Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0+ */
  2/*
  3 * Read-Copy Update definitions shared among RCU implementations.
  4 *
  5 * Copyright IBM Corporation, 2011
  6 *
  7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
  8 */
  9
 10#ifndef __LINUX_RCU_H
 11#define __LINUX_RCU_H
 12
 13#include <linux/slab.h>
 14#include <trace/events/rcu.h>
 15
 
 
 
 
 16/*
 17 * Grace-period counter management.
 18 *
 19 * The two least significant bits contain the control flags.
 20 * The most significant bits contain the grace-period sequence counter.
 21 *
 22 * When both control flags are zero, no grace period is in progress.
 23 * When either bit is non-zero, a grace period has started and is in
 24 * progress. When the grace period completes, the control flags are reset
 25 * to 0 and the grace-period sequence counter is incremented.
 26 *
 27 * However some specific RCU usages make use of custom values.
 28 *
 29 * SRCU special control values:
 30 *
 31 *	SRCU_SNP_INIT_SEQ	:	Invalid/init value set when SRCU node
 32 *					is initialized.
 33 *
 34 *	SRCU_STATE_IDLE		:	No SRCU gp is in progress
 35 *
 36 *	SRCU_STATE_SCAN1	:	State set by rcu_seq_start(). Indicates
 37 *					we are scanning the readers on the slot
 38 *					defined as inactive (there might well
 39 *					be pending readers that will use that
 40 *					index, but their number is bounded).
 41 *
 42 *	SRCU_STATE_SCAN2	:	State set manually via rcu_seq_set_state()
 43 *					Indicates we are flipping the readers
 44 *					index and then scanning the readers on the
 45 *					slot newly designated as inactive (again,
 46 *					the number of pending readers that will use
 47 *					this inactive index is bounded).
 48 *
 49 * RCU polled GP special control value:
 50 *
 51 *	RCU_GET_STATE_COMPLETED :	State value indicating an already-completed
 52 *					polled GP has completed.  This value covers
 53 *					both the state and the counter of the
 54 *					grace-period sequence number.
 55 */
 56
 57#define RCU_SEQ_CTR_SHIFT	2
 58#define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
 59
 60/* Low-order bit definition for polled grace-period APIs. */
 61#define RCU_GET_STATE_COMPLETED	0x1
 62
 63extern int sysctl_sched_rt_runtime;
 64
 65/*
 66 * Return the counter portion of a sequence number previously returned
 67 * by rcu_seq_snap() or rcu_seq_current().
 68 */
 69static inline unsigned long rcu_seq_ctr(unsigned long s)
 70{
 71	return s >> RCU_SEQ_CTR_SHIFT;
 72}
 73
 74/*
 75 * Return the state portion of a sequence number previously returned
 76 * by rcu_seq_snap() or rcu_seq_current().
 77 */
 78static inline int rcu_seq_state(unsigned long s)
 79{
 80	return s & RCU_SEQ_STATE_MASK;
 81}
 82
 83/*
 84 * Set the state portion of the pointed-to sequence number.
 85 * The caller is responsible for preventing conflicting updates.
 86 */
 87static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
 88{
 89	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
 90	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
 91}
 92
 93/* Adjust sequence number for start of update-side operation. */
 94static inline void rcu_seq_start(unsigned long *sp)
 95{
 96	WRITE_ONCE(*sp, *sp + 1);
 97	smp_mb(); /* Ensure update-side operation after counter increment. */
 98	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
 99}
100
101/* Compute the end-of-grace-period value for the specified sequence number. */
102static inline unsigned long rcu_seq_endval(unsigned long *sp)
103{
104	return (*sp | RCU_SEQ_STATE_MASK) + 1;
105}
106
107/* Adjust sequence number for end of update-side operation. */
108static inline void rcu_seq_end(unsigned long *sp)
109{
110	smp_mb(); /* Ensure update-side operation before counter increment. */
111	WARN_ON_ONCE(!rcu_seq_state(*sp));
112	WRITE_ONCE(*sp, rcu_seq_endval(sp));
113}
114
115/*
116 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
117 *
118 * This function returns the earliest value of the grace-period sequence number
119 * that will indicate that a full grace period has elapsed since the current
120 * time.  Once the grace-period sequence number has reached this value, it will
121 * be safe to invoke all callbacks that have been registered prior to the
122 * current time. This value is the current grace-period number plus two to the
123 * power of the number of low-order bits reserved for state, then rounded up to
124 * the next value in which the state bits are all zero.
125 */
126static inline unsigned long rcu_seq_snap(unsigned long *sp)
127{
128	unsigned long s;
129
130	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
131	smp_mb(); /* Above access must not bleed into critical section. */
132	return s;
133}
134
135/* Return the current value the update side's sequence number, no ordering. */
136static inline unsigned long rcu_seq_current(unsigned long *sp)
137{
138	return READ_ONCE(*sp);
139}
140
141/*
142 * Given a snapshot from rcu_seq_snap(), determine whether or not the
143 * corresponding update-side operation has started.
144 */
145static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
146{
147	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
148}
149
150/*
151 * Given a snapshot from rcu_seq_snap(), determine whether or not a
152 * full update-side operation has occurred.
153 */
154static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
155{
156	return ULONG_CMP_GE(READ_ONCE(*sp), s);
157}
158
159/*
160 * Given a snapshot from rcu_seq_snap(), determine whether or not a
161 * full update-side operation has occurred, but do not allow the
162 * (ULONG_MAX / 2) safety-factor/guard-band.
163 */
164static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
165{
166	unsigned long cur_s = READ_ONCE(*sp);
167
168	return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
169}
170
171/*
172 * Has a grace period completed since the time the old gp_seq was collected?
173 */
174static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
175{
176	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
177}
178
179/*
180 * Has a grace period started since the time the old gp_seq was collected?
181 */
182static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
183{
184	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
185			    new);
186}
187
188/*
189 * Roughly how many full grace periods have elapsed between the collection
190 * of the two specified grace periods?
191 */
192static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
193{
194	unsigned long rnd_diff;
195
196	if (old == new)
197		return 0;
198	/*
199	 * Compute the number of grace periods (still shifted up), plus
200	 * one if either of new and old is not an exact grace period.
201	 */
202	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
203		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
204		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
205	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
206		return 1; /* Definitely no grace period has elapsed. */
207	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
208}
209
210/*
211 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
212 * by call_rcu() and rcu callback execution, and are therefore not part
213 * of the RCU API. These are in rcupdate.h because they are used by all
214 * RCU implementations.
215 */
216
217#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
218# define STATE_RCU_HEAD_READY	0
219# define STATE_RCU_HEAD_QUEUED	1
220
221extern const struct debug_obj_descr rcuhead_debug_descr;
222
223static inline int debug_rcu_head_queue(struct rcu_head *head)
224{
225	int r1;
226
227	r1 = debug_object_activate(head, &rcuhead_debug_descr);
228	debug_object_active_state(head, &rcuhead_debug_descr,
229				  STATE_RCU_HEAD_READY,
230				  STATE_RCU_HEAD_QUEUED);
231	return r1;
232}
233
234static inline void debug_rcu_head_unqueue(struct rcu_head *head)
235{
236	debug_object_active_state(head, &rcuhead_debug_descr,
237				  STATE_RCU_HEAD_QUEUED,
238				  STATE_RCU_HEAD_READY);
239	debug_object_deactivate(head, &rcuhead_debug_descr);
240}
241#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
242static inline int debug_rcu_head_queue(struct rcu_head *head)
243{
244	return 0;
245}
246
247static inline void debug_rcu_head_unqueue(struct rcu_head *head)
248{
249}
250#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
251
252static inline void debug_rcu_head_callback(struct rcu_head *rhp)
253{
254	if (unlikely(!rhp->func))
255		kmem_dump_obj(rhp);
256}
257
258extern int rcu_cpu_stall_suppress_at_boot;
259
260static inline bool rcu_stall_is_suppressed_at_boot(void)
261{
262	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
263}
264
265extern int rcu_cpu_stall_notifiers;
266
267#ifdef CONFIG_RCU_STALL_COMMON
268
269extern int rcu_cpu_stall_ftrace_dump;
270extern int rcu_cpu_stall_suppress;
271extern int rcu_cpu_stall_timeout;
272extern int rcu_exp_cpu_stall_timeout;
273extern int rcu_cpu_stall_cputime;
274extern bool rcu_exp_stall_task_details __read_mostly;
275int rcu_jiffies_till_stall_check(void);
276int rcu_exp_jiffies_till_stall_check(void);
277
278static inline bool rcu_stall_is_suppressed(void)
279{
280	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
281}
282
283#define rcu_ftrace_dump_stall_suppress() \
284do { \
285	if (!rcu_cpu_stall_suppress) \
286		rcu_cpu_stall_suppress = 3; \
287} while (0)
288
289#define rcu_ftrace_dump_stall_unsuppress() \
290do { \
291	if (rcu_cpu_stall_suppress == 3) \
292		rcu_cpu_stall_suppress = 0; \
293} while (0)
294
295#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
296
297static inline bool rcu_stall_is_suppressed(void)
298{
299	return rcu_stall_is_suppressed_at_boot();
300}
301#define rcu_ftrace_dump_stall_suppress()
302#define rcu_ftrace_dump_stall_unsuppress()
303#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
304
305/*
306 * Strings used in tracepoints need to be exported via the
307 * tracing system such that tools like perf and trace-cmd can
308 * translate the string address pointers to actual text.
309 */
310#define TPS(x)  tracepoint_string(x)
311
312/*
313 * Dump the ftrace buffer, but only one time per callsite per boot.
314 */
315#define rcu_ftrace_dump(oops_dump_mode) \
316do { \
317	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
318	\
319	if (!atomic_read(&___rfd_beenhere) && \
320	    !atomic_xchg(&___rfd_beenhere, 1)) { \
321		tracing_off(); \
322		rcu_ftrace_dump_stall_suppress(); \
323		ftrace_dump(oops_dump_mode); \
324		rcu_ftrace_dump_stall_unsuppress(); \
325	} \
326} while (0)
327
328void rcu_early_boot_tests(void);
329void rcu_test_sync_prims(void);
330
331/*
332 * This function really isn't for public consumption, but RCU is special in
333 * that context switches can allow the state machine to make progress.
334 */
335extern void resched_cpu(int cpu);
336
337#if !defined(CONFIG_TINY_RCU)
338
339#include <linux/rcu_node_tree.h>
340
341extern int rcu_num_lvls;
342extern int num_rcu_lvl[];
343extern int rcu_num_nodes;
344static bool rcu_fanout_exact;
345static int rcu_fanout_leaf;
346
347/*
348 * Compute the per-level fanout, either using the exact fanout specified
349 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
350 */
351static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
352{
353	int i;
354
355	for (i = 0; i < RCU_NUM_LVLS; i++)
356		levelspread[i] = INT_MIN;
357	if (rcu_fanout_exact) {
358		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
359		for (i = rcu_num_lvls - 2; i >= 0; i--)
360			levelspread[i] = RCU_FANOUT;
361	} else {
362		int ccur;
363		int cprv;
364
365		cprv = nr_cpu_ids;
366		for (i = rcu_num_lvls - 1; i >= 0; i--) {
367			ccur = levelcnt[i];
368			levelspread[i] = (cprv + ccur - 1) / ccur;
369			cprv = ccur;
370		}
371	}
372}
373
374extern void rcu_init_geometry(void);
375
376/* Returns a pointer to the first leaf rcu_node structure. */
377#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
378
379/* Is this rcu_node a leaf? */
380#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
381
382/* Is this rcu_node the last leaf? */
383#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
384
385/*
386 * Do a full breadth-first scan of the {s,}rcu_node structures for the
387 * specified state structure (for SRCU) or the only rcu_state structure
388 * (for RCU).
389 */
390#define _rcu_for_each_node_breadth_first(sp, rnp) \
391	for ((rnp) = &(sp)->node[0]; \
392	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
393#define rcu_for_each_node_breadth_first(rnp) \
394	_rcu_for_each_node_breadth_first(&rcu_state, rnp)
395#define srcu_for_each_node_breadth_first(ssp, rnp) \
396	_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
397
398/*
399 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
400 * Note that if there is a singleton rcu_node tree with but one rcu_node
401 * structure, this loop -will- visit the rcu_node structure.  It is still
402 * a leaf node, even if it is also the root node.
403 */
404#define rcu_for_each_leaf_node(rnp) \
405	for ((rnp) = rcu_first_leaf_node(); \
406	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
407
408/*
409 * Iterate over all possible CPUs in a leaf RCU node.
410 */
411#define for_each_leaf_node_possible_cpu(rnp, cpu) \
412	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
413	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
414	     (cpu) <= rnp->grphi; \
415	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
416
417/*
418 * Iterate over all CPUs in a leaf RCU node's specified mask.
419 */
420#define rcu_find_next_bit(rnp, cpu, mask) \
421	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
422#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
423	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
424	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
425	     (cpu) <= rnp->grphi; \
426	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
427
428#endif /* !defined(CONFIG_TINY_RCU) */
429
430#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
431
432/*
433 * Wrappers for the rcu_node::lock acquire and release.
434 *
435 * Because the rcu_nodes form a tree, the tree traversal locking will observe
436 * different lock values, this in turn means that an UNLOCK of one level
437 * followed by a LOCK of another level does not imply a full memory barrier;
438 * and most importantly transitivity is lost.
439 *
440 * In order to restore full ordering between tree levels, augment the regular
441 * lock acquire functions with smp_mb__after_unlock_lock().
442 *
443 * As ->lock of struct rcu_node is a __private field, therefore one should use
444 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
445 */
446#define raw_spin_lock_rcu_node(p)					\
447do {									\
448	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
449	smp_mb__after_unlock_lock();					\
450} while (0)
451
452#define raw_spin_unlock_rcu_node(p)					\
453do {									\
454	lockdep_assert_irqs_disabled();					\
455	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
456} while (0)
457
458#define raw_spin_lock_irq_rcu_node(p)					\
459do {									\
460	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
461	smp_mb__after_unlock_lock();					\
462} while (0)
463
464#define raw_spin_unlock_irq_rcu_node(p)					\
465do {									\
466	lockdep_assert_irqs_disabled();					\
467	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
468} while (0)
469
470#define raw_spin_lock_irqsave_rcu_node(p, flags)			\
471do {									\
472	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
473	smp_mb__after_unlock_lock();					\
474} while (0)
475
476#define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
477do {									\
478	lockdep_assert_irqs_disabled();					\
479	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
480} while (0)
481
482#define raw_spin_trylock_rcu_node(p)					\
483({									\
484	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
485									\
486	if (___locked)							\
487		smp_mb__after_unlock_lock();				\
488	___locked;							\
489})
490
491#define raw_lockdep_assert_held_rcu_node(p)				\
492	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
493
494#endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
495
496#ifdef CONFIG_TINY_RCU
497/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
498static inline bool rcu_gp_is_normal(void) { return true; }
499static inline bool rcu_gp_is_expedited(void) { return false; }
500static inline bool rcu_async_should_hurry(void) { return false; }
501static inline void rcu_expedite_gp(void) { }
502static inline void rcu_unexpedite_gp(void) { }
503static inline void rcu_async_hurry(void) { }
504static inline void rcu_async_relax(void) { }
505static inline bool rcu_cpu_online(int cpu) { return true; }
506#else /* #ifdef CONFIG_TINY_RCU */
507bool rcu_gp_is_normal(void);     /* Internal RCU use. */
508bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
509bool rcu_async_should_hurry(void);  /* Internal RCU use. */
510void rcu_expedite_gp(void);
511void rcu_unexpedite_gp(void);
512void rcu_async_hurry(void);
513void rcu_async_relax(void);
514void rcupdate_announce_bootup_oddness(void);
515bool rcu_cpu_online(int cpu);
516#ifdef CONFIG_TASKS_RCU_GENERIC
517void show_rcu_tasks_gp_kthreads(void);
518#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
519static inline void show_rcu_tasks_gp_kthreads(void) {}
520#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 
521#endif /* #else #ifdef CONFIG_TINY_RCU */
522
523#ifdef CONFIG_TASKS_RCU
524struct task_struct *get_rcu_tasks_gp_kthread(void);
525#endif // # ifdef CONFIG_TASKS_RCU
526
527#ifdef CONFIG_TASKS_RUDE_RCU
528struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
529#endif // # ifdef CONFIG_TASKS_RUDE_RCU
530
531#define RCU_SCHEDULER_INACTIVE	0
532#define RCU_SCHEDULER_INIT	1
533#define RCU_SCHEDULER_RUNNING	2
534
535enum rcutorture_type {
536	RCU_FLAVOR,
537	RCU_TASKS_FLAVOR,
538	RCU_TASKS_RUDE_FLAVOR,
539	RCU_TASKS_TRACING_FLAVOR,
540	RCU_TRIVIAL_FLAVOR,
541	SRCU_FLAVOR,
542	INVALID_RCU_FLAVOR
543};
544
545#if defined(CONFIG_RCU_LAZY)
546unsigned long rcu_lazy_get_jiffies_till_flush(void);
547void rcu_lazy_set_jiffies_till_flush(unsigned long j);
548#else
549static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
550static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
551#endif
552
553#if defined(CONFIG_TREE_RCU)
554void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
555			    unsigned long *gp_seq);
556void do_trace_rcu_torture_read(const char *rcutorturename,
557			       struct rcu_head *rhp,
558			       unsigned long secs,
559			       unsigned long c_old,
560			       unsigned long c);
561void rcu_gp_set_torture_wait(int duration);
562#else
563static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
564					  int *flags, unsigned long *gp_seq)
565{
566	*flags = 0;
567	*gp_seq = 0;
568}
569#ifdef CONFIG_RCU_TRACE
570void do_trace_rcu_torture_read(const char *rcutorturename,
571			       struct rcu_head *rhp,
572			       unsigned long secs,
573			       unsigned long c_old,
574			       unsigned long c);
575#else
576#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
577	do { } while (0)
578#endif
579static inline void rcu_gp_set_torture_wait(int duration) { }
580#endif
581
 
 
 
 
582#ifdef CONFIG_TINY_SRCU
583
584static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
585					   struct srcu_struct *sp, int *flags,
586					   unsigned long *gp_seq)
587{
588	if (test_type != SRCU_FLAVOR)
589		return;
590	*flags = 0;
591	*gp_seq = sp->srcu_idx;
592}
593
594#elif defined(CONFIG_TREE_SRCU)
595
596void srcutorture_get_gp_data(enum rcutorture_type test_type,
597			     struct srcu_struct *sp, int *flags,
598			     unsigned long *gp_seq);
599
600#endif
601
602#ifdef CONFIG_TINY_RCU
603static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
604static inline unsigned long rcu_get_gp_seq(void) { return 0; }
605static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
606static inline unsigned long
607srcu_batches_completed(struct srcu_struct *sp) { return 0; }
608static inline void rcu_force_quiescent_state(void) { }
609static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
610static inline void show_rcu_gp_kthreads(void) { }
611static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
612static inline void rcu_fwd_progress_check(unsigned long j) { }
613static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
614static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
615#else /* #ifdef CONFIG_TINY_RCU */
616bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
617unsigned long rcu_get_gp_seq(void);
618unsigned long rcu_exp_batches_completed(void);
619unsigned long srcu_batches_completed(struct srcu_struct *sp);
620bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
621void show_rcu_gp_kthreads(void);
622int rcu_get_gp_kthreads_prio(void);
623void rcu_fwd_progress_check(unsigned long j);
624void rcu_force_quiescent_state(void);
625extern struct workqueue_struct *rcu_gp_wq;
626#ifdef CONFIG_RCU_EXP_KTHREAD
627extern struct kthread_worker *rcu_exp_gp_kworker;
628extern struct kthread_worker *rcu_exp_par_gp_kworker;
629#else /* !CONFIG_RCU_EXP_KTHREAD */
630extern struct workqueue_struct *rcu_par_gp_wq;
631#endif /* CONFIG_RCU_EXP_KTHREAD */
632void rcu_gp_slow_register(atomic_t *rgssp);
633void rcu_gp_slow_unregister(atomic_t *rgssp);
634#endif /* #else #ifdef CONFIG_TINY_RCU */
635
636#ifdef CONFIG_RCU_NOCB_CPU
 
637void rcu_bind_current_to_nocb(void);
638#else
 
639static inline void rcu_bind_current_to_nocb(void) { }
640#endif
641
642#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
643void show_rcu_tasks_classic_gp_kthread(void);
644#else
645static inline void show_rcu_tasks_classic_gp_kthread(void) {}
646#endif
647#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
648void show_rcu_tasks_rude_gp_kthread(void);
649#else
650static inline void show_rcu_tasks_rude_gp_kthread(void) {}
651#endif
652#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
653void show_rcu_tasks_trace_gp_kthread(void);
654#else
655static inline void show_rcu_tasks_trace_gp_kthread(void) {}
656#endif
657
658#ifdef CONFIG_TINY_RCU
659static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
660#else
661bool rcu_cpu_beenfullyonline(int cpu);
662#endif
663
664#if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
665int rcu_stall_notifier_call_chain(unsigned long val, void *v);
666#else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
667static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
668#endif // #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
669
670#endif /* __LINUX_RCU_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0+ */
  2/*
  3 * Read-Copy Update definitions shared among RCU implementations.
  4 *
  5 * Copyright IBM Corporation, 2011
  6 *
  7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
  8 */
  9
 10#ifndef __LINUX_RCU_H
 11#define __LINUX_RCU_H
 12
 
 13#include <trace/events/rcu.h>
 14
 15/* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
 16#define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
 17
 18
 19/*
 20 * Grace-period counter management.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21 */
 22
 23#define RCU_SEQ_CTR_SHIFT	2
 24#define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
 25
 
 
 
 
 
 26/*
 27 * Return the counter portion of a sequence number previously returned
 28 * by rcu_seq_snap() or rcu_seq_current().
 29 */
 30static inline unsigned long rcu_seq_ctr(unsigned long s)
 31{
 32	return s >> RCU_SEQ_CTR_SHIFT;
 33}
 34
 35/*
 36 * Return the state portion of a sequence number previously returned
 37 * by rcu_seq_snap() or rcu_seq_current().
 38 */
 39static inline int rcu_seq_state(unsigned long s)
 40{
 41	return s & RCU_SEQ_STATE_MASK;
 42}
 43
 44/*
 45 * Set the state portion of the pointed-to sequence number.
 46 * The caller is responsible for preventing conflicting updates.
 47 */
 48static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
 49{
 50	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
 51	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
 52}
 53
 54/* Adjust sequence number for start of update-side operation. */
 55static inline void rcu_seq_start(unsigned long *sp)
 56{
 57	WRITE_ONCE(*sp, *sp + 1);
 58	smp_mb(); /* Ensure update-side operation after counter increment. */
 59	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
 60}
 61
 62/* Compute the end-of-grace-period value for the specified sequence number. */
 63static inline unsigned long rcu_seq_endval(unsigned long *sp)
 64{
 65	return (*sp | RCU_SEQ_STATE_MASK) + 1;
 66}
 67
 68/* Adjust sequence number for end of update-side operation. */
 69static inline void rcu_seq_end(unsigned long *sp)
 70{
 71	smp_mb(); /* Ensure update-side operation before counter increment. */
 72	WARN_ON_ONCE(!rcu_seq_state(*sp));
 73	WRITE_ONCE(*sp, rcu_seq_endval(sp));
 74}
 75
 76/*
 77 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
 78 *
 79 * This function returns the earliest value of the grace-period sequence number
 80 * that will indicate that a full grace period has elapsed since the current
 81 * time.  Once the grace-period sequence number has reached this value, it will
 82 * be safe to invoke all callbacks that have been registered prior to the
 83 * current time. This value is the current grace-period number plus two to the
 84 * power of the number of low-order bits reserved for state, then rounded up to
 85 * the next value in which the state bits are all zero.
 86 */
 87static inline unsigned long rcu_seq_snap(unsigned long *sp)
 88{
 89	unsigned long s;
 90
 91	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
 92	smp_mb(); /* Above access must not bleed into critical section. */
 93	return s;
 94}
 95
 96/* Return the current value the update side's sequence number, no ordering. */
 97static inline unsigned long rcu_seq_current(unsigned long *sp)
 98{
 99	return READ_ONCE(*sp);
100}
101
102/*
103 * Given a snapshot from rcu_seq_snap(), determine whether or not the
104 * corresponding update-side operation has started.
105 */
106static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107{
108	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109}
110
111/*
112 * Given a snapshot from rcu_seq_snap(), determine whether or not a
113 * full update-side operation has occurred.
114 */
115static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116{
117	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118}
119
120/*
 
 
 
 
 
 
 
 
 
 
 
 
121 * Has a grace period completed since the time the old gp_seq was collected?
122 */
123static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124{
125	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126}
127
128/*
129 * Has a grace period started since the time the old gp_seq was collected?
130 */
131static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132{
133	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134			    new);
135}
136
137/*
138 * Roughly how many full grace periods have elapsed between the collection
139 * of the two specified grace periods?
140 */
141static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142{
143	unsigned long rnd_diff;
144
145	if (old == new)
146		return 0;
147	/*
148	 * Compute the number of grace periods (still shifted up), plus
149	 * one if either of new and old is not an exact grace period.
150	 */
151	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155		return 1; /* Definitely no grace period has elapsed. */
156	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157}
158
159/*
160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161 * by call_rcu() and rcu callback execution, and are therefore not part
162 * of the RCU API. These are in rcupdate.h because they are used by all
163 * RCU implementations.
164 */
165
166#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167# define STATE_RCU_HEAD_READY	0
168# define STATE_RCU_HEAD_QUEUED	1
169
170extern const struct debug_obj_descr rcuhead_debug_descr;
171
172static inline int debug_rcu_head_queue(struct rcu_head *head)
173{
174	int r1;
175
176	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177	debug_object_active_state(head, &rcuhead_debug_descr,
178				  STATE_RCU_HEAD_READY,
179				  STATE_RCU_HEAD_QUEUED);
180	return r1;
181}
182
183static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184{
185	debug_object_active_state(head, &rcuhead_debug_descr,
186				  STATE_RCU_HEAD_QUEUED,
187				  STATE_RCU_HEAD_READY);
188	debug_object_deactivate(head, &rcuhead_debug_descr);
189}
190#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191static inline int debug_rcu_head_queue(struct rcu_head *head)
192{
193	return 0;
194}
195
196static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197{
198}
199#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200
 
 
 
 
 
 
201extern int rcu_cpu_stall_suppress_at_boot;
202
203static inline bool rcu_stall_is_suppressed_at_boot(void)
204{
205	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
206}
207
 
 
208#ifdef CONFIG_RCU_STALL_COMMON
209
210extern int rcu_cpu_stall_ftrace_dump;
211extern int rcu_cpu_stall_suppress;
212extern int rcu_cpu_stall_timeout;
 
 
 
213int rcu_jiffies_till_stall_check(void);
 
214
215static inline bool rcu_stall_is_suppressed(void)
216{
217	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
218}
219
220#define rcu_ftrace_dump_stall_suppress() \
221do { \
222	if (!rcu_cpu_stall_suppress) \
223		rcu_cpu_stall_suppress = 3; \
224} while (0)
225
226#define rcu_ftrace_dump_stall_unsuppress() \
227do { \
228	if (rcu_cpu_stall_suppress == 3) \
229		rcu_cpu_stall_suppress = 0; \
230} while (0)
231
232#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
233
234static inline bool rcu_stall_is_suppressed(void)
235{
236	return rcu_stall_is_suppressed_at_boot();
237}
238#define rcu_ftrace_dump_stall_suppress()
239#define rcu_ftrace_dump_stall_unsuppress()
240#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
241
242/*
243 * Strings used in tracepoints need to be exported via the
244 * tracing system such that tools like perf and trace-cmd can
245 * translate the string address pointers to actual text.
246 */
247#define TPS(x)  tracepoint_string(x)
248
249/*
250 * Dump the ftrace buffer, but only one time per callsite per boot.
251 */
252#define rcu_ftrace_dump(oops_dump_mode) \
253do { \
254	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
255	\
256	if (!atomic_read(&___rfd_beenhere) && \
257	    !atomic_xchg(&___rfd_beenhere, 1)) { \
258		tracing_off(); \
259		rcu_ftrace_dump_stall_suppress(); \
260		ftrace_dump(oops_dump_mode); \
261		rcu_ftrace_dump_stall_unsuppress(); \
262	} \
263} while (0)
264
265void rcu_early_boot_tests(void);
266void rcu_test_sync_prims(void);
267
268/*
269 * This function really isn't for public consumption, but RCU is special in
270 * that context switches can allow the state machine to make progress.
271 */
272extern void resched_cpu(int cpu);
273
274#if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
275
276#include <linux/rcu_node_tree.h>
277
278extern int rcu_num_lvls;
279extern int num_rcu_lvl[];
280extern int rcu_num_nodes;
281static bool rcu_fanout_exact;
282static int rcu_fanout_leaf;
283
284/*
285 * Compute the per-level fanout, either using the exact fanout specified
286 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
287 */
288static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
289{
290	int i;
291
292	for (i = 0; i < RCU_NUM_LVLS; i++)
293		levelspread[i] = INT_MIN;
294	if (rcu_fanout_exact) {
295		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
296		for (i = rcu_num_lvls - 2; i >= 0; i--)
297			levelspread[i] = RCU_FANOUT;
298	} else {
299		int ccur;
300		int cprv;
301
302		cprv = nr_cpu_ids;
303		for (i = rcu_num_lvls - 1; i >= 0; i--) {
304			ccur = levelcnt[i];
305			levelspread[i] = (cprv + ccur - 1) / ccur;
306			cprv = ccur;
307		}
308	}
309}
310
311extern void rcu_init_geometry(void);
312
313/* Returns a pointer to the first leaf rcu_node structure. */
314#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
315
316/* Is this rcu_node a leaf? */
317#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
318
319/* Is this rcu_node the last leaf? */
320#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
321
322/*
323 * Do a full breadth-first scan of the {s,}rcu_node structures for the
324 * specified state structure (for SRCU) or the only rcu_state structure
325 * (for RCU).
326 */
327#define srcu_for_each_node_breadth_first(sp, rnp) \
328	for ((rnp) = &(sp)->node[0]; \
329	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
330#define rcu_for_each_node_breadth_first(rnp) \
331	srcu_for_each_node_breadth_first(&rcu_state, rnp)
 
 
332
333/*
334 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
335 * Note that if there is a singleton rcu_node tree with but one rcu_node
336 * structure, this loop -will- visit the rcu_node structure.  It is still
337 * a leaf node, even if it is also the root node.
338 */
339#define rcu_for_each_leaf_node(rnp) \
340	for ((rnp) = rcu_first_leaf_node(); \
341	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
342
343/*
344 * Iterate over all possible CPUs in a leaf RCU node.
345 */
346#define for_each_leaf_node_possible_cpu(rnp, cpu) \
347	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
348	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
349	     (cpu) <= rnp->grphi; \
350	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
351
352/*
353 * Iterate over all CPUs in a leaf RCU node's specified mask.
354 */
355#define rcu_find_next_bit(rnp, cpu, mask) \
356	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
357#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
358	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
359	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
360	     (cpu) <= rnp->grphi; \
361	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
362
 
 
 
 
363/*
364 * Wrappers for the rcu_node::lock acquire and release.
365 *
366 * Because the rcu_nodes form a tree, the tree traversal locking will observe
367 * different lock values, this in turn means that an UNLOCK of one level
368 * followed by a LOCK of another level does not imply a full memory barrier;
369 * and most importantly transitivity is lost.
370 *
371 * In order to restore full ordering between tree levels, augment the regular
372 * lock acquire functions with smp_mb__after_unlock_lock().
373 *
374 * As ->lock of struct rcu_node is a __private field, therefore one should use
375 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
376 */
377#define raw_spin_lock_rcu_node(p)					\
378do {									\
379	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
380	smp_mb__after_unlock_lock();					\
381} while (0)
382
383#define raw_spin_unlock_rcu_node(p)					\
384do {									\
385	lockdep_assert_irqs_disabled();					\
386	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
387} while (0)
388
389#define raw_spin_lock_irq_rcu_node(p)					\
390do {									\
391	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
392	smp_mb__after_unlock_lock();					\
393} while (0)
394
395#define raw_spin_unlock_irq_rcu_node(p)					\
396do {									\
397	lockdep_assert_irqs_disabled();					\
398	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
399} while (0)
400
401#define raw_spin_lock_irqsave_rcu_node(p, flags)			\
402do {									\
403	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
404	smp_mb__after_unlock_lock();					\
405} while (0)
406
407#define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
408do {									\
409	lockdep_assert_irqs_disabled();					\
410	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
411} while (0)
412
413#define raw_spin_trylock_rcu_node(p)					\
414({									\
415	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
416									\
417	if (___locked)							\
418		smp_mb__after_unlock_lock();				\
419	___locked;							\
420})
421
422#define raw_lockdep_assert_held_rcu_node(p)				\
423	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
424
425#endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
426
427#ifdef CONFIG_TINY_RCU
428/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
429static inline bool rcu_gp_is_normal(void) { return true; }
430static inline bool rcu_gp_is_expedited(void) { return false; }
 
431static inline void rcu_expedite_gp(void) { }
432static inline void rcu_unexpedite_gp(void) { }
433static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
 
 
434#else /* #ifdef CONFIG_TINY_RCU */
435bool rcu_gp_is_normal(void);     /* Internal RCU use. */
436bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
 
437void rcu_expedite_gp(void);
438void rcu_unexpedite_gp(void);
 
 
439void rcupdate_announce_bootup_oddness(void);
 
440#ifdef CONFIG_TASKS_RCU_GENERIC
441void show_rcu_tasks_gp_kthreads(void);
442#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
443static inline void show_rcu_tasks_gp_kthreads(void) {}
444#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
445void rcu_request_urgent_qs_task(struct task_struct *t);
446#endif /* #else #ifdef CONFIG_TINY_RCU */
447
 
 
 
 
 
 
 
 
448#define RCU_SCHEDULER_INACTIVE	0
449#define RCU_SCHEDULER_INIT	1
450#define RCU_SCHEDULER_RUNNING	2
451
452enum rcutorture_type {
453	RCU_FLAVOR,
454	RCU_TASKS_FLAVOR,
455	RCU_TASKS_RUDE_FLAVOR,
456	RCU_TASKS_TRACING_FLAVOR,
457	RCU_TRIVIAL_FLAVOR,
458	SRCU_FLAVOR,
459	INVALID_RCU_FLAVOR
460};
461
 
 
 
 
 
 
 
 
462#if defined(CONFIG_TREE_RCU)
463void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
464			    unsigned long *gp_seq);
465void do_trace_rcu_torture_read(const char *rcutorturename,
466			       struct rcu_head *rhp,
467			       unsigned long secs,
468			       unsigned long c_old,
469			       unsigned long c);
470void rcu_gp_set_torture_wait(int duration);
471#else
472static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
473					  int *flags, unsigned long *gp_seq)
474{
475	*flags = 0;
476	*gp_seq = 0;
477}
478#ifdef CONFIG_RCU_TRACE
479void do_trace_rcu_torture_read(const char *rcutorturename,
480			       struct rcu_head *rhp,
481			       unsigned long secs,
482			       unsigned long c_old,
483			       unsigned long c);
484#else
485#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
486	do { } while (0)
487#endif
488static inline void rcu_gp_set_torture_wait(int duration) { }
489#endif
490
491#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
492long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
493#endif
494
495#ifdef CONFIG_TINY_SRCU
496
497static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
498					   struct srcu_struct *sp, int *flags,
499					   unsigned long *gp_seq)
500{
501	if (test_type != SRCU_FLAVOR)
502		return;
503	*flags = 0;
504	*gp_seq = sp->srcu_idx;
505}
506
507#elif defined(CONFIG_TREE_SRCU)
508
509void srcutorture_get_gp_data(enum rcutorture_type test_type,
510			     struct srcu_struct *sp, int *flags,
511			     unsigned long *gp_seq);
512
513#endif
514
515#ifdef CONFIG_TINY_RCU
516static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
517static inline unsigned long rcu_get_gp_seq(void) { return 0; }
518static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
519static inline unsigned long
520srcu_batches_completed(struct srcu_struct *sp) { return 0; }
521static inline void rcu_force_quiescent_state(void) { }
522static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
523static inline void show_rcu_gp_kthreads(void) { }
524static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
525static inline void rcu_fwd_progress_check(unsigned long j) { }
 
 
526#else /* #ifdef CONFIG_TINY_RCU */
527bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
528unsigned long rcu_get_gp_seq(void);
529unsigned long rcu_exp_batches_completed(void);
530unsigned long srcu_batches_completed(struct srcu_struct *sp);
531bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
532void show_rcu_gp_kthreads(void);
533int rcu_get_gp_kthreads_prio(void);
534void rcu_fwd_progress_check(unsigned long j);
535void rcu_force_quiescent_state(void);
536extern struct workqueue_struct *rcu_gp_wq;
 
 
 
 
537extern struct workqueue_struct *rcu_par_gp_wq;
 
 
 
538#endif /* #else #ifdef CONFIG_TINY_RCU */
539
540#ifdef CONFIG_RCU_NOCB_CPU
541bool rcu_is_nocb_cpu(int cpu);
542void rcu_bind_current_to_nocb(void);
543#else
544static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
545static inline void rcu_bind_current_to_nocb(void) { }
546#endif
547
548#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
549void show_rcu_tasks_classic_gp_kthread(void);
550#else
551static inline void show_rcu_tasks_classic_gp_kthread(void) {}
552#endif
553#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
554void show_rcu_tasks_rude_gp_kthread(void);
555#else
556static inline void show_rcu_tasks_rude_gp_kthread(void) {}
557#endif
558#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
559void show_rcu_tasks_trace_gp_kthread(void);
560#else
561static inline void show_rcu_tasks_trace_gp_kthread(void) {}
562#endif
 
 
 
 
 
 
 
 
 
 
 
 
563
564#endif /* __LINUX_RCU_H */