Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14};
15
16struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38};
39
40struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_min;
51
52 /* The field below is for single-CPU policies only: */
53#ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55#endif
56};
57
58static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60/************************ Governor internals ***********************/
61
62static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63{
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = true;
87 return true;
88 }
89
90 delta_ns = time - sg_policy->last_freq_update_time;
91
92 return delta_ns >= sg_policy->freq_update_delay_ns;
93}
94
95static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
97{
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 else if (sg_policy->next_freq == next_freq)
101 return false;
102
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
105
106 return true;
107}
108
109static void sugov_deferred_update(struct sugov_policy *sg_policy)
110{
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
114 }
115}
116
117/**
118 * get_capacity_ref_freq - get the reference frequency that has been used to
119 * correlate frequency and compute capacity for a given cpufreq policy. We use
120 * the CPU managing it for the arch_scale_freq_ref() call in the function.
121 * @policy: the cpufreq policy of the CPU in question.
122 *
123 * Return: the reference CPU frequency to compute a capacity.
124 */
125static __always_inline
126unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127{
128 unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130 if (freq)
131 return freq;
132
133 if (arch_scale_freq_invariant())
134 return policy->cpuinfo.max_freq;
135
136 /*
137 * Apply a 25% margin so that we select a higher frequency than
138 * the current one before the CPU is fully busy:
139 */
140 return policy->cur + (policy->cur >> 2);
141}
142
143/**
144 * get_next_freq - Compute a new frequency for a given cpufreq policy.
145 * @sg_policy: schedutil policy object to compute the new frequency for.
146 * @util: Current CPU utilization.
147 * @max: CPU capacity.
148 *
149 * If the utilization is frequency-invariant, choose the new frequency to be
150 * proportional to it, that is
151 *
152 * next_freq = C * max_freq * util / max
153 *
154 * Otherwise, approximate the would-be frequency-invariant utilization by
155 * util_raw * (curr_freq / max_freq) which leads to
156 *
157 * next_freq = C * curr_freq * util_raw / max
158 *
159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160 *
161 * The lowest driver-supported frequency which is equal or greater than the raw
162 * next_freq (as calculated above) is returned, subject to policy min/max and
163 * cpufreq driver limitations.
164 */
165static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166 unsigned long util, unsigned long max)
167{
168 struct cpufreq_policy *policy = sg_policy->policy;
169 unsigned int freq;
170
171 freq = get_capacity_ref_freq(policy);
172 freq = map_util_freq(util, freq, max);
173
174 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175 return sg_policy->next_freq;
176
177 sg_policy->cached_raw_freq = freq;
178 return cpufreq_driver_resolve_freq(policy, freq);
179}
180
181unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182 unsigned long min,
183 unsigned long max)
184{
185 /* Add dvfs headroom to actual utilization */
186 actual = map_util_perf(actual);
187 /* Actually we don't need to target the max performance */
188 if (actual < max)
189 max = actual;
190
191 /*
192 * Ensure at least minimum performance while providing more compute
193 * capacity when possible.
194 */
195 return max(min, max);
196}
197
198static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199{
200 unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
201
202 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
203 util = max(util, boost);
204 sg_cpu->bw_min = min;
205 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
206}
207
208/**
209 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
210 * @sg_cpu: the sugov data for the CPU to boost
211 * @time: the update time from the caller
212 * @set_iowait_boost: true if an IO boost has been requested
213 *
214 * The IO wait boost of a task is disabled after a tick since the last update
215 * of a CPU. If a new IO wait boost is requested after more then a tick, then
216 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
217 * efficiency by ignoring sporadic wakeups from IO.
218 */
219static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
220 bool set_iowait_boost)
221{
222 s64 delta_ns = time - sg_cpu->last_update;
223
224 /* Reset boost only if a tick has elapsed since last request */
225 if (delta_ns <= TICK_NSEC)
226 return false;
227
228 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
229 sg_cpu->iowait_boost_pending = set_iowait_boost;
230
231 return true;
232}
233
234/**
235 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
236 * @sg_cpu: the sugov data for the CPU to boost
237 * @time: the update time from the caller
238 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
239 *
240 * Each time a task wakes up after an IO operation, the CPU utilization can be
241 * boosted to a certain utilization which doubles at each "frequent and
242 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
243 * of the maximum OPP.
244 *
245 * To keep doubling, an IO boost has to be requested at least once per tick,
246 * otherwise we restart from the utilization of the minimum OPP.
247 */
248static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
249 unsigned int flags)
250{
251 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
252
253 /* Reset boost if the CPU appears to have been idle enough */
254 if (sg_cpu->iowait_boost &&
255 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
256 return;
257
258 /* Boost only tasks waking up after IO */
259 if (!set_iowait_boost)
260 return;
261
262 /* Ensure boost doubles only one time at each request */
263 if (sg_cpu->iowait_boost_pending)
264 return;
265 sg_cpu->iowait_boost_pending = true;
266
267 /* Double the boost at each request */
268 if (sg_cpu->iowait_boost) {
269 sg_cpu->iowait_boost =
270 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
271 return;
272 }
273
274 /* First wakeup after IO: start with minimum boost */
275 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
276}
277
278/**
279 * sugov_iowait_apply() - Apply the IO boost to a CPU.
280 * @sg_cpu: the sugov data for the cpu to boost
281 * @time: the update time from the caller
282 * @max_cap: the max CPU capacity
283 *
284 * A CPU running a task which woken up after an IO operation can have its
285 * utilization boosted to speed up the completion of those IO operations.
286 * The IO boost value is increased each time a task wakes up from IO, in
287 * sugov_iowait_apply(), and it's instead decreased by this function,
288 * each time an increase has not been requested (!iowait_boost_pending).
289 *
290 * A CPU which also appears to have been idle for at least one tick has also
291 * its IO boost utilization reset.
292 *
293 * This mechanism is designed to boost high frequently IO waiting tasks, while
294 * being more conservative on tasks which does sporadic IO operations.
295 */
296static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
297 unsigned long max_cap)
298{
299 /* No boost currently required */
300 if (!sg_cpu->iowait_boost)
301 return 0;
302
303 /* Reset boost if the CPU appears to have been idle enough */
304 if (sugov_iowait_reset(sg_cpu, time, false))
305 return 0;
306
307 if (!sg_cpu->iowait_boost_pending) {
308 /*
309 * No boost pending; reduce the boost value.
310 */
311 sg_cpu->iowait_boost >>= 1;
312 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
313 sg_cpu->iowait_boost = 0;
314 return 0;
315 }
316 }
317
318 sg_cpu->iowait_boost_pending = false;
319
320 /*
321 * sg_cpu->util is already in capacity scale; convert iowait_boost
322 * into the same scale so we can compare.
323 */
324 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
325}
326
327#ifdef CONFIG_NO_HZ_COMMON
328static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
329{
330 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
331 bool ret = idle_calls == sg_cpu->saved_idle_calls;
332
333 sg_cpu->saved_idle_calls = idle_calls;
334 return ret;
335}
336#else
337static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
338#endif /* CONFIG_NO_HZ_COMMON */
339
340/*
341 * Make sugov_should_update_freq() ignore the rate limit when DL
342 * has increased the utilization.
343 */
344static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
345{
346 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
347 sg_cpu->sg_policy->limits_changed = true;
348}
349
350static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
351 u64 time, unsigned long max_cap,
352 unsigned int flags)
353{
354 unsigned long boost;
355
356 sugov_iowait_boost(sg_cpu, time, flags);
357 sg_cpu->last_update = time;
358
359 ignore_dl_rate_limit(sg_cpu);
360
361 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
362 return false;
363
364 boost = sugov_iowait_apply(sg_cpu, time, max_cap);
365 sugov_get_util(sg_cpu, boost);
366
367 return true;
368}
369
370static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
371 unsigned int flags)
372{
373 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
374 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
375 unsigned int cached_freq = sg_policy->cached_raw_freq;
376 unsigned long max_cap;
377 unsigned int next_f;
378
379 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
380
381 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
382 return;
383
384 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
385 /*
386 * Do not reduce the frequency if the CPU has not been idle
387 * recently, as the reduction is likely to be premature then.
388 *
389 * Except when the rq is capped by uclamp_max.
390 */
391 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
392 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
393 !sg_policy->need_freq_update) {
394 next_f = sg_policy->next_freq;
395
396 /* Restore cached freq as next_freq has changed */
397 sg_policy->cached_raw_freq = cached_freq;
398 }
399
400 if (!sugov_update_next_freq(sg_policy, time, next_f))
401 return;
402
403 /*
404 * This code runs under rq->lock for the target CPU, so it won't run
405 * concurrently on two different CPUs for the same target and it is not
406 * necessary to acquire the lock in the fast switch case.
407 */
408 if (sg_policy->policy->fast_switch_enabled) {
409 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
410 } else {
411 raw_spin_lock(&sg_policy->update_lock);
412 sugov_deferred_update(sg_policy);
413 raw_spin_unlock(&sg_policy->update_lock);
414 }
415}
416
417static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
418 unsigned int flags)
419{
420 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
421 unsigned long prev_util = sg_cpu->util;
422 unsigned long max_cap;
423
424 /*
425 * Fall back to the "frequency" path if frequency invariance is not
426 * supported, because the direct mapping between the utilization and
427 * the performance levels depends on the frequency invariance.
428 */
429 if (!arch_scale_freq_invariant()) {
430 sugov_update_single_freq(hook, time, flags);
431 return;
432 }
433
434 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
435
436 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
437 return;
438
439 /*
440 * Do not reduce the target performance level if the CPU has not been
441 * idle recently, as the reduction is likely to be premature then.
442 *
443 * Except when the rq is capped by uclamp_max.
444 */
445 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
446 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
447 sg_cpu->util = prev_util;
448
449 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
450 sg_cpu->util, max_cap);
451
452 sg_cpu->sg_policy->last_freq_update_time = time;
453}
454
455static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
456{
457 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
458 struct cpufreq_policy *policy = sg_policy->policy;
459 unsigned long util = 0, max_cap;
460 unsigned int j;
461
462 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
463
464 for_each_cpu(j, policy->cpus) {
465 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
466 unsigned long boost;
467
468 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
469 sugov_get_util(j_sg_cpu, boost);
470
471 util = max(j_sg_cpu->util, util);
472 }
473
474 return get_next_freq(sg_policy, util, max_cap);
475}
476
477static void
478sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
479{
480 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
481 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
482 unsigned int next_f;
483
484 raw_spin_lock(&sg_policy->update_lock);
485
486 sugov_iowait_boost(sg_cpu, time, flags);
487 sg_cpu->last_update = time;
488
489 ignore_dl_rate_limit(sg_cpu);
490
491 if (sugov_should_update_freq(sg_policy, time)) {
492 next_f = sugov_next_freq_shared(sg_cpu, time);
493
494 if (!sugov_update_next_freq(sg_policy, time, next_f))
495 goto unlock;
496
497 if (sg_policy->policy->fast_switch_enabled)
498 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
499 else
500 sugov_deferred_update(sg_policy);
501 }
502unlock:
503 raw_spin_unlock(&sg_policy->update_lock);
504}
505
506static void sugov_work(struct kthread_work *work)
507{
508 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
509 unsigned int freq;
510 unsigned long flags;
511
512 /*
513 * Hold sg_policy->update_lock shortly to handle the case where:
514 * in case sg_policy->next_freq is read here, and then updated by
515 * sugov_deferred_update() just before work_in_progress is set to false
516 * here, we may miss queueing the new update.
517 *
518 * Note: If a work was queued after the update_lock is released,
519 * sugov_work() will just be called again by kthread_work code; and the
520 * request will be proceed before the sugov thread sleeps.
521 */
522 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
523 freq = sg_policy->next_freq;
524 sg_policy->work_in_progress = false;
525 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
526
527 mutex_lock(&sg_policy->work_lock);
528 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
529 mutex_unlock(&sg_policy->work_lock);
530}
531
532static void sugov_irq_work(struct irq_work *irq_work)
533{
534 struct sugov_policy *sg_policy;
535
536 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
537
538 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
539}
540
541/************************** sysfs interface ************************/
542
543static struct sugov_tunables *global_tunables;
544static DEFINE_MUTEX(global_tunables_lock);
545
546static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
547{
548 return container_of(attr_set, struct sugov_tunables, attr_set);
549}
550
551static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
552{
553 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
554
555 return sprintf(buf, "%u\n", tunables->rate_limit_us);
556}
557
558static ssize_t
559rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
560{
561 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562 struct sugov_policy *sg_policy;
563 unsigned int rate_limit_us;
564
565 if (kstrtouint(buf, 10, &rate_limit_us))
566 return -EINVAL;
567
568 tunables->rate_limit_us = rate_limit_us;
569
570 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
571 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
572
573 return count;
574}
575
576static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
577
578static struct attribute *sugov_attrs[] = {
579 &rate_limit_us.attr,
580 NULL
581};
582ATTRIBUTE_GROUPS(sugov);
583
584static void sugov_tunables_free(struct kobject *kobj)
585{
586 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
587
588 kfree(to_sugov_tunables(attr_set));
589}
590
591static const struct kobj_type sugov_tunables_ktype = {
592 .default_groups = sugov_groups,
593 .sysfs_ops = &governor_sysfs_ops,
594 .release = &sugov_tunables_free,
595};
596
597/********************** cpufreq governor interface *********************/
598
599#ifdef CONFIG_ENERGY_MODEL
600static void rebuild_sd_workfn(struct work_struct *work)
601{
602 rebuild_sched_domains_energy();
603}
604
605static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
606
607/*
608 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
609 * on governor changes to make sure the scheduler knows about it.
610 */
611static void sugov_eas_rebuild_sd(void)
612{
613 /*
614 * When called from the cpufreq_register_driver() path, the
615 * cpu_hotplug_lock is already held, so use a work item to
616 * avoid nested locking in rebuild_sched_domains().
617 */
618 schedule_work(&rebuild_sd_work);
619}
620#else
621static inline void sugov_eas_rebuild_sd(void) { };
622#endif
623
624struct cpufreq_governor schedutil_gov;
625
626static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
627{
628 struct sugov_policy *sg_policy;
629
630 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
631 if (!sg_policy)
632 return NULL;
633
634 sg_policy->policy = policy;
635 raw_spin_lock_init(&sg_policy->update_lock);
636 return sg_policy;
637}
638
639static void sugov_policy_free(struct sugov_policy *sg_policy)
640{
641 kfree(sg_policy);
642}
643
644static int sugov_kthread_create(struct sugov_policy *sg_policy)
645{
646 struct task_struct *thread;
647 struct sched_attr attr = {
648 .size = sizeof(struct sched_attr),
649 .sched_policy = SCHED_DEADLINE,
650 .sched_flags = SCHED_FLAG_SUGOV,
651 .sched_nice = 0,
652 .sched_priority = 0,
653 /*
654 * Fake (unused) bandwidth; workaround to "fix"
655 * priority inheritance.
656 */
657 .sched_runtime = 1000000,
658 .sched_deadline = 10000000,
659 .sched_period = 10000000,
660 };
661 struct cpufreq_policy *policy = sg_policy->policy;
662 int ret;
663
664 /* kthread only required for slow path */
665 if (policy->fast_switch_enabled)
666 return 0;
667
668 kthread_init_work(&sg_policy->work, sugov_work);
669 kthread_init_worker(&sg_policy->worker);
670 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
671 "sugov:%d",
672 cpumask_first(policy->related_cpus));
673 if (IS_ERR(thread)) {
674 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
675 return PTR_ERR(thread);
676 }
677
678 ret = sched_setattr_nocheck(thread, &attr);
679 if (ret) {
680 kthread_stop(thread);
681 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
682 return ret;
683 }
684
685 sg_policy->thread = thread;
686 kthread_bind_mask(thread, policy->related_cpus);
687 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
688 mutex_init(&sg_policy->work_lock);
689
690 wake_up_process(thread);
691
692 return 0;
693}
694
695static void sugov_kthread_stop(struct sugov_policy *sg_policy)
696{
697 /* kthread only required for slow path */
698 if (sg_policy->policy->fast_switch_enabled)
699 return;
700
701 kthread_flush_worker(&sg_policy->worker);
702 kthread_stop(sg_policy->thread);
703 mutex_destroy(&sg_policy->work_lock);
704}
705
706static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
707{
708 struct sugov_tunables *tunables;
709
710 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
711 if (tunables) {
712 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
713 if (!have_governor_per_policy())
714 global_tunables = tunables;
715 }
716 return tunables;
717}
718
719static void sugov_clear_global_tunables(void)
720{
721 if (!have_governor_per_policy())
722 global_tunables = NULL;
723}
724
725static int sugov_init(struct cpufreq_policy *policy)
726{
727 struct sugov_policy *sg_policy;
728 struct sugov_tunables *tunables;
729 int ret = 0;
730
731 /* State should be equivalent to EXIT */
732 if (policy->governor_data)
733 return -EBUSY;
734
735 cpufreq_enable_fast_switch(policy);
736
737 sg_policy = sugov_policy_alloc(policy);
738 if (!sg_policy) {
739 ret = -ENOMEM;
740 goto disable_fast_switch;
741 }
742
743 ret = sugov_kthread_create(sg_policy);
744 if (ret)
745 goto free_sg_policy;
746
747 mutex_lock(&global_tunables_lock);
748
749 if (global_tunables) {
750 if (WARN_ON(have_governor_per_policy())) {
751 ret = -EINVAL;
752 goto stop_kthread;
753 }
754 policy->governor_data = sg_policy;
755 sg_policy->tunables = global_tunables;
756
757 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
758 goto out;
759 }
760
761 tunables = sugov_tunables_alloc(sg_policy);
762 if (!tunables) {
763 ret = -ENOMEM;
764 goto stop_kthread;
765 }
766
767 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
768
769 policy->governor_data = sg_policy;
770 sg_policy->tunables = tunables;
771
772 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
773 get_governor_parent_kobj(policy), "%s",
774 schedutil_gov.name);
775 if (ret)
776 goto fail;
777
778 sugov_eas_rebuild_sd();
779
780out:
781 mutex_unlock(&global_tunables_lock);
782 return 0;
783
784fail:
785 kobject_put(&tunables->attr_set.kobj);
786 policy->governor_data = NULL;
787 sugov_clear_global_tunables();
788
789stop_kthread:
790 sugov_kthread_stop(sg_policy);
791 mutex_unlock(&global_tunables_lock);
792
793free_sg_policy:
794 sugov_policy_free(sg_policy);
795
796disable_fast_switch:
797 cpufreq_disable_fast_switch(policy);
798
799 pr_err("initialization failed (error %d)\n", ret);
800 return ret;
801}
802
803static void sugov_exit(struct cpufreq_policy *policy)
804{
805 struct sugov_policy *sg_policy = policy->governor_data;
806 struct sugov_tunables *tunables = sg_policy->tunables;
807 unsigned int count;
808
809 mutex_lock(&global_tunables_lock);
810
811 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
812 policy->governor_data = NULL;
813 if (!count)
814 sugov_clear_global_tunables();
815
816 mutex_unlock(&global_tunables_lock);
817
818 sugov_kthread_stop(sg_policy);
819 sugov_policy_free(sg_policy);
820 cpufreq_disable_fast_switch(policy);
821
822 sugov_eas_rebuild_sd();
823}
824
825static int sugov_start(struct cpufreq_policy *policy)
826{
827 struct sugov_policy *sg_policy = policy->governor_data;
828 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
829 unsigned int cpu;
830
831 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
832 sg_policy->last_freq_update_time = 0;
833 sg_policy->next_freq = 0;
834 sg_policy->work_in_progress = false;
835 sg_policy->limits_changed = false;
836 sg_policy->cached_raw_freq = 0;
837
838 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
839
840 if (policy_is_shared(policy))
841 uu = sugov_update_shared;
842 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
843 uu = sugov_update_single_perf;
844 else
845 uu = sugov_update_single_freq;
846
847 for_each_cpu(cpu, policy->cpus) {
848 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
849
850 memset(sg_cpu, 0, sizeof(*sg_cpu));
851 sg_cpu->cpu = cpu;
852 sg_cpu->sg_policy = sg_policy;
853 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
854 }
855 return 0;
856}
857
858static void sugov_stop(struct cpufreq_policy *policy)
859{
860 struct sugov_policy *sg_policy = policy->governor_data;
861 unsigned int cpu;
862
863 for_each_cpu(cpu, policy->cpus)
864 cpufreq_remove_update_util_hook(cpu);
865
866 synchronize_rcu();
867
868 if (!policy->fast_switch_enabled) {
869 irq_work_sync(&sg_policy->irq_work);
870 kthread_cancel_work_sync(&sg_policy->work);
871 }
872}
873
874static void sugov_limits(struct cpufreq_policy *policy)
875{
876 struct sugov_policy *sg_policy = policy->governor_data;
877
878 if (!policy->fast_switch_enabled) {
879 mutex_lock(&sg_policy->work_lock);
880 cpufreq_policy_apply_limits(policy);
881 mutex_unlock(&sg_policy->work_lock);
882 }
883
884 sg_policy->limits_changed = true;
885}
886
887struct cpufreq_governor schedutil_gov = {
888 .name = "schedutil",
889 .owner = THIS_MODULE,
890 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
891 .init = sugov_init,
892 .exit = sugov_exit,
893 .start = sugov_start,
894 .stop = sugov_stop,
895 .limits = sugov_limits,
896};
897
898#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
899struct cpufreq_governor *cpufreq_default_governor(void)
900{
901 return &schedutil_gov;
902}
903#endif
904
905cpufreq_governor_init(schedutil_gov);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include "sched.h"
12
13#include <linux/sched/cpufreq.h>
14#include <trace/events/power.h>
15
16#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
17
18struct sugov_tunables {
19 struct gov_attr_set attr_set;
20 unsigned int rate_limit_us;
21};
22
23struct sugov_policy {
24 struct cpufreq_policy *policy;
25
26 struct sugov_tunables *tunables;
27 struct list_head tunables_hook;
28
29 raw_spinlock_t update_lock;
30 u64 last_freq_update_time;
31 s64 freq_update_delay_ns;
32 unsigned int next_freq;
33 unsigned int cached_raw_freq;
34
35 /* The next fields are only needed if fast switch cannot be used: */
36 struct irq_work irq_work;
37 struct kthread_work work;
38 struct mutex work_lock;
39 struct kthread_worker worker;
40 struct task_struct *thread;
41 bool work_in_progress;
42
43 bool limits_changed;
44 bool need_freq_update;
45};
46
47struct sugov_cpu {
48 struct update_util_data update_util;
49 struct sugov_policy *sg_policy;
50 unsigned int cpu;
51
52 bool iowait_boost_pending;
53 unsigned int iowait_boost;
54 u64 last_update;
55
56 unsigned long util;
57 unsigned long bw_dl;
58 unsigned long max;
59
60 /* The field below is for single-CPU policies only: */
61#ifdef CONFIG_NO_HZ_COMMON
62 unsigned long saved_idle_calls;
63#endif
64};
65
66static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67
68/************************ Governor internals ***********************/
69
70static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71{
72 s64 delta_ns;
73
74 /*
75 * Since cpufreq_update_util() is called with rq->lock held for
76 * the @target_cpu, our per-CPU data is fully serialized.
77 *
78 * However, drivers cannot in general deal with cross-CPU
79 * requests, so while get_next_freq() will work, our
80 * sugov_update_commit() call may not for the fast switching platforms.
81 *
82 * Hence stop here for remote requests if they aren't supported
83 * by the hardware, as calculating the frequency is pointless if
84 * we cannot in fact act on it.
85 *
86 * This is needed on the slow switching platforms too to prevent CPUs
87 * going offline from leaving stale IRQ work items behind.
88 */
89 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90 return false;
91
92 if (unlikely(sg_policy->limits_changed)) {
93 sg_policy->limits_changed = false;
94 sg_policy->need_freq_update = true;
95 return true;
96 }
97
98 delta_ns = time - sg_policy->last_freq_update_time;
99
100 return delta_ns >= sg_policy->freq_update_delay_ns;
101}
102
103static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104 unsigned int next_freq)
105{
106 if (sg_policy->need_freq_update)
107 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
108 else if (sg_policy->next_freq == next_freq)
109 return false;
110
111 sg_policy->next_freq = next_freq;
112 sg_policy->last_freq_update_time = time;
113
114 return true;
115}
116
117static void sugov_deferred_update(struct sugov_policy *sg_policy)
118{
119 if (!sg_policy->work_in_progress) {
120 sg_policy->work_in_progress = true;
121 irq_work_queue(&sg_policy->irq_work);
122 }
123}
124
125/**
126 * get_next_freq - Compute a new frequency for a given cpufreq policy.
127 * @sg_policy: schedutil policy object to compute the new frequency for.
128 * @util: Current CPU utilization.
129 * @max: CPU capacity.
130 *
131 * If the utilization is frequency-invariant, choose the new frequency to be
132 * proportional to it, that is
133 *
134 * next_freq = C * max_freq * util / max
135 *
136 * Otherwise, approximate the would-be frequency-invariant utilization by
137 * util_raw * (curr_freq / max_freq) which leads to
138 *
139 * next_freq = C * curr_freq * util_raw / max
140 *
141 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
142 *
143 * The lowest driver-supported frequency which is equal or greater than the raw
144 * next_freq (as calculated above) is returned, subject to policy min/max and
145 * cpufreq driver limitations.
146 */
147static unsigned int get_next_freq(struct sugov_policy *sg_policy,
148 unsigned long util, unsigned long max)
149{
150 struct cpufreq_policy *policy = sg_policy->policy;
151 unsigned int freq = arch_scale_freq_invariant() ?
152 policy->cpuinfo.max_freq : policy->cur;
153
154 util = map_util_perf(util);
155 freq = map_util_freq(util, freq, max);
156
157 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
158 return sg_policy->next_freq;
159
160 sg_policy->cached_raw_freq = freq;
161 return cpufreq_driver_resolve_freq(policy, freq);
162}
163
164static void sugov_get_util(struct sugov_cpu *sg_cpu)
165{
166 struct rq *rq = cpu_rq(sg_cpu->cpu);
167 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
168
169 sg_cpu->max = max;
170 sg_cpu->bw_dl = cpu_bw_dl(rq);
171 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max,
172 FREQUENCY_UTIL, NULL);
173}
174
175/**
176 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
177 * @sg_cpu: the sugov data for the CPU to boost
178 * @time: the update time from the caller
179 * @set_iowait_boost: true if an IO boost has been requested
180 *
181 * The IO wait boost of a task is disabled after a tick since the last update
182 * of a CPU. If a new IO wait boost is requested after more then a tick, then
183 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
184 * efficiency by ignoring sporadic wakeups from IO.
185 */
186static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
187 bool set_iowait_boost)
188{
189 s64 delta_ns = time - sg_cpu->last_update;
190
191 /* Reset boost only if a tick has elapsed since last request */
192 if (delta_ns <= TICK_NSEC)
193 return false;
194
195 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
196 sg_cpu->iowait_boost_pending = set_iowait_boost;
197
198 return true;
199}
200
201/**
202 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
203 * @sg_cpu: the sugov data for the CPU to boost
204 * @time: the update time from the caller
205 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
206 *
207 * Each time a task wakes up after an IO operation, the CPU utilization can be
208 * boosted to a certain utilization which doubles at each "frequent and
209 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
210 * of the maximum OPP.
211 *
212 * To keep doubling, an IO boost has to be requested at least once per tick,
213 * otherwise we restart from the utilization of the minimum OPP.
214 */
215static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
216 unsigned int flags)
217{
218 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
219
220 /* Reset boost if the CPU appears to have been idle enough */
221 if (sg_cpu->iowait_boost &&
222 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
223 return;
224
225 /* Boost only tasks waking up after IO */
226 if (!set_iowait_boost)
227 return;
228
229 /* Ensure boost doubles only one time at each request */
230 if (sg_cpu->iowait_boost_pending)
231 return;
232 sg_cpu->iowait_boost_pending = true;
233
234 /* Double the boost at each request */
235 if (sg_cpu->iowait_boost) {
236 sg_cpu->iowait_boost =
237 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
238 return;
239 }
240
241 /* First wakeup after IO: start with minimum boost */
242 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
243}
244
245/**
246 * sugov_iowait_apply() - Apply the IO boost to a CPU.
247 * @sg_cpu: the sugov data for the cpu to boost
248 * @time: the update time from the caller
249 *
250 * A CPU running a task which woken up after an IO operation can have its
251 * utilization boosted to speed up the completion of those IO operations.
252 * The IO boost value is increased each time a task wakes up from IO, in
253 * sugov_iowait_apply(), and it's instead decreased by this function,
254 * each time an increase has not been requested (!iowait_boost_pending).
255 *
256 * A CPU which also appears to have been idle for at least one tick has also
257 * its IO boost utilization reset.
258 *
259 * This mechanism is designed to boost high frequently IO waiting tasks, while
260 * being more conservative on tasks which does sporadic IO operations.
261 */
262static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
263{
264 unsigned long boost;
265
266 /* No boost currently required */
267 if (!sg_cpu->iowait_boost)
268 return;
269
270 /* Reset boost if the CPU appears to have been idle enough */
271 if (sugov_iowait_reset(sg_cpu, time, false))
272 return;
273
274 if (!sg_cpu->iowait_boost_pending) {
275 /*
276 * No boost pending; reduce the boost value.
277 */
278 sg_cpu->iowait_boost >>= 1;
279 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
280 sg_cpu->iowait_boost = 0;
281 return;
282 }
283 }
284
285 sg_cpu->iowait_boost_pending = false;
286
287 /*
288 * sg_cpu->util is already in capacity scale; convert iowait_boost
289 * into the same scale so we can compare.
290 */
291 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
292 if (sg_cpu->util < boost)
293 sg_cpu->util = boost;
294}
295
296#ifdef CONFIG_NO_HZ_COMMON
297static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
298{
299 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
300 bool ret = idle_calls == sg_cpu->saved_idle_calls;
301
302 sg_cpu->saved_idle_calls = idle_calls;
303 return ret;
304}
305#else
306static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
307#endif /* CONFIG_NO_HZ_COMMON */
308
309/*
310 * Make sugov_should_update_freq() ignore the rate limit when DL
311 * has increased the utilization.
312 */
313static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
314{
315 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
316 sg_cpu->sg_policy->limits_changed = true;
317}
318
319static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
320 u64 time, unsigned int flags)
321{
322 sugov_iowait_boost(sg_cpu, time, flags);
323 sg_cpu->last_update = time;
324
325 ignore_dl_rate_limit(sg_cpu);
326
327 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
328 return false;
329
330 sugov_get_util(sg_cpu);
331 sugov_iowait_apply(sg_cpu, time);
332
333 return true;
334}
335
336static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
337 unsigned int flags)
338{
339 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
340 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
341 unsigned int cached_freq = sg_policy->cached_raw_freq;
342 unsigned int next_f;
343
344 if (!sugov_update_single_common(sg_cpu, time, flags))
345 return;
346
347 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
348 /*
349 * Do not reduce the frequency if the CPU has not been idle
350 * recently, as the reduction is likely to be premature then.
351 */
352 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
353 next_f = sg_policy->next_freq;
354
355 /* Restore cached freq as next_freq has changed */
356 sg_policy->cached_raw_freq = cached_freq;
357 }
358
359 if (!sugov_update_next_freq(sg_policy, time, next_f))
360 return;
361
362 /*
363 * This code runs under rq->lock for the target CPU, so it won't run
364 * concurrently on two different CPUs for the same target and it is not
365 * necessary to acquire the lock in the fast switch case.
366 */
367 if (sg_policy->policy->fast_switch_enabled) {
368 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
369 } else {
370 raw_spin_lock(&sg_policy->update_lock);
371 sugov_deferred_update(sg_policy);
372 raw_spin_unlock(&sg_policy->update_lock);
373 }
374}
375
376static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
377 unsigned int flags)
378{
379 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
380 unsigned long prev_util = sg_cpu->util;
381
382 /*
383 * Fall back to the "frequency" path if frequency invariance is not
384 * supported, because the direct mapping between the utilization and
385 * the performance levels depends on the frequency invariance.
386 */
387 if (!arch_scale_freq_invariant()) {
388 sugov_update_single_freq(hook, time, flags);
389 return;
390 }
391
392 if (!sugov_update_single_common(sg_cpu, time, flags))
393 return;
394
395 /*
396 * Do not reduce the target performance level if the CPU has not been
397 * idle recently, as the reduction is likely to be premature then.
398 */
399 if (sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
400 sg_cpu->util = prev_util;
401
402 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
403 map_util_perf(sg_cpu->util), sg_cpu->max);
404
405 sg_cpu->sg_policy->last_freq_update_time = time;
406}
407
408static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
409{
410 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
411 struct cpufreq_policy *policy = sg_policy->policy;
412 unsigned long util = 0, max = 1;
413 unsigned int j;
414
415 for_each_cpu(j, policy->cpus) {
416 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
417 unsigned long j_util, j_max;
418
419 sugov_get_util(j_sg_cpu);
420 sugov_iowait_apply(j_sg_cpu, time);
421 j_util = j_sg_cpu->util;
422 j_max = j_sg_cpu->max;
423
424 if (j_util * max > j_max * util) {
425 util = j_util;
426 max = j_max;
427 }
428 }
429
430 return get_next_freq(sg_policy, util, max);
431}
432
433static void
434sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
435{
436 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
438 unsigned int next_f;
439
440 raw_spin_lock(&sg_policy->update_lock);
441
442 sugov_iowait_boost(sg_cpu, time, flags);
443 sg_cpu->last_update = time;
444
445 ignore_dl_rate_limit(sg_cpu);
446
447 if (sugov_should_update_freq(sg_policy, time)) {
448 next_f = sugov_next_freq_shared(sg_cpu, time);
449
450 if (!sugov_update_next_freq(sg_policy, time, next_f))
451 goto unlock;
452
453 if (sg_policy->policy->fast_switch_enabled)
454 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
455 else
456 sugov_deferred_update(sg_policy);
457 }
458unlock:
459 raw_spin_unlock(&sg_policy->update_lock);
460}
461
462static void sugov_work(struct kthread_work *work)
463{
464 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
465 unsigned int freq;
466 unsigned long flags;
467
468 /*
469 * Hold sg_policy->update_lock shortly to handle the case where:
470 * in case sg_policy->next_freq is read here, and then updated by
471 * sugov_deferred_update() just before work_in_progress is set to false
472 * here, we may miss queueing the new update.
473 *
474 * Note: If a work was queued after the update_lock is released,
475 * sugov_work() will just be called again by kthread_work code; and the
476 * request will be proceed before the sugov thread sleeps.
477 */
478 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
479 freq = sg_policy->next_freq;
480 sg_policy->work_in_progress = false;
481 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
482
483 mutex_lock(&sg_policy->work_lock);
484 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
485 mutex_unlock(&sg_policy->work_lock);
486}
487
488static void sugov_irq_work(struct irq_work *irq_work)
489{
490 struct sugov_policy *sg_policy;
491
492 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
493
494 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
495}
496
497/************************** sysfs interface ************************/
498
499static struct sugov_tunables *global_tunables;
500static DEFINE_MUTEX(global_tunables_lock);
501
502static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
503{
504 return container_of(attr_set, struct sugov_tunables, attr_set);
505}
506
507static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
508{
509 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
510
511 return sprintf(buf, "%u\n", tunables->rate_limit_us);
512}
513
514static ssize_t
515rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
516{
517 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
518 struct sugov_policy *sg_policy;
519 unsigned int rate_limit_us;
520
521 if (kstrtouint(buf, 10, &rate_limit_us))
522 return -EINVAL;
523
524 tunables->rate_limit_us = rate_limit_us;
525
526 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
527 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
528
529 return count;
530}
531
532static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
533
534static struct attribute *sugov_attrs[] = {
535 &rate_limit_us.attr,
536 NULL
537};
538ATTRIBUTE_GROUPS(sugov);
539
540static void sugov_tunables_free(struct kobject *kobj)
541{
542 struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
543
544 kfree(to_sugov_tunables(attr_set));
545}
546
547static struct kobj_type sugov_tunables_ktype = {
548 .default_groups = sugov_groups,
549 .sysfs_ops = &governor_sysfs_ops,
550 .release = &sugov_tunables_free,
551};
552
553/********************** cpufreq governor interface *********************/
554
555struct cpufreq_governor schedutil_gov;
556
557static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
558{
559 struct sugov_policy *sg_policy;
560
561 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
562 if (!sg_policy)
563 return NULL;
564
565 sg_policy->policy = policy;
566 raw_spin_lock_init(&sg_policy->update_lock);
567 return sg_policy;
568}
569
570static void sugov_policy_free(struct sugov_policy *sg_policy)
571{
572 kfree(sg_policy);
573}
574
575static int sugov_kthread_create(struct sugov_policy *sg_policy)
576{
577 struct task_struct *thread;
578 struct sched_attr attr = {
579 .size = sizeof(struct sched_attr),
580 .sched_policy = SCHED_DEADLINE,
581 .sched_flags = SCHED_FLAG_SUGOV,
582 .sched_nice = 0,
583 .sched_priority = 0,
584 /*
585 * Fake (unused) bandwidth; workaround to "fix"
586 * priority inheritance.
587 */
588 .sched_runtime = 1000000,
589 .sched_deadline = 10000000,
590 .sched_period = 10000000,
591 };
592 struct cpufreq_policy *policy = sg_policy->policy;
593 int ret;
594
595 /* kthread only required for slow path */
596 if (policy->fast_switch_enabled)
597 return 0;
598
599 kthread_init_work(&sg_policy->work, sugov_work);
600 kthread_init_worker(&sg_policy->worker);
601 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
602 "sugov:%d",
603 cpumask_first(policy->related_cpus));
604 if (IS_ERR(thread)) {
605 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
606 return PTR_ERR(thread);
607 }
608
609 ret = sched_setattr_nocheck(thread, &attr);
610 if (ret) {
611 kthread_stop(thread);
612 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
613 return ret;
614 }
615
616 sg_policy->thread = thread;
617 kthread_bind_mask(thread, policy->related_cpus);
618 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
619 mutex_init(&sg_policy->work_lock);
620
621 wake_up_process(thread);
622
623 return 0;
624}
625
626static void sugov_kthread_stop(struct sugov_policy *sg_policy)
627{
628 /* kthread only required for slow path */
629 if (sg_policy->policy->fast_switch_enabled)
630 return;
631
632 kthread_flush_worker(&sg_policy->worker);
633 kthread_stop(sg_policy->thread);
634 mutex_destroy(&sg_policy->work_lock);
635}
636
637static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
638{
639 struct sugov_tunables *tunables;
640
641 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
642 if (tunables) {
643 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
644 if (!have_governor_per_policy())
645 global_tunables = tunables;
646 }
647 return tunables;
648}
649
650static void sugov_clear_global_tunables(void)
651{
652 if (!have_governor_per_policy())
653 global_tunables = NULL;
654}
655
656static int sugov_init(struct cpufreq_policy *policy)
657{
658 struct sugov_policy *sg_policy;
659 struct sugov_tunables *tunables;
660 int ret = 0;
661
662 /* State should be equivalent to EXIT */
663 if (policy->governor_data)
664 return -EBUSY;
665
666 cpufreq_enable_fast_switch(policy);
667
668 sg_policy = sugov_policy_alloc(policy);
669 if (!sg_policy) {
670 ret = -ENOMEM;
671 goto disable_fast_switch;
672 }
673
674 ret = sugov_kthread_create(sg_policy);
675 if (ret)
676 goto free_sg_policy;
677
678 mutex_lock(&global_tunables_lock);
679
680 if (global_tunables) {
681 if (WARN_ON(have_governor_per_policy())) {
682 ret = -EINVAL;
683 goto stop_kthread;
684 }
685 policy->governor_data = sg_policy;
686 sg_policy->tunables = global_tunables;
687
688 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
689 goto out;
690 }
691
692 tunables = sugov_tunables_alloc(sg_policy);
693 if (!tunables) {
694 ret = -ENOMEM;
695 goto stop_kthread;
696 }
697
698 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
699
700 policy->governor_data = sg_policy;
701 sg_policy->tunables = tunables;
702
703 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
704 get_governor_parent_kobj(policy), "%s",
705 schedutil_gov.name);
706 if (ret)
707 goto fail;
708
709out:
710 mutex_unlock(&global_tunables_lock);
711 return 0;
712
713fail:
714 kobject_put(&tunables->attr_set.kobj);
715 policy->governor_data = NULL;
716 sugov_clear_global_tunables();
717
718stop_kthread:
719 sugov_kthread_stop(sg_policy);
720 mutex_unlock(&global_tunables_lock);
721
722free_sg_policy:
723 sugov_policy_free(sg_policy);
724
725disable_fast_switch:
726 cpufreq_disable_fast_switch(policy);
727
728 pr_err("initialization failed (error %d)\n", ret);
729 return ret;
730}
731
732static void sugov_exit(struct cpufreq_policy *policy)
733{
734 struct sugov_policy *sg_policy = policy->governor_data;
735 struct sugov_tunables *tunables = sg_policy->tunables;
736 unsigned int count;
737
738 mutex_lock(&global_tunables_lock);
739
740 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
741 policy->governor_data = NULL;
742 if (!count)
743 sugov_clear_global_tunables();
744
745 mutex_unlock(&global_tunables_lock);
746
747 sugov_kthread_stop(sg_policy);
748 sugov_policy_free(sg_policy);
749 cpufreq_disable_fast_switch(policy);
750}
751
752static int sugov_start(struct cpufreq_policy *policy)
753{
754 struct sugov_policy *sg_policy = policy->governor_data;
755 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
756 unsigned int cpu;
757
758 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
759 sg_policy->last_freq_update_time = 0;
760 sg_policy->next_freq = 0;
761 sg_policy->work_in_progress = false;
762 sg_policy->limits_changed = false;
763 sg_policy->cached_raw_freq = 0;
764
765 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
766
767 for_each_cpu(cpu, policy->cpus) {
768 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
769
770 memset(sg_cpu, 0, sizeof(*sg_cpu));
771 sg_cpu->cpu = cpu;
772 sg_cpu->sg_policy = sg_policy;
773 }
774
775 if (policy_is_shared(policy))
776 uu = sugov_update_shared;
777 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
778 uu = sugov_update_single_perf;
779 else
780 uu = sugov_update_single_freq;
781
782 for_each_cpu(cpu, policy->cpus) {
783 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
784
785 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
786 }
787 return 0;
788}
789
790static void sugov_stop(struct cpufreq_policy *policy)
791{
792 struct sugov_policy *sg_policy = policy->governor_data;
793 unsigned int cpu;
794
795 for_each_cpu(cpu, policy->cpus)
796 cpufreq_remove_update_util_hook(cpu);
797
798 synchronize_rcu();
799
800 if (!policy->fast_switch_enabled) {
801 irq_work_sync(&sg_policy->irq_work);
802 kthread_cancel_work_sync(&sg_policy->work);
803 }
804}
805
806static void sugov_limits(struct cpufreq_policy *policy)
807{
808 struct sugov_policy *sg_policy = policy->governor_data;
809
810 if (!policy->fast_switch_enabled) {
811 mutex_lock(&sg_policy->work_lock);
812 cpufreq_policy_apply_limits(policy);
813 mutex_unlock(&sg_policy->work_lock);
814 }
815
816 sg_policy->limits_changed = true;
817}
818
819struct cpufreq_governor schedutil_gov = {
820 .name = "schedutil",
821 .owner = THIS_MODULE,
822 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
823 .init = sugov_init,
824 .exit = sugov_exit,
825 .start = sugov_start,
826 .stop = sugov_stop,
827 .limits = sugov_limits,
828};
829
830#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
831struct cpufreq_governor *cpufreq_default_governor(void)
832{
833 return &schedutil_gov;
834}
835#endif
836
837cpufreq_governor_init(schedutil_gov);
838
839#ifdef CONFIG_ENERGY_MODEL
840static void rebuild_sd_workfn(struct work_struct *work)
841{
842 rebuild_sched_domains_energy();
843}
844static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
845
846/*
847 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
848 * on governor changes to make sure the scheduler knows about it.
849 */
850void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
851 struct cpufreq_governor *old_gov)
852{
853 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
854 /*
855 * When called from the cpufreq_register_driver() path, the
856 * cpu_hotplug_lock is already held, so use a work item to
857 * avoid nested locking in rebuild_sched_domains().
858 */
859 schedule_work(&rebuild_sd_work);
860 }
861
862}
863#endif