Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * CPUFreq governor based on scheduler-provided CPU utilization data.
  4 *
  5 * Copyright (C) 2016, Intel Corporation
  6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7 */
  8
 
 
 
 
 
 
 
  9#define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
 10
 11struct sugov_tunables {
 12	struct gov_attr_set	attr_set;
 13	unsigned int		rate_limit_us;
 14};
 15
 16struct sugov_policy {
 17	struct cpufreq_policy	*policy;
 18
 19	struct sugov_tunables	*tunables;
 20	struct list_head	tunables_hook;
 21
 22	raw_spinlock_t		update_lock;
 23	u64			last_freq_update_time;
 24	s64			freq_update_delay_ns;
 25	unsigned int		next_freq;
 26	unsigned int		cached_raw_freq;
 27
 28	/* The next fields are only needed if fast switch cannot be used: */
 29	struct			irq_work irq_work;
 30	struct			kthread_work work;
 31	struct			mutex work_lock;
 32	struct			kthread_worker worker;
 33	struct task_struct	*thread;
 34	bool			work_in_progress;
 35
 36	bool			limits_changed;
 37	bool			need_freq_update;
 38};
 39
 40struct sugov_cpu {
 41	struct update_util_data	update_util;
 42	struct sugov_policy	*sg_policy;
 43	unsigned int		cpu;
 44
 45	bool			iowait_boost_pending;
 46	unsigned int		iowait_boost;
 47	u64			last_update;
 48
 49	unsigned long		util;
 50	unsigned long		bw_min;
 
 51
 52	/* The field below is for single-CPU policies only: */
 53#ifdef CONFIG_NO_HZ_COMMON
 54	unsigned long		saved_idle_calls;
 55#endif
 56};
 57
 58static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
 59
 60/************************ Governor internals ***********************/
 61
 62static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 63{
 64	s64 delta_ns;
 65
 66	/*
 67	 * Since cpufreq_update_util() is called with rq->lock held for
 68	 * the @target_cpu, our per-CPU data is fully serialized.
 69	 *
 70	 * However, drivers cannot in general deal with cross-CPU
 71	 * requests, so while get_next_freq() will work, our
 72	 * sugov_update_commit() call may not for the fast switching platforms.
 73	 *
 74	 * Hence stop here for remote requests if they aren't supported
 75	 * by the hardware, as calculating the frequency is pointless if
 76	 * we cannot in fact act on it.
 77	 *
 78	 * This is needed on the slow switching platforms too to prevent CPUs
 79	 * going offline from leaving stale IRQ work items behind.
 80	 */
 81	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
 82		return false;
 83
 84	if (unlikely(sg_policy->limits_changed)) {
 85		sg_policy->limits_changed = false;
 86		sg_policy->need_freq_update = true;
 87		return true;
 88	}
 89
 90	delta_ns = time - sg_policy->last_freq_update_time;
 91
 92	return delta_ns >= sg_policy->freq_update_delay_ns;
 93}
 94
 95static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
 96				   unsigned int next_freq)
 97{
 98	if (sg_policy->need_freq_update)
 99		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100	else if (sg_policy->next_freq == next_freq)
101		return false;
102
103	sg_policy->next_freq = next_freq;
104	sg_policy->last_freq_update_time = time;
105
106	return true;
107}
108
109static void sugov_deferred_update(struct sugov_policy *sg_policy)
110{
111	if (!sg_policy->work_in_progress) {
112		sg_policy->work_in_progress = true;
113		irq_work_queue(&sg_policy->irq_work);
114	}
115}
116
117/**
118 * get_capacity_ref_freq - get the reference frequency that has been used to
119 * correlate frequency and compute capacity for a given cpufreq policy. We use
120 * the CPU managing it for the arch_scale_freq_ref() call in the function.
121 * @policy: the cpufreq policy of the CPU in question.
122 *
123 * Return: the reference CPU frequency to compute a capacity.
124 */
125static __always_inline
126unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127{
128	unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130	if (freq)
131		return freq;
132
133	if (arch_scale_freq_invariant())
134		return policy->cpuinfo.max_freq;
135
136	/*
137	 * Apply a 25% margin so that we select a higher frequency than
138	 * the current one before the CPU is fully busy:
139	 */
140	return policy->cur + (policy->cur >> 2);
141}
142
143/**
144 * get_next_freq - Compute a new frequency for a given cpufreq policy.
145 * @sg_policy: schedutil policy object to compute the new frequency for.
146 * @util: Current CPU utilization.
147 * @max: CPU capacity.
148 *
149 * If the utilization is frequency-invariant, choose the new frequency to be
150 * proportional to it, that is
151 *
152 * next_freq = C * max_freq * util / max
153 *
154 * Otherwise, approximate the would-be frequency-invariant utilization by
155 * util_raw * (curr_freq / max_freq) which leads to
156 *
157 * next_freq = C * curr_freq * util_raw / max
158 *
159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160 *
161 * The lowest driver-supported frequency which is equal or greater than the raw
162 * next_freq (as calculated above) is returned, subject to policy min/max and
163 * cpufreq driver limitations.
164 */
165static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166				  unsigned long util, unsigned long max)
167{
168	struct cpufreq_policy *policy = sg_policy->policy;
169	unsigned int freq;
 
170
171	freq = get_capacity_ref_freq(policy);
172	freq = map_util_freq(util, freq, max);
173
174	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175		return sg_policy->next_freq;
176
177	sg_policy->cached_raw_freq = freq;
178	return cpufreq_driver_resolve_freq(policy, freq);
179}
180
181unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182				 unsigned long min,
183				 unsigned long max)
184{
185	/* Add dvfs headroom to actual utilization */
186	actual = map_util_perf(actual);
187	/* Actually we don't need to target the max performance */
188	if (actual < max)
189		max = actual;
190
191	/*
192	 * Ensure at least minimum performance while providing more compute
193	 * capacity when possible.
194	 */
195	return max(min, max);
196}
197
198static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199{
200	unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
 
201
202	util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
203	util = max(util, boost);
204	sg_cpu->bw_min = min;
205	sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
206}
207
208/**
209 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
210 * @sg_cpu: the sugov data for the CPU to boost
211 * @time: the update time from the caller
212 * @set_iowait_boost: true if an IO boost has been requested
213 *
214 * The IO wait boost of a task is disabled after a tick since the last update
215 * of a CPU. If a new IO wait boost is requested after more then a tick, then
216 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
217 * efficiency by ignoring sporadic wakeups from IO.
218 */
219static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
220			       bool set_iowait_boost)
221{
222	s64 delta_ns = time - sg_cpu->last_update;
223
224	/* Reset boost only if a tick has elapsed since last request */
225	if (delta_ns <= TICK_NSEC)
226		return false;
227
228	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
229	sg_cpu->iowait_boost_pending = set_iowait_boost;
230
231	return true;
232}
233
234/**
235 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
236 * @sg_cpu: the sugov data for the CPU to boost
237 * @time: the update time from the caller
238 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
239 *
240 * Each time a task wakes up after an IO operation, the CPU utilization can be
241 * boosted to a certain utilization which doubles at each "frequent and
242 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
243 * of the maximum OPP.
244 *
245 * To keep doubling, an IO boost has to be requested at least once per tick,
246 * otherwise we restart from the utilization of the minimum OPP.
247 */
248static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
249			       unsigned int flags)
250{
251	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
252
253	/* Reset boost if the CPU appears to have been idle enough */
254	if (sg_cpu->iowait_boost &&
255	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
256		return;
257
258	/* Boost only tasks waking up after IO */
259	if (!set_iowait_boost)
260		return;
261
262	/* Ensure boost doubles only one time at each request */
263	if (sg_cpu->iowait_boost_pending)
264		return;
265	sg_cpu->iowait_boost_pending = true;
266
267	/* Double the boost at each request */
268	if (sg_cpu->iowait_boost) {
269		sg_cpu->iowait_boost =
270			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
271		return;
272	}
273
274	/* First wakeup after IO: start with minimum boost */
275	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
276}
277
278/**
279 * sugov_iowait_apply() - Apply the IO boost to a CPU.
280 * @sg_cpu: the sugov data for the cpu to boost
281 * @time: the update time from the caller
282 * @max_cap: the max CPU capacity
283 *
284 * A CPU running a task which woken up after an IO operation can have its
285 * utilization boosted to speed up the completion of those IO operations.
286 * The IO boost value is increased each time a task wakes up from IO, in
287 * sugov_iowait_apply(), and it's instead decreased by this function,
288 * each time an increase has not been requested (!iowait_boost_pending).
289 *
290 * A CPU which also appears to have been idle for at least one tick has also
291 * its IO boost utilization reset.
292 *
293 * This mechanism is designed to boost high frequently IO waiting tasks, while
294 * being more conservative on tasks which does sporadic IO operations.
295 */
296static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
297			       unsigned long max_cap)
298{
 
 
299	/* No boost currently required */
300	if (!sg_cpu->iowait_boost)
301		return 0;
302
303	/* Reset boost if the CPU appears to have been idle enough */
304	if (sugov_iowait_reset(sg_cpu, time, false))
305		return 0;
306
307	if (!sg_cpu->iowait_boost_pending) {
308		/*
309		 * No boost pending; reduce the boost value.
310		 */
311		sg_cpu->iowait_boost >>= 1;
312		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
313			sg_cpu->iowait_boost = 0;
314			return 0;
315		}
316	}
317
318	sg_cpu->iowait_boost_pending = false;
319
320	/*
321	 * sg_cpu->util is already in capacity scale; convert iowait_boost
322	 * into the same scale so we can compare.
323	 */
324	return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
 
 
325}
326
327#ifdef CONFIG_NO_HZ_COMMON
328static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
329{
330	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
331	bool ret = idle_calls == sg_cpu->saved_idle_calls;
332
333	sg_cpu->saved_idle_calls = idle_calls;
334	return ret;
335}
336#else
337static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
338#endif /* CONFIG_NO_HZ_COMMON */
339
340/*
341 * Make sugov_should_update_freq() ignore the rate limit when DL
342 * has increased the utilization.
343 */
344static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
345{
346	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
347		sg_cpu->sg_policy->limits_changed = true;
348}
349
350static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
351					      u64 time, unsigned long max_cap,
352					      unsigned int flags)
353{
354	unsigned long boost;
355
356	sugov_iowait_boost(sg_cpu, time, flags);
357	sg_cpu->last_update = time;
358
359	ignore_dl_rate_limit(sg_cpu);
360
361	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
362		return false;
363
364	boost = sugov_iowait_apply(sg_cpu, time, max_cap);
365	sugov_get_util(sg_cpu, boost);
366
367	return true;
368}
369
370static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
371				     unsigned int flags)
372{
373	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
374	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
375	unsigned int cached_freq = sg_policy->cached_raw_freq;
376	unsigned long max_cap;
377	unsigned int next_f;
378
379	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
380
381	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
382		return;
383
384	next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
385	/*
386	 * Do not reduce the frequency if the CPU has not been idle
387	 * recently, as the reduction is likely to be premature then.
388	 *
389	 * Except when the rq is capped by uclamp_max.
390	 */
391	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
392	    sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
393	    !sg_policy->need_freq_update) {
394		next_f = sg_policy->next_freq;
395
396		/* Restore cached freq as next_freq has changed */
397		sg_policy->cached_raw_freq = cached_freq;
398	}
399
400	if (!sugov_update_next_freq(sg_policy, time, next_f))
401		return;
402
403	/*
404	 * This code runs under rq->lock for the target CPU, so it won't run
405	 * concurrently on two different CPUs for the same target and it is not
406	 * necessary to acquire the lock in the fast switch case.
407	 */
408	if (sg_policy->policy->fast_switch_enabled) {
409		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
410	} else {
411		raw_spin_lock(&sg_policy->update_lock);
412		sugov_deferred_update(sg_policy);
413		raw_spin_unlock(&sg_policy->update_lock);
414	}
415}
416
417static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
418				     unsigned int flags)
419{
420	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
421	unsigned long prev_util = sg_cpu->util;
422	unsigned long max_cap;
423
424	/*
425	 * Fall back to the "frequency" path if frequency invariance is not
426	 * supported, because the direct mapping between the utilization and
427	 * the performance levels depends on the frequency invariance.
428	 */
429	if (!arch_scale_freq_invariant()) {
430		sugov_update_single_freq(hook, time, flags);
431		return;
432	}
433
434	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
435
436	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
437		return;
438
439	/*
440	 * Do not reduce the target performance level if the CPU has not been
441	 * idle recently, as the reduction is likely to be premature then.
442	 *
443	 * Except when the rq is capped by uclamp_max.
444	 */
445	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
446	    sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
447		sg_cpu->util = prev_util;
448
449	cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
450				   sg_cpu->util, max_cap);
451
452	sg_cpu->sg_policy->last_freq_update_time = time;
453}
454
455static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
456{
457	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
458	struct cpufreq_policy *policy = sg_policy->policy;
459	unsigned long util = 0, max_cap;
460	unsigned int j;
461
462	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
463
464	for_each_cpu(j, policy->cpus) {
465		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
466		unsigned long boost;
467
468		boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
469		sugov_get_util(j_sg_cpu, boost);
470
471		util = max(j_sg_cpu->util, util);
 
 
 
 
 
 
 
 
472	}
473
474	return get_next_freq(sg_policy, util, max_cap);
475}
476
477static void
478sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
479{
480	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
481	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
482	unsigned int next_f;
483
484	raw_spin_lock(&sg_policy->update_lock);
485
486	sugov_iowait_boost(sg_cpu, time, flags);
487	sg_cpu->last_update = time;
488
489	ignore_dl_rate_limit(sg_cpu);
490
491	if (sugov_should_update_freq(sg_policy, time)) {
492		next_f = sugov_next_freq_shared(sg_cpu, time);
493
494		if (!sugov_update_next_freq(sg_policy, time, next_f))
495			goto unlock;
496
497		if (sg_policy->policy->fast_switch_enabled)
498			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
499		else
500			sugov_deferred_update(sg_policy);
501	}
502unlock:
503	raw_spin_unlock(&sg_policy->update_lock);
504}
505
506static void sugov_work(struct kthread_work *work)
507{
508	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
509	unsigned int freq;
510	unsigned long flags;
511
512	/*
513	 * Hold sg_policy->update_lock shortly to handle the case where:
514	 * in case sg_policy->next_freq is read here, and then updated by
515	 * sugov_deferred_update() just before work_in_progress is set to false
516	 * here, we may miss queueing the new update.
517	 *
518	 * Note: If a work was queued after the update_lock is released,
519	 * sugov_work() will just be called again by kthread_work code; and the
520	 * request will be proceed before the sugov thread sleeps.
521	 */
522	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
523	freq = sg_policy->next_freq;
524	sg_policy->work_in_progress = false;
525	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
526
527	mutex_lock(&sg_policy->work_lock);
528	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
529	mutex_unlock(&sg_policy->work_lock);
530}
531
532static void sugov_irq_work(struct irq_work *irq_work)
533{
534	struct sugov_policy *sg_policy;
535
536	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
537
538	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
539}
540
541/************************** sysfs interface ************************/
542
543static struct sugov_tunables *global_tunables;
544static DEFINE_MUTEX(global_tunables_lock);
545
546static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
547{
548	return container_of(attr_set, struct sugov_tunables, attr_set);
549}
550
551static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
552{
553	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
554
555	return sprintf(buf, "%u\n", tunables->rate_limit_us);
556}
557
558static ssize_t
559rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
560{
561	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562	struct sugov_policy *sg_policy;
563	unsigned int rate_limit_us;
564
565	if (kstrtouint(buf, 10, &rate_limit_us))
566		return -EINVAL;
567
568	tunables->rate_limit_us = rate_limit_us;
569
570	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
571		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
572
573	return count;
574}
575
576static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
577
578static struct attribute *sugov_attrs[] = {
579	&rate_limit_us.attr,
580	NULL
581};
582ATTRIBUTE_GROUPS(sugov);
583
584static void sugov_tunables_free(struct kobject *kobj)
585{
586	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
587
588	kfree(to_sugov_tunables(attr_set));
589}
590
591static const struct kobj_type sugov_tunables_ktype = {
592	.default_groups = sugov_groups,
593	.sysfs_ops = &governor_sysfs_ops,
594	.release = &sugov_tunables_free,
595};
596
597/********************** cpufreq governor interface *********************/
598
599#ifdef CONFIG_ENERGY_MODEL
600static void rebuild_sd_workfn(struct work_struct *work)
601{
602	rebuild_sched_domains_energy();
603}
604
605static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
606
607/*
608 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
609 * on governor changes to make sure the scheduler knows about it.
610 */
611static void sugov_eas_rebuild_sd(void)
612{
613	/*
614	 * When called from the cpufreq_register_driver() path, the
615	 * cpu_hotplug_lock is already held, so use a work item to
616	 * avoid nested locking in rebuild_sched_domains().
617	 */
618	schedule_work(&rebuild_sd_work);
619}
620#else
621static inline void sugov_eas_rebuild_sd(void) { };
622#endif
623
624struct cpufreq_governor schedutil_gov;
625
626static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
627{
628	struct sugov_policy *sg_policy;
629
630	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
631	if (!sg_policy)
632		return NULL;
633
634	sg_policy->policy = policy;
635	raw_spin_lock_init(&sg_policy->update_lock);
636	return sg_policy;
637}
638
639static void sugov_policy_free(struct sugov_policy *sg_policy)
640{
641	kfree(sg_policy);
642}
643
644static int sugov_kthread_create(struct sugov_policy *sg_policy)
645{
646	struct task_struct *thread;
647	struct sched_attr attr = {
648		.size		= sizeof(struct sched_attr),
649		.sched_policy	= SCHED_DEADLINE,
650		.sched_flags	= SCHED_FLAG_SUGOV,
651		.sched_nice	= 0,
652		.sched_priority	= 0,
653		/*
654		 * Fake (unused) bandwidth; workaround to "fix"
655		 * priority inheritance.
656		 */
657		.sched_runtime	=  1000000,
658		.sched_deadline = 10000000,
659		.sched_period	= 10000000,
660	};
661	struct cpufreq_policy *policy = sg_policy->policy;
662	int ret;
663
664	/* kthread only required for slow path */
665	if (policy->fast_switch_enabled)
666		return 0;
667
668	kthread_init_work(&sg_policy->work, sugov_work);
669	kthread_init_worker(&sg_policy->worker);
670	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
671				"sugov:%d",
672				cpumask_first(policy->related_cpus));
673	if (IS_ERR(thread)) {
674		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
675		return PTR_ERR(thread);
676	}
677
678	ret = sched_setattr_nocheck(thread, &attr);
679	if (ret) {
680		kthread_stop(thread);
681		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
682		return ret;
683	}
684
685	sg_policy->thread = thread;
686	kthread_bind_mask(thread, policy->related_cpus);
687	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
688	mutex_init(&sg_policy->work_lock);
689
690	wake_up_process(thread);
691
692	return 0;
693}
694
695static void sugov_kthread_stop(struct sugov_policy *sg_policy)
696{
697	/* kthread only required for slow path */
698	if (sg_policy->policy->fast_switch_enabled)
699		return;
700
701	kthread_flush_worker(&sg_policy->worker);
702	kthread_stop(sg_policy->thread);
703	mutex_destroy(&sg_policy->work_lock);
704}
705
706static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
707{
708	struct sugov_tunables *tunables;
709
710	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
711	if (tunables) {
712		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
713		if (!have_governor_per_policy())
714			global_tunables = tunables;
715	}
716	return tunables;
717}
718
719static void sugov_clear_global_tunables(void)
720{
721	if (!have_governor_per_policy())
722		global_tunables = NULL;
723}
724
725static int sugov_init(struct cpufreq_policy *policy)
726{
727	struct sugov_policy *sg_policy;
728	struct sugov_tunables *tunables;
729	int ret = 0;
730
731	/* State should be equivalent to EXIT */
732	if (policy->governor_data)
733		return -EBUSY;
734
735	cpufreq_enable_fast_switch(policy);
736
737	sg_policy = sugov_policy_alloc(policy);
738	if (!sg_policy) {
739		ret = -ENOMEM;
740		goto disable_fast_switch;
741	}
742
743	ret = sugov_kthread_create(sg_policy);
744	if (ret)
745		goto free_sg_policy;
746
747	mutex_lock(&global_tunables_lock);
748
749	if (global_tunables) {
750		if (WARN_ON(have_governor_per_policy())) {
751			ret = -EINVAL;
752			goto stop_kthread;
753		}
754		policy->governor_data = sg_policy;
755		sg_policy->tunables = global_tunables;
756
757		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
758		goto out;
759	}
760
761	tunables = sugov_tunables_alloc(sg_policy);
762	if (!tunables) {
763		ret = -ENOMEM;
764		goto stop_kthread;
765	}
766
767	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
768
769	policy->governor_data = sg_policy;
770	sg_policy->tunables = tunables;
771
772	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
773				   get_governor_parent_kobj(policy), "%s",
774				   schedutil_gov.name);
775	if (ret)
776		goto fail;
777
778	sugov_eas_rebuild_sd();
779
780out:
781	mutex_unlock(&global_tunables_lock);
782	return 0;
783
784fail:
785	kobject_put(&tunables->attr_set.kobj);
786	policy->governor_data = NULL;
787	sugov_clear_global_tunables();
788
789stop_kthread:
790	sugov_kthread_stop(sg_policy);
791	mutex_unlock(&global_tunables_lock);
792
793free_sg_policy:
794	sugov_policy_free(sg_policy);
795
796disable_fast_switch:
797	cpufreq_disable_fast_switch(policy);
798
799	pr_err("initialization failed (error %d)\n", ret);
800	return ret;
801}
802
803static void sugov_exit(struct cpufreq_policy *policy)
804{
805	struct sugov_policy *sg_policy = policy->governor_data;
806	struct sugov_tunables *tunables = sg_policy->tunables;
807	unsigned int count;
808
809	mutex_lock(&global_tunables_lock);
810
811	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
812	policy->governor_data = NULL;
813	if (!count)
814		sugov_clear_global_tunables();
815
816	mutex_unlock(&global_tunables_lock);
817
818	sugov_kthread_stop(sg_policy);
819	sugov_policy_free(sg_policy);
820	cpufreq_disable_fast_switch(policy);
821
822	sugov_eas_rebuild_sd();
823}
824
825static int sugov_start(struct cpufreq_policy *policy)
826{
827	struct sugov_policy *sg_policy = policy->governor_data;
828	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
829	unsigned int cpu;
830
831	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
832	sg_policy->last_freq_update_time	= 0;
833	sg_policy->next_freq			= 0;
834	sg_policy->work_in_progress		= false;
835	sg_policy->limits_changed		= false;
836	sg_policy->cached_raw_freq		= 0;
837
838	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
839
 
 
 
 
 
 
 
 
840	if (policy_is_shared(policy))
841		uu = sugov_update_shared;
842	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
843		uu = sugov_update_single_perf;
844	else
845		uu = sugov_update_single_freq;
846
847	for_each_cpu(cpu, policy->cpus) {
848		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
849
850		memset(sg_cpu, 0, sizeof(*sg_cpu));
851		sg_cpu->cpu = cpu;
852		sg_cpu->sg_policy = sg_policy;
853		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
854	}
855	return 0;
856}
857
858static void sugov_stop(struct cpufreq_policy *policy)
859{
860	struct sugov_policy *sg_policy = policy->governor_data;
861	unsigned int cpu;
862
863	for_each_cpu(cpu, policy->cpus)
864		cpufreq_remove_update_util_hook(cpu);
865
866	synchronize_rcu();
867
868	if (!policy->fast_switch_enabled) {
869		irq_work_sync(&sg_policy->irq_work);
870		kthread_cancel_work_sync(&sg_policy->work);
871	}
872}
873
874static void sugov_limits(struct cpufreq_policy *policy)
875{
876	struct sugov_policy *sg_policy = policy->governor_data;
877
878	if (!policy->fast_switch_enabled) {
879		mutex_lock(&sg_policy->work_lock);
880		cpufreq_policy_apply_limits(policy);
881		mutex_unlock(&sg_policy->work_lock);
882	}
883
884	sg_policy->limits_changed = true;
885}
886
887struct cpufreq_governor schedutil_gov = {
888	.name			= "schedutil",
889	.owner			= THIS_MODULE,
890	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
891	.init			= sugov_init,
892	.exit			= sugov_exit,
893	.start			= sugov_start,
894	.stop			= sugov_stop,
895	.limits			= sugov_limits,
896};
897
898#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
899struct cpufreq_governor *cpufreq_default_governor(void)
900{
901	return &schedutil_gov;
902}
903#endif
904
905cpufreq_governor_init(schedutil_gov);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * CPUFreq governor based on scheduler-provided CPU utilization data.
  4 *
  5 * Copyright (C) 2016, Intel Corporation
  6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include "sched.h"
 12
 13#include <linux/sched/cpufreq.h>
 14#include <trace/events/power.h>
 15
 16#define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
 17
 18struct sugov_tunables {
 19	struct gov_attr_set	attr_set;
 20	unsigned int		rate_limit_us;
 21};
 22
 23struct sugov_policy {
 24	struct cpufreq_policy	*policy;
 25
 26	struct sugov_tunables	*tunables;
 27	struct list_head	tunables_hook;
 28
 29	raw_spinlock_t		update_lock;
 30	u64			last_freq_update_time;
 31	s64			freq_update_delay_ns;
 32	unsigned int		next_freq;
 33	unsigned int		cached_raw_freq;
 34
 35	/* The next fields are only needed if fast switch cannot be used: */
 36	struct			irq_work irq_work;
 37	struct			kthread_work work;
 38	struct			mutex work_lock;
 39	struct			kthread_worker worker;
 40	struct task_struct	*thread;
 41	bool			work_in_progress;
 42
 43	bool			limits_changed;
 44	bool			need_freq_update;
 45};
 46
 47struct sugov_cpu {
 48	struct update_util_data	update_util;
 49	struct sugov_policy	*sg_policy;
 50	unsigned int		cpu;
 51
 52	bool			iowait_boost_pending;
 53	unsigned int		iowait_boost;
 54	u64			last_update;
 55
 56	unsigned long		util;
 57	unsigned long		bw_dl;
 58	unsigned long		max;
 59
 60	/* The field below is for single-CPU policies only: */
 61#ifdef CONFIG_NO_HZ_COMMON
 62	unsigned long		saved_idle_calls;
 63#endif
 64};
 65
 66static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
 67
 68/************************ Governor internals ***********************/
 69
 70static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 71{
 72	s64 delta_ns;
 73
 74	/*
 75	 * Since cpufreq_update_util() is called with rq->lock held for
 76	 * the @target_cpu, our per-CPU data is fully serialized.
 77	 *
 78	 * However, drivers cannot in general deal with cross-CPU
 79	 * requests, so while get_next_freq() will work, our
 80	 * sugov_update_commit() call may not for the fast switching platforms.
 81	 *
 82	 * Hence stop here for remote requests if they aren't supported
 83	 * by the hardware, as calculating the frequency is pointless if
 84	 * we cannot in fact act on it.
 85	 *
 86	 * This is needed on the slow switching platforms too to prevent CPUs
 87	 * going offline from leaving stale IRQ work items behind.
 88	 */
 89	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
 90		return false;
 91
 92	if (unlikely(sg_policy->limits_changed)) {
 93		sg_policy->limits_changed = false;
 94		sg_policy->need_freq_update = true;
 95		return true;
 96	}
 97
 98	delta_ns = time - sg_policy->last_freq_update_time;
 99
100	return delta_ns >= sg_policy->freq_update_delay_ns;
101}
102
103static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104				   unsigned int next_freq)
105{
106	if (sg_policy->need_freq_update)
107		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
108	else if (sg_policy->next_freq == next_freq)
109		return false;
110
111	sg_policy->next_freq = next_freq;
112	sg_policy->last_freq_update_time = time;
113
114	return true;
115}
116
117static void sugov_deferred_update(struct sugov_policy *sg_policy)
118{
119	if (!sg_policy->work_in_progress) {
120		sg_policy->work_in_progress = true;
121		irq_work_queue(&sg_policy->irq_work);
122	}
123}
124
125/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126 * get_next_freq - Compute a new frequency for a given cpufreq policy.
127 * @sg_policy: schedutil policy object to compute the new frequency for.
128 * @util: Current CPU utilization.
129 * @max: CPU capacity.
130 *
131 * If the utilization is frequency-invariant, choose the new frequency to be
132 * proportional to it, that is
133 *
134 * next_freq = C * max_freq * util / max
135 *
136 * Otherwise, approximate the would-be frequency-invariant utilization by
137 * util_raw * (curr_freq / max_freq) which leads to
138 *
139 * next_freq = C * curr_freq * util_raw / max
140 *
141 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
142 *
143 * The lowest driver-supported frequency which is equal or greater than the raw
144 * next_freq (as calculated above) is returned, subject to policy min/max and
145 * cpufreq driver limitations.
146 */
147static unsigned int get_next_freq(struct sugov_policy *sg_policy,
148				  unsigned long util, unsigned long max)
149{
150	struct cpufreq_policy *policy = sg_policy->policy;
151	unsigned int freq = arch_scale_freq_invariant() ?
152				policy->cpuinfo.max_freq : policy->cur;
153
154	util = map_util_perf(util);
155	freq = map_util_freq(util, freq, max);
156
157	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
158		return sg_policy->next_freq;
159
160	sg_policy->cached_raw_freq = freq;
161	return cpufreq_driver_resolve_freq(policy, freq);
162}
163
164static void sugov_get_util(struct sugov_cpu *sg_cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165{
166	struct rq *rq = cpu_rq(sg_cpu->cpu);
167	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
168
169	sg_cpu->max = max;
170	sg_cpu->bw_dl = cpu_bw_dl(rq);
171	sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max,
172					  FREQUENCY_UTIL, NULL);
173}
174
175/**
176 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
177 * @sg_cpu: the sugov data for the CPU to boost
178 * @time: the update time from the caller
179 * @set_iowait_boost: true if an IO boost has been requested
180 *
181 * The IO wait boost of a task is disabled after a tick since the last update
182 * of a CPU. If a new IO wait boost is requested after more then a tick, then
183 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
184 * efficiency by ignoring sporadic wakeups from IO.
185 */
186static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
187			       bool set_iowait_boost)
188{
189	s64 delta_ns = time - sg_cpu->last_update;
190
191	/* Reset boost only if a tick has elapsed since last request */
192	if (delta_ns <= TICK_NSEC)
193		return false;
194
195	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
196	sg_cpu->iowait_boost_pending = set_iowait_boost;
197
198	return true;
199}
200
201/**
202 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
203 * @sg_cpu: the sugov data for the CPU to boost
204 * @time: the update time from the caller
205 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
206 *
207 * Each time a task wakes up after an IO operation, the CPU utilization can be
208 * boosted to a certain utilization which doubles at each "frequent and
209 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
210 * of the maximum OPP.
211 *
212 * To keep doubling, an IO boost has to be requested at least once per tick,
213 * otherwise we restart from the utilization of the minimum OPP.
214 */
215static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
216			       unsigned int flags)
217{
218	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
219
220	/* Reset boost if the CPU appears to have been idle enough */
221	if (sg_cpu->iowait_boost &&
222	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
223		return;
224
225	/* Boost only tasks waking up after IO */
226	if (!set_iowait_boost)
227		return;
228
229	/* Ensure boost doubles only one time at each request */
230	if (sg_cpu->iowait_boost_pending)
231		return;
232	sg_cpu->iowait_boost_pending = true;
233
234	/* Double the boost at each request */
235	if (sg_cpu->iowait_boost) {
236		sg_cpu->iowait_boost =
237			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
238		return;
239	}
240
241	/* First wakeup after IO: start with minimum boost */
242	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
243}
244
245/**
246 * sugov_iowait_apply() - Apply the IO boost to a CPU.
247 * @sg_cpu: the sugov data for the cpu to boost
248 * @time: the update time from the caller
 
249 *
250 * A CPU running a task which woken up after an IO operation can have its
251 * utilization boosted to speed up the completion of those IO operations.
252 * The IO boost value is increased each time a task wakes up from IO, in
253 * sugov_iowait_apply(), and it's instead decreased by this function,
254 * each time an increase has not been requested (!iowait_boost_pending).
255 *
256 * A CPU which also appears to have been idle for at least one tick has also
257 * its IO boost utilization reset.
258 *
259 * This mechanism is designed to boost high frequently IO waiting tasks, while
260 * being more conservative on tasks which does sporadic IO operations.
261 */
262static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
 
263{
264	unsigned long boost;
265
266	/* No boost currently required */
267	if (!sg_cpu->iowait_boost)
268		return;
269
270	/* Reset boost if the CPU appears to have been idle enough */
271	if (sugov_iowait_reset(sg_cpu, time, false))
272		return;
273
274	if (!sg_cpu->iowait_boost_pending) {
275		/*
276		 * No boost pending; reduce the boost value.
277		 */
278		sg_cpu->iowait_boost >>= 1;
279		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
280			sg_cpu->iowait_boost = 0;
281			return;
282		}
283	}
284
285	sg_cpu->iowait_boost_pending = false;
286
287	/*
288	 * sg_cpu->util is already in capacity scale; convert iowait_boost
289	 * into the same scale so we can compare.
290	 */
291	boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
292	if (sg_cpu->util < boost)
293		sg_cpu->util = boost;
294}
295
296#ifdef CONFIG_NO_HZ_COMMON
297static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
298{
299	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
300	bool ret = idle_calls == sg_cpu->saved_idle_calls;
301
302	sg_cpu->saved_idle_calls = idle_calls;
303	return ret;
304}
305#else
306static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
307#endif /* CONFIG_NO_HZ_COMMON */
308
309/*
310 * Make sugov_should_update_freq() ignore the rate limit when DL
311 * has increased the utilization.
312 */
313static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
314{
315	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
316		sg_cpu->sg_policy->limits_changed = true;
317}
318
319static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
320					      u64 time, unsigned int flags)
 
321{
 
 
322	sugov_iowait_boost(sg_cpu, time, flags);
323	sg_cpu->last_update = time;
324
325	ignore_dl_rate_limit(sg_cpu);
326
327	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
328		return false;
329
330	sugov_get_util(sg_cpu);
331	sugov_iowait_apply(sg_cpu, time);
332
333	return true;
334}
335
336static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
337				     unsigned int flags)
338{
339	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
340	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
341	unsigned int cached_freq = sg_policy->cached_raw_freq;
 
342	unsigned int next_f;
343
344	if (!sugov_update_single_common(sg_cpu, time, flags))
 
 
345		return;
346
347	next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
348	/*
349	 * Do not reduce the frequency if the CPU has not been idle
350	 * recently, as the reduction is likely to be premature then.
 
 
351	 */
352	if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
 
 
353		next_f = sg_policy->next_freq;
354
355		/* Restore cached freq as next_freq has changed */
356		sg_policy->cached_raw_freq = cached_freq;
357	}
358
359	if (!sugov_update_next_freq(sg_policy, time, next_f))
360		return;
361
362	/*
363	 * This code runs under rq->lock for the target CPU, so it won't run
364	 * concurrently on two different CPUs for the same target and it is not
365	 * necessary to acquire the lock in the fast switch case.
366	 */
367	if (sg_policy->policy->fast_switch_enabled) {
368		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
369	} else {
370		raw_spin_lock(&sg_policy->update_lock);
371		sugov_deferred_update(sg_policy);
372		raw_spin_unlock(&sg_policy->update_lock);
373	}
374}
375
376static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
377				     unsigned int flags)
378{
379	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
380	unsigned long prev_util = sg_cpu->util;
 
381
382	/*
383	 * Fall back to the "frequency" path if frequency invariance is not
384	 * supported, because the direct mapping between the utilization and
385	 * the performance levels depends on the frequency invariance.
386	 */
387	if (!arch_scale_freq_invariant()) {
388		sugov_update_single_freq(hook, time, flags);
389		return;
390	}
391
392	if (!sugov_update_single_common(sg_cpu, time, flags))
 
 
393		return;
394
395	/*
396	 * Do not reduce the target performance level if the CPU has not been
397	 * idle recently, as the reduction is likely to be premature then.
 
 
398	 */
399	if (sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
 
400		sg_cpu->util = prev_util;
401
402	cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
403				   map_util_perf(sg_cpu->util), sg_cpu->max);
404
405	sg_cpu->sg_policy->last_freq_update_time = time;
406}
407
408static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
409{
410	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
411	struct cpufreq_policy *policy = sg_policy->policy;
412	unsigned long util = 0, max = 1;
413	unsigned int j;
414
 
 
415	for_each_cpu(j, policy->cpus) {
416		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
417		unsigned long j_util, j_max;
 
 
 
418
419		sugov_get_util(j_sg_cpu);
420		sugov_iowait_apply(j_sg_cpu, time);
421		j_util = j_sg_cpu->util;
422		j_max = j_sg_cpu->max;
423
424		if (j_util * max > j_max * util) {
425			util = j_util;
426			max = j_max;
427		}
428	}
429
430	return get_next_freq(sg_policy, util, max);
431}
432
433static void
434sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
435{
436	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
438	unsigned int next_f;
439
440	raw_spin_lock(&sg_policy->update_lock);
441
442	sugov_iowait_boost(sg_cpu, time, flags);
443	sg_cpu->last_update = time;
444
445	ignore_dl_rate_limit(sg_cpu);
446
447	if (sugov_should_update_freq(sg_policy, time)) {
448		next_f = sugov_next_freq_shared(sg_cpu, time);
449
450		if (!sugov_update_next_freq(sg_policy, time, next_f))
451			goto unlock;
452
453		if (sg_policy->policy->fast_switch_enabled)
454			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
455		else
456			sugov_deferred_update(sg_policy);
457	}
458unlock:
459	raw_spin_unlock(&sg_policy->update_lock);
460}
461
462static void sugov_work(struct kthread_work *work)
463{
464	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
465	unsigned int freq;
466	unsigned long flags;
467
468	/*
469	 * Hold sg_policy->update_lock shortly to handle the case where:
470	 * in case sg_policy->next_freq is read here, and then updated by
471	 * sugov_deferred_update() just before work_in_progress is set to false
472	 * here, we may miss queueing the new update.
473	 *
474	 * Note: If a work was queued after the update_lock is released,
475	 * sugov_work() will just be called again by kthread_work code; and the
476	 * request will be proceed before the sugov thread sleeps.
477	 */
478	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
479	freq = sg_policy->next_freq;
480	sg_policy->work_in_progress = false;
481	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
482
483	mutex_lock(&sg_policy->work_lock);
484	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
485	mutex_unlock(&sg_policy->work_lock);
486}
487
488static void sugov_irq_work(struct irq_work *irq_work)
489{
490	struct sugov_policy *sg_policy;
491
492	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
493
494	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
495}
496
497/************************** sysfs interface ************************/
498
499static struct sugov_tunables *global_tunables;
500static DEFINE_MUTEX(global_tunables_lock);
501
502static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
503{
504	return container_of(attr_set, struct sugov_tunables, attr_set);
505}
506
507static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
508{
509	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
510
511	return sprintf(buf, "%u\n", tunables->rate_limit_us);
512}
513
514static ssize_t
515rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
516{
517	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
518	struct sugov_policy *sg_policy;
519	unsigned int rate_limit_us;
520
521	if (kstrtouint(buf, 10, &rate_limit_us))
522		return -EINVAL;
523
524	tunables->rate_limit_us = rate_limit_us;
525
526	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
527		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
528
529	return count;
530}
531
532static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
533
534static struct attribute *sugov_attrs[] = {
535	&rate_limit_us.attr,
536	NULL
537};
538ATTRIBUTE_GROUPS(sugov);
539
540static void sugov_tunables_free(struct kobject *kobj)
541{
542	struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
543
544	kfree(to_sugov_tunables(attr_set));
545}
546
547static struct kobj_type sugov_tunables_ktype = {
548	.default_groups = sugov_groups,
549	.sysfs_ops = &governor_sysfs_ops,
550	.release = &sugov_tunables_free,
551};
552
553/********************** cpufreq governor interface *********************/
554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555struct cpufreq_governor schedutil_gov;
556
557static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
558{
559	struct sugov_policy *sg_policy;
560
561	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
562	if (!sg_policy)
563		return NULL;
564
565	sg_policy->policy = policy;
566	raw_spin_lock_init(&sg_policy->update_lock);
567	return sg_policy;
568}
569
570static void sugov_policy_free(struct sugov_policy *sg_policy)
571{
572	kfree(sg_policy);
573}
574
575static int sugov_kthread_create(struct sugov_policy *sg_policy)
576{
577	struct task_struct *thread;
578	struct sched_attr attr = {
579		.size		= sizeof(struct sched_attr),
580		.sched_policy	= SCHED_DEADLINE,
581		.sched_flags	= SCHED_FLAG_SUGOV,
582		.sched_nice	= 0,
583		.sched_priority	= 0,
584		/*
585		 * Fake (unused) bandwidth; workaround to "fix"
586		 * priority inheritance.
587		 */
588		.sched_runtime	=  1000000,
589		.sched_deadline = 10000000,
590		.sched_period	= 10000000,
591	};
592	struct cpufreq_policy *policy = sg_policy->policy;
593	int ret;
594
595	/* kthread only required for slow path */
596	if (policy->fast_switch_enabled)
597		return 0;
598
599	kthread_init_work(&sg_policy->work, sugov_work);
600	kthread_init_worker(&sg_policy->worker);
601	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
602				"sugov:%d",
603				cpumask_first(policy->related_cpus));
604	if (IS_ERR(thread)) {
605		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
606		return PTR_ERR(thread);
607	}
608
609	ret = sched_setattr_nocheck(thread, &attr);
610	if (ret) {
611		kthread_stop(thread);
612		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
613		return ret;
614	}
615
616	sg_policy->thread = thread;
617	kthread_bind_mask(thread, policy->related_cpus);
618	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
619	mutex_init(&sg_policy->work_lock);
620
621	wake_up_process(thread);
622
623	return 0;
624}
625
626static void sugov_kthread_stop(struct sugov_policy *sg_policy)
627{
628	/* kthread only required for slow path */
629	if (sg_policy->policy->fast_switch_enabled)
630		return;
631
632	kthread_flush_worker(&sg_policy->worker);
633	kthread_stop(sg_policy->thread);
634	mutex_destroy(&sg_policy->work_lock);
635}
636
637static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
638{
639	struct sugov_tunables *tunables;
640
641	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
642	if (tunables) {
643		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
644		if (!have_governor_per_policy())
645			global_tunables = tunables;
646	}
647	return tunables;
648}
649
650static void sugov_clear_global_tunables(void)
651{
652	if (!have_governor_per_policy())
653		global_tunables = NULL;
654}
655
656static int sugov_init(struct cpufreq_policy *policy)
657{
658	struct sugov_policy *sg_policy;
659	struct sugov_tunables *tunables;
660	int ret = 0;
661
662	/* State should be equivalent to EXIT */
663	if (policy->governor_data)
664		return -EBUSY;
665
666	cpufreq_enable_fast_switch(policy);
667
668	sg_policy = sugov_policy_alloc(policy);
669	if (!sg_policy) {
670		ret = -ENOMEM;
671		goto disable_fast_switch;
672	}
673
674	ret = sugov_kthread_create(sg_policy);
675	if (ret)
676		goto free_sg_policy;
677
678	mutex_lock(&global_tunables_lock);
679
680	if (global_tunables) {
681		if (WARN_ON(have_governor_per_policy())) {
682			ret = -EINVAL;
683			goto stop_kthread;
684		}
685		policy->governor_data = sg_policy;
686		sg_policy->tunables = global_tunables;
687
688		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
689		goto out;
690	}
691
692	tunables = sugov_tunables_alloc(sg_policy);
693	if (!tunables) {
694		ret = -ENOMEM;
695		goto stop_kthread;
696	}
697
698	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
699
700	policy->governor_data = sg_policy;
701	sg_policy->tunables = tunables;
702
703	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
704				   get_governor_parent_kobj(policy), "%s",
705				   schedutil_gov.name);
706	if (ret)
707		goto fail;
708
 
 
709out:
710	mutex_unlock(&global_tunables_lock);
711	return 0;
712
713fail:
714	kobject_put(&tunables->attr_set.kobj);
715	policy->governor_data = NULL;
716	sugov_clear_global_tunables();
717
718stop_kthread:
719	sugov_kthread_stop(sg_policy);
720	mutex_unlock(&global_tunables_lock);
721
722free_sg_policy:
723	sugov_policy_free(sg_policy);
724
725disable_fast_switch:
726	cpufreq_disable_fast_switch(policy);
727
728	pr_err("initialization failed (error %d)\n", ret);
729	return ret;
730}
731
732static void sugov_exit(struct cpufreq_policy *policy)
733{
734	struct sugov_policy *sg_policy = policy->governor_data;
735	struct sugov_tunables *tunables = sg_policy->tunables;
736	unsigned int count;
737
738	mutex_lock(&global_tunables_lock);
739
740	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
741	policy->governor_data = NULL;
742	if (!count)
743		sugov_clear_global_tunables();
744
745	mutex_unlock(&global_tunables_lock);
746
747	sugov_kthread_stop(sg_policy);
748	sugov_policy_free(sg_policy);
749	cpufreq_disable_fast_switch(policy);
 
 
750}
751
752static int sugov_start(struct cpufreq_policy *policy)
753{
754	struct sugov_policy *sg_policy = policy->governor_data;
755	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
756	unsigned int cpu;
757
758	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
759	sg_policy->last_freq_update_time	= 0;
760	sg_policy->next_freq			= 0;
761	sg_policy->work_in_progress		= false;
762	sg_policy->limits_changed		= false;
763	sg_policy->cached_raw_freq		= 0;
764
765	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
766
767	for_each_cpu(cpu, policy->cpus) {
768		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
769
770		memset(sg_cpu, 0, sizeof(*sg_cpu));
771		sg_cpu->cpu			= cpu;
772		sg_cpu->sg_policy		= sg_policy;
773	}
774
775	if (policy_is_shared(policy))
776		uu = sugov_update_shared;
777	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
778		uu = sugov_update_single_perf;
779	else
780		uu = sugov_update_single_freq;
781
782	for_each_cpu(cpu, policy->cpus) {
783		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
784
 
 
 
785		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
786	}
787	return 0;
788}
789
790static void sugov_stop(struct cpufreq_policy *policy)
791{
792	struct sugov_policy *sg_policy = policy->governor_data;
793	unsigned int cpu;
794
795	for_each_cpu(cpu, policy->cpus)
796		cpufreq_remove_update_util_hook(cpu);
797
798	synchronize_rcu();
799
800	if (!policy->fast_switch_enabled) {
801		irq_work_sync(&sg_policy->irq_work);
802		kthread_cancel_work_sync(&sg_policy->work);
803	}
804}
805
806static void sugov_limits(struct cpufreq_policy *policy)
807{
808	struct sugov_policy *sg_policy = policy->governor_data;
809
810	if (!policy->fast_switch_enabled) {
811		mutex_lock(&sg_policy->work_lock);
812		cpufreq_policy_apply_limits(policy);
813		mutex_unlock(&sg_policy->work_lock);
814	}
815
816	sg_policy->limits_changed = true;
817}
818
819struct cpufreq_governor schedutil_gov = {
820	.name			= "schedutil",
821	.owner			= THIS_MODULE,
822	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
823	.init			= sugov_init,
824	.exit			= sugov_exit,
825	.start			= sugov_start,
826	.stop			= sugov_stop,
827	.limits			= sugov_limits,
828};
829
830#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
831struct cpufreq_governor *cpufreq_default_governor(void)
832{
833	return &schedutil_gov;
834}
835#endif
836
837cpufreq_governor_init(schedutil_gov);
838
839#ifdef CONFIG_ENERGY_MODEL
840static void rebuild_sd_workfn(struct work_struct *work)
841{
842	rebuild_sched_domains_energy();
843}
844static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
845
846/*
847 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
848 * on governor changes to make sure the scheduler knows about it.
849 */
850void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
851				  struct cpufreq_governor *old_gov)
852{
853	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
854		/*
855		 * When called from the cpufreq_register_driver() path, the
856		 * cpu_hotplug_lock is already held, so use a work item to
857		 * avoid nested locking in rebuild_sched_domains().
858		 */
859		schedule_work(&rebuild_sd_work);
860	}
861
862}
863#endif