_stop,
 895	.show		= sched_debug_show,
 896};
 897
 898#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
 899#define __P(F) __PS(#F, F)
 900#define   P(F) __PS(#F, p->F)
 901#define   PM(F, M) __PS(#F, p->F & (M))
 902#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
 903#define __PN(F) __PSN(#F, F)
 904#define   PN(F) __PSN(#F, p->F)
 905
 906
 907#ifdef CONFIG_NUMA_BALANCING
 908void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 909		unsigned long tpf, unsigned long gsf, unsigned long gpf)
 910{
 911	SEQ_printf(m, "numa_faults node=%d ", node);
 912	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
 913	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
 914}
 915#endif
 916
 917
 918static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 919{
 920#ifdef CONFIG_NUMA_BALANCING
 921	struct mempolicy *pol;
 922
 923	if (p->mm)
 924		P(mm->numa_scan_seq);
 925
 926	task_lock(p);
 927	pol = p->mempolicy;
 928	if (pol && !(pol->flags & MPOL_F_MORON))
 929		pol = NULL;
 930	mpol_get(pol);
 931	task_unlock(p);
 932
 933	P(numa_pages_migrated);
 934	P(numa_preferred_nid);
 935	P(total_numa_faults);
 936	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 937			task_node(p), task_numa_group_id(p));
 938	show_numa_stats(p, m);
 939	mpol_put(pol);
 940#endif
 941}
 942
 943void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 944						  struct seq_file *m)
 945{
 946	unsigned long nr_switches;
 947
 948	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 949						get_nr_threads(p));
 950	SEQ_printf(m,
 951		"---------------------------------------------------------"
 952		"----------\n");
 953
 954#define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
 955#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
 956
 957	PN(se.exec_start);
 958	PN(se.vruntime);
 959	PN(se.sum_exec_runtime);
 960
 961	nr_switches = p->nvcsw + p->nivcsw;
 962
 963	P(se.nr_migrations);
 964
 965	if (schedstat_enabled()) {
 966		u64 avg_atom, avg_per_cpu;
 967
 968		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
 969		PN_SCHEDSTAT(se.statistics.wait_start);
 970		PN_SCHEDSTAT(se.statistics.sleep_start);
 971		PN_SCHEDSTAT(se.statistics.block_start);
 972		PN_SCHEDSTAT(se.statistics.sleep_max);
 973		PN_SCHEDSTAT(se.statistics.block_max);
 974		PN_SCHEDSTAT(se.statistics.exec_max);
 975		PN_SCHEDSTAT(se.statistics.slice_max);
 976		PN_SCHEDSTAT(se.statistics.wait_max);
 977		PN_SCHEDSTAT(se.statistics.wait_sum);
 978		P_SCHEDSTAT(se.statistics.wait_count);
 979		PN_SCHEDSTAT(se.statistics.iowait_sum);
 980		P_SCHEDSTAT(se.statistics.iowait_count);
 981		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
 982		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
 983		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
 984		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
 985		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
 986		P_SCHEDSTAT(se.statistics.nr_wakeups);
 987		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
 988		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
 989		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
 990		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
 991		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
 992		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
 993		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
 994		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
 
 995
 996		avg_atom = p->se.sum_exec_runtime;
 997		if (nr_switches)
 998			avg_atom = div64_ul(avg_atom, nr_switches);
 999		else
1000			avg_atom = -1LL;
1001
1002		avg_per_cpu = p->se.sum_exec_runtime;
1003		if (p->se.nr_migrations) {
1004			avg_per_cpu = div64_u64(avg_per_cpu,
1005						p->se.nr_migrations);
1006		} else {
1007			avg_per_cpu = -1LL;
1008		}
1009
1010		__PN(avg_atom);
1011		__PN(avg_per_cpu);
 
 
 
 
1012	}
1013
1014	__P(nr_switches);
1015	__PS("nr_voluntary_switches", p->nvcsw);
1016	__PS("nr_involuntary_switches", p->nivcsw);
1017
1018	P(se.load.weight);
1019#ifdef CONFIG_SMP
1020	P(se.avg.load_sum);
1021	P(se.avg.runnable_sum);
1022	P(se.avg.util_sum);
1023	P(se.avg.load_avg);
1024	P(se.avg.runnable_avg);
1025	P(se.avg.util_avg);
1026	P(se.avg.last_update_time);
1027	P(se.avg.util_est.ewma);
1028	PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1029#endif
1030#ifdef CONFIG_UCLAMP_TASK
1031	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1032	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1033	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1034	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1035#endif
1036	P(policy);
1037	P(prio);
1038	if (task_has_dl_policy(p)) {
1039		P(dl.runtime);
1040		P(dl.deadline);
1041	}
1042#undef PN_SCHEDSTAT
1043#undef P_SCHEDSTAT
1044
1045	{
1046		unsigned int this_cpu = raw_smp_processor_id();
1047		u64 t0, t1;
1048
1049		t0 = cpu_clock(this_cpu);
1050		t1 = cpu_clock(this_cpu);
1051		__PS("clock-delta", t1-t0);
1052	}
1053
1054	sched_show_numa(p, m);
1055}
1056
1057void proc_sched_set_task(struct task_struct *p)
1058{
1059#ifdef CONFIG_SCHEDSTATS
1060	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1061#endif
1062}
1063
1064void resched_latency_warn(int cpu, u64 latency)
1065{
1066	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1067
1068	WARN(__ratelimit(&latency_check_ratelimit),
1069	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1070	     "without schedule\n",
1071	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1072}